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Auction-based task allocation for online pickup and delivery problems
with time constraints and uncertainty

Paolo Rizzo*, Alexei Sharpanskykh†

Section of Air Transport Operations, Faculty of Aerospace Engineering, Delft University of Technology,
Kluyverweg 1, 2629HS Delft, The Netherlands

Auctions have established themselves as highly efficient mechanisms for the online allocation of time-constrained
pickup and delivery tasks, which is an important problem in the domain of distributed autonomous systems. Cur-
rent methods leverage simple temporal networks (STNs) to allow agents to efficiently process temporal constraints
in the bidding phase of the auction. However, they suffer from two major weaknesses which limit their applica-
bility in real-world systems. Firstly, they are relatively ineffective when tasks have non-deterministic durations,
as the STN representation enforces a binary notion of plan controllability which is highly restrictive. We remedy
this by introducing the probabilistic temporal sequential single item auction (pTeSSI), a novel polynomial-time
auction-based task allocation mechanism in which plans are represented as simple temporal networks with un-
certainty (STNUs). Using a recently proposed non-binary characterization of controllability in STNUs, agents
efficiently determine the risk of unsuccessful dispatch of their temporal plans and incorporate this in their bids.
We evaluate our auction mechanism in an online simulation of an on-demand UAV delivery system and demon-
strate that it is more effective and efficient than the current state of the art method. In addition, we propose a
dynamic re-auctioning routine to address the second main weakness of sequential auctions when applied to online
problems, namely that they do not revisit existing partial allocations over time. We demonstrate that dynamic re-
auctioning increases the quality of the allocation and improves system performance, but also increases the auction
duration. We mitigate this downside by bundling tasks based on their spatio-temporal synergy and auctioning
bundles, rather than single tasks, at once.

I. Introduction

A uctions are highly efficient mechanisms for the al-
location of tasks to teams of agents. They allow for

the vast majority of the computation to be performed in
a distributed manner and lead to substantially less com-
munication overhead than centralized approaches. This
makes them highly effective for online use in dynamic
problems, where agents need to attend to a constant
stream of tasks whose details are not known beforehand.
An interesting subclass of these problems which has re-
ceived little attention in the literature concerns the allo-
cation of pickup and delivery tasks that must be executed
within certain time windows. The presence of time con-
straints makes the allocation problem substantially more
complex as agents are required to reason about the tem-
poral consistency of their plans, rather than only spatial
synergies, while evaluating their bid for a task.

Despite having received little attention in the litera-
ture, the dynamic allocation of temporally constrained
tasks has become ubiquitous as we attempt to achieve
increased autonomy in complex logistics systems. A
modern example is UAV delivery, which has the poten-
tial to unlock considerable economic benefits by dra-
matically cutting costs in the last mile of global sup-
ply chains, while also enabling the on-demand delivery
of wide ranges of products at unmatched speed. In or-
der to economically deploy and manage such systems at
scale, highly efficient mechanisms are required to allo-

*M.Sc. Student, Faculty of Aerospace Engineering
†Assistant Professor, Faculty of Aerospace Engineering

cate delivery tasks online in dynamic and uncertain envi-
ronments, while satisfying time constraints specified by
customers.

A promising approach is the Temporal Sequential
Single Item (TeSSI) auction [21], a variant of the se-
quential single-item auction in which agents represent
their schedule as a simple temporal network (STN). This
allows agents to efficiently propagate the temporal con-
straints associated to incoming tasks and determine their
optimal insertion point within their schedule while bid-
ding. Agents bid the makespan of the schedule asso-
ciated to the optimal insertion position and thereby at-
tempt to minimize the maximum path cost across the
entire team [14]. While highly effective at processing
tasks’ temporal constraints, TeSSI suffers from two ma-
jor shortcomings that limit its applicability in real-world
systems. The first is that the STN representation is too
rigid to allow the agents to represent and reason about
possible sources of uncertainty in task durations. The
second is that there is no efficient re-auctioning routine
to allow the agents to swap tasks. Once the choice is
made to allocate a task to an agent, it will not be revis-
ited, limiting the synergies that TeSSI can explore and
thereby the overall quality of the allocation.

Our work enhances the applicability of auctions for
the online allocation of temporally constrained tasks in
real-world systems through the following contributions:

• We propose the probabilistic Temporal Sequential
Single Item auction (pTeSSI), a variant of TeSSI
in which the agents’s schedules are represented as

1
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STNUs. When inserting a task into their sched-
ule, agents determine the degree of dynamic con-
trollability [1] of the resulting STNU to obtain the
risk of unsuccessful dispatch, which is then incor-
porated in the agent’s bid. pTeSSI enables the al-
location of temporally constrained tasks with un-
certainty by allowing agents to evaluate and bid on
non-deterministic plans.

• We devise a periodic re-auctioning routine for
pTeSSI, accelerated through a bundling mecha-
nism that groups tasks based on a measure of their
spatio-temporal synergy. Bundles, rather than sin-
gle tasks, are auctioned at once and the temporal
relationship between tasks in the bundle is lever-
aged to further accelerate the bidding phase.

• We provide an analysis and experimental evalua-
tion of the proposed algorithms in a simulation of
an on-demand UAV food delivery system, demon-
strating that they substantially improve the perfor-
mance of the TeSSI auction in a complex and dy-
namic real-world task allocation problem.

II. The pTeSSI auction

We investigate the setting in which delivery tasks are
generated dynamically and are to be allocated online to
a team of cooperative autonomous agents. Each delivery
task Ti includes a pickup location Pi, delivery location
Di and time window di = [edi, ldi] in which the item
must be delivered. Note that the delivery windows are
hard constraints, and that delivery of the item at a time
t /∈ di is regarded as a failure to complete the task. The
novelty is that task durations are not required to be deter-
ministic as in previous work on temporal auctions [21].
Rather, durations are random variables with known dis-
tributions or bounds on their realization. This allows us
to address scenarios in which task durations cannot be
known exactly at the time of allocation, which is often
the case in real-world dynamic settings.

The pTeSSI auction is a variant of the sequential sin-
gle item auction [12] and is based on the same driving
logic of dividing the task allocation problem into com-
ponents that are solved locally and in parallel by the
agents. A dedicated auctioneer is responsible for an-
nouncing tasks and their details to the agents, collect-
ing their bids, choosing and communicating the winner.
When a set of tasks T = {T1, ..., Tm} is put on auction
to a team of agents A = {A1, ..., An}, all agents deter-
mine their bid for all tasks and submit their best bids to
the auctioneer. The task T∗ that yielded the lowest bid
among the entire set of bids (for all tasks) is allocated to
the agent A∗ with the lowest bid. The procedure is then
repeated for T\{T∗}. In the next round, agent A∗ needs
to re-evaluate all tasks since its schedule has changed and

therefore its bid for the remaining tasks may be different.
For the other agents, this is not necessary as their sched-
ules have not changed. Tasks that cannot be assigned
to any agent are simply deleted from the task set, and
the auction continues until the auctioneer has attempted
to allocate all tasks. Straightforwardly, the auction lasts
|T | = m rounds.

A. Bidding rules
Early theoretical work on sequential single item auctions
demonstrated that bids generated in a hill-climbing fash-
ion lead to low and tractable values of the team objective
[24] while requiring minimal communication. At each
round, the agents bid an estimate of the marginal cost the
team would incur if they were to add the task to their
local plan, without requiring any information about the
other agents’ plans.

We consider two different team objectives. The first
is minimizing the time taken for the team to execute the
latest task in the set on auction (this is a common objec-
tive in the auction-based routing literature and often re-
ferred to as MiniMAX [14]). As demonstrated by Nunes
and Gini [21], it is highly effective in an online setting
as it maximizes the availability of the team to accom-
modate future tasks. The second team objective we con-
sider is the sum of the distances travelled by the agents
to accommodate all tasks in the set on auction (a variant
of MiniSUM [24]). To capture the fact that our agent’s
plans are probabilistic, we include the risk of unsuccess-
ful dispatch in both bidding rules.

Let S = {S1, ..., Sm} represent the final allocation
of tasks to agents where Si contains all tasks in agent
Ai’s schedule. Mi denotes the minimum time it takes
agent Ai to execute all tasks in its schedule Si, and let
Di represent the minimum distance agent imust travel to
complete its schedule. In addition, let Ri(Si) represent
the probability that the schedule will not be dispatched
successfully and that therefore timeMi and distance Di
cannot be achieved. Then we seek to minimize the fol-
lowing team objectives F(S):

MAX-T: F(S) = max
i

[Mi(Si) + ρ · Ri(Si)] (1)

SUM-DIST: F(S) =
∑

i

[Di(Si) + ρ · Ri(Si)] (2)

where ρ is a parameter of the auction that dictates how
heavily the risk ought to be penalized. We normalizeMi

and Di into the [0,1] range, which is also the range of
the scheduling riskRi, in order to make ρ scale-agnostic
and easier to interpret. Suppose that at a given round we
have already allocated a subset of tasks and generated
a partial allocation P where P = {P1, ..., Pn} are the
current agent schedules. Let P ′ = {P ′1, ..., P ′n} be the
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allocation resulting from agent Ai being allocated task
T , so that:

P ′j =

{
Pj ∪ {T} , for j = i

Pj , for j 6= i
(3)

where the subscript j refers to the j-th element of the
set. Then agent Ai’s bid for T should be equal to the
difference F(P ′)− F(P) in the team objective. For the
MAX-T objective, we can rewrite this as:

Mi(P
′
i ) + ρ · Ri(P ′i )−F(P) (4)

since the fact that task T has not been allocated in
any previous round of the auction implies F(P ′i ) =
maxiMi(P

′
i ) + ρ · Ri(P ′i ). The system-level factor

F(P ′) can be dropped as it is a constant across all agents’
bids and does not affect the winner determination. Thus,
agent Ai’s bid for task T is:

Mi(P
′
i ) + ρ · Ri(P ′i ) (5)

For the SUM-DIST objective, instead, the agent’s bid is:

Di(P ′i ) + ρ · Ri(P ′i )− (Di(Pi) + ρ · Ri(Pi)) (6)

Determining Di and Mi involves solving a TSP with
time windows and uncertainty for each agent, a highly
complex NP-hard optimization problem, which is in-
tractable to solve optimally even for moderate numbers
of tasks. Framing the local planning problem as a simple
temporal problem allows us to compute both parameters
as well as the scheduling risk Ri in a highly efficient
manner which we outline in the rest of this section.

B. Task scheduling and bidding
We start by describing the case in which all task dura-
tions are uniformly distributed, and in Section II.D de-
scribe how the representation can be extended to any dis-
tribution with a known density function.

Agents represent their schedule as a simple temporal
network with uncertainty, in which tasks are sequences
of nodes (timepoints) and edges. A pickup and delivery
task Ti can be divided into four distinct actions, namely
tpi - traveling to the pickup location; pi - performing the
pickup action; tdi - traveling to the delivery location; and
di - performing the delivery action. We denote the du-
rations of these actions as TTpi, Pi, TTdi and Di respec-
tively. Figure 1 (right) illustrates a two-task example of
the general case in which all actions’ durations are non-
deterministic. Each action consists of a start node which
can be scheduled by the agent (denoted by s) and a fin-
ish node (denoted by f ) which is scheduled by ”Nature”,
an external entity the agent cannot control. Start and fin-
ish nodes of an action a are connected by a contingent
constraint fa − sa = Xa where Xa is a uniformly dis-
tributed random variable, represented as a curved arrow.

We show the interval [X l
a,Xu

a ] along the curved edge,
where X l

a and Xu
a are the lower and upper bounds of the

distribution of Xa respectively. We do this to reflect our
knowledge that the realization of the contingent edge will
be such that fa−sa ∈ [X l

a,Xu
a ]. Requirement constraints

are represented as straight arrows and used to enforce the
sequence in which tasks and actions must occur. For in-
stance, that the delivery of an item can only be initiated
once the agent has finished traveling to the delivery lo-
cation: sdi − fpi ∈ [0,∞). All nodes are scheduled
relative to an origin timepoint, which takes a value of
zero and is continuously updated at execution to repre-
sent the agent’s current state and position. Requirement
constraints between the origin and the finish node of a
task i’s delivery action represent the time window within
which the full task must be completed (shown as dotted
edges in Figure 1): ftdi −O ∈ [edi, ldi].

Alternative schedule representations can be con-
structed if needed. For instance, Figure 1 (left) shows
an example of a two-task STNU where the travel times
are deterministic. The travel actions can be collapsed
into requirement constraints between the pickup and de-
livery actions, e.g., sdi− spi ∈ [TTdi,∞], since they are
no longer governed by random variables. Generally, it is
always desirable to minimize the number of nodes used
to represent a schedule and perform similar compacting
operations when the opportunity arises, since the runtime
of the algorithms to be run on the STNU increases with
the size of the network. In our experiments, we consider
the more general (and demanding) case described above
in which all actions have non-deterministic duration.

Algorithm 1 shows the procedure an agent executes to
determine a bid for an auctioned task Ta. For each valid
position in its STNU, the agent adds task Ta by inserting
all task nodes and determining the associated contingent
and non-contingent constraints. Note that a task can only
be inserted directly after the origin node or the last node
of another task. The number of possible insertion points
is therefore equal tom+1 wherem is the number of tasks
in the STNU. An insertion point is valid if the earliest
delivery time of the new task is no larger than the latest
delivery time of the task that would follow it. We deem
that it may be desirable for an agent to bid on and commit
to a task even though successful dispatch of the resulting
schedule cannot be guaranteed, provided that the proba-
bility of successful dispatch is high enough to match the
agent’s risk profile. The agent therefore computes the
risk associated to the new schedule, which is defined as
one minus the STNU’s degree of dynamic controllabil-
ity (DDC), which is discussed in detail in Section II.C.
This risk represents the probability that the realization of
the contingent edges will be such that there exists no dy-
namic strategy the agent can adopt to ensure successful
dispatch and execution of the plan. If the risk is below the
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Figure 1. Two-task representation of an STNU containing two pickup and delivery tasks with (right) uncertain pickup and delivery action durations and
uncertain travel times, and (left) uncertain pickup and delivery action durations and deterministic travel times. Nodes with blue edges represent the first
task in the schedule, whereas nodes with green edges represent the second task in the schedule.

Algorithm 1 pTeSSI Task Scheduling and Bidding
1: Input
2: Ta: Task on auction
3: S: STNU form of agent schedule with m

tasks
4: ρ: Weight of risk in bidding rule
5: R: Agent risk threshold
6: Output
7: i∗: Optimal insertion point of Ta in S
8: bid∗: Agent’s best bid for Ta
9: procedure COMPUTEBID(Ta, S, ρ,R)

10: i∗ = -1
11: for valid i in [1,...,m+1] do
12: insert Ta in position i of S
13: risk = 1 - computeDDC(S)
14: if risk ≤ R then
15: bid = computeObjective(S, risk)
16: if bid is smallest so far then
17: i∗ = i
18: bid∗ = bid
19: reset S eliminating Ta
20: if i∗ = -1 then
21: return -1, M where M is a large number
22: else
23: return i∗, bid∗

agent’s threshold R, then the agent determines its bid for
insertion point i. If the bid is the best (smallest) so far,
it is saved along with the insertion point. Every time a
new insertion point is tried, the STNU is reset to include
only the original tasks and not Ta. After having explored
all insertion points in its schedule, the agent submits the
lowest bid that arises from the best insertion point i∗. If
the agent is then awarded the task, it directly inserts it
into its schedule in position i∗ of its STNU.

C. Degree of dynamic controllability
The notion of degree of dynamic controllability (DDC)
is central to the pTeSSI auction, as it allows us to cal-
culate the risk that an agent will not be able to success-
fully dispatch its STNU. The DDC is a measure of how
dynamically controllable a network is; that is, the proba-
bility that the realization of the contingent edges will be
such that the network is dynamically controllable.

To compute the DDC, we first check the dynamic
controllability of the network by searching for conflicts,
constraints that cannot be satisfied simultaneously by any
execution strategy. A temporal network is dynamically
controllable iff it contains no conflicts. Formally, con-
flicts can be defined as sets of edges which form a semi-
reducible negative cycle in the labeled distance graph of
an STNU [17], and can be identified in polynomial time
[18]. We use the most recent approach to verifying DC
by locating conflicts in STNUs, DC-Check proposed
by Bhargava et al. [3], which runs in O(n3) time. It
attempts to verify dynamic controllability by efficiently
walking the network in reverse to demonstrate that all
possible walks along a semi-reducible path originating
from a negative weight edge will eventually accumulate
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a non-negative weight (i.e. there are no conflicts). Oth-
erwise, the network is not dynamically controllable and
the algorithm returns the edges along each walk that rep-
resented a conflict.

Knowledge of conflicts is often leveraged to deter-
mine how to minimally relax the network’s constraints in
such a way as to make it dynamically controllable [8]. In
our case, however, temporal constraints are hard and can-
not be relaxed. Rather, we are interested in determining
the amount by which the contingent intervals should be
shrunk in order to eliminate the conflicts and render the
network dynamically controllable. The probability that
the realization of the original contingent edges will fall
within the shrunk intervals is the probability that the net-
work will be dynamically controllable. ODC-Relax is
a solution to this version of the relaxation problem which
is provably optimal only for networks with a single con-
flict, but demonstrated experimentally to be effective also
in the presence of multiple conflicts [1], which we now
describe.

Suppose we identify a conflict consisting of
C1, C2, ..., Cn contingent intervals of lengths l1 ≤ l2 ≤
... ≤ ln, and the total amount by which the intervals must
be shrunk to render the network dynamically controllable
is equal to k. The objective is to resolve the conflict by
shrinking each interval Cj to a new length l′j while max-
imizing the realization space of the new network. This
corresponds to the following optimization problem:

max
n∏

j=1

l′j

s.t.
n∑

j=1

l′j ≤




n∑

j=1

lj


− k

0 ≤ l′j ≤ lj ∀j

(7)

The above maximization problem can be solved analyti-
cally. Let q be the smallest index such that:

n∑

j=1

l′j ≤ l1 + l2 + ...+ lq−1 + (p− q + 1)lq (8)

Then:

l′j =

{
lj , for j < q
(
∑n

j=1 l
′
j)−l′1−...−l′q−1

p−q+1 , for j ≥ q
(9)

Represents a solution to the maximization problem. The
intervals of length larger than or equal to lq are all shrunk
to the same value, whereas all smaller intervals are left
unvaried. We now need to determine the probability that
the realization of the original contingent edges will fall
within the shrunk intervals. Let the random variable Rj
represent the difference between the realization of con-
tingent edge Cj and its lower bound. Then the conflict

will be circumvented, i.e. there will still be a dynamic
strategy available to the agent to dispatch the network
successfully, if the realizations are such that:

n∑

j=1

Rj ≤
n∑

j=1

l′j (10)

The probability that the above holds is determined by ap-
plying the Central Limit Theorem (CLT). Since Rj ∼
U(0, lj) and are independent, it follows from the CLT
that

∑n
j=1Rj ∼ N (µ, σ2) where µ = (l1 + ... + ln)/2

and σ2
i = (l21 + ... + l2n)/12. If there are multiple con-

flicts, the relaxations are performed separately and the
probabilities that the conflicts will not occur at execution
are then multiplied.

D. Extension to non-uniform edge distributions
Extending the notion of degree of dynamic controlla-
bility to PSTNs with arbitrary distributions along con-
tingent edges presents additional challenges. Unlike in
the STNU case, density functions may be unbounded, in
which case it is inherently impossible to protect a plan’s
execution against all uncertainty. The traditional notion
of dynamic controllability provides little insight in this
context, as networks with unbounded edges are neces-
sarily uncontrollable. To extend the concept of DDC
to such networks, we follow the approach proposed by
Akmal et al. [2]. First, we map all unbounded con-
tingent edges of the PSTN into bounded STNU edges.
Given a risk budget α and a set of i unbounded edges
Xi with density fi, we determine the intervals Yi such
that P (Xi ∈ Yi) = 1 − α by truncating α

2 of mass from
each tail of fi. We then check the resulting STNU, which
we denote Sα, for dynamic controllability (DC). If it is
not DC, all conflicts are extracted and the ODC-Relax
algorithm described in Section II.C is applied to deter-
mine the probability pα of successful dynamic execution
of Sα. We then need to account for the risk α we ignored
on each unbounded edge by truncating the original dis-
tributions. The degree of dynamic controllability of our
PSTN is therefore (1 − α)n · pα, where n is the number
of edges with an unbounded distribution.

The value of α controls how much realization vol-
ume we sacrifice upfront. Lower values of α give
ODC-Relax more freedom to choose where to sacri-
fice relaxation volumes, but increase the required number
of relaxations of the contingent edges and their magni-
tudes. While setting α too high may lead us to sacrifice
too much realization volume upfront and inadvertently
make highly suboptimal relaxations, setting α too low
and capturing an unreasonably large amount of the distri-
bution may also hinder performance as the choices made
by ODC-Relax are agnostic to the underlying distribu-
tion. In general, the best value of α may depend on the
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underlying network and the distribution its edges follow.
Earlier methods to generate an STNU-based approxima-
tion of a PSTN - such as DREA [16] - incorporate an
outer search over possible values of α, which greatly in-
creases the computational burden. Recent work demon-
strates that this can be circumvented by tuning the value
of α a priori [2]. In Section V, we zoom in on the effect
of α on system performance when the contingent edges
are normally distributed.

E. Analysis of the pTeSSI auction
Let us consider an auction with m tasks and n agents. In
the first round, all agents need generate bids for all tasks,
producing m · n bids. In the remaining rounds only a
single agent, namely the winner of the previous round,
will need to bid on all unallocated tasks. Since in each
round exactly one task is allocated or eliminated from
the set on auction, in round i 6= 0 one agent will need to
generate m− i bids. The total number of bids generated
across all rounds of the auction is therefore:

mn+

m∑

i=1

(m− i) = mn+
m2 −m

2
= O(mn+m2)

(11)
In order to produce a bid for a task, an agent needs to
compute a hypothetical bid for each possible insertion
point in its temporal network. The number of possi-
ble insertion points is equal to the number of tasks in
the agent’s schedule. For each insertion point, the agent
needs to run DC-Check to determine whether the net-
work is DC and identify conflicts, then ODC-Relax
to determine how to shrink the contingent edges in
such a way as to render the network dynamically con-
trollable, and finally determine its bid based on the
makespan (MAXT bidding rule) or increase in distance
travelled (SUMDIST bidding rule) in the shrunk net-
work. DC-Check runs inO(|S|3) time, where |S| is the
number of nodes in the STNU [3]. Both the makespan
and distance travelled calculations require walking the
shrunk network once and are therefore linear in |S|.

ODC-Relax’s complexity is known to beO(c log c),
where c is the number of conflicts that need to be re-
solved [2]. While it is difficult to predict the exact num-
ber of conflicts that will be identified at run-time, we can
determine an upper bound on c for networks of the struc-
ture described in Section II.B. Let us call a network with
such structure Ŝ and its distance graph D̂. Since a con-
flict of Ŝ is defined as a semi-reducible negative cycle in
D̂, there can exist no more conflicts in Ŝ than there are
non-trivial cycles (more than 2 nodes) in D̂. Recall that
the structure of Ŝ is such that there exists an edge from
node ni to node nj only if j = i+1, or i = 0 and j = Nk
where N is the number of nodes per task and k ∈ Z+.
Let us denote all edges stemming from the origin node as

critical edges, then we can state the following properties
about the non-trivial cycles of D̂.

Lemma 1: Each non-trivial cycle of D̂ contains ex-
actly 2 critical edges.

Proof sketch: Let C be any non-trivial cycle in D̂
starting at node ns. First, we claim that C must contain
at least one critical edge. For s = 0, this follows trivially
from the definition of a critical edge. If s 6= 0 andC con-
tains no critical edges, then there must exist some edge
from a node ns±k to ns with k > 2 and s 6= 0, which
contradicts the structure of Ŝ. If C contains one critical
edge, then it must contain at least two critical edges. C
cannot contain more than two critical edges without the
origin node being visited at least twice. Hence, C con-
tains exactly two critical edges.

Lemma 2: Any two critical edges of D̂ are part of a
unique non-trivial cycle.

Proof sketch: Take any two critical edges ci and cj
leading to nodes ni and nj respectively. Since there ex-
ists an edge from nk−1 to nk∀k 6= 0, there must be a
simple path from ni to nj . Hence ci and cj are part of a
non-trivial cycle Cij . Now take a different pair of critical
edges cp and cq, which are part of a cycle Cpq. It follows
from Lemma 1 that Cij 6= Cpq.

Using Lemmas 1 and 2, the number of cycles in D̂ is
the number of distinct pairs of critical edges. Since there
are K + 1 critical edges, where K is the number of tasks
in Ŝ:

Number of cycles in D̂ =

(
K + 1

2

)
=
K2 +K

2
(12)

O(|S|) = O(K), so the worst-case complexity of
ODC-Relax is O(|S|2 log(|S|2)). Computing a bid
for a single insertion point is therefore O(|S|3) (due to
DC-Check) and there are K insertion points. It follows
that the entire task scheduling and bidding algorithm is
O(|S|4). At each round, winner determination is linear
in the number of agents since each agent only shares its
best bid. If the agents start with empty schedules, we can
expect the tasks to be approximately evenly distributed
among the agents and the entire auction to have an over-
all complexity ofO(m

6

n4 ). This is the same complexity as
the regular TeSSI auction [20], despite that the fact that
we are solving a substantially more complex scheduling
problem in the bidding phase.

pTeSSI always terminates, but does not guarantee op-
timality as it cannot capture all possible inter-task syner-
gies due to the sequential nature of the auction. For the
special case in which there is only one conflict in the
agent’s STNU, however, ODC-Relax is provably opti-
mal and pTeSSI is a maximum factor of 2 and 2n away
from the optimal solution for the SUMDIST and MAXT
objectives respectively. This follows directly from the
general results on (non-temporal) sequential single item
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auctions, a formal proof of which can be found in [14],
since in their bidding routine agents use a temporal form
of the cheapest insertion heuristic to solve their local
TSP. In Section V we show that in practice, despite the
weak optimality bounds, pTeSSI provides a measurable
improvement over the (non-probabilistic) TeSSI auction
for both bidding rules.

III. Re-auctioning and bundling
The main weakness of pTeSSI, especially when im-

plemented in an online setting with sets of tasks dynam-
ically entering the problem, is that the amount of inter-
task synergies it is able to consider is limited. We are able
to capture synergies between the task set on auction and
the set of tasks already allocated to a single agent, but no
combinations of these sets since existing allocations are
never revisited. To remedy this, we propose an extension
to pTeSSI in which agents dynamically submit subsets
of tasks in their schedule to the auctioneer. Every time
a new set of tasks enters the system, all agents have the
opportunity to temporarily de-commit from tasks in their
schedule and send them back to the auctioneer to be re-
auctioned together with the newly entered tasks. While
this increases the number of inter-task synergies we can
consider, it also increases the duration of the auction as
more tasks need to be allocated at once. To mitigate this
downside and accelerate the re-auctioning phase, we pro-
pose a mechanism to generate bundles of tasks and auc-
tion them together, exploiting the temporal relationship
between tasks in the bundles to further speed up the bid-
ding phase. For the sake of clarity in our explanation and
analysis, we denote the version of pTeSSI that runs on
bundles rather than single tasks as pTeSSB (Sequential
Single Bundle).

A. Task selection
Agents need to determine locally which tasks to submit
for re-auctioning. While there are several ways to ap-
proach this problem, we propose a mechanism which
does not require information about other agents’ plans
or information exchange with the auctioneer. Given the
hill-climbing nature of sequential auctions like pTeSSI,
it is important to re-auction only those tasks which have
the potential of generating a large enough improvement
in the system objective. We want to avoid re-auctioning
an excessive amount of tasks and scratching good initial
partial allocations.

To decide which tasks to re-auction, the agents ex-
ecute a procedure which can be interpreted as the re-
verse of the auction mechanism outlined in Algorithm 1.
Agents generate bids proportional to the reduction in the
system objective that the removal, rather than addition,
of a task would generate. They then re-submit the task to

the auctioneer if their bid exceeds a threshold O. Carry
over the notation from Section II.A, but this time let P ′
be the allocation resulting from agent Ai removing task
T from its schedule, so:

P ′j =

{
Pj\{T} , for j = i

Pj , for j 6= i
(13)

Then we are again interested in minimizing F(P ′) −
F(P ), so we can apply the same bidding rules we de-
rived in Section II.A. The only exception is that for
the MAXT bidding rule we cannot exclude F(P ) from
the bid, so the agent bids Mi(P

′
i ) + ρ · Ri(P ′i ) −

(Mi(Pi) + ρ · Ri(Pi)).
Algorithm 2 shows the procedure each agent goes

through to select tasks for re-auction. For each task in its
schedule, the agent computes the bid associated to its re-
moval. The task Ti∗ with the lowest bid is removed, and
we perform the same operation for the remaining tasks in
the schedule. We continue greedily until |bid|∗ > O, at
which point all removed tasks are submitted to the auc-
tioneer. Note that we take the absolute value of the bids
and use a threshold O > 0 to enhance interpretability.
All bids are ≤ 0 since the removal of a task cannot in-
crease the system objective.

Algorithm 2 Selection of tasks to be re-auctioned
1: Input
2: S: STNU representation of agent schedule
3: ρ: Weight of risk in bidding rule
4: O: Re-auction threshold
5: Output
6: A: Tasks to be re-auctioned
7: procedure SELECTTASKS(S, ρ,O)
8: bid∗ = 0
9: while |bid∗| ≤ O do

10: for i in [1,...,|S|+1] do
11: remove Ti from S
12: risk = 1 - computeDDC(S)
13: bid = computeObjective(S, risk)
14: if bid is smallest so far then
15: bid∗ = bid
16: i∗ = i
17: reset S by adding back Ti
18: remove Ti∗ from S and append to A

B. Bundling
The re-auctioning procedure increases the amount of
tasks to be allocated at once, thereby increasing the com-
putational overhead and auction rounds required. Gen-
erating bundles of tasks and auctioning these together
has been investigated in the auction literature as a way
to mitigate this effect while retaining the solution qual-
ity improvement generated from broadening the range of
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inter-task synergies explored [13]. Heap and Pagnucco
propose a two-stage clustering mechanism in which tasks
are grouped first based on their pickup and then their
delivery location [11]. This approach, however, fails to
consider the alignment of task time windows within the
bundle and does not account for the sequential nature of
pickup and delivery tasks. We expect small travel times
between the pickup and delivery locations of sequential
tasks, as well as compatibility of their time windows, to
be key in the formation of low-cost bundles. Other at-
tempts have been made in the vehicle routing literature
[15] [10]. While these approaches are based on general
notions of the spatial and temporal compatibility of tasks,
none have, to the best of our knowledge, attempted to ex-
plicitly consider how these tasks will be scheduled and
the likelihood that agents will be able to execute them
successfully.

We propose a hierarchical agglomerative mechanism
that bundles tasks which can be executed in sequence
with controlled risk, by leveraging domain knowledge
and the spatio-temporal relationship between tasks. Con-
sider two tasks Ti and Tj with latest delivery time ldi and
ldj respectively. Let us for now assume that task Tj will
be executed after Ti. Since we have no knowledge of
the schedule of the agent that will be bidding on the task
pair, we determine the probability that Tj can be success-
fully executed before its deadline given the worst-case
scenario that Ti is executed exactly at its latest delivery
time ldi. LetEij represent the event that the above holds:

P(Eij) = P(fdj ≤ ldj |fdi = ldi)

= P(TTp,j + Pj + TTd,j +Dj ≤ ldj − ldi)
(14)

Then we consider the task ordering 〈i, j〉 to be valid if:

P(Eij) ≥ 1−R (15)

where R is the agent’s risk threshold. The possible or-
derings to be checked for validity depend on the rela-
tionship between the time windows of Ti and Tj . If
[edi, ldi]∩ [edj , ldj ] = ∅, then the only possible ordering
is 〈i, j〉 if ldj > ldi and 〈j, i〉 if ldi > ldj . If instead the
intervals [edi, ldi] and [edj , ldj ] overlap, both 〈i, j〉 and
〈j, i〉 should be checked as outlined above.

Once we know whether two tasks can be executed
in sequence with acceptable risk, we can express the dis-
similarity between them by means of a distance function,
not to be confused with the physical distance between
task locations. Let ∆Tij = ldj − edi and let TTij rep-
resent the travel time from the delivery location of task
Ti to the pickup location of task Tj . Then we define the
distance between tasks Ti and Tj as follows:

dist(Ti, Tj) =





TTij + ∆Tij , ord = [〈i, j〉]
TTji + ∆Tji , ord = [〈j, i〉]
min (TTij + ∆Tij ,

TTji + ∆Tji)
, ord = [〈i, j〉, 〈j, i〉]

M , ord = ∅
(16)

where M is a large number and ord is a list contain-
ing the valid orderings of Ti and Tj . The above dis-
tance function considers both the proximity of sequential
pickup and delivery locations, captured by the travel time
component, and the alignment of the time windows, cap-
tured by the ∆T factor. Since we guarantee a priori that
successful execution of the first task will lead to success-
ful execution of the second with at least 1−R probabil-
ity, we can directly penalize time window misalignment
without having to worry about the time windows being
too close. We tighten the bundles as much as possible
while keeping the execution risk bounded.

We adopt the complete linkage criterion, only merg-
ing bundles if the largest distance across them is below
a distance threshold D. This choice of linkage criterion
makes the size of the generated bundles tractable and free
of large imbalances, which is desirable as agents have
limited and equal battery life. Bundles are ordered fol-
lowing the best valid ordering determined while comput-
ing the distance via Equation (16).

C. Bidding phase
In pTeSSB, agents bid on bundles rather than individual
tasks. Algorithm 3 shows the procedure an agent exe-
cutes to evaluate its bid on a bundle Ba containing an
ordered list of b tasks. The algorithm is similar to the
single-task case elaborated in Algorithm 1, but we take
advantage of the fact that tasks in the bundle are ordered
to further decrease the number of insertion operations re-
quired and increase the efficiency of the bidding phase.

For every task in Ba, the agent attempts to insert it
into each possible position j of S and compute its bid as
described in Section II.A. Once all insertion operations
have been performed, task Ba[i] is added in the best po-
sition j∗ of S. Since the bundles are ordered, we know
that Ba[i+ 1] should be scheduled after Ba[i], so before
moving to task i + 1 we set j = j∗ + 1. While it does
not change the worst-case (j∗ = 1), this adjustment can
substantially reduce the number of insertions if the first
task is inserted late in the schedule. The best bid is then
the value of the objective when all tasks in Ba have been
added to S, normalized by the number of tasks b in the
bundle. In order to be allocated Ba, the agent needs to
be able to generate a valid bid for every task in Ba, so
as soon as the agent finds a task without a valid inser-
tion point, it stops evaluating the bundle and bids a large

8
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Algorithm 3 pTeSSB Task Scheduling and Bidding
1: Input
2: Ba: Bundle on auction with b tasks
3: S: STNU form of agent schedule with m

tasks
4: ρ: Weight of risk in bidding rule
5: R: Agent risk threshold
6: Output
7: i∗: List of insertion points of tasks inBa in S
8: bid∗: Agent’s best bid for Ba
9: procedure COMPUTEBID(Ba, S, ρ,R)

10: i∗ = [-1]*b
11: j = 1
12: j∗ = −1
13: while i in [1,...,b] do
14: while j in [1,...,m+1] do
15: insert Ba[i] in position j of S
16: risk = 1 - computeDDC(S)
17: if risk ≤ R then
18: bid = computeObjective(S)
19: if bid is smallest so far then
20: j∗ = j
21: bid∗ = bid
22: reset S eliminating Ba[: i]
23: j = j + 1

24: if j∗ = −1 then
25: reset S eliminating Ba[i]
26: return [-1]*b, M where M is very large
27: else
28: insert Ba[i] in position j∗ of S
29: i∗[i] = j∗

30: j = j∗ + 1

31: i = i+ 1

32: reset S eliminating Ba
33: return i∗, bid∗

b

number. Since the bundles are effectively partial sched-
ules with bounded risk conditional on the successful ex-
ecution of their first task, we expect a larger number of
agents to be unable to insert the first task than subsequent
tasks in the bundle. This should contribute to making the
bidding phase faster than in an equivalent pTeSSI auction
where each task in the bundle is auctioned independently.

D. Analysis of the pTeSSB auction
Bundling decreases the number of bids to be generated,
as we are effectively running an auction over m/b rather
than m items where m is the number of tasks and b is
the average bundle size. The number of bids generated is
therefore O(mnb + (mb )2). This effect, however, is offset
by the increased number of operations to be performed in
the bidding phase. Determining a bid for a bundle rather

than a task increases the time complexity by a factor b to
O(b|S|4) in the worst-case where each agent is able to
fully insert every bundle on auction at the beginning of
its schedule. Auctioning bundles rather than individual
tasks therefore does not change the overall worst-case
complexity, which is still O(mnb · b|S|4) = O(mn|S|4)

and ≈ O(m
6

n4 ) if the agents start with empty schedules.
However, the modifications made to the bidding proce-
dure described in Section III.C make pTeSSB faster than
pTeSSI in practice, as we demonstrate experimentally in
Section V.B.

IV. Experimental Setup
Given our overarching objective of enhancing the ap-

plicability of temporal auctions to real-world systems
where deterministic task durations cannot be guaranteed,
we deem it essential to select a relevant real-world appli-
cation in our experiments. We evaluate the effectiveness
of our auction algorithm in allocating pickup and deliv-
ery tasks with uncertainty through several online simu-
lations of an on-demand UAV food delivery operation
in the Amsterdam area. While this is still somewhat of
a futuristic application at the time of writing, it has re-
ceived remarkable attention from academia and industry
alike and several companies have begun deploying pro-
totype systems in recent years 1. Decentralized planning
approaches are seen as the most suitable for problems
involving large teams of UAVs [23] and recently pro-
posed architectures for unmanned aircraft traffic man-
agement suggest a high degree of decentralization [9]
as a means to handle the large number of actors and
high degree of dynamism foreseen in the low-altitude
airspace. Delivery UAVs will have to deal with a number
of sources of uncertainty, such as airspace congestion,
interactions with customers and possible delays, and the
time-sensitive nature of food orders makes respecting the
customers’ time windows of utmost importance. This
setting lends itself extremely well to the evaluation of our
auction algorithm. Our choice of Amsterdam is due to
the high availability of data regarding locations of restau-
rants and residential buildings, and the large amount of
drone as well as food delivery companies active in the
area.

A. Operational setting and assumptions
All simulations are set up using the Mesa agent-based
modeling and programming framework in Python and
include three main types of agents - namely the cus-
tomers, the UAVs and the operator. Customers submit
order requests to the operator including a delivery win-
dow, pickup location and delivery location. The operator

1The FAA has also recently approved the first fully autonomous commer-
cial drone flight [22]
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acts as the auctioneer and allocates the delivery tasks to
the UAVs, each of which is responsible for the planning
and timely execution of all tasks in its schedule.

We consider a 6 km squared area encompassing the
center of Amsterdam - where the majority of restau-
rants are located - and main residential areas in the
Zuid and Oost districts. We use open-source data from
OpenStreetMap to obtain the locations of restaurants and
residential buildings in the area as shown in Figure 2.
Restaurant locations are sampled from the underlying
distribution ahead of each simulation. They represent
the possible locations from which customers can choose
their order to be delivered. Customers spawn at their
homes, which correspond to the delivery locations of
their order requests, and are locations sampled from the
distribution of residential buildings.

Figure 2. Illustration of the 6km x 6km area of Amsterdam considered
in the simulations. Restaurant locations (green) and residential buildings
(yellow) are taken from OpenStreetMap.

We aim to use the simulation setup as a way to as-
sess the suitability of the proposed auction algorithm as
a coordination mechanism for pickup and delivery prob-
lems of this nature. Performing detailed modeling of all
aspects of the UAV delivery operation would lead us far
astray from the goals of this paper 2. Rather, we make
a series of high-level operational assumptions that allow
us to direct our attention to factors that are of interest to
the task allocation problem.

We represent the environment depicted in Figure 2
as a 60 x 60 grid. The UAVs have limited battery life
and must schedule stops to have their batteries swapped
before they run out. All battery swaps occur at the op-
erator’s hub, which is located in the center grid-cell of

2For detailed studies on UAV operations and field tests of related tech-
nologies and systems, the reader is referred to the work from NASA’s UTM
project [6] [5], which represents a good overview of the current state of the
art.

the map. We assume there will always be an available
battery for a UAV that requires it, which is reasonable
given that batteries are relatively inexpensive and can be
charged at high rates with modern technology.

We assume UAVs are able to cruise at a speed of
70 km/h, which is well within the capabilities of mod-
ern quadcopters, and that their battery life is equal to
45 minutes. While this may seem like a large number
compared to commercially available quadcopters which
are not optimized for range, it is in line with expecta-
tions for future delivery UAVs [4] and not unreasonable
based on first principles. Following the sizing approach
of D’Andrea [7], we estimate that a small UAV with a
structural weight of 2 kg would require a ≈ 4 kg mod-
ern high-end Li-ion battery to transport a 2kg payload3

at 70 km/h for 45 minutes in 25 km/h winds. The bat-
tery would therefore amount to ≈ 50%4 of the weight
of the loaded UAV which is substantial but reasonable,
and interestingly enough close to the ≈ 45% fuel frac-
tion modern long-haul commercial aircraft are designed
for.

UAVs use an A* planner to determine the shortest
path between any two locations, and travel at their cruise
speed Vc along the path. We capture possible delays
that the UAVs may encounter while flying their trajec-
tory through a random variable ∆TT . Let dist(x1, x2) be
the length of the shortest path between two locations x1

and x2 as computed via A*, then the travel time TT is
equal to:

TT (x1, x2) =
dist(x1, x2)

Vc
+ ∆TT (17)

Similarly, the time taken by a UAV to execute pickup
and delivery actions - as well as to complete a battery
swap stop - once it has reached the appropriate location
are non-deterministic and governed by random variables
whose distribution is known to the agent. We make high-
level estimates of reasonable bounds on these durations,
outlined in Table 1, which we use as nominal in the ex-
periments. We then vary these bounds and assess the
effects on system performance in Section V.A.

RV Description Lower bound Upper bound
P Pickup time 2 min 4 min
D Delivery time 1.5 min 3 min
B Battery swap time 1.5 min 3.5 min

∆TT Travel time delay 10 % 30 %

Table 1. Nominal bounds of non-deterministic action durations. ∆TT is
in percentage of the travel time TT .

3For reference, this would roughly correspond to an order consisting of 4
regular-sized pizzas and a bottle of wine.

4We can expect this figure to drop substantially over the coming years due
to fast-paced improvements in battery power and energy densities, driven in
particular by competition in the electric car market. Battery energy densities
have already tripled since 2010 and prices have fallen by 87% over the same
period.
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Let us now briefly explain how we arrive at the values
outlined in Table 1. While there are a variety of ways to
collect and deliver items via UAV, we consider the ap-
proach patented by FAA-approved drone delivery scale-
up Flirtey to be the most suitable for urban areas as it
does not require the UAV to land. To execute a pickup
or delivery action, the UAV needs to descend from its
cruise altitude to a hover altitude, lower a container via
a tether, wait for the items to be collected or loaded, re-
collect the container and then climb back to cruise alti-
tude. The FAA’s latest concept of operations for UTM
[9] suggests that UAVs will be able to cruise at ≈ 120
m (400 ft) above ground level (AGL). While there is no
regulatory consensus on descent and climb rates that will
be regarded as safe in the low altitude airspace, we con-
sider 5 m/s reasonable for a small UAV. We also expect
that the tether will be operated at a moderate speed of
≈ 1 m/s, to limit second and third party risk and avoid
spilling or damaging items in the container. Based on
Flirtey’s patent, the hover altitude to be decided upon de-
scent should be high enough to clear i.a. power lines and
trees. For our urban environment we expect this to fall
between 10 and 30 m AGL. The bounds on P in Table 1
account for an additional 1 to 2 minutes for the correct
order to be brought to the container and loaded, and those
on D for 0.5 to 1 minutes for the order to be collected.
For the battery swaps we assume the UAV will need to
land at ground level and the swap will take between 0.5
and 2.5 minutes.

B. Online dispatch and execution
Agents dispatch their plans online by following the early-
first strategy proposed in [19] on the dynamically con-
trollable STNUs generated by ODC-Relax, which is
guaranteed to succeed on dynamically controllable plans.
The realization of a random variable can only be ob-
served by the agent once it has executed the associated
action. For instance, taking over the notation from Sec-
tion II.B, the UAV will only know the value Pi will take
once it has reached the pickup location of task i, executed
time point spi and Nature has executed time point fpi.
Every time the agent collects information about the real-
ization of an action duration, it updates its schedule and
recalculates the DDC. If the DDC drops below 1−R, the
agent performs an online adjustment through which it at-
tempts to increase the DDC back to a suitable level with
as few changes to its plan as possible. The agent iden-
tifies the task whose contingent edges must be shrunk
the most to solve conflicts via ODC-Relax, which is
the task that will generate the sharpest increase in DDC
when removed from the schedule, and sends it back to
the operator for re-auctioning. If DDC is still less than
1−R, then the agent greedily repeats this procedure until
DDC ≥ 1−R.

C. Experiments
We run experiments with a fixed fleet size of 10 UAVs
and varying numbers of customer orders, which we refer
to as demand levels throughout the analysis. All exper-
iments last two hours, reflecting the typical peak hours
between 18.00 and 20.00 that food delivery providers
tend to experience in Amsterdam5. Orders enter the sys-
tem in a rolling fashion, in equally sized batches every 10
minutes. Customers’ delivery time windows are 10 min-
utes wide and start X minutes from the time at which
they place their order, where X ∼ U(20, 40). For each
combination of parameters presented, the results are av-
eraged over 40 simulation runs, which is consistently
found to be enough to stabilize the coefficient of varia-
tion. The main system-level parameters we measure and
discuss are the total number of deliveries successfully ex-
ecuted by the system and the average auction duration.
We also address the distance traveled per successful de-
livery to aid in drawing a comparison across the two bid-
ding rules. We categorize our experiments into the three
distinct sets labeled A, B and C which are explained be-
low. Each set of experiments is aimed at testing different
effects and main hypotheses. In Section V.A we discuss
the results of set A, in Section V.B those of set B and in
Section V.C those of set C.

1. Set A

In set A, tasks are allocated online via pTeSSI and the
agents are not allowed to perform dynamic re-auctioning.
We run experiments with three different demand levels,
namely 60, 120 and 180 orders.

In section Section V.A.1 we focus on the case in
which the contingent edges are uniformly distributed.
We vary the risk threshold and the weight of the risk
in the bidding rule to understand their effect on perfor-
mance with both the SUM-DIST and MAX-T bidding
rules, and we vary the width of the contingent intervals
in Table 1 to examine the impact of different degrees of
uncertainty. We also draw a comparison to the results
obtained when applying the non-probabilistic TeSSI auc-
tion. We test a number of effects with the aim of under-
standing the differences between pTeSSI and TeSSI as
well as those between the SUM-DIST and MAX-T bid-
ding rules. The main question we seek to answer via this
comparison is whether pTeSSI is a more effective task al-
location mechanism than TeSSI for the problem at hand
without sacrificing efficiency, which we capture with the
following hypotheses.

• HA1: pTeSSI leads to a larger number of successful
deliveries than TeSSI.

5see for instance https://www.uber.com/en-NL/blog/ubereats-
netherlands-guaranteed-earnings/
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• HA2: The average duration of the pTeSSI auction
is no larger than that of the TeSSI auction.

We run additional experiments in which the contingent
edges are normally distributed and discuss these in Sec-
tion V.A.2. These aim to evaluate the effectiveness of
the extension to unbounded contingent edge distributions
described in Section II.D under different levels of the ap-
proximation factor α.

2. Set B

In set B, we allow the agents to dynamically re-auction
tasks according to the mechanism described in Sec-
tion III.A. We vary the threshold O in Algorithm 2 to in-
vestigate how different levels of re-auctioning affect the
number of deliveries that the system is able to execute.
Our expectation is that there will be some value of O
for which the re-auctioning mechanism consistently im-
proves partial allocations over time and thereby increases
the number of deliveries the system can execute. We also
expect, however, to observe significant increases in auc-
tion durations due to more tasks being auctioned at once.
Let the extension ”-re” indicate the case in which dy-
namic re-auctioning occurs, then we hypothesize that:

• HB1: pTeSSI-re leads to a larger number of total
deliveries than pTeSSI.

• HB2: pTeSSI-re leads to a higher average auction
duration than pTeSSI.

3. Set C

In set C, agents perform dynamic re-auctioning and we
attempt to accelerate the auction via bundling in each of
the three demand cases. We vary the distance thresh-
old of in the bundling mechanism to examine its effect
on the number of successful deliveries and the auction
duration. We also aim to establish whether combining
re-auctioning and bundling is effective in retaining a per-
formance advantage over the case without re-auctioning
while mitigating the associated increase in auction dura-
tion. This translates to the following two hypotheses:

• HC1: pTeSSB-re leads to a larger number of total
deliveries than pTeSSI.

• HC2: pTeSSB-re leads to a lower average auction
duration than pTeSSI-re.

We can view the bundling mechanism as effective if both
HC1 and HC2 hold.

V. Results and discussion
A. Experiment set A - pTeSSI
We begin by presenting the main results from the exper-
iment set A, discussing the case with uniform contingent

edges first and then the extension to normally distributed
contingents.

1. Uniform contingent edges

Figure 3 and Figure 4 show the total deliveries gener-
ated by the system in each of the three demand cases
with varying levels of the risk threshold (R) and weight
of the risk in the agent’s bids (ρ), for the MAX-T and
SUM-DIST bidding rule respectively. R is varied be-
tween 0.1 and 0.9 and ρ between 0 and 10. Both param-
eters have a pronounced effect on performance which
is consistent across both bidding rules. For low values
of ρ (≤ 2), taking on more risk has a significant nega-
tive impact on performance across all demand cases, de-
creasing the total amount of deliveries generated by up
to ≈ 15% in the highest demand case. To successfully
leverage the execution risk, we need to penalize it heav-
ily enough. For values of ρ ≥ 5, the trend is different
and varies depending on the demand case. In the low-
est case, increasing risk has no effect on performance as
agents are already able to successfully execute virtually
all tasks (99.7% on average) with the lowest risk thresh-
old of 0.1. This suggests that there are usually combi-
nations of schedules satisfying all tasks’ constraints that
can be made dynamically controllable by sacrificing lit-
tle realization volume, resulting in very low execution
risk. The larger values of ρ prioritize these schedules.
For the two higher demand cases, we observe an initial
increase in performance when increasing the risk from
the 0.1 threshold. Satisfying all temporal constraints is
”hard” enough that it is beneficial for agents to trade-off
some degree of controllability for the ability to commit
to more tasks. Accepting large execution risks, however,
leads to over-committing and a decline in the total de-
liveries executed. Many of the conflicts in the agents’
temporal plans occur at execution, leading agents to ei-
ther violate delivery windows or be forced to de-commit
tasks in their schedule shortly before dispatch. In the
higher demand cases, the strongest system performance
is with a risk threshold of 0.5 and high values of ρ. This
is the value we would expect given that in a schedule with
a DDC < 0.5 it is more likely that the realization of all
contingent edges will lead to at least one conflict at exe-
cution, than that all conflicts will be avoided and the plan
will effectively be dynamically controllable. For the rest
of the results presented in this section, we set R = 0.5
and ρ = 10.

In Table 2, we report the performance of pTeSSI with
R = 0.5 and ρ = 10 and TeSSI for all demand cases and
both bidding rules. To adapt TeSSI to work with the non-
deterministic tasks present in our experiments, we fol-
low the original proposition of Nunes [21] and formulate
each STN constraint as an interval matching the bounds
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(a) 60 orders (b) 120 orders (c) 180 orders

Figure 3. Contour plot of the total deliveries executed by the system with the MAX-T bidding rule for the three different demand cases, with varying
levels of the risk threshold and the weight of the risk in the bidding rule.

(a) 60 orders (b) 120 orders (c) 180 orders

Figure 4. Contour plot of the total deliveries executed by the system with the SUM-DIST bidding rule for the three different demand cases, with varying
levels of the risk threshold and the weight of the risk in the bidding rule.

on the realization of the underlying random variable. We
then require the STN to be consistent for all values along
the interval. Instead of determining the DDC and veri-
fying whether the risk is below its threshold (lines 13-14
of Algorithm 1), the agent runs the Floyd-Warshall algo-
rithm on the STN associated to the worst-case realization
of all contingents and only bids if the latter is consistent.
This is equivalent to requiring dynamic controllability on
the STNU representation of the temporal plan.

We test for statistical significance using the non-
parameteric Wilcoxon signed-rank test as the measure-
ments are paired but not normallly distributed. We test
against the null hypothesis that the results of pTeSSI
and TeSSI originate from the same distribution for both
bidding rules and report the p-value in the appropriate
column. We assess the effect size through the Vargha-
Delaney A-value, which is the probability that perfor-
mance using pTeSSI exceeds that achieved using TeSSI
based on the observed results. We perform the same
analysis to assess the effect of the bidding rule on the
performance of both pTeSSI and TeSSI. The A-value re-
ported along the rows is the probability that MAX-T per-

forms better than SUM-DIST according to the relevant
parameter. Note that the effect we test for varies based
on the parameter in question. Better performance trans-
lates to larger values for the total deliveries parameter,
but lower auction durations and distances traveled per
delivery. For comparisons leading to statistically signifi-
cant (p < 0.05) effects of large magnitude (A > 0.71 or
A < 0.29) both the p and A values are shown in bold.
Note that each effect is tested on a different combination
of sets of simulation results, so there is no need to per-
form a post hoc correction such as the Bonferroni one to
control for the family-wise error rate.

The performance difference between pTeSSI and
TeSSI is statistically significant and evident across all
demand cases. pTeSSI leads to substantially more de-
liveries than TeSSI, demonstrating the advantage of in-
telligently leveraging risk rather than enforcing dynamic
controllability at all costs, provided it is weighed heavily
enough in the agents’ bids (ρ = 10 for all results in Ta-
ble 2). The gap grows with the total number of orders, as
it becomes increasingly more difficult to accommodate
all tasks within their constraints without sacrificing some
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Total deliveries [-] Auction duration [s] Distance per delivery [km]
Demand TeSSI pTeSSI p A TeSSI pTeSSI p A TeSSI pTeSSI p A

60 orders

MAX-T 55.3 59.8 3.1e-8 0.99 1.61 0.59 3.6e-8 1.0 6.91 6.94 0.61 0.48
SUM-DIST 50.1 59.7 3.3e-8 1.0 2.92 0.94 3.6e-8 1.0 6.21 6.05 0.10 0.61

p 3.3e-8 0.6 - - 3.6e-8 3.6e-8 - - 9.8e-6 1.1e-7 - -
A 0.97 0.52 - - 1.0 1.0 - - 0.14 0.08 - -

120 orders

MAX-T 77.8 109.9 3.5e-8 1.0 11.4 2.08 3.6e-8 1.0 6.40 6.43 0.39 0.45
SUM-DIST 80.25 111.8 3.5e-8 1.0 17.2 3.82 3.6e-8 1.0 6.03 5.93 0.10 0.60

p 7.8e-3 0.11 - - 3.6e-8 1.1e-7 - - 7.76e-7 5.73e-7 -
A 0.34 0.40 - - 1.0 0.94 - - 0.24 0.11 - -

180 orders MAX-T 79.3 127.7 3.5e-8 1.0 32.5 3.5 3.6e-8 1.0 5.94 5.90 0.35 0.57
SUM-DIST 89.7 131.0 3.5e-8 0.99 44.2 5.4 3.5e-8 1.0 5.49 5.61 0.10 0.39

p 7.6e-8 0.22 - - 7.6e-8 1.42e-5 - - 3.53e-6 1.1e-4 - -
A 0.07 0.42 - - 0.93 0.79 - - 0.15 0.25 - -

Table 2. Comparison of the results achieved by pTeSSI and TeSSI for the MAX-T and SUM-DIST bidding rules across all three demand cases.

realization volume. Remarkably, pTeSSI also runs sub-
stantially faster than TeSSI in practice, despite the fact
that the worst-case complexity of both algorithms is the
same. This is due to the fact that the conflict-extraction
algorithm of Bhargava et al. [3] actually runs faster than
Floyd-Warshall in practice, despite both having cubic-
time complexity in the worst-case. This confirms both of
our main hypotheses HA1 and HA2, supporting the claim
that pTeSSI is the more efficient and effective task allo-
cation mechanism in our experiments.

There is no statistically significant difference in the
distance traveled per delivery. This suggests that the ex-
tra deliveries generated by pTeSSI are compensated by
the fact that with TeSSI agents do not travel extra dis-
tance due to committing to tasks that will not be executed
successfully because of random variables taking on val-
ues outside of the controllable realization space. With
pTeSSI, the percentage of tasks that are allocated but not
executed is at most 1%, 5.3% and 13% for the cases with
60, 120, and 180 orders respectively.

In the TeSSI auction, the SUM-DIST bidding rule
tends to lead to more deliveries than MAX-T, with the ef-
fect being large for the lowest and highest demand cases.
With pTeSSI, on the other hand, we observe no statis-
tically significant difference in the deliveries executed.
This may suggest that the risk component of the bidding
rule is better suited to the style of optimization performed
in MAX-T; that is, minimizing the maximum value rather
than the sum across all agents. The auction with the
MAX-T runs faster than with SUM-DIST for all demand
cases. This is because SUM-DIST needs to compute the
objective before and after every task insertion, whereas
with MAX-T we only compute the objective after each
task insertion. Since computing the objective requires
determining the DDC, it is O(|S|3) where |S| is the
number of nodes in the agent’s STNU, and the heavi-
est operation in the bidding procedure. This explains the
large effect sizes. We also note that SUM-DIST leads

to lower distances traveled per delivery, which matches
our expectations given that the aggregate distance trav-
elled by all agents is explicitly part of the objective in
this bidding rule. Given that there is no statistically sig-
nificant difference in the number of deliveries generated
by the system and that it is significantly more efficient,
we view MAX-T as the better choice for large numbers of
tasks. SUM-DIST, instead, is the stronger alternative for
smaller problems where runtime is less of a concern or
the distance traveled is important. In the rest of our anal-
ysis, we focus exclusively on the more efficient MAX-T
bidding rule.

Figure 5 shows the number of deliveries executed by
the system with both TeSSI and pTeSSI when we vary the
width of the ranges associated to the contingent edges.
We multiply the width of the nominal ranges in Table 1
by a factor between 0.5 and 2 shown on the x axis. As ex-
pected, wider contingent edges make the problem harder,
and also tend to increase the performance advantage of
pTeSSI over TeSSI. It becomes increasingly more diffi-
cult to guarantee dynamic controllability and more re-
warding to accept a controlled amount of execution risk.
This is most evident in the lowest demand case, where
as we discussed in the analysis of Figure 3 and Fig-
ure 4 there are combinations of schedules which allow
the agents to satisfy nearly all order requests yet retain
very high degrees of dynamic controllability. TeSSI re-
jects these schedules, whereas pTeSSI leverages them.

2. Normally distributed contingent edges

We run experiments with normally rather than uniformly
distributed contingent edges. We construct normal con-
tingents CN where the bounds on the uniform edges (Ta-
ble 1) are two standard deviations away from the mean,
i.e. CN ∼ N(µ = Ul+Ub

2 , σ = Ul+Ub

4 ) where Ul and Ub
are the lower and upper bounds of the uniform contin-
gent edges respectively. Figure 6 shows the performance
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(a) 60 orders (b) 120 orders (c) 180 orders

Figure 5. Total deliveries generated by pTeSSI and TeSSI with varying contingent edge widths, for each of the three demand cases explored. Error bars
span one standard deviation from the mean in each direction.

Figure 6. Total number of deliveries executed with pTeSSI in the case with
normally distributed contingent edges. Results are plotted with varying
α, the factor used in generating the STNU approximation of the under-
lying PSTN and shown for all three demand cases. Error bars span one
standard deviation from the mean in each direction.

of the system with varying levels of α, the approximation
factor in the PSTN to STNU mapping. Lower values of
α capture more of the original distribution and require
more relaxations. Higher values of α truncate larger por-
tions of the underlying distribution and sacrifice more
realization volume upfront. The system performs best
with the lowest values of α tested, with the total de-
liveries executed declining rapidly for α > 0.025 and
α > 0.5 for the highest and lowest demand case respec-
tively. This suggests that lowering α increases the suc-
cess rate achieved when dispatching on the dynamically
controllable STNU generated by ODC-Relax. This re-
sult is consistent with the findings of Akmal et al. [2] and
is evidence that ODC-Relax is effective in relaxing only
those edges that are required to solve conflicts and in do-
ing so minimally. The more room it is granted to choose
the relaxations, the better the performance. The dotted
lines show the deliveries executed with the uniform con-
tingent edges (from Table 2). With low enough values of
α, we achieve nearly as strong a performance as with the

uniformly distributed edges. This demonstrates that the
relaxations performed on the normally distributed con-
tingent edges are not significantly worse than those on
the uniform edges, despite ODC-Relax’s choices being
agnostic to the underlying distribution. This result con-
firms that extracting bounds that capture a large portion
of the true distribution and subsequently optimizing for
realization volume rather than true probability mass is an
effective way to deal with non-uniform contingent edges.
Note that, while we only experiment with normally dis-
tributed edges, we do not expect a significant difference
for distributions with non-zero skew. The truncation of
the PSTN sacrifices an equal amount of mass from each
side of the distribution, thereby naturally accounting for
skewed distributions.

B. Experiment set B - dynamic re-auctioning
Here we discuss the results obtained by implementing
the periodic re-auctioning mechanism described in Sec-
tion III. The analysis is conducted only for the MAX-T
bidding rule, as we have demonstrated earlier that it is
more efficient than SUM-DIST and we did not observe
a statistically significant difference between the number
of deliveries executed between the bidding rules.

From our earlier analysis, we know that with pTeSSI
the system is able to execute all tasks in the lowest de-
mand level of 60 orders, which would leave no margin
for improvement via re-auctioning. We therefore do not
consider this case but rather run experiments with de-
mand levels of 120, 180 and 240 orders. Figure 7 shows
the total number of deliveries executed by the system for
different values of the reauction threshold O. Recall that
O represents the minimum drop in system objective re-
quired for an agent to de-commit from a task and send
it back to the auctioneer for re-auctioning together with
the tasks that have newly entered the system. The larger
the value of O, the more selective the system. Less tasks
will be candidates for re-auctioning and therefore less of
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the existing partial allocations will be revisited. Figure 7

Figure 7. Effect of the re-auction threshold O on the total deliveries gen-
erated. Error bars span one standard deviation from the mean in each
direction.

shows that the best performance does not correspond to
the case in which the most tasks are being re-auctioned
(lowest value of O). While this may seem counter intu-
itive at first glance, it is precisely what can be expected.
With the lowest value of O(0.1), the agents consistently
de-commit from all unexecuted tasks in their schedule
and submit them back to the auctioneer. In each auc-
tion, we can look across the combined set of all unex-
ecuted tasks in the agents’ schedules and the newly in-
coming tasks. Since we can consider all inter-task syner-
gies available, the lowest achievable value of the objec-
tive is at its minimum. That is, the best possible alloca-
tion at the time of the auction must be one of the choices
available. However, sequential auctions like pTeSSI are
not guaranteed to find the optimal solution, and the drop
in the number of we observe is due to the optimality gap
quickly widening when T decreases past 0.4. pTeSSI
makes greedier decisions when the agents’ schedules are
(nearly) empty and more sound ones when it can capture
synergies with existing tasks in the agents’ schedules.
This behavior is common among all sequential auctions
and a similar effect was also observed with TeSSI in the
work of Nunes [21]. Re-auctioning too many tasks and
revisiting good partial allocations at execution, therefore,
can negatively impact performance. The fact that the best
performance is not with the lowest value of O is an in-
dication that our task selection mechanism is effective in
identifying which partial allocations are worth reconsid-
ering, and which not.

We suspect that this might be the reason why the se-
quential single cluster auctions of Heap and Pagnucco
[11], in which all unfinished tasks in the agents’ sched-
ules are re-auctioned upon completion of a task, at times
fail to provide a statistically significant improvement
over the case without re-auctioning. We test HB1 and
HB2 by comparing the successful deliveries and the av-

erage auction duration for the case without re-auctioning
to that with a re-auctioning threshold of O = 0.4, which
is found to lead to the best performance across all de-
mand levels. We test for statistical significance via
the Wilcoxon signed rank test and provide the Vargha-
Delaney A value as a measure of the effect size, showing
the results in Table 3. We confirm both hypotheses, in-
dicating that our re-auctioning mechanism is able to in-
crease the number of deliveries executed by the system,
but increases the auction duration in the process. We ob-
serve large effect sizes across all demand levels but note
that the improvement in the number of successful de-
liveries increases with the number of orders, suggesting
that dynamically revisiting existing partial allocations is
more rewarding in harder problems.

C. Experiment set C - bundling
While our periodic re-auctioning mechanism substan-
tially increases the total deliveries generated, this comes
at the cost of longer auction durations since more tasks
need to be allocated at once. We attempt to mitigate this
effect by allocating bundles rather than individual tasks
via pTeSSB as discussed in Section III. Figure 8 shows
the average auction duration and total deliveries gener-
ated with various levels of the distance threshold in the
bundling mechanism. Increasing the distance threshold
loosens the requirements for bundle formation, leading
to larger and less compact bundles. The auction duration
drops significantly with the distance threshold, confirm-
ing our expectations and demonstrating that pTeSSB is
able to run faster than pTeSSI in practice when bundling
occurs. The modifications made to the bidding phase in
Algorithm 3 are effective and make the evaluation of a
bundle of size B faster than B single-task evaluations
(B calls to Algorithm 1). However, as the bundles get
larger and less compact, the likelihood that the agents
will be able to feasibly insert them in their schedule also
decreases, leading to a drop in the total deliveries the sys-
tem can execute. The distance threshold is effectively a
way to regulate the trade-off between auction duration
and executed deliveries. It is interesting to note that the
trade-off becomes more favorable as number of orders
increases. Raising the demand level leads the auction
duration to drop more steeply relative to the executed de-
liveries, as can easily be noted by observing the growth
in the area between the two curves.

As discussed in section Section IV.C, we seek to as-
sess whether bundling is effective in significantly de-
creasing the average auction duration while still preserv-
ing a performance improvement over the case without
re-auctioning. We test HC1 by comparing the total num-
ber of deliveries achieved by pTeSSB-re with a fixed dis-
tance threshold to those achieved by pTeSSI, and HC2 by
comparing the auction duration of pTeSSB-re to that of
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Total deliveries [-] Auction duration [s]
Demand level pTeSSI pTeSSI-re p A pTeSSI pTeSSI-re p A

120 orders 109.9 115.6 5.87e-7 0.83 2.08 3.97 3.57e-8 1.0
180 orders 127.7 142.0 2.82e-6 0.86 3.56 11.60 3.57e-8 1.0
240 orders 127.9 153.2 2.19e-7 0.89 6.59 23.25 3.57e-8 1.0

Table 3. Comparison between pTeSSI with and without re-auctioning. Results with re-auctioning are indicated by the extension ”-re” and use a reauction
threshold of 0.4.

(a) 120 orders (b) 180 orders (c) 240 orders

Figure 8. Total deliveries generated by pTeSSB-re with varying levels of the distance threshold used in the bundling mechanism. Results are shown for
all three demand levels explored.

pTeSSI-re. Based on the analysis in Figure 8, we select
a distance threshold of 925 as it seems to significantly
decrease the auction duration without largely decreasing
the total deliveries in the two higher demand cases. Ta-
ble 4 shows the outcome of this comparison, including p-
values generated from the Wilcoxon signed rank test and
the Vargha-Delaney A value as a measure of the effect
size. We find support (p < 0.05) for both HC1 and HC2
across all demand levels. The effect sizes increase with
the demand level, confirming the insight derived from
Figure 8 that bundling is more effective for larger num-
bers of tasks. We are able to generate larger decreases
in the auction duration while sacrificing less of the per-
formance increase generated via dynamic re-auctioning.
This suggests that when the size of the task set on auc-
tion is larger, the bundling mechanism is more likely to
find spatio-temporal synergies that will translate to good
partial schedules for the agents. In the highest demand
case, we are able to retain over 82% of the performance
increase while making the auction over 40% faster. In
the lowest demand level, on the other hand, we retain
less than 40% of the performance advantage while only
generating an ≈ 15% improvement in the auction dura-
tion.

VI. Conclusion
In this work, we propose solutions to two main limi-

tations of state of the art sequential auction mechanisms
for the allocation of temporally constrained tasks that

limit their suitability as task allocation mechanisms in
real-world distributed systems. Namely, that they are in-
effective when tasks have stochastic durations and that
they do not re-consider partial allocations over time to
uncover new synergies between tasks.

We propose the probabilistic temporal sequential sin-
gle item (pTeSSI) auction, a novel polynomial-time auc-
tion mechanism based on TeSSI [21], designed for the
online allocation of tasks with non-deterministic dura-
tions and known distributions or bounds on their real-
ization. Agents represent their plans as simple temporal
networks with uncertainty (STNUs). Upon attempting
to insert a task in their schedule, they leverage the no-
tion of degree of dynamic controllability to efficiently
compute the risk of unsuccessful dispatch of the result-
ing schedule, and include this in their bid. We evaluate
the effectiveness of pTeSSI in an online simulation of
an on-demand UAV food delivery system under different
demand levels. Results show that pTeSSI is effective in
allowing agents to leverage controlled amounts of exe-
cution risk and substantially outperforms TeSSI for both
uniformly and normally distributed task durations of var-
ious widths. Even though looking beyond the binary no-
tion of controllabillity enforced by TeSSI requires solv-
ing a substantially more complex problem in the bidding
phase, we show that pTeSSI retains the same worst-case
complexity as TeSSI and runs faster in practice.

We also propose a mechanism whereby agents dy-
namically select subsets of unexecuted tasks in their
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Total deliveries [-] Auction duration [s]
Demand level pTeSSI pTeSSB-re p A pTeSSI-re pTeSSB-re p A

120 orders 109.9 111.9 2.42e-2 0.62 3.97 3.48 3.10e-6 0.81
180 orders 127.7 137.2 2.60e-4 0.73 11.60 8.60 4.16e-8 0.97
240 orders 127.9 148.7 5.36e-6 0.81 23.25 16.67 4.48e-8 0.95

Table 4. Comparison between the total deliveries generated with pTeSSI and pTeSSB-re, and between the average auction duration of pTeSSI-re and
pTeSSB-re.

schedule and submit them to the auctioneer for re-
auctioning. Results demonstrate that dynamically re-
auctioning subsets of tasks is effective in improving the
quality of the allocation and increases the number of de-
liveries successfully executed by the agents. We mitigate
the additional overhead incurred due to the re-auctioning
by constructing bundles of tasks and auctioning them at
once, leveraging the temporal relationship of tasks in the
bundle to further accelerate the bidding phase. Bundling
successfully reduces the run-time of the auction, but also
tends to decrease the quality of the allocation. The dis-
tance threshold in our bundling mechanism provides a
manner to control the trade-off between performance and
auction duration, which we find to be more favorable
when larger numbers of tasks are on auction. In the
higher demand cases explored, combining re-auctioning
and bundling is an effective way to limit the increase
in auction duration while still retaining a strong perfor-
mance increase over the case without re-auctioning.

In future work, it would be interesting to explore
different bidding rules that address other objectives.
A triple objective addressing a combination of the
makespan, distance traveled and the risk of unsuccessful
dispatch would be a logical extension to the bidding rules
explored in our work. Changing the balance between
components of the objective function at execution could
also be investigated as a way to further improve perfor-
mance. pTeSSI leverages the recently proposed notion of
dynamic controllability of STNUs [2]. As the domain of
temporal networks is constantly evolving, novel theory
or alternative characterizations of controllability could
also pose interesting opportunities for further develop-
ment of pTeSSI.
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Introduction

The idea of UAV delivery in urban areas has received remarkable attention over the past few years, with large
global players such as Amazon, Uber, DHL and several well-funded startups already deploying prototype sys-
tems and well poised to begin monetizing on this technology in the near future. Delivery UAVs have the po-
tential to unlock considerable economic benefits by dramatically cutting costs in the last mile of global supply
chains, while also enabling the on-demand delivery of wide ranges of goods to customers in urban areas at
unmatched speed. Widespread social distancing measures due to the current COVID-19 pandemic have also
highlighted the importance of reducing the level of human interaction required in the delivery of essential
goods. UAV delivery providers such as Alphabet’s Wing have seen a significant spike in demand due to the
pandemic and have responded by expanding delivery options to include food and other essential items [122].
Several others such as Matternet, UPS and Zipline have mobilized UAV fleets to deliver medical supplies [119]
and test samples [92].

In order to reap the vast economic and social benefits of UAV delivery, however, operators need to deal with reg-
ulatory uncertainty and a number of technical challenges, across areas such as design, autonomous navigation
and fleet management. Among the driving challenges is the development of online coordination paradigms
to allow UAV fleets to autonomously allocate and plan on-demand delivery tasks while avoiding conflicts with
other vehicles and obstacles in the environment, which constitutes the focus of this thesis project. Autonomous
coordination in the context of on-demand UAV delivery is a highly challenging problem in which the UAVs are
required to perform online task allocation and path finding, which are both known to be NP-hard problems1.
Delivery requests need to be allocated in real-time and given that the urban low-altitude airspace is envisioned
to be highly dynamic, efficient re-planning procedures should be possible as the fleet discovers new informa-
tion about the environment. Capturing the dynamism and planning constraints at hand poses novel chal-
lenges in multi-agent coordination and requires substantially extending state of the art techniques from the
multi-agent systems literature.

This literature study is divided in four main chapters. Chapter 1 provides an analysis of the setting and environ-
ment in which delivery UAVs will need to operate, which is essential to understanding the requirements that
will be imposed on the coordination framework. This includes a discussion of the unit economics of UAV deliv-
ery, operating constraints of the UAVs and how the low altitude urban airspace will be managed and structured.
Chapter 2 provides a thorough analysis of the multi-agent task allocation (MATA) problem, which is the driving
challenge in UAV delivery coordination, and state of the art classes of MATA solvers. A tradeoff among the solver
classes - spanning a number of different fields such as operations research, game theory and distributed artifi-
cial intelligence - is performed, and the most suitable class of approaches is identified and discussed in further
detail. Chapter 3 includes a discussion of several multi-agent path finding (MAPF) solvers and a tradeoff based
on their driving characteristics. Note that, within this project, we only consider the coordination aspect of path
finding and therefore direct our attention to techniques from the multi-agent systems literature which are de-
signed for simple grid-like environments but explicitly consider the interaction between the agents’ paths and
the conflict resolution aspect of path finding. We do not discuss single-agent approaches specifically tailored
to operate in continuous 3d environments or UAV-specific path finding routines which explicitly consider the
kinodynamic limitations of the vehicles and the control effort required to execute a given path. In Chapter 4
we present a research proposal for the thesis project based on the findings of the literature study. We define
the overarching research objective, translate it into a series of sub-questions and construct work packages to
answer the questions in an exhaustive and structured manner.

1Aside from special cases, which as we will see in Chapter 2 and Chapter 3, do not apply to the UAV delivery coordination case.
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1
Urban UAV delivery

In this chapter, we provide an overview of key operational considerations for UAV delivery. We start by elab-
orating on different operating models in Section 1.1 and perform a first-principles analysis of the economic
viability of a realistic UAV delivery operation in Section 1.2. In Section 1.3 we discuss the key technical chal-
lenges to overcome in order to make UAV delivery a reality, and explain why our focus will lie on the UAV
coordination problem. We then explore the setting and constraints in which delivery UAVs will have to operate
by discussing the characteristics of the latest proposed unmanned aircraft system traffic management (UTM)
architectures in Section 1.4. Finally in Section 1.5 we provide a high-level formulation of the UAV delivery co-
ordination problem, which forms the basis of this thesis, and identify relevant research areas to investigate
further.

1.1. Operating models
UAV delivery is being investigated by several companies with different operating models in mind. The two
most common operating models are last-mile delivery, in which large retailers and delivery players intend to
use UAVs in the last mile of their global supply chain, and urban delivery as a service, in which the goal is to
offer cost-effective on-demand delivery of goods directly from local businesses to customers in urban areas.

1.1.1. Last-mile delivery
Current last-mile delivery models are, generally speaking, highly inefficient and difficult for delivery service
providers to sustain. According to a recent report by Capgemini, approximately 41% of the overall supply chain
costs are incurred in the last-mile, which is more than double the costs incurred in any other link of the supply
chain [73]. A highly competitive delivery market pushes many retailers to absorb part of the costs associated
to last-mile delivery, charging customers on average 20% less than the cost incurred per customer order to
retain or grow their market share. This has led several large e-commerce players and delivery providers such
as Amazon, UPS and DHL to investigate the incorporation of UAVs in the last-mile of their supply chain to cut
costs and boost their profitability. Amazon’s Prime Air project in particular has attracted widespread media
attention. The goal is to use UAVs to carry small (≈ 2.2kg) packages from its warehouses to the customer and
thereby guarantee delivery in 30 minutes or less of items that are readily available at the warehouse.

While Amazon Prime Air intends to carry packages from the warehouse directly to the customer’s doorstep via
UAV, alternative concepts have been studied in the literature. A commonly discussed alternative is to deliver
packages to set pickup locations in order to enhance safety and reduce planning complexity [95]. This prevents
UAVs from having to land or operate close to customers, which is a risky and technically challenging endeavor.
Recent work has studied concepts of operations in which trucks and UAVs collaborate to fulfill deliveries. These
include models in which trucks act as base stations for UAVs, with the UAVs dispatched from a moving truck
which is also delivering to customers [7][83]. Others have simply studied the performance of mixed fleets in
which trucks are dispatched for certain deliveries and UAVs for others [176]. Mixed fleets perform well because
trucks and UAVs are highly synergistic delivery modes. The advantage of trucks is that they can service several
deliveries at once and have high ranges, but they are limited by traffic and slow in urban areas. Trucks are there-
fore best suited for bulk deliveries with loose time constraints. UAVs, on the other hand, are most advantageous
for time-sensitive deliveries of small items to more isolated customers [176]. This explains why the industry is
not looking to replace other delivery modes entirely, but rather to enhance their existing supply chain by using
UAVs for faster and more cost effective on-demand deliveries.

1.1.2. Urban delivery as a service
Another set of companies intends to use UAVs not as the last mile of a global supply chain, but rather as means
to offer on-demand urban deliveries as a service. The objective is to transport goods from local businesses to
customers via a fleet of delivery UAVs, at speeds and costs that other delivery modes cannot reach. Among
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many examples of startups in this space is Flirtey, which is part of NASA’s UTM program and has received FAA
approval to conduct beyond visual line of sight (BVLOS) UAV deliveries. Flirtey intends to operate a general-
purpose delivery service in urban areas, delivering all sorts of items including food, medical devices, retail items
and more. Other players focus on a specific class of delivery goods, with food delivery being the most popular.
Food is a natural choice for UAV delivery because orders are typically physically light and highly time-sensitive
since the food should not get cold before it reaches the customer. Traditional food delivery modes such as
human-operated e-bikes are highly inefficient because there are limited opportunities to deliver multiple or-
ders at once (which is the advantage of delivery trucks) since timely delivery to the customer is paramount
and items need to be picked up in different locations. The food delivery market is crowded and highly price-
sensitive since there is little room for differentiation, meaning that several providers need to subsidize their
delivery costs in order to stay competitive. Most companies in the space are therefore growing in a highly un-
profitable manner, with Uber’s Eats business as a prime example. Several of these companies have looked to
UAVs to cut delivery costs, undercut their competition and improve their margins. Uber Eats has recently un-
veiled a new design for its delivery drone and is expecting to start drone deliveries in San Diego, where it has
already conducted a few tests, this summer [24]. In Section 1.2.3, we take a deeper look at the unit economics
of Uber Eats and how UAV delivery could affect its business.

1.2. Economic viability
An important question to answer is whether UAVs actually constitute an economically viable solution to the
last-mile delivery problem, and if so to what extent and under which limitations. While the vast amount of
companies that are active in this space can be seen as empirical evidence that the solution is indeed an eco-
nomical one, it should not be deemed as conclusive evidence. This is because none of the companies actively
working to bring a UAV delivery network to market have released their unit economics to the public, nor are
they inclined to do so. It is therefore important to reason independently and via first principles about the eco-
nomic viability of UAV delivery. We shall attempt to derive a high-level estimate of the cost per km of operating
a delivery UAV and draw a parallel to existing delivery systems.

1.2.1. Battery and energy cost
We begin by following the approach of D’Andrea [36]1 to estimate the required battery and energy cost per km
flown by the delivery UAV. In order to do this, we need to make informed assumptions about relevant perfor-
mance metrics e.g. cruise speed, range, payload capability, maximum headwind and derive the corresponding
battery and energy requirements. Equation (1.1) and Equation (1.2) show approximations of the power require-
ment and the worst-case energy requirement respectively, the latter equation assuming that the UAV needs to
fly its maximum range while flying in the maximum headwind w it can sustain for the entirety of the journey.
Equation (1.3) and Equation (1.4) estimate the energy and battery costs per km flown. All relevant variables
and assumptions are summarized in Table 1.1. The most important assumptions are discussed further.

It is assumed that the allowed payload mass is of 2.2 kg, which is in line with Amazon’s plan and approximately
86 percent of all e-commerce orders reportedly fit this requirement [44]. The cruise speed v is taken to be 50
km/h, which is well within the capabilities of small modern UAVs and quadcopters, and corresponds to the
street speed limit within Dutch cities. Operating at such a cruise speed would allow UAVs to deliver faster than
traditional last-mile delivery methods such as vans, scooters or e-bikes which must comply with the speed
limit and other traffic regulations, and lose further time due to congestion. A study by TNO notes that the av-
erage speed of vehicles in urban Dutch areas is ≈ 44 km/h under free-flow (no traffic) conditions, ≈ 25 km/h
with normal traffic conditions and ≈ 12 km/h under heavy traffic conditions [93]. While there is still no regu-
latory consensus on the speeds at which UAVs will be allowed to fly in the low-altitude urban airspace, studies
suggest that a small UAV2 colliding with a human at a speed of 50 km/h would cause injuries well below the
critical threshold [131] and would therefore be relatively safe from a third-party risk perspective. The maximum
headwind w the UAV should be able to sustain is taken to be equal to 35 km/h. Based on weather data [3], in
Amsterdam this would allow the UAV to operate on average for 328 days a year (≈ 90% of days). It is also in line
with the common rule of thumb for small commercial quadcopters that the strongest wind in which it is safe
to fly is approximately two thirds of the drone’s maximum speed, since the UAV’s maximum speed should be

1Raffaello D’Andrea is a distinguished robotics researcher and professor at ETH Zurich. He also co-founded Kiva Systems (now Amazon
Robotics), which was acquired by Amazon as part of its effort to automate warehouse operations and build core capabilities for UAV
delivery. He has advised extensively on the topic of UAV deliveries and performed a feasibility study for Matternet, part of which was
made public in [36].

2More specifically, the study simulates the impact of a DJI Phantom 3 (weight of ≈ 1.3 kg) with the human head under a range of impact
speeds and angles[131].
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slightly above its cruise speed of 50 km/h in order to cruise safely and perform corrections or sense and avoid
maneuvers if necessary.

The required range for the UAV is an important design parameter and difficult to generalize since it will be
highly dependent on the specific application, environment and in particular the distance between the charg-
ing stations of the operator. Figure 1.1 shows a plot of the required battery mass for different required UAV
ranges, with all other parameters fixed according to Table 1.1. The required battery mass mb is the maximum
smallest mass that satisfies both Equation (1.1) (power requirement) and Equation (1.2) (energy requirement).
The required battery mass does not vary with the range when the power requirement is dominant (which is
a straightforward observation since power is an instantaneous requirement and therefore the range does not
appear in Equation (1.1)), but varies steeply and superlinearly in the range once the energy requirement kicks
in. For the purpose of this cost estimation, we select d = 16km as the required UAV range. This would allow
an operator of a UAV delivery system to serve customers in the vast majority of the greater Amsterdam area via
a return trip from a single strategically located charging hub, while keeping the battery mass reasonable. For
example, Figure 1.2 considers the fictitious case in which Uber adopts this model for its Eats business, with a
single charging hub located at its Amsterdam headquarters. As can be seen, the vast majority of the Amsterdam
area lies within 8km of the station and could therefore theoretically be served. The chosen range is also in line
with Amazon’s vision for last mile delivery, since the company is reportedly designing for a similar range. Nat-
urally, all operational requirements in Table 1.1 and in particular the design range, should be studied in more
detail by the operator and tailored to the specific operating model at hand. In several cases it would be more
efficient, for instance, to design for more charging stations clustered around high-demand areas, cutting deliv-
ery times and allowing for a more relaxed range requirement which brings battery and energy costs down. The
intent here is simply to make sound assumptions that are generalizable to a wide range of operating models in
order to arrive at a reasonable high-level cost estimate.

With the assumptions as stated in Table 1.1 we arrive at a required battery mass of 2.3 kg assuming energy and
power densities of 0.25 kW ·h

kg and 0.35 kW
kg , which are attainable with modern lithium-ion batteries. While the

battery mass may seem high compared to similarly sized commercial quadcopters which are not designed for
range, it is reasonable and in line with similar estimates in the literature [36]. The battery amounts to ≈ 35% of
the weight of the entire vehicle including the payload, which interestingly is close to the 38% - 45% fuel fraction
range that modern long-haul commercial aircraft are designed for. Given current energy and battery costs, this
would result in a cost of 0.35 EUR cent per km for the battery and 0.27 EUR cent per km for the energy. These
costs are likely to decrease significantly over the coming years due to competitive pressure and economies of
scale. The average global cost of lithium-ion batteries has already dropped with a CAGR of over 25% from
2014 to 2018 [61]. With the current momentum in the electric car domain such as Tesla ramping up battery
production efforts via its gigafactories and several new electric car manufacturers emerging particularly within
the Chinese market, the price of batteries can be expected to continue decreasing substantially. Competition
among electric car manufacturers will also drive developments in battery technology, so it is reasonable to
expect an accelerated improvement in battery power and energy density. The unit economics will soon look
even more favorable than currently estimated.
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Yearly km travelled by UAV:

dyear = 365 · (1− lw − le ) ·h · (1− ld ) · v (1.5)

Total operating cost per km:

Ctot =2 ·Cbattery +Cenergy +Cinsurance

+Cmaintenance +Clabor +Cairspace
(1.6)

1.2.2. Other operating costs
In order to estimate the cost per km of the other operating cost components, we need to reason about opera-
tional characteristics of the UAV delivery system. Firstly, while the end goal is to achieve full autonomy, there
will be human operators required for supervisory purposes and especially so in the first stages of deployment.
We follow the most conservative estimate in [44] and assume that there will be one operator required for 410
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Figure 1.1: Required battery mass with varying design
range, based on Equation (1.1) (power requirement)

and Equation (1.2) (energy requirement).

Figure 1.2: Illustration of area that could be covered
by a UAV with 16km range given a single charging
hub coinciding with Uber’s EMEA headquarters in

Amsterdam.

UAVs and that their labor will cost 30 EUR per hour. We also refer to estimates made in [44] and assume that the
yearly maintenance cost per UAV will be EUR 428 and that the yearly liability insurance cost will be of EUR 500
per year for each vehicle. The latter estimate is in line with currently available insurance packages [111] and
can be expected to decrease further as UAV use becomes more widespread and more insurance providers enter
this market. While there is no consensus yet on how the low-altitude airspace will be commercially managed
for unmanned traffic, there will most likely be costs associated to operating a vehicle. These costs are required
to make unmanned traffic management a profitable business and may be fixed or vary dynamically to balance
demand and capacity in the airspace. For the purpose of this cost estimation, we refer to the analysis made
in [44] and assume that it will cost an average of EUR 50 cents per hour to operate a small UAV in the urban
low-altitude airspace.

We assume that the delivery system will be operating for 6 hours a day, with 20% downtime to account for
operating inefficiencies and time lost at pick-up and delivery locations or charging stations. Every UAV will
therefore be operating at its cruise speed v for 4.8 hours a day3. In Section 1.2.1 we note that the headwind lim-
itations of the UAV would only allow it to operate in the worst-case scenario on 90% of days in the Amsterdam
area. We therefore assume that the delivery system will be down for 10% of the year due to adverse weather
conditions. This is a conservative assumption, since only in extreme circumstances will intense winds persist
for the entire day and in principle the 6 hour window could be shifted and centered around less windy hours if
weather conditions require it. We assume the system will be down on another 5% of days due to unforeseen cir-
cumstances, such as technical issues, security breaches, or third-party safety concerns like large gatherings or
events within the operating area. With the above assumptions we conclude that a single UAV will travel 74,460
km per year (see Equation (1.5)).

We then arrive to the total operating cost per km via Equation (1.6). Note that all yearly costs in Table 1.1 are
normalized by the distance travelled per year in km, while the hourly costs are normalized by the average ve-
locity of the drone in the 6 hour window in km per hour. This means we assume that the hourly costs (airspace
usage and operator salaries) also apply when the UAV is idle. The battery cost is multiplied by 2 because we
assume that the operator will order twice the required batteries per UAV, in order to ensure a newly charged
battery can always be swapped in at the charging station. In reality the extra batteries required to ensure a
smooth operation will likely be significantly less for a large fleet of UAVs in which the spare batteries can be
shared among the fleet, since modern charging technology allows Li-ion batteries to be charged very quickly4.

Given the above assumptions, the operating costs per vehicle amount to EUR 3.3 cents per km, which is in
line with other estimates in the literature. Matternet estimated it would cost EUR 24 cents to deliver a 2 kg
package over a 10 km distance [129] implying a cost per km of 2.4 cents, including all related infrastructure and
investment costs. Via its Prime Air service, Amazon estimates it can deliver similarly heavy payloads over 16km
for a total cost of EUR 71 cents [179], implying a cost per km of EUR 4.4 cents.

3An alternative way to look at it is that the UAV will be operating at an average speed of 0.8 · v = 40 km/h throughout the daily 6 hour
operating window.

4For comparison, a Tesla Model 3 battery takes approximately one hour to charge fully on a Tesla V3 Supercharger and weighs 480 kg.
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Parameter Definition Value

UAV requirements and characteristics

mp Payload mass 2.2 kg
mv Vehicle mass 2 kg
CL
CD

Lift to drag ratio 3
η Power transfer efficiency 0.5
p Power consumed by electronics 0.1 kW
v Cruise speed 50 km/h
w Maximum headwind 38 km/h
d Range 16 km

Battery, energy and power delivery

Ps Specific power of battery 0.35 kW
kg

Es Specific energy of battery 0.25 kW ·h
kg

c Cost of electricity 0.2 EUR/kW·h
e Charging efficiency 0.8
k Battery cost 163 EUR/kW·h
l Life of battery 500 cycles
mb Battery mass 2.3 kg

Operating assumptions

UAVs per operator 410
Operator hourly salary 30 EUR
Yearly insurance cost per UAV 500 EUR
Yearly maintenance cost per UAV 428 EUR
Operating hours per day 6 hours
Percent days inoperable due to weather 10%
Percent days inoperable due to other factors 5%
Daily downtime percentage 15%

Operating costs per km

Cbat ter y Battery cost per km 0.35 EUR cent
Cpower Electricity cost per km 0.27 EUR cent
Ci nsur ance Insurance cost per km 0.67 EUR cent
Cmai ntenance Maintenance cost per km 0.57 EUR cent
Cl abor Labor cost per km 0.15 EUR cent
Cai r space Airspace usage cost per km 1.00 EUR cent

Tc ost Total cost per km 3.3 EUR cent

Table 1.1: Summary of assumptions and results in the economic viability analysis of Section 1.2.
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1.2.3. Comparison with existing food delivery system
We use the estimated delivery cost per km to draw a high-level economical comparison between a current food
delivery system and a possible UAV delivery system. We select food delivery as the use case for this analysis
because while there is already plenty of consensus in the literature regarding the economic benefits of UAV last-
mile delivery [73], there are few studies about the economics of food delivery via UAVs as compared to existing
systems. We base the analysis on the food delivery provider Uber Eats because it has transparent requirements
for rider fees and its parent company Uber is publicly traded so its financials are available.

It is an official policy of Uber Eats in Amsterdam that riders are guaranteed betweeen EUR 10.0 and 11.3 per
hour for deliveries between 17.00 and 23.00 provided they perform at least one delivery per hour5 [2]. In the
optimistic case that a rider completes 4 orders per hour on average, this brings Eats’ labor costs per delivery to
EUR 2.5 per order. In reality, Eats incurs several additional costs per order, but labor is considered by far the
largest so we use it as a conservative estimate for Eats’ total operating costs. In contrast, assuming the average
distance to be travelled to execute a full order (including traveling to the restaurant and then to the customer)
is of 4 km, the total operating costs associated to delivery via UAV would be a mere EUR 13.2 cents per order,
reducing the cost by approximately 19 times.

We refer to Uber’s annualized latest quarter financial results6 to understand what the impact of implementing
a UAV delivery system could look like for Eats. The analysis is summarized in Table 1.2. An important note
is that for every order Eats only recognizes as revenue the total paid by the customer minus the rider fee and
the share taken by the restaurant. The Eats business is growing rapidly (68% yearly revenue growth) but in a
highly unprofitable manner with an EBITDA margin of -62%. A major issue is the low 17% take rate, due to the
high share going to the restaurant and the high delivery costs to Eats. Assuming Uber Eats continues to serve
the same demand (total bookings and average order value stay constant), operating a UAV delivery system
would allow the company to increase its take rate to 26% and achieve a 54% increase in revenue. With such a
drastic decrease in delivery costs, Uber can also undercut its competition by offering lower delivery fees to the
customer and more favorable unit economics for its restaurant partners. Since in the food delivery space both
customers and restaurants are very price sensitive, this would allow Eats to substantially increase its market
share and grow the top line while still improving its take rate, making the economic benefits far greater than
the estimated revenue growth.

Uber Eats
Q4 2019 annualized financials [5]

Current system UAV delivery

in EUR million
Total bookings 15,921.4 15,921.4
GAAP Revenue 2,671.8 4,116.8
Take rate 17% 26%

in EUR
Average order value7 26.1 26.1
Delivery cost 2.50 0.13
Other costs 19.2 19.2
Take on order 4.4 6.7

Table 1.2: Impact of operating a UAV delivery network for Uber Eats, based on the company’s latest
quarter annualized financials.

1.3. Technical challenges
While the economic and social benefits of UAV delivery are evident, there are several technical challenges to
be overcome in order to make it a reality. Based on the existing literature, we distinguish among three main
challenges: UAV design, localization and navigation, and UAV coordination. The challenges are summarized in
Figure 1.3.

5The exact guaranteed rates vary based on the day of the week and the time window.
6Q4 2019 is the latest quarter for which financials are available at the time of writing.
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Figure 1.3: Main technical challenges for UAV delivery.

UAV design
A successful UAV delivery service hinges on the design of UAVs that are capable of economically transporting
packages across useful distances and can operate in a range of weather conditions. UAV technology is already
very advanced, due to the extensive military applications of UAVs and the recent boom in popularity of other
use cases such as photography, surveillance and even drone racing. Industry is therefore already far ahead
in this domain, with several companies such as Amazon [90], Wing [67] (an Alphabet company), DHL [133]
and Uber Eats [66] unveiling and beginning to operate prototypes of their delivery UAVs. The performance
characteristics of these UAVs (e.g. reported ranges and top speeds) are already strong enough to enable highly
profitable UAV delivery operations, as discussed in Section 1.2.

Localization and navigation
Enabling autonomous UAVs to orient themselves and safely navigate in urban environments is a challenge on
many fronts. Relevant technology is improving rapidly, with research efforts driven by tech companies (e.g.
Google and Amazon) and accelerated by several startups pioneering autonomous drone technology (e.g. Sky-
dio or Exyn). The boom of self-driving cars is also pushing the development of localization and navigation
technologies, such as improvements in computer vision algorithms and SLAM. Computer vision algorithms
are crucial in the package pick-up and delivery phases, where UAVs may need to operate in close proximity
of humans. The same goes for sense and avoid maneuvers, for which UAVs need to be able to reliably detect
unexpected obstacles in real-time. Simultaneous localization and mapping (SLAM) is a technology that en-
ables autonomous agents to perform vision-based mapping and navigation using only on-board sensors. This
allows UAVs to operate in previously unknown environments with limited GPS coverage. While several of the
underlying technologies already exist, further work is required on contingencies and experimental campaigns
should be conducted to assess the safety and robustness of autonomous navigation systems for UAVs in urban
environments.

UAV coordination
In order to effectively serve the demand for deliveries, operators require suitable fleet coordination paradigms.
These should be mostly autonomous and require minimal human supervision in order to bring down the la-
bor cost and be economically advantageous as discussed in Section 1.2. A suitable paradigm should balance
several interconnected problems while considering the performance limitations of the UAVs. The fleet should
be able to perform task allocation, that is assign UAVs to customer orders while minimizing some combination
of system cost parameters. The UAVs need to be able to perform path finding in order to generate feasible and
low-cost trajectories in the environment that allow them to execute delivery tasks while obeying airspace rules,
if any. Multi-agent systems provide a natural way to reason about the UAV coordination problem, because
they provide a framework to model their behavior and interaction given different goals and communication
paradigms. Several of the above subproblems have in fact been studied in isolation in the multi-agent systems
literature. However, there is a lack of integrated approaches that provide a framework applicable to the UAV
coordination problem in the context of deliveries in urban environment. There is a strong need to extend rel-
evant classes of methods and explore algorithmic paradigms which are relevant to this problem. We therefore
consider the UAV coordination problem as the greatest technical inhibitor to the implementation of an eco-
nomically viable UAV delivery network, and select it as the focus of this thesis. In Section 1.4, we will discuss
the latest thinking regarding unmanned aircraft system traffic management (UTM) in order to better under-
stand the setting, regulations and requirements under which UAVs must coordinate. In Section 1.5 we define
the UAV coordination problem which will form the basis of this thesis and identify relevant research areas to be
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explored.

1.4. Managing UAV traffic
In order to enable UAV deliveries in an urban environment, it is important to consider their safe integration
into the airspace. This falls in the domain of unmanned aircraft system traffic management (UTM), which is an
important topic of discussion within the aviation community. UTM is concerned with developing concepts to
ensure UAVs can effectively share the low-altitude airspace to perform different missions. While discussions
on regulatory and technical aspects of future UTM systems are still underway, NASA is already prototyping
its UTM system in collaboration with the FAA and several industry partners. NASA employs a crawl-walk-run
strategy to the technical development of the UTM system, in which the required capabilities are built up in
four tiers targeting different applications, geographical areas and risk levels. Figure 1.4 shows an overview of
the technical capability levels (TCL) considered by NASA in the rollout of their prototype UTM system. Most
functionalities within TCL 4, which relates to beyond visual line of sight (BVLOS) UAS operations in densely
populated urban areas, have already been tested and validated in flight experiments.

Figure 1.4: NASA technical capability levels (TCL). Figure adapted from [79] and dates taken from talk
given by the principal investigator of NASA’s UTM project [87].

1.4.1. Principles of UTM
NASA is deemed one of the thought leaders in UTM, and their vision is shaped by collaborations with govern-
ment, industry and academia alike. It revolves around the fulfillment of three fundamental principles:

1. National and regional security: it is essential to ensure that UAS operations do not threaten national
and regional security. This involves the protection of key ground assets (e.g. the White House in the US
or key landmarks) as well as people, against three types of threats: (1) rogue or unauthenticated systems
that purposely aim to cause damage to key assets, (2) authenticated systems that enter geo-fenced areas
without prior approval or (3) authenticated systems that have been hacked and are being leveraged to
cause harm [124].

2. Safe airspace integration: a fundamental requirement in UTM is that UAS should be able to safely share
the airspace with other UAS and traditional aviation. This is a challenging principle to fulfill because
UAS operators will include commercial entities with often conflicting goals and interests. Smooth, con-
tinuous cooperation between these operators, at much higher frequencies than in commercial aviation,
is required to ensure safe operations in urban areas.

3. Scalable operations for economic growth: the economic value of enabling urban UAS operations is
significant, in particular for deliveries as made clear by the analysis provided in Section 1.2. According
to a report by McKinsey [33], over USD 3 billion in capital has already been allocated to urban UAS
startups. It is imperative to safeguard this value and ensure that the UTM system is able to fulfill the
first two principles while still allowing operators to reap significant economic benefits. It is therefore
important to collaborate with prospective operators in the development of the UTM system, and to
develop tools for operators that incentivize them to use the airspace in a profitable and scalable manner.
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The three principles represent somewhat conflicting goals that the UTM system needs to balance. More strin-
gent safety requirements and security measures may limit the amount of throughput in the system and raise
costs for operators. NASA’s approach is to hold the first principle of ensuring national and regional security
above the other two which motivates, among other things, the fact that public safety and security vehicles are
expected to have priority at all times in the urban airspace. The second and third principles, instead, will be
balanced based on two propositions. The first is that the airspace should be structured in such a way as to al-
low flexibility where possible and structure where necessary. The main advantage of using the urban airspace
is that it provides much more flexibility than ground transportation networks, so in the interest of the third
principle traffic rules should be set only in the case where there is an imbalance between demand and capac-
ity. Section 1.4.4 will elaborate on different airspace structures that have been investigated in the literature.
The second proposition is that performance requirements should be tailored to the specific application and
areas in which the operation will be conducted. Surveillance missions in rural areas, for instance, will not
have the same performance requirements as delivery operations in densely populated urban areas, although
no consensus exists yet as to precisely which requirements these will be.

1.4.2. UTM architecture

Figure 1.5: Latest UTM architecture proposed by NASA and the FAA. Taken from [52].

Figure 1.5 shows the latest proposed UTM architecture by NASA and the FAA [52]. The operations are not
managed by a centralized entity as in ATC, but rather coordinated in a distributed manner by a set of actors with
specific roles and responsibilities. Responsibilities are clearly split between the air navigation service provider
(ANSP) and industry parties, the most important of which are the operator and the UAS service provider (USS).

The ANSP’s role is limited to the provision of real-time airspace constraints to the operator, who is then fully re-
sponsible of conducting its own operations and ensuring compliance with the airspace constraints. Operators
are responsible for sharing flight plans among themselves and ensuring deconfliction through a distributed in-
formation network. Operators may choose to use a third-party USS to support their operations, or may choose
to provide these services themselves (be their own USS). The USS acts as a link between the UTM information
network and the operator, facilitating the flow of information. Information from the ANSP is aggregated with
other information sources, such as other operators’ flight plans, and submitted to the operator in the form
of constraints and notifications. The USS also takes care of broadcasting operational information to relevant
stakeholders, such as the ANSP and other USSs.

It is important to note that, within UTM, deconfliction is expected to happen in a distributed manner and
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there is no provision of separation services such as in ATC. This requires operators and USSs to develop tools
to facilitate coordination among UAVs and enable them to plan conflict-free operations. In order to reap the
most economic benefit, these tools should be automated and require limited human supervision. For on-
demand and high-density applications such as UAV delivery, this is a highly complex problem already for a
single operator as discussed in Section 1.3. The proposed UTM architecture further motivates the importance
of addressing the UAV delivery coordination problem, which is the focus of this thesis.

An added layer of complexity comes from the fact that operators or USSs are not only required to deconflict
their own UAV fleets, but also ensure that there are no conflicts with the plans of other operators. Since op-
erators are self-interested and may even be competing commercial entities, it is challenging to ensure coordi-
nation between them. Within NASA’s UTM architecture, operators are given an order of priority (e.g. public
health or security vehicles have priority over commercial vehicles), and vehicles in the same priority class are
expected to negotiate among each other according to a fixed protocol to resolve conflicts. While the protocol
remains to be designed, NASA has drafted several requirements and desiderata in collaboration with industry
and regulators. The most important are that the protocol should be finite, accepted by all UTM actors and
transparent to operators [135]. A few attempts have been made to develop suitable negotiation protocols, but
work in this area remains very limited. An example is the recent work from researchers at the National Institute
of Informatics (NII) [4], which proposes a sequential bilateral finite-horizon alternating offers protocol that al-
lows operators to share costs of replanning. However, their work lacks formalism and the protocol does not
guarantee pareto optimality given that it is sequential bilateral and does not capture all possible deals avail-
able to the operators. In addition, all operations are assumed to be de-conflicted pre-flight, whereas to enable
on-demand applications such as deliveries the protocol should allow operators to change their plans in-flight.

1.4.3. UAV communication

Figure 1.6: Communication protocol in NASA TCL 4 UTM architecture. Taken from [28].

An aspect of the UTM architecture that is critical to the UAV coordination problem is the communication
paradigm that will exists between operators and their UAV fleet, and that UAVs will use to communicate with
each other. In its TCL 4 architecture (described in section Section 1.4.2), NASA proposes the communication
structure shown in Figure 1.6. Operators maintain a bidirectional communication link with all of the UAVs,
allowing the operator to broadcast important information to the entire fleet. This includes airspace constraints
broadcasted by the ANSP through FIMS and communicated to the operator via its USS, or weather informa-
tion communicated via a supplemental data service provider. The communication link with all UAVs is also
necessary for the operator to obtain telemetry data from its fleet and ensure that none of the airspace con-
straints mandated by the ANSP are violated. Vehicle to vehicle (V2V) communication links will also allow the
UAVs to communicate between each other in order to share useful information about the environment and
possibly resolve conflicts among their plans. However, which technology will be used for communication is
an open question, both for operator-UAV and V2V links. Several options are being investigated in industry
and academia, including direct radio links, satellite communication and cellular networks [28] [188]. Table 1.3
shows an overview of the advantages and disadvantages of the most commonly discussed approaches. The
fifth-generation (5G) cellular networks are particularly promising, since they can support a peak data rate of 10
GB/s with no more than 1-ms round trip latency, which makes them suitable for delay-sensitive and high-rate
UAV communication [28]. However, these services will have limited coverage in remote areas and aerial-ground
interference is considered a major challenge, although promising mitigation approaches have been proposed
[103]. Technology companies such as Verizon [118], Ericsson [126] and Qualcomm [1] consider UAV commu-
nication to be among the most promising use cases of their 5G technology.
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Technology Characteristics Advantages Disadvantages

Direct link
Direct point-to-point
communication via licensed or
unlicensed bands

Simple, low cost
Limited range, low data rate,
vulnerable to interference, non-
scalable

Satellite
Communication and internet access
via satellite

Global coverage
Costly, heavy and energy-consuming
equipment, high latency, large signal
attenuation

Cellular network
Enabling UAV communications
through cellular infrastructure and
technology

Almost ubiquitous accessibility,
cost- effective, superior
performance and scalability

Unavailable in remote areas, and
potential interference with ground
communications

Table 1.3: Comparison of candidate UAV communication technologies. Taken from [28].

1.4.4. The airspace for UTM
The UTM architecture proposed by NASA and the FAA focuses on UAS operations below 400 feet (122m) above
ground level (AGL), across both controlled and uncontrolled airspace. The majority of the operations are ex-
pected to be conducted in uncontrolled (class G) airspace, in which ATC has no responsibility to provide sep-
aration services at any altitude. In controlled airspace (class A,B,C,D,E), ATC normally provides separation
services to both manned and unmanned aircraft, however this does not hold for unmanned aircraft operating
below 400 ft AGL. The airspace for UTM (<400 ft AGL) is therefore fully managed according to the distributed
network described in Section 1.4.2, with limited interaction with ATC in controlled airspace (e.g. in contingency
scenarios). Operators are expected to be fully cooperative and to meet regulatory and performance standards
at all times.

Since operators in UTM are given extensive freedom with respect to the manner in which they manage their
operations, several studies have considered applying different airspace structures and traffic rules to limit the
number of possible conflicts and facilitate the deconfliction process. NASA’s philosophy is that these structures
should only be employed if demand is high enough to make it impractical to safely achieve deconfliction in the
absence of airspace structure (see Section 1.4.1). Metropolis, a research initiative funded by the European
commission, has investigated the effects of several traffic concepts on UTM safety and capacity [163] in urban
settings, namely:

• Full mix: UAVs are allowed to fly any trajectory as long as it is conflict-free and within the constraints
provided by the ANSP and USS.

• Layers: the airspace is split into vertically stacked altitude layers. In each layer, UAVs are only allowed to
fly within a specified heading range. The goal is to limit the relative velocity between UAVs and thereby
reduce the probability of conflicts.

• Zones: the airspace is split horizontally in a manner that captures the layout of the city. Figure 1.7 shows
the Zones concept as described in [163]. The authors use clockwise and counterclockwise concentric
zones that mimic the function of ring roads in cities. Radial zones connect the concentric zones and
facilitate traffic either towards or away from the center. Vehicles are allowed to travel at any altitude,
provided that their heading follows the rules of the zone. Other concepts in the literature include denser
zones for the city center that follow the layout of the streets [146], as shown in Figure 1.8.

• Tubes: provide fixed (bidirectional) routes in the air that are structured to fit only one UAV both vertically
and horizontally. This is the most structured concept in which 4D separation of vehicles is fully enforced
by the traffic rules and no further de-confliction efforts are required on part of the operator. The tubes
concept can be seen as a graph structure, in which the edges represent the tubes and the nodes the
intersections between them. No more than one vehicle is allowed to be on an edge (tube) at the same
time. Tubes are envisioned to be combined with layers in order to form a three-dimensional lattice-like
structure as shown in Figure 1.9. Greater speed is allowed at higher layers and therefore longer tubes are
required.

The above concepts were tested in simulation in a fictitious urban environment of comparable size to Paris, for
different demand levels [163]. Figure 1.10 shows the number of flights simulated for each demand case and the
associated results in terms of number of conflicts and route efficiency. Route efficiency is defined, per flight
segment, as the ratio of the shortest origin-destination distance to the actual distance travelled. The demand
conditions were the same for all concepts, but for the tubes scenario less flights were simulated for all demand
conditions. This is because the tubes concept did not provide enough capacity to handle all flight requests
in any of the demand cases, and therefore a number of operations were rejected. Remarkably, when conflict
resolution between vehicles is allowed, the zones and tubes concepts do not bring down but rather increase
the number of conflicts in the airspace. It appears that the higher traffic densities that these structures gener-
ate outweigh the effect of enforcing reduced relative velocities between vehicles. In addition, these concepts
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substantially reduce route efficiency, in particular the tubes concept for which, in the highest demand case,
route efficiency is 1.5 times worse than for full mix traffic. The layers concept also does not provide measurable
improvement in the number of conflicts compared to the full mix case, but also allows for comparable levels of
route efficiency. This is because UAVs are still allowed to fly their optimal headings and inefficiencies only arise
due to required altitude changes.

Figure 1.7: Zones concept with radials.
Taken from [163]. Figure 1.8: Zones concept for

dense city center. Taken from
[146].

Figure 1.9: Layered tubes concept. Taken
from [163].

Figure 1.10: Results from the Metropolis study showing the number of flights per run (left), number of
conflicts per flight (center) and route efficiency (right) for the full mix, layers, zones and tubes airspace

configuration concepts. Figure taken from [163].

Overall, the results show that the studied airspace configurations do not provide improvements in the number
of conflicts in the airspace and can severely compromise route efficiency, negatively impacting the value opera-
tors (and their customers) can generate from urban UAS operations. It should be noted, however, that there are
other arguments for employing degrees of airspace structure, such as controlling third-party risk and ensuring
public safety. It is therefore to be expected that there will be some limitations as to where UAVs are allowed to
fly. From a capacity and conflict avoidance perspective, though, there seems to be no measurable advantage to
employing any of the tested airspace configurations. In line with the principles of UTM (Section 1.4.1), the full
mix concept should be preferred where possible and plan de-confliction should occur via the operators rather
than be enforced by the airspace structure in order to maximize the value generated from urban UAS opera-
tions. This underlines the importance of developing coordination mechanisms that allow operators’ fleets to
plan conflict-free operations in an autonomous and decentralized manner.

1.5. The UAV delivery coordination problem
Now that we have explored the topic of UAV delivery and the broader notion of unmanned traffic management,
we can elaborate on the general problem formulation that will be the basis of this thesis project, namely the
UAV coordination problem for urban deliveries. As discussed in Section 1.3, multi-agent systems represent a
natural manner to address this problem, so we define the problem within this framework.

We will focus on the pick-up and delivery scenario that appears in the urban delivery as a service operating
model (Section 1.1.2), since from a UAV coordination perspective this is substantially more complex than the
last-mile delivery problem in which there are only a few warehouses (and therefore start locations of delivery
tasks) and these are fixed throughout the problem. Within the urban delivery as a service formulation, demand
for deliveries originates from customers which request goods to be collected from a pickup location (which
we can think of as a store or a restaurant, for instance) and delivered to their home. This constitutes a more
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challenging planning problem because both the number of possible pick-up locations and customer locations
can be very large. While there are several ways to attempt to define this problem, we propose a general high-
level representation in which there are three types of agents 8:

• Operator: The operator is a commercial entity which must use a fleet of UAVs to fulfill a certain demand
for deliveries. Within the shared low-altitude airspace, there may be multiple operators each attempting
to conduct their own operations. The operator is a self-interested agent with the goal of maximizing its
own profit irrespective of the profit of other operators. From any given delivery executed by its UAVs,
the operator incurs a cost proportional to the distance travelled (in Section 1.2 we estimate this to be ≈
0.33 EUR cents per km) and generates revenue which could be a flat fee or a variable fee proportional
to the value of the order, the distance travelled or a combination of these. The exact revenue and cost
rules should be decided based on the planning methods used, but it is important that there exists some
notion of profit and that the operator exhibits the goal of attempting to maximize this profit. Coordina-
tion between the operators, for instance for conflict resolution, should be decentralized. As discussed in
Section 1.4.2, given the amount of operators and levels of density expected for commercial UAV traffic, it
is highly impractical to have a single controlling entity responsible for deconflicting all operations.

• UAV: the UAV performs the actual task execution. It must travel to a pickup location in the environment,
collect a package, and deliver it to a target location. UAVs belonging to the same operator form a fleet.
For realistic UAV properties such as battery life, payload capacity, range and cruise speed, we can refer
to the analysis made in Section 1.2. We determined that a feasible limit on the payload capability of the
delivery UAV is 2.2 kg, so it is reasonable to assume that the UAVs will only be able to carry one package at
a time and will therefore not be able to visit several pickup locations in sequence before visiting a drop-off
location, which is important to note from a planning perspective.

• Customer: The customer agent is the source of demand for deliveries. It should have the capability to
request the delivery of some item with a specific value from a pickup location to its own location via an
operator. In a setting where there are multiple operators and these are connected to the same pickup
location and could therefore both deliver the item requested by the customer, the customer should have
some preference mechanism that allows it to select an operator instead of another. This could be as
simple as selecting the operator that is able to deliver the item with the lowest cost, or include more
complex factors such as expectations regarding the operator’s reliability or timeliness.

There are several factors that make this problem more challenging than many similar planning problems ex-
plored in the multi-agent systems literature. Firstly the solution should be able to operate in a lifelong manner.
That is, it needs to continuously accept demand for deliveries in a rolling fashion and therefore both the envi-
ronment and the agents’ goals change dynamically throughout the problem. Unlike traditional warehouse-type
robot coordination problems, we do not envision there being fixed rest locations for each UAV agent and there-
fore the agents are in principle not required to follow simple rule-based approaches after the execution of a
task. The problem is by nature much less structured since the environments are larger and there is more room
to strategize. One could imagine, for instance, that hovering above a high-demand area would be a better strat-
egy than heading to a charging station for a delivery UAV, given the right battery life and demand conditions.
There may also be uncertainty regarding the timeliness of items at pickup locations, for instance a restaurant
may take longer than declared to prepare a food order. This setting is therefore a challenging and worthwhile
one to investigate, because of its importance in enabling UAV delivery and because it poses novel challenges in
multi-agent coordination.

It is important to note that there are effectively two layers to this coordination problem, namely single-operator
coordination and multi-operator coordination. Single-operator coordination concerns how a single operator’s
fleet should behave in order to most effectively serve the demand for deliveries and maximize profit, and is
therefore a cooperative problem. Multi-operator coordination includes multiple self-interested operators who
need to conduct their operations in a conflict-free manner, and therefore includes a competitive layer since
the fleets are competing with each other. The challenge in the multi-operator case is to develop efficient and
fair negotiation protocols that allow self-interested operators to deconflict their operations in real time, for use
within the UTM architecture as discussed in Section 1.4.2. The two layers are therefore complementary but
different in nature. In this project, we will focus on the single-operator (cooperative) coordination case, since
it is deemed more urgent to enable UAV delivery. It is of paramount importance to provide coordination tools
for operators to incentivize them to make economical use of UTM services. The availability of such tools will
also allow more accurate modeling of delivery operations and render the evaluation of negotiation protocols

8Note that this is a high-level formulation only, intended to understand which literature to investigate. A more detailed representation of
the problem could involve more types of agents or different characteristics. For instance, stores or restaurants could be represented as
agents if we want to incorporate characteristics such as preparation times, delays, etc.
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for deconfliction between multiple operators easier. The latter is a natural problem to look at once coordina-
tion tools for the operators have been developed, and is therefore left as a possible extension to the project or
direction for future work.

1.5.1. Relevant research areas
Based on the above problem formulation, we identify two highly relevant areas of the multi-agent systems
literature.

• Chapter 2 - Multi-agent task allocation: An important requirement of the UAV fleet is that it should
be able to perform task allocation, allocating different UAVs to pickup and delivery tasks in an effective
manner and in real-time as the tasks enter the problem, which is highly challenging. The task allocation
routine should also be able to operate in dynamic environments, allow for flexibility in the team objective
and efficient replanning as new information regarding the environment or the tasks is discovered by the
fleet. We investigate several techniques applicable to this problem, spanning a number of different fields
such as operations research, game theory and distributed artificial intelligence.

• Chapter 3 - Multi-agent path finding: In order to effectively carry out pickup and delivery tasks, the
UAVs need to efficiently plan low-cost paths to the pickup and delivery locations while avoiding con-
flicts with other agents and obstacles in the environment. It is therefore essential to review methods tai-
lored to this task. Several useful techniques for multi-agent path finding, which is a well-known NP-hard
problem in distributed artificial intelligence, exist in the multi-agent systems literature. These methods
are concerned with finding conflict-free paths for a set of agents which typically attempt to minimize
a system-level cost function. The majority of these techniques are designed for small, static and dense
environments such as warehouses, but several have been successfully extended to larger and more chal-
lenging environments and applied to problems involving UAVs.



2
Multi-agent task allocation

Task allocation is a well-studied problem which consists in feasibly assigning a set of tasks to a team of agents
while attempting to maximize a global objective function that is representative of system performance [43].
In this chapter, we review a number of techniques applicable to the task allocation problem and discuss the
most applicable ones for the UAV delivery coordination case in more detail. We begin by providing a taxonom-
ical overview of multi-agent task allocation (MATA) problems in Section 2.1 and in Section 2.2 we provide an
overview of relevant classes of MATA solvers. In Section 2.3 and Section 2.4 we discuss prominent approaches
in each class. We then perform a comparative evaluation of the solvers in Section 2.5 and identify the most
suitable class of approaches for the UAV delivery coordination problem, which is discussed in further detail in
the rest of this chapter.

2.1. Taxonomy of task allocation problems
The task allocation problem is ubiquitous in a number of real-life applications and a large amount of variants to
the problem have therefore been studied. Gerkey [58] proposes the following three axes to classify multi-agent
task allocation problems:

• single-task agents (ST) vs multi-task agents (MT): in ST problems, each agent is only able to execute a
single task at a time, whereas in MT problems, agents are able to execute more tasks at once.

• single-agent tasks (SA) vs multi-agent tasks (MA): in SA problems, each task is to be executed by a single
agent whereas in MA tasks can require multiple agents in order to be executed.

• instantaneous assignment (IA) vs time-extended assignment (TA): the IA problem formulation only
allows agents to reason about a single task at a time and the assignment is therefore instantaneous. In TA
problems, agents are allowed to plan ahead and consider future allocations, either because information
about future tasks is available or because they have the capability to reason probabilistically about which
tasks will enter the system in the future.

Given the payload considerations discussed in Section 1.2, we assume that a UAV can only carry one package
at a time, and the problem is therefore characterized by single-task agents (ST). It also safe to assume that, in
flight, a single package should be carried by no more than one UAV. However, recent concepts of operations
have introduced the idea of multi-modal deliveries, examples of which include the use of multiple UAVs with
different safety specifications to sequentially carry the same package across different areas until its destination,
or the combined use of UAVs and delivery trucks [176]. In these cases, our SA/MA classification of the prob-
lems hinges on the manner in which a task is defined. While multi-modal problems can be formulated in a MA
manner, they can also be formulated in a SA manner by using a more granular definition of task which simply
involves the act of carrying the package across a set path, without necessarily delivering it to the end customer.
The delivery of an item to the customer would then involve the successful completion of multiple of these more
granularly defined tasks. Along Gerkey’s temporal axis, both the IA and TA formulations could be applicable
to the UAV delivery problem depending on the objective we are considering. Suppose we are concerned with
allocating delivery tasks in such a way as to minimize the time the customer needs to wait for his order and that
customers are prioritized based on the time at which they submit their order. That is, customers who order first
are to be served first. In this case, we could simply queue the tasks based on the order in which they entered
the system and allocate a single task at a time to the most suitable UAV at the time of allocation. Instantaneous
assignment (IA) would be a suitable framework for this objective. If, however, we are interested in addressing
more complex and perhaps more realistic objectives, such as minimizing the total distance travelled under de-
livery time constraints for specific customers, then UAVs need the ability to plan across sequences of tasks and
maintain a schedule. For this case, a time-extended assignment formulation is most suitable (TA). We there-
fore focus on solution techniques that apply to the ST-SA/MA-IA/TA variants of the task allocation problem,
and use these notions to steer our analysis of the solvers.
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2.2. Overview of solution techniques
Since the multi-agent task allocation problem is present in a variety of settings, the available solution tech-
niques find their roots in a number of different disciplines, such as operations research, artificial intelligence,
multi-agent systems and game theory. In Figure 2.1 we map the most prominent classes of solution techniques
for MATA problems including examples of algorithms from each class, and categorize them in terms of the
degree of centralization in the planning and control dimensions. Planning refers to the process of comput-
ing a solution to the task allocation problem. In centralized planning approaches the entire computation is
performed by a single entity and therefore runs on a single machine, whereas in distributed approaches each
agent solves a part of the planning problem locally. The control axis here refers to the degree of centralization
in decision-making for task allocation. In techniques featuring centralized control, a single entity decides on
the allocation for the entire system and broadcasts it to all agents. Under a distributed control architecture,
each agent makes a part of the decision regarding the system-wide allocation, for instance which tasks to as-
sign to itself. The global allocation therefore emerges from a series of local decisions. We elaborate further on
the characteristics of these approaches and provide an overview of the state of the art in all relevant classes
of solvers, discussing centralized planning techniques in Section 2.3 and distributed planning techniques in
Section 2.4.

Figure 2.1: Overview of main classes of MATA solution techniques.

2.3. Centralized planning techniques
These techniques require a centralized planner to compute an allocation that maximizes the system objec-
tive, and broadcast such allocation to all agents to allow them to adjust their local plans accordingly. They
therefore impose a centralized control paradigm on the system, in which every agent needs to be able to com-
municate with the central planner. While centralizing the planning procedure leads to optimality guarantees
for most problems, it also leads to low robustness since the centralized controller represents a single point of
failure in the mission. Scalability is also a point of concern, since these methods are computationally intensive
and optimal solutions may be intractable for large problems, which motivates the use of approximate solu-
tion methods instead. Among centralized planning techniques, we distinguish between classical optimization
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approaches from the operations research literature and evolutionary and swarm algorithms which have more
recently emerged as alternatives to solve discrete optimization problems approximately.

2.3.1. Classical optimization approaches
In the one-shot ST-SA-IA case, multi-agent task allocation can be posed as an Optimal Assignment Problem
(OAP), which is a well studied problem in operations research. Suppose there are r robots and t tasks, and that
the centralized planner can produce system-level utility estimates for each of the rt possible task-robot assign-
ments. Then the planner can determine the optimal outcome in O(r t 2) time through an LP-based matching
algorithm such as the Kuhn-Munkres Hungarian algorithm [88]. Liu et al. provide an improved version of the
Hungarian algorithm that accounts for uncertainties in the assignments’ utility estimates and use it to solve
ST-SA-IA multi-agent routing problems with localization error [94]. Several other variants of the Hungarian
algorithm aimed at solving more realistic instances of assignment problems have been proposed, such as a
dynamic variant which can efficiently recalculate optimal assignments when a subset of robot-task utilities
changes [107]. Roldan et al. deviate from the pure system-level view and formulate a task allocation problem
for competing teams of UAVs as a centralized stable marriage problem and use the Gale-Shapley algorithm to
solve it [138]. While approaches based on matching algorithms have been shown to scale well to large amounts
of robots and task, they only solve one-shot IA cases and are not easily generalizable to the lifelong 1 or TA
settings. They also rely on accurate estimates of system utility for every robot-task combination, which may be
unavailable or computationally expensive to produce.

Examples of problems in the operations research literature that tackle more general and relevant variations of
the task allocation problem include dynamic formulations of the NP-hard Travelling Salesman Problem (TSP)
and its generalization, the Vehicle Routing Problem (VRP). Several variants of these combinatorial optimization
problems have been addressed in the operations research literature, using exact methods such as Branch-and-
Bound, Constraint Satisfaction and Dynamic Programming [120]. However, solutions to large problems are
intractable and only optimal in the objective function, which is often based on approximations of the under-
lying model. A common example in routing problems is the use of heuristics to estimate the length of the
optimal path to a given target. This realization has led to extensive work on solving the VRP using approximate
instead of exact methods. In particular, a recent branch of the literature has introduced variants of the VRP
aimed specifically at addressing challenges in UAV delivery, such as the TSP with sidekick and the VRP with
Drone (VRPD), in which a fleet of trucks equipped with UAVs needs to deliver packages to customers [83] [7].
Schermer et al. solve the VRPD with a two-stage-heuristic [145], which at first ignores the UAVs and creates effi-
cient VRP tours for the trucks, and in a second stage inserts the UAVs into the existing tours. A similar heuristic
approach is proposed by de Freitas et al. [37] who first generate solutions for the fleet of trucks, and then apply
a general variable neighborhood search (GVNS) procedure to incorporate the UAVs into the VRP. Ulmer et al.
instead address the situation in which either a UAV or a truck need to execute a delivery, and propose a policy
function approximation based on the geographical clustering of tasks to decide wheter to dispatch a UAV or a
truck [176]. Collectively, centralized solvers for routing problems involving UAVs show that these can provide
measurable benefits to traditional delivery vehicles such as trucks. They are also useful for feasibility stud-
ies and fleet sizing efforts since they can help understand the operational conditions in which UAVs provide
the most benefit [174]. However, they are hardly suitable as online UAV coordination paradigms. They suffer
from poor scalability, are computationally intractable for large problems and require the central controller to
constantly communicate plans with the entire fleet.

2.3.2. Evolutionary and swarm algorithms
Efforts to solve TSP and VRP problems approximately have also relied on evolutionary and swarm algorithms
to reduce the computational time. Ha et al. [62] introduce a novel Hybrid Genetic Algorithm (HGA) to solve
the VRPD problem under both the total operational cost and total completion time objectives. The HGA in-
corporates crossover, local search operators and an adaptive penalization mechanism tailored specifically to
the VRPD problem that lead to substantially higher solution quality than other variants of the GA. A series of
other studies develop tailored GA variants to account for factors such as routing under varying wind condi-
tions [98]. Jiang et al. solve an offline VRP with time windows (VRPTW) in which a swarm of UAVs needs to
serve customers within pre-defined intervals using a Particle Swarm Optimization approach, which is shown
to converge faster and lead to lower cost solutions than a GA for the same problem [76]. The Ant Task Alloca-
tion (ATA) algorithm proposed by Du et al. represents one of the few attempts to develop a swarm optimization
approach to solve more general MATA instances, which is a variant of the Ant Colony Optimization algorithm

1One exception to this is CENTRAL [99], a lifelong task allocation and path finding solver that performs optimal task assignment via the
Hungarian algorithm every time a task enters the system.
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that uses the task selection model of honeybees [46]. However, despite the fact that testing is limited to simple
problems in very small grid-like environments, the algorithm still requires several thousands of iterations for
the allocation to stabilize. While some techniques within this class provide improvements in computational
time compared to exact solvers, most of them are still deemed computationally intractable for real-time use in
dynamic problems such as UAV delivery coordination. Moreover, they inherit the aforementioned communi-
cation and robustness issues that are common to all centralized planning approaches.

2.4. Distributed planning techniques
With a distributed planning architecture, the computational burden of solving the planning problem is shared
among the agents. Each agent uses its own computational resources and memory to solve a part of the planning
problem, and agents may have access to communication channels to share relevant information throughout
the process. Agents’ plans are typically coupled, and decisions are based on local information, so among the
main challenges of distributed planning is to design protocols that capture this coupling and possible incon-
sistencies in situational awareness in such a way as to lead to good system performance. Classes of distributed
planning techniques differ in the protocols they impose on the agents and in the extent to which the planning
workload is distributed. Compared to centralized approaches, these classes of techniques are much more ro-
bust and scalable since they can operate under different network structures and can avoid the presence of a
single point of failure in the planning process 2. However, it is clearly more difficult to guarantee optimality,
particularly when limited information can be shared and real-time performance is important. Among dis-
tributed planning techniques suitable for the MATA problem, we distinguish between auction mechanisms,
game theoretic approaches and other negotiation-based approaches.

2.4.1. Auction mechanisms
Auctions are promising mechanisms to solve the task allocation problem while conducting the vast majority of
the computation in a distributed manner [84]. They have been studied extensively in the artificial intelligence
and multi-agent systems literature since the early work on distributed coordination via contract nets [155], and
have been applied to several allocation problems. Examples include the allocation of tasks to fire brigades and
ambulance teams in RoboCup Rescue simulations [108], computational resources and workflows to CPUs in
grid computing [132], search locations to exploration rovers [173], and targets to UAVs in a variety of routing
problems [30]. Auction-based task allocation mechanisms are computationally efficient and suitable for online
use in dynamic problems, as demonstrated by several hardware tests [78]. They also typically scale well to
problems with large robot teams and are flexible to a variety of team objectives.

An important note is that auction mechanisms used for task allocation are usually cooperative. The most com-
mon formulation is that agents bid an estimate of their cost of executing a task and the agent with the lowest
bid is assigned the task. The problem is in establishing bidding rules and task scheduling paradigms local to
the agents that lead to the optimization of the desired system objective. Several of the issues and challenges
that arise in competitive auction settings studied in the economics literature, such as collusion and other forms
of strategic behavior, do not appear in the multi-agent coordination case. However, several notions from the
economic theory of auctions can still prove useful in a cooperative setting. The concept of individual rational-
ity is a good example. In a commercial setting such as a UAV delivery network where the operation needs to
be profitable, it may be necessary for UAVs to reason about the profitability of tasks. Individual rationality can
then be exploited to ensure that UAVs only execute tasks which are profitable for them and therefore for the
network.

In most auction variants, the agents eligible for the tasks act as bidders and there is an auctioneer which is re-
sponsible for determining a winner and allocating the tasks. The role of the auctioneer may be a central agent
or may be varied throughout the problem, for instance through the passing of a token. A popular class of auc-
tions in this category are Sequential Single Item (SSI) auctions, in which tasks are allocated in multiple rounds
[84]. A vast amount of SSI variants with different properties and performance guarantees exist in the literature,
accounting for factors such as task swaps [190], rollouts [191] and regret clearing [86]. A recent mechanism
called TeSSI [112] extends the SSI auction to efficiently handle temporally constrained tasks, allowing indi-
vidual agents to plan across sequences of tasks with time windows by representing their schedule as a simple
temporal network (STN). Combinatorial auctions have also been used to assign targets to teams of exploration
robots [14]. In contrast to the SSI case, tasks here are auctioned all at once and therefore all synergies between
tasks are accounted for, guaranteeing optimality. However, combinatorial auctions are not applicable to large

2Auctions that require an auctioneer can be seen as an exception, given that the auctioneer is essential to the success of the planning
procedure. However, in most cases the role of the auctioneer can be varied dynamically throughout the problem to avoid the presence of
a single point of failure throughout the mission.
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online problems because the computational cost and communication overhead is exponential in the number
of tasks [84]. Sequential single cluster auctions [68] [69] are a promising middle ground, as they allow agents to
bid on subsets of tasks. When the clusters are intelligently determined, most of the synergies among tasks can
be captured while reducing the communication overhead by several orders of magnitude.

In the presence of communication constraints, such as limited range or bandwidth, it may be impractical or
impossible for all agents to communicate with the auctioneer. A common solution to this is to sacrifice system
performance and conduct the auction only within the neighborhood of the auctioneer or among a select group
of agents. Consensus-based auctions, instead, use ideas from the literature on distributed consensus algorithms
[113] to eliminate the need for an auctioneer entirely and allow agents to converge on a conflict-free assign-
ment independently. If the agents’ task evaluation function is defined appropriately, consensus-based auc-
tions provide convergence guarantees and provably good performance bounds under realistic network struc-
tures. The Consensus Based Auction Algorithm (CBAA) and the Consensus Based Bundle Algorithm (CBBA),
its multi-assignment extension, were first introduced by Brunet et al. [20] to solve static allocation problems
and represent the algorithmic basis for this class of auctions. Several extensions to the CBBA have been devel-
oped to make it applicable to a wider range of allocation problems. Most notable extensions include improved
agent evaluation functions to handle time-sensitive tasks [120], the inclusion of relay tasks to prevent network
disconnects [120] and the notion of partial replanning to improve online performance [22].

2.4.2. Game theoretic approaches
An alternative framework to address the task allocation problem is by formulating it as a game between agents
and their neighbors and using methods from game theory to solve it. Agents are treated as independent
decision-makers that attempt to maximize their own utility given their local knowledge and expectations of
other agents and the environment. While game theory has been applied extensively to non-cooperative set-
tings such as multi-agent patrolling [70], in recent work it has also been applied to cooperative MATA settings
such as surveillance [38] and mapping [137] missions. The rationale is that by carefully designing protocols
and agent-specific utility functions that align with the global system objective, cooperation can be enforced in
a distributed manner and with relatively little communication overhead.

A number of learning techniques from the literature on multi-player games have been adopted as negotiation
mechanisms for task allocation problems. These include variants of fictitious play and regret matching [10] in
which agents do not have knowledge about their peers’ utility functions, in order to capture the lack of global
situational awareness that characterizes MATA problems where agents do not necessarily have the same infor-
mation about the environment or even the tasks to be allocated. The main issue with these approaches is that,
while they guarantee convergence to a stable and conflict-free allocation (an allocation which in game theoret-
ical terms constitutes a Pure Strategy Nash Equilibrium (PNSE)), they provide no performance guarantees and
are empirically shown to produce allocations which are far from optimal. An algorithm that maintains the same
convergence properties, but also provides probabilistic performance guarantees is Selective Spatial Adaptive
Play (SSAP) [10], which can be tuned to generate near-optimal allocations at the expense of long conversion
times. However, the SSAP approach is only suitable for one-shot SA problems, and was shown to require over
1,500 negotiation steps to converge to a provably good allocation in a large-scale assignment problem, which
constitutes an impractically large communication overhead to deploy it in an online setting. Chapman et al.
address the dynamic TA problem by formulating it as a Markov game, approximating it as a series of static
potential games to ensure the tractability of equilibria, and then solving these games using the Distributed
Stochastic Algorithm [29]. Empirical results for a search and rescue scenario are promising, but there are no
performance guarantees and highly suboptimal allocations are achieved in cases with low communication
ranges.

The recent work of Roldan et al. proposes a distributed competitive and a hybrid cooperative approach to
solve one-shot allocation problems in swarm exploration and mapping [137]. In the competitive approach, the
problem is formulated as a set of games between agents and their neighbors in which the agents’ strategies
are their task selections and their payoffs consist of the negative of their cost of performing the task. Agents
search the best Nash Equilibrium (NE) and select that as the allocation for the neighborhood, with the global
allocation simply consisting of the union over all neighborhoods. The major drawback of this approach is that
it requires agents to have knowledge about each others’ utility functions in order to ensure convergence to
the same NE and therefore a conflict-free assignment, which can be highly impractical in an online setting
since agents would need to know their peers’ schedules with no uncertainty. In the cooperative algorithm,
each neighborhood consists of a leader and several citizen agents, which express their preferred allocation for
all tasks in the neighborhood (also specifying which task each of the neighbors should be allocated) and cast
them as votes to the leader who determines the allocation via a Borda counting rule. This approach suffers



2.5. Comparison of solver classes 42

the same limitation as the competitive algorithm, in that every agent needs to be aware of its neighbors’ utility
functions, while also requiring that all agents be connected to the leader.

2.4.3. Other negotiation-based approaches
Other techniques from the multi-agent negotiation literature have also been applied to the task allocation
problem. Constrained coalition formation algorithms, first introduced by Shehory and Kraus [151], have been
applied extensively to problems in which different capabilities and therefore multiple agents are required to
complete a task (problems with MA tasks according to the taxonomy in Section 2.1) [127] [128]. In recent
work, Capezzuto et al. propose an anytime coalition formation framework for temporally constrained MA
tasks which, despite its lack of performance guarantees, is empirically shown to be superior to previous ap-
proaches in this class in terms of both solution quality and efficiency in a range of one-shot search and rescue
simulations. Variants of the Contract Net Protocol (CNP) [155] have also been applied to relatively unstructured
MATA problems. The CNP is a particularly useful framework for situations in which task discovery occurs in
a distributed manner and in which tasks are complex and may require specific capabilities or multiple, differ-
entiated roles [162] [189]. Sujit et al. propose an alternative negotiation-based approach based on a variant
of Rubinstein’s alternating offers protocol [140] to perform distributed target allocation in a cooperative UAV
search and attack mission with connectivity restrictions. Within their neighborhood, agents make proposals
regarding the tasks they would like allocated to themselves and proceed to execute the tasks if they receive
consensus from their neighbors, who will reject proposals if they would generate higher utility from perform-
ing the task themselves. Note that this process is similar to the consensus phase in CBBA, with the exception
that consensus is only sought within the agents’ neighborhoods and not across the entire fleet, which reduces
the communication overhead but leads to higher cost allocations. Other variants of the alternating offers pro-
tocol have been adopted to solve task allocation problems involving heterogeneous UAV fleets in domains such
as aerial mapping [139] and surveillance [177].

2.5. Comparison of solver classes
We now make a general comparison between the relevant solver classes, based on the strengths and weaknesses
of state of the art approaches already discussed in Section 2.3 and Section 2.4. In order to identify the class
of techniques that is most suitable for the UAV delivery coordination problem, each class is scored on the
following equally weighted criteria, which are given a score from 1 to 3 (roughly equivalent to "Low", "Medium"
and "High" in comparative terms):

• Robustness: relates to the ability of the planning paradigm to cope with uncertainty, constraints and
possible sources of failure that characterize real-life missions. Examples include faulty communication
channels or failure of a UAV.

• Scalability: measures the extent to which the approach is able to retain its computational efficiency as
the number of agents, tasks, and the hardness of the constraints increases.

• Solution quality: reflects the overall cost of the allocation typically obtained by algorithms in the class.
• Computational efficiency: reflects the running time required for the algorithms to return a conflict-free

solution, which is related to the time complexity of the approach and the degree of parallelization that it
allows.

• Flexibility: is a measure of how simple it is to modify the planning framework to address varying team
objectives, agent characteristics or task constraints.

• Suitability for online use: measures the ability of the approach to cope in real-time with the discovery of
new tasks and to handle changes in the environment or in the characteristics of already allocated tasks,
such as changing start times or pickup locations.

• Maturity: reflects the extent to which the techniques have been tested in the context of UAV coordina-
tion. For this criterion, the scores have the following meaning: (1) simulation testing limited to small (no
more than 30 agents or tasks) or offline problems and few application areas, (2) extensive simulation test-
ing including large-scale online problems across several application areas, (3) meets the requirements of
2 and has additionally been implemented and tested on real hardware.

Based on the analysis, auction mechanisms are deemed the most suitable task allocation framework for the
UAV delivery coordination problem. They exhibit strong robustness since they can be designed to operate un-
der different network structures, and are highly flexible in the team objective since the agents’ bidding rule can
be varied without changing the structure of the allocation mechanism. Auctions also offer a tractable manner
to control the tradeoff between solution quality and efficiency. Enhancements such as task swaps or global re-
planning procedures can be leveraged to increase the allocation quality at the expense of higher communica-
tion overhead, and planning problems on the agent level can be solved to different degrees of optimality. In the
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Centralized planning Distributed planning
Classical optimization

approaches
Evolutionary and
swarm algorithms

Auction
mechanisms

Game theoretic
approaches

Other negotiation
-based approaches

Robustness 1 1 3 3 3
Scalability 1 2 3 3 3
Solution quality 3 2 2 2 2
Computational
efficiency

1 1 3 2 2

Flexibility 2 2 3 2 2
Suitability for
online use

1 1 3 2 3

Maturity 3 2 3 1 3
Total 12 11 20 15 18

Table 2.1: Comparative evaluation of relevant MATA solver classes. For a description of state of the art
solvers in each class see Section 2.3 and Section 2.4.

UAV delivery case, for instance, optimizing a single agent’s schedule involves solving a TSP, which can be done
optimally or in a heuristic manner. They are also suitable for online use and have been applied extensively
to target assignment in dynamic multi-agent routing problems. Several state of the art auction approaches
have been used in problems involving UAV fleets and tested extensively both in simulation and on hardware
in indoor environments with promising results. Negotiation-based approaches are a close second to auction
mechanisms, since they exhibit similarly favorable robustness and scalability properties and are also highly
suitable for online use. In particular, we recognize the value of the alternating offers protocol as a tool to align
the agents’ incentives given limited information about each others’ plans. We deem it a valuable paradigm
to possibly extend an auction mechanism to allow for peer-to-peer task exchanges, and therefore discuss its
theoretical foundations in Appendix A.

The focus of the rest of this chapter is on investigating further auction mechanisms for cooperative task allo-
cation problems. We elaborate on state of the art variants of the SSI auction (Section 2.6), and its temporal
extension TeSSI (Section 2.7). We do not discuss pure combinatorial auctions due to the aforementioned scal-
ability limitations, but rather focus on sequential single cluster auctions (Section 2.8) which are vastly more
efficient and can guarantee similar performance with appropriate clustering procedures. Finally, we discuss
consensus-based auctions (Section 2.9) which leverage a distributed consensus phase to remove the need for
an auctioneer entirely. This is a powerful representation because it is suitable for problems with communica-
tion range constraints, which can arise if global (e.g. cellular) communication is lost or unavailable and UAVs
need to communicate via direct links.

2.6. Sequential single-item auctions (SSI)
In Sequential Single Item (SSI) auctions, targets are allocated independently in multiple rounds. In each round,
the agents place bids on the targets that are yet to be allocated, and the auctioneer then allocates a single target
to a single winning agent [84]. SSI auctions have been applied extensively to the multi-agent task allocation
problem, and their efficiency has been demonstrated experimentally in early studies [42]. Lagoudakis et al.
[89], however, were the first to conduct a theoretical analysis of the performance of SSI auctions for routing
problems with varying team objectives. More specifically, they define multi-agent routing as an allocation
problem that consists of a set of agents A = {a1, ..., an}, a set of target locations T = {t1, ..., tm} and a strictly
positive and symmetric3 cost function c(i , j ) that specifies the cost of travelling between any two locations i
and j . The goal is to find an assignment of agents to target locations that minimizes some team objective. Let
P = {P1, ..,Pn} be a partition of T that specifies the allocation at the end of the auction, in which Pi is the set of
targets allocated to agent ai . Lagoudakis et al. study the following simple team objectives [89]:

• MINISUM: minP
∑

j APC(a j ,P j ). Where APC(r j ,P j ) is the minimum agent path cost incurred by agent ai

by traveling to all target locations in P j , starting from its current location. The objective is therefore to
minimize the sum of path costs across all agents4.

• MINIMAX: minP max j APC(a j ,P j ). The objective here is to minimize the largest among all the agents’
path costs5.

3The symmetry assumption is common in routing problems, and implies that the cost of travelling among any two locations in the envi-
ronment does not depend on the direction of travel. In real-life environments for UAV routing, however, we may encounter factors that
invalidate this assumption, such as wind.

4In the path finding literature, this is commonly known as the sum-of-costs objective.
5In the path finding literature, this is commonly known as the makespan objective.
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Bidding rule Team objective
MINISUM MINIMAX MINIAVE

lower upper lower upper lower upper
BID-MINISUM 1.5 2 n 2n m+1

2 2m
BID-MINIMAX n 2n n+1

2 2n Ω(m1/3) 2m
BID-MINIAVE m 2m2 n+1

2 2m2n Ω(m1/3) 2m2

Table 2.2: Bounds on the performance ratio obtained when using an SSI auction to solve the allocation problem in
multi-agent routing with n agents and m targets, with different team objectives and bidding rules. Results assume

the optimal bid for each rule is approximated using the cheapest insertion heuristic. Table adapted from [89].

• MINIAVE: minP
1
m

∑
j CTPC(r j ,P j ). Where CTPC(r j ,P j ) is the minimum cumulative target path cost of

all locations in P j , assuming agent a j starts from its current location and visits all targets in P j . The
objective is to minimize the average target path cost across all the agents’ targets.

The following generic bidding rule can be applied to translate the above team objectives into suitable agent
bids [89]. Let S = {S1, ...,Sn} be the allocation at the beginning of some round r in the auction, where Si holds
the subset of tasks allocated to agent ai . Let us now begin the round and put task t on auction. Each agent ai

should bid the marginal increase in team objective that would arise if he was allocated task t . We are therefore
proceeding in a hill-climbing fashion, in which we attempt to allocate each task to the agent that generates the
lowest disruption to the team objective. This will result in a high quality, but not necessarily optimal allocation
given that we cannot take into account all synergies between tasks due to the sequential nature of the auction.
Applying this bidding logic results in the following bidding rules for the above three objectives:

• BID-MINISUM: APC(ai ,Si
⋃

t )−APC(ai ,Si ). Agent ai should bid the difference in the path cost that he
incurs in adding task t to its plan.

• BID-MINIMAX: APC(ai ,Si
⋃

t ). Agent ai should simply bid his new path cost. It is not necessary to
subtract the maximum agent path cost before the allocation of t . Since it is a system-level variable and is
the same for all agents, it would be a constant subtracted from all bids, which does not affect the winner
determination6.

• BID-MINIAVE: CTPC(ai ,Si
⋃

t )−CTPC(ai ,Si ). Agent ai should bid the increase in the cumulative tar-
get path cost that he incurs if task t is allocated to him. The 1/m factor can be dropped since it multiplies
all bids and therefore does not affect the winner determination7.

Every agent ai represents its plan as a path through all targets in Si . Computing APC and CTPC requires de-
termining an optimal path through the targets and therefore solving a TSP, which is NP-hard. Lagoudakis et al.
[89] suggest to use a heuristic approach to determine such a path. They propose the cheapest insertion heuris-
tic, whereby agent ai checks all possible insertions of the new task t into its original path, and then chooses
the insertion that leads to the lowest cost increase. Using this heuristic, the authors provide a theoretical as-
sessment of the performance achieved by using the above bidding rules for the three different team objectives.
The results are summarized in Table 2.2, which shows the bounds on the ratio between the cost of the allo-
cation obtained via the different bidding rules and the cost of the optimal allocation. For all objectives, there
are tractable performance guarantees. The bounds on the MINIMAX and MINIAVE scale with the number of
robots and the number of targets respectively, whereas the MINISUM objective addressed via BID-MINISUM
leads to performance bounds which do not vary with the size of the allocation problem. In principle, the upper
bounds in Table 2.2 still hold for any method of approximating the optimal path through all targets as part of
the bid evaluation procedure, as long as the approximation is no worse than that generated via the cheapest
insertion heuristic.

Several improvements to the basic SSI auction have been made to generate higher quality solutions while still
retaining a degree of efficiency suitable for online task allocation. Among the most important improvements
are rollouts and the K-swaps procedure, the latter being a framework that was first formalized in the context of
SSI auctions but is in principle applicable to any kind of sequential or online task allocation mechanism.

6This shows a key difference with auctions in the economics literature, in which the price paid is important. Here, we are in a fully cooper-
ative setting and are only concerned with the winner determination. Subtracting a constant from all bids or scaling all bids by a constant
factor makes no difference in the allocation.

7See footnote 6.
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2.6.1. SSI with rollouts
Zheng et al. [191] are the first to introduce the idea of rollouts8 in SSI auctions, which modify the standard SSI
auction as follows. Let us suppose a task t is being auctioned and that again the vector S = {S1, ...,Sn} contains
the tasks already allocated to the agents and is known to all agents before the round begins. Each agent behaves
according to the specified bidding rule, but considering a complete rather than a partial target allocation. In
computing its bid, agent ai considers the allocation that would arise if it was allocated t in addition to all
targets in Si , and then completes this allocation by the same hill-climbing logic to arrive at the complete target
allocation (of all m targets) that would follow if it was allocated task t . The agent then uses the cost of this
resulting complete allocation to compute its bid for task t . We are therefore allowing the agents to reason about
the consequences of the allocation of t on the allocations that will occur in future rounds of the SSI auction.
This allows us to capture some, albeit not all, of the synergies between tasks and improves the overall quality of
the allocation. Rollouts are most beneficial in the first rounds of the SSI auction, since there are a large amount
of targets still to be allocated and which will be affected by the winner determination of the current round.
The drawback of rollouts is that they increase the number of rounds in the SSI auction, since the agents need
to simulate several rounds of the auction in order to compute their bid for a single round. Solutions to this
problem include only performing rollouts in the first rounds of the auction, or sampling a subset of all possible
rollouts and performing only these at each round.

2.6.2. The K-swaps procedure
In any kind of sequential allocation method such as SSI auctions, swaps are necessary to capture synergies
between tasks that have already been allocated and auctions that are allocated in a later round. The same is
true for online settings, such as UAV delivery, in which new tasks enter the system continuously and need to
be allocated in real time. Zheng et al. [190] develop a general distributed framework to re-allocate tasks to
cooperative agents in order to decrease team cost, based on K -swaps, a novel contract type that specifies task
exchanges between multiple agents.

In order to understand the swapping procedure and its properties, we must first summarize Zheng et al.’s for-
malization of the K -swaps contract [190]. Suppose that the vector P = {P1, ...,Pn} contains the task allocation
before any swaps among agents occur, and let P ′ = {P ′

1, ...,P ′
n} denote the allocation after all swaps have oc-

curred. We now define three types of swap operations that agents can conduct. An out swap occurs if an
agent ai transfers a task t to a different agent and is represented by the vector (ai ,−, t ,−). An in swap occurs
(ai ,−,−, t ′) if agent ai receives a task t ′ ∉ Pi from a different agent. An exchange swap (ai , a j , t , t ′) occurs if
agent ai transfers task t to a j and a j transfers task t ′ to ai . Note that an in-swap and an out-swap regarding the
same two agents can be combined into an exchange swap; if this is the case, the swaps are called resolvable.

A partial k-swap, denoted as sk , is a contract that describes all task exchanges of a given set of agents A(sk ) ⊆ A.
The contract consists of:

• A set of in-swaps that specifies tasks transferred from agents outside A(sk ) to agents in A(sk ).
• A set of out-swaps that contains the tasks transferred from agents in A(sk ) to agents outside A(sk ).
• A set of compact exchange swaps which contains the swaps between agents that are both in A(sk ).

The term k refers to the size of the set of exchange swaps in sk . Finally, a partial k-swap is complete if and only
if it has empty in and out swap sets, and therefore only contains exchange swaps. A complete k-swap describes
k task exchanges among multiple agents, and is termed profitable if it decreases the team cost of the allocation.
Zheng et al. [190] prove that, given any task allocation problem with n tasks and a suboptimal solution P , there
always exists a complete k-swap with k ⊆ n that results in an optimal allocation. Naturally, such a k-swap
will be profitable, so it is sufficient to search all possible profitable complete k-swaps in order to find it. The
authors propose the following distributed approach that, given an initial suboptimal allocation P = {P1, ...,Pn}
[190], and a constant K defined by the user, constructs all profitable complete k-swaps with k ≤ K :

1. Establish a complete ordering of agents according to an index i , and initialize the set Sg l ob of all prof-
itable complete k-swaps to empty.

2. Every agent ai initializes three sets to empty: (1) Slocal
i , the set of swaps that the agent constructs (2)

Ssend
i , the set of all profitable swaps the agent shares with the other agents (3) Sr ecei ve

i , the set of partial
swaps that it has received from the other agents.

3. Every agent constructs all feasible partial swaps that contain itself only, appends them to Slocal
i and if

they are found to be profitable, also to Ssend
i . The agent then sends the swaps in Ssend

i and resets Ssend
i

to empty.

8The term rollout is derived from reinforcement learning, in which it is used to describe the procedure by which policies are evaluated
based on true rewards rather than first-round estimates of such rewards [191] [171].
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4. For K rounds, each agent ai :

• Adds all partial swaps that it has received from others to Sr ecei ve
i .

• Combines every pair of partial swaps in Sr ecei ve
i and Slocal

i that is combinable. Combining a pair of

partial swaps sa and sb means creating a new partial k-swap sk by: (1) adding all exchange swaps
that were originally in sa and sb , (2) adding the new exchange swaps that arise from combining all
resolvable pairs of in-swaps and out-swaps (〈ai ,−,−, t〉 + 〈a j ,−, t ,−〉 = 〈ai , a j , t ,;〉) and (3) making
sk compact by rewriting all combinable exchange swaps as a single exchange swap (〈ai , a j , t ,;〉 +
〈ai , a j ,;, t ′〉 = 〈ai , a j , t , t ′〉). Then:

– If the combined sk is a profitable complete k-swap with k ≤ K and agent ai is the core of sk , then
ai adds sk to Sg l ob . An agent is said to be the core of sk if removing him from A(sk ) preserves
the profitability of all swaps in sk , and no agent that comes before it in the ordering established
in step 1 has this property.

– Else if sk is not complete, but k ≤ K and sk ∉ Slocal
i , then agent ai appends sk to Sl ocal

i and if sk

is profitable also to Ssend
i .

• Sends to all the other agents all partial k-swaps in Ssend
i , and empties the set Ssend

i .

Following the above procedure, all profitable k-swaps with k ≤ K are guaranteed to be constructed within K
rounds and are stored in the set Sg l ob . The authors of [190] present two distinct approaches to execute the
profitable k-swaps in the context of a sequential auction. The first is the GREEDY approach, in which at every
round all profitable k-swaps are generated according to the above distributed procedure, and the swap with the
highest gain for the system is executed on the current solution. The second is ROLLOUT, a more sophisticated
but computationally expensive approach based on the idea of rollouts discussed in Section 2.6.1. At each round
of the auction, all profitable k-swaps are generated. Each k-swap is hypothetically executed and then the above
greedy approach is applied to the resulting post-swap allocation. The team cost incurred after this hypothetical
layer is used to value the k-swap in the current round of the auction.

Zheng et al. apply the K -swaps framework to SSI auctions with varying numbers of agents and tasks, using
both GREEDY with K = (1,2,3) and ROLLOUT for K = (1,2) [190]. The results are summarized in Table 2.3. The
optimal solution is computed via a MIP solver with a two-hour time limit. Values shown in brackets indicate
that the optimal solution was not found within the the limit, and therefore represent upper bounds on the true
optimal allocation cost. K -swaps are shown to improve the allocation substantially, with the rollout procedure
outperforming the greedy one but as expected being more computationally expensive. For small problems
(n=2 and 4), the three-swap greedy implementation is able to find the optimal allocation. For larger problems,
none of the tested K -swap variants are able to solve the problem optimally (the required K is evidently larger
than 3) but reduce the initial cost substantially, up to ≈ 23.5% forGREEDYwith K = 3 and ≈ 24.2% forROLLOUT
with K = 2 for the largest problem instance.

Agents Targets
Minimal

cost
Initial
cost

GREEDY ROLLOUT

K=1 K=2 K=3 K=1 K=2
Cost Time Cost Time Cost Time Cost Time Cost Time

2 6 166.2 176.1 166.4 0.00 166.2 0.00 166.2 0.00 166.2 0.00 166.2 0.00
4 12 229.1 265.1 243.4 0.00 233.8 0.00 229.1 0.00 242.2 0.00 232.6 0.02
6 18 265.8 323.1 276.1 0.00 268.2 0.00 266.9 0.04 272.8 0.01 266.3 0.27
8 24 [297.4] 369.8 314.9 0.00 308.4 0.02 299.6 0.20 308.2 0.03 299.6 0.68

10 30 [337.7] 420.5 367.7 0.00 350.4 0.03 340.4 0.67 354.6 0.08 338.7 4.11

Table 2.3: Resulting allocation cost and additional computational time required when performing
K -swaps in a SSI auction according to the GREEDY and ROLLOUT procedures. Results taken from [190].

2.7. Temporal sequential single-item auction (TeSSI)
A recent cooperative auction variant called the Temporal Sequential Single-Item auction (TeSSI), introduced
by Nunes et al. [112], extends the SSI auction by allowing agents to plan over sequences of tasks with tem-
poral constraints. We consider it a separate variant rather than an improvement to the SSI auction (such as
the rollouts described in Section 2.6.1), because the planning paradigm used by the agents to schedule tasks
and therefore evaluate them within the auction procedure is substantially different. While the allocation of
tasks with temporal constraints in auctions had been explored in previous work [105] [109], these attempts
had limited flexibility as they were unable to deal with tasks with overlapping time windows or changing start
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times. TeSSI is general enough to handle tasks with overlapping constraints and changing start times, making
it suitable for online allocation problems in dynamic settings.

Let us return to our standard allocation problem in which there is a set of agents A = {a1, ..., an} and a set of
tasks T = {t1, ..., tm}. Now, let us consider the added constraint that each task ti ∈ T has an earliest start time
ESi and latest start time LSi with ESi ≤ LSi , as well as a latest finish time LFi . Every task is also associated with
a duration DU Ri such that LSi +DU Ri = LFi . The task can be started no earlier than ESi , and can be finished
no later than LFi , and must therefore be executed within the time window [ESi ,LFi ]. Each agent captures
these properties of the tasks by maintaining its task schedule as a simple temporal network (STN), a three-task
example of which is provided in Figure 2.2. The actual task start and end times are represented by the Si and
Fi time points, and the associated constraints as self-loop arrows. An origin time point with a value of 0 is
also added to the STN, although not shown in Figure 2.2, to represent the starting point of the agent. There
are two main constraints in the STN. The first is that the finish time of a task can be no earlier than the start
time, meaning that DU Ri ≥ 0 ∀i . The second is that the agent can only commence the next task once it has
completed its current task , meaning that there is no arc in the STN that directly connects two or more task start
or task end nodes.

Algorithm 1 TeSSI Task Evaluation and Scheduling Algorithm

Input: task on auction t , agent schedule Ta of length m tasks, agent ST N
Output: Optimal insertion position i∗ of task t , resulting agent_objective∗ which is agent’s bid for t

1: procedure EvaluateTask(t ,Ta ,m,ST N )
2: i∗ = -1
3: if Ta = ; then . t is first in STN, no need to find optimal insertion
4: add time points and constraints of t to ST N
5: agent_objective = compute_objective(ST N )
6: return 0, agent_objective
7: else
8: for i in [0,...,m] do
9: insert t in position i in Ta

10: add time points and constraints of t to ST N
11: propagate ST N via Floyd-Warshall algorithm
12: if ST N consistent then
13: agent_objective = compute_objective(ST N )
14: if agent_objective is smallest so far then
15: i∗ = i
16: agent_objective∗ = agent_objective

17: reset Ta and ST N eliminating task t

18: if i∗ = -1 then .No consistent insertion of t into ST N possible
19: return -1, M where M is a very large number
20: else
21: return i∗, agent_objective∗

Figure 2.2: STN representation of a three-task schedule. Figure taken from [112].

The TeSSI auction follows the same main logic of the standard cooperative SSI auction discussed in Section 2.6.
To value a task t , each agent computes the cost it would incur in adding the task to its local plan and submits
it as its bid, with the auctioneer then allocating the task to the lowest bidder. The novelty is that the STN repre-
sentation provides a polynomial way to schedule and value tasks with temporal constraints. To evaluate a task
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t on auction, the agent attempts to insert it into its STN in such a way as to minimize some predefined objec-
tive such as the makespan (equivalent to the MINIMAX objective described in Section 2.6) or total path cost
(equivalent to the MINISUM objective described in Section 2.6). This procedures is described in Algorithm 1.
The agent attempts to insert the task t in all plausible locations in the STN. For each location i , the agent inserts
the task time points, along with the associated duration and travel time constraints (line 10), and propagates
the STN by using the Floyd-Warshall algorithm (line 11) which runs in O(n3) time9. If the STN is consistent,
meaning that there are no negative cycles, the objective of interest to the agent is computed (line 13) and saved
if it is the best so far (lines 15-16). The agent bids the lowest value of the objective, that arises from the best
insertion position i∗. Every time a new insertion point i is tried, the STN is reset to include only the original
tasks and not t (line 17). Note that if the schedule of the agent is empty to start with, it is of no use to search
for the optimal insertion and the task is directly inserted as the first task in the schedule to compute the value
of the agent’s objective (lines 3-6). If the agent is then awarded the task, it inserts it into its STN in position
i∗. Nunes et al. [112] focus on minimizing the makespan and a combination of the makespan of the distance
traveled, but in principle any bidding rule could be applied.

When a set of tasks T is auctioned, all agents goes through the evaluation procedure for every task ti and sub-
mits a bid for each task. The task t∗ that yielded the lowest bid among the entire set of bids (for all tasks) is
allocated to the agent a∗ with the lowest bid. The procedure is then repeated for T \{t∗}. In the next round,
agent a∗ needs to re-evaluate all tasks since its schedule has changed and therefore its bid for the remaining
tasks may be different. For the other agents, this is not necessary as their schedules have not changed. Tasks
that cannot be assigned to any agent, i.e. they cannot be inserted into their STN in a consistent manner that
satisfies all temporal constraints, are simply deleted from the task set. The auction continues until the auction-
eer has attempted to allocate all tasks. While TeSSI has been empirically shown to produce optimal allocations
for small problems [112], it is not guaranteed to produce optimal solutions in general as it relies on the SSI
auction and therefore does not capture all synergies between tasks.

Nunes et al. test the performance of TeSSI with the makespan objective on several offline and online allocation
problems and compare it to a version of the Consensus Based Bundle Algorithm (CBBA) that accounts for time
windows (covered in Section 2.9), and a greedy approach in which each task is directly awarded to the UAV
that can perform it with the lowest makespan. Figure 2.3 summarizes the results for the offline case, in which
all tasks are known beforehand and therefore auctioned in a single (multi-round) TeSSI auction. Figure 2.4
shows the results of the online case, in which tasks enter the system in batches, with batch sizes of 1,5,10 and
then varying in increments of 10 up to 100. Results show that TeSSI consistently outperforms the CBBA with
time windows and the greedy approach, especially for the harder problems. In the online implementation, the
quality of the allocation increases substantially with the batch size, since larger batches allow TeSSI to better
capture synergies among tasks. Figure 2.5 shows the results for a VRP instance with 100 spatially clustered tasks
and tight time windows. TeSSI is able to capture the spatio-temporal synergy present in the VRP instances and
produces a much higher-quality and more easily controllable allocation than the other methods.

The TeSSI auction’s flexibility makes it a natural way to express the allocation problem for UAV deliveries, in
which customers often expect or demand their orders to be executed within a certain time frame. Due to the
presence of neighborhoods in urban areas, a spatial clustering of customers is likely a useful feature to capture
for effective UAV routing, so the performance of TeSSI observed on the VRP instance in Figure 2.5 is promising.
It would be interesting to explore extensions to TeSSI that allow for task swaps in order to make the performance
less dependent on the batch size of the tasks being auctioned. It would also be interesting to investigate ways to
soften the temporal constraints on the tasks, to be able to allocate tasks also in instances in which the delivery
window requested by the customer cannot be met. To the best of our knowledge, no such extensions exist in
the literature.

2.8. Sequential single-cluster (SSC) auctions
Koenig et al. introduced the idea of Sequential Bundle Bid (SBB) auctions as a middle ground between SSI and
full combinatorial auctions [85]. In SBB auctions, each agent bids on bundles of at most b out of the m tasks to
be auctioned. Bundles are then allocated at once, allowing agents to directly capture synergies between up to
b tasks. The value of b controls the tradeoff between the SSI (b = 1) and the combinatorial (b = m) auction. In
general, SBB auctions have been shown to reduce the computational and communication overhead by several
orders of magnitudes compared to the combinatorial case. However, the SBB auction cannot easily be adapted
to the online allocation problem, in which tasks are discovered dynamically throughout the problem and there-

9While in principle this is asymptotically no better than running n calls to Dijkstra’s algorithm, the Floyd-Warshall algorithm is much more
efficient in practice [154].
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Figure 2.3: Results for allocation problem with 20-100
tasks and 10 agents (left) and 100 tasks with 5-50 agents

(right). Taken from [112].

Figure 2.4: Results for allocation problem
with 10 agents, 100 tasks discovered

dynamically in batches of 1,5,10-100. Taken
from [112].

Figure 2.5: Results for Solomon’s C101 instance of the VRP, with 10 agents and 100 tasks with tight time
windows [112], as solved by TeSSI (left), CBBA (mid) and Greedy (right). Taken from [112].

fore the bundle sizes are not easily controlled. Heap [68] provides a distributed extension of the SBB auction,
called the Sequential Single Cluster (SSC) auction, that is substantially more flexible and suitable for online al-
location in dynamic environments. SSC auctions are based on the idea of clustering the tasks to be assigned
before the allocation, and allowing agents to cluster their own uncompleted tasks for dynamic re-auctioning
every time they complete a task in their schedule.

Heap and Pagnucco [69] study a variant of the SSC auction designed specifically to handle online pick-up and
delivery problems, in which new delivery requests are continuously discovered. The first issue is to develop
a framework to cluster pickup and delivery tasks, which is substantially more difficult than clustering tasks
consisting of a single location in space. Heap proposes a two-level clustering approach in which tasks are first
clustered based on their pickup locations, and then within each cluster they are clustered further based on
their delivery location. Figure 2.6 provides an illustration of this approach. This sequential clustering logic
allows any existing algorithm that clusters based on single locations in space, such as K-means clustering or
single-linkage, to be used on both the pickup location and the delivery location level. While this approach
works relatively well in the simple experiments of Heap and Pagnucco [69], it would likely need to be extended
to fit the characteristics of the UAV delivery problem. For instance, a temporal layer may need to be introduced
in the clustering, to group delivery tasks with close start and finish times. In addition, in large environments it
is important to capture the sequential nature of the pickup and delivery tasks and consider distance between
the pickup and delivery locations of different tasks, which this two-level approach does not do.

Another challenge in the online SSC auction is that tasks enter the system dynamically. Heap et al. propose
a solution to this that is different from other online variants of the SSI auction. When a new task t enters the
sytem, it is immediately allocated to one of the agents a∗ and added to its local task set. The agent can be
chosen at random or based on some characteristic of its task set, e.g. the amount of tasks if we are concerned
with balancing the workload among the fleet. Agent a∗ can either choose to perform a local replan, and re-
plan its schedule and path to account for the new task, or choose to initiate a global reallocation procedure,
prompting the start of a new SSC auction, which is conducted in a distributed manner. Each agent clusters all
of his non-completed tasks, excluding the cluster that includes the task he is currently engaged in, and shares
them with all other agents. The agents send their bids for each cluster to all other agents, and parallely receive
the other agents’ bids. Now that all agents have common situational awareness about the clusters and all bids
associated to them, they all perform the same winner evaluation logic independently. Each agent chooses the
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Figure 2.6: Illustration of the clustering procedure for the pickup and delivery SSC auction variant. The
first layer of clustering (left) is on the pickup location ci of the tasks, and the second layer (right) is on

the delivery location di of the tasks. Taken from [68].

cluster c∗ with the lowest bid and removes it from the set of unassigned clusters. The agent with the lowest bid
for c∗ assigns itself to it and adds all tasks in c∗ to its local plan. A new round of the SSC auction then begins
for the remaining C \{c∗} clusters, until all clusters have been allocated. The same global replanning phase is
also initiated every time an agent has completed a task. Note that while in the work of Heap and Pagnucco the
SSC auction is performed in a fully distributed manner, alternative implementations are possible. For instance,
we could let agent a∗ take the role of the auctioneer in the SSC auction. This could be managed by the agents
through the passing of a token, which could additionally contain information about the agents’ planned paths
in order to ensure conflict resolution10. Including the role of the auctioneer would sacrifice some robustness
but substantially limit the communication overhead in the global replanning phase.

Heap and Pagnucco test the online SSC auction variant on a simulated allocation problem with 10 agents and
60 tasks, to understand the performance advantage that can be achieved via global replanning [68]. They vary
the ratio of dynamic to static tasks, with 25%, 50% and 75% of the tasks unknown at the beginning of the
problem and use single-linkage clustering with a TPD metric for the clustering routine. Both the MINIMAX and
MINISUM objectives are addressed, and the results are summarized in Table 2.4. The baseline case represents
the static one-shot SSC case in which all tasks are known beforehand, but no task re-allocations are allowed.
The improvement of global replanning over local replanning is showed in parentheses. As expected, global
replanning allows for synergies between new tasks entering the system and existing tasks across all agents to be
captured, reducing the allocation costs substantially compared to the local replanning case where synergies can
only be captured with a single agent’s task set. Global replanning improves the team cost up to 36.5% with the
MINIMAX objective and the least dynamic setting (25% dynamic tasks). Note that the way performance scales
with the percentage of dynamic tasks is non-trivial and dependent on the objective. For the global reallocation
case, the best performance for the MINISUM objective is achieved with 75% of dynamic tasks and not 25% like
with the MINIMAX objective.

Objective Replanning Baseline Percentage dynamic tasks
25% 50% 75%

MINIMAX
Local 7857 8228 7276 7275

Global 7857 5228 (36.5%) 5593 (23.1%) 5911 (18.7%)

MINISUM
Local 41539 41527 42025 45305

Global 41539 37449 (9.8%) 40278 (4.2%) 36907 (18.5%)

Table 2.4: Results of local and global replanning in an online SSC auction for a task allocation problem
with 10 agents and 60 tasks, of which a varying percentage is discovered dynamically. Results taken

from [68].

2.9. Consensus-based auctions
Consensus-based auctions [20] introduce the idea of a distributed consensus phase in the auction to remove
the need of the auctioneer entirely. Instead, the agents converge to a conflict-free allocation independently
and without requiring the winner determination phase to be conducted centrally as in a typical auction. The
strength of this approach is that it allows for a high degree of flexibility in the network structure, enabling
coordination in realistic settings with limited communication ranges, although the convergence rate of the
consensus phase is dependent on the network structure. We begin by elaborating on the Consensus-Based

10This is similar to a recent method from the multi-agent path finding literature called Token Passing with Task Swaps (TPTS) [99], which
solves the combined task allocation and path finding problem in the IA case.
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Auction Algorithm (CBAA), which solves the single assignment problem and then elaborate on the Consensus-
Based Bundle Algorithm (CBBA), which generalizes the CBAA and extends it to the multiple-assignment case.

2.9.1. Consensus-Based Auction Algorithm (CBAA)
The Consensus-Based Auction Algorithm (CBAA), first introduced in [20], is based on two distinct phases, namely
the auction phase and the consensus phase. By iterating between the two phases, the agents cast their bids and
agree on a list of winning bids and hence on the assignment. Throughout the rest of the explanation, we refer
to an iteration t as a single run of both the auction and the consensus phase.

Unlike other cooperative auction formulations in which the agents’ bid is simply their cost of executing the
task, in the original CBAA description the agents attach a score to the task and use it to bid, with the highest
bidder being awarded the task. We follow this formulation in order to provide a discussion of the convergence
properties and limitations of the algorithm (in sections Section 2.9.2 and Section 2.9.3) that is consistent with
the theoretical results of Brunet et al. [20]. Note that this is without loss of generality since the score represen-
tation is more general than the cost and can be designed to be correlated to the latter, for example by setting
the score of a task equal to the negative or reciprocal of its execution cost.

In the auction phase, each agent bids on a task in an asynchronous manner. Let ci j be the bid that agent ai

puts on task t j , and hi be agent ai ’s availability vector whose jth entry is 1 if the agent is available to perform
task t j . The agent’s task list is contained in a vector xi whose j-th entry is 1 if the agent is assigned to task t j ,
and 0 otherwise. Let us also define a vector yi which contains the agent’s current knowledge of the winning bid
for each task across all agents. Agent ai uses its own bids and the knowledge contained in yi to populate the
list hi of available tasks by checking whether it believes to hold the highest bid for a task j :

hi j = I(ci j ≤ yi j ) (2.1)

Where I is the indicator function (1 if the condition is true, and 0 otherwise). Algorithm 2 shows the procedure
agent ai goes through in the auction phase at iteration t . If the agent is unassigned, then it populates the list of
valid tasks hi and finds the task Ji for which it has cast the lowest bid. It then assigns itself to the task, updates
the vectors xi and yi accordingly and moves to the consensus phase. If the agent was already assigned a task
or if there are no valid tasks, the agent moves directly to the consensus phase.

Algorithm 2 CBAA Phase 1 - Task selection procedure for agent ai at iteration t

1: procedure SelectTask(ci , xi (t −1), yi (t −1))
2: Initialize xi (t ) = xi (t −1); yi (t ) = yi (t −1)
3: if

∑
j xi j (t ) = 0 then

4: hi j = I(ci j ≤ yi j )∀ tasks j
5: if h1 6= 0 then
6: Ji = argmax j ci j ·hi j . Find task Ji with highest marginal score
7: xi ,Ji = 1
8: yi ,Ji = ci ,Ji

In the consensus phase, the agents attempt to converge on the list of winners in the auction. Algorithm 3
shows the consensus procedure for an agent ai . Let G(t ) be an undirected graph representing the communi-
cation network of the agents at iteration t , and let G(t ) be its adjacency matrix. If gi j (t ) = 1, there is therefore
a communication link between agents i and k at time t and we denote the agents as neighbors. The procedure
agent ai executes in the consensus phase is shown in Algorithm 3. Agent ai receives the local list of winning
bids yk from each of its neighbors, and replaces the values yi of its local list with the largest bid for task j be-
tween itself and its neighbors. If this update leads agent ai to find that it has been outbid for a task j , then
it unassigns itself from task j . Note that to ensure convergence, tie breaking across equal bids cannot be per-
formed randomly since it needs to be consistent among the entire fleet. A solution proposed by Brunet [20] is
to add a small number to each bid ahead of the consensus phase in order to avoid ties.

2.9.2. Consensus-Based Bundle Algorithm (CBBA)
The consensus-based bundle algorithm generalizes the CBAA to the multi-assignment case, and again iterates
between two phases: bundle construction and conflict resolution.

In the bundle building phase, every agent adds tasks to its bundle until it can no longer add any new tasks. The
procedure an agent ai executes in this phase is described in Algorithm 4. Agent ai has two lists that concern
the tasks, namely the bundle bi in which the tasks are arranged based on the order in which they were added,
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Algorithm 3 CBAA Phase 2 - Consensus procedure for agent ai at iteration t

1: Send yi to all neighboring agents k
2: Receive yk from all neighboring agents k
3: procedure UpdateInformation(gi (t ), yk (t ) for all neighbors k, Ji )
4: yi j (t ) = maxk gi k (t ) · yk j (t )∀ tasks j
5: zi ,Ji = argmaxk gi k (t ) · yk,Ji (t )
6: if zi ,Ji 6= i then
7: xi ,Ji (t ) = 0

and the path pi in which the tasks are arranged based on the order in which ai intends to execute them. Fur-
thermore, let SPi be the total score agent ai receives from executing all tasks in the path pi and let zi be the list
of winning agents based on the local knowledge of agent ai . When a task j is added to the agent’s bundle bi , it
generates a marginal improvement ci j (bi ), which is the result of adding the task to the path in the location that
leads to the highest score. The operation li ⊕n l j refers to adding list l j just after location n of list li . The agent
finds the available task Ji that leads to the highest marginal score improvement, and adds it to the end of the
bundle bi and in the location n j along path pi that maximizes the total score Spi . It then assigns itself to task
Ji by updating the vector yi and zi accordingly. The process continues until there are no more tasks available
or the maximum bundle size has been reached.

Algorithm 4 CBBA Phase 1 - Bundle building procedure for agent ai at iteration t

1: procedure BuildBundle(zi (t −1), yi (t −1),bi (t −1), pi (t −1))
2: Initialize zi (t ) = zi (t −1); yi (t ) = yi (t −1); bi (t ) = bi (t −1); pi (t ) = pi (t −1)
3: while |bi (t )| < B do
4: ci j = maxn≤|pi (t )|+1

(
Spi (t )⊕n [ j ] −Spi (t )

) ∀ tasks j ∉ bi (t )
5: hi j = I(ci j ≤ yi j )
6: Ji = argmax j ci j ·hi j . Find task Ji with highest marginal score
7: n Ji = argmaxn Spi (t )⊕n [Ji ] . Find optimal insertion point of Ji into pi

8: bi (t ) = bi (t )⊕end [Ji ]
9: pi (t ) = pi (t )⊕n J [Ji ]

10: yi ,Ji = ci ,Ji

11: zi ,Ji = i

In the consensus phase, the agents communicate with their neighbors and compare bids for tasks in their
bundle with those of the other agents, in a manner similar to the single-assignment CBAA case. The main
difference with CBAA is that if an agent discovers that it has been outbid for a task, it is not sufficient to simply
unassign itself from that task. The agent must also release all other tasks in the bundle that it has added after
that task, because their scores are dependent on the task for which it was outbid. Every agent ai needs to share
three distinct vectors in the consensus phase: (1) the list of winning bids yi , (2) the winning agents list zi and
(3) a vector of time stamps si , where the k-th element represents the timestamp of the latest information that
the agent received from ak , either directly or via a neighbor. When agent ai receives information from an agent
ak , it uses the lists yi and zi to merge its local and the incoming information by performing one of the following
three actions for task j :

1. UPDATE: yi j = yk j , zi j = zk j

2. RESET: yi j = 0, zi j =;
3. LEAVE: yi j = yi j , zi j = zi j

For instance, an update action would be undertaken if a better bid for a task j is shared from agent ak , a reset
action would occur if both agents believe that the other is the winner of the task, and a leave action if a lower
bid for j is received from k. For a detailed decision table that provides rules on which of the above three actions
to take for any combination of yi j , zi j and yk j , zk j , the reader is referred to [20]. Generally, the decision logic is
structured to favor higher bids and the most recent information.

Convergence and diminishing marginal gains
In order to ensure convergence, CBAA and CBBA require the scoring function to satisfy a property known as
Diminishing Marginal Gains (DMG). The DMG property can be seen as a subset of the submodularity condition
for a function, and can be formalized as follows:

ci j (bi ) ≥ ci j (bi ⊕end b), ∀bi ,b (2.2)
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That is, the marginal score of a task j cannot increase due to more tasks being added to the bundle. If the
score function is DMG (meets the DMG condition), then CBBA is guaranteed to converge to a conflict-free
assignment also for problems in which the underlying network structure changes over time, provided that ∃ ρ <
∞ such that:

W (t ) =G(t )∪G(t +1)∪ ...∪G(t +ρ−1) is fully connected ∀t (2.3)

If this is not the case, then there will be agents that will never be able to exchange information through the
network and it is therefore impossible to guarantee a conflict-free assignment. If the condition holds, then the
assignment produced by CBBA is guaranteed to be no more than twice as costly as the optimal assignment [20].

2.9.3. Extensions to CBBA
While CBBA is a powerful paradigm in that it provides convergence guarantees and provably good solution
quality irrespective of the network structure, it fails to capture several characteristics of real-life allocation prob-
lems. To fill these gaps, a number of variants of CBBA were developed, the most influential of which are CBBA
for time-sensitive tasks and non-DMG score functions.

Time-sensitive tasks
Ponda et al. [120] modify the scoring function of CBBA in order to deal with time-sensitive tasks whose utility
decreases over time and that are valid only if executed within a set time window. The modification to the score
function is relatively straightforward and consists of two main components:

• Time-varying score profile s j (t ): The reward that an agent obtains for performing task j is rendered a
function not only of the face value V j of the task, but also of time. An example score profile is: s j (t ) =
e
−λ j (t−t st ar t

j ) ·V j , where λ j ≥ 0 is the discount rate use to penalize tasks that take longer.
• Mandatory time window u j (t ): Tasks have a time window T w

j = [t st ar t
j , t end

j ] within which they must be

started. The window is incorporated into a validity function u j (t ) as follows:

u j (t ) =
{

1 , t ∈ T w
j

0 ,el se
(2.4)

The score for task j is then a function of the completion time tc and is equal to C j (tc ) = s j (tc ) ·u j (tc ). Note,
however, that for the UAV delivery case we would need to extend this formulation to include constraints on the
pickup and delivery times. A straightforward way to do this would be to set a delivery time window u j ,d (t ) as
specified by the customer and a pickup window u j ,p (t ) in which the start time is conditional of the expected
availability of the item at the pickup location, and the end time is derived from the duration of the task and
the latest allowed delivery time. In the bidding process, the agent finds the optimal manner to insert a task j
into its plan, and therefore attempts to perform the task as quickly as possible to maximize s j (t ) and within the
time window u j (t ) to ensure a non-zero reward. The issue with this formulation, however, is that we need to
sacrifice flexibility in task scheduling in order to ensure that the marginal score ci j to any agent ai of adding
task j to its bundle is DMG. If we add a task j to the bundle, then for no task k 6= j can ci k increase as a result.
This is highly limiting, as it implies that we cannot shuffle the order of the tasks k 6= j in the path and therefore
cannot capture the synergies between tasks already in the bundle and newly added tasks. The performance
advantages of capturing these synergies are evident and discussed extensively in Section 2.6, Section 2.7 and
Section 2.8.

Non-DMG score functions
Johnson et al. [77] present a key improvement that allows for non-DMG functions to be used without com-
promising the convergence guarantees of CBBA. It is based on the idea that the local evaluation function of
an agent for a given task need not necessarily be equal to the bid that the agent casts for that task. As long
as the bids are DMG, then in principle it does not matter which evaluation function the agent is using. Let us
define a warping function Gi j (ci j ,bi ) = c ′i j that given the agent’s valuation for a task ci j and its current bundle

bi produces a warped valuation c ′i j :

c ′i j = min(ci j , yi k ), ∀k ∈ pi (2.5)

where yi k is agent ai ’s bid for task k, since if a task is in his bundle then ai believes to be its winner. If the
agents bid according to c ′i j rather than ci j , then no new bid will ever be larger than the bids previously made

by the agents for tasks already in their bundle. The warped bids therefore satisfy the DMG property. This is
easily seen from the structure of the warping function, but for a formal proof the reader is refered to[77]. The
only requirement on the agent’s local evaluation function ci j is that the valuations are reproducible, meaning
that given the same conditions and initial bundle, the valuation will also be the same. The non-DMG score



2.9. Consensus-based auctions 54

function requires some changes to the bundle generation procedure described in Algorithm 4. Instead of the
real valuation, the warped bid c ′i j for a task j is compared with the list of winning bids to determine whether ai

holds the highest bid for j (line 5). The real valuation, however, is still used to determine the best task among
the tasks available to ai for assignment (line 6). The consensus phase remains the same as in standard CBBA,
with the exception that the warped bids are shared and used for consensus. Since the warped bids are DMG,
the agents are guaranteed to converge to a conflict-free assignment provided the condition in Equation (2.3)
holds.

Johnson et al. show the effectiveness of using CBBA with non-DMG score functions by comparing it to standard
CBBA on an allocation problem with 2 agents and 30 tasks. The results are shown in Figure 2.7. With standard
CBBA, the agents cannot incorporate the actual distance travelled in the score function since it is not DMG. It is
straightforward to observe why. Suppose we are at some round t of the bundle-building phase and agent ai is
to add a new task j to its bundle. If we score task j based on the additional distance it would require ai to travel
(in a manner similar to all methods described in Section 2.6, Section 2.7 and Section 2.8), then the bid for task
j may very well be higher than the bids for other tasks in bi , because executing some task k ∈ bi may bring ai

closer to task j . To go around this, the authors in [20] submodularize the cost by considering the total distance
travelled instead of the marginal distance, which does not capture inter-task synergies. With non-DMG CBBA,
instead, we can capture inter-task synergies and score tasks based on the marginal distance, which leads to a
much higher quality allocation.

Figure 2.7: Solutions generated by standard CBBA with submodular cost approximation (left) and
non-DMG CBBA with cost based on true marginal distance (right) for a one-shot allocation problem

with 30 tasks and 2 agents. Taken from [77].

Other improvements
Ponda introduces a variant called CBBA with Relays [120] that attempts to prevent the network from getting
disconnected throughout the mission in order to ensure convergence of the consensus phase. The same variant
can also be used to ensure that the entire network stays connected to a base station, which may be desirable
for safety or regulatory purposes in real-life applications. The method is based on the idea of relay tasks, whose
purpose is to ensure the network stays connected in instances where executing a task would cause a disconnect.
Just like regular tasks, relay tasks can include locations and time windows, and the CBBA structure is leveraged
to allocate them in a distributed manner. Ponda further extends CBBA to improve its performance in problems
with uncertainty regarding parameters such as task durations, task locations and vehicle velocity by proposing
Robust CBBA, in which agents generate stochastic plans over their task set using a sampling strategy. The recent
work of Whitbrook et al. [182] [183] proposes a robustness module ROB-M that when implemented with CBBA
largely reduces the sample size required to handle comparable levels of stochasticity as in Robust CBBA. Luders
et al. propose a stratified framework [96] that combines CBBA with information-rich RRT for exploration and
localization tasks, which to the best of our knowledge is the only attempt to integrate a path planning layer
within CBBA.

While several variants of CBBA exist in the literature, there are still a number of challenges to overcome in
order to apply consensus-based auctions to the UAV delivery coordination problem. The first is to extend
CBBA to account for pickup and delivery tasks, whose temporal constraints are different from single-location
tasks. Planning complexity is also higher for pickup and delivery tasks, since both the pickup and the delivery
location, together with the associated path segments, can represent sources of uncertainty. Surprisingly, there
has been little work on incorporating task swapping or re-allocation procedures within CBBA. This is because
the focus of efforts involving consensus-based auctions has typically been on one-shot allocation cases. An
exception is the recent work of Buckman et al. [22], which proposes CBBA with Partial Replanning [22], in
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which agents only release a subset of their tasks when a new task enters the system and triggers a new auction.
However, the approach has a number of limitations because it relies on the DMG scoring function of standard
CBBA. This only allows agents to release the n lowest tasks in their bundles, and is therefore blind to other
synergies between tasks in the bundle. These could be identified by clustering routines such as in SSC auctions
(Section 2.8) or other heuristic approaches.



3
Multi-agent path finding

The problem of multi-agent path finding (MAPF) has received considerable attention in the field of distributed
artificial intelligence. It consists of finding conflict-free paths that bring all agents from their target to their goal
locations, and is relevant for the UAV delivery problem because UAVs need to plan trajectories to execute their
pickup and delivery tasks without colliding with each other or with obstacles in the environment. We begin by
briefly discussing the single-agent variant of the path planning problem in Section 3.1 and then elaborate on
the multi-agent extension in Section 3.2, including a discussion of different types of MAPF formulations, de-
sirable solver properties, commonly used cost functions and finally an overview of the available solver classes.
Each of these classes of solvers is discussed in further detail, and state of the art solvers in each class are sin-
gled out. In Section 3.8, we perform a comparative evaluation betwen state of the art solvers in each class and
determine the most suitable approaches for the UAV delivery coordination problem.

3.1. Single-agent pathfinding
Single-agent pathfinding is the process of finding a conflict-free path between two vertices in a graph that
typically minimizes path length as defined by a cost function, and is a commonly studied problem in artificial
intelligence [149]. There are several search approaches available to generate optimal solutions to single-agent
pathfinding problems. One of the most well known is A* search [65], which is worthwhile to discuss in more
detail given that it still plays an important role in several state of the art multi-agent path finding algorithms.

A* search is a best-first search routine with cost function of the form f (n) = g (n)+h(n), where g (n) is the cost
to reach node n from the start node, and h(n) is a heuristic to estimate the cost of reaching the closest goal
from node n. A heuristic is admissible if it is guaranteed to never overestimate the cost of reaching the goal
from node n. If an optimal path exists and h is admissible, then A* search is guaranteed to find it [40]. The most
commonly used heuristic is diagonal distance (Euclidean or Manhattan) to the goal neglecting all obstacles.

3.2. Multi-agent path finding
Multi-agent path finding (MAPF) is an extension of the problem to the case with multiple agents. While there
are several variants of the MAPF problem, for the purpose of this survey we start by introducing one of the most
general and commonly addressed formulations in the literature [149] [159].

3.2.1. Problem Definition
We define a MAPF problem on a graph G = (V ,E) and a set of k agents (a1, a2, ..., ak ). The vertices of G represent
the possible agent locations and the edges the possible transitions between locations. Each agent ai has a
unique start vertex si ∈V and a unique goal vertex gi ∈V . At every discrete time step t j , each agent can either
perform a move action and traverse an edge of G to move to a new location, or perform a wait action and stay
at its current location. A conflict occurs when two or more agents occupy the same vertex or traverse the same
edge in the same timestep. The problem consists in finding a conflict-free path for each agent from its start to
its goal location, where a path pi for agent ai is a set of actions such that, if executed from si , it will lead the
agent to gi [149].

3.2.2. Centralized vs distributed MAPF
MAPF instances can be grouped into two high-level categories: centralized and distributed [149]. In centralized
MAPF, a central computing body is assumed to have full knowledge of the state and plans of all agents, and
uses it to compute a solution for the entire system (all agents) while attempting to minimize a system-wide
cost function. In distributed MAPF, each agent is responsible for computing its own path and different conflict
resolution strategies can be used, the most common being some form of prioritization [31][32] whereby lower
priority agents replan their paths treating the paths of higher priority agents as fixed obstacles. Other conflict
resolution approaches that have been tested include taxation schemes [16], auctions [6] and bargaining [125].

56
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Distributed MAPF approaches are useful in the modeling of complex real-life systems with large numbers of
agents since they tend to be computationally cheaper than centralized approaches [41], in which complexity
scales exponentially with the number of agents. This is especially true in MAPF instances where the agents’
tasks are loosely coupled [17] and conflict density is low. Centralized approaches however, offer more tractabil-
ity over solution cost and typically stronger optimality guarantees.

The urban UAS literature initially focused on centralized approaches to path finding [72][71], which are also
vastly more popular within the broader MAPF community. However, as explained in Section 1.4.2 the most
recently proposed UTM architecures suggest a high degree of decentralization. Decentralized networks have
demonstrated to be substantially more robust, resilient and agile compared to centralized networks for a num-
ber of applications [175][12][123] and are seen as a more suitable paradigm for UTM [34]. Recent work has
therefore taken a decentralized stance to MAPF in an urban UAS context [4], envisioning a situation in which
multiple service providers manage their own UAV fleets and coordination between service providers is achieved
via negotiation and without the need of centralized directives. However, the path finding problem per service
provider is solved centrally via ECBS [11], meaning that a large part of the reasoning remains centralized.

3.2.3. Solver properties
There are several classes of solvers available for MAPF problems, and in order to appreciate the differences
between them we must first introduce three key properties of algorithms: soundness, completeness and op-
timality [13]. Soundness guarantees that any solution that is returned is valid; in the context of pathfinding,
an algorithm is sound if any set of paths returned leads all agents from their start to their goal locations in a
conflict-free manner. Completeness guarantees that the algorithm will find a solution if it exists. Optimality
implies that the algorithm will terminate with a solution that maximizes or minimizes a predefined cost func-
tion. Based on these definitions, we can distinguish between three general types of solvers:

• Optimal: complete, sound and optimal. Optimal solvers will search all possible arrangements of agents
in G for each time step if necessary, and are guaranteed to return a solution that is optimal in the cost
function, provided that it exists.

• Suboptimal: sound and complete, but not optimal. A set of conflict-free paths will be returned if it exists,
but there is no guarantee that this set of paths will be optimal in the cost function.

• Bounded suboptimal: sound, complete and guarantee that the solution cost will lie within a set bound
(typically defined by the user) of the optimal cost.

Solving MAPF problems optimally has been shown to be NP-hard [187] since the dimension of the state space
scales exponentially with the number of agents, so it may be impractical to deploy optimal solvers for problems
with a large number of agents. That is why much of the recent literature has focused on proposing bounded
suboptimal variants of optimal solvers for use in large MAPF problems where the objective is to find a solution
relatively quickly while retaining some degree of tractability over the solution cost.

3.2.4. Cost functions
Most of the work on MAPF has focused on minimizing one of two system-wide cost functions, namely makespan
and sum of costs. Makespan is the total number of time steps required until all agents have reached their
goal [159][150][149][166]. Sum-of-costs is the sum over all agents of the time steps required to reach their
goal [45][159][150][148]. Traditionally, search-based approaches have focused on the sum-of-costs objective
and reduction-based approaches on the makespan, but recent work has addressed both objectives using both
types of solvers [168]. Recently, an alternative MAPF objective related to the makespan has emerged, in which
the goal is to maximize the number of agents reaching their goal within a certain time interval [100]. Another
high-level cost function measures the total distance travelled by all agents, and is referred to as fuel [53].

A series of studies have deviated from the system-wide cost representation and instead formulated and solved
MAPF problems in which each agent has its own cost function to minimize [91]. Some have treated agents as
self-interested, and devised mechanisms to lead them to cooperate. Bnaya et al. [16] introduced a taxation
framework to incentivize self-interested agents to avoid collisions and avoid locations in which a traffic jam
would otherwise occur. Their Iterative Taxation Framework (ITF), assigns taxes to specific (location, time) tu-
ples in such a way as to lead agents to choose trajectories that lead to higher social welfare. However, their
framework is not guaranteed to maximize social welfare, is not strategyproof since strategic agents can achieve
lower taxes by reporting their goals untruthfully, and only supports homogeneous agents since the cost associ-
ated to traversing any edge is required to be constant over all agents. Amir et al. [9] address the weaknesses of
the taxation approach by formulating self-interested MAPF as an iterative combinatorial auction (CA) [117]. In
their representation, agents bid iteratively on bundles of paths and an auctioneer allocates conflict-free paths
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to the agents. This CA formulation allows to solve self-interested MAPF instances while guaranteeing strate-
gyproofness and optimality.

3.2.5. Overview of MAPF solvers
There are a number of solvers available for MAPF problems with different computational properties. Figure 3.1
shows a breakdown of the most prominent classes of solvers, which can be broadly split into optimal and
(bounded) suboptimal approaches. We study the relevant solver classes and discuss state of the art techniques
within each class. Throughout the analysis, we identify the solvers which are most applicable to planning in
the context of UAV delivery, and focus our attention on those. We do not discuss all techniques to the same
level of depth, but rather provide arguments as to why specific approaches are not deemed highly applicable
to the UAV delivery problem and therefore not discussed in as much detail as others. In Section 3.8, we provide
a summary of the findings on each class of MAPF techniques, and perform a comparative evaluation between
state of the art solvers in each class.

Figure 3.1: Overview of MAPF solver classes.

3.3. Reduction-based solvers
This class of optimal solvers emerged in recent work and reduces MAPF to well-studied problems in mathe-
matics and computer science. Examples include reductions to SAT [167], Answer Set Programming (ASP) [48]
and Integer Linear Programming (ILP) [186]. Efficient commercial solvers, such as CPLEX or Gurobi for ILP, can
then be used on the reduced problem instance. The majority of reduction-based approaches were developed
to minimize the makespan objective, and adjusting them to address other objectives is not trivial and may re-
quire an entirely new reduction. This class of approaches therefore provides very little flexibility in the cost
function.

In SAT-reduction approaches, the structure of the graph, the agents’ locations and all constraints are encoded
into boolean variables, and an SAT formula is generated that determines whether there exists a valid solution
with cost K . The optimal solution is then determined via a search over all costs K [54]. Surynek et al. devel-
oped the first SAT-based solver applicable to the sum-of-costs MAPF variant. They also introduce an improved
variant, MDD-SAT, that uses special compact data-structures known as multi-value decision diagrams (MDDs)
[156] to restrict the number of propositional variables that appear in the SAT formula. They showed that MDD-
SAT can be competitive with state of the art search-based solvers for cases in which there is a loose enough
runtime constraint (≈ 100 seconds for a Dragon Age problem from the movingai repository [161] with 16 agents
- Ost003d), especially when the number of agents is low and the obstacle density is high [169]. Note that high
obstacle density is an advantage for SAT-based solvers since there are less available nodes and therefore less
variables in the SAT formula, whereas they are a disadvantage for search-based solvers.

MDD-SAT is considered to be the state of the art reduction-based solver and the only one able to compete
with search-based approaches, albeit only for specific problem instances. However, we are concerned about
its applicability to urban UAS operations given that the associated MAPF problem instances will involve a large
number of agents and a much lower obstacle density than traditional MAPF formulations, and these are exactly
the scenarios in which MDD-SAT performs worst. The limited flexibility in the cost function would also restrict
our analysis to minimizing either the makespan or the sum-of-costs, since an entirely new SAT encoding would
be required to explore alternatives.
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3.4. Search-based optimal solvers
Search-based optimal solvers are perhaps the most influential class of MAPF techniques, and can be classified
into three main variants: A* based optimal solvers discussed in Section 3.4.1, Increasing Cost Tree Search (ICTS)
discussed in Section 3.4.2 and Conflict Based Search (CBS) discussed in Section 3.4.3.

3.4.1. A*-based optimal solvers
A* is an iconic single-agent pathfinding algorithm (discussed in Section 3.1), but it can also be extended to
MAPF problems by deploying it on a global search space that includes the states of all k agents . We call this
the k-agent state space and it is made up of all the possible ways to arrange the k agents into all |V | vertices.
As discussed in Section 3.1, chosing an admissible heuristic guarantees optimality of A*-based approaches. In
MAPF, several choices for the heuristic are possible. The simplest is to take the sum of the individual heuristic
of every agent, which is typically the Manhattan or Euclidean distance to the goal while ignoring all obstacles
[141]. A more informed admissible heuristic is the sum of individual costs heuristic, which sums the costs of
the optimal paths for each agent to its goal, neglecting all other agents. While the heuristic can be calculated
in runtime by solving a single-agent path finding problem at every node [153], it can also be pre-computed by
running a breadth-first search from an agent’s goal to every free vertex to improve runtime performance [159].

Limitations of A* for MAPF
The branching factor bag ent of a single agent is the amount of vertices that the agent is able to move to at a
given timestep. For instance, on a traditional grid bag ent = 5, since the agent is able to move in four directions
(N ,S,W,E) or wait and stay at its current vertex. An important observation regarding A* for MAPF is that the
effective branching factor, that is the combined branching factor for all k agents, is exponential in k and is
bounded above by b = bk

ag ent . While most of the time it will be somewhat less than bk
ag ent since not all moves for

all agents will be legal, the state space will still be prohibitively large for problems with many agents. Consider
for instance a MAPF instance with 15 agents on a four-connected grid. The branching factor b = 515 = 3.05∗1010

so we may need to generate 3.05∗1010 possible states to explore at every time step, which could be unfeasible
from a computational perspective. In addition, when A* expands a state, it stores all of its possible successors
in a list OPEN of next states to be expanded. When the list of successors is very large as in our example, we
can quickly run into issues when trying to store all of them in memory. Several improvements were made to
speed up multi-agent A* and to make it scale up better with the number of agents: Independence Detection (ID),
Operator Decomposition (OD) and Enhanced Partial Expansion (EPEA*).

Improvement 1: Independence Detection (ID)
Rather than a separate algorithm in itself, Independence Detection is a framework due to Standley [160] that
groups agents into distinct groups, determines optimal paths for each group separately and then solves con-
flicts via merging. Initially, all agents are are assigned to their own group and optimal paths are found inde-
pendently for each group via A*. The paths of all agents are then checked for conflicts between each other. If
a conflict is found, an attempt is made to find an alternative conflict-free optimal path for either of the con-
flicting agents. If this process fails for both agents or two agents that had already conflicted before are found
to conflict again, then they are merged into a group and a MAPF instance is solved for the group collectively.
This process is repeated until there are no conflicts between any of the groups. Note that groups consisting of
multiple agents are also merged in the same way as described above. When a conflict between two groups G1

and G2 is found and it cannot be resolved by finding alternative optimal paths for the agents in either group or
the groups have already conflicted in the past, then they are merged into a single group G1,2 =G1 ∪G2.

Surplus nodes in A*
Provided certain restrictions are met, it is proven that A* expands the minimum number of nodes required to
find the lowest cost solution [40]. However, A* will also generate nodes that are actually not required to find an
optimal solution and will therefore never be expanded. These nodes are known as surplus nodes, and avoiding
these nodes from being generated can make the search much faster [59] [60]. The following two improvements
are designed to circumvent the generation of surplus nodes.

Improvement 2: Operator Decomposition (OD)
Similarly to ID, Operator Decomposition (OD) is a framework due to Standley [160] that can be applied on top
of A*-based algorithms to improve efficiency. The driving principle is to consider agents one at a time at each
time step. Agents are given an arbitrary order. When we expand an A* state, we now consider and assign only
the moves of the first agent. When we assign a move to the first agent we move to an intermediate state, which
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is defined as a state in which at least one agent has been assigned a move. From the intermediate node, we
then consider the moves of the next unassigned agent based on the arbitrary order we had fixed. generating
new intermediate states. Only once we have assigned a move to the last agent and therefore generated k inter-
mediates states, do we move to the next time step and generate a standard state. This effectively scales down
the branching factor b from bk

ag ent to bag ent , while increasing the depth of any goal state by a factor k.

Improvement 3: Enhanced Partial Expansion (EPEA*)
Enhanced Partial Expansion A* (EPEA*) is a highly efficient A* variant introduced by Goldenberg et al. [60],
that uses a priori knowledge of the problem to avoid generating surplus nodes.. It is actually an extension of
an algorithm that long preceded it, Partial Expansion A* [185] (PEA*), which already deals with the memory
aspect of surplus nodes. When PEA* expands a node N , all b = bk

ag ent children nodes are generated, but only
the ones with f = f (N ) are then placed into OPEN with the cost of the best ignored child (the one with the
lowest f -value). EPEA* takes this one step further and only generates the children of N with f = f (N ). This is
achieved via an Operator Selection Function (OSF) that, for a given expansion of a node N , is able to return: 1)
the set of children with cost f = f (N ) and 2) the minimum f -value among the nodes with cost f > f (N ). The
OSF is constructed by making smart use of knowledge regarding the domain and heuristic of the problem. For
instance, given the situation depicted in Figure 3.2 we could implement the following OSF: "if the goal is to the
North-West of the current location of the agent, then moving North or West will result in the same f-value, while
moving South or East will increase the f-value by two" [60]. The OSF would therefore tell us that from N we only
need to generate the nodes resulting from the "North" and "West" action. We store those nodes in OPEN with
cost f = f (N )+2 because the OSF tells us that is the cost of the best children with f > f (N ). If f (N )+2 becomes
the new best cost in OPEN, then we will re-expand node N and generate the nodes resulting from the "South"
and "East" actions.

Figure 3.2: Example of the implementation of an OSF in EPEA*. G is the goal and n is the node being
expanded. Taken from [60].

M*
Another prominent A*-based algorithm called M* was introduced by Wagner et al. [178]. M* aims to reduce the
branching factor where possible by dynamically adjusting it based on the number of conflicts. Crucial to M* is
the concept of dimensionality of a node N in the k-agent search space, which is the number of agents that are
not allowed to conflict. M* works on the global search space but starts by only allowing single agents to make
moves. Every time a node N is expanded, we generate one child node in which each agent executes one of its
optimal paths to the goal while disregarding other agents. We continue going down the search tree in this fash-
ion until a conflict between c ≥ 2 agents occurs at node Nc . We then move back to all the ancestor nodes of Nc ,
increase their dimensionality to c and put them back into OPEN. Upon expanding one of these nodes again,
our branching factor will be bc

ag ent since we will generate children for all combinations in which the c conflict-
ing agents make all available moves and the rest of the agents simply take their own individual optimal action
(disregarding the other agents). Since it was first introduced, M* was refined in several other contributions. A
variant called recursive M* (rM*) adopts the same idea behind ID and essentially splits the c conflicting agents
into groups of agents that have independent conflicts, and then solves the resulting subproblems recursively.
The latest extension of the algorithm termed ODrM* [55] uses rM* on top of A*+OD rather than simple A*, and
has been experimentally shown to be the best performing variant in the M* family both in terms of runtime and
hardness of solved problems. Felner et al. test it experimentally against rM* and A*+OD on an eight-connected
32x32 grid where each cell has 20% probability of being instantiated as an obstacle. The number of agents was
varied from 5 to 60 and 100 random environments were generated for each number of agents. Figure 3.3 sum-
marizes the results, with the percentage of instances solved within 5 minutes plotted on the left and the median
time to compute a solution plotted in logarithmic scale on the right. The time to solution plot is cut off when
a given percentage of trials reaches the 5 minute limit. ODrM* is shown to outperform both A*+OD and rM*,
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solving substantially more instances in all but the easiest problems with up to 10 agents. ODrM* solves 20% to
30% more cases than simple rM* for large problems and up to 60% more cases than A*+OD for problems with
20 agents, after which A*+OD is barely able to solve any instances within the time limit. Runtime performance
of ODrM* is also superior to rM*, because the OD framework allows ODrM* to expand less nodes than basic A*,
which underlies the rM* algorithm.

Figure 3.3: Results on an eight-connected 32x32 grid with 20% obstacle density of OD, rM* and ODrM*
for varying numbers of agents. Figure taken from [55].

3.4.2. Increasing Cost Tree Search (ICTS)
The Increasing Cost Tree Search (ICTS) algorithm is a widely used search algorithm for MAPF introduced by
Sharon et al. [150] that belongs to the recent class of algorithms which are fundamentally different from A*. It is
based on a two-level search, in which the high level searches for a minimum cost solution across combinations
of costs of individual agents, and the low level takes the cost combination from the high level and performs a
goal test (searches for a valid solution that achieves the cost combination).

High level: At the high level, ICTS performs search on a tree termed the increasing cost tree (ICT). Every node
N in the ICT consists of a k-vector of costs f (N ) = 〈C1,C2, ...,Ck〉 which represent the individual path costs
of each agent. All valid solutions that generate cost vector C , and which therefore have total cost

∑k
i=1 Ci are

represented by node N . Every level of the ICT contains only nodes with the same total cost, but different
distributions of costs between agents. The root R of the ICT has f (R) = 〈C∗

1 ,C∗
2 , ...,C∗

k 〉 where C∗
i is the cost of an

optimal path for agent ai to its goal disregarding all other agents. A child node of N is generated by increasing
the cost of one of the agents by one unit while keeping the other agents’ costs constant. We will generate k
children (an increase in cost for each agent) per node and can avoid duplicates by pruning. Figure 3.4 provides
an example of an ICT for a MAPF problem with three agents; red links represent duplicates which are pruned.
For each node N , we call upon the low level search to perform a goal check and verify whether there exists
a solution that leads to cost vector f (N ). The process is repeated until a goal node is found, at some depth
∆ in the ICT. Since at every level of the ICT the cost is increased by one, ∆ will be equal to the the difference
between the total cost of the goal node and that of the root node. Since the branching factor of the ICT (before
pruning) is k, the number of nodes generated is O(k∆). ICTS is therefore exponential in the parameter ∆, and
not in the number of agents k. This is a fundamental property of ICTS that makes it very different from A*-based

Figure 3.4: Example of an ICT for a three-agent MAPF
problem with optimal single-agent path costs

f (R) = 〈5,5,5〉. Red links represent duplicate children
nodes to be pruned.

Figure 3.5: Experimental results showing the
relationship between ∆ (the depth of the goal

node in the ICT) and k when using ICTS on a 3x3
grid. Taken from [150].
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approaches which are instead exponential in the number of agents. It is important to note that the parameter∆
is a constant for a given MAPF problem, since it is only dependent on the sum of costs of the optimal solution
and the sum of the optimal single agent costs. However, it can of course only be known a posteriori since it
requires knowledge of the optimal solution cost, and it is difficult to predict in advance although experimental
studies have shed light on which factors of MAPF problems most affect∆. Sharon et al. test ICTS experimentally
and conclude that the parameter ∆ is affected by i.a. the number of agents k, map topology, and density (ratio
of number of agents and number of vertices). Figure 3.5 shows the relationship between ∆ and k on a 3x3 grid,
with the horizontal axis representing the density of the MAPF problem. Results show that while k affects the ∆,
∆ can be substantially smaller than k for low densities. However, ∆ is superlinear in the density so eventually
catches up with k and from a certain density it will be larger than k. This suggests that theoretically ICTS should
perform better than A*-based approaches in maps with low density, such as urban UAS environments which
are three-dimensional and feature large open spaces.

Low level: At the low level, given a node N the objective is to find a valid solution with cost vector equal to
f (N ) = 〈C1,C2, ...,Ck〉. If such a solution is found, then it is the goal and the search is halted, else we return to
the high-level search and move on to a new node with a different cost vector. A simple approach to perform the
goal test would be to list all possible paths for each agent ai that have cost Ci , and then search for a conflict-
free combination of those paths. However, this can be impractical because for an agent ai the number of
paths with cost Ci is often exponential [150]. Sharon et al. circumvent this problem by using a special data
structure known as the multi-value decision diagram (MDD) [156], which compactly represents all the paths
with a specific cost available to an agent, and is structured as follows. Let us denote the MDD for agent ai

containing all paths with cost c as MDDc
i . The depth t of each node in the MDD corresponds to a location at

which agent ai could be at time t , that is on a path of total cost c from the start to the goal. MDDc
i always has a

single source node which corresponds to the starting location of the agent (level 0 corresponds to time 0), and a
single end node which corresponds to the agent being at the goal location at time tc . The MDD can be built by
performing a breadth-first search from the start location to discover each of the nodes reachable within c time
steps. Figure 3.6 provides an example of a MAPF problem and its respective MDDs. The low level search is then
performed on the k-agent MDD search space, which is the cross product of all k single-agent MDDs that are
associated with node N in the ICT, with conflicting combinations discarded. Every node in the k-agent MDD
space contains a vector of k different locations, one per each agent, at time t . Sharon et al. use a greedy depth
first search routine to search the k-agent MDD space, but note that any systematic exhaustive search would in
principle be suitable [150].

Figure 3.6: Example of a two-agent MAPF problem (left) and associated MDDs for ICTS. Two and three
step MDDs are shown for agent 1 and the two step MDD is shown for agent 2. Adapted from [150].

3.4.3. Conflict-Based Search (CBS)
Conflict-based search [149] is among the most widely used optimal search algorithms for the MAPF problem.
It has recently been applied to solve a MAPF formulation of the pre-flight conflict detection and resolution
for a UAV delivery service provider [72]. The driving principle behind CBS is the decomposition of the MAPF
problem into a series of constrained single-agent path finding problems. All agents are first initialized with
default and possibly conflicting paths, and then a two-level search is conducted.

High-level: Algorithm 5 shows the pseudocode for the high-level of CBS and MA-CBS (Section 3.4.4). At the
high-level, CBS performs search on a constraint tree C T whose nodes contain location and time constraints
for a single agent. Every node N in C T contains: (1) A set of constraints (N.constraints), each belonging to a
single agent. (2) A set of solutions (N.solution), which is a set of optimal paths for each agent consistent with
that agent’s constraints. (3) The total cost (N.cost) of the solution (typically calculated as the sum of all individ-
ual agents’ path costs), which we refer to as the f -value of the node. The root node (R) of C T is created with
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an empty set of constraints (lines 2-3), optimal paths are planned independently for all agents via the low-level
solver and the associated cost is updated accordingly (lines 4-6). From the root R, the high-level search begins
by finding the conflict 〈a j , ai , v, t〉 between a pair of agents that occurs first (line 10), and splitting it into two
child nodes of R with one constraint added to each node. One node will have constraint 〈ai , v, t〉 specifying
that agent ai cannot be in vertex v at time t , and the other node will have constraint 〈a j , v, t〉 specifying the
same for agent a j . Figure 3.7 illustrates this process of splitting a conflict into child nodes, based on the simple
explicative MAPF problem provided in [149]. Agents 1 and 2 will first collide at vertex D at time step 2 (con-
flict 〈1,2,D,2〉), so the two child nodes generated have constraints 〈1,D,1〉 and 〈1,D,2〉. For each of the child
nodes, the low-level search is invoked to generate shortest paths for each agent ai while satisfying the con-
straints associated with ai in node N and the node’s f -value is updated (lines 21-26). Conflict detection is then
performed again, by iterating through all time steps and all 〈v, t〉 tuples reserved by the agents. If no conflict
is found, the solution has been found and is returned (lines 11-12). Else, new children nodes are created with
the appropriate constraint and the process is repeated. Every new child node is added to an OPEN list (lines
27-28), and the high-level search proceeds with a best-first philosophy, meaning that the node in OPEN with
the lowest cost is selected as the next to be expanded.

Figure 3.7: Illustration of the split operation in CBS. Taken from [149].

Low Level: The low level search takes an agent ai and the set of constraints associated to ai at some node N . It
then generates an optimal path for agent ai that satisfies all constraints, while ignoring all other agents’ plans. It
is a single-agent pathfinding routine that treats conflicts translated into constraints from the high-level search
as hard constraints (e.g. we could think of them as obstacles in the environment). In principle, any optimal
single-agent pathfinding routine could be applied. In [149] the authors use A* and choose the spatial length of
the shortest path to the goal ignoring all other agents and constraints as their heuristic. In case two low-level A*
states have equal f -values, a tie-breaking policy based on a conflict avoidance table [159] is used. States that
lead to a conflict with a smaller amount of agents are preferred. This leads to paths that are less coupled and
drastically speeds up the low-level search routine, improving total runtime by up to a factor of 2 compared to
random tie-breaking.

3.4.4. Improvements to CBS
In its basic form, CBS arbitrarily chooses which conflicts to split into child nodes and arbitrarily chooses paths
in the low level. Poor choices can substantially increase the size of the C T and slow down the high-level search,
reducing the overall performance of CBS. Four separate improvements to CBS were presented to tackle this
problem [54]. The variant of CBS which combines all four improvement is termed Improved CBS (ICBS) [19],
and has been shown to be substantially more efficient than basic CBS.

Improvement 1: Meta-Agent CBS (MA-CBS)
MA-CBS [148] [149] was designed as a framework to mitigate the worst-case performance of CBS. CBS has been
shown to perform very poorly for sets of agents whose paths are strongly coupled, i.e. there is high conflict
density between these agents. The C T grows exponentially with the number of conflicts so these cases CBS
will tend to expand a substantially larger number of nodes than A*-based approaches (Section 3.4.1).

MA-CBS solves this problem by adding the possibility to merge agents whose paths are strongly coupled into a
single meta-agent (lines 13-20). The meta-agent is considered a single agent by the high-level routine of CBS,
but its state is a vector with the locations of the merged agents. Upon merging two agents ai and a j , their
constraints are first combined (lines 14-15) and then the low-level search is conducted only for the new meta-
agent a(i , j ) (line 16) and the node’s f -value is updated accordingly (line 17). It is not necessary to perform the
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Algorithm 5 CBS and MA-CBS

1: procedure CBS(agents A, graph G)
2: R = new_node
3: R.constraints = ;
4: for ai ∈ A do
5: R.solution = low_level_search(ai )

6: R.cost = sum_individual_costs(R.solution)
7: insert R into open
8: while OPEN is not ; do
9: N = lowest cost node from OPEN

10: C = search_first_conflict(N )
11: if C is ; then
12: return N .solution . N is the goal

13: if shouldMerge(ai , a j ) then . If block executes only in MA-CBS
14: a(i , j ) = merge(ai , a j ,v,t)
15: Update N .constraints
16: N .solution = low_level_search(a(i , j ))
17: N .cost = sum_individual_costs(N .solution)
18: if N .cost < ∞ then . A solution was found
19: Insert N back into OPEN
20: continue . Go back to the while condition
21: for ai ∈C do
22: P = new_node()
23: P .constraints = N .constraints + (ai , v, t )
24: P .solution = N .solution
25: P .solution = low_level_search(ai )
26: P .cost = sum_individual_costs(P .solution)
27: if P .cost < ∞ then . A solution was found
28: Insert P to OPEN

Figure 3.8: Experimental evaluation presented in [149] of CBS (a) and MA-CBS (b) compared to ICTS
and EPEA* on three standard maps from Dragon Age: Origin [161]. The horizontal axis shows the

number of agents and the vertical axis the success rate (in % of problem instances solved).
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low-level search again for all agents since their plans are not influenced by the merge action. Note that at the
low-level, the paths for the merged agents will be planned concurrently so the low-level solver will have to be
a MAPF solver rather than a SAPF solver as in basic CBS. As the high-level search progresses, a meta-agent
can be merged again with other agents or meta-agents. The merge action is only executed if the shouldMerge
condition (line 13) is satisfied for a pair of (meta-) agents ai and a j . The condition is set according to a merge
policy which aims to determine whether two agents’ plans are coupled strongly enough to warrant a merging
action. Sharon et al. [149] use a simple policy which proved effective in their experiments. Two agents ai and
a j are merged into a meta-agent if the amount of conflicts between them is found to be greater than some
quantity B , known as the conflict bound parameter. We denote the use of MA-CBS with this policy as MA-
CBS(B). Note that MA-CBS(∞) is equivalent to basic CBS since no merge action will ever be executed, and
MA-CBS(0) is equivalent to just using the search algorithm deployed at the low level to solve the entire MAPF
instance since all agents will be merged.

Sharon et al. evaluate MA-CBS experimentally on three maps from Dragon Age: Origin [161], the results are
shown in Figure 3.8. Three different maps are considered: map den520d (top) features a large amount of open
space and no bottlenecks, map ost003d (middle) has some open spaces and bottlenecks and map brc202d (bot-
tom) has very limited open space and abundant bottlenecks. The solver used for the low-level search is EPEA*
across all experiments (EPEA* is therefore equivalent to MA-CBS(0)). Results show that MA-CBS(B) with in-
termediate B values (0<B <∞) solves more problem instances than basic CBS, EPEA* and in most cases ICTS.
Basic CBS performs poorly on den520d (top) due to the large amount of open spaces, which allow for the pos-
sibility of large amounts of conflicts to occur in many different locations and result in a prohibitively large
C T . Merging on this map is very beneficial, which is why MA-CBS(10) is the best performing algorithm. As
we decrease the amount of open space and increase the amount of bottlenecks, the performance of CBS gets
comparatively better and on brc202d (bottom) it even outperforms MA-CBS(10). The best performing algo-
rithm on ost003d (middle) and brc202d (bottom) is the MA variant with the most conservative merging policy,
MA-CBS(100). Merging is less beneficial than in den520d (top), but nonetheless improves the performance of
CBS with a loose enough B . The conclusion to be drawn is that, while merging can improve the performance
of CBS, it is important to choose a suitable merge policy based on the characteristics of the MAPF problem at
hand. For environments with abundant open spaces and little bottlenecks, such as urban UAS environments,
low values of B are more efficient.

Improvement 2: Merge and Restart (MR)
A simple improvement on MA-CBS introduced by Boyarski et al. [19] consists in moving merge actions to the
root node of the C T . The rationale is that, if we had known a priori that two agents were going to be merged,
it would have been more efficient to perform the merge action ab-initio at the root of the C T rather than at
the node in which we discovered it. The insight is implemented as follows. Once a decision to merge a set of
agents has been taken at some node N of the C T , we delete the current C T and essentially restart the search by
creating a new C T in which at the root node those agents are already merged into a meta-agent. This scheme
is called Merge and Restart (MR) and, while very straightforward and simple to implement, it has been shown
to significantly reduce computational effort in MA-CBS.

Improvement 3: Prioritization of Cardinal Conflicts (PC)
A conflict C = 〈ai , a j , v, t〉 between a pair of agents at some C T node N can be classified in three types [54]:

• Cardinal: if adding any of the two constraints that follow from conflict C (〈ai , v, t〉 or 〈a j , v, t〉) to N and
then performing the low-level search for the constrained agent results in a path of higher cost for that
agent compared to the cost in N , therefore increasing N .cost. This means that for both agents ai and a j ,
all feasible optimal paths to their goals required traversing vertex v at time t .

• Semi-cardinal: if adding one of the two constraints that follow from C to N increases N .cost, but the
other constraint does not change N .cost. This means that for one of the agents, all feasible paths to its
goal required traversing vertex v at time t , but for the other agent there is at least one alternative that
does not require traversing vertex v at time t .

• Non-cardinal: if neither of the two constraints that follow from C increase N .cost. This means both
agents have optimal paths to their goals that do not go through vertex v at time t .

In CBS+PC, when some node N is expanded, all its conflicts are examined and if a conflict is found to be cardi-
nal, it is chosen for splitting. Let us suppose that N .cost=c, then the children nodes will both have cost greater
than c. If there exists another node in OPEN with cost c, then it will be chosen next for expansion. Otherwise,
if we had chosen a semi-cardinal or non-cardinal conflict, we might first have to expand the children nodes
and could thereby end up generating a large subtree of N with the same cost c, carrying the cardinal conflict
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through every node until we choose it and resolve it [19]. This may cause many more nodes to be expanded
than necessary and slow down the high-level search routine.

Improvement 4: Bypassing conflicts (BP)
In case a non-cardinal or semi-cardinal conflict at node N is chosen for expansion, the BP routine tries to avoid
splitting the conflict by changing the path of one of the agents instead. BP looks ahead to the children of N . If
the solution in one of the children of N includes a different path with the same cost for the conflicting agent
but without the conflict, then BP takes this path and incorporates it into N without needing to generate any
child nodes. This process can reduce the size of the C T substantially and improve efficiency in the high-level
search.

3.5. Rule-based solvers
These solvers specify agent movement rules for several scenarios and usually do not involve exhaustive search
procedures. They are structured in such a way as to guarantee fast convergence to a solution by trading off
solution cost, and are therefore known to often return solutions which are far from optimal [54]. They also
usually only work on graphs with special properties, which can make them inapplicable to a wide range of
problems.

Recent examples of algorithms in this class are the tree-based agent swapping strategy (TASS) [82] and Push
and Swap and its variants [142][97][39]. Both algorithms run in polynomial time but are not optimal and are
only complete on specific types of graphs. TASS is complete only for tree graphs (bipartite and acyclic), a
requirement which we deem far too restrictive in order to apply it to MAPF within the context of urban UAS
operations, since it would not be possible to represent a realistic operational environment in which UAVs need
to reach goal nodes (to e.g. deliver a parcel) and then return to the starting position (e.g. an operator’s hub or
charging station) this way. Push and Swap, although it has been experimentally shown not to fail on general
graphs in which there are at least two unoccupied vertices [23], is formally only complete for tree graphs and
therefore also deemed unsuitable. Another example of a class of frequently studied rule-based solvers is BIBOX
[164] and its variants, namely diBOX [18] and BIBOX-θ [165]. While these solvers have been shown to be highly
efficient and complete on biconnected graphs which is also highly restrictive, since already a traditional grid-
like environment in which no diagonal moves are allowed fails to fit this description. A rule-based solver which
is shown to be complete on a useful set of graphs, namely those with at least two unoccupied vertices, is a
recent variant to Push and Swap called Push and Rotate [39], which is considered the most general rule-based
solver available. However, it does not provide any performance guarantees and solutions are typically far from
optimal on large problems [54].

3.6. Search-based suboptimal solvers
Search-based suboptimal solvers are typically concerned with finding relatively good solutions (often close to
optimal), typically trading off completeness. There are two distinct classes of suboptimal search approaches.
The first is a decentralized A* framework called Hierarchical Cooperative A* whereby agents plan paths indi-
vidually and different approaches can be implemented for conflict resolution. The second class is made up of
relaxed version of popular optimal search-based algorithms.

3.6.1. Hierarchical Cooperative A* (HCA*)
The Hierarchical Cooperative A* framework was first introduced by Silver [153], and the driving principle be-
hind it is to decouple the MAPF problem into a series of single agent searches. Each agent is planned individu-
ally according to a predefined order, which is to be chosen sensibly based on the characteristics of the problem
at hand. Upon planning their paths to their goals, the agents store the states they will occupy while travers-
ing the paths into a system-wide reservation table. The structure of the reservation table should be tailored to
the specific MAPF problem and made flexible enough to account for e.g. agents of different sizes, speeds, or
dynamic definitions of conflicts (for instance varying separation requirements for UAVs in urban areas) if re-
quired by the problem. Once paths are in the reservation table, they are blocked and other agents are forbidden
from occupying the same states. A simple way to implement a reservation table in a classic three-dimensional
MAPF problem is as a four-dimensional grid 〈x, y, z, t〉 where agents reserve combinations of space and time.
On problems with low density only a relatively small proportion of entries in the grid will be reserved, so an
efficient way to implement it is as a hash table, hashing on a randomly distributed function of the 〈x, y, z, t〉 key
[153]. In principle, any admissible heuristic can be used to guide the search in HCA*, with distance (Manhattan
or Euclidean) to the goal being the most commonly used.
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An online variant of HCA* called Windowed Hierarchical A* (WHCA*)[153] only performs the cooperative search
to a fixed depth w , meaning that other agents’ reservations are only considered within the planning window
associated to w and are ignored in the rest of the search. Cooperation is performed in a rolling way in run-
time, as the agents execute their paths. Each agent first plans a partial conflict-free path within the window
(ignoring other agents outside the window) and once the agents have reached a set point in their paths (e.g.
halfway) the window shifts forward and new partial paths are computed if conflicts with other agents’ reser-
vations are found. Every time the window shifts forward, the agents’ priority order can be shuffled to avoid
a biased distribution of the reservation table among the agents. A recent enhancement of WHCA* [15] only
places windows around conflicts which are discovered in an offline planning phase and agent prioritization
within these windows is established via a mechanism called conflict oriented prioritization, which assigns an
order to the agents in a conflict window based on an estimate of which order will result in the minimal sum of
costs upon replanning. All possible orderings are considered, and for each order the cost is estimated heuristi-
cally by summing all the resulting individual agent path costs while ignoring all future conflicts. In a window for
conflict c = 〈v, t , A〉, where A is the set of conflicting agents, we only need to check |A|! combinations and not
all k ! possible orderings as the other agents will not replan. So this approach works well in practice since |A| is
usually a relatively small number, with the exception of bottlenecks in which several agents can conflict at the
same time step. In principle, other prioritization mechanisms could be used, for example based on direction
maps [75] or negotiation mechanisms in settings where the agents are self-interested.

One of the main weaknesses of HCA*-based approaches is that they are impractical to use on very dense prob-
lems, in particular those with bottlenecks. This is because one agent’s reservation can block all paths available
for the other agent to reach its goal, causing a deadlock. HCA*-based approaches are therefore not complete
since in the presence of deadlocks there may not exist a priority order that allows all agents to execute their
plans and the algorithm cannot guarantee that a solution will be returned if it exists. They also provide no
optimality guarantees and can therefore return solutions which are far from optimal, particularly in dense en-
vironments with a large amount of potential conflicts. In these environments we expect most of the agents’
optimal paths to be substantially different from their own single-agent optimal paths, and therefore more so-
phisticated cooperation mechanisms should perform better. However, in environments with large open spaces
HCA* could prove an interesting alternative because it is highly efficient and flexible, and the presence of dead-
locks is unlikely. It is a distributed MAPF approach and therefore lends itself well to problems in which agents
have different cost functions or interests, which may be the case for UAVs in the shared low altitude airspace.
It would be interesting to compare performance to optimal search-based solvers and verify experimentally
whether an HCA*-based approach could be a useful substitute by analyzing the trade-off between computing
time and solution cost in an urban UAS scenario. The lack of completeness, however, remains a major point of
concern and further work should be conducted into understanding which problem instances will cause dead-
locks and how to circumvent these, should this algorithm be chosen for implementation.

3.6.2. Suboptimal variants of CBS
While CBS has and its variants perform very well on a wide range of problems as discussed in Section 3.4.3,
they are still exponential in the number of conflicts and therefore do not scale very well in environments where
a large number of conflicts are possible. Two main suboptimal variants were devised to improve the speed of
CBS in these scenarios: Greedy CBS and Extended CBS.

Greedy CBS (GCBS)
GCBS is a suboptimal and complete variant of CBS in which the main idea is to relax the optimality constraint
in both the high-level and low-level search of CBS, by using a greedy approach in which nodes that are most
likely to produce a valid but possibly suboptimal solution quickly are preferred [11]. At the high-level, GCBS
chooses the node that is seemingly closest to the goal, as measured by a conflict heuristic hc whose objective
is to prefer nodes that will generate less conflicts down the line and are therefore more likely to lead to a goal
node. While several choices of hc are possible, Barer et al. investigate the following ones experimentally:

• h1 Number of conflicts: number of conflicts encountered at the CT node

• h2 Number of conflicting agents: number of conflicting agents that have at least one conflict at the CT
node

• h3 Number of conflicting pairs: number of conflicting pairs of agents at the CT node

• h4: Vertex cover: vertex-cover of a graph in which the agents are the nodes and edges only exist if agents
are conflicting.

• h5: Alternating heuristic: existing work shows that search performance can often be improved by cy-
cling through different heuristics if multiple ones exist, rather than using the same one throughout the
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problem [136] [172]. In h5, the above heuristics are alternated in round robin fashion.

While the best performance is achieved by using h5 and the fastest heuristic is h1, Barer et al. note that the
overall performance of GCBS does not vary much with the choice of heuristic. It is suggested to choose h3

because it offers the best tradeoff between simplicity and performance, and is robust across different kinds of
problems. All heuristics above are not admissible or bounded admissible, meaning that as noted GCBS will not
generate optimal or bounded suboptimal solutions.

To relax the low-level search, simple suboptimal solvers (such as Weighted A*) should be avoided, because they
may return longer paths with a large number of high-level conflicts. Rather, we should use conflict heuris-
tics to relax the low-level. Instead of returning the optimal single-agent path that does not violate any of the
constraints imposed by the high-level, we perform a best-first search in which paths with a lower number of
conflicts are preferred. This way, the low-level search will sacrifice optimality but return paths with the mini-
mum number of conflicts with already planned agents, which speeds up the high level.

Bounded suboptimal extensions to CBS
Bounded CBS (BCBS) and Enhanced CBS (ECBS) [11] are complete and bounded suboptimal extensions of
GCBS that use the concept of focal search at the high and low level.

Focal Search: In focal search there are two sets of nodes. The first is the regular OPEN list used in A*-based
approaches. The second is the FOCAL list which contains a subset of the nodes in OPEN. The search is based
on two arbitrary functions, f1 to determine which nodes of OPEN are to be inserted in FOCAL and f2 which
guides the search and chooses which node in FOCAL to expand next. This is denoted as focal_search( f1, f2).
The FOCAL list is constructed by including all nodes n in OPEN that satisfy f1(n) ≤ w ∗ f1,mi n , where w is a
user-defined suboptimality factor and f1,mi n is the minimum value of f1 across all nodes in OPEN. Provided
that the heuristic f1 is admissible, focal search guarantees that the solution will have cost no larger than w ·C∗,
where C∗ is the cost of an optimal solution.

BCBS: In BCBS, the high-level uses focal_search( fh ,hc ) on the CT, where fh is the cost of the CT node n and hc

is a conflict heuristic used in GCBS. At the low level, focal_search( fl ,hc ) is applied, where fl (n) corresponds to
the regular A* cost g (n)+h(n) and hc is again one of the conflict heuristics from GCBS. We use the notation
BCBS(wh ,wl ) for the use of BCBS with a bound wh on the high-level focal search and a bound wl on the low-
level focal search. If any of the weights is equal to 1, we are effectively not using focal search for that level but
are rather running an optimal search since FOCAL only takes the minimum cost node(s) from OPEN. Barer et
al. show that for any wh ,wl > 1 the cost of the solution is bounded above by wh ·wl ·C∗, so if the objective is to
generate a solution within a factor w of the optimal cost, then we can select any combination of weights such
that wh ·wl = w . The case BCBS(∞,∞) corresponds to GCBS since FOCAL will take all nodes from OPEN, and
consistently with the definition above is unbounded since the product of the weights is infinitely large.

ECBS: ECBS is considered the state of the art suboptimal CBS solver and it extends the idea of BCBS further by
providing more flexibility in the focal search. ECBS(w) uses the same low-level as BCBS(1,w), with w therefore
referring to the bound for the low-level focal search. For a given CT node n, let fmi n(i ) be the lower bound on
the cost of an optimal consistent path for an agent ai being planned in the low-level. Then LB(n) = fmi n(n) =∑k

i=1 fmi n is the lower bound on the cost of n and the upper bound is w ·LB(n) since the low-level will only
consider paths with cost of at most w · fmi n . Every time the low-level search is run for a CT node n, it returns
n.cost and LB(n). LB(n) is then used to populate the FOCAL list as follows: FOCAL = {n|n ∈ OPEN,n.cost ≤
LB · wL}, where LB is the minimum LB(n) across all nodes n in OPEN. LB is clearly the lower bound on the
solution to the entire problem (LB = C∗), given that it corresponds to the lowest cost solution that could be
possibly generated by the low-level for the best node in n. Therefore, every node in FOCAL has cost within
factor w times the cost of an optimal solution, and the cost of a solution returned by ECBS is at most w ·C∗.

Barer et al. test the bounded suboptimal variants of CBS experimentally with varying bounds in a range of
domains. Figure 3.9 shows the results for 5x5 (a) and 32x32 (b) grids, and a DAO map (c) which is substantially
larger and therefore the MAPF problems tested in that domain are much less dense than on the smaller grid
maps [11]. Results are only shown for the best values of w tested, which vary significantly across the different
domains. In the DAO map, only very small values of w led to faster solution times, whereas in the smaller
grid environments only large values of w showed substantial improvements over CBS (which is equivalent to
BCBS(1,1)). Results show that with the appropriate choice of w ECBS is able to solve more instances than all
other variants across the three domains tested, scales much better than CBS with the number of agents and is
able to maintain high solution rates even at relatively high densities. On the 32x32 grid for instance, ECBS(1.1)
is able to solve nearly 100% of the instances at a density of ≈ 6% (60 agents) and over 60% of the instances
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at a density of ≈ 10% (100 agents)1. ECBS is therefore an attractive alternative to the search-based solvers
described in section Section 3.4 if the MAPF problem at hand proves too hard to be solved optimally within
reasonable computing time. While Barer et al. suggest that low values of w are more effective in low density
environments, such as environments for urban UAS MAPF, there are few experimental studies that actually
describe the nuances of the behavior of ECBS with varying w . Since it is clear that the optimal value of w is
largely dependent on the characteristics of the specific MAPF problem, it is suggested to experiment with a grid
of w values and analyze the performance of ECBS in terms of solved instances and computing time, should this
algorithm be chosen for implementation.

Figure 3.9: Experimental comparison of bounded CBS variants in different domains [11].

3.7. Hybrid solvers
A class of suboptimal MAPF algorithms consists of a hybrid between search-based and reduction-based algo-
rithms, combining search routines with movement rules. For example, hybrid approaches for grid-based envi-
ronments have been developed in which each vertex is associated to a set of directions in which the agents are
forced to move, with the goal of limiting the chance of conflicts and reducing the branching factor of each node
and therefore the dimension of the state space [74] [180]. These approaches are designed to be highly efficient
and require good a priori knowledge of the domain and the problem in order to generate effective movement
rules, otherwise the solutions should be expected to be far from optimal. In general, these approaches are not
complete as they may run into deadlocks, particularly in the presence of bottlenecks. Given the complexity
associated to establishing movement rules for each vertex in the large, open three-dimensional domains that
characterize urban UAS problems, and the lack of completeness, these algorithms in their general form are not
deemed suitable. The idea of associating movement rules to specific areas or scenarios, however, is a useful
takeaway from these approaches. For instance, it could be useful to establish specific movement rules for UAVs
in proximity of high-density areas such as charging stations, pick-up or delivery locations.

Another example of a hybrid MAPF approach is called MAPP [181]. The main logic behind it is to compute a
main path Pi for each agent along with an alternative sub-path for each pair of successive steps of the agent.
Whenever an agent’s path is found to be blocked by another agent, it must avoid the conflict by switching to one
of its alternative paths. However, this approach is only complete on slideable graphs, meaning that: (1) given
three nodes ni−1,ni ,ni+1 on a path P there must always exist an alternative path A that connects ni−1 and ni+1

while not not going through ni . A bottleneck is a good example of a common MAPF situation that does not
meet this property. (2) The first node in any agent’s path must be empty, and (3) no agent’s goal location can
interfere with the main or alternative paths of other agents. This definition is highly restrictive and no variants
of MAPP have been proposed to generalize the solver to a broader class of problems.

3.8. Comparative evaluation of MAPF solvers
Table 3.1 presents a summary of the findings on the MAPF solver classes discussed in this chapter. State of the
art techniques in each class are identified and compared further by means of a tradeoff. The tradeoff is based
on the following equally weighted criteria, which are given a score between 1 and 3 roughly corresponding to
"Low", "Medium" and "High" in comparative terms unless an alternative description is given:

• Completeness: since this is a highly desired property of a MAPF solver, a score of 3 is given if the solver
is complete on classes of graphs that are general enough to represent a realistic grid-like urban environ-
ment and a score of 0 if it isn’t.

• Optimality: the optimality guarantees of the algorithm translate into the following scores: (3) optimal, (2)
bounded suboptimal with tunable bounds, (1) bounded suboptimal with fixed bounds, (0) no solution
quality guarantees.

1recall that density in a MAPF problem is the number of agents divided by the number of vertices. The 32x32 grid has 1024 vertices, so the
density for 60 agents is 60

1024 ≈ 6% and for 100 agents it is 100
1024 ≈ 10%.



3.8. Comparative evaluation of MAPF solvers 70

 
 

Solver 

class 

State of the 

art 

technique 

Characteristics 
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Search-based 

A*-based 
A*+OD+ID 

and EPEA* 

• Exponential in number of agents 

• Best in dense maps with small number of agents  

• Well-studied, relatively easy to implement and functions as low-

level solver for several other algorithms 

ICTS ICTS 

• Two-level search approach that is exponential in 𝛿, so effective 

in low density maps 

•  𝛿 is smaller than the number of agents for low density maps, 

larger for high density maps. See Figure 3.5 for more details 

• Not as extensively studied as other search-based optimal 

approaches, less improvements and extensions available 

CBS 
(MA/I)-

CBS 

• Exponential in number of conflicts, so highly effective in 

structured maps and in the presence of bottlenecks 

• Considered the most mature coupled MAPF solver, extensively 

tested and several improvements available 

Reduction-

based 
SAT MDD-SAT 

• Reduces MAPF to boolean satisfiability problem 

• Extremely fast for small, dense graphs but does not perform well 

in large open spaces 

• Very limited flexibility in the cost function   
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Search-based 

CA* HCA* 

• Most effective and well-studied decoupled MAPF solver 

• Highly computationally efficient and suitable for online use 

•  No optimality or completeness guarantees, but empirically 

shown to perform well in large open spaces and several deadlock 

resolution mechanisms effectively implemented in the literature 

Relaxed 

optimal 

solvers 

ECBS 

 

• State of the art suboptimal variant of CBS based on focal search 

• Optimality bound can be specified by the user, but computational 

time scales non-trivially with the bound 

Rule-based 

Push & 

Swap and 

variants 

Push & 

Rotate 

• Rule-based methods are generally only effective for specific 

kinds of graphs 

• Push & Rotate is only complete for graphs in which at least 2 

vertices are free at all times 

• Performs poorly on large maps, and solutions are typically far 

from optimal 

Hybrid  MAPP 

• Only complete on slideable graphs, highly restrictive 

representation that does not translate to urban UAV delivery 

setting 

Table 3.1: Summary of findings on MAPF solvers.
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• Computational efficiency: is a measure of the running time required for the solver to return a conflict-
free solution, which is related to its complexity and the degree of parallelization that it allows.

• Flexibility: reflects how easily the solver can be adapted to a different type of MAPF problem and the
extent to which it can retain its properties in the process. This includes the amount of modifications
required to change the cost function representation, and how well performance generalizes to different
problems and environments, with e.g. varying size, obstacle density, number of agents, heterogeneous
agents.

• Scalability: is a measure of the extent to which the solver is able to retain its computational efficiency as
the number of agents and the size of the environment increase.

• Suitability for online use: reflects how suitable the solver is to be used as part of an online planning
mechanism in the UAV delivery coordination context. This is not only related to the robustness and the
computational efficiency of the solver, but also to the degree of centralization in the planning. Decoupled
MAPF solvers are more naturally suitable for online use because a single UAV can react to changes in local
knowledge by replanning its own path without affecting the other agents’ plans. In a standard coupled
MAPF scenario, instead, all agents would have to replan their paths if a single UAV wishes to updated its
own path due to a change in local knowledge.

• Performance in urban-like environment: relates to how well the solver performs, in terms of success
rate, in an environment that is representative of the urban low-altitude airspace. Such an environment
features large open spaces and low fixed obstacle density, although in high-density applications such as
deliveries the number of agents can be large.

• Implementation complexity: is a measure of how complex the solver is to implement, including how
memory-efficient it is.

A*+OD+ID EPEA* ICTS (MA/I)-CBS MDD-SAT HCA* ECBS
Push &
Rotate

MAPP

Completeness 3 3 3 3 3 0 3 3 0
Optimality 3 3 3 3 3 0 2 0 0
Computational efficiency 2 2 1 1 1 3 3 2 1
Flexibility 2 2 2 2 1 3 2 1 1
Scalability 1 1 1 2 1 3 2 1 2
Suitability for online use 1 1 1 1 1 3 1 2 2
Performance in urban
-like environment

1 1 3 2 1 2 2 1 1

Implementation complexity 2 2 2 2 2 3 1 2 2
Maturity 3 2 2 3 2 3 2 2 1
Total 18 17 18 19 15 20 18 14 10

Table 3.2: Comparative evaluation of MAPF solvers.

The results of the tradeoff are shown in Table 3.2. The reduction-based (MDD-SAT), rule-based (Push & Rotate)
and hybrid (MAPP) solvers receive the lowest total score. This is expected because they are tailored to specific
types of MAPF problems, for which they are complete and typically substantially more efficient than search-
based approaches. However, their properties do not translate well to less structured problems and large, open
environments. The state of the art optimal search-based approaches have similar properties which result in
comparable overall scores, with (MA/I)-CBS slightly outperforming the other solvers. It beats the A* variants
since the latters’s complexity is exponential in the number of agents and they therefore have poor scalability
and performance in an urban-airspace like environment, in which the agent density may be high especially
for delivery applications. (MA/I)-CBS outperforms ICTS due to higher maturity, since it is much more thor-
oughly studied and tested. In case the runtime of CBS is found to be too high for realtime use, then the solver
could be enhanced via focal search to the suboptimal ECBS variant, which gives tractability over the solution
quality-computational time tradeoff by allowing user-defined suboptimality bounds. Given the added com-
plexity associated to the ECBS variant, it would be recommended to use it only if it was empirically shown to
be necessary to reduce the computational time of the MAPF solver.

The decoupled suboptimal HCA* outscores (MA/I)-CBS and obtains the highest score among all solvers. It
is therefore deemed the most applicable MAPF solver to the UAV delivery coordination problem. While it is
not complete and provides no performance guarantees, it is highly computationally efficient and has been
shown to perform well in large, open environments where the probability of deadlocks is low. Several deadlock
resolution mechanisms have also been successfully implemented in the literature. Among the main strengths
of HCA* is that it is highly suitable for online use, since changes in the local knowledge of a UAV can be acted
upon through path replanning without affecting the other UAVs’ plans.
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A key observation is that HCA* also fits very well with the sequential auction-based task allocation framework
chosen in Chapter 2. Suppose we are at some round in which task t is on auction and let S = {S1, ...,Sn} be the
allocation at the beginning of the round, where Si is the subset of tasks allocated to agent ai . Suppose winner
determination is conducted and agent a j is found to be the winner of task t . The auctioneer can leverage the
decoupled nature of HCA* and simply pass to a j the planned paths of the other agents. The agent a j can then
add task t to its local schedule and plan a path through its new task set S j ∪ t while treating the other agents’
paths as obstacles, as per the HCA* approach. Since this does not change the plans of the other agents, the act
of assigning task t does not affect the cost of S. If we were to use a search-based optimal solver such as CBS,
instead, we would need to change the paths of multiple (possibly all) UAVs upon allocating task t . This would
change the distance travelled to execute tasks allocated previously, and thereby change the cost of the alloca-
tion S. This contradicts the hill-climbing logic that sequential auction-based task allocation mechanisms are
built on and leads to a loss of tractability over the final cost of the allocation. The simple theoretical guarantees
described in [89] and explained in Section 2.6, for instance, would no longer hold. To provide performance
guarantees using a coupled solver like CBS, bidding rules that take into account the effect of path planning on
previous allocations would need to be devised. This would require each agent to solve the path finding prob-
lem for the entire system before bidding, which is impractical from a computational perspective and would
also require the agents to have full knowledge of each others’ schedules at all times.



4
Research Proposal

In this chapter, we propose a research framework to address the UAV delivery coordination problem based on
the results of the literature study. We begin by defining the research objective in Section 4.1, which we translate
into a series of four research questions discussed in Section 4.2. Finally, in Section 4.3 we propose a work
breakdown to answer the research questions in a structured manner. Figure 4.1 provides an overview of the
research framework described in this chapter.

Figure 4.1: Research framework and work breakdown.

4.1. Research objective
Based on our analysis of urban UAV delivery in Chapter 1, we choose to focus on the coordination problem
because it is considered a fundamental technical challenge to solve in order to enable UAV deliveries in urban
areas. The focus is therefore on the development of a coordination framework for a fully cooperative fleet of
autonomous delivery UAVs. Not only will such a framework incentivize operators to make economical use of
the airspace, but it will also contribute to the development of UTM technology by allowing for a more accurate
modeling of delivery operations which are considered the most high density application. The problem also
poses novel challenges in multi-agent coordination, since it is substantially less structured and features much
more uncertainty than multi-agent routing or pickup and delivery problems already explored in the literature.
UAVs need to coordinate online and be able to accommodate changes in the characteristics of the tasks (e.g.
delays at the pickup point changing the start time of a task) as well as knowledge regarding the environment
(e.g. change in the location of no-fly zones or other airspace constraints communicated from the ANSP). In
light of this, the research objective is:

To develop and evaluate an online auction-based coordination mechanism for a cooperative fleet of
autonomous UAVs to allocate and plan on-demand pickup and delivery tasks in dynamic urban environments.
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4.2. Research questions
In order to achieve the main research objective, the following four core sub-questions are identified and broken
down further:

1. How can the operational setting for UAV delivery be characterized?

(a) What are the key characteristics of the urban low-altitude airspace?
(b) How can a typical urban environment be approximated and modeled?
(c) What assumptions can be made regarding the locations of the operator’s charging hubs?
(d) What assumptions can be made regarding the structure of the airspace and location of no-fly

zones?
(e) What communication architecture will exist between the operator and the UAVs?
(f) What are realistic performance limitations (e.g. range, top speed) for the UAVs?

2. How can a realistic "urban delivery as a service" (see Section 1.1) demand case be modeled?

(a) How can the demand for deliveries throughout the operating window be realistically simulated?
(b) Can open-source data regarding on-demand deliveries be identified and used to build the de-

mand case?
(c) Can census data be leveraged to determine a distribution of population density and thereby of

customers?

3. How can an online auction-based mechanism be developed to allow a UAV fleet to robustly allocate and
plan on-demand pickup and delivery tasks in a dynamic environment?

(a) How can auction-based task allocation mechanisms be extended to allow the UAVs to exchange
enough information to plan conflict-free trajectories?

(b) How should the UAVs value the delivery tasks and which bidding rule should be used?
(c) How should the UAVs perform local planning and scheduling of their tasks, and how should bat-

tery life constraints be accounted for in this process?
(d) How can real-time global replanning be leveraged to improve the overall allocation cost?

• Can task swaps be used to achieve a good tradeoff between solution quality and computational
cost? If so, how should these swaps be performed?

• Does clustering the tasks based on spatial and/or temporal characteristics improve the above
tradeoff? If so, which clustering procedures work best?

(e) Can multi-agent learning be used to improve system performance or bring down the computa-
tional cost?

• Can the UAVs learn to "follow the demand" and thereby incorporate future expectations into
their valuation of a task?

• Can the UAVs learn which tasks to bid on and which not to? And can this be used to reduce the
computation and communication cost?

(f) How can the coordination framework be made robust to UAV failures or losses of communication?

4. How can the performance of the proposed coordination framework be characterized and explained?

(a) What global performance indicators are most relevant to measure the performance of a UAV de-
livery system?

(b) Does the proposed framework provide any guarantees with respect to solution quality? If so,
which and how can these be proven?

(c) How can the robustness of the framework be quantified and tested?
(d) How well does the system respond to realistic operational problems such as communication fail-

ures, delays at pickup locations, changes in delivery locations or changing UTM constraints (e.g.
introduction of new no-fly zones)?

(e) How does the performance of the system vary with changing parameters (e.g. demand rate, envi-
ronment size, fleet size, obstacle density etc)?

(f) How do the structural assumptions of the model affect performance and how can they be vali-
dated?

(g) Can the results of the model be used to provide insight on the circumstances in which UAV deliv-
ery is most advantageous compared to existing delivery modes?

4.3. Work breakdown
In order to answer the above research questions in a structured manner, the following work breakdown struc-
ture is proposed. Note that a high-level formulation of the UAV delivery coordination problem, including rele-
vant types of agents and their characteristics, is already provided in Section 1.5.
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4.3.1. Model of environment and operational setting
This section of the project is concerned with answering research question 1, and developing a model of the
operational setting in which urban UAV deliveries will take place. Several of the subquestions are already an-
swered, to a certain extent, by the analysis provided in Chapter 1. Key modeling efforts to be addressed at this
stage include:

• Development of a two-dimensional model that approximates the layout of a modern city. A key choice
to be made here is whether to follow the layout of a specific city, or attempt to build a model that is
generalizable to several kinds of cities. Regardless, enough flexibility should be allowed to change the
structure of the environment (e.g. location and amount of obstacles) in the model analysis stage. This is
essential to understand the performance of the coordination framework.

• Placement of no-fly zones and other possible UTM-induced restrictions in the environment.
• Placement of the operator’s charging hub(s). In the model analysis stage, it may be of interest to change

the location or amount of charging hubs, so these parameters should be made as flexible as possible.
• Definition of relevant performance limitations of the UAVs. The analysis summarized in Table 1.1 already

provides good starting choices, but these should be further investigated and validated.

4.3.2. Model of delivery demand case
This package is concerned with answering research question 2 by developing a realistic demand case for the ur-
ban delivery as a service operating model. While there are several ways to set up the demand case, the following
general guidelines are proposed at this stage:

• Customer orders should be generated continuously throughout the problem and follow a sensible dis-
tributions (e.g. demand highs during typical dinner times for a food delivery case). In addition, the
probability of a customer spawning in a specific area of the city could be made proportional to the local
population density.

• Customer orders should include: a pickup location, a delivery location, and a desired delivery window
that the operator will try to respect.

4.3.3. Coordination model development
This is the main work package and involves developing the coordination framework that constitutes the ba-
sis of this thesis, thereby answering most parts of research question 3. The framework should allow agents
to perform online task allocation and path planning, such that delivery tasks received by the operator can be
allocated in real-time and without causing plan conflicts. A few preliminary choices regarding the structure
of the model follow directly from the findings of this literature study and can already be made. Firstly, the
task allocation problem is considered the driving element of the coordination framework and the one to be
investigated in most detail. This is because it is highly complex and several extensions to state of the art tech-
niques are required in order to capture the dynamism and planning constraints associated to the UAV delivery
problem. Path finding is considered of secondary importance, and this motivates the choice of approximating
the airspace as two-dimensional and not performing a detailed modeling of UAV dynamics and performance
constraints in the steps described in Section 4.3.1. We are, however, interested in capturing the coordination
aspect of path finding and ensuring that the UAVs are able to share enough information to plan conflict-free
4D trajectories, since given the high density of UAVs it may be impractical to rely solely on in-flight (sense and
avoid) conflict avoidance. This is why the techniques from the multi-agent path finding literature, which focus
precisely on the conflict resolution aspect of path finding but operate in simple grid-like environments, were
explored in Chapter 3, rather than approaches tailored to operate in three-dimensional continuous environ-
ments such as 3D-Field D* [25], or UAV-specific paradigms such as the highly effective quadratic programming
approach proposed by Mellinger and Kumar [104] and later extended by Bry and Richter [21] [134].

Figure 4.2 shows an overview of the basic coordination model we envision to treat the allocation of a customer
order in real-time. The representation draws upon the classes of agents described in Section 1.5. When a Cus-
tomer executes an order for an item to be delivered, it informs the Operator of the desired delivery window and
location. The Operator then coordinates with the Seller and collects information regarding the time at which
the item will be available at the pickup location, and the task allocation procedure is initiated. Based on the
analysis conducted in Chapter 2, we propose to use an auction mechanism for task allocation that builds on
the state of the art sequential auction variants studied. Each UAV computes its valuation for the task on auc-
tion by reasoning about the marginal cost or profit that it would incur in adding the task to its local plan, and
submits its bid to the auctioneer. The winning UAV is passed a token with the other agents’ plans and the latest
airspace constraints, and plans a path through its new schedule in a decoupled manner following the HCA*
approach described in Section 3.6.1. The UAV’s new path is logged in the token, which is then returned to the
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system. Once a UAV has finished executing a task, it informs the Operator and moves on to the next task in its
schedule. Note that the proposed architecture hinges on the assumption that the operator will be able to com-
municate with all UAVs throughout the problem. This is deemed achievable with emerging cellular (and/or
satellite) technology as discussed in Section 1.4.2. It is also the expectation of NASA and the FAA that the oper-
ator should maintain a stable communication link with its entire fleet. In the work package of Section 4.3.4, we
discuss the possibility of relaxing parts of this assumption and consider the situation in which communication
is limited or unreliable.

Figure 4.2: Preliminary model overview. Note that this represents a basic version of the model to be
developed, which only considers the allocation of a single task. It is to be extended to account for task

swaps and replanning procedures to better capture intertask synergies.

Within this work package, the basic version of the model depicted in Figure 4.2 should be enhanced by investi-
gating the following additional functionalities:

• Support task swaps among agents via a global replanning phase. This can occur either in a peer-to-peer
manner using a protocol such as the K-swaps mechanism described in Section 2.6.2 or via the auctioneer.

• Investigate different task clustering techniques to alleviate the computational burden in global replan-
ning. Sequential single cluster (SSC) auctions, discussed in Section 2.8, consider the clustering of pickup
and delivery tasks. However, the approach does not apply to time-constrained tasks as it does not con-
sider a temporal dimension in the clustering. It is also simplistic and does not capture inter-task syner-
gies. While the framework represents a good starting point, it should be substantially modified to capture
the complexity of the problem addressed in this thesis.

• Investigate different planning and task valuation frameworks at the UAV level. Representations that have
been used in the literature for temporally constrained tasks include simple temporal networks (see Sec-
tion 2.7) or looser formulations that involve solving a TSP with time-varying utilities. In the latter case,
an important choice to be made is whether to solve the problem exactly or heuristically.

4.3.4. Coordination model enhancement
While in principle fulfilling the steps of Section 4.3.3 would already constitute a substantial research contribu-
tion to both the multi-agent systems and the urban UAS communities, several opportunities for improvement
have been identified in this literature study and are captured by some of the sub-questions in research ques-
tion 3. If time allows, one or more of the following improvements can be investigated since they are deemed
promising and have not been addressed in the literature:

• Allow UAVs to explicitly consider uncertainty in their local planning and bidding procedures. Within the
UAV delivery setting, uncertainty can come both in the form of delays at the pickup point or in travel
times, for instance due to airspace congestion or the introduction of new no-fly zones during task exe-
cution. While there is extensive work in the VRP literature on strategies to consider planning uncertainty
[116] [115] [157], all are from a centralized perspective. In decentralized routing and task allocation, most
approaches take a reactive stance and perform replanning once an agent encounters disturbances that
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render the task execution no longer feasible [101]. Strategies to explicitly consider planning uncertainty
in decentralized task allocation are relatively unexplored, so it would be interesting to investigate whether
these can improve system performance in highly dynamic settings such as UAV delivery.

• Investigate the use of learning techniques to allow the agents to incorporate expectations of future de-
mand into their task valuations, and whether this can be used to improve system performance. This
would allow, for instance, a task that leads a UAV to a high-demand area and thereby offers high proba-
bility of a low-cost task in the future, to be valued at a premium. An interesting approach was proposed by
Mes et al. for distributed routing problems, where schedules are assigned an end value which is represen-
tative of how desirable the location-time pair at the end of the schedule is to the agent [106]. This setup
lends itself quite well to urban areas, in which features of neighborhoods such as population density are
likely to correlate well to delivery demand and thereby to the desirability of a given location.

• Investigate the use of learning techniques to allow the agents to decide which tasks they should go
through the computational effort of performing valuation (through hypothetical local planning) and bid-
ding. Given the inherent structure in routing-based task allocation problems such as the one addressed
in this thesis, it is likely that certain features of a task (e.g. time window or location) can be used to predict
whether the UAV’s bid will be sufficiently high to effectively win the task. If the UAV recognizes that it is
highly likely not to be assigned the task, then it could decide not to participate in the auction at all, saving
computation and communication cost.

• Allow the system to function under loss of cellular communication in the network. The principles of
consensus-based auctions could be used to allow the UAVs to converge to conflict-free plans under com-
munication via direct radio links with limited range, and thereby continue operating.

• Enhance the framework to handle multiple self-interested operators, each with its own UAV fleet. The
challenge here is to develop a negotiation protocol that the competing operators can use to efficiently
and fairly deconflict their operations, and incorporate it into the coordination framework. The most
applicable protocol from the multi-agent negotiation literature is the alternating offers protocol, whose
theoretical foundations are discussed in Appendix A.

4.3.5. Simulation and model analysis
Simulation experiments should be performed in order to validate the model, and measure and understand
its performance, as identified in research question 4. The demand case developed in the work package from
Section 4.3.2 will be refined and used for this analysis. The following are examples of parameters that could be
varied:

• Demand case: UAV fleet size, demand rate and distribution throughout the operating window, distribu-
tion of population density.

• Environment: environment size, obstacle density and location, location and/or number of charging
hubs.

• Traffic rules: simulations could be run under different traffic and routing rules which are being investi-
gated under the UTM framework (discussed in Section 1.4.2). No-fly zones could also be varied dynam-
ically throughout the problem to reflect changes in UTM constraints communicated in real-time by the
ANSP (see Section 1.4.2). This would allow us to test how traffic restrictions that could realistically be
imposed on delivery UAVs would affect the performance of the proposed coordination framework.

• Operational issues: to assess robustness, various issues that could occur in real life could be simulated.
These include communication issues such as ground or V2V link failure, as well as the complete failure
of the ground station or one or more of the UAVs.
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The alternating offers protocol for

multi-agent negotiation

The alternating offers protocol is a highly influential multi-agent negotiation protocol with a vast amount of
applications. It has been studied extensively in areas as diverse as economics, computer science and psychol-
ogy. In this appendix, we provide a general discussion of the theoretical foundations of this protocol, the reason
for which is twofold. Firstly, the protocol is a natural choice to address the problem of resolving conflicts among
multiple self-interested operators in the shared low-altitude airspace. It fits many of the desiderata provided by
NASA and the FAA as discussed in Section 1.4.2, and in recent work the protocol has been applied precisely to
strategic deconfliction within UTM [4]. Since the deconfliction problem is considered a possible extension to
the project or highly relevant direction for future work, it is important to review the foundations of the state of
the art technique to solve it. In addition, variants of the protocol could be used to complement the task alloca-
tion mechanism, for instance to allow distributed task swapping with limited information sharing. We begin by
elaborating on the bilateral negotiation case in Appendix A.1, discussing both single-issue and multiple-issue
negotiation. In Appendix A.2, we discuss how the alternating offers protocol can be extended to the multi-
lateral case, which is no trivial task. In line with the majority of the literature, we adopt the perspective that
negotiation constitutes a strategic activity and therefore that the negotiating agents act to maximize their own
utility and assume that other agents will do the same. Our analysis of the alternating offers protocol is therefore
grounded in game theory [102] [152].

A.1. Bilateral negotiation
Bilateral negotiation considers the scenario in which there are only two negotiating parties. Their preferences
may be directly contradicting as in the familiar buyer-seller example in which the issue is the price of the good
in question, or coupled in a more complex manner. The task allocation domain is an example of the latter case,
since one agent may be better suited for a particular task than the other and the agents may therefore have
different utility functions across the set of tasks to be allocated. We start by considering the simpler case in
which agents negotiate over a single issue, and subsequently elaborate on techniques which can be extended
to the multiple issue case.

A.1.1. Single issue negotiation
Negotiation over a single issue is the most intuitive formulation in the literature as it relates to several familiar
real-life situations. Examples include, for instance, the negotiation between a buyer and a seller over the price
of a secondhand car. Within the UAV delivery framework, this could instead be the negotiation between two
operators over priority in the airspace or how to split the cost of replanning required to avoid a conflict. We
begin by considering Rubenstein’s formulation of the single issue negotiation problem, in which two agents
a1 and a2 are bargaining over how to divide a "pie" (a resource) among each other [140]. For simplicity, we
normalize the value of the entire pie to be 1 unit. The pie is assumed to be continuously divisible, meaning that
any way in which the agents choose to split the pie is valid, provided that (1) each agent’s share of the pie is
between 0 and 1 and (2) the shares of the two agents sum to 1. The negotiation set is therefore N : {(x,1− x) :
0 ≤ x ≤ 1} where x is the share of the pie that goes to a1.

The most widely used protocol for single-issue negotiation is the alternating offers protocol, first explored by
Stahl [158] and later generalized by Rubinstein [140] [114]. It takes place over a series of rounds 0,1, ..., M . At
round 0, agent a1 begins by proposing a solution X 0 ∈ N , which agent a2 can either choose to accept or reject.
If the proposal is rejected, then a new round begins in which a2 makes a counteroffer which in turn can be
accepted or rejected by a1. The process, which is summarized in Figure A.1 continues until the agents are in
agreement. If the agents cannot reach an agreement, we call the outcome of the protocol the conflict deal C .
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In order to analyze this protocol, we make the assumption that the agents seek to arrive at an agreement no
matter what and therefore prefer any possible solution X ∈ N to the conflict deal C [114] [49].

Figure A.1: Illustration of the alteranting offers protocol. Figure taken from [49].

Infinite-horizon alternating offers protocol
Let us begin by considering the infinite-horizon case, in which there is no time limit on the negotiation and
therefore the amount of offer rounds is in principle unbounded. The strategy set of both agents is S(t = n) =
{Offer(xn ∈ N )}∪ {Accept, Reject}. That is, at each time step n the agent can either propose an offer in the
negotiation set, or accept or reject a proposal. Suppose that agent a1 plays the following strategy: always
propose (1,0) and reject any counteroffer that is different from (1,0). Since agent a2 prefers any deal to the conflict
deal C , its best response to a1’s strategy is simply to accept the proposal even if it is the worst available deal to
him aside from C . This situation constitutes a Nash equilibrium since both agents are best responding to each
other’s strategies. It is straightforward to see that in this setting, there will exist a Nash equilibrium pair of
strategies for any given solution X ∈ N and it will be reached in the first round [49]. Therefore, there exist an
infinite number of Nash equilibria. To observe this, note that we could replace a1’s strategy with always offering
any deal X ∈ N and rejecting any different deal, and a2’s strategy would still be of accepting the offer.

Clearly, in the above scenario the concept of Nash equilibrium is not particularly useful because it allows the
negotiation to end in an infinite number of ways. The reason is because we failed to account for the fact that
bargaining itself has a cost. In practice, the agents’ time has some value and therefore both agents will prefer
any solution X to occur at round n rather than round n + 1. By incorporating this degree of "impatience"
in the agents’ utility functions, we can arrive at a unique equilibrium solution. There are two fundamental
modifications we can make to the agents’ utility function in order to achieve this, namely assuming that the
cost of bargaining is fixed, or that it compounds over time and is captured by an exponential discount factor.

Fixed bargaining cost: If we assume the cost of bargaining to agent ai to be a constant ci > 0, then we can
write ai ’s utility from a deal in which he gets share x at time t as ui (x, t ) = x − ci . Given this utility function,
Rubinstein proves the following [140]. Suppose a1 moves first:

• If c1 < c2 there is a unique subgame perfect equilibrium at (1,0) in the first round1.
• If c1 > c2 there is a unique subgame perfect equilibrium at (c2,1− c2) in the first round.
• If c1 = c2 = c there is a subgame perfect equilibrium for any split in which both agents get at least c.

Discount factor: Now we assume instead that the cost of bargaining for the agent compounds over time. This
model is more representative of the way in which humans value time2 and is much more widely used than
the fixed bargaining cost model. The utility function for a share x at time t is then ui (x, t ) = x ·δt

i , where δi

1This is easily seen, because a1 is more "patient" than a2 (time is worth less to a1 than to a2) so he can credibly make the same threat as
previously discussed of always offering (1,0) and rejecting any other proposal. Given this strategy, a2 has no choice but to accept and is
better off doing so immediately.

2In the vast majority of the literature tackling real-life human negotiation problems, utility takes the form of money. Human "impatience"
is then captured by the fact that money today is worth more than the same quantity at a later date due to its potential earning capacity,
which is exponential since money can earn compound interest. This phenomenon is best captured by the discount factor model.
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is a constant discount factor between 0 and 1. The larger δi is, the more patient agent ai is since time is less
valuable to him. On the other hand, the smaller the discount factor, the larger the opportunity cost of failing to
reach an agreement within a round, and therefore the more impatient the agent will be.

Let us attempt to derive an equilibrium for a general negotiation problem carried out via the alternating offers
protocol with the above discount factor formulation, using the method outlined in [140] [147] [130]. Suppose
agent a1 is the first mover and that the game starts at time t . Let M be the maximum share that a1 can possibly
get at time t . Now let us proceed by backward induction and consider the time step t −1 in which a2 proposes
and a1 responds. Given that M is the maximum a1 will receive at time t , at time t −1 agent a1 will accept any
share greater than or equal to δ1M . Agent a2 is therefore certain to be able to propose δ1M and retain 1−δ1M .
It follows that at time step t −2, a2 will accept a proposal if it grants him at least δ2(1−δ1M). Therefore a1 will
never be able to secure a share greater than 1 - δ2(1−δ1M), implying that:

M = 1−δ2(1−δ1M) =⇒ M = 1−δ2

1−δ1δ2
(A.1)

It is straightforward to observe that if we repeat the same reasoning above to find the minimum value that
a1 could secure at time t , we arrive at the same expression as in Equation (A.1). Therefore the situation in
which the negotiation is concluded in the first round with a1 getting share M constitutes a unique equilibrium
solution XE where:

XE =
(

1−δ2

1−δ1δ2
,
δ2(1−δ1)

1−δ1δ2

)
(A.2)

Note that this equilibrium is clearly subgame perfect since we have arrived to it via backward induction. It is
also Pareto optimal since the shares sum to 1, and it is reached instantly. These properties are highly desirable,
but it must be noted that the agents’ shares are highly dependent on who moves first.

Finite horizon alternating offers protocol
In practice, many negotiation problems will need to be concluded within a finite amount of rounds. We can
enforce this by imposing a deadline d by which the agents need to have reached an agreement, otherwise the
negotiation is deemed to have failed resulting in the conflict deal C . If we let the negotiation begin at time t = 1,
then ai ’s utility from receiving a share x at time t is:

ui (x, t ) =
{

x ·δt−1
i t ≤ d

0 t > d
(A.3)

In the case where δ1 = δ2 = δ, it is relatively straightforward to show that there is an equilibrium and which will
lead to an agreement in the first time step. Suppose once more that a1 is the first mover, then a1 will look ahead
until the deadline d and reason by backward induction. If d = 1, then a1 is in an absolutely dominant position
and can offer (1,0) and a2 needs to accept to avoid the conflict deal C . If d = 2, then a2 can guarantee at least δ
by rejecting the first offer and proposing to get the entire share δ at the second time step; a1 will therefore offer
(1−δ,δ) and a2 will accept. If d = 3, a1 can guarantee δ2 by rejecting until the third time step and proposing
to get the entire remaining share δ2. However, he can do better than this by observing that a2 can do no better
than offering (δ2,δ−δ2) in the second round because he knows a1 can guarantee δ2 via the aforementioned
strategy. a1 can therefore offer (1−δ+δ2,δ−δ2) at the first time step and a2 will accept. Extending this reasoning
to an arbitrary deadline d , we obtain that the equilibrium XE is:

XE =
(

d−1∑
k=0

(−1)k ·δk ,1−
d−1∑
k=0

(−1)k ·δk

)
(A.4)

The above equilibrium is Pareto optimal, and dependent on the discount factor δ, the deadline d and which
agent moves first3. Figure A.2 summarizes an insightful analysis conducted in [49] showing the effect of the
deadline d and discount factor δ on the equilibrium solution. Much of the negotiating power comes from the
share of offer rounds the agents have. We can view every odd round as an increase in the utility a1 can generate
and every even round as an increase in the utility a2 can generate, which explains the (out of phase) oscillatory
nature of the two agents’ equilibrium shares. The magnitude of the oscillations decreases exponentially and
converges to zero with increasing d . We can also observe that patience dilutes the advantage of the first mover.
With increasing δ, the advantage of the first mover converges to zero. Note that for δ= 1, we have the situation
in which the last mover gets the entire pie because time no longer plays a role in the agents’ utilities and the
last mover’s threat of continuously proposing (1,0) and rejecting any other offer is therefore credible.

3Note that the same reasoning can be applied to the case in which δ1 6= δ2 and an equilibrium which will lead to an agreement in the first
time step can still be found via backward induction, provided both agents know each others’ discount factors. For a thorough analysis of
this scenario see the original work of Rubinstein [140].
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Figure A.2: Variation of the equilibrium outcome with the discount factor δ and deadline n. The
continous line represents the first mover, the dotted line the opponent. Figure taken from [49].

Imperfect information
For now, we have analyzed the alternating offers protocol assuming perfect information, which has allowed us
to derive tractable equilibria for both the infinite and finite horizon cases and reason about which characteris-
tics of the negotiation problem affect such equilibria. In many practical applications, however, the agents will
be missing some information about parameters of the negotiation problem, such as the other agent’s discount
factor. These situations should be modeled as games of imperfect information[64]. A practical way to approach
this is to follow the method of Harsanyi [63] and assume that every agent follows the Bayesian approach to
solve the imperfect information negotiation game[49]. Every agent generates a probability distribution over
all parameters which are unknown to him or on which there is some degree of uncertainty. The agents will
then play in such a way as to maximize their utility given such probability distribution. This means that they
will play a mixed strategy profile with the pure strategies and associated weights matching point values in said
probability distribution4. This may increase the amount of time required to reach an equilibrium agreement
and lead to non Pareto optimal outcomes.

A.1.2. Multiple issue negotiation
We now extend our scope to include situations in which two agents need to negotiate over more than one is-
sue. This would allow us to represent, for instance, the situation in which two UAV delivery operators need to
negotiate over how to distribute the replanning costs due to multiple conflicts in the airspace or over how to
divide planning priority among these conflicts. In order to analyze the problem of negotiation over multiple
issues, we need to reason about the sequence in which the issues will be addressed. We call this the negotiation
procedure. The procedure could, for instance, dictate that the issues be resolved one by one in sequence or
all at once. It should be carefully designed because, along with the way in which the agents spread their pri-
ority among the issues, the procedure dictates the agent’s strategic behavior [144] [170] and the quality of the
resulting equilibria[49].

Let us denote the set of issues in contention as I = {1,2, ...,m} and normalize the magnitude of each issue to
one as in the single-issue case, meaning that every issue constitutes a "pie" of unit size. We will focus on the
situation in which the negotiation must occur within a deadline d and the cost of bargaining is modeled via the
discount factor representation, which as discussed in Appendix A.1.1 is the most realistic approach. The space
of possible outcomes is no longer one dimensional as in the single-issue case, but rather the cross product of
the negotiation sets of all individual issues. A deal X over all the issues is therefore an m-tuple X =〈X1,...,Xm〉 of
single-issue deals. The agents may need to reason about the cumulative utility that arises from all the single-
issue utilities contained in X , weighted by some personal evaluation of the importance of said issues. Each

4Formally, the aforementioned probability distribution represents the agents’ belief system.
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agent therefore has a cumulative utility function U (X , t ) that maps a time t and deal X to a single value of
utility.

There are three main negotiation procedures for multiple issue negotiation, namely the package-deal proce-
dure, the simultaneous procedure, and the sequential procedure [121][56]. We will discuss each in the context
of perfect and imperfect information.

Package-deal procedure
The package-deal procedure (PDP) is essentially an extension of the alternating offers protocol discussed in
Appendix A.1.1 to the multiple-issue case. The rules are similar, in that one agent makes an offer and the other
can choose to accept it, or reject it and make a counteroffer at the next time step. However, an offer must
include a proposed split for every issue in contention, and is therefore of the form 〈(x1, y1), ..., (xm , ym)〉 where
xi is the share of issue i to agent a1 and yi is the share of issue i to agent a2. The responding agent can only
accept or reject the entire offer and is not allowed to respond only to a subset of issues. Agent ai ’s cumulative
utility function takes the following form:

U1(X , t ) =
m∑

j=1
ui , j (X , t ) (A.5)

Where ui , j is ai ’s utility for issue j alone. This single-issue utility function is similar to that discussed in Ap-
pendix A.1.1, but includes a weight wi , j for issue j . For a1, this is:

u1, j (x, t ) =
{

w1, j · x j ·δt−1
i t ≤ d

0 t > d
(A.6)

For both agents, the key here is to make an effective tradeoff between the shares gained in each of the issues,
in such a way as to maximize cumulative utility [81]. Let us analyze such a tradeoff. Suppose that at time t it
is a1’s turn to offer. Then a1 should make a proposal X such that a2 gets its discounted utility for t +1. If the
proposed share were smaller, a2 would not accept. For a single issue, there existed a single offer satisfying this
condition and it was relatively straightforward to determine it via backward induction as we did previously. In
the multiple-issue case, however, there are multiple suitable offers and the offering agent needs to determine
the one that maximizes its own utility. This results in the following optimization problem:

For agent a1:

max
m∑

k=1
w1,k xk

s.t. δt−1
m∑

k=1
(1−xk )w2,k = UB(t +1)

0 ≤ xk ≤ 1 for 1 ≤ k ≤ m

(A.7)

For agent a2:

max
m∑

k=1
w2,k xk

s.t. δt−1
m∑

k=1
(1−xk )w1,k = UA(t +1)

0 ≤ xk ≤ 1 for 1 ≤ k ≤ m

(A.8)

The above optimization problem is a fractional knapsack problem and can be solved in polynomial time with a
simple greedy approach[35]. Let us explain a suitable greedy approach from the perspective of a1. Compared to
a traditional fractional knapsack problem, the difference is that we effectively start with a full knapsack, which
is the deal 〈1,0 〉 = 〈(1,0), ..., (1,0)〉 in which a1 gets the entire share of all issues. Then, a1 needs to gradually
empty the knapsack by conceding utility to a2 across the issues until a2 is granted U2(t + 1). To do this, a1

should take as much as possible in the issue k with the highest
w1,k
w2,k

, then move on to the issue with the second

highest weight ratio and so forth. This is because the higher
w1,k
w2,k

, the more utility can be granted to a2 per unit

loss of a1’s utility.

We can proceed once more via backward induction, looking ahead to the deadline t = d and then reasoning
backwards, to determine the agents’ equilibrium strategies. If negotiation reaches t = d , then the offering agent
has all the power and can propose to get the entire share of all the issues in contention and the responding
agent is forced to accept to avoid the conflict deal. For any round other than the deadline, the offering agent
should propose the deal that maximizes its own utility while ensuring that the responding agent’s utility is
equal to the cumulative utility it would get by rejecting and proposing its optimal offer in the next time step. If
such condition is satisfied, the receiving agent should accept the offer. This is the solution to the optimization
problem in Equation (A.7) and Equation (A.8). It is easy to see that, when both agents play the above strategy at
t = 1, the equilibrium agreement is instant. The outcome is also Pareto optimal, since all deals that constitute a
solution to Equation (A.7) and Equation (A.8) sum to δ(t−1) over all issues, and the agreement is instant meaning
that the cost of bargaining is null and the equilibrium outcome sums to 1 over all issues.



A.1. Bilateral negotiation 83

Simultaneous procedure
In the simultaneous procedure, negotiations over separate issues are considered as independent. There are
effectively m single-issue negotiations running in parallel as separate problems. In each single-issue negotia-
tion problem, the agents use the alternating offers protocol. From the discussion in Appendix A.1.1, we know
that each single-issue problem has a unique equilibrium which occurs at the first time step and that can be
derived via backward induction for both the infinite and finite horizon cases. Since all negotiations are con-
ducted in parallel, we will reach a unique agreement over all m issues in the first time step. As we have seen
in Appendix A.1.1, the first mover has an advantage which varies based on characteristics such as the discount
factor and the negotiation deadline. In this procedure, the agents need to decide who will move first in each of
the m single-issue negotiation games. While this could be the same agent across all games, the first mover is
usually varied or alternated across the issues to dilute the first mover advantage.

This procedure is highly time-efficient, tractable and simple to implement. However, the outcome will not
necessarily be Pareto optimal. As we have seen in the PDP case, there are multiple deals which the receiving
agent will accept, but only one which will maximize the offering agent’s utility. In order to find such deal, the
offering agents needs to perform a trade-off across the issues and decide which issues to concede most on
and which to be more aggressive on (see Equation (A.7)). By forcing the agents to conduct all negotiations
simultaneously, we do not allow them to conduct such tradeoffs and therefore generate an inefficiency which
compromises the Pareto optimality of the outcome.

Sequential procedure
The sequential procedure is divided into m stages, one for each issue, in which the issues are negotiated one by
one. Every stage is split into discrete time periods and is assigned a deadline d̄ . If an agreement is reached for
an issue at some time period before the deadline, then the stage for that issue terminates and the stage for the
next issue begins. There are two different ways of implementing this procedure, namely the independent and
simultaneous implementations [49].

Independent implementation: Here, we consider the case in which the agreement over an issue is effective
immediately, within the stage in which it is being negotiated. Each stage is therefore analogous to the finite
horizon single-issue negotiation problem. From Appendix A.1.1, we know that the offering agent’s equilibrium
share of the issue is

∑n−1
k=0

(
(−1)k ·δk

)
. We also know that the equilibrium agreement is unique and is reached

at the first time step. Therefore, if we treat the issues in sequence it will take exactly m time steps to reach an
agreement over all issues. However, the outcome may not be Pareto optimal because we are again not allowing
the agents to perform trade offs across the issues.

Simultaneous implementation: The difference here is that, while we still treat the issues sequentially in stages,
we only allow an agreement to be effective after all issues have been agreed upon. If the agents fail to reach an
agreement on any issue, then all agreements on previous issues will be dropped and the entire negotiation for
all issues will fail. Fatima et al. show that also in this case there exists a unique equilibrium that will be reached
in m time steps and can be found via backward induction [49]. Compared to the independent implementation
case, the equilibrium outcome is distributed differently across the issues because all issues are discounted until
the final agreement is made at time step m. The equilibrium is, once more, not Pareto optimal for the reasons
discussed previously.

Imperfect information
There are several possible sources of uncertainty in multiple-issue negotiation, namely the opponent’s dis-
count factor, utility function and the negotiation deadline. A straightforward way to deal with this uncertainty
is, like in the single-issue case, to apply standard expected utility theory [57].

Let us illustrate this concept first to the PDP by considering a scenario with symmetric uncertainty about the
discount factor δ. Both agents have the same discount factor, but they do not know its value with certainty. The
discount factor δ can take a finite number of values δ1, ...,δn . The agents build a probability distribution over all
possible values such that Pi = P (δ= δi ). The agent’s expected utility is then E [Ua](x, t ) =∑

Pi ·δt−1
i ·ui , j (x, t = 0)

The problem is now the same as in the perfect information case, except that instead of fixed utilities we con-
sider expected utilities. Suppose a1 is the offering agent at time t . Agent a2 will propose a deal that maximizes
its own expected cumulative utility while providing a2 with at least its expected cumulative utility for the next
time step. This is the solution to a fractional knapsack problem virtually identical to Equation (A.7), but with
expected (probability weighted) utilities instead of fixed utilities [49]. It can be solved using the same greedy
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approach discussed for the perfect information case and the same strategy profile5 will lead to a unique sub-
game perfect and Pareto optimal equilibrium. Fatima et al. show that these same equilibrium properties also
hold in games with symmetric and asymmetric uncertainty about the agents’ utility functions [51], and with
symmetric uncertainty about the deadlines [50].

We can apply the expected utility logic to the simultaneous and sequential procedures as well. In these two set-
tings, the procedure to derive equilibria with imperfect information is virtually identical to that applied in the
perfect information case. The only difference is that the utilities for the single-issue negotiation problems are
expected utilities given the agents’ (joint) probability distribution over the uncertain parameter(s). Fatima et
al. prove that in games with symmetric and asymmetric uncertainty about the utility functions [51], and sym-
metric uncertainty about the deadline [50] or discount factor [49], both for the simultaneous and sequential
procedure6 there exists a unique equilibrium. Clearly, the equilibrium does not guarantee Pareto optimality
since for neither of the two procedures was this the case in the perfect information setting. Little fundamental
research has been conducted regarding games with asymmetric uncertainty on the deadlines and discount fac-
tors. To the best of our knowledge, there exists no formal proof regarding the behavior of the PDP, simultaneous
or sequential procedures in these types of games.

A.2. Multilateral negotiation
We have until now discussed protocols and procedures for negotiation between two agents only. However,
within the UAV delivery coordination problem we will come across instances in which more than two agents
need to negotiate. This will happen, for instance, if more than two operators are involved in a conflict and need
to negotiate to resolve it. In this section, we discuss extensions of the alternating offers protocol that apply to
the multilateral case.

A.2.1. Extensions of the alternating offers protocol
Extending the alternating offers protocol to the multilateral case is not straightforward. Consider the situation
in which there are three agents and each agent’s approval is required for every offer that is made. Suppose a1

begins by making an offer, and a2 and a3 must approve or reject. If both approve, an agreement is reached and
the game ends. If a2 or a3 reject, then a new round begins in which a2 offers and a1 and a3 respond, and this
process continues until an agreement is made. Every player here has, at every time step, the power to veto any
offer. This means that for any deal to be final it needs to be agreed upon unanimously by all agents. Osborne
and Rubinstein [114] study this game extensively and show that it leads to multiple equilibria. In fact, they show
that for sufficiently patient players, any deal in the negotiation set is backed by a subgame perfect equilibrium.

Several attempts have been made in the literature to alter the alternating offers protocol with rules that lead to
a unique and tractable equilibrium. Chae and Yang propose a protocol in which agents perform a sequence of
bilateral negotiations [27]. Let us return to our three-player example and suppose a1 is the first to offer. Then
a1 chooses a specific player, say a2, to make an offer to. Say a2 accepts, then he exits the negotiation and can no
longer offer in the same round. a1 then makes an offer to a3. If a3 accepts, an agreement has been reached. If
a3 rejects, a new round begins in which a3 offers (takes the role of a1 here). Several similar sequential bilateral
protocols have been explored in the literature [80] [26], and each of them is shown to result in a unique subgame
perfect equilibrium.

Other approaches obtain desirable equilibrium properties by imposing negotiation deadlines [47]. In particu-
lar, Wu et al. [184] provide a protocol which is highly general and can produce Pareto optimal outcomes also in
the presence of multiple issues. For the general case with m issues and n players, the protocol is as follows. In
each round, every agent proposes a deal over all m issues, but only including the share of the resource he wants
for himself. The next agent can then read the offers that have already been made and either accept them and
make an offer for his own desired share, or reject the entire sequence of offers and refrain from making an offer
in the current round. If any agent rejects the offers then the round ends and a new one begins, possibly with
a different ordering. If, instead, in any given round, all agents make an offer, then an agreement is reached. If
the negotiation exceeds the deadline, the result is the conflict deal C . The agents bid according to an order that
must be specified before the negotiation begins and cannot be changed, but can be different for each round.
The authors make the assumption that all agents are benevolent, meaning that given two outcomes to which
they are indifferent but to which the other agents are not, they will choose the outcome that to the best of
their knowledge maximizes social welfare (and therefore is best for the other agents). Under the benevolence

5Again with expected instead of fixed utilities.
6Meaning the sequential procedure with both the simultaneous and independent implementation mechanisms.
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assumption and in a complete information setting, there exists a strategy profile for all agents that constitutes
a unique subgame perfect equilibrium that leads to a Pareto optimal agreement in the first round, if such an
agreement exists. It is straightforward to see why this is the case. Similarly to the PDP, the agents here perform
a tradeoff over all issues and identify the shares of all issues they should offer to keep for themselves in order
maximize their own utility and provide the other players with the discounted utility they would receive in the
next round by performing the same tradeoff. If there exist multiple offers that satisfy this criterion, due to the
benevolence assumption the offering agent will choose the one that maximizes social welfare. Since all agents
prefer an agreement to occur earlier rather than later and they are benevolent, this agreement will occur in the
first round and no value is wasted due to the cost of bargaining. The outcome is therefore Pareto optimal.
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A
Sensitivity and robustness analysis

In the scientific paper, we focus on analyzing the sensitivity of the system to the parameters that are most
interesting in the context of the algorithms put forward in our work. We vary, for instance, the risk threshold
and the weight of the risk in the bidding rule. This is to understand to what extent the system can leverage
execution risk and test how much weight it should be given in the bids in order for pTeSSI to distributed it
effectively among the agents. We also vary the re-auction threshold to gain insight into how different levels of
re-auctioning affect the performance of pTeSSI, and do the same for the distance threshold in our bundling
mechanism for pTeSSB. These analyses are all fundamental as they form the basis of the main conclusions of
the study.

In this chapter, we perform additional analysis by varying two structural parameters which were kept fixed
across the simulations, namely:

• the width of the delivery windows of the customer orders
• the size of the UAV fleet

A.1. Overview
We seek to understand whether large variations in the above parameters could affect the main conclusions of
this work. We vary each parameter in both the positive and negative direction, and assess the sensitivity of
the total deliveries executed by the system and the average auction duration under both the pTeSSI and TeSSI
auction mechanisms. We then test whether main conclusions of our work are robust to these variations by
determining whether they are still statistically significant, and compare the effect sizes to the nominal case
described in the scientific paper. We focus on the most important hypotheses related to the effectiveness of the
approaches put forward in our work, and follow the same naming used in the scientific paper. The hypotheses
we test for robustness are the following:

• HA1: pTeSSI leads to a larger number of successful deliveries than TeSSI.
• HB1: pTeSSI-re leads to a larger number of total deliveries than pTeSSI.
• Performing bundling in combination with periodic re-auctioning is effective in retaining the perfor-

mance advantage while mitigating the associated increase in auction duration. We split this claim into
two testable components:

– HC1: pTeSSB with periodic re-auctioning outperforms pTeSSI in terms of the total number of deliv-
eries executed by the system.

– HC2: pTeSSB with periodic re-auctioning leads to a lower average auction duration than pTeSSI with
periodic re-auctioning.

We consider the bundling mechanism effective if and only if both HC1 and HC2 hold. For compactness,
we denote the hypothesis that both parts hold true and therefore bundling is effective as HC.

We run each simulation 40 times, which was found to be enough to stabilize the coefficient of variation for all
cases. For each claim, statistical significance is established via the Wilcoxon signed-rank test and the effect
sizes are measured via the Vargha-Delaney A value. Note that while testing each claim, we always compare
different pairs of simulation result sets. There is therefore no need to control for the family-wise error rate via
a post hoc correction such as the Bonferroni one. Note that we do not test HB1 and HC for the lowest demand
case investigated. This is because, as discussed in the scientific paper, we had already noted that the agents
were able to fulfill virtually all deliveries with pTeSSI, so there is no reason to attempt to increase the number
of deliveries by dynamically re-auctioning tasks.

Following from the analysis conducted in the paper, we use R = 0.5 and ρ = 10 across all runs, as these val-
ues were found to maximize the performance of pTeSSI. We also run the analysis for the MAX-T bidding rule
only, since it was found to be substantially more efficient than SUM-DIST and we did not observe statistically
significant differences in the results across the two bidding rules.
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A.2. Delivery window width
In the experiments presented in the paper, we use a delivery window width of 10 minutes. That is, the ear-
liest and latest delivery time of a customer order are always 10 minutes apart. Here, we perform additional
simulations with delivery window widths of 5 and 20 minutes.

A.2.1. Sensitivity
Figure A.1 the total number of deliveries executed by the system under pTeSSI and TeSSI for the three demand
levels investigated in the paper, plotted against the delivery window width. We note that the performance of
the system drops substantially when decreasing the window width from 10 to 5 minutes, for both mechanisms.
This is expected as the time constraints become more difficult for the agents to comply with, thereby making
the problem more difficult to solve. When increasing the width to 20 minutes, however, we do not observe a
significant improvement in performance for pTeSSI in any of the demand cases.

(a) 60 orders (b) 120 orders (c) 180 orders

Figure A.1: Total number of deliveries executed by the system under pTeSSI and TeSSI with varying
delivery window widths for the three demand levels investigated in the scientific paper.

Figure A.2 shows the average auction duration plotted against the delivery window width. Across both mecha-
nisms, the auction duration tends to increase substantially with the delivery window width. We observe up to a
two-fold increase in the auction duration for pTeSSI and a three-fold increase for TeSSI when comparing the 5
minutes to the 20 minutes case. This is because larger windows tend to increase the computational overhead in
the bidding phase outlined in Algorithm 1 of the scientific paper. There are two reasons for this, which are best
explained by examining the bidding phase in more detail. Consider an agent who needs to bid on a task T on
auction. According to algorithm 1, it will attempt to insert T in all positions of its schedule, and compute a bid
for each valid position. Recall that a position is valid unless T ’s earliest delivery time exceeds the latest delivery
time of the task in the schedule that would follow it, in which case we can immediately conclude that it will lead
to an inconsistent schedule. The larger the delivery window of the tasks, the more likely that any given insertion
point in the agent’s schedule will be valid since the above condition for the invalidity of an insertion point will
be less likely to hold. In addition, larger delivery windows make the constraints easier to satisfy, meaning that
the agents can accommodate more tasks in their schedule. This further increases the computational overhead
of the auction, since the runtime of the algorithms run on the temporal networks in the bidding phase of both
TeSSI and pTeSSI grows with the size of the network.

A.2.2. Robustness
Table A.1 shows the p-value and effect size (A) for the three claims discussed in the beginning of this chapter.
We observe that HA1 is statistically significant with very large effect sizes for all tested values of the delivery
window width and across all demand levels. This indicates that the performance difference between pTeSSI
and TeSSI is robust to large changes in this parameter. The same holds for HB1, but the effect sizes appear to
increase with the width of the delivery window, indicating that the performance advantage obtained via re-
auctioning becomes stronger. The only instance in which we cannot accept HC is with the mid demand level
and a delivery window width of 5 minutes. In this case, bundling cannot decrease the auction duration (HC2 has
p > 0.05) while maintaining a significant performance improvement over the case with no re-auctioning. Upon
closer inspection, this is because the performance increase due to re-auctioning is already not large (0.66 effect
size), leaving little room for bundling to trade-off a portion of the performance increase for faster runtimes. In
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(a) 60 orders
(b) 120 orders (c) 180 orders

Figure A.2: Average duration of the pTeSSI and TeSSI auction with varying delivery window widths for
the three demand levels investigated in the scientific paper.

addition, the auction is at its fastest in the case with the narrowest delivery windows (as discussed in section
Appendix A.2.1), so there is relatively less to gain.

Demand case Delivery window width
HA1 HB1 HC

HC1 HC2

60 orders

5 min
p 3.32e-8 - - -
A 0.99 - - -

10 min
(Nominal)

p 3.1e-8 - - -
A 0.99 - - -

20 min
p 4.59e-8 - - -
A 0.98 - - -

120 orders

5 min
p 3.48e-8 7.07e-4 3.92e-2 0.11
A 1.0 0.66 0.62 0.62

10 min
(Nominal)

p 3.5e-8 5.87e-7 2.60e-4 3.10e-6
A 1.0 0.83 0.73 0.81

20 min
p 3.44e-8 3.42e-8 7.62e-7 6.33e-3
A 1.0 1.0 1.0 0.68

180 orders

5 min
p 3.53e-8 2.22e-6 1.76e-3 3.47e-5
A 1.0 0.84 0.71 0.81

10 min
(Nominal)

p 3.5e-8 2.82e-6 2.42e-2 4.16e-8
A 1.0 0.86 0.62 0.97

20 min
p 3.54e-8 3.55e-8 2.51e-6 7.1e-3
A 1.0 1.0 1.0 0.73

Table A.1: Analysis of robustness of three main hypotheses made in this work to large variations in the
width of the task delivery windows.

A.3. Fleet size
In the paper, we had fixed the fleet size to 10 UAVs. Here, we run simulations with additional fleet sizes of 4
and 20 UAVs. In doing so, we hold the demand per UAV constant in order to assess system performance in a
manner that is agnostic to the size of the UAV fleet. The demand levels corresponding to the different fleet sizes
are outlined in Table A.2.

A.3.1. Sensitivity
Figure A.3 shows the deliveries executed by pTeSSI and TeSSI plotted against the UAV fleet size for the three
demand levels. Rather than the total amount of deliveries, we show the percentage of the customer orders that
the fleet was able to satisfy, which constitutes a fair comparison since the demand per UAV is fixed across the
different fleet sizes. We observe only a slight variation with the size of the UAV fleet for both methods, with
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Total orders
Demand level Orders per UAV 4 UAVs 10 UAVs 20 UAVs

Low 6 24 60 120
Medium 12 48 120 240

High 18 62 180 360

Table A.2: Outline of the demand levels used for the different fleet sizes. The number of orders per UAV
is kept constant in order to draw conclusions among the different fleet sizes.

the largest difference being ≈ 5% for pTeSSI and ≈ 3% for TeSSI. Across all demand cases, the performance of
pTeSSI is at its worst for the smallest fleet size, although this also leads to the largest variability in the simulation
data. Overall, the same demand per UAV leads to a similar percentage of the demand case being satisfied, and
across all fleet sizes pTeSSI still clearly outperforms TeSSI.

(a) Low demand
(b) Medium demand (c) High demand

Figure A.3: Percentage of the customer orders successfully delivered by the system under pTeSSI and
TeSSI with varying fleet sizes. Results are shown for each of the three demand levels outlined in

Table A.2.

Figure A.3 shows the average auction duration plotted against the fleet size for both pTeSSI and TeSSI. The
auction duration is found to increase significantly with the fleet size. The rate of change grows with the de-
mand level, and is consistently higher when moving from 10 to 20 UAVs than from 5 to 10 UAVs, especially with
pTeSSI. With pTeSSI, the auction duration increases at most by ≈ 2 times and ≈ 8 times when moving from a

fleet size of 5 to 10 and 10 to 20 respectively. In section II of the paper, we show that pTeSSI is ≈O( m6

n4 ) when the
tasks are approximately evenly distributed among the fleet, where m is the number of tasks on auction and n
is the number of UAVs. TeSSI also has the same worst-case complexity as shown in [112]. In each demand case,
when we increase the fleet size, the number of tasks on auction grows proportionally since we keep the num-
ber of orders per UAV constant (see Table A.2). Therefore, O(m) =O(n), implying that the overall complexity of
the auction is ≈ O(m2). The increase in auction duration observed in Figure A.4 is therefore explained by the
analysis conducted in section II of the scientific paper. Note that the objective of the sensitivity analysis shown
in Figure A.4 is not to empirically assess the complexity of the auction algorithm, which would require expand-
ing the range of fleet sizes to properly identify and quantify the asymptotic behavior of the auction runtime.
We already analyzed the complexity of the auction algorithm from a theoretical standpoint in section II of the
paper.

A.3.2. Thresholds for re-auctioning and bundling
With the fleet size parameter, we perform additional analysis by repeating more of the experiments conducted
in Section V.B and V.C of the paper. We assess how the system performs under different levels of the reauction
threshold and the distance threshold when applying bundling. This is because when varying the fleet size, we
also increase the number of orders and thereby the number of tasks on auction. We are interested in assessing
whether this affects the optimal level of re-auctioning and the nature of the trade-off between the auction
duration and the total deliveries encountered when applying pTeSSB.

In Section V.B of the paper we observe that excessive re-auctioning led to a drop in performance, due to pTeSSI
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(a) Low demand (b) Med (120 orders) (c) High (180 orders)

Figure A.4: Average duration of the pTeSSI and TeSSI auctions with varying fleet sizes. Results are
shown for each of the three demand levels outlined in Table A.2.

not being able to capture the additional synergies but rather making decisions worse than the existing partial
allocations in the early rounds of the auction, and conclude that a reauction threshold of 0.4 led to the best
performance across both demand cases for which re-auctioning was explored. Figure A.5 shows the percentage
of deliveries executed by the system for the different fleet sizes in the medium and high demand cases. The
trend is remarkably similar across all fleet sizes, with the best performance consistently exhibited at a reauction
threshold of 0.4, as observed in the paper. We therefore conclude that the trend is not sensitive to the fleet
size. This suggests that it is truly the difference in the system objective that the re-auctioned tasks generate,
and not the number of tasks that are re-auctioned, that dictates to what extent the re-auctioning routine will
be successful and generate a better partial allocation. This further motivates our stance of attempting to select
only those tasks which cause large enough changes in the system objective, rather than all tasks in the schedule
as done in earlier work on online auction-based task allocation [69].

(a) Medium demand (b) High demand

Figure A.5: Effect of the reauction threshold on the total deliveries executed by the system with
different UAV fleet sizes for the (a) medium and (b) high demand levels outlined in Table A.2.

Figure A.6 and Figure A.7 show the percentage of deliveries executed and the average auction duration when
combining periodic re-auctioning and bundling, plotted against the distance threshold for the three fleet sizes
in the medium and high demand case respectively. Across all fleet sizes, we observe the same trend discussed
in the paper. Increasing the distance threshold (and thereby generating larger bundles) reduces the auction
duration but also reduces the total number of deliveries the system can execute. As already noted in the paper,
the trade-off is significantly more favorable for the higher demand case. What we also observe here, however,
is that bundling becomes more effective when we increase the fleet size. This is especially evident in the higher
demand case (Figure A.7). When we increase the fleet size, the auction duration drops more steeply relative to
the number of deliveries, as can easily be noted by observing the growth in the area between the two curves
grows. These two insights provide further confirmation of the fact that bundling is more effective when the task
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set on auction is larger, which we also observe in the offline analysis conducted in Appendix B.2.

(a) 4 UAVs
(b) 10 UAVs (c) 20 UAVs

Figure A.6: Percentage of the customer orders successfully executed by the system plotted against the
distance threshold in pTeSSB with re-auctioning for the medium demand level in Table A.2. Results are

shown for fleet sizes of (a) 4 UAVs (b) 10 UAVs and (C) 20 UAVs.

(a) 4 UAVs (b) 10 UAVs (c) 20 UAVs

Figure A.7: Percentage of the customer orders successfully executed by the system plotted against the
distance threshold in pTeSSB with re-auctioning for the highest demand level in Table A.2. Results are

shown for fleet sizes of (a) 4 UAVs (b) 10 UAVs and (c) 20 UAVs.

A.3.3. Robustness
Table A.3 shows the p-value and effect size (A) for our three claims across all fleet sizes and demand levels in-
vestigated. HA1 is statistically significant across all fleet sizes and demand cases, indicating that pTeSSI strongly
outperforms TeSSI independently of the fleet size. The same is true for HB1, through which we confirm that the
increase in the amount of deliveries executed by the system due to our periodic re-auctioning mechanism is
robust to the size of the fleet. HC is also always statistically significant, and as expected the effect sizes increase
with the size of the fleet, confirming the conclusion drawn earlier that bundling is more effective for larger fleet
sizes.
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Demand case Fleet size
HA1 HB1 HC

HC1 HC2

6 orders per UAV

4
p 1.36e-7 - - -
A 0.95 - - -

10 min
(Nominal)

p 3.1e-8 - - -
A 0.99 - - -

20
p 3.25e-8 - - -
A 1.0 - - -

12 orders per UAV

4
p 4.40e-8 2.46e-4 2.2e-2 3.5e-2
A 0.97 0.74 0.66 0.64

10 min
(Nominal)

p 3.5e-8 5.87e-7 2.60e-4 3.10e-6
A 1.0 0.83 0.73 0.81

20
p 3.54e-8 5.03e-3 2.3e-3 5.06e-3
A 1.0 0.99 0.71 0.99

18 orders per UAV

4
p 3.51e-8 8.03e-6 2.3e-2 9.9e-3
A 1.0 0.78 0.76 0.68

10 min
(Nominal)

p 3.5e-8 2.82e-6 2.42e-2 4.16e-8
A 1.0 0.86 0.62 0.97

20
p 3.55e-8 5.01e-3 1.25e-5 5.06e-3
A 1.0 1.0 0.83 1.0

Table A.3: Analysis of robustness of three main claims made in this work to large variations in the UAV
fleet size.



B
Additional verification and validation

In the scientific paper, we discuss several efforts made to verify and validate our pTeSSI auction and related
extensions proposed in this work. These include carefully investigating and explaining how key parameters
of the auction mechanism affect system performance in simulation and whether this matches expectations,
and comparing the performance of pTeSSI to the existing (non-probabilistic) TeSSI auction under a range of
conditions. We also provide some further verification in Appendix A where we demonstrate that varying addi-
tional parameters results in effects that can be explained based on the theoretical properties of the auction as
explained in the paper. In this chapter, we discuss a few additional verification and validation steps that were
conducted but not yet discussed. In Appendix B.1 we discuss our validation of the effectiveness of the degree
of dynamic controllability and in Appendix B.2 we discuss further analysis of pTeSSB.

B.1. Degree of dynamic controllability
The suitability of the degree of dynamic controllability as a predictor for the dispatch success rate of STNUs has
already been validated empirically in [8] using a modified version of the CAR-SHARING and ROVERS datasets
[143]. Nonetheless, as it is an approximate and extremely recent method, it is still important to validate its
performance when applied to networks of the type explored in our work (see section II of the paper).

To do this, we generate several schedules by creating customer orders with different time windows and com-
pute their degree of dynamic controllability (DDC). We then simulate dispatch on these networks by applying
the early first strategy proposed in [110] and used by our agents in the online simulations. Since the strategy is
guaranteed to succeed on dynamically controllable networks, the agent should be able to successfully dispatch
its schedule exactly the amount of times that it is dynamically controllable in practice - that is, those times
in which the realization of the contingent edges is such that conflicts are avoided at execution. We generate
200 schedules and for each schedule, we simulate dispatch 300 times. We record the dispatch success rate -
the percentage of times we are able to successfully dispatch the schedule - and compare it to the DDC. If the
relaxations made by ODC-Relax are optimal, then the dispatch success rate should equal the DDC.

Figure B.1 shows the results for the case in which the edges are uniformly distributed. The graph shows a strong
linear relationship R2 = 0.992, with the DDC consistently predicting the dispatch success rate within 5% (dotted
red lines) of the value we measure empirically. From this analysis we conclude that the DDC is a very strong
predictor for the true dispatch success rate when the edges are uniformly distributed.

We perform the same analysis in the case where the edges are normally distributed. As explained in section
II.4, we construct STNU edges from the PSTN by generating bounds which capture 1-α probability mass of
the underlying distribution, truncating an equal amount of mass from each tail. In the online experiments,
we find that low values of α lead to the best performance, so we use the lowest value tested, namely α = 0.01.
We therefore construct STNU edges which capture 99% of the underlying normal distribution. Here, we use
the same value of α and show the results in Figure B.2. While there is still evidence that the DDC is a strong
predictor of the empirical dispatch success rate and the plot exhibits a strong linear relationship (R2 = 0.946),
we observe larger errors (peaking at ≈ +10% and ≈ −15% as shown by the dotted red lines in Figure B.2) and
note that the curve displays an ’S’ shape with inflection point at the ≈ 50% dispatch success rate mark. When
the dispatch success rate is less than 50%, the DDC consistently over-estimates it, and under-estimates it when
it is larger than 50%. The errors are very close to zero near the inflection point, when the dispatch success rate
is between 40% and 60%.

B.2. Bundling
In order to further validate the bundling mechanism in pTeSSB, we analyze its performance on an offline ver-
sion of the task allocation problem discussed in the paper and verify whether we obtain similar results when
varying the distance threshold and the size of the task set on auction. We consider the problem in which tasks
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Figure B.1: Empirical dispatch success rate vs degree of dynamic controllability (DDC) for uniformly
distributed edges. Dotted red lines are for reference and show the interval spanning ± 5% from the true

dispatch success rate.

Figure B.2: Empirical dispatch success rate vs degree of dynamic controllability (DDC) for normally
distributed edges. Dotted red lines are for reference and show the interval spanning +10% and -15%

from the true dispatch success rate.

need to be auctioned at once, and examine the number of tasks that pTeSSB is able to allocate as well as its
runtime. We fix the number of UAV bidders at 50.

Figure B.3 shows a contour plot of the tasks allocated (a) and auction runtime (b) with varying distance thresh-
old and size of the task set on auction. The offline experiment validates and sheds further light on the trends
discussed in the scientific paper. We observe a similar trade-off appearing when varying the distance threshold.
Increasing the distance threshold leads to larger and looser clusters, decreasing the auction duration but also
the number of tasks that pTeSSB can allocate. Note that in the online experiments of the scientific paper we
focus on the number of deliveries executed by the system, whereas here we do not simulate dispatch and look
at the number of tasks that can be allocated to the agents. Observing the same trend here is confirmation that
the performance drop observed in the online experiments is mainly due due to the fact that larger bundles are
more difficult for the agents to feasibly insert in their schedules. While conducting these experiments, we also
verify that the bundles always constitute partial schedules with risk at most equal to the agents’ risk threshold
of R = 0.5, which is further verification of our implementation of the bundling mechanism.

Remarkably, for the larger problems (80+ tasks), we observe barely any drop in the number of allocated tasks
up to a distance threshold of ≈ 1500, but a very large (nearly four-fold) drop in the auction duration. In the
smaller problems (60 or less tasks), the trade-off is much less favorable, as performance starts degrading from
a distance threshold of ≈ 1000, by which we have generated a much more modest improvement in runtime.
This reinforces one of the findings from our paper, namely that bundling is more effective for larger number of
tasks. In the online experiments, pTeSSB was only able to generate a substantial drop in the auction runtime
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while retaining a large portion of the performance advantage in the higher demand cases. The fact that larger
number of tasks lead to better bundling is also suggested by the sensitivity analysis in Appendix A.3 and is not
surprising, as the larger the size of the task set on auction, the more likely that there will be inter-task synergies
that will translate to good partial schedules.

It is also important to note that in the offline experiments the timelines of the tasks were naturally aligned, as
all orders are generated at the same time and the deadlines therefore have the same distribution. In the online
experiments, on the other hand, several of the tasks are re-auctioned opportunistically by the agents, likely
leading to less aligned deadlines, which may have also made it more difficult to generate compact clusters
compared to the offline case.

(a) Number of tasks allocated [-] (b) Auction duration [s]

Figure B.3: Effect of distance threshold and number of tasks on auction on the number of tasks
allocated and runtime of pTeSSB in the offline experiments.



C
Variability of simulation results

In this chapter, we show the evolution of the coefficient of variation for all experiments discussed in Section V
of the scientific paper. In experiment runs where multiple combinations of parameters are explored, we show
the evolution of the coefficient of variation in the most volatile case. Each plot in this chapter refers to runs
summarized in a plot or table of the paper, which is mentioned in the caption.

Figure C.1: Evolution of coefficient of variation for the results shown in Figure 3 of the paper. The
bidding rule is MAX-T. The case shown is with the highest demand (180 orders), highest risk threshold

(0.9) and lowest value of ρ (0).

Figure C.2: Evolution of coefficient of variation for the results shown in Figure 4 of the paper. The
bidding rule is SUM-DIST. The case shown is with the highest demand (180 orders), highest risk

threshold (0.9) and lowest value of ρ (0).
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Figure C.3: Evolution of coefficient of variation of the total deliveries. Results shown for pTeSSI with the
MAX-T bidding rule in Table 2 of the paper. The case shown is with the highest demand (180 orders).

Figure C.4: Evolution of coefficient of variation of the average auction duration. Results shown for
pTeSSI with the MAX-T bidding rule in Table 2 of the paper. The case shown is with the highest demand

(180 orders).

Figure C.5: Evolution of coefficient of variation of the total deliveries. Results shown for pTeSSI with the
SUM-DIST bidding rule in Table 2 of the paper. The case shown is with the highest demand (180

orders).

Figure C.6: Evolution of coefficient of variation of the average auction duration. Results shown for
pTeSSI with the SUM-DIST bidding rule in Table 2 of the paper. The case shown is with the highest

demand (180 orders).
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Figure C.7: Evolution of coefficient of variation of the distance per delivery. Results shown for pTeSSI
with the SUM-DIST bidding rule in Table 2 of the paper. The case shown is with the highest demand

(180 orders).

Figure C.8: Evolution of coefficient of variation of the total deliveries. Results shown for TeSSI with the
MAX-T bidding rule in Table 2 of the paper. The case shown is with the highest demand (180 orders).

Figure C.9: Evolution of coefficient of variation of the average auction duration. Results shown for
TeSSI with the MAX-T bidding rule in Table 2 of the paper. The case shown is with the highest demand

(180 orders).

Figure C.10: Evolution of coefficient of variation of the distance per delivery. Results shown for TeSSI
with the MAX-T bidding rule in Table 2 of the paper. The case shown is with the highest demand (180

orders).
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Figure C.11: Evolution of coefficient of variation of the total deliveries. Results shown for TeSSI with the
SUM-DIST bidding rule in Table 2 of the paper. The case shown is with the highest demand (180

orders).

Figure C.12: Evolution of coefficient of variation of the average auction duration. Results shown for
TeSSI with the SUM-DIST bidding rule in Table 2 of the paper. The case shown is with the highest

demand (180 orders).

Figure C.13: Evolution of coefficient of variation of the distance per delivery. Results shown for TeSSI
with the SUM-DIST bidding rule in Table 2 of the paper. The case shown is with the highest demand

(180 orders).

Figure C.14: Evolution of coefficient of variation of the total deliveries. Results shown for pTeSSI in
Figure 5 of the paper with the highest contingent edge width and highest demand level (180 orders).
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Figure C.15: Evolution of coefficient of variation of the total deliveries. Results shown for TeSSI in
Figure 5 of the paper with the highest contingent edge width and highest demand level (180 orders).

Figure C.16: Evolution of coefficient of variation of the total deliveries. Results shown for pTeSSI-re in
Figure 7 of the paper with the lowest reauction threshold and highest demand level (240 orders).

Figure C.17: Evolution of coefficient of variation of the total deliveries. Results shown for pTeSSB-re in
Figure 8 of the paper with the lowest distance threshold and highest demand level (240 orders).

Figure C.18: Evolution of coefficient of variation of the average auction duration. Results shown for
pTeSSB-re in Figure 8 of the paper with the lowest distance threshold and highest demand level (240

orders).
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