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A hierarchical control framework for coordination
of intersection signal timings in all traffic regimes

Goof Sterk van de Weg, Hai Le Vu, Andreas Hegyi, Serge Paul Hoogendoorn

Abstract—In this paper we develop a hierarchical approach to
optimize the signal timings in an urban traffic network takin g
into account the different dynamics in all traffic regimes. The
proposed hierarchical control framework consists of two layers.
The first layer – the network coordination layer – uses a model
predictive control strategy based on a simplified traffic flow
model to provide reference outflow trajectories. These reference
outflow trajectories represent average desired link outflows over
time. These are then mapped to green-red switching signals
which can be applied to traffic lights. To this end, the second
layer – the individual intersection control layer – then selects
at every intersection the signal timing stage that realizesan
outflow which has the smallest error with respect to the reference
outflow trajectory. The proposed framework is tested using both
macroscopic and microscopic simulation. It is shown that the
control framework can outperform a greedy control policy that
maximizes the individual intersection outflows, and that the
control framework can distribute the queues over the network in
a way that the network outflow is improved. Simulations usinga
macroscopic model allow the direct application of the reference
outflows computed by the network coordination layer, and the
results indicate that the mapping of the reference outflows to
the detailed signal timings by the individual intersectioncontrol
layer only introduces a small performance loss.

Index Terms—Model predictive control, urban traffic network
control, link transmission model, signal timings, intersection
coordination

I. I NTRODUCTION

COORDINATION of the signal timings of intersections
to improve the performance of urban traffic networks is

a complex problem. One of the main reasons for this is that
coordination requires accounting for the impact of the signal
timings on the propagation of traffic over the network. This
introduces several issues as discussed below.

One of the main issues of controlling signal timings plans
is that they have a switching structure, meaning that a stage
– i.e., a set of streams that can be active simultaneously –
can either be green or red. This introduces interruptions (or
discontinuities) in the traffic flows at intersections. Due to
these discontinuities, optimizing the signal timing plansresults
in a mixed integer optimization problem that is difficult to
solve. This is problematic, since only a limited amount of com-
putation time is available for the real-time application oftraffic
control strategies. Additionally, other properties of thesignal
timing plan such as clearance times, offsets, (predetermined)
stage sequences, and cycle times, add to the complexity.

Goof Sterk van de Weg, Andreas Hegyi, and Serge Paul Hoogendoorn are
with the Transport & Planning department, TU Delft, the Netherlands

Hai Le Vu is with the Monash University, Melbourne, Australia
Manuscript received April, 2017;

Apart from that, the direction of the interaction between
intersections changes when the traffic regime changes as
discussed in [1]. More specifically, in the under-saturated
regime – i.e., when queues are completely emptied during
a green time period – an increase in the outflow of an
upstream intersection can lead to a change in the outflow at
a downstream intersection. This relation is typically usedin
green-wave approaches that allow vehicles to pass multiple
intersections without stopping. In the saturated regime – i.e.,
when queues neither become empty, nor will spill back to
upstream intersections – there is no such strong coupling.
Finally, in the over-saturated regime – i.e., when queues spill
back to upstream intersections – a change in the outflow at a
downstream intersection leads to a change in the outflow of an
upstream intersection at a later time instant. All these effects
have to be taken into account when optimizing the timing of
a signal controller.

The aim of this paper is to design a control strategy for the
coordination of signal timings of multiple intersections.The
control strategy has to account for all the traffic regimes. It
also has to be real-time feasible, meaning that it can compute
the control actions within the controller sampling time. The
controller sampling time is the time period between updates
of the control signal, which is typically in the range of one to
several minutes.

A. Literature

This section discusses approaches to the urban traffic net-
work control problem. We examine for what traffic regimes
the different strategies are designed, whether they are real-time
feasible, and in what way signal timings are considered. First,
various well-known or recent control strategies are discussed.
After that, the review focuses on model-based predictive
control strategies.

1) Approaches to the urban traffic network control prob-
lem: The first approaches to the coordination of intersections
focused on performance improvement in the undersaturated
traffic regime. A well-known example is the MAXBAND
approach proposed by Littleet al. [2] for the creation of
green-waves between intersections. MAXBAND computes the
signal timings off-line in such a way that traffic can pass
multiple intersection without stopping. A disadvantage ofoff-
line control is that it cannot adapt to changes in the traffic
demand. SCOOT [3] and SCATS [4] are examples of widely
used control strategies for under-saturated traffic regimes that
can dynamically adjust to changes in the traffic situation. The
performance of SCOOT may deteriorate in saturated and over-
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saturated regimes according to Papageorgiouet al. [5]. Re-
cently, Lämmeret al. [6] proposed a decentralized algorithm
that decides at each time instant which stage to actuate in order
to reduce the delay at every intersection in the undersaturated
regime.

Diakaki et al. [7] proposed the TUC algorithm, which is
specifically designed to improve the urban traffic network
throughput in the saturated regime. TUC has a feedback struc-
ture, and adjusts the green times at an intersection based on
the queue lengths in the network. Various extensions to TUC
have been proposed, such as the inclusion of green-waves [8].
Recently, the max-pressure (or back-pressure) algorithm was
proposed to address the coordination problem in the saturated
regime [9], [10]. The max-pressure algorithm decides at every
time instant which stage to actuate. This decision is made
using information on the queues located directly upstream
and downstream of the intersection, so that no centralized
communication structure is required.

The performance of the aformentioned control strategies
may deteriorate in the over-saturated regime, since the impact
of spill back and the corresponding shock wave dynamics
are not considered in the controller design. In that regime,
congestion may propagate through the network causing a loss
of efficiency at intersections and potentially leading to gridlock
[11]. One way to address this issue is by perimeter control
based on the network fundamental diagram (NFD) [12]. The
aim of this strategy is to keep the number of vehicles in
the network below or at the critical density of the network
fundamental diagram so that congestion is prevented. An issue
with this approach is that the shape of the NFD may be
affected by the intersection control strategies.

In conclusion, all these approaches are designed to improve
the performance in only one or two of the three traffic regimes.
A promising approach to include all the traffic regimes is the
application of a predictive control strategy. However, this is a
challenging task, as discussed in the next section.

2) Model-based predictive control approaches:Model pre-
dictive control (MPC) is a popular method to determine a
control action that accounts for the long-term impact of a
control signal on the system’s performance. It is typicallyused
to determine a control signal over a period of time called the
control horizon, that optimizes the performance over a period
of time called the prediction horizon [13], [14]. MPC is a
procedure in which the impact – expressed using an objective
function – of a candidate control signal on the propagation of
traffic over the network is predicted using a prediction model.
At every controller sampling time instant, the control signal
that optimizes the objective function is recomputed using the
most recent traffic state measurements. This is commonly
referred to as the receding horizon principle.

Lo et al. [15] and Van den Berget al. [16] have proposed
MPC approaches for the optimization of signal timings. Loet
al. [15] used the Cell-Transmission Model (CTM) to predict
the traffic dynamics, and modelled the signal timings using
binary variables – i.e., a stream can receive either green (1) or
red (0). This resulted in a mixed-integer linear programming
problem (MILP). Van den Berget al. [16] used the horizontal
queuing model of Kashaniet al. [17] to model all the traffic

regimes, resulting in a non-linear optimization problem. Lin
et al. [18] used the S-model, which is a simplification of the
model of Van den Berget al. [16], to formulate another MILP
optimization problem. Despite the ability to explicitly consider
signal timings and all traffic regimes, all of the resulting non-
linear and MILP optimization problems are cumbersome to
solve. Due to this, these methods are not real-time feasible
when applied to medium to large-scale networks of several
(tens of) intersections.

The scalability problem can be mitigated by aggregating the
traffic dynamics to (several) tens of seconds and replacing the
binary signal timings with average outflows so that continous
or linear optimization problems can be formulated [1], [19],
[20]. Aboudolaset al. [19] proposed a linear MPC approach
based on the store-and-forward model for the saturated regime
which resulted in a drastic reduction of the computation time.
Le et al. [20] proposed an MPC approach based on a modified
version of the CTM for under-saturated and saturated regimes.
Recently, Van de Weget al. [1] proposed the use of the Link
Transmission Model (LTM) in a linear MPC framework. This
approach is capable of reproducing all traffic regimes and is
real-time feasible. However, non of these methods consider
signal timings, so they are not directly applicable to a real
traffic network.

B. Research approach and contributions

This paper develops a real-time feasible, hierarchical control
framework for the control of signal timings in order to improve
the urban network throughput in all traffic regimes. The main
contribution of the research is the design of a real-time feasible
framework for the control of signal timings that can optimize
the distribution of traffic over a network while taking into
account the upstream propagating waves caused by spillback.

The hierarchical control framework consists of two layers.
The top layer – called the network coordination layer –
consists of the linear MPC strategy for urban traffic networks
(LML-U) of Van de Weg et al. [1] that optimizes the ag-
gregated traffic dynamics. The LML-U strategy distributes
the traffic over the network so that the average throughput
is maximized over the prediction horizon. In this paper, the
optimized control signal is translated to near-future reference
outflow trajectories for the entire prediction horizon of the
links in the network. These reference outflow trajectories
represent average desired link outflows over time which can-
not be directly applied to the network since they represent
average traffic flows while traffic lights require a green-
red switching signal. Hence, the bottom layer – called the
individual intersection layer – which consists of the local
intersection controllers maps the reference outflow trajectories
to a green-red switching signal. The goal of these controllers
is to select the stage at every time step that minimizes the
error with the reference outflow trajectories. The framework
is designed in such a way that control strategies other than the
one implemented in this paper may be used in both the top
and bottom layers.The proposed framework is evaluated using
simulation experiments.

The second contribution of the paper is to show that
compared to locally optimizing the intersection outflows, the
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resulting control strategy can improve the throughput by dis-
tributing traffic over the network in spillback conditions.This
is shown quantitatively by comparing the proposed strategyto
a strategy that optimizes the local intersection outflows, and
qualitatively by studying the realized traffic states.

The third contribution of the paper is to provide insight
into the controller performance when varying the controller
sampling times and when applied to different process models.
The reason why this is studied is that an important issue of
MPC strategies is that the mismatch between the prediction
and process model may negatively affect the controller per-
formance. One way to limit the impact of this mismatch is
by reducing the sampling time of the controller, so that the
possible prediction errors can be corrected more frequently
by using new measurements. In the proposed framework, the
sampling times of the two layers can be varied, both of
which may affect the controller performance. Reducing the
sampling time of the individual intersection layer allows more
frequent switching, leading to a better tracking of the reference
outflow trajectories; reducing the sampling time of the network
coordination layer allows for a more frequent correction of
prediction errors. Qualitative analyses are carried out inwhich
the sampling times of the different layers are varied. In
addition, simulations are carried out with two different process
models, namely, the LTM and the microscopic model Vissim
that has a larger mismatch with the prediction model.

C. Design considerations

Several factors were considered when designing the control
strategy in order to simplify the problem or to emphasize the
most important control features.

As stated before, an intersection control program is rather
complex. To simplify this, we assume that there is no fixed
stage sequence. Also, no minimum green times, and no fixed
cycle times are used. Clearance times – i.e., the time used
to clear the intersection between two conflicting stages – are
included in the approach.

The control strategy has to be real-time feasible. This means
that the time it takes to compute the control signal is shorter
than the controller sampling time, which is typically in the
range of one to several minutes. A longer controller sampling
time is beneficial, since it allows more time to optimize the
control signal. However, the controller sampling time should
be kept short so that the controller can quickly respond to
traffic changes and unexpected events.

The aim of the controller is to improve the throughput. In
practice, other performance indicators might also be included,
such as equity, pollution, and reliability. Their inclusion,
however, is beyond the scope of this paper.

Finally, the paper focuses on networks used solely by motor-
ized traffic. The extension to networks used by heterogenous
traffic – e.g. cars, trucks, public transport, and bicycles –is
left for further research.

II. CONTROLLER DESIGN

In order to bridge the gap between the high computation
time required by optimization based control strategies andthe

low computation time, but lower expected performance, of
feedback-based control strategies, a hierarchical control frame-
work is proposed in this paper. The framework is presented in
Figure 1 and consists of two layers:

1) The top layer uses an aggregated prediction model to
optimize the network throughput everyT ref seconds,
whereT ref is in the range of one to several minutes.
The control signal consists of the fractions of green
time that every stream in the network has to realize, but
which are not directly applicable by the traffic signal
controllers. Nevertheless, the desired behavior of the
traffic system – for instance, a prediction of link outflows
– can be derived from this signal. Hence, reference
outflow trajectories can be derived from the optimized
signal, such as the reference cumulative outflow of a
link, or a reference number of vehicles that has to be
present in the link.

2) The bottom layer consists of the local intersection con-
trollers. The task of the local intersection controllers
is to track the reference outflows. This is realized by
selecting everyT local seconds – in the range of 5 to
10 seconds – the stage that is expected to lead to
the smallest reference tracking error in the nextT local

seconds. The local intersection controllers may not be
able to track the reference outflows exactly, because they
were determined using a simplified traffic flow model.
However, it is expected that the average behavior of
the local intersection controllers will lead to improved
network performance when the tracking error remains
small.

Measurements

Process

- Propagation of traffic

Individual intersection controllers

- Reference tracking 

- Actuation of stages

Reference trajectory

Control signal

Traffic demand

Network coordination layer

- Optimize throughput

- Output: outflow reference 

                trajectory

               

Bottom layer

Top layer

T local

T ref

Fig. 1. Schematic overview of the control strategy

The advantage of this framework is that the signal timings
are determined in a decentralized way; i.e., every intersection
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Fig. 2. Schematic overview of the timing used. In this example, the sampling timeT is 1 second, the intersection controller sampling timeT local is 5
seconds, the prediction model sampling timeT c is 10 seconds, the coordination layer sampling timeT ref is 60 seconds, and the prediction horizonNp is
30 steps.

requires only measurements of the direct upstream and down-
stream links. However, due to the tracking of the reference
outflows, the individual intersection controllers are capable of
realizing network-wide performance improvements.

The idea behind the proposed framework is that different
control algorithms can be applied to the different layers. In
this way, the framework can be adapted to different traffic
networks, situations, and desired controller properties.As a
proof-of-concept, Section II-B details the implementation of
a linear MPC strategy – called LML-U – based on the link
transmission model in the coordination layer, and Section II-C
presents a greedy reference tracking (GRT) strategy for the
individual intersection controller layer. Hence, the proposed
strategy is called LML-U + GRT. In Section III, simulation
results of this implementation are presented.

A. Timing

Discrete timing is considered in this paper. The time step
k (-) and sampling timeT (s) refer to the periodt ∈
[

Tk, T (k + 1)
)

(s). It is assumed that the sampling time of
the measurements is equal toT . The prediction model has
a sampling time stepkc (-) and sampling timeT c (s). It
holds thatT c = ǫcT with the factor ǫc ∈ Z+ – i.e., it is
a strictly positive integer. The intersection controllersselect a
new stage to actuate every controller sampling time stepklocal

(-) with controller sampling time stepT local (s) for which it
holds thatT local = ǫlocalT , with the factorǫlocal ∈ Z+. The
reference outflow trajectory is updated every time stepkref

(-) with the sampling time stepT ref = ǫrefT seconds, with
ǫref ∈ Z+. It also holds thatT ref = ǫc,refT c, with ǫc,ref ∈ Z+.
It follows that k = (klocal − 1)ǫlocal + 1 = (kc − 1)ǫc + 1 =
(kref − 1)ǫref +1, and thatkc = (kref − 1)ǫc,ref +1. Figure 2
provides an overview of the timing used in this paper.

It must be noted that a measurement that is available at
time stepk reflects the traffic state at the beginning of the
time periodk. It is thus not possible to change the control
action at time stepk. Hence, at time stepk the control signal
for the next time stepk + 1 will be determined. So, in this
paper the control action at time stepklocal is determined based
on the data available at time step(klocal − 1)ǫlocal = k.

B. Network coordination layer: LML-U approach

The task of the network coordination layer – i.e., the top
layer of the proposed framework – is to determine the ref-
erence outflows that optimize the network throughput. Recall
that the coordination layer sampling timeT ref (s) is in the
range of one to several minutes. Hence, in order to satisfy
real-time feasibility, the coordination layer has to be able
to compute the reference outflow trajectories within one to
several minutes.

To this end, the recently developed linear model predic-
tive control strategy using the link transmission model for
urban traffic networks (LML-U) is chosen in the coordination
layer [1]. This approach has the advantage that it considers
all relevant first-order traffic dynamics – i.e., upstream and
downstream propagating waves – using only two traffic states.
Compared to segment-based models, such as the CTM, this
is more efficient from a computational point of view. The
approach requires a prediction of the traffic demand, turn-
fractions, and maximum network outflows. Its output consists
of the optimized fractions of green time used by the traffic
streams in the network. The remainder of this section first
discusses the prediction model used in more detail, next the
optimization problem is introduced, and finally the approach
to compute the reference outflow trajectories from the opti-
mization output is presented.

1) The prediction model:The prediction model used in the
LML-U control strategy is the LTM. The main elements used
here are links – indicated with indexiL (-) – and origins –
indicated with indexiO (-). The traffic dynamics of origins
and links are updated using two traffic states; the cumulative
link inflow N in

iL
(kc) (veh) and outflowNout

iL
(kc) (veh), and

the cumulative origin inflowNO,in
iO

(kc) (veh) origin outflow
NO,in

iO
(kc) (veh). Every outflow is controlled using a control

parameterbeff
iL
(kc) for links and beff,O

iO
(kc) for origins that

expresses the effective fraction of green time used during the
time stepkc. Note that this optimization approach is presented
in more detail in [1]. The interested reader is referred to [21]
for a more detailed description of the LTM.

The cumulative link outflow is updated using the following
equation:

Nout
iL (kc + 1) = Nout

iL (kc) + qsatiL T cbeffiL (k
c) , (1)
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N in
iL (k

c + 1) = N in
iL (k

c) +
∑

jL∈I
L,us

iL

(

ηjL,iL(k
c)beffiL (k

c)qsatiL T c

)

+
∑

iO∈I
O,us

iL

(

ηiO,iL(k
c)beff,O

iO
(kc)qcap

iO
T c

)

, (2)

Nout
iL (kc + 1) ≤ γc,free

iL
N in

iL (k
c − kc,free

iL
+ 2) + (1 − γc,free

iL
)N in

iL (k
c − kc,free

iL
+ 1) , (3)

N in
iL (k

c + 1) ≤ γc,shock
iL

Nout
iL (kc − kc,shock

iL
+ 2) + (1− γc,shock

iL
)Nout

iL (kc − kc,shock
iL

+ 1) + nmax
iL , (4)

JTTS =

(kref
−1)ǫc,ref+Np+1

∑

kc=(kref−1)ǫc,ref+1

T c

{

∑

iL∈IL

(

N in
iL (k

c)−Nout
iL (kc)

)

+
∑

iO∈IO

(

NO,in
iO

(kc)−NO,out
iO

(kc)

)}

, (12)

whereqsat
iL

(veh/h) is the saturation rate. The cumulative link
inflow is modeled as the sum of the outflows of upstream
links jL ∈ IL,us

iL
and originsiO ∈ IO,us

iL
multiplied by the

turn-fractionsηjL,iL(k) as given in (2), where the setIL,us
iL

is
the set of links directly upstream of linkiL, and the setIO,us

iL

is the set of origins directly upstream of linkiL. The fraction
ηjL,iL(k

c) indicates the turn-fraction from linkjL to link iL,
and the fractionηiO,iL(k

c) (-) indicates the turn-fraction from
origin iO to link iL.

In order to model free-flow dynamics, the cumulative link
outflow is bound from above, so that vehicles cannot travel
through the link faster than the free flow travel timetfree

iL
(s).

This can be written as a constraint on the cumulative outflow
as given in (3). In (3) the number of time stepskc,free

iL
=

⌈tfree
iL

/T c⌉ (-), and the fractionγc,free
iL

= kc,free
iL

− tfree
iL

/T c

(-) are used to linearly interpolate the cumulative curve, as
detailed in [1]. The mathematical operator⌈·⌉ rounds the
argument of the function to the nearest integer that is higher
than the argument of the function. In order to satisfy CFL
conditions, it should hold thatkc,free

iL
≥ 2.

Similarly, upstream propagating waves caused by spillback
are included by bounding the cumulative link inflow from
above so that a vehicle can only enter a linktshock

iL
(s) seconds

after the vehiclenmax
iL

(veh) has exited the link, as given in
(4), with the number of time stepskc,shock

iL
= ⌈tshock

iL
/T c⌉ (-),

and the fractionγc,shock
iL

= kc,shock
iL

− tshock
iL

/T c (-). It should
hold thatkc,shock

iL
≥ 2 in order to guarantee CFL conditions.

Outflow limitations at the network are modeled as external
disturbances – i.e., inputs that cannot be affected by the control
signal. So, when a link is at an exit of the network, an extra
constraint is added:

Nout
iL (kc + 1) ≤ Nout

iL (kc) + qout,max
iL

(kc)T c , (5)

whereqout,max
iL

(kc) (veh/h) is the maximum outflow that can
exit the link at time stepkc.

Origins are modeled as vertical queues via the following
state update equations and constraints:

NO,in
iO

(kc + 1) = NO,in
iO

(kc) + diniO(k
c)T c , (6)

NO,out
iO

(kc + 1) = NO,out
iO

(kc) + qcap
iO

T cbeff,O
iO

(kc) , (7)

NO,out
iO

(kc + 1) ≤ NO,in
iO

(kc + 1) . (8)

with qcap
iO

(veh/h) the origin capacity.
The final constraints concern the effective fractionsbeff

iL
(kc)

and beff,O
iO

(kc) of green-time which should be between0 and

1. Additionally, if there is a conflicticon between links at
an intersection – i.e.,{jL, iL} ∈ Iconflict

icon – the sum of the
effective green fractionsbeff

iL
(kc)+beff

jL
(kc) should be less than

1 − θicon . The tuning parameterθicon (-) is used to prevent
infeasible reference outflows that can occur when a clearance
time has to be respected when switching linkiL to jL. This
results in the following constraints:

0 ≤ beffiL (k
c) ≤ 1 , (9)

0 ≤ beff,O
iO

(kc) ≤ 1 , (10)

0 ≤ beffiL (k
c) + beffjL (k

c) ≤ 1− θicon . (11)

2) The optimization problem:The objective of the linear
optimization problem is to minimize the total time spent (TTS)
JTTS (veh·h) used by all the vehicles in the network over
a prediction horizonNp (-) subject to the linear model and
constraints presented in the previous section. The TTS can
be expressed as the total number of vehicles in the network
at every time stepkc mutiplied by the sampling timeT c

and summed over the time stepskc = (kref − 1)ǫc,ref +
1, . . . , (kref − 1)ǫc,ref + Np + 1, as given in (12). There,IL

(-) represents the set of all links andIO (-) represents the set
of all origins.

As in [1], minimizing the TTS can be written as the
following linear optimization problem:

min
ū(kref )

ZB̃ū(kref) + Z(Ãx(kref) + C̃d̄(kref)) , (13)

Subject toM ineqū(kref) ≤ V ineq ,

Here, the matrices̃A, B̃, andC̃ as detailed in [1] describe the
traffic dynamics, so that a prediction of the traffic statex̄(kref),
as defined by equations 1, 2, 6, and 7, can be computed by
multiplication of the control vector̄u(kref) by B̃, the initial
traffic statex(kref) by Ã, and a prediction of the disturbances
d̄(kref) – i.e., inputs that cannot be controlled – bỹC. The
matrix M ineq and vectorV ineq as detailed in [1] contain the
inequality constraints of equations 3, 4, 5, 8, 9, 10, and 11.
Multiplication of the vectorZ by the predicted state gives the
TTS.

The vectorū(kref) contains the effective fractions of green
time beff

iL
(kc) andbeff

iO
(kc) used by the links and origins in the

network at the time stepskc = (kref −1)ǫc,ref+1, . . . , (kref−
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u(kc) =
[

beff1 (kc) . . . beff
nL(kc) beff,O

1 (kc) . . . beff,O
nO (kc)

]⊤
, (16)

d(kc) =
[

din1 (kc) . . . din
nO(k

c)
]⊤

, (17)

x̄ =
[

x((kref − 1)ǫc,ref + 2) . . . x((kref − 1)ǫc,ref +Np + 1)
]⊤

. (19)

xL
iL(k

c) =
[

Nout
iL

(kc) . . . Nout
iL

(kc − kc,shock
iL

) N in
iL
(kc) . . . N in

iL
(kc − kc,free

iL
)
]⊤

. (21)

xO
iO(k

c) =
[

NO,out
iO

(kc) NO,in
iO

(kc)
]⊤

. (22)

Nout,ref
iL

(kref) =
[

Nout
iL

((kref − 1)ǫc,ref + 1 Nout
iL

((kref − 1)ǫc,ref + 2 . . . Nout
iL

((kref − 1)ǫc,ref +Np + 1)
]⊤

. (23)

N̂out,ref
iL

(k̂) = (1− γref(k̂))Nout,ref
iL

(k̂c(k̂)) + γref(k̂Nout,ref
iL

(k̂c(k̂) + 1) . (24)

1)ǫc,ref +Np:

ū(kref) =







u((kref − 1)ǫc,ref + 1)
...

u((kref − 1)ǫc,ref +Np)






, (14)

The disturbance vector̄d(kref) contains the traffic demands
d(kc) at time stepskc = (kref − 1)ǫc,ref + 1, . . . , (kref −
1)ǫc,ref +Np:

d̄(kref) =







d((kref − 1)ǫc,ref + 1)
...

d((kref − 1)ǫc,ref +Np)






, (15)

The control vectoru(kc) and disturbance vectord(kc) at a
time stepkc are given in (16) and (17) respectively, wherenL

(-) indicates the number of links andnO (-) the number of
origins.

3) The reference outflow trajectory:The outcome of the
optimization problem (13) is the vector̄u∗(kref) (-). As
noted before, this signal cannot be directly applied to the
local intersection controllers due to the aggregated nature of
the traffic flow model that is used to formulate the linear
optimization problem. Instead, a reference outflow trajectory
is derived from the optimized signal̄u∗(kref).

A prediction of the traffic states̄x(kref) can be obtained as
follows:

x̄(kref) = Ãx(kref) + B̃ū∗(kref) + C̃d̄(kref) . (18)

The prediction of the statēx(kref) consists of the traffic states
x(kc) at time stepskc = (kref − 1)ǫc,ref + 2, . . . , (kref −
1)ǫc,ref + Np, as given in (19). In its turn, the statex(kc)
consists of the states of the linksxL

iL
(kc) and originsxL

iO
(kc)

at time stepkc:

x(kc) =
[

xL
1 (k

c) . . . xL
nL(k

c) xO
1 (k

c) . . . xO
nO(k

c)
]⊤

.
(20)

The states of linkxL
iL
(kc) and originxO

iO
(kc) at time stepkc

are given in (21) and (22).
Now, a reference cumulative outflow trajectoryNout,ref

iL
(kc)

as given in (23) can be derived from̄x(kc) for every link
iL ∈ Icontrolled for all the time stepskc = (kref − 1)ǫc,ref +
1, . . . , (kref − 1)ǫc,ref +Np.

Since the sampling time of the prediction model is a
multiple of the measurements sampling time – i.eT c = ǫcT

–, the signalNout,ref
iL

(kref) has to be resampled. Equation (24)
shows how the reference outfloŵNout,ref

iL
(k̂) at an arbitrary

time stepk̂ ∈ (kref − 1)ǫref + 1, . . . , (kref +Npǫc,ref)ǫref +1
can be obtained. Here, the time stepk̂c(k̂) is given as:

k̂c(k̂) = ⌊k̂/T c⌋ , (25)

and the fractionγref(k̂) is the residual of a time step thatk̂
exceedŝkc(k̂):

γref(k̂) =
k̂ − k̂c(k̂)

T c
. (26)

C. Local intersection layer: greedy reference tracking

The task of the local intersection layer is to actuate at every
time stepklocal and at every intersection the stage that leads
to the smallest reference tracking error. The reference tracking
error of a stage is defined as a measure of the error between
the reference outflow trajectories and the potential outflows
of the different streams at an intersection when actuating that
stage.

The stage selection is done in a decentralized way, which
is possible because the time stepT local is chosen to be short
– i.e., in the range of several seconds –, and no fixed stage
sequence is assumed. The tracking strategy is called greedy,
since it selects the stage that minimizes the reference tracking
error for a short time horizonT local. An alternative would be
to implement a strategy that minimizes the tracking error over
a longer time horizon. However, this would require predicting
the outflow of many different stage sequences, and it would
require taking into account the impact of the selected stage
sequences of upstream and downstream intersections as well,
leading to a complex optimization problem.

The greedy policy is computed for every intersection sepa-
rately by carrying out the following steps:

1) predict for every stage the potential cumulative outflow
of every link in the intersection when actuating the stage
(see Section II-C1);

2) compute for every stage the resulting reference tracking
error (see Section II-C2);

3) actuate the stage that is expected to realize the smallest
reference tracking error (see Section II-C3).
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Nout,p
iL

(k̂ + 1|k, piinter(k
local)) = min

{

Nout,p
iL

(k̂|k, piinter(k
local)) + qsatiL TbiL(k̂), . . .

Nout,free
iL

(k̂ + 1), Nout,sp
iL

(k̂ + 1)

}

∀iL ∈ IUS
iinter . (27)

Nout,free
iL

(k + 1) = γfree
iL N in

iL (k − kfreeiL + 2) + (1− γfree
iL )N in

iL (k − kfreeiL + 1) . (28)

Nout,sp
iL

(k + 1) = Nout,p
iL

(k) + γshock
jL Nout

jL (k − kshockjL + 2) + (1− γshock
jL )Nout

jL (k − kshockjL + 1) + nmax
jL −N in,p

jL
(k) . (29)

N in,p
iL

(k̂ + 1|k, piinter(k
local)) =

∑

jL∈IUS

iinter

ηjL,iL(k̂)
(

Nout,p
iL

(k̂ + 1|k, piinter(k
local))− . . .

Nout,p
iL

(k̂|k, piinter(k
local))

)

∀iL ∈ IDS
iinter . (30)

ēiinter(piinter(k
local)) = γeêaiinter(piinter(k

local)) + (1− γe)êbiinter(piinter(k
local)) . (31)

êaiinter(piinter(k
local)) =

k+ǫlocal+1
∑

k̂=k+2

∑

iL∈IUS

iinter

(

N̂out,ref
iL

(k̂)−Nout,p
iL

(k̂)

)2

. (32)

êbiinter(piinter(k
local)) =

k+ǫlocal+1
∑

k̂=k+2

∣

∣

∣

∣

(

∑

iL∈IUS

iinter

N̂out,ref
iL

(k̂)−
∑

iL∈IUS

iinter

Nout,p
iL

(k̂)

)∣

∣

∣

∣

. (33)

1) Potential cumulative outflow prediction:The first
step is to predict, for every intersectioniinter and
stage piinter(k

local) ∈ Pstages
iinter

, with Pstages
iinter

the set of
stages at the intersection, the potential cumulative outflows
Nout,p

iL
(k̂|k, piinter(k

local)) (veh) of the links iL ∈ IUS
iinter

directly upstream of the intersection using (27) for the time
steps k̂ = k + 1, . . . , k + ǫlocal + 1. In this equation, the
maximum link outflow Nout,free

iL
(k + 1) (veh) in freeflow

conditions is computed using (28). It is assumed thatT local <
tfree
iL

∀iL ∈ IUS
iinter

, so that the outflowNout,free
iL

(k) depends on
historical control decisions at the upstream intersections only.
The maximum possible cumulative outflow under spillback
from a downstream linkjL ∈ IDS

iL
is computed using (29).

It is assumed thatT local < tshock
iL

∀iL ∈ IDS
iinter

, so that the
maximum outflowNout,sp

iL
(k) depends on historical control

decisions at the downstream intersections only.
The cumulative link inflowsN in,p

iL
(k̂|k, piinter(k

local)) (veh)
of the links IDS

iinter
directly downstream of the intersection

when actuating the stagepiinter(klocal) for the time steps
k̂ = k + 1, . . . , k + ǫlocal + 1 are updated using (30).

When clearance times have to be respected when switching
from stagepiinter(k

local − 1) to stagepiinter(k
local), the cor-

responding values ofbiL(k̂) in (27) are set to0 for the first
T clear
iL

seconds.

2) Reference tracking error:Now that the predictions of the
link outflows are available when actuating the different stages,
the expected reference tracking errorēiinter(piinter(klocal))
can be computed using (31). It is defined as the weighted
average of the error̂ea

iinter
(piinter(k

local)) – which is the
square of the area between the reference outflow and the
predicted outflow computed using (32) – and of the error
êb
iinter

(piinter(k
local)) – which is the error between the total

intersection reference outflow and total predicted intersection
outflow êb

iinter
(piinter(k

local)) computed using (33). The param-
eterγe is introduced to balance the current reference tracking

costs and the final reference tracking costs.
3) Stage actuation:The final step is the actuation of the

stagep∗
iinter

(klocal) that leads to the smallest expected refer-
ence tracking error of all the streams that use the intersection
using:

p∗iinter(k
local) = arg min

p
iinter

∈P
stages

iinter

ēiinter(piinter(k
local)) . (34)

4) Numerical example:To clarify the reference tracking
approach we have included the following simple numerical
example. Assume that we have a network consisting of two
conflicting links that can realize a flow equal to the saturation
rate of 1000 veh/h when given green. It is also assumed that
T local = 5 s, and that the reference outflows for time step
1 to 12 are computed by the network coordination layer as
600 and 300 veh/h respectively, as shown in Figure 3. The
inter-stage clearance time when switching from stage 1 to 2
and vice versa is assumed to be 2 seconds. Assume that at
every time step we can choose between actuating stage 1 –
i.e., giving green to link 1 and red to link 2 – or actuating
stage 2 – i.e., giving red to link 1 and green to link 2.

At time stepk = 1 the error is determined over time steps
k = 3 to k = 7. For stage 1, the total error computed using
(31) is 0.85 while the error for stage 2 is 1.82 given thatγe =
0.3. Because the error of stage 1 is smaller it will be activated.
Next, at time stepk = 6, the error when actuating stage 1
is 2.28 while the error for actuating stage 2 is 1.82. Hence,
stage 2 will be activated. Note that in the error calculationthe
inter-stage clearance time between stage 1 and stage 2 is also
accounted for.

III. S IMULATION EXPERIMENTS

Simulation experiments are carried out to show that the use
of the individual intersection layer does not lead to significant
performance degradation, and that the proposed framework is
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Fig. 3. Small example of reference outflows and realized outflows.

able to efficiently distribute the queues over the network inthe
presence of spillback. Additionally, the impact of the mismatch
between the prediction and the process model is studied which
is influenced by the selected process model and the chosen
controller sampling times.

First simulations are carried out with the LTM as the
process model, so that the mismatch between the process and
prediction model is small. A comparison is made – in terms
of TTS reduction and realized traffic states – with a controller
that directly applies the reference outflows of the coordination
layer to the model – which is only possible when using
a macroscopic process model – giving the lowest possible
TTS. This shows the TTS increase caused by the individual
intersection layer. Next, the performance is compared witha
greedy feedback policy that optimizes the signal timings of
the local intersections. This provides insight into the ability of
the proposed framework to distribute queues more efficiently
over the network in the presence of spillback. Next, the
microscopic model Vissim 5.30 is used as the process model,
which introduces a larger mismatch.

In both simulations, the controller sampling timesT local

andT ref are varied and the impact on the TTS and reference
tracking error is analyzed. It is expected that a smaller sam-
pling time T local leads to a lower TTS and a lower reference
tracking error, because it allows more frequent switching of
the stages. Similarly, it is expected that choosing a smaller
sampling timeT ref reduces the reference tracking error but
does not necessarily reduce the TTS.

A. Simulation set-up

The simulation set-up is shown in Figure 4. Every second,
measurements are obtained from the process model – i.e., the
LTM in Section III-B, and Vissim in Section III-C. The local
control layer is updated everyT local seconds, and the network
coordination layer updates the reference outflow trajectories
everyT ref seconds. Figure 5 shows the network used in the

Process model

Measurements:

Traffic state

Every second

Intersection controller

Control signal

Disturbances:

Demand

Turn fractions

Maximum outflow

Reference

MPC

EveryT local (s)

Sampling timeT local (s)

EveryT ref (s)
Sampling time 10 (s)
Prediction horizon 600 (s)
Updated everyT ref (s)

Fig. 4. Schematic overview of the simulation set-up.

simulations. It consists of three intersections; (1) top left, (2)
top right, and (3) bottom right. The link lengths are indicated in
the figure, where it must be noted that link 16 is 800 meters. It
can also be seen that a bottleneck is located at the downstream
end of link 7. This bottleneck is used to mimic a situation
where downstream congestion is spilling back towards the
controlled network. Alternatively, the bottleneck can represent
a situation where the controlled network outflow is limited
by a perimeter control strategy. A simulation period of 2500

1 4 52
3 6
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8
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11

12 13
14

15

16

1817

19

9

Intersection 1 Intersection 2

Intersection 3

Bottleneck

300 m

3
0
0
 m

200 m

2
0
0
 m

3
0
0
 m

8
0
0
 m

300 m 200 m 300 m

η1,2 = 5/9
η1,3 = 4/9

η8,9 = 6/11
η8,10 = 5/11

η4,5 = 6/11
η4,6 = 5/11

η12,13 = 1/3
η12,14 = 2/3

η16,17 = 1/2
η16,18 = 1/2

Fig. 5. Schematic overview of the network used for the simulations, including
the link lengths, location of the bottlenecks, and the turn-fractions.

seconds is considered. The demand pattern that is applied
to the network consists of a high demand for the first 1800
seconds of respectively 900, 1100, and 1800 veh/h at links 1,
8, and 12. From time 1800 to 2500 seconds the demand is
decreased to respectively 300, 250, and 200 veh/h at links 1,
8, and 12. This implies that in the high demand situation 600
veh/h want to go from links 5 to 7 and links 17 to 18, 500
veh/h from link 6 to link 19, and 600 veh/h from link 18 to
link 19. The bottleneck at link 7 is activated from time 100
seconds with a capacity of 600 veh/h.
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It is assumed that no measurement noise is present and
that there is no uncertainty in the disturbance predictions. In
this way, controlled experiments can be carried out that allow
studying the controller behavior in detail. It must be noted
that there is a mismatch between the process model and the
prediction model caused by the difference in the local control
signals and the MPC output.

B. Simulation set 1: macroscopic simulation using the LTM

The first set of evaluations is carried out using the LTM as
the process model. These evaluations are carried out in order to
gain insight into the quantitative controller performance. The
LTM allows a direct implementation of the reference outflows
obtained from the network coordination layer and thus enables
studying the reference tracking error incurred in the individual
intersection control layer. The mean reference tracking error is
defined as the average of the absolute difference between the
reference outflows computed with the network coordination
layer and the realized outflows.

1) Simulation set 1: set-up:The LTM is implemented as
the process model with a sampling time step of 1 second.
Clearance times are not considered in this simulation set, and
the tuning parametersθicon are set to0. This implies that the
control strategies can actuate any stage at any time stepT local.

Three different control strategies are compared:

1) LML-U + GRT : this is the control strategy proposed in
this paper.

2) LML-U : this is the LML-U strategy of the top layer
with the optimized green-fractions directly applied to the
network. Note that this implementation is not deploy-
able, since these green-fractions can be simultaneously
nonzero for conflicting traffic movements in a time
interval. Comparing with this control policy gives an
idea of the best possible TTS that can be obtained.

3) GCP: this is a greedy control policy (GCP) that tries
to actuate the stage at every time stepT local that will
maximize the throughput of every individual intersec-
tion. This is realized by predicting for every stage
the potential intersection outflow using the approach
detailed in Section II-C1 and actuating the stage that
will lead to the highest outflow. A comparison with this
algorithm provides insight into the added value of the
network coordination layer of the LML-U + GRT policy.

In the various simulations, the local control strategy sam-
pling time T local is varied from 1 to 15 seconds. The coor-
dination layer sampling timeT ref is varied from 10 to 590
seconds. In this way the impact of the controller parameters
on the controller performance can be studied. The prediction
model used in the coordination layer uses a sampling time step
of 10 seconds and a prediction horizon of 600 seconds. The
factor γe is set to 0.3.

2) Simulation set 1: results:Several simulations were car-
ried out with the different control strategies. The quantitative
results are presented in the left two columns of Figure 6.
First, the impact of changing the controller timingsT ref and
T local on the different controllers is discussed. After that, the
performance of the different controllers is compared.

Figure 6 (a) and (e) show the impact ofT ref on the TTS
and on the mean reference tracking error. For every sampling
timeT ref there are multiple results, since the simulations were
repeated for different values ofT local. Figure 6 (a) shows the
impact of the coordination layer sampling time on the TTS.
It can be observed from this figure that for low sampling
times the TTS fluctuates considerably. WhenT ref increases
the fluctuations decrease, and for higher values ofT ref the
TTS starts increasing again, which is mainly caused by the
timeT ref being close to the prediction horizon of 600 seconds.
Figure 6 (e) shows the impact of the sampling timeT ref on
the mean reference tracking error. This plot shows a slight
increase in the reference tracking error when increasing the
time T ref , although this result does not seem to be significant.

Figure 6 (b) and (f) show the impact ofT local on the TTS
and on the mean reference tracking error. Figure 6 (b) shows
that an increase inT local results in an increase in the TTS.
Similarly, Figure 6 (f) shows that an increase inT local results
in an increase in the reference tracking error. These results are
best explained by the fact that a smaller sampling timeT local

results in the possibility of more rapid stage switching, which
allows for better tracking of the reference outflow trajectories.

Figure 6 (a) and (b) also show the realized TTS of the LML-
U and GCP strategies. Figure 6 (a) shows that the LML-U
strategy can realize the lowest TTS. It also shows that it is
not sensitive to changes in the timeT ref until approximately
400 seconds. After that, the TTS increases due to the time
T ref getting close to the prediction horizon. The lowest TTS
realized with the LML-U strategy is 234.33 veh·h . Figure 6 (b)
shows that the TTS increases when increasing the sampling
time T local. The best performance realized by the LML-U +
GRT strategy is 234.56 veh·h for T local being 1 second. When
settingT local to a more realistic value of 5 seconds, the lowest
TTS is 235.45 veh·h . In the case of the GCP, the lowest TTS
realized is 238.16 veh·h .

These evaluations show that a sampling timeT ref in the
range of 300 to 400 seconds is preferred for the performance.
However, ideallyT ref is chosen small, so that the control
strategy can quickly respond to disturbances. In order to reduce
the sampling timeT ref , it is suggested to study the use of
an observer in future research. The evaluations also show that
the performance loss incurred by the switching of the stagesis
limited when the mismatch between the process and prediction
model is small. Additionally, it is shown that a smaller local
sampling timeT local results in better performance due to the
ability to track the reference outflows more accurately.

C. Simulation set 2: microscopic simulation using Vissim

The second set of simulations is carried out with a mi-
croscopic simulation model. This allows us to study the
performance when applied to a more complex process model.
The quantitative performance is studied by comparing the
control strategy to two other control strategies and studying the
impact of changes in the controller parameters. Additionally,
the qualitative performance is studied.

1) Simulation set 2: set-up:In this simulation set, Vis-
sim 5.30 is used as the traffic flow model, with a sampling time
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Fig. 6. Simulation results for different set-ups. The two left columns represent the results obtained with the LTM, the two right columns represent results
obtained with Vissim. The first row shows the impact of the controller sampling timesT ref andT local on the TTS. The second row shows the impact of the
sampling times on the mean reference tracking error. Plot (l) shows the impact of the sampling timeT local on the mean local prediction error. This result
is not shown for the LTM because the prediction error is negligible, since the process and prediction models are identical. The max, mean, and min lines
indicate the maximum, mean, and minimum realized TTS of the non-shown parameter (e.g.T local in plot (a)).

step of 0.2 seconds. Measurements are gathered and sent to
Matlab R2016a every second. The rest of the set-up is similar
to that discussed in Section III-B1.

The same network model as in Figure 5 is used. However,
the parameters used in the prediction model are different than
those discussed in Section III-B1. The link parameters are
shown in Table I and are obtained by fitting the simulation
data obtained with the LTM to an identification data set from
a Vissim simulation. The origin capacities are estimated as
qcap1 =2000 veh/h,qcap8 =2000 veh/h,qcap12 =2000 veh/h.

In the various simulations, the local control strategy sam-
pling time T local was varied from 5 to 12 seconds. The
coordination layer sampling timeT ref was given values of
30, 60, 90, 120, 180, 240, 300, 360, 420, 480, 540, and 590
seconds. In this way, the impact of the controller parameters
on the controller performance can be studied. The prediction
model used in the coordination layer uses a sampling time
step of 10 seconds and a prediction horizon of 600 seconds.
The factorγe was set to0.3. The clearance time between two
conflicting links was set to 2 seconds, and the parametersθicon

were set to4.4 · 10−2.

2) Simulation set 2: quantitative results:The quantitative
results are presented in the right two columns of Figure 6.
First, the impact of the controller sampling timesT ref and
T local is discussed. After that the performance is compared to
the GCP.

Figure 6 (c) shows the impact ofT ref on the TTS. It can
be observed that the TTS is lowest for sampling timesT ref

in the range of 200 to 300 seconds. This is in accordance
with the results obtained with the LTM. The reason is that
the reference outflows are determined for average dynamics.
When using small values ofT ref, the frequent updates of the
MPC signal do not allow a good representation of the average
dynamics. For high sampling timesT ref, the impact of the
mismatch between the process and prediction model becomes
larger, as is also shown in Figure 6 (g).

Figure 6 (d) shows the impact ofT local on the TTS. It
can be observed that there is no clear connection between the
sampling timeT local and the TTS. When studying Figure 6 (h),
it is also clear that there is no strong connection between the
sampling timeT local and the reference tracking error. This is
best explained by the mismatch between the LTM and Vissim
when predicting the intersection outflows with a time horizon
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TABLE I
L INK PARAMETERS USED IN THE PREDICTION MODEL.

Link tfree(s) tshock(s) nmax(veh) qsat(veh/h) Link tfree(s) tshock(s) nmax(veh) qsat(veh/h)
1 21.0 60.0 45 1961.9 11 21.0 58.0 46 2048.3
2 14.0 60.0 30 1916.1 12 21.0 56.4 44 1994.4
3 14.0 46.6 30 2000.0 13 14.0 61.0 31 1979.2
4 21.0 68.0 45 2369.8 14 14.0 70.0 30 1998.3
5 14.0 70.0 30 2369.8 15 21.0 58.0 46 1935.3
6 14.0 39.0 30 1848.5 16 57.0 205.0 119 1914.9
7 21.0 92.0 46 2023.0 17 14.0 60.0 30 2262.5
8 21.0 63.2 45 2150.9 18 14.0 48.3 31 2195.1
9 14.0 60.0 30 2000.0 19 21.0 53.4 47 1937.3
10 14.0 55.0 30 2000.0

in the range of 10 seconds. Figure 6 (l) shows the impact of
T local on the prediction error of the bottom layer.

When examining the realized TTS in Figure 6 (d), it can
be seen that the LML-U + GRT strategy can realize a TTS
of 270.17 veh·h while the GCP can realize a TTS of 279.35
veh·h . The reason for this, as discussed in the next subsection,
is that the approach proposed in this paper distributes the
queues over the network better. Also, when studying Fig-
ure 6 (l) it can be observed that the mean local prediction error
of the GCP is consistently higher. The reason for this is that
the predictions in the intersection layer are especially off when
queues spill back to upstream intersections. This affects the
GCP more, because that strategy causes much more spillback.

3) Simulation set 2: qualitative results:Figure 7 shows the
number of vehicles over time in several links for the two
different control strategies – i.e., the LML-U + GRT in the
left column, and the GCP in the right column. Figure 8 shows
the outflows of the network exits over time. The simulation
results withT local = 9 seconds andT ref = 300 are used for
the comparison. The vertical lines are used to indicate the time
instants 300, 460, 650, and 1800 seconds respectively. Below,
the behavior is discussed using these figures.

• Figure 7 (a) and (b) show that from time 80 to 300 the
flow into the bottleneck exceeds the bottleneck capacity
and a queue starts building up in link 7. This occurs when
using either of the two policies.

• Figure 7 (c) and (d) show that at time 300 (indicated with
the first vertical line) the spillback reaches links 5 and 17
and both controllers try to store as much traffic in these
links in order to prevent blocking links 6 and 18.

• Around time 460 (indicated with the second vertical line)
spillback cannot be avoided any more. The LML-U +
GRT controller reduces the outflow of link 5 so that
queues built up in links 5, 4, 2, and 9. In contrast to
that, the GCP controller gives green to both links 5 and
17. This causes spillback towards links 4 and 16, which
causes blocking of links 6 and 18.

• Next, around time 650 (indicated with the third vertical
line) the LML-U + GRT blocks the outflow from link 17
in order to prevent spillback to links 8 and 1. As shown
in Figure 7 (c), the number of vehicles in link 5 decreases
while the number of vehicles in link 17 increases. It is
interesting to see that links 2 and 9 do not seem that full
around time 650. This is due to the shock wave dynamics
that cause a delay in the time when an outflow increase

at link 5 leads to increased outflows at upstream links
2 and 9. Hence, only around time 800 seconds do the
queues in links 2 and 9 become more or less stationary.
The GCP controller does not have such a global view of
the network, so the queue on link 2 grows, resulting in
spillback to link 1 and an outflow reduction at link 11,
as can be observed in Figure 8 (c).

• At time 1800 (indicated with the righter most vertical
line) the demands decrease. Due to this, the outflow of
link 5 can be reduced without triggering spillback to links
1 and 8 so that the queues on link 12, 14, 16, and 17 can
be reduced.

IV. D ISCUSSION

Several assumptions were made to simplify the problem
addressed in this paper. This allowed us to combine opti-
mization of the traffic flows at the network level with local
signal controllers. This section discusses the implication of
these assumptions and suggestions for relaxing them. It also
discusses the scalability of the framework.

It was assumed that no minimum and maximum green
times, no maximum or fixed cycle time, no off-set, and no
fixed stage sequences had to be considered. Including these
properties may affect the control performance, since, it reduces
the control freedom. In order to correctly take these properties
into account, the network coordination layer may need to be
adjusted to reflect the impact of the different signal controller
properties on the link outflows. Also, the logic of the local
intersection control layer may need to be adopted to ensure that
maximum green times, cycle times, and fixed stage sequences
are realized. Depending on the problem type, this may be
achieved by using heuristic approaches or optimization-based
strategies. Hence, relaxing these assumptions may require
some theoretical extensions and additional numerical evalu-
ations which is beyond the scope of the present paper.

Apart from that, an idealized set-up was assumed with no
noise or uncertainties, and in which only normal vehicular
traffic is present. The impact of uncertainties on the controller
performance requires further investigation and, when needed,
robust control strategies should be developed (e.g., see [22],
[23]). Different traffic types may be included by using a
multi-modal LTM, and including public transport priority as
constraints within the optimization problem.

The approach was designed for sub-networks consisting of
(several) tens of intersections at maximum, and was tested
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Fig. 8. Outflow of links 7, 11, 15, and 19 over time for the LML-U+ GRT
strategy and the GCP strategy. The vertical lines indicate the time instants
300, 460, 650, and 1800 seconds.

on a small network consisting of three intersections. When
applying the framework to larger networks, the computation
time required by the network coordination layer increases.The
size of the optimization vector is given as(nL + nO)Np (-)
and the number of constraints is given as(4nL+3nO+nE+
ncon)Np (-), with nE (-) the number of exits, andncon (-) the
number of conflicts between links.

V. CONCLUSIONS AND RECOMMENDATIONS

This paper proposes a hierarchical control framework for
coordinated intersection control. The top layer – the network
coordination layer – uses an efficient, linear MPC strategy
for the optimization of network throughput. The output of
the network coordination layer consists of reference outflow
trajectories for the controlled links at intersections. The bottom
layer consists of the individual intersection controllersthat
actuate the stage that minimizes the current reference tracking
error. Simulations were carried out to test the impact of the
controller timings and to compare the performance for the
different timings. Simulations using the LTM as the process
model indicated that the best performance can be obtained
when using a moderate (around 200 to 300 seconds) sampling
time for the network coordination layer. It was also shown that
a smaller sampling time of the bottom layer leads to improved
performance. It was found that the policy proposed in this
paper can realize a TTS that is only 0.5% worse than the
best possible performance when directly applying the signal
of the network coordination layer. It was also shown that the
controller can outperform a greedy control policy that tries to
maximize the individual intersection throughput. Simulations
using microscopic simulation revealed that the control strategy
is capable of efficiently distributing the traffic over the network
in spillback conditions, even when a large mismatch between
the prediction and process model is present.

Further research can investigate the application of the frame-
work to an intersection signal program where fixed stage se-
quences and minimum green times are included. Additionally,
the application to a network that consists of heterogeneous
vehicle types – e.g. vehicles, public transport, and bicycles –
may be studied. Finally, further research can be carried out
into the design of an observer so that the sampling time of the
network coordination layer can be reduced.
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