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Abstract—Novel (semi-)automated systems are rapidly being
introduced into modern road vehicles, but anticipating possibly
critical human-machine interaction issues is difficult, because the
human driver’s behavior is as of yet still poorly understood. This
paper aims to improve our understanding and models of driver
steering behavior on winding roads, using Frequency-Response
Function (FRF) measurements of drivers’ feedforward, heading
feedback, and lateral position feedback dynamics. The steering
behavior data were collected in a human-in-the-loop simulator
experiment, in which drivers followed the road centerline at
constant forward velocity, while being perturbed laterally by
wind-gust disturbances. All three measured FRFs can be cap-
tured with a multiloop, single preview-point driver model, which
has only five parameters. These parameters provide unmatched
understanding of — otherwise lumped — driver internal steering
processes, quantifying how and what portion of the previewed
centerline trajectory is used for control, and how lateral position
and heading feedback are weighed. The gained insights may help
to reduce driver-automation interaction issues in modern road
vehicles, to quantify between-driver steering variations, adapta-
tion and learning, and to design human-like and individualized
automatic and shared steering controllers.

I. INTRODUCTION

Road vehicles are rapidly being equipped with more Ad-
vanced Driver Assistance Systems (ADAS) and even autopilots
for (temporary) autonomous control. It is difficult to anticipate
how human drivers of such vehicles, as well as other road
users, will interact with the novel automation systems. To
better understand potential human-machine interaction issues
in tomorrow’s vehicles, a profound understanding of human
driver behavior is desirable.

Considering the task of steering, drivers are known to rely
heavily on visual feedback [1]. It has been suggested that
drivers use patterns of the optical flow for control [2]-[5],
“near” and “far” regions in the visual field [6], [7], and
the road’s curvature or tangent point [8]. Moreover, control-
theory has shown that drivers combine feedforward control
to follow the road’s curves, with feedback control to stabilize
the vehicle [9]-[13]. Nonetheless, neither driver feedforward
nor feedback steering behavior are as of yet fully understood,
and not due to a lack of testable theories or models [12],
[13]. Feedforward steering behavior has been modeled using
either one, two, or many points of the previewed trajectory as
input (e.g., see [9], [10], [14]-[16]). Driver feedback behavior,
besides indispensable lateral-position outer-loop control, has
been modeled either as a linear or model-based prediction

process, or as an inner-loop based on vehicle heading or path
angle [17], [18].

In order to better understand driver steering, and favor
one model or theory over another, we need measurements
of the driver’s control dynamics, such as Frequency-Response
Function (FRF) data [19]. McRuer et al. [20] based their sem-
inal crossover model for single-loop compensatory tracking
tasks on FRF measurements. McRuer and his colleagues [9],
[18] have in fact extended the original crossover model with
a heading-angle inner-loop response to capture driver FRF
data for the task of suppressing (wind-gust) disturbances on
straight roads. More recently, multiloop FRF estimates proved
indispensable for understanding and modeling the human’s
feedforward and feedback control responses in tracking tasks
with preview [21], [22].

This paper aims to improve our understanding and models
of driver steering behavior on winding roads using similar
FRF measurements. Steering data were gathered in a human-
in-the-loop simulator driving experiment, in which subjects
tracked the road’s centerline (to limit variability in behavior),
while simultaneously suppressing wind-gust disturbances. For
the first time, the dynamics of three driver responses are
estimated, namely their feedforward, or preview response, as
well as their heading and lateral position feedback responses.
Moreover, we propose a novel driver steering model that
combines well-validated, existing models for compensatory
tracking (the crossover model [20]), straight road driving [18],
and single-loop preview tracking tasks [21], [22]. We will
show that the proposed multiloop model does not only capture
all three estimated driver FRFs and the driver’s steering output,
but additionally does so with physically interpretable model
parameters.

II. CONTROL-THEORY OF DRIVER STEERING

A. Control Task

The considered driving task is illustrated in Fig. 1. The
driver is to track the road’s centerline (i.e., the target trajectory
¥e), while simultaneously suppressing wind-gust disturbances
(y4 laterally and y; on heading). The driver thus effectively
minimizes the lateral position error y, = y. —y, with y the
vehicle’s lateral position. To do so, drivers rotate the steering
wheel (angle O), based on perceived optical cues visible
through the vehicle’s front windshield.
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Fig. 1. Schematic of the driver in a steering task. Control-theoretic models
typically lump the perspective geometry and driver blocks, ignoring driver
optical cue selection.

B. Control-Theoretic Driver Model

1) Single-Loop Compensatory Tracking: Fig. 2 shows the
proposed quasi-linear model for driving along winding roads.
The model’s central element, or inner loop, is equivalent to the
simplified precision model for the human’s compensatory error
response Hy"? [20]. This model contains an equalization gain
K.+, equalization lead time-constant 77 .», and response time
delay 7.~. An additional model for the driver’s neuromuscular
activation dynamics is sometimes included in H;"""? [20], [21],
but is left out here for simplicity.

2) Straight Road Driving: In driving tasks more than one
feedback variable is generally available, yielding a multiloop
control task. Drivers most likely use the vehicle’s heading as
input to the compensatory inner-loop [9], [18], as shown in
Fig. 2. Nonetheless, other quantities such as the vehicle’s path
angle also yield satisfactorily inner-loop characteristics [17],
and could be used (intermittently) by human drivers. The
inner-loop closure provides the lead equalization required
to obtain a stable integrator magnitude slope around the
open-loop crossover frequency [11], [17], [20]. Consequently,
drivers can close the lateral position outer-loop using propor-
tional control, see Fig. 2; the gain K;fl characterizes drivers’
relative weighing of heading and lateral position feedback.

3) Preview Processing: Human use of preview information
was modeled with a pre-filter H, f( jo) that outputs a single
processed target position ys(r) [21], [22], see Fig. 2. 7y is
the farthest point ahead on the target trajectory that is used
by the human for control and 7; s is the time constant of
the low-pass smoothing filter. Due to the low-pass filter, the
processed trajectory is identical to the original trajectory at low
frequencies, but attenuated at high frequencies, such that the
road’s tighter corners are cut. The human’s level of pursuit
control is characterized by gain Ky; Ky < 1 indicates that
drivers prioritize vehicle stabilization (feedback) over tracking
of the target trajectory (feedforward) [22]. When Ky=1 m/m

and 7y=T; ;=0 s, the processed target y: equals the actual
lateral position of the road’s centerline and the model reduces
to the model for straight road driving, see Fig. 2.

III. SYSTEM IDENTIFICATION

To measure the driver’s multiloop response dynamics, we
apply two distinct system identification techniques. First, three
FRFs are estimated to obtain nonparametric estimates of the
driver’s multiloop control dynamics. Second, the proposed
multiloop driver model is fit to the data, yielding estimates of
the model parameters. The model is validated by comparing
both the modeled and measured steering output, and the
modeled and measured (FRFs) control dynamics in Bode plots.

A. Parallel Three-Channel Model Structure

To measure FRFs of the driver’s heading feedback, lateral
position feedback, and target feedforward response dynamics,
Hy, (j®), Ho,(j®), and H,, (j®), respectively, we adopt the
parallel model structure in Fig. 3. We do not imply that drivers
are internally organized as such; this structure is only used
as a convenient tool for measuring driver multiloop steering
dynamics. As indicated by the corresponding yellow, green,
and pink blocks in Figs. 2 and 3, the estimated FRF dynamics
are related to the proposed multiloop model as follows:

H,,(jo) = H"""(jo), )
Ho, (jo) = KYH;"" (jo), 2)
H,, (jo) =H, (jo)KYH"" (jo). 3)

For example, an FRF estimate of the H,, block with flat
magnitude would reflect gain dynamics, or a driver response
proportional to lateral position y; alternatively, differentiator
dynamics would indicate a response to y, or the vehicle path
angle. Note that the H,,, block drops from the model in single-
loop display tracking tasks (e.g., [20], [21]), or when drivers
fail to mechanize an inner loop, for example due to a lack of
rotational cues while driving in dense fog. Equivalently, the
H,, block disappears in compensatory, straight road driving
tasks (i.e., y. = 0).

B. Road Trajectory and Wind-Gust Disturbances

FRFs of the H,, , H,,, and HOW blocks can be obtained
only when the three external external excitation signals, y.,
va. and yy, Fig. 3 are uncorrelated [23]. Common practice
in manual control experiments is to use random-appearing
multisine signals [18], [19], [21]-[24]. Here, we design the
road’s trajectory to be the sum of 10 sinusoids: y.(a) =
Y10, Ali]sin(w[i]a+ ¢]i]), with amplitude A[i], frequency w]i],
and phase @[i] of the i-th sinusoid, and a the along-track
distance [14]. The heading and lateral position disturbances are
defined identically, see Table I for their parameters. Mutually
exclusive input frequencies @y, @y,, and ®,, are selected
such that the three forcing functions are uncorrelated. All
frequencies @[i] are integer multiples k of the fundamental
frequency (% = 0.0045 rad/m) that corresponds to the
1389 m long measurement part of the track. A reasonably
low-frequency driving task was obtained by attenuating the
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Fig. 2. Control-theoretic model for driver steering on winding roads, obtained by combining the multiloop compensatory driver model for (wind-gust)
disturbance-rejection on straight roads [18], and the model for preview processing in single-loop display tracking tasks [21]. The model is a lumped combination
of the driver and perspective geometry blocks in Fig. 1. The colored portions of the model correspond to Fig. 3.
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Fig. 3. Three-channel parallel control diagram used for measuring FRFs of
drivers’ multiloop steering dynamics; colored blocks correspond to Fig. 2.

amplitudes A[i] at higher frequencies, see Table I. The phases
¢[i] were randomized in accordance with the method in [24].
Five different phase realizations were used for y. to prevent
subjects from memorizing parts of the road’s trajectory.

C. System Identification Techniques

Exploiting the uncorrelated external signals as instrumental
variables, FRF measurements of H, (j®), H,,(j®), and
H,,(jo) can be obtained directly at the multisine input fre-
quencies @y, Wy, and oy, see [22], [23] for details. An esti-
mate of the proposed model’s parameter vector © (see Fig. 2)
is obtained by minimizing the least-squares error between
the measured (J) and modeled (0) steering wheel rotations
in the frequency-domain, with 8(j®) = H,, (jo)Y.(jo) —
H,,(jo)y(jo) — H, (jo)Y(jo), see Fig. 3. The Variance
Accounted For (VAF) is used as measure for the model
quality-of-fit [22]; the maximum VAF is 100% and reflects
a model that perfectly replicates the measured control output.

IV. DRIVING EXPERIMENT
A. Independent Variables

The experiment had two independent variables. First, driv-
ing on straight (y.=0) and winding roads (y.#0) was com-
pared, yielding a compensatory (C) disturbance-rejection task,
and a pursuit (P) task that combines target-tracking with
disturbance-rejection, respectively. Second, both tasks were
performed both with a fixed (F) viewing direction, in which
the vehicle does not rotate but moves only laterally, and with
a naturally rotating (R) view that is always aligned with the

Fig. 4. The SIMONA research simulator, outside and inside.

vehicle’s heading y. The fixed viewing direction provides sub-
jects with information of vehicle lateral position and path, but
lacks heading cues. These fixed-view tasks are identical to the
well-understood, single-loop compensatory [20] and preview
display tracking tasks [22]. The rotating view additionally
conveys heading information, identical to normal driving tasks.
The full factorial of the two independent variables was tested,
yielding four experimental conditions, abbreviated as CF, CR,
PF, and PR.

B. Apparatus

The experiment was performed in the SIMONA Research
Simulator (SRS) at TU Delft, Fig. 4, of which the left
side was equipped with a customized passenger-car steering
wheel. Visuals were presented on the simulator’s collimated
projection system, which provided subjects with a 180x40
deg field of view, see Fig. 4. The vehicle moved at constant
forward velocity (Uy =13.89 m/s =50 km/h), and the inner-
(y) and outer-loop (y) vehicle dynamics, Gg’ and G{,,, Fig. 3,
are approximated as pure integrators, identical as in [10]. The
steering wheel gain was set to 1.33 (deg/s)/deg.



TABLE I
AMPLITUDES, FREQUENCIES AND INITIAL PHASES OF THE TARGET AND DISTURBANCE FORCING FUNCTION SIGNALS.

road center-line, y.

RMS(y.) = 13.1 m, RMS(y,) = 15 deg

disturbance, y,4

RMS(yy) = 0.3 m, RMS(8) = 1.27 deg

disturbance, Wy
RMS(yy,) = 2.2 deg

i k 0] A 01 [0 03 04 05 k ] A 0 k ) A 0

- - rad/m m rad rad rad rad rad - rad/m m rad rad/m  deg rad
1 3 0.01 1770 292 505 400 266 0.80 5 0.02  0.29 5.98 7 003 220 5.04
2 9 0.04 502 149 299 512 271 1.08 11 005 024 4.04 13 0.06 1.74  6.22
3 15 0.07 233 485 523 373 136 053 19 0.09  0.16 3.05 23 0.10 1.08  4.17
4 27 0.12 073 426 298 0.17 408 388 3] 0.14  0.09 6.11 35 0.16  0.63 440
5 39 0.18 030 620 500 202 510 274 43 0.19  0.06 0.99 47 0.21 041 497
6 53 0.24 0.14 16l 211 251 298 393 59 027  0.04 0.01 65 029 025 497
7 71 0.32 007 083 032 393 492 358 77 035  0.02 1.78 85 038 0.16 4.10
8 93 0.42 0.03 131 1.03 149 597 521 101 046  0.02 2.28 111 050  0.11 590
9 121 0.55 002 035 445 588 3.08 414 131 059 001 0.41 143 065 0.08 548
10 155 0.70 001 421 596 062 575 569 169 0.76  0.01 2.41 183 0.83 007 0.73

C. Farticipants, Instructions, and Procedures

Eight motivated volunteers participated in the experiment,
all students or staff from TU Delft. All subjects signed for
informed consent prior to the experiment, and were instructed
to follow the displayed centerline as accurately as possible.

Subjects were seated on the left side of the simulator, with
fastened seat belt. First, a single run of each condition was
performed to familiarize subjects with the steering wheel,
the vehicle dynamics, and the display. Then, the four exper-
imental conditions were performed in an order randomized
according to a balanced Latin-square design. A condition was
performed at least until tracking performance (RMS(y.)) and
control activity (RMS(0)) were approximately constant in five
consecutive runs, which were then used for further analysis.
A single run was 1806 m, but included 278 m run-in and
139 m run-out; only the steering data in the remaining 1389
m measurement portion of the track were used for analysis.
During the experiment, time traces of the applied steering
wheel rotations & and vehicle lateral position y and heading
y were recorded at 100 Hz.

V. RESULTS

A. Multiloop FRF Estimates

1) Heading Response: The heading FRF H,,(j®) (red
markers in Fig. 5), estimated from experimental data in the
rotating-view PR task, is a relatively smooth function of
frequency, and variations between the five measurement runs
are small (i.e., reasonably small errorbars). In contrast, the
estimated FRF components in the fixed-view PF task (blue
markers) have a much lower magnitude and considerable
variation between runs, while the estimated phases are an
inconsistent function of frequency. The FRF estimates in
the fixed-view tasks in general appear to reflect pure noise
and therefore suggest that no consistent heading response
was active, whereas the FRF estimates in rotating-view tasks
provide strong evidence that subjects indeed consistently used
heading feedback for controlling their vehicle.

2) Multiloop Feedback Dynamics: Fig. 5 shows that
H, (jw) in fixed-view tasks (PF, blue markers) approximates
gain dynamics at low frequencies, and differentiator dynamics
at high frequencies, with notable phase lead for frequencies
up to 4 rad/s. This indicates responses proportional to the ve-
hicle’s lateral position and velocity (i.e., path angle). Thereby,
the double-integrator lateral position vehicle dynamics are
equalized to an integrator open-loop in the crossover region,
yielding a stable system even without a heading-loop closure.
In rotating-view tasks (PR, red markers), the required stabi-
lizing lead is instead obtained from the heading-loop closure.
Both H,,, (j®) and H,, (j®) approximate gain dynamics up to
frequencies well beyond crossover, indicating inner- and outer-
loop responses proportional to the vehicle’s heading angle and
lateral position, respectively. The slight increase in magnitude
at the highest frequencies may indicate lead, that is, relatively
weak responses proportional to path angle and heading rate,
or oscillatory behavior due to drivers’ neuromuscular system
dynamics.

3) Feedforward Dynamics: In both fixed- and rotating-
view tasks, the magnitude of the feedforward response FRF
approximates gain dynamics, see Fig. 5. This suggests that
subjects responded to the lateral position of the centerline,
and not its heading or curvature. Increasing phase lead is
visible at higher frequencies, corresponding to the behavior
of a negative time delay, or a look-ahead time (i.e., Ty in
Fig. 2) [21]. The FRF estimates of H, (j®) are relatively
noisy at the very highest frequencies, because the available
preview allows subjects to recognize and ignored much of
these fast oscillations of the centerline trajectory, leading to
a low signal-to-noise ratio (not shown).

B. Model Fits

1) Quality-of-Fit: The model matches the measured steer-
ing wheel angles d well in all four conditions, as indicated by
an average VAF over the eight subjects above 90% (Table II).
Moreover, besides capturing the driver’s output, Fig. 5 shows
that the proposed model also captures the driver’s multiloop
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Fig. 5. Bode plots of estimated multiloop response dynamics in winding
road conditions: nonparametric FRF estimates and model fits for Subject
1. The model fit in the fixed-view (PF) task was obtained with a reduced
model that lacks the H,,, (j®) response, as the FRF estimates indicate that no
consistent heading response was active. Estimates of H,, (j®) and H,, (j®)
are equivalent in straight road tasks (not shown).

control dynamics. The shape of the FRF estimates of the
driver’s lateral position feedback, heading feedback, and feed-
forward response dynamics are all captured by the model.
Only at the very lowest and highest input frequencies there is
a small discrepancy between the model and the FRFs, because
several FRF components are poorly estimated (large errorbars)
and because no element for the driver’s neuromuscular system
dynamics was included in the model.

2) Parameter Estimates: Subjects strongly adapt their
equalization dynamics between tasks, see K. and T7 .~ in
Table II. Tasks with viewing rotations (CR and PR), where
equalizing lead is obtained from the heading-loop closure,
evoke markedly less explicit lead equalization (lower 7 (),
but a substantially higher control gain K, as compared to
fixed-view tasks (CF and PF). Similarly, 7} .~ decreased while
K.~ increases from straight to winding road tasks. The response
delay 7.~ is slightly higher in rotating-view tasks, Table II. A
similar increase in visual response delay has been observed

straight CF  straight CR  curved PF curved PR
VAF, % 92.3+3.33 94.6+1.24  91.2+191 94.2+1.10
Kex, rad/rad ~ 0.1140.03 1.19£0.40  0.14+0.02  2.0640.18
Tpes s 1.444£040  0.40+0.12  0.904+0.13  0.19+0.02
Tex, S 0.33+£0.03 0.35+£0.02  0.30+0.02  0.34+0.02
Ky, rad/m - 0.18+0.04 - 0.124+0.01
Ky, m/m - - 0.99+0.01  1.0040.00
Tz, s - - 0.86+0.07  0.26+0.13
Ty, S - - 1.06+£0.05  0.8940.11

when motion feedback is made available in compensatory
tracking tasks [25]; likely, there is no incentive for subjects
to put effort into reducing their delay due to the increased
stability provided by the additional heading loop closure.

Subjects’ relative weighting of lateral position and heading
feedback, Ky"/ , is slightly higher on straight roads as compared
to winding roads, see Table II. This indicates that subjects
minimize lateral position errors more aggressively. The target
weighting gain K, approximates unity, both in tasks with
and without viewing rotations, such that K could in fact be
dropped from the proposed model. The farthest point on the
previewed trajectory used for control, characterized by 7y, is
approximately 1.1 s in fixed-view tasks, which matches well
with measurements in preview tracking experiments [22]. T
is slightly lower in rotating-view tasks, around 0.9 s, which
is partly because a shorter portion of the previewed trajectory
is used for smoothing (lower 7; r). The lower T;  in rotating-
view tasks further suggests that subjects cut less corners and
follow more of the centerline’s higher frequencies.

VI. DISCUSSION

The proposed multiloop model does not only capture
drivers’ steering output well (high VAFs), but it is the first
driver model that has been shown to also match drivers’
multiloop control dynamics (feedforward on the previewed
target, and vehicle heading and lateral position feedback).
In addition, the model directly extends McRuer’s seminal
crossover model [20], the most widely accepted and applied
model of manual control to date. After dropping Ky, which
was identified to be unity, the multiloop model can describe
driver steering with only six parameters. Each of these param-
eters has a direct physical interpretation in terms of drivers’
compensatory control behavior (K, T ¢+, Tex), their use of
preview information (77, T r), and their relative priority for
heading or lateral position feedback (Ky"' ). Moreover, McRuer
and his colleagues [17], [18] have explained how Kyw can
be interpreted as a look-ahead time, given by Uo;d”’ This
look-ahead time is on average 0.62 s (SD = 0.08) for our
eight subjects in the full driving task (PR). Compensating
Ty for the phase lag introduced by the low-pass smoothing
filter, T — T; r, surprisingly yields almost the same result,
namely 0.63 s (SD = 0.08). This suggests that drivers base




their feedback and feedforward control behavior on optical
cues that are located approximately equally far ahead of the
vehicle in the visual scene. We aim to further investigate the
physical interpretation and the implications of this striking
observation in our future work. Tentatively, driver behavior
may thus even be captured with only five model parameters,
without sacrificing any of our model’s descriptive ability.
The measured feedforward FRF (H,, ) could be captured
well with our single preview-point driver model. This strongly
suggests that drivers do not mechanize a second response
based on a different point along the previewed centerline
trajectory, as opposed to human controllers in single-loop
preview tracking tasks [21], [22]. The implications of this
result are profound, suggesting that previously proposed, more
complex two-point [15], [16] or multipoint [14] driver models
may not be required to capture driver steering behavior. Note
that our measurements do not contradict empirical evidence
that drivers use both a “near” and a “far” region of the visual
field [6], on which the two-point steering models in [15],
[16] are based. The driver’s smoothing of the previewed
target (characterized by 7} y) requires that a substantial portion
(or two distinct points) of the centerline is visible, while
the generation of high-frequency lead (77 .~) may depend on
observing optical flow patterns throughout the entire visual
field [2], [4]. In other words, although drivers may rely on
multiple, spatially separated optical cues for steering, their
behavior can still be modeled using a single previewed target
point as input. The proposed multiloop model further promises
to provide understanding of driver control adaptation to task
variables such as the vehicle dynamics, preview time, and
road width and curvature, similar as provided by the crossover
model for compensatory tracking tasks in the 1960s [20].

VII. CONCLUSIONS

This paper presented new human-in-the-loop experimental
data, collected to improve our understanding of driver steering
behavior on winding roads. For the very first time, three
frequency-response function estimates of drivers’ multiloop
steering dynamics were obtained, providing unique evidence
that drivers, besides lateral-position outer-loop control, rely
on heading feedback to close a stabilizing inner-loop, and use
preview of the centerline trajectory ahead for feedforward con-
trol. A multiloop, single preview-point driver model — directly
extending the crossover model — captures this behavior. The
proposed model’s physically interpretable parameters provide
unmatched understanding of, otherwise lumped, driver internal
steering processes, quantifying the portion of the previewed
centerline that is used for control, and how lateral position
and heading feedback are weighed. The gained insights will
potentially contribute to a better understanding of driver-
automation interaction issues in modern road vehicles, and to
the systematic design of human-like driver support systems.
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