
Hyperbolic t-SNE with a Quadtree Splitting in the Cartesian Coordinate System

Yehor Kozyr1

Supervisor(s): Martin Skrodzki1, Elmar Eisemann1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Yehor Kozyr
Final project course: CSE3000 Research Project
Thesis committee: Elmar Eisemann, Martin Skrodzki, Gosia Migut

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
With the rapid growth in data collection, effi-
cient data processing is critical. Dimensional-
ity reduction methods, like t-distributed stochas-
tic neighbour embedding (t-SNE), compress high-
dimensional data into embeddings that preserve the
key features of the datasets making data less sparse
and easier to process further. Recent improvements
suggest that using hyperbolic space for data repre-
sentation can benefit embeddings. As it is a new
technique, it remains computationally expensive.
Previous work suggests that a Barnes-Hut approx-
imation with a polar quadtree can be applied to
the Poincaré disk model to approximate the result
of hyperbolic t-SNE and accelerate its calculation.
However, the polar quadtree is proposed as a solu-
tion to accelerate the calculation without exploring
alternative approaches. Aiming to close this gap,
we propose an acceleration method using Barnes-
Hut approximation with a Cartesian quadtree. We
experimentally compare our acceleration method to
a polar quadtree and showcase its lower execution
time without the loss of quality of the embeddings.
Implementation and scripts for the experiments and
plots are available at https://github.com/Sne4kers/
hyperbolic-tsne.

1 Introduction
With an increasing amount and type of data being collected
yearly, the need to efficiently process that data rises. High-
dimensional data is often problematic for algorithms to pro-
cess due to the sparsity of the data and the additional compu-
tational power required to process it. In order to extract key
insights about the datasets, they are compressed into embed-
dings. In this research, we work on t-distributed stochastic
neighbour embedding (t-SNE). In the embeddings formed by
t-SNE, the locality of the neighbourhoods is preserved – sim-
ilar data points have a high probability of being closer to each
other while different further away from each other [1].

With the rising use of embeddings, hyperbolic space has
been shown to benefit the embedding of hierarchical data [6],
trees [2], and additionally, new methods of dimensionality
reduction in the hyperbolic space were proposed based on the
t-SNE in the Euclidean space [7].

Hyperbolic embeddings are still computationally expen-
sive when compared to the methods for solving equivalent
problems in the Euclidean space. To tackle this problem,
a method using a Barnes-Hut approximation was proposed
by Martin Skrodzki et al. [8] that takes advantage of a po-
lar quadtree. The quadtree is a data structure that recursively
splits the 2-dimensional space into 4 regions. The original
paper builds such a tree in the polar coordinate system – the
splitting is done by splitting the region in polar quadrilater-
als, based on the distance from the center and angle. Such
a design choice is very intuitive as it splits a circle of the
Poincaré disk model into similar regions, only covering re-
gions within it. There is a downside to this method, as it

forces the developer to regularly recalculate coordinates for
the entire datasets to convert from one coordinate system to
another, as building a polar quadtree requires constantly con-
verting coordinates from the Euclidean space of the Poincaré
disk model into the polar coordinate system.

With this research, we aim to compare the polar quadtree
acceleration method to a variation of the quadtree with split-
ting in the Cartesian coordinate system. A quadtree with such
splitting allows us to maintain only the coordinates of data
points in the Poincaré disk model and will remove the need
to convert them regularly to the intermediate polar coordinate
system, alleviating some computations per iteration. Even
though this way of building a tree is more widespread in Eu-
clidean space applications, it presents additional challenges
when applying the Barnes-Hut approximation in the hyper-
bolic space due to the difficulties of fitting squares into the
circle of the Poincaré disk model.

In the following section, we discuss background informa-
tion about adapting t-SNE to hyperbolic space in Section 2,
specifications of the proposed quadtree with splitting in the
Cartesian coordinate system in Section 3, evaluation of the
proposed quadtree comparing it to the polar quadtree and ex-
act computation in Section 4, ethical implications of this re-
search in Section 5, and conclusions with suggestions of fu-
ture work in Section 6.

2 Background
2.1 t-distributed Stochastic Neighbor Embedding
t-distributed Stochastic Neighbor Embedding (t-SNE) is a
nonlinear dimensionality reduction technique that was pro-
posed for better visualization of the similarities within the
data by Laurens van der Maaten and Geoffrey Hinton in 2008
[1]. The algorithm focuses on preserving local neighbour-
hoods from the high-dimensional data in the low-dimensional
representation. It is done by minimising the Kullback–Leibler
(KL) divergence on 2 distributions. The high-dimensional in-
put {x1,x2, ...,xn} ⊆ Rd, where d is the number of dimen-
sions, is interpreted as a set of conditional probabilities:

pj|i =
exp(−∥xi − xj∥2/2σ2

i)∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i)
, pi|j =

pj|i + pi|j

2N
(1)

where σi is the variance of the Gaussian centered on data-
point xi, and pi|i = 0. In the low-dimensional embedding
{y1,y2, ...,yn} ⊆ Rd′

similarity of points yi and yj is mod-
elled as a probability:

qij =
(1 + ∥yi − yj∥2)−1∑

k

∑
l ̸=k(1 + ∥yk − yl∥2)−1

(2)

To compute the low-dimensional embedding of t-SNE,
principal component analysis (PCA) is first applied to the
original data, followed by the procedure of gradient descent
to minimise the KL divergence:

KL (P ∥ Q) =
∑
i̸=j

pij log
pij
qij

(3)

1

https://github.com/Sne4kers/hyperbolic-tsne
https://github.com/Sne4kers/hyperbolic-tsne

The gradient of KL divergence:

δC

δyi
= 4

∑
j ̸=i

(pij − qij)(1 + ∥yi − yj∥2)−1(yi − yj) (4)

As a result, the local minimum of dissimilarity between the
low-dimensional and high-dimensional representation of the
data will be found. A regular implementation of t-SNE would
have a run time of O(n2) as a pair-wise combination of each
point is required for the computation.

2.2 Barnes-Hut approximation for t-SNE
In order to accelerate the quadratic calculation of all of
the pairwise combinations, the approximation is used – the
Barnes-Hut algorithm.

The obtained gradient formula from the KL divergence can
be rewritten as a negative and positive-sum which can be
viewed as negative and positive forces in a n-body system, so
the Barnes-Hut algorithm can be applied to negative forces.
In this approximation, the space is split into regions using a
quadtree, after which it is queried with stopping criteria:

rcell
∥yi − ycell∥

< θ (5)

where rcell is the maximum distance within the cell, ycell is
a barycenter of the cell, and θ is a hyperparameter regulat-
ing how much of cells will get approximated. The impact
of change in points that are far away is small on the target
point. Using this condition they are grouped in a single cell
that will be later used in a calculation as a single point with a
bigger multiplier, grouping multiple points into one, reducing
the computational complexity of the stage to O(n log n) [3].

2.3 Hyperbolic space and Poincaré disk model

Figure 1: The Poincaré disk model of hyperbolic space with straight
lines that are parallel to a blue straight line. Straight lines in hyper-
bolic space appear to be curved in the Poincaré disk model.

While there are many ways to model hyperbolic space ge-
ometry behaviour, we will use the Poincaré disk model. In
this model, the entire space is represented by a disk. A
straight line in hyperbolic space would be modelled in a
Poincaré disk model as a circular arc contained within a disk.
Formally expressed, the Poincaré disk model is the space
D = {y ∈ R2 : ||y|| < 1} with a metric:

gDy = λ2
yg

E (6)

where λy = 2
1−||y||2 , gE – standard scalar product of R2

and ||.|| – standard norm of R2. The hyperbolic distance
dH(yi,yj) between 2 points in the Poincaré model is given
by:

dHij = cosh−1

(
1 + 2

||yi − yj)||2

(1− ||yi||2) (1− ||yj ||2)

)
(7)

2.4 Approximation of t-SNE for hyperbolic space
As we expand on the idea of acceleration of hyperbolic t-
SNE introduced by Martin Skrodzki et. al. and compare the
Cartesian quadtree to the polar quadtree in this scenario, the
same formula of gradient was used for finding local minima
of KL-divergence:

δCH

δyi
= 4

∑
j ̸=i

pijq
H
ijZ

H δdHij
δyi

−
∑
j ̸=i

(
qHij

)2
ZH δdHij

δyi

 ,

(8)

where ZH =
∑

j ̸=i

(
1 + dHij

2
)−1

[8, Eq. 15]. Similarly, as
in polar quadtree acceleration, we will approximate the nega-
tive part of the gradient, based on the assumption that points
with a small effect on the given point can be grouped. There-
fore, far away from point i points k1, k2, ... kn in a single
cell, can be approximated as:

n
(
qHi,cell

)2
ZH δdHi,cell

δyi
(9)

instead of
∑

j∈k1,..,kn

(
qHi,j

)2
ZH δdH

ij

δyi
. Barnes-Hut condition

is also modified for hyperbolic space: rcell/dHi,cell < θ.
To accelerate the algorithm, the depth-first traversal is per-

formed on the quadtree that is used, with a stopping condition
as described for the Barnes-Hut algorithm. At the point of
stopping, all data points that are bounded by the subtree are
approximated to their Einstein midpoint and used to reduce
the number of sum elements according to the Expression 9.

3 Methodology
3.1 Basic quadtree implementation
We propose a quadtree splitting in the Cartesian coordinate
system for a Barnes-Hut approximation in a Poincaré disk
model of hyperbolic space. The key difference from a regu-
lar quadtree splitting in the Cartesian is the fact, that for the
approximation algorithm, the maximum distance within each
bounding box should be known. While it is a trivial task for a
tree spanning 2-dimensional Euclidean space, it has some is-
sues when applied to a Poincaré disk model. With an unmod-
ified implementation of the quadtree, the nodes can result in
the bounding boxes that include regions beyond the infinity
line of the Poincaré disk. This makes it impossible to deter-
mine the maximum distance within a cell, which leads to the
Barnes-Hut algorithm not being able to stop in cells that in-
clude regions beyond the infinity line. As a fix for this issue,
we introduce a change to stopping criteria for when building
a tree - additionally, to requiring a single point within a cell,

2

Figure 2: Cartesian tree before shortcuts were introduced applied to
the Poincaré disk model.

Figure 3: Cartesian tree after shortcuts were introduced applied to
the Poincaré disk model.

we pose an additional condition that the leaf cell should not
contain any region beyond the infinity line. This way, in the
limit, we approximate the exact shape of the disk and still
maintain the ability to make a set of bounding boxes with
known distances containing all of the points.

With this structure, the depth of the tree in certain areas is
increased substantially, due to our stopping criteria, but this

can be easily fixed - we introduce shortcuts to the tree, by re-
moving all nodes that have a single child, reducing the query
time and the depth of the tree.

Visualization of the tree without shortcuts (Fig. 2) and with
shortcuts (Fig. 3) are compared on the same set of points.

All of the code was developed based on the original im-
plementation of the algorithm of hyperbolic t-SNE by Martin
Skrodzki et. al. The algorithm with the original implementa-
tion of the quadtree in the Cartesian coordinate system, with
shortcuts, was used to collect data for multiple experiments.
It resulted in sensible results when testing the preservation of
the local neighbourhood (Fig. 4) and the effect of Barnes-Hut
parameter θ on execution time (Fig. 5).

Figure 4: Recall and precision graph for a 10k points sample of
C ELEGANS dataset, exploring the dependency of theta on the re-
sulting neighbourhoods

Figure 5: Effect of theta on time spent on a single iteration
of the original quadtree implementation on a 10k sample of the
C ELEGANS dataset

Although the algorithm worked with data and showed simi-
lar to the polar quadtree results, its timing measurements were
horrible. In time per iteration, it is comparable to the exact

3

Figure 6: Time per iteration on samples of LUKK dataset. Before
the change in the calculation of maximum distance within cells, the
quadtree with splitting in the Cartesian coordinate system is compa-
rable in performance to the exact computation, losing significantly
to the polar quadtree.

computation (Fig. 6). Most of the time was spent on the cal-
culation of negative forces, despite using the same code as
the polar quadtree for that section of the algorithm. As the
most amount of time was spent in the querying of the tree,
we arrived at the assumption that it is the structure of the tree
that drags the performance down. As our stopping condition
was modified to also account for the fact that quadtree with
splitting in the Cartesian coordinate system would include re-
gions beyond infinity boundary, it required way more queries
to approximate the forces, as it would go deeper in some cases
than polar quadtree.

To test this assumption, the code behind polar quadtree im-
plementation and Cartesian quadtree was modified to count
the average depth that is reached at each iteration of the t-
SNE. At each iteration, when negative forces are computed,
for each of the points the number of centres of masses used
to calculate negative forces for that point will be recorded.
The experiment was run on a 10k sample of the C ELEGANS
dataset. The polar quadtree used on average 418.98 points in
the exaggeration stage and 280.7 in the second stage. The
Cartesian quadtree used on average 7313.55 points in the ex-
aggeration stage and 7882.49 in the second stage. This clearly
explains the difference in performance.

3.2 Quadtree modifications
After the issue was identified, we tried to eliminate it. What
is important here is to not over-engineer the solution. The is-
sue lies in the stopping condition that forces the algorithm to
go deeper – because of the way the tree is built, many cells
include regions beyond the infinity border or near it. Such
cells are queried deeper as we can not stop in them due to not
having the metric of maximum possible distance within them
or it is huge within them. This can be changed by better ap-
proximating distance within a cell in such cells, allowing for

Figure 7: Modified Cartesian quadtree and visualisation of the
Barnes-Hut algorithm using it. The points y1, y2, y3, y4 are
grouped together as ycell when approximating gradient for y8. In-
stead of using the maximum distance within the selected cell (indi-
cated with blue), rcell is used which is the maximum distance be-
tween y1, y2, y3, y4. Modified from [8] and [4].

the algorithm to stop in them despite being close to the infin-
ity region. Any complex ideas, for example, some heuristic
on top of a constructed convex-hull, are unacceptable as the
solution must be O(n) or lower in computational complexity
to compete with the polar quadtree implementation.

Polar quadtree uses O(1) to calculate such distance – it
takes the maximum possible distance between vertices of
the quadrilateral, so we decided to also stick to O(1) in
the updated version of the Cartesian quadtree. As a way to
approximate the maximum distance within a cell, we pro-
pose a heuristic of maximum distance between its children’s
barycenters. Figure 7 shows the Barnes-Hut algorithm ap-
plied with such a heuristic. It showcased itself with outstand-
ing performance on the same experiment with a 10k sample
of C ELEGANS dataset, on average using only 121.17 points
per point when calculating negative forces in the exaggeration
step and 97.98 in the second stage.

As the Cartesian quadtree with the heuristic of maximum
distance that uses children’s barycenters showed a good per-
formance in the summarization experiment, we decided to
stick to it in all further experiments.

When comparing theoretical estimates of the polar and
Cartesian quadtrees, it is difficult to estimate the time com-
plexity of querying the tree, as it depends on the hyperparam-
eters set by the developer used directly during querying – θ,
as well as on the distribution of points in the space, that can be
influenced, for example, by the momentum parameters, num-
ber of iterations in the early exaggeration stage, learning rate.
When it comes to building the tree, it is evident that the Carte-
sian tree is built in O(n log n) time, as it recursively splits the
available points into 4 regions and executes the same linear
set of operations on each level on the identified subsets of
points, which is equivalent to O(n log n) complexity of the
entire algorithm, according to the Master theorem.

4 Evaluation
All of the experiments were conducted on the same machine
with an AMD Ryzen 5 5600H on Linux. All of the code
for experiments is publicly available in the GitHub repository
with code used for this project.

4

Table 1: Data sets used in the experiments with their main metrics
– the number of points, dimension of the data set, the number of
labelled classes.

Name Data type Points Dim Cl.
LUKK single-cell 5372 369 4
MYELOID8000 single-cell 8000 11 5
PLANARIA single-cell 21612 50 51
MNSIT images 70000 784 10
WORDNET lexical 82115 11 n/a
C ELEGANS single-cell 89701 20222 37

Experimental setup
For the experiments, the same procedure was used for most
of the experiments as in the paper by Martin Skrodzki et. al.
described in Section 5 [8], as we used the same codebase.
The only different part of the algorithm that was replaced, is
the computation of negative forces, as it directly depends on
the quadtree implementation. As in the original paper [8], the
initial learning rate was set to:

η =
n

12 · 1000
(10)

where n is the number of points. Replicating the original pa-
per on accelerating the hyperbolic t-SNE, the parameters that
were used are θ = 0.5, momentum in the early exaggera-
tion of 0.5, and momentum in the non-exaggerated stage of
0.8. Each setup would use 250 iterations of the exaggeration
stage and 750 steps of the non-exaggerated stage, as well as
the same early stopping condition during the non-exaggerated
stage – stopping when any point is within 10−4 from the
boundary of the Poincaré disk boundary. The settings were
replicated to reflect as close as possible to the implementa-
tion of the algorithm with the polar quadtree presented in the
original paper.

4.1 Comparison of the embedding quality
As in the paper on the polar quadtree, we will compare the
quality of the embedding via how nearest neighbours are
preserved using a precision/recall metric [5]. Keeping the
parameters the same, we will use kmax = 30. For each
k ∈ {1, 2, ..., kmax} true positive rate TPk will be com-
puted, formally TPk = Nk(X) ∩ Nk(Y), representing the
number of points from the high-dimensional neighbourhood
of size k that are also present in the low-dimensional neigh-
bourhood of size k in the embedding. Using this, we can
calculate the metrics of precision PRk = |TPk|

k and recall
RCk = |TPk|

kmax
, according to their definition. While the perfect

neighbourhood preservation scenarios would imply PRk = 1
and RCk = k

kmax
, that is not always feasible for t-SNE, we

strive to show the difference in the quality of the embeddings
between exact and accelerated versions using these metrics.
Figures 8-13 show the precision/recall curves for all of the
datasets we have tested on.

It is clear from the graphs, that hyperbolic t-SNE with
an acceleration using quadtree with splitting in the Carte-

Figure 8: Precision/recall graph comparing algorithms on the LUKK
dataset.

Figure 9: Precision/recall graph comparing algorithms on the
MYELOID8000 dataset.

sian coordinate system does not lose significantly in qual-
ity of the embeddings, mostly following trends of both the
exact method and accelerated implementation using a polar
quadtree. Depending on the data set, the algorithm using a
Cartesian quadtree can outperform (Fig. 8, 11, 13) or un-
derperform (Fig. 12) relative to the implementation using a
polar quadtree. Figures 14, 15, 16 show the embeddings con-
structed after a single run of the algorithm on the MNIST
dataset.

4.2 Time comparison
As we are focusing on the Cartesian quadtree as the accelera-
tion data structure, the key point of comparison is the execu-
tion time. Table 2 shows the measurements collected during
5 runs of each implementation on each dataset.

It is evident from the table that a Cartesian quadtree exe-
cutes faster on average than a polar quadtree. Additionally,
for all datasets with the exception of LUKK, the average time

5

Figure 10: Precision/recall graph comparing algorithms on the
MNIST dataset.

Figure 11: Precision/recall graph comparing algorithms on the
WORDNET dataset.

Table 2: Execution time of a single iteration recorded in 5 runs on
each dataset. table includes the average of the measurements, as
well as the minimum and maximum recorded time per iteration and
standard deviation of the measurements.

Name
Cartesian[s]

avg / min / max / std
Polar [s]

avg / min / max / std
LUKK 0.17 / 0.06 / 0.70 / 0.08 0.24 / 0.84 / 0.07 / 0.06
MYELOID8000 0.15 / 0.09 / 0.59 / 0.05 0.40 / 0.03 / 1.44 / 0.15
MNIST 1.91 / 1.72 / 2.68 / 0.12 6.53 / 3.45 / 13.9 / 0.42
WORDNET 2.02 / 1.81 / 5.91 / 0.21 6.84 / 2.90 / 14.9 / 0.83
PLANARIA 0.65 / 0.56 / 1.09 / 0.05 2.05 / 1.07 / 4.76 / 0.43
C ELEGANS 2.64 / 2.35 / 40.9 / 1.83 8.56 / 7.31 / 10.2 / 0.40

of iteration for the Cartesian quadtree is different from the
polar quadtree by more than a standard deviation of time per
iteration of the Cartesian quadtree, indicating a strong advan-

Figure 12: Precision/recall graph comparing algorithms on the PLA-
NARIA dataset.

Figure 13: Precision/recall graph comparing algorithms on the
C ELEGANS dataset.

tage over the polar quadtree implementation.
Additionally, a series of experiments were conducted to ob-

serve the performance of both polar and Cartesian quadtrees
on different sample sizes of the datasets. Figure 17 showcases
a comparison of both of the quadtrees and the exact compu-
tation. Both of the implementations outperform exact com-
putation. Cartesian quadtree has a bit of a disadvantage on
small sample sizes over polar quadtree while outperforming
polar quadtree on bigger sample sizes.

As it was shown in Figure 17 that both acceleration data
structures outperform exact computation, a series of runs
were conducted on all datasets without exact computation due
to its long execution time. Multiple runs were used to re-
duce the variance of the collected measurements and to get
more accurate results. For each data set a sample of size n/5,
2n/5, 3n/5, 4n/5 and n points was constructed to explore
the relation between the size of the dataset and performance

6

Figure 14: Embedding produced by the polar quadtree algorithm on
the MNIST dataset.

Figure 15: Embedding produced by the Cartesian quadtree algo-
rithm on the MNIST dataset.

of the algorithms. Hyperbolic t-SNE using a polar quadtree
and Cartesian quadtree were run on the same samples 5 times
on each sample. As the result of the experiment, a plot of
time per iteration with a logarithmic scale was produced. It is
clear from Figure 18 that an implementation using a Cartesian
quadtree has an advantage over a polar quadtree implementa-
tion, especially as the number of points increases.

As the scale is logarithmic, plots from both polar and
Cartesian quadtrees have a similar incline of the lines, indicat-
ing their similar time complexity but with different constant
coefficients, introduced by the difference in the tree building.

5 Responsible Research
In this research, we expand on the idea of accelerating the
hyperbolic t-SNE. This work provides an improvement of the
previous work on the acceleration of the hyperbolic t-SNE.
However, it does not cancel out the ethical implications of

Figure 16: Embedding produced by the exact algorithm on the
MNIST dataset.

Figure 17: Time per iteration of hyperbolic t-SNE on 5 sample sizes
of LUKK dataset. 5 runs of each algorithm on each sample size.
Cartesian quadtree implementation loses on a very small sample
size, while has an advantage over polar quadtree as the size of the
sample increases.

possible use cases of the t-SNE algorithm and applications
that are made possible with proposed improvements in speed.
The algorithm can be widely used in different areas for data
processing. Non-ethical results can be produced to manipu-
late original data or amplify biased opinions during the anal-
ysis of the data after the application of the algorithm. All
experiments are performed in a reproducible manner – they
replicate experiments done in previous works and all of the
code used for experiments is publicly available.

7

Figure 18: Time per iteration of hyperbolic t-SNE on 5 sample sizes
of all the datasets. 5 runs of the algorithm using polar quadtree and
Cartesian quadtree on each sample size. Cartesian quadtree imple-
mentation has an advantage over polar quadtree, as the size of the
sample increases.

6 Conclusions and Future Work
6.1 Conclusions
With this research, we have shown that the use of the quadtree
with splitting in the Cartesian coordinate system for hyper-
bolic t-SNE is possible. Although we were not able to reach
positive results using a similar technique for computation of
maximum distance within a cell as in the original research
on the application of the polar quadtree, using a proposed ap-
proximation using the maximum distance between the cell’s
children’s barycenters the algorithm was shown to be faster
than the exact computation. Additionally, through a series of
experiments, it was shown that the Cartesian quadtree out-
performs the polar quadtree on the metric of time spent per
iteration of the algorithm, without a sacrifice in the quality of
the embeddings, due to a greater degree of approximation –
using fewer points on average to approximate the gradient for
each point.

6.2 Future work
It remains unclear, whether a selected set of parameters used
in the experiments is optimal for the Cartesian tree. Ad-
ditional investigation needs to be conducted on other pos-
sible ways to approximate distance within a cell other than
the maximum distance between the cell’s children’s barycen-
ters. Additionally, the previous approach of approximating
the maximum distance should be investigated further, as it
is possible that similar execution time results can be reached
with a different θ parameter.

References
[1] L. van der Maaten and G. Hinton, “Visualizing data

using t-sne,” Journal of Machine Learning Research,
vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Avail-
able: http://jmlr.org/papers/v9/vandermaaten08a.html.

[2] R. Sarkar, “Low distortion delaunay embedding of
trees in hyperbolic plane,” in Graph Drawing, M. van
Kreveld and B. Speckmann, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 355–366, ISBN:
978-3-642-25878-7.

[3] L. van der Maaten, Barnes-hut-sne, 2013. arXiv: 1301.
3342.

[4] L. van der Maaten, “Accelerating t-sne using tree-based
algorithms,” Journal of Machine Learning Research,
vol. 15, no. 93, pp. 3221–3245, 2014. [Online]. Avail-
able: http://jmlr.org/papers/v15/vandermaaten14a.html.

[5] N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and
A. Vilanova, “Hierarchical stochastic neighbor embed-
ding,” Computer Graphics Forum, vol. 35, Jun. 2016.
DOI: 10.1111/cgf.12878.

[6] M. Nickel and D. Kiela, “Poincaré embeddings for
learning hierarchical representations,” in Advances in
Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, et al., Eds., vol. 30, Curran As-
sociates, Inc., 2017. [Online]. Available: https : / /
proceedings . neurips . cc / paper files / paper / 2017 / file /
59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf.

[7] Y. Zhou and T. O. Sharpee, “Hyperbolic geometry of
gene expression,” Iscience, vol. 24, no. 3, 2021.

[8] M. Skrodzki, H. van Geffen, N. F. Chaves-de-Plaza, T.
Höllt, E. Eisemann, and K. Hildebrandt, Accelerating
hyperbolic t-sne, 2024. arXiv: 2401.13708.

8

http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1301.3342
https://arxiv.org/abs/1301.3342
http://jmlr.org/papers/v15/vandermaaten14a.html
https://doi.org/10.1111/cgf.12878
https://proceedings.neurips.cc/paper_files/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
https://arxiv.org/abs/2401.13708

	Introduction
	Background
	t-distributed Stochastic Neighbor Embedding
	Barnes-Hut approximation for t-SNE
	Hyperbolic space and Poincaré disk model
	Approximation of t-SNE for hyperbolic space

	Methodology
	Basic quadtree implementation
	Quadtree modifications

	Evaluation
	Comparison of the embedding quality
	Time comparison

	Responsible Research
	Conclusions and Future Work
	Conclusions
	Future work

	References

