
Abstract Interpretation of
Program Transformations

using Regular Tree
Grammars

by

J.T. Hidskes
to obtain the degree of Master of Science in Computer Science
at the faculty EEMCS of the Delft University of Technology,

to be defended publicly on Friday November 2, 2018 at 9:00 AM.

Student number: 4335732
Thesis committee: Prof. dr. E. Visser, TU Delft, chair

Dr. S. Erdweg, TU Delft, supervisor
S. Keidel, MSc, TU Delft, supervisor
Dr. A. Panichella, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

II

Preface

This thesis has been submitted for the degree of Master of Science in Computer
Science at the Delft University of Technology. It is not a usual thesis report.
Rather, in agreement with my supervisors Sebastian Erdweg and Sven Keidel,
we decided to write a conference paper. This “thesis paper” is the result of this
work. We plan to submit the paper after my thesis defense.

My work investigates the analysis of program transformations in order to
provide static guarantees about the output programs. To this end, I developed
two static analyses: one that keeps track of the sorts of transformed programs,
and one that maintains a regular tree grammar to represent the transformed
programs. This work is done within the Programming Languages group of the
faculty of Electrical Engineering, Mathematics and Computer Science (EEMS).

First of all, I would like to thank Sebastian for offering me the opportunity
to do my thesis under his guidance. While working on this thesis, I was under
supervision of Sven, with whom I had great discussions and collaboration. I
want to thank Sven for all the support and guidance that he provided during
my thesis. I thank the PL group for the lunch lectures that have given me many
interesting insights in the field of programming language theory.

Finally, I would like to thank my family and friends for all their unconditional
support.

Jente Hidskes
October 26, 2018

Abstract Interpretation of Program
Transformations using Regular Tree Grammars

Jente Hidskes, Sven Keidel, and Sebastian Erdweg

Delft University of Technology, The Netherlands

Abstract. Many program transformation languages simplify the im-
plementation of program transformations. However, they give only weak
static guarantees about the generated code such as well-sortedness. Well-
sortedness guarantees that a program transformation does not generate
syntactically ill-formed code, but it is too imprecise for many other sce-
narios. In this paper, we present a static analysis that allows developers
of program transformations to reason about their transformations on a
more fine-grained level, namely that of syntactic shape. Specifically, we
present an abstract interpreter for the Stratego program transformation
language that approximates the syntactic shape of transformed code us-
ing regular tree grammars. As a baseline, we also present an abstract
interpreter that guarantees well-sortedness. We prove parts of both ab-
stract interpreters sound.

1 Introduction

Program transformations translate code of an input language to code of an out-
put language. Examples of program transformations are desugarings, refactor-
ings, optimizations, and code generators. While transformation languages sim-
plify the implementation of program transformations, many give only weak static
guarantees about the generated code to the transformation developer. In this
work, we develop a static analysis to help transformation developers reason au-
tomatically about program transformations.

Reasoning about program transformations is difficult because we are one ad-
ditional metalevel removed from the program semantics. For example, instead
of showing that a program yields well-typed values, we have to show that a pro-
gram transformation yields programs that yield well-typed values. At the same
time, to be useful in practice, we want to provide feedback automatically and
without a heavy annotation burden. Probably for these three reasons, existing
transformation languages provide only weak static guarantees [8, 27], namely
that of well-sortedness. A generated program is well-sorted if it is syntactically
well-formed in the output language. This guarantee is precise enough to ensure
that we do not generate statements as operands of an arithmetic operator, yet
it is too imprecise for many other scenarios.

For example, consider the following desugaring of Java extended with pairs,
which we reproduce from Erdweg et al. [15]:

2 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

rules
desugar-type: PairType(t1,t2) → |[Pair<~t1,~t2>]|
desugar-expr: PairExpr(e1,e2) → |[new Pair<>(~e1,~e2)]|

strategies
main = topdown(try(desugar-expr + desugar-type))

This desugaring transformation is written in Stratego, a language featuring
rewrite rules and strategies [34]. The two rewrite rules above use pattern match-
ing to select pair types and expressions, respectively. They then generate repre-
sentations of pair types and expressions using the Pair class. The main rewriting
strategy traverses the input AST top-down and tries to apply both rewrite rules
at every node, leaving the node unchanged if neither rule applies.

Developers of desugaring transformations need to ensure that all extension
constructs are rewritten to core language constructs. In our example above, we
want to guarantee that main yields a Java program without pairs. However,
Stratego is untyped and does not provide such insurance. Other transformation
languages like Maude [8] ensure well-sortedness and statically check if the re-
sult is a syntactically well-formed Java program. However, well-sortedness is too
imprecise for our example because it cannot distinguish sort Expr that allows
pair expressions from a sort Expr that disallows pairs. It might be possible to
encode the desugaring property using sorts, but this would require duplicating
the Java grammar and changing the transformation code. We would much rather
find a generic approach that supports reasoning about generated code at a more
fine-grained level than sorts.

In this paper, we implement a static analysis for program transformations by
the means of abstract interpretation [10]. Specifically, we present a generic inter-
preter for the Stratego program transformation language that is parametric in
its domain-specific semantics. We can derive executable static analyses from this
generic interpreter by instantiating it with a specific semantics. Our architecture
follows the design of Keidel et al., who showed that the generic interpreter sim-
plifies the soundness proof of derived interpreters [26]. To this end, Keidel et al.
instantiated a generic interpreter for Stratego to derive a concrete interpreter
and a proof of concept tree-shape analysis, which they then showed sound. In
this paper, we show that our generic Stratego analysis framework also supports
the derivation of realistic static analyses that are relevant for transformation
developers.

We present two relevant abstract domains for Stratego and derive corre-
sponding static analyses. First, as a baseline, we realize an abstract domain that
represents generated code by their sort. From this abstract domain, we derive a
static analysis that ensures the well-sortedness of program transformations. We
prove parts of the abstract domain for sorts sound.

To improve precision, we develop a second abstract domain that represents
generated code as a regular tree grammar [2]. This abstract domain relies on a
regular tree grammar describing the input language. It then transforms this input
grammar to describe the possible output terms as precisely as possible. While
regular tree grammars can contain cycles to describe infinitely many programs,

Abstract Interpretation of Program Transformations using RTGs 3

many operations on the underlying language are decidable [9]. We explain how
Stratego operations map to operations on regular tree grammars and prove their
implementation sound. In addition, we adopt a widening operator for regular tree
grammars [22] that ensures termination of the analysis. As before, we derive a
static analysis by instantiating the generic interpreter.

In summary, we make the following contributions:

– We present a generic interpreter for Stratego and explain how to derive
executable static analyses from it (Section 3).

– We realize an abstract domain for Stratego to ensure well-sortedness and
prove parts of it sound (Section 4).

– We develop an abstract domain for Stratego based on regular tree grammars
and prove parts of it sound (Section 5).

2 The Stratego Program Transformation Language

In this work we focus on Stratego, a domain-specific language to describe pro-
gram transformations [34]. Stratego consists of a core language [34] and a surface
language which provides a richer set of abstractions defined in terms of these
core constructs [7]. In this section, we briefly introduce parts of the surface and
core language that we revisit throughout the paper.

In Stratego, programs are represented by terms, i.e., their abstract syntax
trees. The fundamental construct of Stratego is term rewrite rules. For example,
the following rewrite rule simplifies arithmetic expressions by removing additions
with zero and multiplications with one or zero.
simplify: Add(0,x) → x
simplify: Add(x,0) → x
simplify: Mul(1,x) → x
simplify: Mul(x,1) → x
simplify: Mul(0,x) → 0
simplify: Mul(x,0) → 0

The rewrite rule matches a subject term against the term patterns on the left
of the rule. If one of the patterns matches, it binds the variables of the pattern
and produces a new term from the pattern on the right by substituting its free
variables.

Rewrite rules desugar to constructs of the core language called strategies. For
example, the rewrite rule simplify from above desugars to the following core
constructs:
{?Add(0,x); !x} + {?Add(x,0); !x} + {?Mul(1,x); !x} +
{?Mul(x,1); !x} + {?Mul(0,x); !x} + {?Mul(x,0); !x}

In this example, the match strategy ?p attempts to match the subject term
against the pattern p and binds p’s free variables. If a match succeeds, the build
strategy !p replaces the subject term with the instantiation of the term pattern
p using the bindings from the environment. The sequence operator s1;s2 passes

4 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

the subject term through the first and second strategy. If a match fails, the choice
operator + executes the next match.

As is, simplify only applies to the root of the term. However, to make
simplify useful, we need to apply it to every position in the term. This can
be done with the top-down strategy, as shown in the introduction, which tra-
verses the term from top to bottom trying to apply the given strategy. Strategy
top-down is not a core construct. Instead it is implemented with the generic
traversal operator all(s), which applies the strategy s to all subterms of the
given term.

In the following sections, we revisit these core language constructs again and
explain how we implement an analysis for them.

3 An Analysis Framework for Stratego

Creating new static analyses from scratch and proving them sound is a laborious
and error-prone process. To simplify this process, we created an analysis frame-
work for Stratego. The key idea in this framework is to separate independent
semantics from semantics that are specific to concrete and abstract interpreters.
The independent semantics is captured in a generic interpreter, which exposes
a collection of interfaces for the semantics that are specific to different abstract
or concrete interpreters, see figure 1. Both abstract and concrete semantics then
instantiate this generic interpreter by implementing its interfaces. The inter-
faces consist of operations that implement primitive functionality, such as pat-
tern matching of terms or failure of strategies. Creating new analyses in this
framework takes less effort and is less error-prone, because only analysis-specific
functionality needs to be provided and proven sound with the criteria yielded
by the concrete interpreter. Our framework is inspired by a case study in earlier
work by Keidel et al. on compositional abstract interpreters [26]. In this work,
Keidel et al. developed the generic interpreter for Stratego to verify that their
approach scaled to real world languages. The analysis framework is implemented
in Haskell and the code is open source.1

In the following, we describe our generic interpreter for Stratego. The analysis
framework is based on Haskell arrows [24]. Arrows allow different semantics
to modify the control-flow and effects of the generic interpreter. For example,
semantics can specify how failure of strategies is propagated. On a high-level,
arrows describe computations which consume values of a certain input type and
produce values of a certain output type.

The generic interpreter is a function eval that takes a strategy of type
Strategy and produces an arrow computation c t t that takes a term as input
and produces a term as output:

eval :: (IsTerm t c, ArrowFail c, ArrowFix (Strategy ,t) t c, …)
⇒ Strategy → c t t

1 https://github.com/hjdskes/sturdy/tree/master/stratego

Abstract Interpretation of Program Transformations using RTGs 5

Concrete semantics

Abstract semantics

Abstract semantics

Abstract semantics

Interfaces

G
eneric

interpreter

Concrete interpreter

Abstract interpreter

Abstract interpreter

Abstract interpreter

implements realises

implements realises

implements realises

implements realises

used by

Fig. 1: The framework and its components.

The generic interpreter is parametric in its arrow type c and term type t to allow
different semantics to instantiate these types differently. The interfaces of the
generic interpreter consist of the type classes IsTerm, which defines operations
on terms, ArrowFail, which defines an operation fail that causes a strategy
to fail, ArrowFix, which defines a fixpoint computation fix, and further type
classes not shown here.

The interfaces also consist of type classes not specific to Stratego, such as
a type class for ordering and a type class for least upper bounds. Abstract
interpretation requires that its abstract domains are ordered, i.e., that we can
compare two abstract values a1, a2 for precision, written a1 ⊑ a2. Abstract
interpretation also requires that the abstract domain is finitely complete, i.e.,
that all elements a1, a2 have a least upper bound a1⊔a2. The least upper bound
is uniquely defined: for two abstract values a1, a2 we have a1 ⊑ (a1 ⊔ a2) as well
as a2 ⊑ (a1 ⊔ a2) [30].

The implementation of the generic interpreter uses the pretty notation of
arrow computations [31] featured by GHC, similar to do-notation for monads:

data Strategy = Seq Strategy Strategy | Match Pat | Build Pat
| All Strategy | …

eval = fix $ λev strat → case strat of
Seq s1 s2 → proc t → do

t' ← ev s1 � t
t'' ← ev s2 � t'
returnA � t''

Match pat → proc t → match � (pat,t)
Build pat → proc _ → build � pat
All s → all (ev s)
…

6 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

For example, the implementation of the sequence operator Seq describes an
arrow computation (proc t → . . .) that binds input term t. Term t is used as
input to ev s1, which runs strategy s1 and yields term t'. This term is then
passed to the second strategy s2, whose result is returned using returnA. The
generic interpreter uses the fixpoint combinator fix to allow the semantics to
specify how to recurse over strategies. The fixpoint of an analysis is specific to
that analysis and hence defined in the ArrowFix type class. In the following,
we discuss the implementation in the generic interpreter of the core constructs
that we discussed in section 2: Match, Build and All. These constructs are
implemented with recursive helper functions, whose code is shown in listing 1.
A recurring theme in the interfaces is that they destruct a higher-level Stratego
construct into smaller, more primitive functionality.

data Pattern = Var String | Cons String [Pattern] | …

class Arrow c ⇒ IsTerm t c where
equal :: c (t,t) t
matchCons :: c ([p],[t]) [t] → c (String ,[p],t) t
cons :: c (String ,[t]) t
mapSubterms :: c [t] [t] → c t t
…

match :: (IsTerm t c, IsTermEnv env t c) ⇒ c (Pattern ,t) t
match = proc (pat,term) → case pat of

Var x →
lookup (proc (t',(x,t)) → do

t'' ← equal � (t,t')
insert � (x,t'')
returnA � t'')

(proc (x,t) → do
insert � (x,t)
returnA � t)� (x,(x,t))

Cons c ps → matchCons (zipWith match) � (c,ps,t)
…

build :: (IsTerm t c, IsTermEnv env t c) ⇒ c Pattern t
build = proc pattern → case pattern of

Var x → lookup ' returnA fail � x
Cons c ps → do

ts ← map build � ps
cons � (c,ts)

…

all :: IsTerm t c ⇒ c t t → c t t
all s = mapSubterms (map s)

Listing 1: Generic semantics for Match and Build.

Abstract Interpretation of Program Transformations using RTGs 7

Function match matches a term against a given pattern. The pattern can
either be a variable, a constructor with subpatterns or a string or number lit-
eral (not shown). In case the pattern is a variable, match calls lookup from the
IsTermEnv type class (not shown) to retrieve the variable from the current envi-
ronment. This type class defines functions to manage an environment of variable
bindings. Function lookup additionally takes two arrow computations. The first
computation is called if a variable binding exists in the environment; otherwise,
the second computation is called. To implement linear pattern matching [34], in
case a variable binding exists the bound term is compared for equality with the
given term. Comparing two terms for equality is done with the function equal,
also defined in the IsTerm type class. Afterwards, the new term is bound to the
variable in the environment. In case of a constructor pattern, the constructor
of the pattern is matched by matchCons from the IsTerm type class against
the top-level constructor of the term. If this succeeds, the implementation of
matchCons should then recursively match the subterms of t respectively against
the list of subpatterns ps. The generic interpreter thus reduces matching a term
to matching a constructor or (not shown in the code) a number literal or a
string literal. Binding variables, looking up variables from the environment and
performing linearity checks are all handled in the generic interpreter.

Function build builds a term from a given pattern and variables bound in
the environment. As before, the pattern can either be a variable, a constructor
with subpatterns, or a string or number literal. In case the pattern is a variable,
build returns the term bound to this variable. In case the pattern is a construc-
tor pattern, build recursively builds the terms for the subpatterns and with
these creates a new term with the given constructor of the pattern as top-level
constructor. The assembling of the subterms and constructors is handled by in-
terface operation cons from the IsTerm type class. As with matching patterns,
the generic interpreter manages the environment and variable lookups.

Function all s applies strategy s to all subterms of the current term. The
generic interpreter maps all traversal combinators to that of a single function,
mapSubterms, defined in the IsTerm type class. Function mapSubterms maps an
arrow-computation over the list of subterms, while leaving the top-level construc-
tor the same. Function map :: c x y → c [x] [y] then applies the strategy s
to each element of the list. The generic interpreter thus reduces all of Stratego’s
traversal combinators to a single interface function; derived analyses need only
define how to traverse subterms.

In conclusion, a new interpreter needs to implement only the required type
classes such as IsTerm, IsTermEnv, ArrowFail and ArrowFix. It may then call
the generic interpreter function eval and get all shared semantics for free. In
the following sections we show how to instantiate this framework to obtain two
analyses.

8 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

4 An Abstract Interpreter for Well-Sortedness

In order to establish a baseline for our tree-shape analysis, we instantiated
our framework with a sort analysis. This analysis allows us to show that a
transformed program is syntactically well-formed in its output language. While
this guarantee is precise enough to ensure that no statements are generated as
operands of an arithmetic operator, it is too imprecise to guarantee that the
desugaring of section 1 produces valid Java code without pairs. We develop our
abstract interpreter by implementing the interfaces of the generic interpreter as
shown in section 3. In this section, we show how these interfaces are implemented
on the abstract domain of sorts.

In Stratego we can differentiate between eight sorts, as shown below:
data Sort = Bottom | Top | Lexical | Numerical | Option Sort |

List Sort | Tuple [Sort] | Sort SortId

There are two subtleties in ordering sorts. First, while there is a dedicated sort
Lexical for string literals, other sorts may also be lexical. For example, the
Stratego signature ID: [a-zA-Z]+ → Exp declares the constructor ID to be
any combination of one or more upper- and lowercase characters. Hence, the
sort is Sort "Exp", but it is also a lexical sort. Second, when comparing two
non-identical sorts s1, s2 (e.g. s1 being an expression and s2 a statement), if sort
s1 can be transformed into sort s2, then s1 is more precise than s2. In order
to accommodate these subtleties, sorts need to carry a context that captures
all this information. With this context present, a preorder can be defined as
required. The least upper bound is then uniquely defined by this ordering. With
this machinery in place, we are ready to implement the interfaces of the generic
interpreter.

The implementation of the cons function creates an arrow that receives a con-
structor name c and a list of sorts s1 . . . sn as input, and it must create the sort
s of the term c(s1 . . . sn). The implementation of cons is straightforward, see list-
ing 2. Using the context, it looks up the signatures c: s1 ... sn → s of con-
structor c. For each signature, it checks for the correct number and kind of argu-
ment sorts. If this holds, the sort of the constructor is returned. If it does not hold,
Top is returned. The least upper bound is then taken over all matching signa-
tures. The least upper bound of an arrow computation

⊔
f � [a,b,c] calls f on

each element on the list and joins the results: (f � a) ⊔ (f � b) ⊔ (f � c).
If no signatures are found, the interpreter also returns Top.
cons = proc (c, ts) → do

ctx ← askContext � ()
returnA � case lookup c (signatures ctx) of

Just sigs →⊔
(arr (λ(ts',s) → if ts ⊑ ts' then s else Top))

-<< sigs
Nothing → Top

Listing 2: Building a constructor term in the sort analysis.

Abstract Interpretation of Program Transformations using RTGs 9

The matchCons function matches a sort against a constructor and calls the
match function of the generic interpreter to recursively match the sort’s parame-
ters against the subpatterns. The implementation of matchCons is also straight-
forward, see listing 3. The arrow created by matchCons receives the constructor
c to match against, a list of subpatterns ps and the sort s to match. It then
looks up the signatures c: p1 ... pn → s' of constructor c. For each signa-
ture, it checks for the correct number of subpatterns and whether the sort of
the pattern is more precise than the sort being matched. If this holds, the sort’s
parameters are matched recursively against the sorts of the subpatterns. Finally,
if this does not fail, the sort of the pattern is returned as the result of the match.
One subtlety to note here is that, while the matched term may be of the correct
sort, there is no way to ensure that it is also the correct constructor. As a result,
the interpreter also executes the failure case, taking the least upper bound of
both paths. Since there might be multiple matching signatures, the least upper
bound is taken over all computations. If no signatures are found, the interpreter
executes both the failure case and the success case with the sort Top, taking
their least upper bound.
matchCons match = proc (c,ps,s) → do

ctx ← askContext � ()
case lookup c (signatures ctx) of

Just sigs →⊔
(proc (ts,s') →
if length ts == length ps && s' ⊑ s

then
(fail � ()) ⊔ (do _ ← match � (ps,ts); returnA � s)

else fail � ()) -<< sigs
Nothing → (fail � ()) ⊔ (returnA � Top)

Listing 3: Matching a term against a constructor in the sort analysis.

The implementation of equal has two subtleties worth mentioning. Two sorts
t1, t2 are equal if t1 can be transformed into t2 or vice versa, i.e., if t1 ⊑ t2 or
t2 ⊑ t1. Furthermore, while the sorts may be equal, we can never ensure that the
actual terms are. For this reason, the interpreter computes both paths and the
least upper bound is taken over the respective outcomes. With these subtleties
in mind, the implementation is straightforward, as shown in listing 4.
equal = proc (s1,s2) →

if | s1 ⊑ s2 → (fail � ()) ⊔ (returnA � s2)
| s2 ⊑ s1 → (fail � ()) ⊔ (returnA � s1)
| otherwise → fail � ()

Listing 4: Testing equality of two terms in the sort analysis.

Finally, traversing terms. Recall from section 3 that our generic interpreter
maps all traversal combinators to a single function mapSubterms. In the sort
analysis, however, we have to traverse sorts. Since sorts do not have subterms,
we have to resort to an alternative approach. We retrieve all signatures c :
s′1 . . . s

′
n → s′ where s′ ⊑ s from the context, and map over the sorts s′1 . . . s

′
n of

10 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

each signature. The results are combined using the least upper bound operator.
In the implementation below, function signaturesOf retrieves all signatures
c : s′1 . . . s

′
n → s′ where s′ ⊑ s from the context.

mapSubterms f = proc s → do
ctx ← askContext � ()⊔

(proc (c,ts) → do
ts' ← f � ts
cons � (c,ts')

) � ctx `signaturesOf ` s

Listing 5: Traversing a term in the sort analysis.

4.1 Calculating the fixpoint of the sort analysis

Stratego transformations can be recursive. For example, the top-down strategy
applies a strategy to every position in an AST and hence needs to be recursive.
Because of recursion our static analysis for Stratego needs to take special care,
otherwise the analysis might diverge and not produce a result. In this subsection
we describe how the sort analysis computes the fixpoint of recursive strategies
to avoid non-termination.

The sort analysis has to solve one problem when analyzing recursive trans-
formations: the sort of a recursive transformation can be infinite. For example,
consider the following transformation:
foo = map(foo)

The program defines a strategy foo, that calls strategy map with foo recursively,
where map applies a strategy over every element of a list. The only valid sort
for the output of foo would be an infinitely deeply nested list. However, we
cannot infer this sort with our sort analysis, because the analysis would not
terminate. Hence, our analysis has to detect this case and return a sort which
overapproximates the actual sort of the transformation. For example, a valid
overapproximation for the output of foo would be the sort List Top, a list of
an unknown element sort.

To analyze recursive transformations we use a fixpoint algorithm for big-
step semantics by Darais et al. [14]. The algorithm detects recursive calls to
the abstract interpreter and enforces termination. For example, if we analyze
foo from above with the sort Top as input, the abstract interpreter in its first
recursive call will call foo with Top again. This fixpoint algorithm detects this
recursive call and returns the result of the first call of foo instead of diverging.

4.2 Soundness

In this subsection we show the soundness lemmas of matching and building
terms, equality on terms and traversing of terms of the sort analysis. Proofs of
these lemmas may be found in appendix A.1.

Abstract Interpretation of Program Transformations using RTGs 11

Lemma 1. Term construction is sound. In particular, we prove soundness of
cons, stringLiteral and numberLiteral.

Lemma 2. Matching a term against a term pattern is sound. In particular, we
prove soundness of matchCons, matchString and matchNumber.

Lemma 3. Term equality is sound. In particular, we prove soundness of equal
for constructor terms.

Lemma 4. Mapping over subterms is sound. In particular, we prove soundness
of mapSubterms.

In the next section, we discuss an analysis that achieves finer grained results
than the sort analysis shown in this section.

5 An Abstract Interpreter for Tree-Shape Analysis

In the previous section we discussed an analysis that ensures the well-sortedness
of Stratego program transformations. However, this analysis is not very precise.
For example, the sort analysis does not allow us to show that the desugaring
of section 1 produces valid Java code without pairs. In other words, we can-
not use it to answer questions about the structure of programs produced by a
transformation.

To address this short-coming, we define an analysis for Stratego based on a
more precise abstract domain: regular tree grammars (RTGs) [2, 9]. For example,
in figure 2 we analyze the transformation simplify from section 2. We provide a
grammar that describes the inputs of simplify, i.e., the grammar of all possible
arithmetic expressions. As result of the analysis, we obtain a grammar in which
all top-level terms contain no additions with zero and no multiplications with
one or zero. In the remainder of this section, we define an abstract domain based
on RTGs, discuss our implementation of the analysis and prove parts of it sound.

5.1 Regular tree grammars as abstract domain

In this subsection, we define an abstract domain for regular tree grammars based
on work by Cousot and Cousot [12]. First we define regular tree grammars more
formally.

We repeat the definition of regular tree grammars found in existing liter-
ature [2, 9]. An RTG denotes a set of terms constructed from an alphabet F
of ranked terminal symbols. A grammar (S,F ,N ,R) consists of a set of non-
terminals N , a start symbol S ∈ N and a set of productions R. Each production
has the form N → β, where N ∈ N is a non-terminal and β is either a non-
terminal or a term f(N1 . . . Nn) constructed from a terminal symbol f ∈ F and

12 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

Analysis

Exp → add(Exp,Exp)
Exp → mul(Exp,Exp)
Exp → succ(Exp)
Exp → zero

Exp → add(OnePlus ,OnePlus)
Exp → mul(TwoPlus ,TwoPlus)
Exp → succ(Exp)
Exp → zero
OnePlus → succ(Exp)
TwoPlus → succ(succ(Exp)

simplify: add(zero,x) → x
simplify: add(x,zero) → x
simplify: mul(succ(zero),x) → x
simplify: mul(x,succ(zero)) → x
simplify: mul(zero,x) → zero
simplify: mul(x,zero) → zero

Fig. 2: An example tree-shape analysis. The inputs are a Stratego transformation (top)
and an RTG that generates the input language of this transformation (left). The output
is an RTG (right) describing the result of the transformation.

non-terminals N1 . . . Nn ∈ N . For ease of presentation, we combine multiple
right hand sides for the same non-terminal symbol with the pipe symbol |. A
term is derived via successive applications of production rules, starting from the
start symbol S of the grammar. We write L(G) for the language of G, i.e., the
set of all terms that can be derived from G.

To use RTGs as an abstract domain, we need to define an ordering in which
each two elements have a least upper bound. The ordering G1 ⊑ G2 is defined
by the language that the grammars produce, i.e., L(G1) ⊆ L(G2). With this
ordering the least upper bound of two grammars G1 and G2 is the union of
these two grammars.

5.2 Implementing an analysis for Stratego based on RTGs

In this subsection, we discuss the implementation of our analysis based on the
abstract domain of regular tree grammars. As in section 4, we instantiate our
analysis framework to obtain an abstract interpreter for Stratego. In particular,
we discuss the implementations of cons that constructs a term from a constructor
and list of subterms, matchCons that matches a term against a constructor and a
list of subpatterns, equal that checks for equality of two terms and mapSubterms
which maps a transformation over the subterms of a given term.

To implement these operations, we extended the tree automata library by
Adams and Might [1].2 We added inclusion testing, emptiness testing, a deter-
minization function and other functionality specific to our needs on top of the
already existing functions such as union, intersection and equality testing.

2 The library is open-source and is available at https://github.com/hjdskes/tree-
automata/.

Abstract Interpretation of Program Transformations using RTGs 13

We start by describing the implementation of cons, an operation that con-
structs a new term from a constructor c and a list of subterms. In the tree-shape
analysis, instead of subterms, we are given subgrammars G1 = (S1,F1,N1,R1)
… Gn = (Sn,Fn,Nn,Rn). The operation assumes that the subgrammars have
disjoint sets of non-terminals. The new grammar G is constructed by taking
the union of all productions and by adding a new production S → c(S1 . . . Sn)
from a fresh start symbol S to the start symbols S1 . . . Sn of the subgram-
mars. More specifically, the new grammar G is defined by (S,

∪
Fi,

∪
Ni, {S →

c(S1 . . . Sn)} ∪ (
∪
Ri)). The implementation of cons is straightforward. Con-

structing a new grammar from a constructor name and a list of grammars is
implemented in the tree grammar library with the function addConstructor.

Next, we discuss matchCons, an operation that matches a term against a
constructor pattern c(p1 . . . pn) and returns a refined term. Before we discuss
the implementation of matchCons, let us first look at an example of the intended
semantics. Assume we match pattern foo(x,y) with a grammar G with the
two productions S → foo(A,B) | bar reachable from the start symbol. For each
right hand side of the production, we need to test whether the constructor of the
production is equal to foo. This is the case for S → foo(A,B), but not for S →
bar. Hence for this pattern, the match could succeed or fail. For the succeeding
production S → foo(A,B), we then recursively match the subpatterns x and y
on the grammar G starting with the non-terminals A and B respectively. For
the failing production, we add failure to the result of matchCons.

We now discuss the implementation of matchCons in listing 6 for a construc-
tor pattern c(p1 . . . pn) and a grammar G. Operation matchCons first decon-
structs G into a list of constructors reachable from the start symbol with lists
of subgrammars for the subterms of terms with these constructors. That is, let
S → f1(N11 . . . N1n) | . . . | fm(Nm1 . . . Nmo) be the productions reachable from
the start symbol. The list is constructed as follows

deconstruct(G) = [(f1, G(N11) . . . G(N1n)) . . . (fm, G(Nm1) . . . G(Nmo))].

Here G(N) refers to the grammar G with a changed start symbol N . Operation
matchCons then checks for each constructor fi if it is equal to the constructor
c of the pattern and if the arity of fi is the same as the arity of c. Whenever
this is the case, matchCons recursively matches each subgrammar against the
corresponding subpattern. The refined grammars resulting from the recursive
match are then recombined with cons to a grammar with top-level constructor
c. Otherwise, if the constructor or arity does not match, matchCons adds failure
to the overall result.
matchCons match = proc (ctor,patterns ,g) → do⊔

(proc (c,ps,c',ts) →
if c == c' && length ps == length ts

then do ts' ← match � (ps,ts)
cons � (c,ts')

else fail � ())� [(ctor,patterns ,c,ts) | (c,ts) ← deconstruct g]
Listing 6: Matching a term against a constructor in the tree-shape analysis.

14 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

Next, we discuss the implementation of equal in listing 7, that checks if two
terms are equal. In our tree-shape analysis, operation equal checks if terms in
one grammar G1 are equal to terms in the other grammar G2:

∀t1 ∈ L(G1),∀t2 ∈ L(G2), t1 = t2.

This means equal has to distinguish three different cases depicted in figure 3:
(i) the grammars are disjoint, (ii) both grammars produce the same single term,
or (iii) the intersection of both grammars is not empty. In the first case, be-
cause the grammars are disjoint, none of the terms produced by G1 and G2

can be equal. Therefore, equal calls fail. In the second case, equal checks if
both grammars produce only a single term that is in the intersection of both
grammars. In this case, the term produced by G1 has to be equal to the term
produced by G2 and equal succeeds. In the third case, G1 contains terms which
are not produced by G2 for which the equality check fails. Furthermore, G1 con-
tains terms which are produced by G2 for which the equality check eventually
succeeds. Therefore, equal returns a result that describes that term equality
could have failed or possibly succeeded with terms in the intersection of G1 and
G2.

L(G1) L(G2)

Fail

L(G1) =
L(G2) =
{t}

{t}

L(G1) L(G2)

Fail ⊔ (G1 ∩G2)

Fig. 3: The three cases of the intersection of the languages described by two grammars
G1, G2: no intersection (left), equality (middle) and intersection (right).

equal = proc (g1, g2) → case intersection g1 g2 of
g | isEmpty g → fail � ()
| isSingleton g1 && isSingleton g2 → returnA � g
| otherwise → (fail � ()) ⊔ (returnA � g)
Listing 7: Testing equality of two terms in the tree-shape analysis.

Finally, we discuss the implementation of mapSubterms in listing 8 for map-
ping a transformation over the subterms of the given term. In the tree-shape
analysis, operation mapSubterms maps a strategy not over a single term, but over
the subterms of all terms produced by a grammar. To implement this semantics,
mapSubterms first deconstructs the grammar into constructors and subgrammars
with the deconstruct function described above. For each pair of constructor and
subgrammars, it then maps transformation f over the list of subgrammars and

Abstract Interpretation of Program Transformations using RTGs 15

then reconstructs the resulting subgrammars with the old constructor into a new
grammar. Operation reconstruct is similar to cons, except that it also deals
with number and string literals.
mapSubterms f = proc grammar →⊔

(proc (ctor,subterms) → do
subterms ' ← f � subterms
returnA � reconstruct [(ctor,subterms ')])� deconstruct grammar

Listing 8: Traversing a term in the tree-shape analysis.

5.3 Calculating the fixpoint of the tree-shape analysis

As for the sort analysis, in the tree-shape analysis we need to take special care
when analyzing recursive Stratego transformations. However, compared to the
sort analysis the problem for the tree-shape analysis is more complicated. The
reason is that the abstract domain of RTGs is infinite, i.e., there are infinite as-
cending chains G1 ⊑ G2 ⊑ . . . of regular tree grammars. Hence, when calculating
the fixpoint, the analysis needs to avoid ascending one of these infinite chains
and diverging. In this subsection, we explain how we approximate the fixpoint
for the tree-shape analysis, while ensuring termination.

To avoid that the analysis ascends an infinite chain of RTGs, we use a stan-
dard technique called a widening operator [11]. In our analysis, a widening op-
erator G1∇G2 is a binary operator that takes two grammars G1 and G2 with
G1 ⊑ G2 and produces an RTG which is greater than G1 and G2. More im-
portantly, if we fold ∇ over an infinite ascending chain, the widening operator
produces a finite ascending chain that is element-wise greater than the original
one. This means that the widening operator accelerates fixpoint iteration and in
a finite amount of steps ends in a state that overapproximates the true fixpoint
of the analysis.

Our widening operator is based on the topological clash widening introduced
by Hentenryck et al. [22]. This is a widening on regular tree grammars that is
guided by differences in the shapes of the grammars of successive steps of the
interpreter. The idea underlying their approach is to determine in what direction
the new grammar is growing compared to the old grammar. This information
allows the widening operation to make an informed choice as to when to let a
grammar grow and when and how to prevent growth.

In order to do this, the widening operation traverses the old and new gram-
mars Gold and Gnew in lockstep fashion, processing pairs of non-terminals (N ∈
Gold, N

′ ∈ Gnew). When a cycle is detected, or when two non-terminal symbols
are found producing a different set of constructors, the traversal is halted along
that path. For some pairs (N, N′) where the traversal is halted, the new grammar
is growing compared to the old grammar. In this case, the widening searches for
an ancestor of N′. When an ancestor of N′ is found, the grammar Gnew can be
transformed by either replacing N′ with its ancestor in a single right hand side
(thus introducing a cycle), or by replacing N′ with its ancestor throughout the

16 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

grammar. The former is preferred, since it is the least drastic measure and thus
preserves more precision. The grammar formed this way is a safe approximation
of Gnew.

For example, consider the situation reproduced from Hentenryck et al. [22].
Two successive iterations of the analysis have produced the grammars displayed
in the top-left and top-right of figure 4. The widening operator starts to traverse
these grammars in a lockstep fashion, starting with the pair of start symbols
(T0, T

′
0). Since there is no cycle, and both non-terminal symbols generate the

constructors nil and cons, the traversal continues with the pairs (T1, T
′
1) and

(T2, T
′
2). For (T1, T

′
1), there is no cycle and both non-terminals produce the con-

structor true. Since there are no more non-terminals on this branch, the traver-
sal halts here without finding a pair signaling growth. For the pair (T2, T

′
2) the

traversal finds that, while there is no cycle, the sets of generated constructors
are not identical: T2 produces nil, while T′2 produces nil and cons. Hence, the
traversal now halts along this path as well. In this case, however, the pair (T2, T′2)
does indicate growth. The widening then searches for an ancestor of T′2 and finds
T′0. Since both T′2 and T′0 produce the constructors nil and cons and T′1 and T′3
both produce the constructor true, the ancestor T′0 overapproximates T′2. The
widening then replaces T′2 with T′0 in the production rule T′0 → cons(T ′

1, T
′
2), thus

introducing a cycle from T′0 to T′0, producing the result as shown in bottom of
figure 4.

T0 → nil | cons(T1,T2)
T1 → true
T2 → nil

T0' → nil | cons(T1',T2')
T1' → true
T2' → nil | cons(T3',T4')
T3' → true
T4' → nil

Tr → nil | cons(T1,Tr)
T1 → true

Fig. 4: One iteration of the widening operator, reproduced from Hentenryck et al. [22].

5.4 Soundness

In this subsection we show the soundness lemmas of matching and building
terms, equality on terms and traversing of terms of the tree-shape analysis.
Proofs of these lemmas may be found in appendix A.2.

Lemma 5. Term construction is sound. In particular, we prove soundness of
cons, stringLiteral and numberLiteral.

Abstract Interpretation of Program Transformations using RTGs 17

Lemma 6. Matching a term against a term pattern is sound. In particular, we
prove soundness of matchCons, matchString and matchNumber.

Lemma 7. Term equality is sound. In particular, we prove soundness of equal
for constructor terms.

Lemma 8. Mapping over subterms is sound. In particular, we prove soundness
of mapSubterms.

6 Related Work

As stated in the introduction, other program transformation languages exist that
give some form of guarantees. For example, Maude [8] and Rascal [27] ensure
well-sortedness. However, well-sortedness is too imprecise for our use case be-
cause it cannot distinguish different language constructs with the same sort. For
example, an extension construct that adds a new kind of expression has the same
sort Expr as core language expressions. Our analysis has a more generic approach
and provides reasoning about program transformations at a more fine-grained
level. PLT Redex [29] is a declarative domain-specific language for specifying
context-sensitive rewriting systems. It allows developers to annotate the input
and output domains of term transformations with types. However, these type an-
notations are only checked at runtime. In contrast, we developed a static analysis
such that program transformations may be verified before running them.

Al-Sibahi et al. present the design and implementation of a tool that verifies
inductive type and shape properties for program transformations written in the
Rascal transformation language [3]. This tool is similar to our work in both its
implementation and its purpose.3 Rabit infers an inductive refinement type that
represents the shape of possible output of a transformation, given the shape of
its input. The implementation is said to “extend standard regular tree grammar
operations”, but it is not shown how this is done, nor how an RTG is used as an
inductive refinement type. To compute a fixpoint of their abstract interpreter,
Al-Sibahi et al. use an approach similar to ours, where their abstract interpreter
detects paths where execution recursively meets similar input and then reuses
previous results, if any. Unfortunately they do not show what widening opera-
tor is being used. Nevertheless, the evaluation shows that Rabit can verify the
properties that we want to verify in our work and does so with good runtime
performance.

Haselhorst developed a type system based on regular tree grammars on top of
a calculus for program transformation languages [21]. Regular tree grammars as
types describe the abstract syntax of the manipulated programs, for example the
grammar N → Zero | Succ(N) describes expressions that are natural numbers.
In this way, the input and output language of a transformation can be specified
and the validity of the transformation can be verified. Their type system provides
3 We learned about this work at a late stage in the development of this paper.

18 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

stronger guarantees than well-sortedness. For example, the type describing the
output language can ensure that all extension constructs are rewritten to core
language constructs. However, their core calculus is not as expressive as Stratego.
For example, their language does not support generic traversals, nor does it have
a guarded choice (“try”). Furthermore, their type system is specific to their core
calculus whereas our approach is a generic static analysis.

In similar spirit, XDuce [23] is a statically typed, functional tree transforma-
tion language designed for processing and transforming XML data. It features
regular expression types and, correspondingly, regular expression pattern match-
ing. Regular expression types describe structures in XML documents using reg-
ular expressions, similar to how tree grammar types describe terms in the work
of Haselhorst. These types are equivalent in expressiveness to regular tree gram-
mars. Regular expression pattern matching is similar to ML’s pattern matching
but more powerful, since a pattern can include regular expression types to dy-
namically match values on those types. In essence, a pattern is thus a type and a
value matches a pattern if it has the same type. CDuce [6] is a general purpose,
statically typed, XML-oriented programming language based on XDuce. It is an
attempt to generalize XDuce to a more general-purpose language. To this end,
CDuce extends XDuce’s type system with a richer set of more general types and
adds language constructs useful for general-purpose programming. Both XDuce
and CDuce thus allow one to write XML transformations in a type-safe manner,
on a level that is more fine-grained than well-sortedness. However, these lan-
guages are inherently tied to XML due to their design. They cannot be used as
program transformation languages. In constrast, our static analysis can be ap-
plied to any transformation written in Stratego, whether it transforms programs
or structured data such as XML.

Swiersta et al. have a long line of research on “extensible abstract syntax”.
In his functional pearl “Data Types à la Carte”, Swierstra presents a technique
for constructing data types and functions in a modular fashion [33]. Bahr and
Tvitved [5] build on Swierstra’s work and present a library of compositional data
types. Most notable in relation to our work is how they show that generic pro-
gramming techniques can be implemented on top of their compositional data
type framework. They show how this can be used to implement a desugaring
function with stricter types that reflect the underlying transformation, thus pro-
viding a mechanism to reason about (generated) terms at a more fine-grained
level than sorts. Axelsson presents the Syntactic library [4], which is a simi-
lar library partly derived from Swiersta’s Data Types à la Carte. Like Bahr
and Tvitved’s framework, Syntactic provides extensible data types and generic
traversals, but uses an application tree instead of a type-level fixed-point as ini-
tially defined by Swierstra. Although it is not shown in their paper, Axelsson
states that Syntactic can also ensure that certain constructs are present or ab-
sent after certain transformations. This work in extensible abstract syntax thus
shows a result similar to our goal in this work: if the extended language has a type
f' (specified as the co-product of smaller, independent domains) and the core
language has a similar type f, then both Bahr and Hvitved’s framework and

Abstract Interpretation of Program Transformations using RTGs 19

Axelsson’s Syntactic can ensure that a transformation has the type signature
f' → f. This line of work, however, is fundamentally about extending existing
code without recompilation and creating new (domain-specific) programming
languages with their abstract syntax trees open to extension. In contrast, our
static analysis is created to verify existing program transformations.

The idea of using regular tree grammars for program analysis is due Jones and
Muchnick [25]. Cousot and Cousot unified grammar-based static analyses with
abstract interpretation-based analyses [12]. Cousot and Cousot have also shown
that program transformation can be formalized within the theory of abstract in-
terpretation [13]. In this work, they introduce a general, uniform and language-
independent framework for reasoning on semantics-based program transforma-
tion through abstract interpretation. Amongst others, they argue that abstract
interpretation accounts for the correctness of transformations which should pre-
serve the semantics at some level of abstraction of irrelevant details. However,
their framework takes the place of the program transformation language, i.e.,
their approach leads to a design methodology for program transformations.

There is interesting related work in approximating the set of reachable terms
of a given term rewriting system. Genet et al. have a long line of research in this
area [16, 18, 20]. It is shown that their technique can build a tree automaton that
over-approximates the set of reachable terms. If the rewrite system preserves
regularity, it can even build an automaton that recognizes exactly the set of
reachable terms. This work is based on an equational tree automata completion
algorithm [20]. To define these approximations, their completion algorithm uses
an additional set of equations besides taking a tree automaton and a left-linear
rewrite system as input. These equations are used to simplify an automaton,
which has the effect of over-approximating the language that it recognizes [20].
Their work is implemented in the “Timbuk” tree automata library [18, 19]. This
library can also compute the required set of equations if the term rewriting
system encodes a functional program. Other work in reachability analysis is
that of Gallagher and Rosendahl [17], who encode both tree automata and term
writing systems into Horn clauses, allowing them to use static analysis tools
for logic programs to perform approximations. Reachability analysis, however,
is fundamentally a different approach. Given a set of terms and a term rewrite
system, reachability analysis will compute all reachable terms. This set includes
intermediate terms, which may be valid in the target language of the program
transformation. This, in turn, will give developers of program transformations
the wrong kind of feedback.

7 Conclusion and Future Work

In this work we presented a static analysis that allows developers of program
transformations to reason about their transformations on a finer grained level
than well-sortedness. We developed a generic interpreter for the Stratego pro-
gram transformation language that is parametric in its domain-specific semantics
and instantiated it with two abstract semantics. The first semantics realizes a

20 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

sort analysis and is meant as a baseline for the second semantics. In order to
increase precision and allow a finer-grained analysis, the second semantics ap-
proximates the syntactic shape of code using regular tree grammars. Since the
focus in this work was on correctness of the tree-shape analysis, the implemen-
tation may be optimized leading to a smaller runtime footprint. Specifically, the
algorithms for regular tree grammar operations may be optimized. Furthermore,
there exist more performant data structures to represent regular tree grammars.
Finally, the design of widening operators is experimental in nature, affecting
both the performance and precision of the analysis. There is a large design space
to consider, as is demonstrated by Mildner [30]. In his thesis, Mildner investi-
gates a number of abstract domains based on regular tree grammars that differ,
amongst others, in the widening operation that is used. Certainly, the other
widening operations investigated in this thesis should be studied and perhaps
compared for efficiency and precision.

A Soundness Proofs

The approach to compositional soundness proofs described by Keidel et al. re-
duces a soundness proof to proving smaller soundness lemmas over the primi-
tive, analysis-specific implementation of the interfaces of the generic interpreter.
Soundness of the interpreter as a whole then follows from a generic free theo-
rem [26].

The concrete interpreter yields the soundness criteria that need to be proved [26].
Hence, before we show the proofs, we list the implementation of those functions
of the concrete interpreter that are relevant to the proofs in listing 9.

data Term = Cons Constructor [Term] | …

cons = arr (uncurry Cons)

matchCons f = proc (c,ps,t) → case t of
Cons c' ts | c == c' && length ps == length ts → do

ts' ← f � (ps,ts)
cons � (c,ts')

_ → fail � ()

equal = proc (t1,t2) →
case (t1,t2) of

(Cons c ts, Cons c' ts')
| c == c' && length ts == length ts' → do

ts'' ← zipWithA equal � (ts,ts')
cons � (c,ts'')

…
(_,_) → fail � ()

mapSubterms f = proc t →

Abstract Interpretation of Program Transformations using RTGs 21

case t of
Cons c ts → do

ts' ← f � ts
cons � (c,ts')

…

Listing 9: The implementation of cons, matchCons, equal and mapSubterms in
the concrete semantics.

We define Galois connections [10] α : PA ⇄ Â : γ for both analyses. The
concretization function γ(a) takes an abstract value a and returns the corre-
sponding set of concrete values. The abstraction function α(c) takes a concrete
value c (or set thereof) and returns the unique and most precise approximating
abstract value. We write e ⊑̇ ê to mean that e is soundly approximated by ê.
Abstract implementations are denoted with a hat ê.

A.1 Soundness proofs of the well-sortedness analysis

Definition 1. We define the Galois connection α : PA ⇄ Â : γ by defining
the concretization and abstraction functions. The concretization of a sort is the
set of all terms that are of that sort. This depends on the context, i.e., for a
context Γ containing signatures of the form c : s1 . . . s2 → s the concretization
is defined γ(s) = {c(γ(s1) . . . γ(sn)) | c : s1 . . . sn → s ∈ Γ}. The abstraction
of a set of terms is defined as the most precise sort that represents all terms
in the set, i.e., for a context Γ and a set of terms X the abstraction is defined
α(X) =

⊔
{t | ∀x ∈ X. x : s1 . . . sn → t ∈ Γ. ⊑t}.

Lemma 1. Term construction is sound. In particular, we prove soundness of
cons, stringLiteral and numberLiteral.

Proof. Let us repeat the definition of ĉons:

ĉons = proc (c, ts) → do
ctx ← askContext � ()
case lookup c (signatures ctx) of

Just sigs →⊔
(arr (λ(ts',s) → if ts ⊑ ts' then s else Top))

-<< sigs
Nothing → returnA � Top

We show that α(cons) ⊑ ĉons. That is, for all constructors c, lists of terms
[t1 . . . tn] and lists of sorts [s1 . . . sn] where each ti has sort si, we show α(cons �
(c, [t1 . . . tn])) ⊑ (ĉons � (c, [s1 . . . sn])). Furthermore, let Γ be the sort context
passed to ĉons.

We distinguish the following three cases:

– In case the constructor is in the context and its number of arguments is the
same as the length the list of sorts [s1 . . . sn], i.e., (c : s′1 . . . s′n → s) ∈ Γ and

22 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

s1 ⊑ s′1 . . . sn ⊑ s′n, then c[t1 . . . tn] must have a sort s (α(c[t1 . . . tm]) = s).
It follows,

α(cons � (c, [t1 . . . tm])) = α(returnA � c[t1 . . . tm])

= returnA � s = ĉons � (c, [s1 . . . sm]).

– In case the constructor is in the context but the number of arguments differ
from the length of the list of sorts [s1 . . . sn] or one of the argument sorts
is not smaller than one of the sorts in [s1 . . . sn], then ĉons � (c, [s1 . . . sm])
returns the sort Top, which is greater than any other sort.

α(cons � (c, [t1 . . . tm])) ⊑ returnA � Top = ĉons � (c, [s1 . . . sm]).

– In case the constructor does not occur in the context, we get

α(cons � (c, [t1 . . . tm])) ⊑ returnA � Top = ĉons � (c, [s1 . . . sm]).

The proofs of stringLiteral and numberLiteral are analogous. ⊓⊔

Lemma 2. Matching a term against a term pattern is sound. In particular, we
prove soundness of matchCons, matchString and matchNumber.

Proof. Let us repeat the definition of ̂matchCons:
̂matchCons f = proc (c,ps,s) → do
ctx ← askContext � ()
case lookup c (signatures ctx) of

Just sigs →⊔
(proc (ts,s') →
if length ts == length ps && s' ⊑ s

then
(fail � ()) ⊔ (do _ ← f � (ps,ts); returnA � s)

else fail � ()) -<< sigs
Nothing →

(fail � ()) ⊔ (returnA � Top)

We show that α(f) ⊑ f̂ =⇒ α(matchCons f) ⊑ ̂matchCons f̂ . That is, for all
constructors c, list of patterns [p1 . . . pm], sorts s and terms t = c′[t1 . . . tn] of sort
s, we show α(matchCons f � (c, [p1 . . . pm], t)) ⊑ ̂matchCons f̂ � (c, [p1 . . . pm], s).
We distinguish the following three cases:

– In case the top-level constructor of t matches (c′ = c) and the number of
subterms matches the number of patterns (n = m), then there exists a
signature (c : s1 . . . sn → s′) ∈ Γ with α(t1) ⊑ s1 . . . α(tn) ⊑ sn.

α(matchCons f � (c, [p1 . . . pm], t))

= α(cons ≪ second f � (c, [p1 . . . pm], [t1 . . . tm]))

⊑ (returnA � s) ≪ second f̂ � (c, [p1 . . . pm], [s1 . . . sm])

⊑ ̂matchCons f̂ � (c, [p1 . . . pm], s).

Abstract Interpretation of Program Transformations using RTGs 23

– In case the top-level constructor of t do not match (c′ ̸= c) or the number of
subterms is not the same as the number of patterns (n ̸= m).

α(matchCons f � (c, [p1 . . . pm], t))

= α(fail � ())

⊑ (f̂ail � ())

⊑ ̂matchCons f̂ � (c, [p1 . . . pm], s).

– In case the constructor is not in the context, then

α(matchCons f � (c, [t1 . . . tm])) ⊑ (f̂ail � ()) ⊔ (returnA � Top)

= ̂matchCons f̂ � (c, [s1 . . . sm]).

The proofs of matchString and matchNumber is analogous. ⊓⊔

Lemma 3. Term equality is sound. In particular, we prove soundness of equal
for constructor terms.

Proof. Let us repeat the definition of êqual:
equal = proc (s1,s2) →

if | s1 ⊑ s2 → (fail � ()) ⊔ (returnA � s2)
| s2 ⊑ s1 → (fail � ()) ⊔ (returnA � s1)
| otherwise → fail � ()

We show that α(equal) ⊑ êqual. That is, for all terms t = Cons c [t1 . . . tn]
and t′ = Cons c′ [t′1 . . . t

′
n] where α(t) ⊑ s and α(t′) ⊑ s′, α(equal � (t, t′)) ⊑

êqual� (s, s′). We distinguish two cases based on if the terms t and t′ are equal
or not and if s is a subsort of s′ or vice versa.

– In case t = t′ and s ⊑ s′, then equal � (t, t) returns the term t and êqual

fails and returns s′.

α(equal � (t, t′)) = α(returnA � t)

⊑ (returnA � s)

⊑ (returnA � s′)

⊑ (f̂ail � ()) ⊔ (returnA � s′)

= êqual � (s1, s2).

– In case t = t′ and s′ ⊑ s, then equal � (t, t) returns the term t and êqual

fails and returns s. The proof is even simpler than the previous case.
– In case t ̸= t′, it follows

α(equal � (t, t′)) = α(fail � ()) ⊑ (f̂ail � ()) ⊑ êqual � (s1, s2).

The proof of equal for string and number literals is analagous. ⊓⊔

Lemma 4. Mapping over subterms is sound. In particular, we prove soundness
of mapSubterms.

24 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

Proof. Let us repeat the definition of ̂mapSubterms:
mapSubterms f = proc s → do

ctx ← askContext � ()⊔
(proc (c,ts) → do

ts' ← f � ts
cons � (c,ts')

) � ctx `signaturesOf ` s

We show that α(f) ⊑ f̂ =⇒ α(mapSubterms f) ⊑ ̂mapSubterms f̂ . That
is, for all sorts s and terms t = Cons c [t1 . . . tn] of sort s, α(mapSubterms f �
t) ⊑ ̂mapSubterms f̂ � s. There exists signatures c : s1 . . . sn → s ∈ Γ with
α(t1) ⊑ s1 . . . α(tn) ⊑ sn. It follows

α(mapSubterms f � t) = α(cons ≪ second f � (c, [t1 . . . tn]))

⊑ (cons ≪ second f̂ � (c, [s1 . . . sn])) = (̂mapSubterms f̂ � s)

The proof of mapSubterms for string and number literals is analogous. ⊓⊔

A.2 Soundness proofs of the tree-shape analysis

Definition 2. We define the Galois connection α : PA ⇄ Â : γ by defining
the concretization and abstraction functions. The concretization of a regular tree
grammar G is simply L(G). The abstraction function of a set of terms X is
defined α(X) =

⊔
{G | X ⊆ L(G)}.

We prove soundness using the concretization function, because the abstrac-
tion function may not always be well-defined on certain terms. This is different
from the approach to proving soundness in appendix A.1 and in Keidel et al.’s
earlier work in which the abstraction function is used. However, both formula-
tions of soundness are correct. When using the abstraction function, one shows
that the concrete value c is contained within the abstract value a, i.e., that
α(c) ⊑ a. In contrast, when using the concretization function, we show that an
abstract value a contains at least the concrete value c, i.e., that c ∈ γ(a).

Lemma 5. Term construction is sound. In particular, we prove soundness of
cons, stringLiteral and numberLiteral.

Proof. Let us repeat the definition of ĉons:
ĉons = proc (c,ts) → returnA � addConstructor c ts

We show that cons ∈ γ(ĉons). That is, for all constructors c, lists of RTGs
[G1 . . . Gn] and lists of terms [t1 . . . tn] with ti ∈ L(Gi), we have (cons �
(c, [t1 . . . tn])) ∈ (γ(ĉons) � (c, [G1 . . . Gn])).

Function ĉons takes a constructor c and a list of RTGs [G1 . . . Gn] and cre-
ates a new RTG G′ = (S,

∪
Fi,

∪
Ni, {R} ∪ (

∪
Ri)) with unique start sym-

bol S and production R = S → c(start(G1) . . . start(Gn)). Then, for each
t1 ∈ L(G1) . . . tn ∈ L(Gn) it holds that c(t1 . . . tn) ∈ L(ĉons � (c, [G1 . . . Gn]).
We conclude cons ∈ γ(ĉons).

The proofs of stringLiteral and numberLiteral are analogous. ⊓⊔

Abstract Interpretation of Program Transformations using RTGs 25

Lemma 6. Matching a term against a term pattern is sound. In particular, we
prove soundness of matchCons, matchString and matchNumber.

Proof. Let us repeat the definition of ̂matchCons:
̂matchCons f = proc (c,ps,g) → do⊔

(proc (c,ps,c',ts) →
if c == c' && length ps == length ts
then do

ts' ← f � (ps,ts)
cons � (c,ts')

else fail � ())� [(c,ps,c',ts) | (c',ts') ← deconstruct g]

We show that f ⊆ γ(f̂) =⇒ matchCons f ∈ γ(̂matchCons f̂). That
is, for all constructors c, lists of patterns [p1 . . . pm], RTGs G and terms t =
Cons c′ [t1 . . . tn] ∈ L(G), (matchCons f � (c, [p1 . . . pm], t)) ∈ γ(̂matchCons f̂ �
(c, [p1 . . . pm], G)). Furthermore, because t ∈ L(G), there exists a (c′, [G1 . . . Gn]) ∈
deconstruct(G) with t1 ∈ L(G1) . . . tn ∈ L(Gn).

We distinguish two cases based on if the top-level constructor c′ of t matches
c and if the number of the subterms m is the same as the number of subpatterns
n.

– In case c = c′ and m = n, it follows

(matchCons f � (c, [p1 . . . pm], t))

= (cons ≪ second f � (c, ([p1 . . . pm], [t1 . . . tm])))

∈ γ(ĉons ≪ second f̂ � (c, ([p1 . . . pm], [G1 . . . Gm])))

⊆ γ(̂matchCons f̂ � (c, [p1 . . . pm], G)).

– In case c ̸= c′ or m ̸= n, it follows

(matchCons f � (c, [p1 . . . pm], t)) = (fail � ())

∈ γ(f̂ail � ()) = γ(̂matchCons f̂ � (c, [p1 . . . pm], G)).

The proofs of matchString and matchNumber are analogous. ⊓⊔

Lemma 7. Term equality is sound. In particular, we prove soundness of equal
for constructor terms.

Proof. Let us repeat the definition of êqual:
equal = proc (g1, g2) → case intersection g1 g2 of

g | isEmpty g → fail � ()
| isSingleton g1 && isSingleton g2 → returnA � g
| otherwise → (fail � ()) ⊔ (returnA � g)

We show that equal ∈ γ(êqual). That is, for all RTGs G,G′ and terms
t = Cons c [t1 . . . tn] ∈ L(G) and t′ = Cons c′ [t′1 . . . t

′
n] ∈ L(G′), equal � (t, t′) ∈

êqual � (G,G′). We distinguish three cases based on if the terms t and t′ are
equal or not and whether the two grammars describe a single term or a set of
terms.

26 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

– In case t = t′ and L(G) = L(G′) = t, it follows

equal � (t, t′)

= cons ≪ second (zipWithA equal) � (c, ([t1 . . . tn], [t
′
1 . . . t

′
n])))

∈ returnA � G = γ(êqual � (G,G′)).

– In case t = t′ and L(G) and L(G′) describe a set of terms, it follows

equal � (t, t′)

= cons ≪ second (zipWithA equal) � (c, ([t1 . . . tn], [t
′
1 . . . t

′
n])))

∈ (fail � ()) ⊔ (returnA � G) = γ(êqual � (G,G′)).

– In case t ̸= t′, it follows

equal � (t, t′) = fail � () ∈ γ(f̂ail � ()) = γ(êqual � (G,G′)).

The proof of equal for string and number literals is analagous. ⊓⊔

Lemma 8. Mapping over subterms is sound. In particular, we prove soundness
of mapSubterms.

Proof. Let us repeat the definition of ̂mapSubterms:
mapSubterms f = proc g →⊔

(proc (c,ts) → do
ts' ← f � ts
returnA � reconstruct [(c,ts')])� deconstruct g

We show that f ⊆ γ(f̂) =⇒ mapSubterms f ∈ γ(̂mapSubterms f̂). That is,
for all RTGs G and terms t = Cons c [t1 . . . tn] ∈ L(G), mapSubterms f �
t ∈ γ(̂mapSubterms f̂ � G). Furthermore, because t ∈ L(G), there exists a
(c, [G1 . . . Gn]) ∈ deconstruct(G) with t1 ∈ L(G1) . . . tn ∈ L(Gn). It follows

(mapSubterms f � t) = (cons ≪ second f � (c, [t1 . . . tn]))

∈ γ(arr(reconstruct) ≪ second f̂ � (c, [G1 . . . Gn]))

= γ(̂mapSubterms f̂ � G)

The proof of mapSubterms for string and number literals is analogous. ⊓⊔

References

1. Adams, M.D., Might, M.: Restricting grammars with tree automata.
PACMPL 1(OOPSLA), 82:1–82:25 (2017). https://doi.org/10.1145/3133906,
http://doi.acm.org/10.1145/3133906

2. Aiken, A., Murphy, B.R.: Implementing regular tree expressions. In: Hughes, J.
(ed.) Functional Programming Languages and Computer Architecture, 5th ACM
Conference, Cambridge, MA, USA, August 26-30, 1991, Proceedings. Lecture Notes
in Computer Science, vol. 523, pp. 427–447. Springer (1991)

Abstract Interpretation of Program Transformations using RTGs 27

3. Al-Sibahi, A.S., Jensen, T.P., Dimovski, A.S., Wasowski, A.: Verification of high-
level transformations with inductive refinement types. CoRR abs/1809.06336
(2018), http://arxiv.org/abs/1809.06336

4. Axelsson, E.: A generic abstract syntax model for embedded languages. In:
Thiemann, P., Findler, R.B. (eds.) ACM SIGPLAN International Conference
on Functional Programming, ICFP’12, Copenhagen, Denmark, September 9-
15, 2012. pp. 323–334. ACM (2012). https://doi.org/10.1145/2364527.2364573,
http://doi.acm.org/10.1145/2364527.2364573

5. Bahr, P., Hvitved, T.: Compositional data types. In: Järvi, J., Mu,
S. (eds.) Proceedings of the seventh ACM SIGPLAN workshop on
Generic programming, WGP@ICFP 2011, Tokyo, Japan, September 19-
21, 2011. pp. 83–94. ACM (2011). https://doi.org/10.1145/2036918.2036930,
http://doi.acm.org/10.1145/2036918.2036930

6. Benzaken, V., Castagna, G., Frisch, A.: Cduce: an xml-centric general-
purpose language. In: Runciman, C., Shivers, O. (eds.) Proceedings
of the Eighth ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2003, Uppsala, Sweden, August 25-29,
2003. pp. 51–63. ACM (2003). https://doi.org/10.1145/944705.944711,
http://doi.acm.org/10.1145/944705.944711

7. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program transformation
with scoped dynamic rewrite rules. Fundam. Inform. 69(1-2), 123–178 (2006),
http://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theor. Com-
put. Sci. 285(2), 187–243 (2002). https://doi.org/10.1016/S0304-3975(01)00359-0,
https://doi.org/10.1016/S0304-3975(01)00359-0

9. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2007), release October, 12th 2007

10. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In: Graham, R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record
of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977. pp. 238–252. ACM (1977),
http://dl.acm.org/citation.cfm?id=512950

11. Cousot, P., Cousot, R.: Comparing the galois connection and widening/narrowing
approaches to abstract interpretation. In: Programming Language Implementa-
tion and Logic Programming, 4th International Symposium, PLILP’92, Leuven,
Belgium, August 26-28, 1992, Proceedings. pp. 269–295 (1992)

12. Cousot, P., Cousot, R.: Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In: Williams, J. (ed.) Proceed-
ings of the seventh international conference on Functional programming lan-
guages and computer architecture, FPCA 1995, La Jolla, California, USA, June
25-28, 1995. pp. 170–181. ACM (1995). https://doi.org/10.1145/224164.224199,
http://doi.acm.org/10.1145/224164.224199

13. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: Launchbury, J., Mitchell, J.C. (eds.) Conference
Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Portland, OR, USA, January 16-18, 2002. pp. 178–190.
ACM (2002), http://dl.acm.org/citation.cfm?id=503272

28 Jente Hidskes, Sven Keidel, and Sebastian Erdweg

14. Darais, D., Labich, N., Nguyen, P.C., Horn, D.V.: Abstracting definitional inter-
preters (functional pearl). PACMPL 1(ICFP), 12:1–12:25 (2017)

15. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Sugarj: library-based syntactic
language extensibility. In: Lopes, C.V., Fisher, K. (eds.) Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland,
OR, USA, October 22 - 27, 2011. pp. 391–406. ACM (2011)

16. Feuillade, G., Genet, T., Tong, V.V.T.: Reachability analysis over
term rewriting systems. J. Autom. Reasoning 33(3-4), 341–383 (2004).
https://doi.org/10.1007/s10817-004-6246-0, https://doi.org/10.1007/s10817-
004-6246-0

17. Gallagher, J.P., Rosendahl, M.: Approximating term rewriting systems: A
horn clause specification and its implementation. In: Cervesato, I., Veith,
H., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and
Reasoning, 15th International Conference, LPAR 2008, Doha, Qatar, Novem-
ber 22-27, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5330,
pp. 682–696. Springer (2008). https://doi.org/10.1007/978-3-540-89439-1_47,
https://doi.org/10.1007/978-3-540-89439-1_47

18. Genet, T.: Automata completion and regularity preservation. Ph.D. thesis, IRISA,
Inria Rennes (2017)

19. Genet, T., Gillard, T., Haudebourg, T., Cong, S.: Extending timbuk to verify
functional programs. In: WRLA 2018 (2018)

20. Genet, T., Rusu, V.: Equational approximations for tree automata completion. J.
Symb. Comput. 45(5), 574–597 (2010). https://doi.org/10.1016/j.jsc.2010.01.009,
https://doi.org/10.1016/j.jsc.2010.01.009

21. Haselhorst, K.: A Type System for Program Transformations based on Parametric
Tree Grammars. Master’s thesis, Philipps Universität Marburg (2012)

22. Hentenryck, P.V., Cortesi, A., Charlier, B.L.: Type analysis of prolog using type
graphs. J. Log. Program. 22(3), 179–209 (1995). https://doi.org/10.1016/0743-
1066(94)00021-W, https://doi.org/10.1016/0743-1066(94)00021-W

23. Hosoya, H., Pierce, B.C.: Xduce: A statically typed
XML processing language. ACM Trans. Internet Techn.
3(2), 117–148 (2003). https://doi.org/10.1145/767193.767195,
http://doi.acm.org/10.1145/767193.767195

24. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1-3), 67–111
(2000)

25. Jones, N.D., Muchnick, S.S.: Flow analysis and optimization of lisp-
like structures. In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) Con-
ference Record of the Sixth Annual ACM Symposium on Principles
of Programming Languages, San Antonio, Texas, USA, January 1979.
pp. 244–256. ACM Press (1979). https://doi.org/10.1145/567752.567776,
http://doi.acm.org/10.1145/567752.567776

26. Keidel, S., Poulsen, C.B., Erdweg, S.: Compositional soundness proofs of abstract
interpreters. Proc. ACM Program. Lang. 2(ICFP), 72:1–72:26 (Jul 2018)

27. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific lan-
guage for source code analysis and manipulation. In: Ninth IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation,
SCAM 2009, Edmonton, Alberta, Canada, September 20-21, 2009. pp. 168–
177. IEEE Computer Society (2009). https://doi.org/10.1109/SCAM.2009.28,
https://doi.org/10.1109/SCAM.2009.28

Abstract Interpretation of Program Transformations using RTGs 29

28. Liu, H., Cheng, E., Hudak, P.: Causal commutative arrows and their optimization.
In: ACM Sigplan Notices. vol. 44, pp. 35–46. ACM (2009)

29. Matthews, J., Findler, R.B., Flatt, M., Felleisen, M.: A visual environment for
developing context-sensitive term rewriting systems. In: van Oostrom, V. (ed.)
Rewriting Techniques and Applications, 15th International Conference, RTA 2004,
Aachen, Germany, June 3-5, 2004, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 3091, pp. 301–311. Springer (2004). https://doi.org/10.1007/978-3-540-
25979-4_21, https://doi.org/10.1007/978-3-540-25979-4_21

30. Mildner, P.: Type Domains for Abstract Interpretation: A critical study. Ph.D.
thesis, Uppsala universitet (1999)

31. Paterson, R.: A new notation for arrows. In: Pierce, B.C. (ed.) Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001. pp. 229–240. ACM
(2001)

32. Plotkin, G.D.: LCF considered as a programming language. Theor. Com-
put. Sci. 5(3), 223–255 (1977). https://doi.org/10.1016/0304-3975(77)90044-5,
https://doi.org/10.1016/0304-3975(77)90044-5

33. Swierstra, W.: Data types à la carte. J. Funct. Program.
18(4), 423–436 (2008). https://doi.org/10.1017/S0956796808006758,
https://doi.org/10.1017/S0956796808006758

34. Visser, E., Benaissa, Z., Tolmach, A.P.: Building program optimizers with rewriting
strategies. In: Felleisen, M., Hudak, P., Queinnec, C. (eds.) Proceedings of the third
ACM SIGPLAN International Conference on Functional Programming (ICFP ’98),
Baltimore, Maryland, USA, September 27-29, 1998. pp. 13–26. ACM (1998)

