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a b s t r a c t 

Travelling wave solutions have been played a vital role in demonstrating the wave character of nonlinear 

problems arising in the field of ocean engineering and sciences. To describe the propagation of the non- 

linear wave phenomenon in the ocean (for example, wind waves, tsunami waves), a variety of evolution 

equations have been suggested and investigated in the existing literature. This paper studies the dynamic 

of travelling periodic and solitary wave behavior of a double–dispersive non-linear evolution equation, 

named the Sharma-Tasso-Olver (STO) equation. Nonlinear evolution equations with double dispersion en- 

able us to describe nonlinear wave propagation in the ocean, hyperplastic rods and other mediums in 

the field of science and engineering. We analyze the wave solutions of this model using a combination 

of numerical simulations and Ansatz techniques. Our analysis shows that the travelling wave solutions 

involve a range of parameters that displays important and very interesting properties of the wave phe- 

nomena. The relevance of the parameters in the travelling wave solutions is also discussed. By simulating 

numerically, we demonstrate how parameters in the solutions influence the phase speed as well as the 

travelling and solitary waves. Furthermore, we discuss instantaneous streamline patterns among the ob- 

tained solutions to explore the local direction of the components of the obtained solitary wave solutions 

at each point in the coordinate (x, t ) . 

© 2022 Shanghai Jiaotong University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Nonlinear evolution equations are widely used to model Ocean 

nd atmospheric dynamics [61–65] . Ocean engineering is con- 

erned with large scale wave motions in the ocean (for exam- 

le, wind waves, tsunami waves) and air along with the temper- 

ture and density of water in the ocean. Ocean and atmosphere 

re equally important in carrying energy from one place to another 

n the form of wave propagation. Despite published Sharma-Tasso- 

lver (STO) soliton solutions (before December 2020: [1–12] ), we 

nd new solutions of this type of nonlinear evolution equations 

NLEEs). The STO nonlinear equation is ut + α(u3 )x + 3 
2 α (u2 )x x + 

ux x x = 0 and belongs to the Burgers equation hierarchy with 
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 = 2 : 

t + α
δ

δx 

(
δ

δx 
+ u 

)n 

u = 0 , n = 0 , 1 , 2 , . . . (0.1) 

The second and third derivative terms are known as the first 

nd second-order dispersion, respectively [43] . Nonlinear evolution 

quations with double dispersion enable us to describe nonlinear 

ave propagation in the ocean, hyperplastic rod (for instance, Mur- 

aghan rod) [44] , and other fields of science and engineering. The 

ey feature of the STO equation is the presence of two sources of 

ispersion (first and second-order dispersion), characterized by the 

erms uxx and uxxx . When the exchange of energy between the sur- 

ace of nonlinear media and the medium of wave propagation is 

onsidered, double dispersion can occur. 

Our method to get new solutions is the enhanced (G′ /G ) - 

xpansion method, co-designed by two of us (K.K and A.MA) [13- 

6 , 60] , though Naher [17] refers to only one of us. Kudryashov 

18] observed that new solutions were often announced because a 
access article under the CC BY-NC-ND license 
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e

ew method produces a seemingly new solution by lack of simpli- 

cation. After simplification of its results, the method appears to 

e equivalent to some of the other methods. Most of the methods 

utput tanh solutions of the STO equation, even for the fractional 

TO. 

In 1977 Sharma and Tasso [19] published an equation in the 

ame year with Olver’s paper [20] which in 1982 became known 

s the Sharma-Tasso-Olver (STO) equation [21] . Many papers be- 

ame published, including solutions of the fractional derivative STO 

quation [22 , 23] , fusion/fission STO [2 , 5 , 6] , STO-like new types of

quations [22] . By the introduction of an imaginary coefficient Fan 

24 , 25] derived a complex STO equation, cSTO for short, in [5] . The

elation between cSTO and the Kaup-Newell hierarchy is observed 

n [26] , while integrable combined STO and Burgers equations are 

reated by Zhao [27] . 

The very first exact solutions of the STO equation by Hereman 

t al. [1] are of the tanh type, also chosen two years later by 

udryashov [28] among his ‘Ansatze’. Among the solution meth- 

ds for NLEEs that have been developed, are Hirota’s Method [6] , 

he Inverse Scattering Transform [29] , Fan’s Auto-Bäcklund Method 

30] , the Cole-Hopf transformation for linearization [31] , the Ho- 

otopy Perturbation Method (finds STO solutions in the tanh for- 

at) [32] , Group Invariants, Symmetry solutions, conservation laws 

7 , 33] , the Exp-function method [ 34 ], the q-homotopy analysis 

ransform method [45] , the improved Sardar sub-equation method 

46] , the auxiliary equation method [47 , 48] , the Jacobi elliptic 

unctions [49] , the Bernoulli sub-ODE [50] , the meshless collo- 

ation method [51] , the generalized exponential rational function 

ethod [52] , trial function method [53] , the generalized logis- 

ic equation method [54] , the nonlocal integrable reduction [55 , 

6] , the nonlocal group reduction [57] , An innovative algorithm 

o verify the Hirota N-soliton condition [ 58,59 ], the modified F- 

xpansion [61] to name a few. 

The purpose of this paper is to study the relevance of the pa- 

ameters in the travelling periodic and solitary wave solutions to 

emonstrate how parameters in the solutions influence the phase 

peed as well as the travelling and solitary waves. Furthermore, 

e discuss instantaneous streamline patterns among the obtained 

olutions to explore the local direction of the components of the 

olitary wave solutions at each point in the coordinate (x, t ) . 

The rest of the paper is organised as follows. In Section 2 , 

e repeat the steps from our algorithm [15] to simplify refer- 

nces to the applications in Section 3 . In Section 3 , the enhanced

G’/G)-expansion method is applied to the STO equation to find 

ravelling periodic and solitary wave solutions. In Section 4 , the 

nalysis and physical structure of the results are presented. In 

ection 5 , Streamlines among the obtained solutions are investi- 

ated. In Section 6 , we examine the phase speed and the pattern 

f the obtained solutions numerically to gain a better understand- 

ng of the effect of parameters. In Section 7 , Conclusions are given. 

. Description of the enhanced (G′ /G) -expansion method 

In this section, we repeat the steps of the Enhanced (G′ /G ) - 

xpansion Method for finding travelling wave solutions of NLEEs. 

uppose that a NLEE, say in two independent variables x and t is 

iven by 

 (u, ut , ux , utt , uxx , uxt , · · · ) = 0 , (2.1) 

here u (ξ ) = u (x, t) is an unknown function, � is a polynomial of

 (x, t) and its partial derivatives in which the highest order deriva- 

ives and nonlinear terms are involved. Below, we give the main 

teps of this applied expansion method: 

Step 1. Combining the independent variables x and t into one 

ariable ξ = x ± ω t , we suppose that 

 (ξ ) = u (x, t) , ξ = x ± ω t, (2.2) 
462 
In Cartesian coordinates with x horizontal and ξ vertical, ξ = 

(x, t ) specifies the waveform where ω is the phase speed, and 

= x ± ω t is the phase. 

The travelling wave transformation Eq. (2.2) permits us to re- 

uce Eq. (2.1) to the following ODE: 

 (u, u′ , u′′ , · · · · · · ) = 0 , (2.3) 

here � is a polynomial in u (ξ ) with its derivatives u′ (ξ ) = du 
dξ

, 

′′ (ξ ) = d2 u 
dξ2 and so on. 

Step 2. We suppose that Eq. (2.3) has a formal solution of the 

ollowing format 

 (ξ ) =
n ∑ 

i = −n 

( 

ai (ψ(ξ )) 
i 

( 1 + λψ(ξ ) ) 
i 
+ bi (ψ(ξ )) 

i −1 

√ 

σ
(

1 + 1 

μ
(ψ(ξ )) 

2 
)) 

, 

(2.4) 

here ψ(ξ ) = G′ 
G , and G = G (ξ ) satisfies the equation 

′′ + μG = 0 , (2.5) 

ith constants ai , bi (−n ≤ i ≤ n ; n ∈ N) and λ to be determined 

ater, and σ = ±1 , μ � = 0 . 

Step 3. The positive integer n can be determined by considering 

he homogeneous balance between the highest order derivatives 

nd the nonlinear terms appearing in Eq. (2.1) or Eq. (2.3) . More- 

ver precisely, we define the degree of u (ξ ) as D (u (ξ )) = n which

nables us to find the degree of other expressions as follows (
dq u 

dξ q 

)
= n + q, D

(
up 

(
dq u 

dξ q 

)s )
= np + s (n + q ) . (2.6) 

Therefore, we can find the value of nn in Eq. (2.4) , using 

q. (2.6) . 

Step 4. We substitute Eq. (2.4) into Eq. (2.3) using Eq. (2.5) , 

hen collect all terms of the same powers of (ψ(ξ )) j and 

ψ(ξ )) j 

√ 

σ (1 + 1 
μ (ψ(ξ )) 2 ) together. We then set each coefficient 

o zero to obtain an over-determined system of algebraic equations 

nd solve this system for ai , bi , λ and ω. 

Step 5. From the general solution of Eq. (2.5) , we get 

When μ < 0 , 

(ξ ) =
√ 

−μ tanh 

(
A +

√ 

−μξ
)

(2.7) 

And 

(ξ ) =
√ 

−μ coth 

(
A +

√ 

−μξ
)

(2.8) 

Again, when μ > 0 , 

(ξ ) = √ 

μ tan ( A − √ 

μξ ) (2.9) 

And 

(ξ ) = √ 

μ cot ( A + √ 

μξ ) (2.10) 

here A is an arbitrary constant. Finally, substituting ai , bi (−n ≤
 ≤ n ; n ∈ N) , λ, ω and Eqs. (2.7) - (2.10) into Eq. (2.4) we obtain

ravelling wave solutions of Eq. (2.1) . 

. Sharma-Tasso-Olver equation 

In this section, we will exert the enhanced (G′ /G ) -expansion 

ethod to solve the STO equation in the format derived from Burg- 

rs’ equation with n = 2 



K. Khan, H. Koppelaar, M.A. Akbar et al. Journal of Ocean Engineering and Science 9 (2024) 461–474 

Fig. 1. Profile of u+ 
1 
(x, t ) , which is moving in the positive direction of the x-axis with the phase speed ω = - 6.125 1 . Figure (a) represents the 3D profile of u+ 

1 
(x, t ) for the 

real part with the values of μ = −0 . 25 , A = 0 , a0 = 1 , α = 1 . Figure (b) represents the corresponding contour plot of (a) along with arrows of the directional components at 

the point (x, t ) . Figure (c) is the corresponding profile of phase ξ (x, t ) = x + ωt . Figure (d) indicates the progress of the travelling wave as time increases, where snapshots 

are taken at time t = 0 , 1 , 2 , 3 . Figure (d) represents the time evolution of the solution u+ 
1 

, which suggests that the solitary wave is propagating in the positive direction of 

the x-axis. 

Fig. 2. Profile of u+ 
1 
(x, t ) , which is moving in the positive direction of the x-axis with the phase speed ω = − 6 . 125 . Figure (a) represents the 3D profile of u+ 

1 
(x, t ) for 

the imaginary part with the values of μ = −0 . 25 , A = 0 , a0 = 1 , α = 1 . Figure (b) represents the corresponding contour plot of (a) along with arrows of the directional 

components of instantaneous streamline. Figure (c) is the corresponding profile of wave phase ξ (x, t ) = x + ωt . Figure (d) indicates the progress of the travelling wave as 

time increases, where snapshots are taken at time t = 0 , 1 , 2 , 3 . Figure (d) represents the time evolution of the solution u+ 
1 

, which suggests that the solitary wave is 

propagating in the positive direction of the x-axis. 

u (3.1) 

w  nonzero constant. 

x + ω t transforms Eq. (3.1) to the ordinary differential equation 

ω (3.2) 

α (3.3) 
t + α
(
u3 

)
x 
+ 3 

2 

α
(
u2 

)
x x 

+ α ux x x = 0 ,

here u (x, t) is the amplitude of the relative wave mode and αis a

The travelling wave transformation equation u (x, t) = u (ξ ) , ξ = 

u′ + α(u3 )′ + 3 

2 

α(u2 )′′ + αu′′′ = 0 .

Now integrating Eq. (3.2) with respect to ξ once , we have 

u′′ + 3 αuu′ + ωu + αu3 + R = 0 ,
463 
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Fig. 3. Profile of u9 (x, t ) , which is moving in the positive direction of the x-axis with the phase speed ω = −2 . 5468 . Figure (a) represents the 3D profile of u9 (x, t ) for the 

values of μ = −0 . 25 , A = 0 , a0 = 1 , α = 1 , λ = 0 . 5 . Figure (b) represents the corresponding contour plot of (a) along with arrows of the directional components. Figure (c) 

is the corresponding profile of wave phase ξ (x, t ) = x + ωt . Figure (d) indicates the progress of the travelling wave as time increases, where snapshots are taken at time 

t = 0 , 1 , 2 , 3 . Figure (d) represents the time evolution of the solution u9 , which suggests that the solitary wave is propagating in the positive direction of the x-axis. 

Fig. 4. Profile of u33 (x, t ) , which is moving in the positive direction of the x-axis with the phase speed ω = − 1 . Figure (a) represents the 3D profile of u33 (x, t ) for the real 

part with the values of μ = −2 , A = 1 , a0 = 0 , α = 0 . 5 , λ = 0 . Figure (b) represents the corresponding contour plot of (a) along with arrows of the directional components. 

Figure (c) is the corresponding profile of wave phase ξ (x, t ) = x + ωt . Figure (d) indicates the progress of the travelling wave as time increases, where snapshots are taken 

at time t = 0 , 1 , 2 , 3 . Figure (d) represents the time evolution of the solution u33 which suggests that the solitary wave is propagating in the positive direction of the x-axis. 

w rivative term u′′ and the nonlinear term u3 from Eq. (3.3) , yields n = 1 . 

H

u ξ )) 
2 
)

 

(3.4) 

w with Eq. (2.5) into Eq. (3.3) . As a result of this substitution, we 

g rom these polynomials, we equate the coefficients of (ψ(ξ )) j and 
here R is a constant of integration. Balancing the highest-order de

ence for n = 1 Eq. (2.4) reduces to 

 (ξ ) = a−1 (1+ λψ(ξ )) 
ψ(ξ ) 

+ a0 + a1 ψ(ξ ) 
1+ λψ(ξ ) 

+ b−1 (ψ(ξ ))−2 

√ 

σ
(
1 + 1 

μ (ψ(

+b0 (ψ(ξ ))−1 

√ 

σ
(
1 + 1 

μ (ψ(ξ )) 
2 
)

+ b1 

√ 

σ
(
1 + 1 

μ (ψ(ξ )) 
2 
)
,

here G = G (ξ ) satisfies Eq. (2.5) . Substitute Eq. (3.4) along 

et a polynomial of (ψ(ξ )) j and (ψ(ξ )) j 

√ 

σ (1 + 1 
μ (ψ(ξ )) 2 ) . F
464 
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Fig. 5. Profile of u33 (x, t ) , which is moving in the positive direction of the x-axis with the phase speed ω = − 1 . Figure (a) represents the 3D profile of u33 (x, t ) for the 

imaginary part with the values of μ = −2 , A = 1 , a0 = 0 , α = 0 . 5 , λ = 0 . Figure (b) represents the corresponding contour plot of (a) along with arrows of the directional 

components. Figure (c) is the corresponding profile of wave phase ξ (x, t ) = x + ωt . Figure (d) indicates the progress of the travelling wave as time increases, where snapshots 

are taken at time t = 0 , 1 , 2 , 3 . Figure (d) represents the time evolution of the solution u33 , which suggests that the solitary wave is propagating in the positive direction 

of the x-axis. 

Fig. 6. Profile of u41 (x, t ) , which is moving in the positive direction of the x-axis with the phase speed ω = − 1 . Figure (a) represents the 3D profile of u41 (x, t ) for the values 

of μ = 1 , A = 0 , a0 = 0 , α = −2 . Figure (b) represents the corresponding contour plot of (a) along with arrows of the directional components. Figure (c) is the corresponding 

profile of wave phase ξ (x, t ) = x + ωt . Figure (d) indicates the progress of the travelling wave as time increases, where snapshots are taken at time t = 0 , 1 , 2 , 3 . Figure 

(d) represents the time evolution of the solution u41 , which suggests that the solitary wave is propagating in the positive direction of the x-axis. 

( over-determined system consisting of twenty-five algebraic equations. 

S urteen sets of values with the aid of the symbolic computer software 

M

a0 = a0 , a1 = 1 
2 , b−1 = b0 = b1 = 0 . 

 0 , b1 = ±
√ 

μ
σ . 

= λ, a−1 = 0 , a0 = a0 , 

−1 = b0 = b1 = 0 . 

 2 , b−1 = b0 = b1 = 0 . 
ψ(ξ )) j 

√ 

σ (1 + 1 
μ (ψ(ξ )) 2 ) , and setting them to zero, we get an 

olving this system for ai , bi , λ and ω we obtain the following fo

aple. 

Set 1: R = 1 
2 αa0 (μ + 4a0 

2 ) , ω = 1 
2 α(μ − 12a0 

2 ) , λ = 0 , a−1 = 0 ,

Set 2: R = 0 , ω = αμ, λ = 0 , a−1 = 0 , a0 = 0 , a1 = 1 , b−1 = b0 =
Set 3: 

R = 2 α(a0 
3 + 3a0 μ

2 λ2 + a0 μ + 3a0 
2 μλ + μ3 λ3 + μ2 λ) , λ

a1 = μλ2 + 1 , ω = −3a0 
2 α − 3 αμ2 λ2 + αμ − 6 αa0 μλ, b

Set 4: R = 0 , ω = 4 αμ, λ = λ, a−1 = 0 , a0 = −2 μλ, a1 = 2 μλ2 +
465 
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Fig. 7. Profile of u49 (x, t ) , which is moving in the negative direction of the x-axis with the phase speed ω = 2 . 5 . Figure (a) represents the 3D profile of u49 (x, t ) for the 

values of μ = 5 , A = 0 , a0 = 0 , α = 0 . 5 , λ = 0 . Figure (b) represents the corresponding contour plot of (a) along with arrows of the directional components. Figure (c) 

is the corresponding profile of wave phase ξ (x, t ) = x + ωt . Figure (d) indicates the progress of the travelling wave as time increases, where snapshots are taken at time 

t = 0 , 1 , 2 , 3 . Figure (d) represents the time evolution of the solution u49 , which suggests that the solitary wave is propagating in the negative direction of the x-axis. 

Fig. 8. Profile of u64 (x, t ) , which is moving in the negative direction of the x-axis with the phase speed ω = 1 . Figure (a) represents the 3D profile of u64 (x, t ) for the 

values of μ = 0 . 25 , A = 0 , a0 = 1 , α = 1 . Figure (b) represents the corresponding contour plot of (a) along with arrows of the directional components. Figure (c) is the 

corresponding profile of wave phase ξ (x, t ) = x + ωt . Figure (d) indicates the progress of the travelling wave as time increases, where snapshots are taken at time t = 

0 , 1 , 2 , 3 . Figure (d) represents the time evolution of the solution u64 , which suggests that the solitary wave is propagating in the negative direction of the x-axis. 

b−1 = b0 = b1 = 0 . 

 , λ = λ, a−1 = −μ, a0 = a0 , 

 

= b1 = 0 . 

a0 = a0 , a1 = 1 , b−1 = b0 = b1 = 0 . 
2 
3 

√ −μ, 

1 = b0 = b1 = 0 . 
Set 5: R = 0 , ω = 4 αμ, λ = λ, a−1 = −μ, a0 = 0 , a1 = μλ2 + 1 ,

Set 6: 
R = −2 α(−a0 

3 − 3a0 μ
2 λ2 − a0 μ + 3a0 

2 μλ + μ3 λ3 + μ2 λ)

a1 = 0 , ω = −3a0 
2 α − 3 αμ2 λ2 + αμ + 6 αa0 μλ, b−1 = b0

Set 7: R = 2a0 α(4 μ + a0 
2 ) , ω = 4 αμ − 3a0 

2 α, λ = 0 , a−1 = −μ,

Set 8: 
R = ± 160 

27 
αμ2 √ −μ

, ω = 28 
3 αμ, λ = ∓ 1 

3
√ −μ

, a−1 = −μ, a0 = ∓
a1 = 16 

9 , b−1 = b0 = b1 = 0 . 

Set 9: R = 0 , ω = 4 αμ, λ = λ, a−1 = −2 μ, a0 = 2 μλ, a1 = 0 , b−
466 
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Fig. 9. Instantaneous streamline pattern between u1 (x, t ) and u9 (x, t ) for the values of μ = −1 , A = 0 , a0 = 1 , α = 2 , λ = 1 . Arrows in figures (a) and (b) depicted the 

direction of wave components. In Figure (a) real part and Figure (b) imaginary part of u1 (x, t ) are used. 

 

= b0 = b1 = 0 . 

 ± 2 
3 

√ −μ, 

 

= 0 , b0 = ± μ√ 

σ
, b1 = 0 . 

 0 , b0 = ± μ
2
√ 

σ
, b1 = ± 1 

2 

√ 

μ
σ . 

0 
3 ) , λ = λ, a−1 = −μ

2 , a0 = a0 , 

= 0 , b0 = μ
2
√ 

σ
, b1 = 0 . 

nd Eq. (2.8) into Eq. (3.4) along with Set 1- 14, we get respectively the 

f ily has been reported before its first reference in the literature list is 

m
 −μξ ) ) , u3 , 4 (ξ ) = a0 + 1 

2 

√ −μ(coth (A + √ −μξ ) ∓ csch (A + √ −μξ ) ) , 

w

 , u7 , 8 (ξ ) = √ −μ(coth (A + √ −μξ ) ∓ csch (A + √ −μξ ) ) , where ξ = x + 

α

 u10 (ξ ) = a0 +
√ −μ (1 + μλ2 )(

coth (A +√ −μξ ) 
1+ λ√ −μ coth (A +√ −μξ ) 

) , where ξ = x + 

( ed before [11] . 

μξ ) 
) , u12 (ξ ) = −2 μλ + 2

√ −μ (1 + μλ2 )(
coth (A +√ −μξ ) 

1+ λ√ −μ coth (A +√ −μξ ) 
) , where 

ξ

) + λ
√ −μ) , u14 (ξ ) = √ −μ (

(1+ μλ2 ) coth (A +√ −μξ ) 
1+ λ√ −μ coth (A +√ −μξ ) 

+ tanh (A + √ −μξ ) + λ
√ −μ) , 

w

−3a0 
2 α − 3 αμ2 λ2 + αμ + 6 αa0 μλ) t . This has been found as early as 

1

ξ ) ) , where ξ = x + (4 αμ − 3a0 
2 α) t . Obtained before in [11] . 

 u20 , 21 ( ξ ) = ∓
√ −μ

3 (
12 ∓19 coth (A +√ −μξ ) ∓9 tanh (A +√ −μξ ) 

3 ∓coth (A +√ −μξ ) 
) , where ξ = x + 

 (A + √ −μξ ) , where ξ = x + 4 αμ t . Family 9 is obtained in [35] . 

 ) , where ξ = x + 16 αμ t . Family 10 is the linear combination of Family 

9

 , u27 , 28 ( ξ ) = ∓ 2 
3 

√ −μ(
3 ∓4 coth (A +√ −μξ ) ∓9 tanh (A +√ −μξ ) 

3 ∓coth (A +√ −μξ ) 
) , where ξ = x + 
Set 10: R = 0 , ω = 16 αμ, λ = 0 , a−1 = −2 μ, a0 = 0 , a1 = 2 , b−1

Set 11: 
R = ∓ 160 

27 
αμ2 √ −μ

, ω = 28 
3 αμ, λ = ∓ 1 

3
√ −μ

, a−1 = −2 μ, a0 =
a1 = 8 

9 , b−1 = b0 = b1 = 0 . 

Set 12: R = 0 , ω = αμ, λ = λ, a−1 = −μ, a0 = μλ, a1 = 0 , b−1

Set 13: R = 0 , ω = αμ, λ = 0 , a−1 = −μ
2 , a0 = 0 , a1 = 1 

2 , b−1 =

Set 14: 
R = − 1 

4 α(μ2 λ − 6a0 μ
2 λ2 + 12a0 

2 μλ + μ3 λ3 − 2a0 μ − 8a

a1 = 0 , ω = − 1 
4 α(−μ − 12a0 μλ + 12a0 

2 + 3μ2 λ2 ) , b−1 

Hyperbolic function solutions ( μ < 0 ): Substituting Eq. (2.7) a

amilies of hyperbolic function solutions mentioned below. If a fam

entioned. 

Family 1: u1 , 2 (ξ ) = a0 + 1 
2 

√ −μ(tanh (A + √ −μξ ) ± Isech (A + √
here ξ = x + ( 1 

2 α(μ − 12a0 
2 ) ) t . 

Family 2: u5 , 6 (ξ ) = √ −μ(tanh (A + √ −μξ ) ± Isech (A + √ −μξ ) )

μ t . 

Family 3: u9 (ξ ) = a0 +
√ −μ (1 + μλ2 )(

tanh (A +√ −μξ ) 
1+ λ√ −μ tanh (A +√ −μξ ) 

) ,

−3a0 
2 α − 3 αμ2 λ2 + αμ − 6 αa0 μλ) t . This Family has been obtain

Family 4: u11 (ξ ) = −2 μλ + 2
√ −μ (1 + μλ2 )(

tanh (A +√ −μξ ) 
1+ λ√ −μ tanh (A +√ −

= x + 4 αμ t . This Family has been obtained before [11] . 

Family 5: u13 (ξ ) = √ −μ (
(1+ μλ2 ) tanh (A +√ −μξ ) 
1+ λ√ −μ tanh (A +√ −μξ ) 

+ coth (A + √ −μξ

here ξ = x + 4 αμ t . This Family combines 4 and 6. 

Family 6: u15 (ξ ) = a0 +
√ −μ(coth (A + √ −μξ ) + λ

√ −μ) , 

u16 (ξ ) = a0 +
√ −μ(tanh (A + √ −μξ ) + λ

√ −μ) , where ξ = x + (

986 by Hereman et al. [1] . 

Family 7: u17 (ξ ) = a0 +
√ −μ(tanh (A + √ −μξ ) + coth (A + √ −μ

Family 8: u18 , 19 (ξ ) = ∓
√ −μ

3 (
12 ∓19 tanh (A +√ −μξ ) ∓9 coth (A +√ −μξ ) 

3 ∓tanh (A +√ −μξ ) 
) ,

28 
3 αμ t . Family 8 is published in [42] . 

Family 9: u22 (ξ ) = 2
√ −μ coth (A + √ −μξ ) , u23 (ξ ) = 2

√ −μ tanh

Family 10: u24 (ξ ) = 2
√ −μ(tanh (A + √ −μξ ) + coth (A + √ −μξ )

. 

Family 11: u25 , 26 (ξ ) = ∓ 2 
3 

√ −μ(
3 ∓4 tanh (A +√ −μξ ) ∓9 coth (A +√ −μξ ) 

3 ∓tanh (A +√ −μξ ) 
)

28 αμ t . 
3 
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Fig. 10. Instantaneous streamline pattern between u1 (x, t ) and u16 (x, t ) for the values of μ = −1 , A = 0 , a0 = 1 , α = 2 , λ = 1 . Arrows in figures (a) and (b) depicted the 

direction of wave components. In Figure (a) real part and Figure (b) imaginary part of u1 (x, t ) are used. 

Fig. 11. Instantaneous streamline pattern between u1 (x, t ) and u33 (x, t ) for the values of μ = −1 , A = 0 , a0 = 1 , α = 2 , λ = 1 . Arrows in figures (a) and (b) depicted the 

direction of wave components. In Figure (a) real part and Figure (b) imaginary part of u1 (x, t ) are used. 
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) ) , u31 , 32 (ξ ) = √ −μ(tanh (A + √ −μξ ) ∓ Isech (A + √ −μξ ) ) , where ξ = 

x
 −μξ ) √ −μξ ) 

) , u35 , 36 ( ξ ) = 1 
2 

√ −μ(
coth ( A + √ −μξ ) ± tanh (A + √ −μξ ) 

∓Icsch ( A + √ −μξ ) ∓ sech (A + √ −μξ ) 
) , 

w

ch (A + √ −μξ ) + λ
√ −μ) , u39 , 40 (ξ ) = a0 + 1 

2 

√ −μ(tanh (A + √ −μξ ) 

∓  12a0 
2 + 3μ2 λ2 ) ) t . 

9) and (2.10) into Eq. (3.4) along with Sets 1 - 14, we get the following 

t

) ) , u43 , 44 (ξ ) = a0 + 1 
2 

√ 

μ(cot (A + √ 

μξ ) ∓ csc (A + √ 

μξ ) ) , where ξ = 

x

48 (ξ ) = √ 

μ(cot (A + √ 

μξ ) ∓ csc (A + √ 

μξ ) ) , where ξ = x + αμ t . 

 u50 (ξ ) = a0 + √ 

μ (1 + μλ2 )(
cot (A +√ 

μξ ) 
1+ λ√ 

μ cot (A +√ 

μξ ) 
) , where ξ = x + 

(

 , u52 (ξ ) = −2 μλ + 2
√ 

μ (1 + μλ2 )(
cot (A +√ 

μξ ) 
1+ λ√ 

μ cot (A +√ 

μξ ) 
) , where ξ = x + 

4
 

μ) , 

 ξ = x + 4 αμ t . 

u56 (ξ ) = a0 − √ 

μ(tan (A + √ 

μξ ) + λ
√ 

μ) , where ξ = x + 

(

 ) , u58 (ξ ) = a0 + √ 

μ(cot (A + √ 

μξ ) − tan (A + √ 

μξ ) ) , where ξ = 

x

1 , 62 ( ξ ) = ± 1 
3 I

√ 

μ(
12 ∓19 I cot (A +√ 

μξ ) ±9 tan (A +√ 

μξ ) 
3 ∓I cot (A +√ 

μξ ) 
) , where ξ = x + 28 

3 αμ t . 

 + √ 

μξ ) , where ξ = x + 4 αμ t . 

) = 2
√ 

μ(cot (A + √ 

μξ ) − tan (A + √ 

μξ ) ) , where ξ = x + 16 αμ t . 

0 ( ξ ) = ± 2 
3 

√ 

μ(
3 ∓4 cot (A +√ 

μξ ) ±9 tan (A +√ 

μξ ) 
3 ∓cot (A +√ 

μξ ) 
) , where ξ = x + 28 

3 αμ t . 

3 , 74 (ξ ) = −√ 

μ(tan (A + √ 

μξ ) ∓ sec (A + √ 

μξ ) ) , where ξ = x + αμ t . 

 , u77 , 78 ( ξ ) = 1 
2 

√ 

μ(
cot ( A + √ 

μξ ) − tan (A + √ 

μξ ) 

∓ csc ( A + √ 

μξ ) ∓ sec (A + √ 

μξ ) 
) , where ξ = x + 

α
 + λ

√ 

μ) , u81 , 82 (ξ ) = a0 − 1 
2 

√ 

μ(tan (A + √ 

μξ ) ∓ sec (A + √ 

μξ ) + λ
√ 

μ) , 

w

4

ns, one is dependent and six have been published before. About the 

o t irregular behavior: solitons emerge from a delicate balance between 

n eappear after collision by retaining their identities with the same speed 

a r and emerge unchanged thereafter. 

4

 , μ = −1 Family 3 provides trivial solution and for λ < −1 or λ > 1 . 

ink wave and Family 3(u10 (ξ ) ) and Family 4 (u12 (ξ ) ) are singular kink 

tions and for λ < −1 or λ > 1 Family 3 and Family 4 are singular kink 

tion and u14 (ξ ) is a kink solution. 

ngular kink solution and u16 (ξ ) is a kink solution. 

ular kink solution and u23 (ξ ) is a kink solution. 

y 10 - 14 represent different solitons for the different real values of the 

tion solutions, also named plane periodic travelling wave solutions. The 

p the solutions obtained above. For positive values of phase speed ω the 

d gative x -direction. Consequently, for negative values of the phase speed 

ω

Family 12: u29 , 30 (ξ ) = √ −μ(coth (A + √ −μξ ) ∓ csch (A + √ −μξ
 + αμ t . (Family 2 and 12 are same) 

Family 13: u33 , 34 (ξ ) = 1 
2 

√ −μ(
tanh (A + √ −μξ ) ± coth (A + √
∓csch ( A + √ −μξ ) ± Isech (A +

here ξ = x + αμ t . 

Family 14: u37 , 38 (ξ ) = a0 + 1 
2 

√ −μ(coth (A + √ −μξ ) ∓ cs

Isech (A + √ −μξ ) + λ
√ −μ) , where ξ = x + (− 1 

4 α( −μ − 12a0 μλ +
Trigonometric function solutions ( μ > 0 ): Substituting Eqs. (2.

rigonometric function solutions. 

Family 15: u41 , 42 (ξ ) = a0 + 1 
2 

√ 

μ(tan (A − √ 

μξ ) ± sec (A − √ 

μξ

 + ( 1 
2 α(μ − 12a0 

2 ) ) t . 

Family 16: u45 , 46 (ξ ) = √ 

μ(tan (A − √ 

μξ ) ± sec (A − √ 

μξ ) ) , u47 ,

Family 17: u49 (ξ ) = a0 + √ 

μ (1 + μλ2 )(
tan (A −√ 

μξ ) 
1+ λ√ 

μ tan (A −√ 

μξ ) 
) ,

−3a0 
2 α − 3 αμ2 λ2 + αμ − 6 αa0 μλ) t . 

Family 18: u51 (ξ ) = −2 μλ + 2
√ 

μ (1 + μλ2 )(
tan (A −√ 

μξ ) 
1+ λ√ 

μ tan (A −√ 

μξ ) 
)

 αμ t . 

Family 19: u53 (ξ ) = √ 

μ (
(1+ μλ2 ) tan (A −√ 

μξ ) 
1+ λ√ 

μ tan (A −√ 

μξ ) 
− cot (A − √ 

μξ ) − λ
√

u54 (ξ ) = √ 

μ (
(1+ μλ2 ) cot (A +√ 

μξ ) 
1+ λ√ 

μ cot (A +√ 

μξ ) 
− tan (A + √ 

μξ ) − λ
√ 

μ) , where

Family 20: u55 (ξ ) = a0 − √ 

μ(cot (A − √ 

μξ ) + λ
√ 

μ) , 

−3a0 
2 α − 3 αμ2 λ2 + αμ + 6 αa0 μλ) t . Obtained in [35] . 

Family 21: u57 (ξ ) = a0 + √ 

μ(tan (A − √ 

μξ ) − cot (A − √ 

μξ )

 + (4 αμ − 3a0 
2 α) t . Obtained in [36] . 

Family 22: u59 , 60 (ξ ) = ± 1 
3 I

√ 

μ(
12 ∓19 I tan (A −√ 

μξ ) ±9 I cot (A −√ 

μξ ) 
3 ∓I tan (A −√ 

μξ ) 
) , u6

Family 23: u63 (ξ ) = −2
√ 

μ cot (A − √ 

μξ ) , u64 (ξ ) = −2
√ 

μ tan (A

Family 24: u65 (ξ ) = 2
√ 

μ(tan (A − √ 

μξ ) − cot (A − √ 

μξ ) ) , u66 (ξ

Family 25: u67 , 68 (ξ ) = ± 2 
3 

√ 

μ(
3 ∓4 tan (A −√ 

μξ ) ±9 cot (A −√ 

μξ ) 
3 ∓tan (A −√ 

μξ ) 
) , u69 , 7

Family 26: u71 , 72 (ξ ) = −√ 

μ(cot (A − √ 

μξ ) ∓ csc (A − √ 

μξ ) ) , u7

Family 27: u75 , 76 (ξ ) = 1 
2 

√ 

μ(
tan (A − √ 

μξ ) − cot (A − √ 

μξ ) 

∓ csc ( A − √ 

μξ ) ∓ sec (A − √ 

μξ ) 
)

μ t . 

Family 28: u79 , 80 (ξ ) = a0 − 1 
2 

√ 

μ(cot (A − √ 

μξ ) ∓ csc (A − √ 

μξ )

here ξ = x + (− 1 
4 α( −μ − 12a0 μλ + 12a0 

2 + 3μ2 λ2 ) ) t . 

. Analysis of the results 

From the obtained fourteen hyperbolic families of STO solutio

btained solutions of the STO equation, it is interesting to point ou

onlinear- and linear effects, with full mutual interaction. Solitons r

nd shape. If two solitons collide, they just pass through each othe

.1. Phenomena of solitons based on the values of the parameters 

Below we omit phenomena of solitons’ fission and fusion. 

For μ < 0 , Family 1 - 14 are exact solitary wave solutions. 

• Family 3: For −1 < λ < 1 provides a kink wave; for λ = ±1

Family 3 provides a singular kink wave. 
• For −1 < λ < 1 , Family 3(u9 (ξ ) ) and Family 4(u11 (ξ ) ) are a k

waves. 
• For λ = ±1 , μ = −1 Family 3 and Family 4 give absurd solu

waves. 
• Family 5: For λ = ±1 , μ = −1 , u13 (ξ ) is a singular kink solu
• Family 6: For any real value of the parameters, u15 (ξ ) is a si
• Family 9: For any real value of the parameters, u22 (ξ ) a sing
• Analogously, Family 1, Family 2, Family 7, Family 8 and Famil

parameters. 

Consequently, for μ > 0 , Families 15 - 28 are trigonometric func

hase speed ω plays an important role in the physical structure of 

isturbances represented by u (ξ ) = u (x + ωt) are moving in the ne

the disturbance move in the positive x direction. 
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Fig. 12. Phase speed ω1 = 1 
2 
α(μ − 12 a2 

0 ) for the phase / travelling wave variable ξ1 (x, t ) = x + 1 
2 
α(μ − 12 a2 

0 ) t in Family 1/Family 15 by fixing μ = −0 . 25 and varying the 

parameters a0 ∈ [−2 , 2 ] and α ∈ [0 , 5 ] . Figure (a) shows the 3D view whereas Figure (b) represents the corresponding 2D view of the phase speed. 

Fig. 13. Phase speed ω1 = 1 
2 
α(μ − 12 a2 

0 ) for the phase/ travelling wave variable ξ1 (x, t ) = x + 1 
2 
α(μ − 12 a2 

0 ) t in Family 1/Family 15 by fixing μ = −0 . 25 and varying the 

parameters a0 ∈ [−2 , 2 ] and α ∈ [−5 , 0 ] . Figure (a) shows the 3D view whereas Figure (b) represents the corresponding 2D view of the phase speed. 
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.2. Analysis of the physical structure of the results 

In this subsection, we have illustrated the graphical represen- 

ation of the physical structure and time evolution of some of the 

btained solutions of the STO equation in Figs. 1-8 . 

. Streamline among the obtained solutions 

Now we stress our attention to exploring the instantaneous 

treamline pattern among the obtained solutions. Simulations are 

un to explore the local direction of the components of the ob- 

ained solitary wave solutions at each point in the coordinate (x, t ) . 

e depict instantaneous streamline patterns between some pairs 

f the obtained solutions in Figs. 9-11 . 

. Numerical analysis to examine the influence of the 

arameters 

By setting particular values of the parameters, we can explore 

he physical structure of phase speed and the phase of the prop- 

gating wave as shown in Section 4 . Now we stress our attention 

o analyze, how the phase speed is influenced by the parameters. 
470 
 sample of simulation results for phase speed is presented in 

igs. 12 -18 . 

A numerical sample for phase speed in Family 1 : Phase speed 

n Family 1 is a quadratic function in a0 obtained as ωF amily1 
= 

1 
2 α(μ − 12 a2 

0 
) . In this sample, we have taken μ = −0 . 25 . In this

ample, we have taken μ constant and very through a0 and . Fix- 

ng μ = −0 . 25 we checked the profile of phase speed of Family 1

or a sequence of values of a0 and α; the results are illustrated in 

ig. 12 and Fig. 13 . Numerical simulations in Fig. 12 indicates that- 

(a) for a0 → ±∞ , α → ∞ , the phase speed ω → ∞ ; that is

phase speed increases 

(b) for a0 → ±∞ , α → 0 , the phase speed ω → 0 ; that is phase

speed decreases 

(c) for a0 → 0 , α → [0 , ∞ ] , the phase speed ω → 0 ; that is

phase speed decreases 

Numerical simulations in Fig. 13 indicates that- 

(a) for a0 → ±∞ , α → −∞ , the phase speed ω → ∞ ; that is

phase speed increases 

(b) for a0 → ±∞ , α → 0 , the phase speed ω → 0 ; that is phase

speed decreases 



K. Khan, H. Koppelaar, M.A. Akbar et al. Journal of Ocean Engineering and Science 9 (2024) 461–474 

Fig. 14. Effect of the parameters on phase speed of Family 3: fixing α = 1 , μ = −0 . 25 we checked the profile of phase speed for a sequence of values of [a0 , λ] ∈ [ −5 , 5] . 

Figure (a) shows the 3D view whereas Figure (b) represents the corresponding 2D view of the phase speed. 

Fig. 15. Phase speed profiles for the fixed values of λ = 1 , μ = 0 . 1 , α = 1 by varying the parameter a0 . Figure (a) corresponds to the phase speed in Family 1 and Figure 

(b) is the corresponding phase speed in Families 3, 6. Figure (a) and Figure (b) show quadratic growth in a0 in the form ω → 0 as a0 → 0 and ω → ∞ as a0 → −∞ . 

Fig. 16. Phase speed profiles for the fixed values of λ = 1 , μ = 0 . 1 , α = 1 by varying the parameter a0 . Figure (a) corresponds to the phase speed in Family 15 and Figure 

(b) is the corresponding phase speed in Families 17, 20. Figure (a) and Figure (b) show quadratic growth in a0 in the form ω → 0 as a0 → 0 and ω → ∞ as a0 → ∞ . 
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(c) for a0 → 0 , α → [−∞ , 0 ] , the phase speed ω → 0 ; that is

phase speed decreases 

A numerical sample for phase speed in Family 3 : Phase speed 

n Family 3 is a quadratic function in a0 , μ and λ defined by 

F amily3 
= −α(3μ2 λ2 + 3 a2 

0 
− μ + 6a0 μλ) . In this sample, we have 

aken α, μ constants and very through a0 and . Fixing α = 1 , μ = 

0 . 25 we checked the profile of phase speed of Family 3 for a se-
471 
uence of values of a0 and λ in the interval [−5 , 5 ] ; the result is 

llustrated in Fig. 14 , which indicates that –

(a) for a0 → ∞ , λ → −∞ phase speed ω → ∞ ; that is phase

speed increases 

(b) for a0 → −∞ , λ → ∞ phase speed ω → ∞ ; that is phase

speed increases with the increase of the parameters a0 and 

λ with opposite signs. 
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Fig. 17. Phase speed profiles: Figure (a) corresponds to the phase speed in Family 1 and Figure (b) is the corresponding phase speed in Families 3, 6. Figure (a) is the 

behavior of phase speed (black curve) showing linear growth in μ in the form ω → 0 as μ → 0 and ω → ∞ as μ → −∞ . Whereas Figure (b) is the behavior of phase speed 

showing quadratic growth in μ in the form ω → 0 as μ → 0 and ω → ∞ as μ → −∞ . 

Fig. 18. Phase speed profiles. Figure (a) corresponds to the phase speed in Family 15 and Figure (b) is the corresponding phase speed in Families 17, 20. Figure (a) is the 

behavior of phase speed (black curve) showing linear growth in μ in the form ω → 0 as μ → 0 and ω → ∞ as μ → ∞ . Whereas Figure (b) is the behavior of phase speed 

showing quadratic growth in μ in the form ω → 0 as μ → 0 and ω → ∞ as μ → ∞ . 

Fig. 19. Graphs of solitary wave profile u1 influenced by the parameter a0 when propagating along the x-axis. Snapshots for different values of a0 with the values of 

μ = −0 . 25 , A = 0 , α = 2 are taken at time t = 4 . This figure indicates that with the increase of the value of the parameter a0 , keeping the values of other parameters fixed, 

solitons can travel faster. 
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Fig. 20. Graphs of solitary wave profile u9 influenced by the parameter a0 when propagating along the x-axis. Snapshots for different values of a0 with the values of 

μ = −0 . 25 , A = 0 , α = 2 , λ = 1 . 5 are taken at time t = 4 . This figure indicates that with the increase of the value of the parameter a0 , keeping the values of other parameters 

fixed, solitons can travel faster. 
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(c) for a0 → 0 , λ → [−∞ , + ∞ ] phase speed ω → 0 ; that is

phase speed decreases 

In Figs. 15-18 effect of single parameters on phase speed are 

epicted. Analogously we can explain the phase speed for other 

amilies. Note that we only took for the magnitude of the phase 

peed to determine the impact of parameters on it. 

The above phase speed analysis indicates that the parameters 

lay an important role in the travelling wave phenomena as the 

hange of the values of the parameters alter the phase speed. We 

ow attempt to formalize the numerical results by changing the 

ariables, to analyze the impact of the variables, on the travelling 

ave solutions of the STO equations. Sample simulated results are 

llustrated in Figs. 19 and 20 to understand the influence of the 

arameters in the obtained solutions. Figs. 19 and 20 , indicate that 

ith the increase of the parameter a0 the solitary waves can travel 

aster . Overall, the results in Figs. 12 - 20 reveal a novel application

f the parameters to get the expected pattern of the travelling pe- 

iodic or solitary waves with the required phase speed for a certain 

eld of research. 

Analogously we can explore the impact of the other parameters 

n the obtained solutions. 

Analysis of the STO model, for a0 → ∞ , indicates that the phase 

peed associated with travelling wave solutions of the STO model 

ravels faster. This observation is mathematically interesting be- 

ause best of our knowledge in the previous study of the STO 

odel the impact of phase speed analysis is ignored. 

. Conclusions 

In this work, we study travelling wave solutions of the STO 

quation. The enhanced (G′ /G ) -expansion method has been ap- 

lied successfully and then several numerical simulations are run 

o analyze our results. Instantaneous streamline patterns among 

ome randomly selected solitary wave solutions are depicted suc- 

essfully through numerical simulations, to explore the local direc- 

ion of the components of the obtained solitary wave solutions at 
473 
ach point in the coordinate (x, t ) . Numerical simulations of the 

btained solutions show that there is a complicated relationship 

etween the phase speed of the travelling wave solutions and the 

arameters in the solutions. It is because the phase speed in terms 

f the parameters is not unified. Our numerical analysis suggests 

hat the phase speed is proportional to the parameters (or propor- 

ional to the square of the parameters). Overall, our analysis and 

umerical exploration show that there are numerous opportunities 

o extend the work presented in this study. The more arbitrary 

arameters in the obtained solutions imply that solutions have 

icher local structures. It is illustrated that the enhanced (G′ /G ) - 

xpansion method is direct, and effectively can be used for many 

ther applications of nonlinear evolution equations (NLEEs) to play 

n important role in the understanding of qualitative features 

f phenomena and processes modelled, for example in physics, 

hemistry [37] , biology [38 , 39] and (nanotechnology-)engineering 

40 , 41 , 42] . Exact solutions specifically exemplify graphically com- 

lex nonlinear properties of such models, to disentangle mecha- 

isms such as spatial localization of transfer processes, multiplicity 

r absence, of steady states, the existence of peaking regimes, etc. 

ven without application persé may exact solutions play a rôle as 

est problems to verify consistency and estimate errors of numeri- 

al, asymptotic, or approximate analytical ‘theoretical’ methods. In 

his way can exact solutions serve as a basis for perfecting and 

esting computer algebra software packages (for solving NLEEs). 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

[1] W. Hereman , P.P. Banerjee , A. Korpel , et al. , J. Phys. A. Math. Gen. 19 (1986)

607–628 . 
[2] A. Chen , Phys. Lett. Sect. A Gen. At. Solid State Phys. [Internet]. 374 (2010)

2340–2345 . 

http://refhub.elsevier.com/S2468-0133(22)00076-6/sbref0001
http://refhub.elsevier.com/S2468-0133(22)00076-6/sbref0001
http://refhub.elsevier.com/S2468-0133(22)00076-6/sbref0001
http://refhub.elsevier.com/S2468-0133(22)00076-6/sbref0001
http://refhub.elsevier.com/S2468-0133(22)00076-6/sbref0001
http://refhub.elsevier.com/S2468-0133(22)00076-6/sbref0002
http://refhub.elsevier.com/S2468-0133(22)00076-6/sbref0002


K. Khan, H. Koppelaar, M.A. Akbar et al. Journal of Ocean Engineering and Science 9 (2024) 461–474 

 

 

[

[

[

[

[

[

[

[

[

: 

[

[  

[
[

[

[
[  

[  

[
[  

[
[

[

[  

[  

 

[  

[  

[

 

[  

[  

[

[
[

[

[
[

[
[  

[

[

[
[

[3] Y. Shang , Y. Huang , W. Yuan , Appl. Math. Comput. 217 (2011) 7172–7183 . 
[4] A.-.M. Wazwaz , Rom. Rep. Phys. 65 (2013) 383–390 . 

[5] Y. Zhou , F. Yang , Q Liu , Commun. Nonlinear Sci. Numer. Simul. [Internet]. 16
(2011) 641–646 . 

[6] S. Wang , X.Y. Tang , S.Y. Lou , Chaos Solitons Fractals 21 (2004) 231–239 . 
[7] G. Wang , A.H. Kara , Chaos, Solitons Fractals [Internet]. 81 (2015) 290–298 . 

[8] A. Ghafoor , S. Firdous , T. Zubair , et al. , QScience Connect 24 (2013) 1–12 . 
[9] V.V. Gudkov , J. Math. Phys. 38 (1997) 4794–4803 . 

[10] A. Bekir , A. Boz , Phys. Lett. A [Internet]. 372 (2008) 1619–1625 . 

[11] Y. He , S. Li , Y Long , J. Appl. Math. 2013 (2013) 1–6 . 
[12] A.-.M. Wazwaz , Appl. Math. Comput. 188 (2007) 1205–1213 . 

[13] K. Khan, M.A. Akbar, J. Egypt. Math. Soc. [Internet]. 22 (2014) 220–
226 Available from http://www.sciencedirect.com/science/article/pii/ 

S1110256X130 0 0990 . 
[14] M.E. Islam , K. Khan , M.A. Akbar , et al. , Int. J. Partial Differ. Eqs. Appl. 1 (2013)

6–12 . 

[15] K. Khan, M.A. Akbar, M.M. Rashidi, et al., Waves in Random Complex Media 
[Internet] 25 (2015) 644–655 Available from: http://www.tandfonline.com/doi/ 

full/10.1080/17455030.2015.1068964 . 
[16] K. Khan , M.A .A . Akbar , H. Koppelaar , R. Soc. Open Sci. 2 (2015) 1–13 . 

[17] H. Naher, F.A. Abdullah, J. Egypt. Math. Soc. [Internet]. 22 (2014) 390–395 
Available from: http://dx.doi.org/, doi: 10.1016/j.joems.2013.11.008 . 

[18] N.A. Kudryashov, Commun. Nonlinear Sci. Numer. Simul. [Internet]. 14 (2009) 

3507–3529 Available from: http://dx.doi.org/, doi: 10.1016/j.cnsns.2009.01.023 . 
[19] A.S. Sharma , H. Tasso , Connection Between Wave Envelope and Explicit Solu- 

tion of a Nonlinear Dispersive Wave Equation, Muenchen, Germany, 1977 . 
20] P.J. Olver , J. Math. Phys. 18 (1977) 1212–1215 . 

[21] F. Verheest , W. Hereman , J. Phys. A. 15 (1982) 95–102 . 
22] A.-.M.M. Wazwaz , S.A. El-Tantawy , Nonlinear Dyn. 87 (2016) 2457–2461 . 

23] S. Bibi, S.T. Mohyud-Din, R. Ullah, et al., Results Phys. [Internet]. 7 (2017) 4434–

4439 Available from:, doi: 10.1016/j.rinp.2017.11.009 . 
24] E Fan , J. Math. Phys. 42 (2001) 4327–4344 . 

25] E Fan, Phys. A [Internet] 301 (2001) 105–113 Available from www.elsevier.com/ 
locate/physa . 

26] Y.C. Hon, E Fan, Chaos, Soliton Fractals [Internet]. 24 (2005) 1087–1096 Avail- 
able from www.elsevier.com/locate/chaos . 

27] H. Zhao , Chaos An Interdiscip. J. Nonlinear Sci. [Internet] 27 (2017) 1–7 . 

28] N.A. Kudryashov, Prikl. Matem. Mokhan. U.S.S.R [Internet] 52 (1988) 361–
365 [cited 2017 Oct 24]Available from: http://www.sciencedirect.com/science/ 

article/pii/0 02189288890 0901 . 
29] A. Kirsch , An Introduction to the Mathematical Theory of Inverse Prob- 

lems [Internet], Springer, 2011 Available from: file:///Users/Brian_Caudle/ 
Documents/Papers/2004/Marsen/Applied Mathematical Sciences 2004 Marsen. 

pdf%5Cnpapers://75088281-f09c-4e77-b8c2-14041f4545f6/Paper/p785%5Cnhttp

//books.google.com/books?hl = en&lr = &id = RTo9ZFaSSugC&pgis = 1 . 
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