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Abstract

Accurate indoor localization is essential for autonomous robotic agents to perform tasks rang-
ing from warehouse management to remote sensing in greenhouses. Recently Ultra Wide-
band (UWB) distance measurements have been used to estimate position and velocity indoors.
These UWB-measurements are known to be corrupted by a varying bias. Besides, current
estimation methods are not suitable for large areas with a low beacon coverage. The goal
of this thesis was therefore twofold. First, a simple bias model was proposed to reduce the
influence of the UWB bias while still being implementable on a micro-processor. This model
was shown to reduce the measurement error with 50% on validation data. Using this model,
UWB-localization in a static beacon-configuration can be quickly improved. Second, an adap-
tation of the standard Moving Horizon Estimation (MHE) method was proposed that uses a
time-window of range measurements to increase the robustness to outliers and is still real-time
implementable on a micro-processor. This Moving Horizon Model Parametrization (MH-MP)
does not estimate every state in the complete time-window, but only estimates an offset of
the initial state in the window. An analysis of simulation data and data gathered in flight has
shown that the proposed MH-MP outperforms the Extended Kalman Filter (EKF) in both the
position and velocity estimate and has a comparable computation time. Further research is
necessary to investigate the possibility of estimating the UWB-bias model parameters online.
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Chapter 1

Introduction

Over the past decade, automation has increased the amount of autonomous robotic agents
operating in indoor environments. These agents often need to known their location to per-
form their tasks. Examples are robots that are used to speed up order fulfillment in large
warehouses [6], quadrotors that sense vital environmental variables to increase efficiency in
greenhouses [7] and search and rescue missions in for humans inaccessible areas [8]. For these
indoor robot applications, a highly accurate state estimate is necessary in order to perform
certain tasks. For quadrotors, this can involve landing on a charging platform which requires
millimeter precision to be able to activate the charging station. Besides this, these applica-
tions might require multiple agents operating simultaneously in the same space. To enable
autonomous operation, agents need to be able to calculate their own location without the
use of a central computer. Having a cheap, online, decentralized, accurate indoors method of
localization can have a high impact on applications for mobile robotics.

1-1 Positioning Technology

A common solution for position estimation is currently the use of a Global Positioning System
(GPS) [9, 10]. As long as the GPS-receiver has access to the signal of four satelites, it is able
obtain a position-lock. With a normal commercial GPS receiver, like the U-Blox NEO-M8,
an accuracy of 2.5 meters can be obtained [11]. For highly dynamic maneuvers in small areas
this is not accurate enough. A higher accuracy can be provided (in the order of centimeters)
with the use of a base station [10]. Since most of the GPS errors are due to multipathing or
atmospheric effects, these can be cancelled out by using a base-station with a known location
in the neighbourhood of the receiver.
This GPS signal cannot be used reliably inside or in other places where the GPS signal is
obstructed [12]. Also the frequency of GPS is limited to 10Hz for commercial systems [11][10].

For indoor localization, multiple solutions are currently in use. Besides using the on-board
Inertial Measurement Unit (IMU), indoor localization methods in research usually rely on
external motion capture systems, such as the OptiTrack system that uses vision and reflective
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2 Introduction

markers to accurately estimate the location. This system consists of multiple cameras that
combine near-infrared strobes with reflective markers on the robot to estimate its location
[13]. This way, an accuracy in the order of millimeters can be achieved with an update-
frequency of 200Hz [14].
The MOCAP system has a couple of disadvantages as well. The costs of such a system are
high and installation and calibration takes a lot of time, which makes them inaccessible for
small research groups and small companies.
Also, camera systems need Line Of Sight (LOS), and do not perform well under low ambient
light conditions. Most important to this research, this system does not allow the robot to
operate autonomously because the location of each robot has to be calculated on a central
station. Because of these features, a MOCAP system is mostly used to provide validation
data for scientific research.

Also on-board camera systems are used to assist in the localization of robots [15]. Since
actual localization requires reference-points to get an absolute location, cameras are mostly
used to estimate velocity. For quadrotor applications, this is done by using optical flow of
a camera that is attached to the bottom [16]. Another use is for obstacle detection and
avoidance and most commercial quadrotors use camera systems for both of these applications
[17]. Other indoor localization methods use signal emitting beacons for localization. In almost
all research on autonomous robots, RF signals are used as a way of communicating with each
other or with a central station. As discussed in [18], these wireless systems can also be used
to calculate distances based on Time Of Flight (TOF) or Received Signal Strength (RSS) and
perform multilateration for localization. Examples of these are cellular based [19], bluetooth
based [20][21], methods based on WLAN [22][23] and methods based on UWB [14][24]. These
systems all use radio signals to estimate the location of a robot in a certain space. With
exception of the UWB-based systems, they have an accuracy in the order of meters, where
UWB-based systems have an accuracy in the order of decimeters [18]. A commercial UWB-
system like the Decawave DW1000 can obtain the same update-frequency as a MOCAP-
system, but it largely depends on the amount of data that is to be send and the density of
the beacons [25].

The example applications described in the beginning of this introduction apply certain re-
strictions to the system that will be used to provide position data. The ideal system

• Is able to be placed indoors.

• Is quick to set-up and robust to changes in the setup.

• Has a high update frequency.

• Does not require a central computation unit.

• Is not dependent on light conditions and Line Of Sight (LOS).

• Has an accuracy of around 10-20 centimeters.

Since an UWB-system is the only system that meets these requirements, such a system
will be used as an input to our estimator. An UWB-system also has the advantage that
because it operates on a broad band of RF signals, its signal appears as background noise to
other systems, has a low energy consumption and almost causes no interference. It is also
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1-2 The State-Of-The-Art of Localization Based on UWB 3

possible to have multiple users use the same system simultaniously, without compromising on
update frequency or accuracy. Last but not least these systems are cheap, which makes the
technology accessible to a larger research community. A complete positioning system costs
around 1500€ while a professional MOCAP-system costs around 150.000€. Using UWB does
add some significant challenges, since the positioning error of around 10-15cm can deteriorate
the position estimate, especially with a lower number of anchors and it causes biases in the
position estimation that are both spatially varying and varying on the relative orientation of
the quadrotor to a specific beacon.

1-2 The State-Of-The-Art of Localization Based on UWB

UWB has been successfully used in research to estimate the states of a quadrotor indoors
[14, 26, 27]. In most of these papers, UWB is used to follow a reference track with a quadrotor.

Using UWB does have a couple of downsides that significantly affect the performance of the
quadrotor. One of the problems of UWB is the bias in the measurements, based on the
relative position and orientation to the anchor. Due to the bias in the UWB measurements,
highly accurate flight of dynamic maneuvers and following a reference trajectory is hard to
achieve without compensating for it in some way. Another problem is that the UWB sensors
can suffer from serious outliers which have considerable influence on estimators such as an
Extended Kalman Filter (EKF). This problem is especially deteriorating the estimators result
when a low amount of UWB beacons is used. As is demonstrated in [14], using UWB-data
with an Extended Kalman Filter (EKF) shows promising results. This method, however, does
not take bias into account and uses a large amount of UWB beacons to reduce the influence
of outliers. In work by the same research group [15], a camera was added to the quadrotor to
estimate the ranging bias. Although the mean absolute positioning error was decreased from
0.30m to 0.12m, the solution requires a powerful CPU and a mounted camera which will not
be available to a micro-quadrotor.

Currently, the estimators that are in use are not sufficient for this particular task. They only
perform well in small areas with 5 or more UWB beacons. Also, they are heavily influenced
by outliers and bias that is inherent to the UWB range measurements. Because of this, the
solutions do not offer an accurate and stable estimate of the state with this setup, which
makes reference tracking a difficult task.

1-3 Research Question & Scope

The goal of the research described in this thesis is to enable accurate localization and control
of robotic agents in an area with a low beacon coverage that is also cheap to implement.
First, the research objective will be described and after this, the scope of this research will
be further narrowed and explained.

The main research objective will be to:

Design an estimation method that uses a time-window of range measurements
for a micro-quadrotor by using Ultra Wideband (UWB) measurements
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The research scope will be further narrowed down below.

The robot that is considered in this research will be a quadrotor. Due to the improvements in
battery quality and other technology, quadrotors are a suited platform for robotic research,
both indoors and outdoors. The popularity of quadrotors in research is also because the
system is mechanically easy to understand but offers a lot of challenges in both control
and estimation nonetheless. The specific quadrotor that will be used in this research is the
Crazyflie 2.0 that is produced by Bitcraze [28]. Since this micro quadrotor is completely
open-source, necessary adaptations can be easily made.

Considering the task that should be performed by our micro-quadrotor, our estimator will be
limited to estimating the (x, y)-position of micro-quadrotors in an indoors environment. Since
the quadrotor will be operating at a constant height, the z-height of the quadrotor is assumed
to be constant and known to the estimator. Since the method should be usable in large indoor
areas, it will be assumed that the quadrotor has access to the distance measurements of only
four beacons. This amount should theoretically be enough to estimate the position of a robotic
agent. The quadrotor does not need to perform aggressive maneuvers and will need to fly a
reference track with low velocities. Since there is limited space and capacity on the quadrotor,
the on-board estimator will only have access to the onboard IMU and UWB receiver.

It will be assumed that the operation space in the X-Y plane of the quadrotor will be within
the convex hull that is spanned by the (x,y)-locations of all UWB beacons.

pdes,k ∈ Conv(S) (1-1)

where pdes,k is the desired position at time k and S is the set of all (x,y)-locations of all
beacons and Conv(S) is the convex hull of set S. Because research shows that measurement
data quickly degenerates when the robot leaves the convex hull within the beacons, this
research will only focus on movement within the convex hull. The method that will be
designed should be able to run in real-time on the Crazyflie 2.0. This is important to enable
autonomous flight, since no communication should be necessary with a central computer. In
order to achieve this, an iterative method such as in [29, 30] could be investigated. Another
option would be to use a linearized simplification of the dynamic system, in which case an
adaptation of the MHE problem can be solved in a single iteration. An estimation method in
this scope resembles the use of robotic agents for multiple tasks, including persistent coverage
tasks in greenhouses with quadrotors or order fulfillment in warehouses.

Because UWB beacons are known to produce biased sensor readings, a second research ob-
jective is also defined:

Design a low-dimensional bias model that can be used to reduce the error in the
ranging measurements

If it is possible to create a simple model that estimates the bias, this can be implemented in
the estimator to improve the accuracy. This would eventually enable in-flight estimation of
the bias model of a particular setup, although the design of such an estimator is out of scope
of this research.
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1-4 Main Contributions

The main goal of the research described in this thesis is to design an estimation method for a
quadrotor. This estimation method is to be used in indoor environments with a low amount
of beacons. The main contributions of this thesis are summarized below:

• Design and investigation of a bias model for UWB sensors
This work shows a way of analyzing the bias characteristics of individual UWB sensors
and reducing this bias by fitting a three-dimensional model. The bias-model reduces
the bias of a sensor by up to 65% and is implementable in a real-time estimator because
of the low dimensionality.

• Implementation of a simulation environment for quadrotors
This simulator can be used to quickly generate data-sets that include both the real
states and the noisy measurements. This data can be used to simulate the estimator
responses and allows for quick comparisons between estimators in the presence of certain
noise models for any commanded flight-trajectory.

• Design and implementation of the Moving Horizon Model Parametrization
(MH-MP) that uses range measurements
A novel solution for using UWB range measurements for quadrotor state-estimation
has been devised that uses a time-window of measurements. This approach deduces
position estimates from range-measurements and calculates the offset of a predicted
state-trajectory with a least-squares solution. From simulation and real test results
presented in this thesis, it follows that the MH-MP estimator is outperforming the
benchmark EKF estimator in our setup.

1-5 Thesis Outline

Chapter 2 gives an introduction of the Ultra Wideband (UWB) technology to the reader.
In this chapter, a description of how these signals are used for localization is given and
the characteristics of the UWB-system that will be used in the tests are investigated. This
includes the calibration of the sensors, calculation of the noise statistics and an investigation
in the bias characteristics.

In Chapter 3 models are studied for both the dynamics of the quadrotor and the sensors
that are used. Besides that, the simulation environment is discussed that was designed to
conveniently create datasets of both the quadrotor states as the measurements that can be
used to test the designed estimators. After this, the subject of our research is discussed;
the Crazyflie 2.0. It displays the technical specifications of the quadrotor but also explains
the estimators that are currently implemented. These include the implementation of the
Extended Kalman Filter (EKF), which is currently the default when a positioning system is
supplied, and complementary filters that are used when no positioning system is supplied and
that only produce attitude estimates.

Chapter 4 gives the derivation of the estimator, including methods of using the range mea-
surements, outlier rejection and prevention of overfitting.
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6 Introduction

Chapter 5 comprises the results of the designed estimator. First, the results of the simulations
are shown and after this the results of the real tests are discussed.

In Chapter 6 the results of this thesis are summarized and the possibilities for future work
are discussed.
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Chapter 2

Ultra Wideband (UWB)

Ultra Wideband (UWB) is a radio technology that can be used to create range-measurements.
This chapter discusses the localization features of Ultra Wideband (UWB) and how this
relates to our setup. Section 2-1 describes how UWB signals can be used to create a range
measurement.

2-1 Localization With UWB

This section investigates how UWB signals are used to create range measurements. This will
be done by examining two common lateration methods, Time Of Arrrival (TOA) and Time
Difference Of Arrival (TDOA). After this, ranging methods are discussed that enable the use
of these lateration methods.

2-1-1 Time Of Arrrival (TOA)

The TOA method uses the departure and arrival times of a signal from transmitter to receiver
to estimate the distance between both. When the locations of the transmitters are known
and sufficient transmitters are used, an unambiguous estimate of the receivers location can
be made. For 2D, at least three transmitters are necessary while for 3D, this number is
four. Each transmitter sends a signal with the time of departure (td). The receiver can now
calculate its distance to a transmitter by comparing the time of departure to the time of
arrival

D = c(ta − td) (2-1)

Where c [m/s] is the speed of light and ta − td [s] is the time of flight. This distance is also
equal to the Euclidean distance between the position of the transmitter (xT ) and receiver
(xR)

D = ||xT − xR|| (2-2)
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8 Ultra Wideband (UWB)

Essential to this method is that the clocks of the transmitter and receiver are synchronized.
If this has not been done, an extra term θoffsetc has to be added to the distance measurement
in Equation 2-1 and it will result in the following equation

D = c(ta − td) + θoffsetc (2-3)

Because EM waves propagate with speed of light, small errors in clock-time can result in large
errors in the distance measurement as can be seen in Equation 2-3 (1 ns results in an error
of 30cm). Different ways of achieving clock synchronization will be discussed in Subsection
2-1-3.
If all the measurements are free of error and if enough beacons are used, a set of equations
can now be solved to find xR. This is visualized in Figure 2-1a.

(a) Localization with Time Of Arrrival
(TOA)-measurements in 2D

(b) Localization with Time Difference Of
Arrival (TDOA)-measurements in 2D

Figure 2-1: Time Of Arrrival (TOA) and Time Difference Of Arrival (TDOA) trilateration

But in case of noisy measurements (in real life always the case) an optimization problem needs
to be solved to obtain the most probable location of the receiver. Although 4 beacons are
sufficient for an unambiguous 3D position measurement, more beacons can be added to the
setup. By combining more measurements in an optimization problem, more robust measure-
ments can be obtained [31]. This is because in the case of four beacons, every measurement
is necessary to obtain a position estimation. If one of the measurements does not arrive or is
discarded as an obvious outlier (see Section 4-2-2), no position estimate can be obtained.
The TOA measurements can also be used directly in an estimator, as is shown in 3-4-2.

2-1-2 Time Difference Of Arrival (TDOA)

The Time Difference Of Arrival (TDOA) method uses the same signals, only now compares
arrival times between two transmitters. The point xR is no longer on a circle around a
transmitter, as can be seen in figure 2-1a, but on a hyperboloid between two transmitters.
This can be seen in Figure 2-1b.
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2-1 Localization With UWB 9

The hyperboloid follows from the distance equation between two transmitters

Ri,j = ||xT − xRi || − ||xT − xRj || (2-4)

One mayor advantage of TDOA on TOA is that the robot does not need to have it’s clock
synchronized to those of the transmitting beacons. This way the clock offset between trans-
mitter and receiver drops out of the equation (assuming the transmitters do have synchronized
clocks). Because both distances are subtracted from eachother, the clock-offset between the
transmitters and the receiver drops out of the equation. This is because the term θoffsetc in
Equation 2-3 is the same for both transmitters. It has to be noted that this assumes that all
beacons have synchronized their clocks.

Calculating the intersection point of hyperbola is sensitive to measurement noise [32], so using
more than the necessary 3 beacons is desirable for the TDOA method.

2-1-3 Ranging Methods

To obtain the necessary estimates of the values used in both methods described above, multiple
methods exist.

In [14] a method based on Two Way Ranging (TWR) is implemented to localize quadrotors
indoors. This method requires a message to be sent from the tag to the receiver and then
wait for its response to calculate a TOA measurement [33]. The TWR method is visualized
in Figure 2-2a. In this figure, tf is the time of flight of the signal defined as ta− td in Equation
2-1, tdelay is a predetermined time that the beacon has to wait before sending a reply and
tround is the total roundtrip time.

Since the value tdelay is known by the robot, the time of flight tf can now be calculated as

tf = 1
2(tround − tdelay) (2-5)

The main problem with this method is that the measured delay at the robot cannot be
assumed to be exactly tdelay. In [14], it was found that due to a frequency drift and noise in
the crystal oscillator that drives the clock, the expected delay can differ up to more than 3ns
from the chosen value tdelay, which might result in range measurement errors of 1 meter. An
extension to the TWR to overcome this is also proposed in this paper.

The TWR method in this paper is extended by a repeated reply, that is used to cancel out
the error between actual and expected delay. This method is visualized in Figure 2-2b.

Instead of subtracting the value tdelay from tround, the time delay t̂delay can now be used to
estimate the difference between the delay and the expected delay. The time of flight can now
be calculated as

tf = 1
2(tround − t̂delay) (2-6)

In [14], 5 transmitting beacons were used, which is one more than will be used in our own
research. The states were then estimated by using an Extended Kalman Filter (EKF). The
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10 Ultra Wideband (UWB)

Robot Beacon

(a) Visualization of the Two Way Ranging (TWR)
method

Robot Beacon

(b) Visualization of the Two Way Ranging with Re-
peated Reply (TWR-RR) method

Figure 2-2: Visualization of the Two Way Ranging (TWR) and Two Way Ranging with Repeated
Reply (TWR-RR) methods

accuracy that was obtained had a RMSE of 13cm. This method now has significant im-
provements over the previously described method, since it has a 3D location estimation,
incorporates the dynamic model of the quadrotor and does not make use of a central cal-
culation hub. The main disadvantage is that still two-way communication between tag and
beacon is necessary.

One method to perform localization without two-way communication is a one-way-ranging
method as described by Ledergerber et al. [27]. In this method, the anchors are first synchro-
nized by a TWR-method, and then send their messages. This way, the tag receives messages
all in the time of one anchor and can use this to calculate TDOA measurements. This method
enables the use of a large amount of robots in the same operating space and can be easily
scaled to larger areas by adding more beacons.

2-2 UWB Characteristics

The UWB system that will be used in our experiments is the Loco Positioning system by
Bitcraze. This system is chosen because it can be used as a plug-and-play system along with
the Crazyflie but still offers the possibility for modifications in its open-source software. The
system used consists of four Loco positioning nodes and a Loco positioning deck. Both the
nodes and the deck use a Decawave DWM1000 UWB module. The nodes and deck all use
a TWR method to gather TOA measurements. In this configuration, it is only possible to
use 1 deck since the deck is actively communicating with the nodes. It should be noted that
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2-2 UWB Characteristics 11

in order to use multiple decks in the same space, one of two TDOA methods, implemented
by Bitcraze, could be used. For these tests, the TWR-method was chosen because it offered
a reliable and quick solution. Another consideration should be that although theoretically
ranges of up to 100 meters should be achievable with the DWM1000, but due to regulation the
power output of the sensors is limited, which significantly reduces the maximum obtainable
range.
To gain insight in the statistical characteristics of the UWB-method, measurements were
performed. These measurements aim to create a complete measurement-model that can later
be used in our estimators. Subsection 2-2-1 shows how the sensors are calibrated and shows
the statistical properties that follow after the calibration. In Subsection 2-2-2, the distance
bias characteristics based on relative orientation will be compared to results found in literature
and the spatially-varying bias will be analysed and mapped.

2-2-1 Sensor Calibration

The TWR implementation on the Crazyflie considers one calibration parameter, which is the
antenna delay ∆tantenna [s] which can be seen in Figure 2-3.

Δ�antenna

�f

Figure 2-3: The antenna delay can be seen as the time it takes for a signal to be created by the
processor and sent to the antenna.

This delay represents the time it takes from when the processor sends a signal to the antenna,
until the antenna creates the EM-pulse that is tranmitted. In the TWR implementation, this
antenna delay is included in the calculated TOF t̂f, but as can be seen in Figure 2-3, the real
tf does not include this delay.
The Crazyflie code uses the assumption that the antenna delay of all different nodes is equal,
and so it can be estimated by using only 1 Loco Positioning Node and the Loco Positioning
Deck on the Crazyflie. Since we will be flying the quadrotor mainly in the center of a cube
spanned by sides of around 10m, the sensors will be calibrated at around

√
2(1

210) ≈ 7m which
is the distance from one of the corners to the center of the cube. This way we guarantee that
the sensors are as accurate as possible at the most visited locations.
By gathering data at the specified range, the antenna delay can now be estimated by defining
the antenna delay as

∆tantenna ≈
ēdist
2c (2-7)
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12 Ultra Wideband (UWB)

Where ēdist [m] is the mean measured error of the distance between node and tag over a
certain time-window and c [m/s] is the speed of light. The results of these measurements are
depicted in Table 2-1.

anchor 1 anchor 2 anchor 3 anchor 4
ēdist 154.52m 154.71m 154.72m 154.78m

Table 2-1: Distance error and antenna delay

The average value of all four beacons is used in the Crazyflie code to compensate for this
antenna delay. This is done by adjusting the ANTENNA_OFFSET parameter in the locodeck.c
file in the Crazyflie firmware. It should be noted that this delay is different for all four anchors
and therefor small constant errors are introduced for certain anchors.

With the calibrated sensor, the noise characteristics can be determined. Especially the stan-
dard deviation of the range measurements is important in the design of estimators. The noise
will be modeled as a zero-mean normal distribution, so after calibrating the antenna delay
this is straightforward by taking a large sample of stationary data at the calibration distance
and fitting a normal distribution to it. This can be done using the same datasets as were
used for Table 2-1, and subtracting the average and calculating the standard deviation of the
resulting data. The resulting standard deviation was found to be σUWB = 0.0225m, which
is comparable to the standard deviation calculated in [27]. In this research the standard
deviation was calculated to be 0.025m.

2-2-2 Bias

As stated above, the error of a UWB measurement is usually assumed to be zero-mean white
Gaussian noise [14]. This assumption is experimentally found to be incorrect since there are
obvious biases in the measurements related to the relative pose and location of the receiver
of up to 0.3 m [27].

The bias characteristics will be determined for the same setup that is in scope of this research.
Therefor, four Loco Positioning Nodes will be placed on the corners of the Cyberzoo, which
is a (10m × 10m × 10m) area dedicated to robotic research in the Aerospace Department at
the Delft University of Technology (TU Delft). These nodes come with open-source software
to control the DWM1000 module that is attached to it.

Bias based on relative orientation

The relative angle of the tag to the anchor is known to cause an offset on the distance
measurements [27]. This offset is supposed to be introduced by a non-isotropic radiation
pattern of the antennas. In [1], this offset was measured for a couple of relative angles, as can
be seen in Figure 2-4.

This shows that the antenna and the position of the sensor on the quadrotor heavily influences
the distance measurement.

To compensate for this, in the same research an error method was designed that uses a sparse
pseudo-input Gaussian process to predict the error and noise based on the relative location
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2-2 UWB Characteristics 13

Figure 2-4: Range measurement errors for specific relative azimuth angle αA and elevation angle
βA for different antenna pairs [1]

and pose to of the receiver was shown to be able to reduce the RMSE with almost 50%. This
was done with a Two Way Ranging (TWR) method however, but it can be assumed that with
one-way communication the same improvement can be obtained.

Although the same Partron antenna is used here as in our research, it is clear that the error
even varies from antenna to antenna. It is important to know this noise is present in our
own setup as well and therefor the ranging error for a changing relative orientation will be
measured at the nominal operating distance (≈ 7m). This will be done in the same orientation
that will be used in the real tests, with the tag mounted horizontally beneath the Crazyflie
and the anchor positioned vertically. The results, as can be seen in Figure 2-5, show that also
in our setup large errors are caused by the relative orientation.

Even small angles can cause a significant offset so this will influence the estimator results.

Spatially-varying bias

Besides the bias caused by relative orientation, also a spatially varying bias can be observed.
This bias is caused by how the room and the sensors are situated. Multiple causes for this effect
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14 Ultra Wideband (UWB)

Figure 2-5: Range measurement errors for the test setup at 7 meters distance

can be given, such as the location of the anchor in the room that could cause multipathing
or other electronic devices that interfere with the signals. As is researched in Hoeller et al.
[15], this spatially varying bias is constant and considering that the same space is used for
further experiments, can be mapped accordingly. In Hoeller et al. [15], the spatially-varying
bias is taken into account by dividing the research area (3m × 3m × 3m) in a grid of cubes
with a span of 0.2m. By combining the UWB-system with an on-board camera, the bias can
be learned while in flight and be used for subsequent flights when the on-board camera is not
available (due to technical failure or under ambient light conditions). Since in our research
the research area is much larger and an on-board camera is not considered, other ways of
dealing with the bias need to be addressed.

The bias will be estimated by using the OptiTrack-system in the Cyberzoo as ground-truth
while the range measurements will be stored on an SD-card that is mounted on the Crazyflie.
The location of the anchors is measured in a right-handed frame and are defined as follows:

pnode 1 pnode 2 pnode 3 pnode 4
x -4.72 -4.82 4.90 4.80
y -4.54 5.00 5.03 -4.61
z 2.67 1.66 0.97 0.28

Table 2-2: Anchor positions

As can be seen in Table 2-2, the difference in x and y is much larger than in z. This has its
consequences for the variance of estimators in the z direction.

The data is gathered by flying through the entire Cyberzoo with a fixed yaw and approximate
z-height of 2 meters for 50 seconds. The ground truth for the range measurement at time k
d̂opti, k is calculated by transforming the OptiTrack measurements to range measurements for
a specific anchor as follows:

d̂opti, k = ‖popti, k − pnode i‖2 (2-8)

Where popti, k is the (x, y, z) OptiTrack measurement at time k. The measurement error ei, k

S. Stroobants Master of Science Thesis



2-2 UWB Characteristics 15

(a) OptiTrack data of an example trajectory for bias
estimation. UWB Anchors shown with red crosses

(b) UWB range measurements versus converted
OptiTrack measurements

Figure 2-6: Ultra Wideband (UWB) bias test data visualized

can now be calculated by subtracting the ground truth from the distance measurements at
node i.
In Figure 2-6a one of the flight trajectories is shown. In Figure 2-6b the range measurements
for anchor 2 for this dataset can be seen compared to the ground-truth OptiTrack data
In Figure 2-7 the error ei, k is shown. In this figure it is clear that the error is not zero-mean
and a further analysis is necessary.

Figure 2-7: Error between UWB measurements and OptiTrack ground-truth

As was mentioned in [15], a part of the bias is spatially varying. To analyse this, the error ei
is binned over the (x, y)-plane into squares of 0.5m. In Figure 2-8, the average measurement
error of each of the bins is shown in a heatmap
From this figure it is visible that for example for anchor 2, the bias is especially large close
to the anchor and decreases with a larger distance. This suggests that a simple model can be
used to reduce the influence of the bias.
The model that is suggested is a plane, based on the (x, y)-location of the quadrotor. This
model is fitted by the following minimization:
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16 Ultra Wideband (UWB)

Figure 2-8: Average measurement error in (0.5m× 0.5m) bins for each of the four anchors. The
position of the anchor is depicted with a red cross.

min
a,b,c

N∑
i=1

N∑
j=1

(bi,j − (axi + byj + c))2 (2-9)

Where (xi, yj) is the (x, y) value in the middle of bin (i, j) and bi,j is the mean bias value at
bin (i, j) and N is the number of bins in one direction. This minimization can be described
as a linear-least squares problem minAx− b = 0 with A and b as:

A =



x1 y1 1
x1 y2 1
...

...
...

x1 yN 1
x2 y1 1
x2 y2 1
...

...
...

xN yN−1 1
xN yN 1


, b =



b1,1
b1,2
...

b1,N
b2,1
b2,2
...

bN,N−1
bN,N


(2-10)
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2-2 UWB Characteristics 17

And the solution can be found as (a, b, c) = (ATA)−1ATb. This plane can be used to correct
the distance measurements based on an estimated position in an estimator.

This plane will be fitted on training data and subsequently tested on validation data. In
Figure 2-9, the results of this compensation on the validation data can be seen. Especially
the areas close to beacons 1 and 2 have a much smaller average bias.

Figure 2-9: Average measurement error in (0.5m× 0.5m) bins for each of the four anchors after
compensation. The position of the anchor is depicted with a red cross.

In order to make a comparison between the situation before and after compensation, the
Frobenius norm and the standard deviation are used as a metric. The Frobenius norm of a
matrix A is defined as:

‖A‖F =

√√√√ N∑
i=1

N∑
j=1

a2
i,j (2-11)

In Table 2-3 the calculated parameters for our system with the test data can be seen.

In Table 2-4 the Frobenius norm and the standard deviation of the binned validation datasets
are shown before and after compensation. As was expected from Figure 2-8, especially Anchor
1 and Anchor 2 show a large improvement of 55% and 65% respectively in the Frobenius norm
and 25% and 47% respectively in the standard deviation. It is important to add that both
anchors that benefit most from the compensation have a high c value, which is independent
of the x and y position. This means that the bias compensation also accounts partly for small

Master of Science Thesis S. Stroobants



18 Ultra Wideband (UWB)

Anchor 0 Anchor 1 Anchor 2 Anchor 3
a 0.0300 -0.0321 -0.0592 -0.0275
b -0.0331 0.0301 -0.0345 -0.0211
c 0.0546 -0.2247 -0.2309 -0.0491

Table 2-3: (a, b, c) parameters for all four anchors in our setup

calibration errors, which is beneficial in the Locodeck system since all anchors are calibrated
at once.

Anchor 0 Anchor 1 Anchor 2 Anchor 3
‖A‖F before 2.928 4.146 4.739 2.690
‖A‖F after 2.043 1.883 1.672 2.058
σ before 0.182 0.163 0.202 0.164
σ after 0.131 0.121 0.107 0.132

Table 2-4: Frobenius norm and standard deviation before and after compensation

Currently this bias compensation method requires data to be acquired and compared to
ground-truth OptiTrack data. The optimization problem itself could be implemented on the
Crazyflie. It should also be noted that the estimated parameters will vary when the setup of
the UWB-beacons changes.

2-3 Concluding Remarks

In this chapter, Ultra Wideband (UWB) is shown to be a promising technology that can be
used to obtain range measurements in an indoors environment. In order to design an esti-
mation method, it is important to know what kind of noise the measurements are dealing
with. It is well known from literature that UWB-measurements are biased and to investigate
the cause and size of these biases some properties of the system are discussed. This includes
the influence of the difference in frequency of the crystal oscillators in the micro-processors.
Besides this, biases are introduced by the non-isotropic radiation pattern formed by the an-
tennae. This theoretical knowledge was applied to the Loco Positioning System from Bitcraze
and the system was calibrated and tested. Besides, a simple model was designed to reduce
spatially-varying bias. This model was verified on validation data and was shown to reduce
the measurement error with up to 65%.

With a thorough analysis of the UWB-system, it is possible to include these measurements
in an estimator for the research platform that is the subject of this thesis, the quadrotor.
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Chapter 3

Quadrotors

In order to design an estimation method, extensive knowledge of the estimators subject is
necessary. This chapter will discuss the dynamics of a quadrotor, as highlighted in Figure
3-1. In this chapter, the dynamic model of a quadrotor will be investigated in Section 3-1.
Models for the different sensors that are used on the quadrotor are explained in Section 3-2.
In Section 3-3, all this knowledge will be combined to create a simulation environment, that
allows the creation and adaptation of test-data quickly.

Controller Dynamics

Estimator

��

�̂ 

ref

Figure 3-1: Quadrotor control loop block diagram

3-1 Dynamic Model

This section will discuss the dynamic modeling of a quadrotor. A short derivation of the
commonly used equations of motions will be presented and the specific design choices will be
discussed. We will be looking into models that will have the following state-space form:

ẋ(t) = A(x)x(t) +B(x)u(t) (3-1)
y(t) = C(x)x(t) (3-2)
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20 Quadrotors

Where x(t) ∈ Rnx are the states of the system with nx the number of states, u(t) ∈ Rnu is
the input signal that is sent to the system with nu the number of inputs and y(t) ∈ Rny are
the measurements with ny the number of measurements. A(x) ∈ Rnx×nx , B(x) ∈ Rnx×nu and
C(x) ∈ Rny×nx are the state-space matrices.

The model that will be discussed are rigid-body dynamics based on Tait-Bryan angles. Al-
though this representation is easily interpretable, the trigonometric terms may lead to sin-
gularities. To overcome the risk of reaching a singularity, multiple solutions are discussed in
literature. The first one is by using the Multiplicative Extended Kalman Filter (MEKF) that
will be discussed in section 3-4-2. Another method is implementing a model based on quater-
nion dynamics. By using quaternions, rotations can be described without using trigonometric
terms and without risking singularities. After deriving the model based on Tait-Bryan angles,
an extension to this model with quaternions will be discussed to remove the singularities.

3-1-1 Rigid-body dynamics based on Tait-Bryan angles

Rigid-body dynamics based on Euler rotations are used very often in literature. Although
various forms are used, the ZXY [34] and ZYX [35, 4] notation are most common. The only
difference between either notation is the form of the rotation matrix, and for sake of brevity,
only the ZXY notation will be shown. In this thesis, vectors will be presented in bold and
their dimension will be presented as well. Derivatives will be presented with the dot-notation
(ẋ) and estimates will be presented with the hat-notation (x̂). The (x, y, z)-location of center
of mass of the quadrotor in a global Cartesian frame will be denoted as p [m], Ψ [rad] the
extrinsic ZYX Tait-Bryan angles (ψ, φ, θ), ω [rad/s] are the angular velocities of the quadrotor
in the global frame and θ̇i [rad/s] is the angular velocity of rotor i.

p =

xy
z

 , Ψ =

ψφ
θ

 , ω =

ω1
ω2
ω3

 , Θ =


θ̇1
θ̇2
θ̇3
θ̇4

 (3-3)

Two right-handed reference frames will be used to describe the dynamics, one for the body-
fixed frame B and one for the inertial-frame G. These frames can be seen in figure 3-2. It can
be seen that the so-called ’X’-configuration is used as opposed to the ’+’-configuration. In
this configuration, the forward facing x-axis is not chosen to be parallel with the arms of the
quadrotor. Two reasons for this decision in literature are that more rotational acceleration
can be obtained around the principle axes of rotation, and a camera can easily be added to
the ’X’-configuration, while in the ’+’-configuration, the arms and motors would obstruct
vision.

Each frame is represented by a set of vectors (x,y, z) with a subscript describing to which
frame it belongs. The frames are related by the rotation matrix R, which transforms a vector
in B to G. This rotation matrix is obtained by using the ZXY Tait-Bryan angles. This is
equal to a rotation of ψ around zG , then φ around the x-axis of the newly obtained frame
and finally θ around the new y-axis. These rotations can be seen in Figure 3-3. This results
in the following rotation matrix [34]:
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3-1 Dynamic Model 21

Figure 3-2: quadrotor frames G and B

R =

cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ
cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ

 (3-4)

Where c and s are the cosine and sine functions.

Figure 3-3: Tait-bryan angles visualized

Although the frame might deform due to the thrust generated by the rotors, the quadrotor is
modeled as a single rigid-body with the thrust of the rotors pointing in the upper z-direction
of the body-fixed frame B.

The rigid-body equations of motion can now easily be derived as [34]

mp̈ = mg +R(fezB + fa) (3-5)
Ṙ = R[ω]× (3-6)
Iω̇ = −ω × Iω + τ (3-7)
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Where the mass of the quadrotor is denoted with m [kg], the thrust force with f [N], ezB

is the unity vector pointing in the z-axis of frame B, I [kg · m2] is the inertia matrix, [ω]×
is the skew-symmetric matrix containing the angular velocity of the quadrotor such that
[ω]×ν = ω × ν where × is the vector cross product and ν ∈ R3.

[ω]× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (3-8)

The vector τ = [τ1, τ2, τ3]T is the moment applied to the quadrotor by the rotors. Considering
the frame in Figure 3-2, this moment can be calculated as follows [36]

τ1
τ2
τ3

 =

−dcT/
√

2 −dcT/
√

2 dcT/
√

2 dcT/
√

2
−dcT/

√
2 dcT/

√
2 dcT/

√
2 −dcT/

√
2

−cQ cQ −cQ cQ



θ̇1
θ̇2
θ̇3
θ̇4

 (3-9)

where cQ is a lumped torque coefficient that can be determined by static thrust tests.

The thrust force f can be calculated when the angular velocity θ̇i of the rotors is known. In
this case, it can be calculated as the sum of individual forces for every rotor.

fi = CTρArir
2
i θ̇

2
i (3-10)

Where CT is called the thrust coefficient, which is dependent on the shape of the rotor, ρ
is the density of air, Ari is the rotor disk area and ri is the radius of the rotor. These
four parameters can be lumped into a single positive parameter cT to result in the following
equation:

fi = cTθ̇
2
i (3-11)

This parameter cT can be determined by performing static thrust tests. The total thrust f
generated by the rotors on the system can now be described by

f = cT

4∑
i=1

θ̇2
i (3-12)

Assuming that every rotor has the same parameter cT.

The remaining aerodynamic effects are captured in the parameters fa in Equation 3-5. A
linear model for these effects will be presented as is discussed in [14]. The aerodynamic force
is assumed to be a linear combination of two proportionality constants and the product of the
airspeed and propeller speeds. The k⊥ constant is the constant for the force in the plane of
the quadrotor and k‖ is the constant that is proportional in the direction of the thrust (zA).
The total aerodynamic force can be calculated as

fa = Kaeroθ̇ΣR
−1ṗ (3-13)
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where

Kaero =

k⊥ 0 0
0 k⊥ 0
0 0 k‖

 , θΣ =
4∑
i=1
|θ̇i| (3-14)

Using this notation, it is assumed that the relative airspeed of the quadrotor equals the
quadrotors speed relative to frame A which is a valid assumption as long as the quadrotor is
flown indoors.

3-1-2 Rigid-body dynamics based on quaternions

In order to remove singularities from the model and to decrease the computational complexity
of the model, models based on quaternions is suggested in [4, 37, 29, 38]. A quaternion can
be described as

q = a+ bi+ cj + dk ∈ H (3-15)

where a, b, c, d ∈ R, and i, j, k are imaginary units. By using this notation, a non-commutative
multiplication with inverses is possible, which is essential for rotations. Some useful algebraic
identities are given as

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j (3-16)

By using Euler’s identity a compact vector notation with a real and imaginary part can be
obtained. A quaternion vector q is defined as [29]

q =


q1
q2
q3
q4

 =


cos (α/2)

eqx sin (αq/2)
eqy sin (αq/2)
eqz sin (αq/2)

 =
[
qw
qv

]
(3-17)

where eq = [eqx , eqy , eqz ]T is the principal rotation axis and αq is the quaternion rotation
angle. It can be seen that the real part of the quaternion is qw ∈ R and the imaginary part is
qv ∈ R. Because a four-dimensional vector is used to describe three-dimensions, a constraint
is added to ensure that the components are not independent. This constraint is given as
qTq = 1. In this research, the quaternion vector is defined such that the orientation of the
body-fixed frame A relative to the reference coordinate system is described by this vector.
The same rotation that was previously described by xB = RxA can now be described by[

0
xB

]
= q ⊗

[
0
xA

]
⊗ q∗ (3-18)

where q∗ is the complex-conjugate and q⊗q′ is quaternion multiplication and can be seen as
the combined rotation of two quaternions q and q′. Quaternion multiplication is defined as

p⊗ q =
[

pwqw − pTv qv
pwqv + qwpv + pv × qv

]
(3-19)
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It can now be shown that Im(q ⊗
[

0
xA

]
⊗ q∗) = xB.

The quaternion time-derivative can be found in terms of the angular velocity ω to be [4]

q̇ = 1
2q ⊗

[
0
ω

]
(3-20)

Combining all these equalities and by assuming that k‖ = k⊥ [4], Equations 3-5, 3-6 and 3-7
can be rewritten as

mp̈ = mg + Im(q ⊗
[

0
fezB

]
⊗ q∗) +KaeroθΣṗ (3-21)

q̇ = 1
2q ⊗

[
0
ω

]
(3-22)

Iω̇ = −ω × Iω + τ (3-23)

3-1-3 Discretization

In order to use the dynamic model on an on-board controller, a discrete-time system has to
be derived. In this case it is assumed that the controller input follows a zero-order hold, i.e.
ut = utk ∀t ∈ [tk, tk + ∆t]. Now by integrating over the sample-time, we can obtain the
following discrete-time state-space equation

x(k + 1) = Φx(k) + Γu(k) (3-24)
y(k) = Cx(k) (3-25)

where the matrices Φ and Γ can be defined as [39]

Φ = eAh, Γ =
∫ h

0
eτAdτB (3-26)

With A and B the state-space matrices as defined in Equation 3-1.
When using this discrete-time state-space in a real-time application, calculation of the matrix
exponential eτA is computationally costly. In this case, simplifications might be necessary.
The matrix exponential is defined by [40]

eτA = I + τ

1!A+ τ2

2!A
2 + . . . (3-27)

From this definition, it can be seen that for a small enough sampling time τ , the matrix
exponential can be approximated by

eτA = I + τA+O(τ2) (3-28)
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3-2 Sensor Models

To estimate the dynamics described in the sections above, measurements are necessary to
gather data on the states. The sensors that will be used in the thesis are the angular rate
gyroscope, the accelerometer and the UWB distance measurements. For each of these sensors,
a model will be described below that can be used to estimate states in the dynamical models
given above.

3-2-1 Angular rate gyroscope

A gyroscope measures the angular velocity of the quadrotor body-fixed frame B relative to
A. Multiple models with varying complexity exist and will be shown. A simple model is by
assuming that there are no scale errors or gyro biases in the system [14]. This measurement
is modeled as

ωgyro = ω + ηgyro (3-29)

where ηgyro is the gyro measurement noise and is assumed to be zero-mean white noise.

When the sensor is well calibrated and does not suffer from severe time-varying gyro bias, this
model suits most applications. Another model is suggested in [34], where this time-varying
gyro bias is also added

ωgyro = ω + ηgyro + bgyro (3-30)

The gyro bias bgyro can be a constant or slowly varying value. If this bias is not constant, it
can be described by [37]

ḃgyro = ηgdrift (3-31)

where ηgdrift is the gyro bias drift noise and is also assumed to be a zero-mean white-noise
process.

In practice it might sometimes not be needed to estimate the noise since in some high-end
gyroscopes the measurement noise and bias is negligible and therefore the measurement can
be directly used as an estimate of the quadrotors angular velocity

ω̂ = ωgyro (3-32)

3-2-2 Accelerometer

A gyroscope measures the instantaneous linear acceleration of the quadrotor body-fixed frame
B. A common model for an accelerometer measurement is given as [34, 14]

p̈acc = RT (p̈− g) + ηacc + bacc (3-33)
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26 Quadrotors

where ηacc is the accelerometer measurement noise, assumed to be a zero-mean white-noise
process, and bacc is the accelerometer bias. The largest part of disturbances on the accelerom-
eter measurements are due to vibrations of the sensor. To counter these, significant low-pass
filter are to be applied either mechanically or electrically. The bias in accelerometers, in
contrast to gyroscopes, is mostly a constant, and can therefore be estimated by averaging the
output of the sensor while the quadrotor is not moving yet. This bias is assumed constant
and is then subtracted from the output in-flight, thus removing the bias.

In [14], the acceleration p̈ is substituted by equation 3-5 to obtain the following equation

p̈acc = 1
m

(fezB + fa) + ηacc + bacc (3-34)

By using this notation, the measurement ẍacc can be used to obtain information on the
aerodynamic force fa if the rotor-speed is known. This can be exploited in the design of an
estimator.

3-2-3 Ultra Wideband (UWB) range measurements

By using methods described in Chapter 2, a measurement of the distance duwb, i between
beacon i and the quadrotor can be obtained. These measurements can be described as

duwb, i = ‖puwb,i − x‖+ ηuwb + buwb (3-35)

where ηuwb is the UWB distance measurement noise and buwb is the UWB measurement
bias (see Section 2-2-2 for an in-depth analysis of this bias). By using 4 or more of these
measurements, an estimate of the quadrotors location x can be made.

3-3 Simulation Environment Design

To make a reliable comparison between state estimators, it is important to have a simulation
environment in which data can be quickly generated based on different scenarios. With
the dynamic equations of the quadrotor and the sensor descriptions in Section 3-1, such an
environment has been created in Simulink based on a model designed in [4], where all twelve
states (position, velocity, attitude and angular velocity) are simulated based on a reference.

The outer loop in Simulink is defined as can be seen in Figure 3-4.

Controller Dynamics

�

�

ref

�

Figure 3-4: Outer simulation loop
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3-3 Simulation Environment Design 27

In this Figure, ref is the reference signal that is sent to the quadrotor, this consists of a
reference for each of the twelve states. ω are the rotor speeds of the quadrotor, x are the real
states of the quadrotor and y are the measurements that are available for an estimator.

3-3-1 Controller

PID
PD

ref

 to  [�  �]�
�

[�  �]�

refPID

�

ref

Figure 3-5: Simulation control scheme

The Controller block in Figure 3-4 is the controller, which calculates the desired rotor speeds
ω for the given reference. A basic scheme of how this is done is shown in Figure 3-5. As can
be seen in Figure 3-4, this simulator assumes that the controller has access to the real states
of the system.

Two types of control can be used here, of which the first is by simulating manual control. In
this case, only four reference signals are considered: thrust, yaw, pitch and roll. This is equal
to when an operator would be controlling the quadrotor with manually. These references are
fed to a simple PD-type controller that calculates the necessary thrust T and torques τ to
obtain these references from the current state. Using a mapping from torque to rotor speeds
(see Section 3-4-1) and bounding the signal by the lower and upper limits, this is translated
to rotor speeds ω.

The second type is by simulating position reference tracking, in which the quadrotor only
receives a position as a reference. This position is used in a PID-type controller to calculate
the desired pitch and roll angles. These desired attitudes are then bounded to ensure stability
of the quadrotor. Using the desired pitch and roll angles in the same PD-type controller as
for the manual case, the rotor speeds can be calculated in the same way.

3-3-2 Process

In the simulation of the quadrotor, first the input rotor speed ω is mapped to thrust and
torques by the mappings described in Section 3-4-1. Together with the previously calculated
states and the model parameters (as discussed in Section 3-4), these inputs are used in the
continuous-time rigid-body model based on quaternions, described by Equations (3-21, 3-22,
3-23), to calculate the next time-step state.

These states are used to simulate the measurements, as they are produced on a normal
quadrotor. These were all based on the sensor models as described in Section 3-2 these
measurements are gathered in a single vector that can be used by an estimator to estimate
the quadrotors state, as it would in a real experiment. The following measurements are
implemented:
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Gyroscope

The angular rate gyroscope is a biased measurement of the angular velocity, but this bias
is normally estimated during calibration at the start-up of the quadrotor, after which the
gyroscope measurements is as described in Equation 3-29. Since this angular velocity is
included in the states of the quadrotor, the zero-mean white Gaussian noise can simply be
added to this state to obtain the gyroscope measurement. The size of this gyroscope noise
ηgyro is taken to be [0.0083∆t, 0.0083∆t, 0.0543∆t], as was used in [41].

Accelerometer

By including the inertial-frame acceleration and rotation matrix from the dynamic equations,
it is straightforward to calculate the accelerometer output with Equation 3-33 by adding the
gravitation to the z-component and rotating the result. The zero-mean white Gaussian noise
is then added to obtain the accelerometer measurements as they would be on the Crazyflie.
The size of this accelerometer noise ηacc is taken to be [4.873∆t, 4.873∆t, 0.453∆t], as was
used in [41].

UWB range measurement

The anchor-positions that will be used in the real experiments can be used here to generate
the Ultra Wideband (UWB)-measurements. A measurement is calculated by using Equation
3-35. The bias that is used can be for instance a random time-varying bias or, supported
by the results of Section 2-2-2, a bias that depends on the (x, y)-location of the quadrotor.
Since UWB-measurements may suffer from serious outliers in the range of meters, outliers
can be added to the range measurements. These outliers are created by using a by using
a random number generator with a variance of σ2

outliers = 1 and adding these values to the
range measurements if the absolute value is greater than a specific threshold. This threshold
can be chosen such that the probability of an outlier is a certain percentage by choosing the
appropriate values from the standard normal distribution. The size of the UWB noise ηuwb
is taken to be 0.025, which was estimated by gathering range measurements at a constant
distant and analyzing the statistical properties and compared to the results of [14]. The
sample-rate of the UWB system is a lot lower than the accelerometer and gyroscope, so this
is set to 25Hz, which was estimated from real data.

Attitude and Heading Reference System (AHRS) measurement

Both complementary filters that are described in 3-4-3 can be used as an input to the sys-
tem, and it is necessary to simulate these measurements as well. The AHRS-measurements
produce biased attitude estimations because of the accelerometer bias. This bias (φb, θb) can
be modeled as a function of the yaw angle ψ of the quadrotor [5]

[
φb
θb

]
=
[

cosψ sinψ
− sinψ cosψ

]
bacc (3-36)
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3-4 Quadrotor Used in This Research 29

Where bacc is the accelerometer bias in degrees in the body-fixed frame. From literature, this
bias in real-world experience is less than 3◦ [5]. In the simulation environment this is set to
bacc = [2◦ − 1◦]T . The AHRS-measurement can now be described as:

[
φ̃k
θ̃k

]
=
[
φk
θk

]
+
[

cosψ sinψ
− sinψ cosψ

]
bacc +

[
εφ
εθ

]
(3-37)

Where [εφ εθ]T is the detection noise.

3-3-3 Conclusion

The simulation environment depicted above can be used to quickly generate flight data. Since
in this simulation, the size of all errors can be easily adjusted, all the statistical properties
are exactly known. This supports a comparison between different estimators.

Also, instead of feeding x in Figure 3-4 to the input of the controller, the state estimate of a
filter might be used here to simulate a real experiment even more. This might be especially
useful in comparing the reference tracking performance of different estimators.

3-4 Quadrotor Used in This Research

This section provides the user with information on the quadrotor that is used in our research.
Section 3-4-1 will discuss the specifications of the Crazyflie 2.0 UAV. This includes the
technical specifications, mappings from input to output and model parameters. Section 3-
4-2 discusses the Extended Kalman Filter (EKF) that is implemented on the Crazyflie 2.0
and will be used as a benchmark estimator in our research. Section 3-4-3 investigates both
complementary filters that are available on the Crazyflie 2.0.

Figure 3-6: Crazyflie 2.0 by Bitcraze
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30 Quadrotors

3-4-1 Crazyflie Specifications

The Crazyflie 2.0 is an open-source project designed by Bitcraze with the aim to provide
an affordable flying development platform. Because of its small size and low weight, it is
accessible in indoors robotics research for a great variety of research groups. This chapter
will present the specifications of the UAV but also mappings from input to output and model
parameters that are necessary for implementation. Subsection 3-4-1 discusses all the technical
specifications of the Crazyflie 2.0 and discusses the implications that arise by using these.
Section 3-4-1 discusses the mappings from the input PWM to the rotor speed and thrust, so
that they can be used in the dynamic models described in Chapter 3. Section 3-4-1 discusses
the inertia matrix and the drag coefficients of the Crazyflie 2.0. For sake of brevity, the
version number 2.0 will be omitted in the continuation of this text.

Technical specifications

The Crazyflie is the second quadrotor that is designed by Bitcraze. It is equipped with four
core-less DC motors with the following specifications:

• diameter: 7mm

• length: 16mm

• weight: 2.7g

• Kv: 14000rpm

• Rated voltage: 4.2V

• Rated current: 1000mA

The propellers that come with the kit have a diameter of 45mm.

The Crazyflie has a diagonal distance between motors of 92mm and the total weight of the
quadrotor ads up to 27g. The battery is a 1 Cell (3.7V) 240 mAh LiPo battery that weighs
7.1g. As stated by Bitcraze, this should allow for 7 minutes of continuous flight [42].

Two micro-processors are used by the quadrotor; one for power energy and radio commu-
nication and one for the control-loop. The micro-controller that is used for all on-board
calculations is the ARM 32-bit STM32F405 Cortex-M4 (with floating point unit) that runs
at 168MHz with 192kb of SRAM.

The Crazyflie can be controlled either over Bluetooth Low Energy (BLE) or over the 2.4GHz
Crazyradio PA.

The on-board IMU is the MPU-9250, a 9-DOF IMU with a gyroscope, accelerometer, mag-
netometer and a LPS25H high precision pressure sensor (barometer).
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3-4 Quadrotor Used in This Research 31

Mappings from input to output

The models that were shown in the previous chapter are based on the assumption that the
rotor speed is known. Since the Crazyflie uses core-less motors, this is not a valid assumption.
In literature, mappings from input to rotor speed and from input to thrust have been created
in order to overcome this problem. A linear relation between PWM and rotor speed was found
in [2] and a quadratic relation between PWM and thrust is shown by Bitcraze [3]. First, the
mapping to rotor speed will be discussed and after that the mapping to thrust.

Mapping from Pulse Width Modulation (PWM) to rotor speed To estimate this mapping,
a experiment was set up in [2]. By placing reflective tape on the bottom of the propellers
and combining this with a tachometer, the Rounds Per Minute (RPM) can be measured. The
motor drivers that the Crazyflie uses, allow a 16-bit integer as input, which means that a
signal of 0 results in no motor activity and a value of 65535 results in full throttle. In the
experiment, increasing values in this interval were sent to the Crazyflie and a linear fit was
applied to the resulting values. From these tests, the following linear transfer function could
be found

θi = 0.04076521 PWMi + 380.8359 (3-38)

with the value PWMi being the input value sent to motor i. A note to this transfer function
is that the real motor response in the interval [0, 1000] is not linear and should therefor not
be used here. In [2] it is advised to assume that the rotor speed is zero in this interval.

Mapping from Pulse Width Modulation (PWM) to thrust This is another interesting
mapping, since parameter cT in Equation 3-11 has to be determined and a direct mapping
from PWM to thrust might result in a more accurate estimation. Since a linear model is
assumed for θi(PWMi), a quadratic model in the form of y = ax2 + bx + c has to be fitted
through the data. In literature [2, 3, 4] this is done by placing the Crazyflie on a scale and
calculating the thrust that is generated at a certain PWM by looking at the decrease in
weight.

In [3], an 8-bit PWM signal was send to all four motors and the resulting data was used to
fit a second order model for the thrust. This model is as follows

ftotal [g] = 0.409 · 10−3 PWM2
i + 140.5 · 10−3 PWMi − 0.099 (3-39)

where ftotal is defined in grams. In [2], a 16-bit PWM signal was send, instead of an 8-bit
signal and only two motors were considered at a time. The resulting thrust was divided by
2 to get the thrust per motor. Again, a second order model was fitted and the resulting
equation is as follows

fi [N] = 2.130295 · 10−11 PWM2
i + 1.032633 · 10−6 PWMi + 5.48456 · 10−4 (3-40)
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where fi is now defined in Newtons. In [4], the last term in the model was defined to be 0. If
the value PWMi = 0, the total thrust should also be zero. The fitted model in this reference
was

ftotal = 0.26d2
PWM + 0.35dPWM (3-41)

where f is defined in Newtons and dPWM [0,1] is the PWM duty cycle.

To make a comparison between these fitted models, the all models were rewritten in the same
units as the second model. All resulting models are shown in Figure 3-7.

Figure 3-7: Pulse Width Modulation (PWM) to thrust mapping for a single motor [2, 3, 4]

It can be seen that although all models resemble each other, there are some slight deviations
for higher PWM values and from 15000-35000 as well with the model from [3]. This shows
that an investigation has to be done on the necessary accuracy of this mapping for our own
applications and maybe perform experiments ourselves as well. Otherwise, one of these models
could be used.

Model parameters

In this section, necessary model parameters are presented. In Subsection 3-4-1 the inertia
matrix and in Subsection 3-4-1 the drag coefficients are shown as found in literature.

Inertia matrix The non-linear model of the moving quadrotor in Equation 3-5 depends on
the inertia matrix I. The inertia matrix can be estimated by performing experiments that
involve rotations around certain axes. In [2] such experiments were executed and the resulting
inertia matrix is shown below

I =

16.571710 0.830806 0.718277
0.830806 16.655602 1.800197
0.718277 1.800197 29.261652

 (3-42)
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Drag coefficients The aerodynamic forces that act on the quadrotor were assumed to be
linear in the velocity in Equation 3-13. The drag coefficients Kaero have to be estimated from
experiments as well. In [14], the values were estimated by analyzing data from quadrotor
flights for a slightly larger quadrotor than the Crazyflie

k⊥ = −0.00011 Ns2rad−1m (3-43)
k‖ = −0.00023 Ns2rad−1m (3-44)

In [2], a more complex model was proposed with a full Kaero-matrix for the Crazyflie. The
values that were found by performing tests in a wind tunnel were as follows

Kaero =

−10.2506 −0.3177 −0.4332
−0.3177 −10.2506 −0.4332
−7.7050 −7.7050 −7.5530

 · 10−7 kg · rad−1 (3-45)

It has to be noted that the value −7.7050 is questionable, because of symmetry in the quadro-
tor. This value would mean that a translation in negative x-direction would result in a positive
drag in z-direction, while a translation in positive x-direction would result in the the same
drag but with the opposite sign [2]. Another drag model would be necessary to include this
properly.

3-4-2 Crazyflie Extended Kalman Filter (EKF)

When the Crazyflie recognizes the Flowdeck or the Loco Positioning Deck, the Extended
Kalman Filter (EKF) will be used for state estimation. This filter is based on work by
Mueller et al. [14]. In this Chapter, the derivation of the filter and the design choices will be
described.

Kalman Filter

The Kalman Filter is an algorithm that is used for sensor fusion and (optimal) state estimation
based on knowledge of the statistical noise that is present in both the measurements and the
model. It is an iterative method, that consists of two steps; the prediction step and the
correction step. Consider the following system

x(k + 1) = A(k)x(k) +B(k)u(k) + w(k) (3-46)
y(k) = C(k)x(k) + v(k) (3-47)

With Gaussian noise w(k) and v(k) with the following covariance properties

E

[
v(k)
w(k)

]
= 0 E

[ [
v(k)
w(k)

] [
v(k)
w(k)

]T ]
=
[
R(k) 0

0 Q(k)

]
(3-48)
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With R(k) and Q(k) positive definite. This assumes that the measurement and process noise
is uncorrelated, which might not be the case of a quadrotor but is a good first approximation.

The first step is predicting the next output x̂(k|k − 1) and state-error covariance P (k + 1|k),
based on the model and the state-error covariance matrix P (k − 1|k − 1).

P (k|k − 1) = A(k)P (k − 1|k − 1)AT (k) +Q(k) (3-49)
x̂(k|k − 1) = A(k)x̂(k − 1|k − 1) +B(k)u(k) (3-50)

In the correction-step that follows, measurements are added to improve the estimation. Now
the Kalman-gain (K(k)), the updated state-estimation and the updated covariance matrix
are calculated as follows

K(k) = P (k|k − 1)CT (k)
(
R(k) + C(k)P (k|k − 1)CT (k)

)−1
(3-51)

x̂(k|k) = x̂(k|k − 1) +K(k)
(
y(k)− C(k)x̂(k|k − 1)

)
(3-52)

P (k|k) =
(
I −K(k)C(k)

)
P (k|k − 1)

(
I −K(k)C(k)

)T
+K(k)R(k)KT (k) (3-53)

For proof that the solution is a minimum variance unbiased estimate, the reader is referred
to [43, p. 136-139].

Extended Kalman Filter (EKF)

The normal Kalman Filter can only be used in the case of a linear system. Since the dynamic
model of a quadrotor is highly nonlinear, an extension to this filter is used; the Extended
Kalman Filter (EKF). By taking the Jacobian of the non-linear state- and measurement-
equations, a model similar to the normal Kalman filter can be obtained and is solved in
exactly the same way. This method is commonly used in quadrotor research and its use can
be found in [14, 15, 27, 4].

The nonlinear system, in comparison to equation (3-46), can now be defined as:

x(k + 1) = f(x, u, w) (3-54)
y(k) = h(x, v) (3-55)

In this model, every update the matrices A(k), B(k), C(k), Q(k) and R(k) are replaced by
Jacobians:

A(k) = ∂f(x, u, w)
∂x

∣∣∣∣
x̂(k−1|k−1),u(k)

C(k) = ∂h(x, v)
∂x

∣∣∣∣
x̂(k|k−1)

(3-56)

Qnew(k) = W (k)Q(k)W (k)T Rnew(k) = V (k)R(k)V (k)T (3-57)

S. Stroobants Master of Science Thesis



3-4 Quadrotor Used in This Research 35

Where W (k) and V (k) are the following Jacobians

W (k) = ∂f(x, u, w)
∂w

∣∣∣∣
x̂(k−1|k−1),u(k)

V (k) = ∂h(x, v)
∂v

∣∣∣∣
x̂(k|k−1)

(3-58)

The full derivation of the EKF and a stability analysis can be found in [44].

In the EKF, the state distribution is approximated by Gaussian variables and than propa-
gated through a first order approximation (by using the Jacobians) of the nonlinear system.
Although the computational complexity is relatively low and accuracy high (especially in the
case with functions that have a well defined first-order derivative), the filter might diverge
from the real values or may result in poor performance when the model does not resemble
the real system adequately or the chosen initial values differ too much from the real initial
values.

Since in the case of quadrotors, the model that is used is a simplified version of reality,
convergence of the EKF is hard to prove. If the initial values are too far from the real values,
the estimation might never converge to the real values.

Implementation on the Crazyflie

In order to reduce the computational complexity of the filter, the filter would only consist of
the nine-dimensional stochastic state x:

x = (p,υ, δ) (3-59)

Where p is the position of the Crazyflie in the inertial-fixed frame A as described in Section 3-
1, υ = R−1ṗ is the velocity in the body-fixed frame B and δ is an attitude error representation,
that is used to update the reference rotation Rref. This will be further explained at the end
of this Subsection.

The prediction equations of the filter are derived from the equations of motions as defined in
Section 3-1 as follows:

˙̂p = R̂υ̂ (3-60)

˙̂υ = 1
m

(fezB + fa)− [ω̂]×υ −R−1gezA (3-61)
˙̂
δ = ω̂ (3-62)

One of the disadvantages of the Tait-Bryan angles that was discussed in Section 3-1 were
singularities for values of (ψ, φ, θ) where axis would align. In [14] this problem is solved
by using a Multiplicative Extended Kalman Filter (MEKF). In this filter, instead of using
the states (ψ, φ, θ), a reference orientation Rref is introduced combined with a vector δ to
represent the attitude error. Now the estimated rotation matrix from frame A to B is set as

R̂ = R̂ref(I + [δ̂]×) (3-63)
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This state can be updated by using the gyroscope data as follows

˙̂
δ = ω̂ + 1

2[δ̂]×ω̂ (3-64)

By using the accelerometer measurements and gyroscope measurements, the discrete-time
prediction can be obtained as follows:

p̂k = p̂k−1 +R
(
υk−1∆t+ a

(acc)
k ∆t2

2
)
− g∆t2

2 ezA (3-65)

υ̂k = υ̂k−1 − [ω(gyro)
k ]×υ̂k−1∆t− gR−1ezA∆t+ a

(acc)
k (3-66)

Matrix A and C in the covariance prediction and UWB measurement update steps are defined
as follows:

A =

I Rk∆t −Rk[υk]×∆t
0 I − [ωk]×∆t −g[R−1

k ezA ]×∆t
0 0 I + [−ωk∆t

2 ]× + [−ωk∆t
2 ]2×/2

 (3-67)

CUWB =
[
(p̂k − pUWB,j)/‖(p̂k − pUWB, j)‖ 01×6

]
(3-68)

Where pUWB, j is the position of UWB-beacon j in the inertial-fixed frame A.

After each Kalman filter iteration, Kref is updated with the attitude error and the attitude
error is reset to zero. This way, singularities will not be reached. For a more comprehensive
description of this method and the derivation of the bottom-right equation, the reader is
referred to [45].

3-4-3 Crazyflie Complementary Filter

If no position measurements are available, the Crazyflie defaults to a complementary filter.
These filters combine the gyroscope and accelerometer measurements to estimate the attitude
of the quadrotor. On the Crazyflie, two of these filters are implemented and they will both
be described in the following Sections. Both filters use quaternions to represent the attitude.
The quaternion form is commonly used in robotics for operations on SO(3) because it is not
susceptible to singularities, enables smooth interpolation of rotations and is computationally
efficient. An introduction to quaternions can be found in Subsection 3-1-2.

Mahony’s Complementary Filter

The default filter that is used, is a complementary filter designed by R.E. Mahony [46] in its
quaternion form. The dynamic equations of the attitude in quaternion representation can be
written as:

q̇ = 1
2q ⊗ p{Ω} (3-69)
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Where Ω is the angular velocity in the body-fixed frame {B} and p{x} = [0 x] is the pure
quaternion, that can be related to the quaternion velocity.

The gyroscope can be used to estimate the angular velocity distorted by a bias Ωgyro = Ω + b.
This bias is estimated by an integrator using the accelerometer data. The observer that is
proposed by Mahony is as follows:

˙̂q = 1
2 q̂ ⊗ p{Ω

(gyro) − b̂+ kP e} (3-70)
˙̂
b = −kIe (3-71)

Where kP and kI are the proportional and integral gain respectively and the prediction error
is calculated from the accelerometer measurements as follows:

e = v⊗ p{v(acc)} (3-72)

v = q̂∗p{

0
0
1

}q̂ (3-73)

v(acc) = a(acc)

‖a(acc)‖
(3-74)

Where v is the predicted gravitational vector in the body-fixed frame B as a pure quaternion
and vacc is the measured gravitational vector that is obtained by normalizing the accelerometer
measurement aacc. These equations are discretized and implemented on the quadrotor as
follows:

q̂k = q̂k−1 + (1
2 q̂k−1 ⊗ p{Ω(gyro) − b̂k + kP e})∆t (3-75)

b̂k = b̂k−1 − kIe∆t (3-76)

Since this complementary filter is locally exponentially stable, the estimate will not diverge in
contrast to dead reckoning methods that integrate the gyroscope measurements. A stability
proof for this filter can be found in [46].

Madgwick’s Complementary Filter

The second complementary filter that is implemented on the Crazyflie is designed by S.O.H.
Madgwick [47]. In this filter, the gyroscope and accelerometer data are both used to create
an estimate of the attitude quaternion and these are fused in the following way:

q̂k = γq̂
(acc)
k + (1− γ)q̂(gyro)k γ ∈ [0, 1] (3-77)

The attitude estimate based on the gyroscope data is using the same definition as Equation
3-69 where Ω is substituted by the gyroscope measurement and integrating:
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q̂
(gyro)
k = q̂k−1 + (1

2 q̂k−1 ⊗ p{Ω(gyro)})∆t (3-78)

The dead reckoning method is then compensated by an optimization based approach to es-
timate the attitude quaternion using the accelerometer data. This attitude can be described
as the rotation of the gravitational vector to the body-fixed frame B:

p{v(acc)} = q̂∗(acc) ⊗ p{g} ⊗ q̂(acc) (3-79)

The quaternion q̂(acc) can be found by solving the optimization problem

min
q

1
2f(q)T f(q) (3-80)

Where

f(q) = q ⊗ p{g} ⊗ q − p{v(acc)} (3-81)

The solution to this optimization problem is found by taking one gradient descent step:

q̂
(acc)
k = q̂

(acc)
k−1 − µ

1
2Jac(f(q))T f(q)
‖1

2Jac(f(q))T f(q)‖
(3-82)

Now Equation 3-77 can be simplified by choosing µ really large and using the gyroscope
divergence rate β to choose the fusion coefficient γ as follows:

γ = β∆t
µ

(3-83)

This results in the following update equation for the attitude estimate:

q̂k = q̂k−1 +
(1

2 q̂k−1 ⊗ p{Ω(gyro)} − β
1
2Jac(f(q))T f(q)
‖1

2Jac(f(q))T f(q)‖

)
∆t (3-84)

Experimental results

To choose one of the filters described above, both filters are tested in our simulation envi-
ronment. The Crazyflie’s position is commanded to be a set of random numbers, uniformly
distributed between -5m and 5m with a sample time of 3 seconds. The yaw of the Crazyflie
is also commanded to be a random number between -0.8rad and 0.8rad. 6 data-sets of 21
seconds are created using these random position and attitude commands. Both complemen-
tary filters are tested on these data-sets and the average RMSE for these filters can be seen
in Table 3-1. For both filters, the parameters as implemented on the Crazyflie are used. For
Mahony’s complementary filter, kP = 0.4 and kI = 0.001. For Madgwick’s filter, β = 0.01.
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Mahony Madgwick
εRMS yaw (deg) 1.40° 0.54°
εRMS pitch (deg) 2.86° 0.69°
εRMS roll (deg) 3.47° 0.80°

Table 3-1: RMSE for both complementary filters on simulation data

From this data, it follows that Madgwick’s filter performs better under these circumstances.
An extensive comparison of both methods on the real system would be preferable but since
the attitude measured by the OptiTrack system is in the same order of magnitude as the
error that was calculated for Madgwick’s filter, and due to lack of time it was decided to
leave this for further research. Since the amount of computations necessary for both filters is
comparable, Madgwick’s filter will be used in our design.

3-5 Concluding Remarks

To be able to design an estimation method, complete knowledge of the system is necessary.
This chapter investigates the dynamic properties of a quadrotor and the on-board sensors.
This information is used in a simulation environment, developed in Simulink, that can be used
to quickly create data-sets including the dynamics and the sensory output. The Crazyflie is
an interesting development platform for research on aerial robotics and will be used in the
research described in this thesis. A reasonable amount of research has been performed on
this quadrotor in literature and this data can be easily implemented in our own system. The
main focus point for an estimation technique will be the on-board micro processor because
this might become a bottleneck. The estimators that are implemented on this system are
discussed so that they can be used as a benchmark and as input for our own estimator.
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Chapter 4

Moving Horizon Model
Parametrization (MH-MP)

In this chapter, the designed state estimator will be derived and explained. This estimator
is the highlighted block in Figure 4-1. Many state estimation methods for quadrotors exist,
such as the Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF), Particle
Filters and methods that rely on a Moving Horizon. The benefit of the latter is that a series
of measurements is used, instead of just the last measurement. Since we are dealing with
relatively low-frequency data with a low accuracy, using a time-window of measurements
can improve the accuracy, deal with outliers and smooth the estimates which is especially
important for control. The design of this filter is an adaptation of the method used by Li et
al. [5].

Controller Dynamics

Estimator

��

�̂ 

ref

Figure 4-1: Quadrotor control loop block diagram

4-1 State Estimator Background & Motivation for Using a Moving
Horizon

The goal of a state estimator is to obtain an estimate of the internal state x that is as accurate
as possible, from the system dynamics f(x) and the available measurements y. This can be
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described by the following optimization problem:

min
x̂k,k=0,...,N

N∑
k=0

(x̂k − xk)2 (4-1)

s.t. ẋk = f(xk,uk) ∀k = 0, . . . , N (4-2)
yk = g(xk) ∀k = 0, . . . , N (4-3)

Where g(x) is the measurement function that maps the states to the measurements.
The standard for state estimation in quadrotor research until now has been the Extended
Kalman Filter (EKF) as is described in 3-4-2. This extension to the famous Kalman Filter
uses linearizations of the system dynamics to estimate the system matrices at the operating
points. Although this method is successfully used in a lot of applications, it is prone to errors
and might even start diverging from the actual states. Besides this, the velocity estimate is
very noisy in the case of only four beacons. Since most position controllers use the velocity as
an input to the controller, the control output will not be stable in the case of noisy velocity
estimates.
A different method has to be designed in order to generate more accurate positioning data
that can be used for accurate flight and precision maneuvers. Options beside the EKF in-
clude the Unscented Kalman Filter, Particle Filters and Moving Horizon Estimation (MHE).
In the Unscented Kalman Filter, the mean and covariance at each time-step are estimated
by sampling some points around the previous estimate and propagating these through the
nonlinear dynamic equations. In the case of highly nonlinear systems, this method shows to
create a better estimate of the estimate covariance and does not require the calculation of the
Jacobians. A Particle Filter uses a set of randomly chosen particles to estimate the states
and noise distribution of a dynamic system. These filters can be used to estimate any form of
noise distribution and is therefor useful in systems where the noise distribution of the mea-
surements or the dynamic model is not known. The price to pay, however, is computational
since a lot of particles need to be considered to get an accurate estimate. The MHE method
is different to the previous methods in that it does not include the previous measurements
in a state- and covariance estimate but it estimates the states based on a time-window of
measurements. The standard MHE problem is given as follows:

min
x̂i,i=0,...,N

1
2

N∑
i=2
‖yi − g(xi)‖2Wm

+ 1
2

N−1∑
i=1
‖xi+1 − f(xi,ui)‖2Wp

+ 1
2‖x

(−)
1 − x1‖2Wa

(4-4)

s.t. l(xi) = 0 ∀k = 0, . . . , N (4-5)

Where Wm,Wp,Wa are weighting matrices. The following notation is used: aTWa = ‖a‖2W .
This way, the optimal state at each time-step in the window will be estimated based on the
weighting matrices. The first term is the measurement cost, the second the model cost and
the last term is the arrival cost. This arrival cost encaptures all information from before the
time-window. This method is computationally more expensive than Kalman filters, but with
a short time-window and proper simplifications of the model real-time implementations are
possible on small microprocessors.
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A method based on a moving horizon has been chosen because it handles nonlinear models
efficiently and reduces the effect of outliers. Finding a method based on the Moving Horizon
Estimation (MHE)-principle that combines more past data could potentially be less suscepti-
ble to outliers and biases. In recent years, some work has been done on developing real-time
applications of these kinds that estimate the complete state trajectory in a time-window [29].
In work by Li et al. [5], a different kind of method uses position measurements based on cam-
era images to estimate the deviation from the dynamical model over a time-window instead
of the complete state trajectory. This adaptation of the regular MHE utilizes assumptions
on the errors that are introduced in the dynamic model. By assuming that the attitude es-
timates are biased, with a constant bias over a short time-frame, an offset in velocity and
position can be estimated. Although in our research we do not have position measurements, a
similar approach will be used which we shall call the Moving Horizon Model Parametrization
Estimator.

4-2 Derivation of the Estimator

To obtain a real-time implementable filter that uses a number of measurements, a linear
model of the quadrotor shall be used. This model is obtained by assuming a constant height
and indoors operation so there is no wind. The free-body diagram that is obtained by this
simplification for the x-axis is shown in Figure 4-2.
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Figure 4-2: Free-body diagram
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Since height is assumed to be constant, the sum of the thrust and drag in z-direction can be
assumed to be equal to the gravity g.

TzG +DzG = g (4-6)

The acceleration in x-direction can now be calculated as a function of TxG and DxG .

axG = TxG −DxG (4-7)
axG = −g tan(θ)− υxG sin2(θ)kaero − υxG cos2(θ)kaero (4-8)

Since we will be flying with a pitch and roll angle below 20 deg, we can consider sin2(θ) ≈ 0
and cos2(θ) ≈ 1, which reduces the acceleration model even further. This definition can be
used in the y-direction as well and since in this representation both axes are independent, we
can define the following simplified model for the quadrotor

ẋ(t) = υx(t) (4-9)
ẏ(t) = υy(t) (4-10)
υ̇x(t) = −g tan θ(t)− υx(t)kaero (4-11)
υ̇y(t) = g tanφ(t)− υy(t)kaero (4-12)

Where θ [rad] and φ [rad] are the pitch and roll values that are used as inputs to the model.
In our implementation, it is assumed that the attitude estimation is performed by the com-
plementary filter that is available on the Crazyflie. In our comparison in Section 3-4-3, it was
shown that the Madgwick-filter was more accurate and had a lower computational complexity,
and therefor this filter will be used. This attitude can now be used as input to a localization
algorithm. The parameter kaero is the linear drag coefficient that is described in Section 3-4-1
and is assumed to be constant and the same for x and y. This value has to be tuned for the
specific cases, but in the simulation tests the value is chosen to be 1

mKaero ≈ 3.7× 10−5. For
the real tests, the drag is taken from [41] and is equal to kaero = 0.35. Because in this model
the position and velocity in x- and y-direction are independent of each other, the system can
be decoupled and the analysis of the x-axis can be applied to the y-axis as well. In this model,
it is assumed that yaw is constant at zero. Since this is not always the case in reality, and
the roll and pitch values are expressed in the body-fixed frame, it is important to rotate these
inputs with the estimated yaw before using as inputs. This can be done as follows:

[
θG
φG

]
=
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
θB
φB

]
(4-13)

Where ψ is the estimated yaw value from the complementary filter.
In a state-space representation like Equation 3-1 this decoupled continuous-time system for
the x-axis is as follows:

ẋ(t) =
[
0 1
0 −kaero

]
x(t) +

[
0
−g

]
tan θ(t) (4-14)
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By using the proposed discretization method from Section 3-1-3 the discrete-time system can
be described as follows:

xk+1 =
[
1 ∆t
0 1− kaero∆t

]
xk +

[
0
−g∆t

]
tan θk (4-15)

Where ∆t is the discrete-time time-step.

Figure 4-3: Visual representation of the MH-MP-method with diverging prediction with predic-
tion denoted with a (xp) and measurement with a (x̄) (Adopted from [5])

As can be seen in Figure 4-3, the predicted values for xk can be adjusted by estimating an
offset ∆x by using a sliding time-window. While the predicted states diverge because of
the bias in the AHRS-method and errors in the prediction model, the offset will correct for
this. In this chapter, two notations will be used to differentiate between predictions and
measurements. States predicted with our estimator will be denoted with a hat (x̂) while
position measurements obtained with the UWB sensors are denoted with a tilde (x̃). At
every time-step, the predicted x̂k|k−1, υ̂x,k|k−1 are calculated using the value of x̂k−1|k−2 and
the input angles at time-step k.
Now a least-squares problem can be obtained by calculating the error between the prediction
and the measurements at every time-step and using the following prediction error model [5]:

∆x̂k−N+i = ∆x̂k−N + (tk−N+i − tk−N )∆υ̂x,k−N (4-16)

Where N is the time-window and i is the position in this time-window. This way the following
least-squares cost function can be defined:

J(∆x̂k−N ,∆υ̂x,k−N ) = (A
[

∆x̂k−N
∆υ̂x,k−N

]
− b)T (A

[
∆x̂k−N

∆υ̂x,k−N

]
− b) (4-17)

Where
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A =


1 tk−N − tk−N
1 tk−N+1 − tk−N
...

...
1 tk − tk−N

 , b =


x̂k−N − x̃k−N

x̂k−N+1 − x̃k−N+1
...

x̂k − x̃k

 (4-18)

Where x̃k is the measured value of x at time k. By taking the derivative of this cost-function
and setting this to zero, the least-squares solution can be found as:

[
∆x̂k−N

∆υ̂x,k−N

]
= (ATA)−1ATb (4-19)

After calculating the initial offset, the prediction at time k is updated by

x̂k|k = x̂k|k−1 +
[
1 tk − tk−N
0 1

] [
∆x̂k−N

∆υ̂x,k−N

]
(4-20)

4-2-1 Obtaining position measurements

In the work by Li et al. [5], position measurements are obtained by locating gates with an
on-board camera. Since we are using range-measurements, we have no direct measurement of
the position x̃k. To obtain measurements of x, we need to convert these range-measurements
in some way. To do this, the following methods are suggested:

• Multilateration

• Subtraction of squared distances

• Projection of x̂k on the distance circle

These methods will be described below.

Multilateration

The most straightforward method is multilateration. By taking at least four range measure-
ments, the following system of quadratic equations can be arranged:

(x1 − x̃)2 + (y1 − ỹ)2 + (z1 − z̃)2 = d2
1 (4-21)

(x2 − x̃)2 + (y2 − ỹ)2 + (z2 − z̃)2 = d2
2 (4-22)

(x3 − x̃)2 + (y3 − ỹ)2 + (z3 − z̃)2 = d2
3 (4-23)

(x4 − x̃)2 + (y4 − ỹ)2 + (z4 − z̃)2 = d2
4 (4-24)

(4-25)
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Where dj ∀j = 1, ..., 4 is the range measurement for anchor j and (xj , yj , zj) is the location
of the anchor. This can be arranged in matrix representation as:


1 −2x1 −2y1 −2z1
1 −2x2 −2y2 −2z2
1 −2x3 −2y3 −2z3
1 −2x4 −2y4 −2z4


︸ ︷︷ ︸

A


x̃2 + ỹ2 + z̃2

x̃
ỹ
z̃

 =


d2

1 − x2
1 − y2

1 − z2
1

d2
2 − x2

2 − y2
2 − z2

2
d2

3 − x2
3 − y2

3 − z2
3

d2
4 − x2

4 − y2
4 − z2

4


︸ ︷︷ ︸

b

(4-26)

Equation 4-26 can be described in the same way as Equation 4-17 to obtain an estimate of
(x̃, ỹ, z̃): 

x̃2 + ỹ2 + z̃2

x̃
ỹ
z̃

 = (ATA)−1ATb (4-27)

Since the configuration of the anchors as described in 2-2-2 does not allow for a reliable
estimate of the z-height, the z-height in the least-squares solution can be fixed to 1.5m to
increase the accuracy of the (x̃, ỹ) estimate. The maximum error that is introduced to (x̃, ỹ)
by using a wrong z value can be easily estimated to be around 2.5cm for our configuration
by knowing that the flying height is between 1m and 2m and using Pythagoras’ rule. This
way we can obtain a reliable estimate of (x̃, ỹ).

Subtraction of range measurements

Another way to obtain a measurement of (x̃, ỹ) is by subtracting two range-measurements
from each other:

d2
1 = (x1 − x̃)2 + (y1 − ŷ)2 + (z1 − ẑ)2 (4-28)
d2

2 = (x2 − x̃)2 + (y2 − ŷ)2 + (z2 − ẑ)2 (4-29)
(4-30)

When we subtract d2
1 from d2

2 and insert our predicted value of ŷ and fix ẑ at 1.5m, we get
the following expression for x̃:

x̃ =
1
2(x2

2 − x2
1 + y2

2 − y2
1 + z2

2 − z2
1 + d2

1 − d2
2)− ŷ(y2 − y1)− ẑ(z2 − z1)

x2 − x1
(4-31)

The same can be done to obtain a measurement of ỹ. This way, we can obtain two measure-
ments of x̃ and ỹ with the same data, potentially increasing the possibility to remove outliers.
One advantage of this method over multilateration is that it does not require the calculation
of a 4× 4 matrix-inverse. There are however also two disadvantages of this method that can
be described. The first is that it needs at least two range measurements to create an estimate.
Since measurements arrive asynchronously, it might take some time before two measurements
are taken and the older measurement is already outdated. Besides, it also uses the estimated
position which reduces the accuracy if the estimate of the position is incorrect.
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Projection of (x̂, ŷ) on the distance circle

The last option to create measurements of x̃ and ỹ is by projection of the estimate x̂, ŷ on
the circle that is created by the range measurement as is shown in Figure 4-4.

( , )�̂  �̂ 
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��

Figure 4-4: Visualization of the projection method

This is calculated in the following manner:

[
x̃
ỹ

]
=
[
xj
yj

]
+ dj

[
x̂
ŷ

]
−
[
xj
yj

]

‖
[
x̂
ŷ

]
−
[
xj
yj

]
‖2

(4-32)

Even more so than the previous method, this method relies on the estimates x̂ and ŷ and will
therefor suffer when these estimates deteriorate. On the other hand, this methods supplies a
linear estimate of the position and the estimation error declines as the distance between both
sensors increases as long as the position estimate stays relatively close to the real position.
This method is therefor especially useful in large areas with a large inter-sensor distance and
is a really interesting method to linearize the non-linear range measurements by using the
estimation of the current position.

All three methods will be implemented and tested to compare them.

4-2-2 Outlier rejection

Since UWB measurements suffer from outliers, it is important to deal with those properly.
In the least-squares solution 4-17, all measurements are weighted equally so outliers will have
large consequences for the estimation error. To implement a strategy for removing outliers,
two possibilities are investigated. In the first, outliers are detected based on the Mahalanobis
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distance and in the second, the same Random Sample Consensus (RANSAC) as was used in
[5] is employed.

Mahalanobis distance

The Mahalanobis distance is a measure of how a sample x relates to a specific distribution.
This distance is defined as a function of the mean µ of the distribution and the covariance
matrix S as follows:

DM =
√

(x− µ)TS−1(x− µ) (4-33)

In the case of our range measurements, this can be utilized to determine outliers by rejecting
all measurements with a Mahalanobis distance above a certain threshold. The mean µ and
the covariance matrix S can be calculated by using a time-window of measurements for that
same beacon and calculating the mean and variance in this window. This is computational
inexpensive since the range measurements are scalar and so is the mean and variance. This
method is also implemented on the Crazyflie and a time-window of 32 samples and a threshold
of 4 are used here.

Random Sample Consensus (RANSAC)

In Random Sample Consensus (RANSAC), not all the time-steps in the time-window will be
included but only a subset will be used in the least-squares estimate. After calculating the
A and b matrices in Equation 4-18, a random set of integers will be used to determine which
rows will be included in the estimate. The amount of rows that will be used, depends on the
value Ns = Nσs where N is the window size and σs the sampling ratio.

Using this subset, the offsets ∆x̂ik−N and ∆υ̂ix,k−N can be calculated using Equation 4-19
where i is the ith RANSAC iteration. Using this offset, the prediction error εi can be calcu-
lated by

εi =
k∑

j=k−N
max (‖∆υ̂ix,k−N (tk−N+j − tk−N ) + ∆x̂ik−N − (x̂k−N − x̃kN

)‖2, θm) (4-34)

Where θm is a threshold for the maximum error that is added.

After all iterations i are done, the parameters ∆x̂ik−N ,∆υ̂ix,k−N that cause the minimal error
εi will be chosen. This way, measurements that introduce a large error with relation to the
model are not included in the estimation.

4-2-3 Prevention of overfitting

The basic least-squares solution as given in 4-19 calculates the solution that has the minimal
sum of squared residuals, but this result can highly unrealistic in terms of the estimated veloc-
ity. To prevent overfitting on the measurements, two solutions are suggested: Regularization
by adding a prior to the cost of ∆x and generalized regularization.
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Prior

In this method, the ordinary least-squares method is extended by adding a penalty matrix Q
to ∆x in the cost function J(∆x) as follows:

J(∆x̂) = (A∆x̂− b)T (A∆x̂− b) + ∆x̂TQ∆x̂ (4-35)

Using this cost-function, and again taking the derivative and setting it to zero results in the
following least-squares solution.

[
∆x̂k−N

∆υ̂x,k−N

]
= (ATA+Q)−1ATb (4-36)

This matrix Q can be used to put a penalty on the size of ∆x̂. In the case of a diverging
estimate x̂k−N , this solution will perform worse when the time increases, since ∆x̂ should
compensate this divergence. In this case, the following suggested method performs better.

Generalized Tikhonov Regularization

In generalized Tikhonov regularization, the least-squares method is further generalized by
adding a cost matrix to the model term and by adding a penalty to the difference between
∆x̂ and a prediction ∆x̂0

J(∆x̂) = (A∆x̂− b)TP (A∆x̂− b) + (∆x̂−∆x̂0)TQ(∆x̂−∆x̂0) (4-37)

Where P is the inverse covariance matrix of b and ∆x̂0 is taken to be the previous value of
∆x̂. In this formulation, the divergence of the state estimate does not harm the least-squares
solution and the variance of the measurements can be used. It can be noted that in this form,
the least-squares problem is comparable to the standard Moving Horizon Estimation (MHE)
definition, while only estimating 4 parameters instead of the complete state at every time-step.

Taking the derivative again and setting it to zero results in the following formulation of ∆x̂

∆x̂ = (ATPA+Q)−1(ATPb+Qx̂0) (4-38)

The covariance matrix P−1 depends on how the measurements are converted to position
measurements, but in the case of the subtraction of range measurements, this matrix can be
estimated. The measurements di can be modeled as a normal distribution with mean µi the
average of the last couple of measurements and the variance σi can be calculated from these
measurements as well. The variance of d2

i can now be calculated as:

Var[d2
i ] = E[d4

i ]− (E[d2
i ])2 (4-39)

Where

E[d4
i ] = µ4

i + 6µ2
iσ

2
i + 3σ4

i (4-40)
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and

E[d2
i ] = µ2

i + σ2
i (4-41)

This results in the following variance for d2
i :

Var[d2
i ] = 4µ2

iσ
2
i + 2σ4

i (4-42)

4-3 Concluding Remarks

In this chapter, the Moving Horizon Model Parametrization (MH-MP) estimator is derived.
This estimator is an adaptation of the standard Moving Horizon Estimation (MHE) method,
without estimating the states at every step in the moving window. Instead, an initial offset in
position and velocity is estimated, which significantly reduces the computational complexity.
This estimator uses range measurements to gather an estimate of the position in three different
ways. One uses all four measurements in multi-lateration, another one uses the subtraction of
two measurements and the last one projects the current position estimate on the circle with
the size of the distance measurement. To reduce overfitting to the measurement data, two
methods are proposed. The first one uses a prior to penalize large offsets, while the second one
penalizes the difference between two subsequent offset estimates. Outliers are being handled
in this method in two ways. The first one uses the Mahalanobis distance and the second one
uses RANSAC to exclude outliers.

In order to compare the performance of our estimator to the EKF, different scenarios need
to be tested in simulation first.
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Chapter 5

Results and analysis

In this section the proposed method will first be tested in the simulation environment as
described in Section 3-3 and compared to the EKF-estimator that is running on the Crazyflie
and a regular Moving Horizon Estimator. After that, the method will also be tested on
real data that is obtained by logging flight data on a µSD-card. Both flight scenarios will
resemble a real-life case in which the quadrotor is commanded to fly a certain trajectory in
the operating space at a certain altitude. This simulates for instance a persistent surveillance
task where the quadrotor is used in a greenhouse to sense vital variables such as temperature
and humidity.

5-1 Benchmark Estimators

The results in this section will be compared to two estimators. The first one will be the
EKF that is implemented on the Crazyflie, as discussed in Section 3-4-2. The other estimator
will be a regular Moving Horizon Estimation (MHE). This estimator minimizes the following
cost-function every time-step:

min
xi

1
2

N∑
i=2
‖yi − h(xi)‖2Wm

+ 1
2

N−1∑
i=1
‖xi+1 − f(xi,ui)‖2Wp

+ 1
2‖x

(−)
1 − x1‖2Wa

(5-1)

Where f(x,u) is the dynamic model and h(x) the measurement model. The model f(x,u)
is taken to be the same as 4-15 and h(x) is the distance from a beacon to the estimated
position, described as:

hj(x) = ‖x− xj‖ (5-2)

Where xj is the position of anchor j. The measurement cost-matrix Wm was chosen to be
the inverse of the covariance matrix of the measurements and the process and arrival cost-
matrices were tuned empirically. In our tests, this nonlinear least-squares problem is solved
by using the lsqnonlin-function in MATLAB.
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5-2 Simulation Results

In the simulation scenario, the quadrotor is commanded to fly a square trajectory at an ap-
proximate altitude of 1.5m. The square with sides of 6m and corners (−3,−3), (−3, 3), (3, 3), (3,−3).
To simulate the uncertainty in the z-height, the commanded z-value will be distorted by low-
pass filtered Gaussian noise with mean 1.5m and variance 0.6. After getting to the desired
attitude in 1 second, the quadrotor is commanded to follow this square trajectory with a
velocity of 1.5m/s. The simulation is run for 21 seconds, enough to complete the trajectory
at least once. The simulation setup and with the trajectory can be seen in Figure 5-1.

Figure 5-1: Visualization of the simulation setup, reference and flown trajectory

With the simulated measurement-data, the estimators can be compared offline. For both
estimators it is assumed that the altimeter can be used to measure the height.

The performance measures are chosen to be the Root Mean Squared Error (RMSE) and the
standard deviation. The RMSE is a measure of the total distance error to the real value and
can be calculated with

εRMS(x) =
∑N
i=1

√
(x̂i − xi)2

N
(5-3)

Where x̂ is the estimated value of x.

5-2-1 Gaussian measurement noise only

In the first test-case, only gaussian measurement noise is considered for the UWB-measurements.
The simulation is run 5 times with a different seed for the measurement noise. In this compar-
ison, the standard EKF is tested against the Moving Horizon Model Parametrization method
with Generalized Tikhonov regularization. The least-squares method is used with a time-
window of N = 30. All three methods of using the range measurements will be considered
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(a) Positioning error comparison (b) Velocity error comparison

Figure 5-2: Positioning comparison in simulation without outliers. Standard deviation is depicted
with errorbars.

and compared. The Q-matrix is chosen to penalize large differences in the velocity offset
estimation ∆υ̂x,k−N with respect to the previously estimated value. This matrix is different
for every method of including range measurements and was tuned empirically.

Qlat =
[
0 0
0 1

]
, Qsub =

[
0 0
0 0.5

]
, Qproj =

[
0 0
0 100

]
(5-4)

The average positioning error for 5 test-runs is shown in Figure 5-2a and the average velocity
error is shown in Table 5-2b.

From this data, it is clear that all estimators can accurately estimate the position of the
quadrotor and that the lateration method performs around 35% better in terms of absolute
position estimate and standard deviation. The improvement is not very large, and the projec-
tion method even performs worse positioning wise. This can be attributed to the fact that our
methods of including the range measurements assume constant height. When more outliers
are introduced to the measurements, this effect gets lower but in this outlier-free data this
effect is clearly visible. It is also interesting to compare the velocity estimations, as can be
seen in Figure 5-2b. The velocity estimate improved with almost 65% with respect to the
velocity estimate of the EKF for the lateration method.

5-2-2 Gaussian measurement noise and outliers

The second test-case uses the same measurements as the first test-case, but also includes
outliers on the range-measurements. The outliers are as described in Section 3-3 with an
outlier probability of 5%. Both estimators have no method to exclude outliers.

The average RMSE for 5 test-runs is shown in Figure 5-3a. This image shows that both the
positioning error and velocity error decreased significantly. Especially the velocity estimate
of the EKF deteriorated due to the outliers. In Figure 5-4, the influence of these outliers to
the EKF (x, y)-estimate can be clearly seen, while the MH-MP does not suffer from outliers
significantly.
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(a) Positioning error comparison (b) Velocity error comparison

Figure 5-3: Positioning comparison in simulation with outliers. Standard deviation is depicted
with errorbars.

Figure 5-4: (x, y) plot with a comparison between the MH-MP and EKF for 5% outliers

From this data it is clear that even without outlier rejection, all the MH-MP methods out-
perform the EKF in both position and velocity estimate.

Outlier rejection

To improve the MH-MP even more, two suggestions were made in the previous chapter; the
Mahalanobis distance and RANSAC. The lateration MH-MP from this simulation case with
5% outliers will therefore be tested with both outlier rejection methods to compare the results.

In Figure 5-5, the results of this comparison can be seen. The RANSAC-method improves
the position estimate more than the Mahalanobis distance. The velocity estimate is barely

S. Stroobants Master of Science Thesis



5-2 Simulation Results 57

(a) Positioning error comparison (b) Velocity error comparison

Figure 5-5: Positioning comparison in simulation with outlier rejection by Mahalanobis distance
and RANSAC. Standard deviation is depicted with errorbars.

affected by both methods. The only downside to the RANSAC method is the computation
time. Since at every iteration a subset of all measurements is analysed for a fixed amount
of iterations, the computation time increases linearly with this amount of iterations. The
amount of iterations needs to be chosen with care, since an amount of iterations that is too
low has a lower chance of excluding the outliers while a large number of iterations will increase
the computation time.

5-2-3 Time-window comparison

As was also discussed in the previous part, the estimation error is largely dependent on the size
of the time-window N . With a time-window that is too small, the influence of measurement-
error will be very large, while a time-window that is too large will deteriorate because of
errors in the diverging predicted model.

This comparison was made by running the simulation 5 times for a range of percentages. All
the simulation data is used to calculate the error between the estimated and real position and
velocity. The average RMSE value of these 5 simulations is taken and the results of this test
can be seen in Figure 5-6.

It is clear that when the amount of outliers increases, the optimal window size grows larger.
This is as was expected, since the influence of outliers now decreases. When an even larger
time-window is chosen, the RMSE can be seen to rise again slowly especially for a lower
amount of outliers, because the influence of errors in the prediction model increases.

5-2-4 Computation time comparison

In order to compare the results of the proposed method to the regular MHE and to test
implementability on a real system, a computation time comparison has to be made. In this
comparison, the computation time for both these methods will be calculated for an increasing
window size. The computation time will be defined as the time it takes to process a new set
of measurements and will be calculated by taking the average calculation time for a complete
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Figure 5-6: Comparison of the time-window versus outlier probability

test-run. The tests are run on a 2.40 Ghz quad-core laptop with 8 GB of RAM memory. The
results of these tests can be seen in Figure 5-7. The black line shows the average data rate of
the UWB measurements.

Figure 5-7: Comparison of the computation time for all three classes of estimators

It can be seen that the proposed method is able to run in real time, while the MHE would
not be sufficient. It has to be noted that the MHE was not optimized for speed performance,
but real-time implementations are designed in literature [29] that speed up the computations.

5-3 Real Test Results

The real tests aim to show that the derived method also works on the real system. In the
first test, the Crazyflie was commanded to fly around the Cyberzoo at an approximate height
of 2 meters. All sensor data was logged to an on-board µSD-card, so the estimators could

S. Stroobants Master of Science Thesis



5-3 Real Test Results 59

be tested offline. In the second test, the estimator was running in real-time on a laptop and
the position and velocity estimates were send to the Crazyflie so that they could be used for
control.

5-3-1 Offline data analysis

In total four measurement datasets will be investigated. These measurements all started with
the Crazyflie on the ground at approximately (x, y) = (0, 0). The Crazyflie was then controlled
manually and flown around the Cyberzoo at around 1.5 meters high. Figure 5-8 shows the
UWB measurements that were gathered during this test-flight. These measurements will be
available to both the EKF and our designed method. Both estimators will have access to the
measured OptiTrack z-height, to simulate the altimeter. This measured OptiTrack data is
distorted with white Gaussian noise, similar to that present in the altimeter measurements.

Figure 5-8: UWB range measurements with outliers

Besides the UWB measurements, both our designed method and the benchmark EKF will
have access to the gyroscope and accelerometer measurements. We will investigate all three
methods of using the distance measurements and outliers will be rejected based on the Ma-
halanobis distance with a threshold of 3.5. It should be added that the Mahalanobis distance
was chosen to reject outliers in the real data. The RANSAC method would scale up the
computation time and was not found to improve the estimate significantly. This might be
because outliers in the real UWB are mostly grouped. This outlier behaviour is clearly visi-
ble in Figure 5-8, where Anchor 3 for example suffers from a group of outliers at around 65
seconds. The RANSAC method would not be able to remove these outliers, since they are
all grouped together. Another method of removing outliers might be suggested but is out of
scope for this research.
In Tables 5-1 and 5-2, it can be seen that our designed method decreases the εRMS for the
position estimate with an average of 15% over the four testruns where the lateration method
is used and for the velocity estimate even with 75% for the same method.

Projection method analysis

Some extra remarks about the performance of the projection method can be made. First, it is
remarkable that although the position estimate is comparable to the EKF position estimate,
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εRMS position
test no. 1 2 3 4
EKF 0.258 0.230 0.265 0.336

MH-MP lat 0.214 0.235 0.178 0.287
MH-MP sub 0.219 0.255 0.190 0.334
MH-MP proj 0.274 0.243 0.233 0.303

MHE 0.209 0.197 0.180 0.265

Table 5-1: Positioning error of the Mov-
ing Horizon Estimation (MHE) versus Ex-
tended Kalman Filter (EKF) in the manual
flight cases in meters.

εRMS velocity
test no. 1 2 3 4
EKF 0.812 0.640 0.909 1.060

MH-MP lat 0.173 0.187 0.196 0.223
MH-MP sub 0.170 0.198 0.203 0.259
MH-MP proj 0.190 0.168 0.202 0.234

MHE 0.232 0.215 0.310 0.315

Table 5-2: Velocity error of the Mov-
ing Horizon Estimation (MHE) versus Ex-
tended Kalman Filter (EKF) in the manual
flight cases in meters.

the velocity estimate is more accurate. This is most likely because the projection method has
a higher update rate than the lateration and subtraction methods, since it does not require
multiple measurements to be ready but can immediately process new measurements. Second,
the projection method does not require all beacons to be available. This is a huge advantage
compared to both other methods of transforming range measurements, since measurement
dropouts now do not interrupt the estimator. The projection method was therefore tested
with all possible combinations of two and three beacons. These results are visualized in Figure
5-9.

(a) Position error comparison (b) Velocity error comparison

Figure 5-9: Comparison of the projection method with a combination of beacons

The leftmost bar in Figures 5-9a, 5-9b corresponds to the case where all beacons are used for
estimation. For both the position and velocity estimate the estimation error for four beacons
is even slightly larger than the error of the combinations of beacons 2-3-4 and beacons 3-4.
The influence of beacon 1 on the estimation is therefore assumed to deteriorate the estimation.

The results further show that using only 3 beacons does not have a large effect on the per-
formance of the estimator and that in some cases only choosing a subset of the available
beacons even improves the position and velocity estimate. This can be accounted to the fact
that some beacons suffer from less outliers and a lower bias than others and if only the well
performing beacons are chosen the estimate can be improved.
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5-3-2 Real-time data analysis

In order to test the real-time applicability of the proposed method, the simulation test-case
was recreated on the real system. Due to time constraints, the method was not implemented
on the real system but was made to run on a laptop that was connected to the Crazyflie.
The Crazyflie sent its attitude estimation and the UWB range measurements over the radio
connection. The position and velocity estimates were calculated on the laptop and sent to
the Crazyflie in return. Besides this, also the setpoints for the position were send. This setup
for the MH-MP tests and the data-rates are visualized in Figure 5-10.

UWB measurements (25Hz)

Attitude estimate (50Hz)

Position command (5Hz)

MH-MP estimate (50Hz)

Figure 5-10: Real-time MH-MP test setup with the data-rates per channel

The EKF was also tested using the same setup. Since no calculations were necessary on the
laptop, the Crazyflie was only sending the position and velocity estimates to the laptop and
it only received the position commands.

For both tests, the position estimates and OptiTrack position and velocities were saved to
compare both estimators. The results of two of these tests can be seen in 5-11.

From these figures, it can be seen that the Crazyflie has a smoother flight with the EKF
than with the MH-MP. This can also be seen in Table 5-3 where the RMSE of these tests is
depicted.

εRMS position εRMS velocity
EKF 0.509m 0.186m/s

MH-MP 0.280m 0.365m/s

Table 5-3: Real-time data analysis results

Although our position estimate is better than the estimate with the EKF, the velocity estimate
is worse. It is important to note that we are comparing the data of two separate test-flights.
Since the quality of the range-measurements varies from test-flight to test-flight, no one-to-
one comparison can be made. It is clear that our implementation is not enhancing the flight
performance compared to the EKF in this comparison. A couple of arguments can be given
for the differences in our observation:

On-board EKF versus off-board MH-MP
Since the EKF is implemented on-board, no communication delays are introduced to the esti-
mator. In the case of the off-board MH-MP, the attitude estimates and UWB-measurements

Master of Science Thesis S. Stroobants



62 Results and analysis

(a) Flown trajectory with the Moving Horizon Model
Parametrization (MH-MP)

(b) Flown trajectory with the Extended Kalman Fil-
ter (EKF)

Figure 5-11: (x, y) plot of the real flown trajectories and the estimates.

are sent to the laptop before calculations can be performed and after which the position and
velocity estimate can be sent back. This can result in a considerable delay, that will influence
both the position controller on the Crazyflie as the MH-MP. By comparing the real-time
velocity estimate produced by the MH-MP to the velocity that was measured using the Op-
tiTrack system, this delay can clearly be seen. This delay can be seen in a close up of the
x-velocity in Figure 5-12. At the marked area, the delay is around 240ms.

This delay is not present in the analysis of the data that was gathered on the µSD card and
suggests that the delay is caused by the communication.

Another effect of this difference in implementation is de update-frequency. The EKF has an
update frequency of 500Hz, while the MH-MP is only updated at the frequency of the attitude
estimates, which is 50Hz. Such a large difference might also influence the results.

MH-MP only tested with the lateration method
Currently, the MH-MP was only tested by using the lateration method to transform range-
measurements into position measurements. This requires all four beacons to send a mea-
surement, which can reduce the update frequency even more if the Crazyflie stops receiving
measurements from a beacon for a certain time. The projection method and subtraction
method also need to be tested in the real-time implementation because they offer a solution
that is more robust to drop-out of one of the beacons.

OptiTrack is used to provide a z-measurement
Using the OptiTrack z-measurement will not be possible in a location without a MOCAP-
system available. In this case, the altimeter from the Flowdeck will be used. On the other
hand, the OptiTrack in our tests suffered from drop-outs a couple of times. This also signifi-
cantly influences the performance of the position controller and might have changed the flight
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Figure 5-12: Close-up of the observed delay in the velocity estimated, presumably caused by the
communication delay

performance in the tests.

Tuning of estimator parameters
The measurement window N , the tuning matrix Q and the drag factor kaero were found
to influence the performance of the MH-MP significantly. Since no extensive tuning was
performed during the real-time tests, it might be that the chosen combination of parameters
is sub-optimal.

Smoothness of flight
The MH-MP had a lot less smooth flight trajectory than the EKF. As was discussed above
this might be because of a couple of reasons but this might also affect the performance of
the estimator in return. This means that the error due to the communication delay might be
amplified because the flight is less smooth.

5-4 Concluding Remarks

The designed estimator is tested in this chapter, compared to the EKF and MHE. In all
the data that was gathered in simulation and real flight-data, the MH-MP was shown to
outperform both benchmark estimators. Besides, the computation time was still in the same
order of magnitude as the EKF, and is therefore implementable in real-time. The estimator
was also tested in real-time, while the calculations were performed on a laptop and sent to the
Crazyflie subsequently. This did not improve the flight performance compared to the EKF,
although a qualitive comparison was not possible considering the EKF runs on-board while
the MH-MP was not.
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Chapter 6

Conclusion and recommendations

In this final chapter, the main conclusions drawn from this thesis are presented. The content
of this thesis will be summarized, answers to the research questions will be discussed and a
few recommendations for future work, along with some guidelines, will be presented.

6-1 Summary

This research aimed to design a method that uses a time-window of range measurements to
estimate the states of a micro-quadrotor in real-time. Based on simulations and an offline
investigation of data acquired with the Crazyflie, it can be concluded that the designed Moving
Horizon Model Parametrization (MH-MP) improves the state estimates compared to the EKF
and is still real-time implementable.

First the Ultra Wideband (UWB) localization system and its properties were investigated to
obtain knowledge on the limitations imposed by our system. Especially the offset between the
clocks of both transmitter and receiver and the non-isotropic radiation pattern of the antennae
are important factors in obtaining accurate measurements. After discussing the calibration of
the UWB-sensors, two distinct bias characteristics are discussed. A three-dimensional model
was estimated to reduce the spatially varying bias, and was tested on validation data.

Since the research platform in this thesis is a quadrotor, also the quadrotor dynamics are
discussed. With these dynamics and models for all the different sensors that are available
to our estimator, a simulation environment is designed in Simulink. The specific quadrotor
that will be used in this research is discussed. Technical specifications and mappings from
input to output are summarized so they can be used in our simulator and estimator. The
EKF-estimator and both complementary filters are discussed. The EKF will be used as a
benchmark estimator and a complementary filter shall provide our estimator with attitude
estimates. The EKF that is implemented on the Crazyflie is heavily influenced by outliers in
the range measurements. To reduce this influence, an estimation method that uses a time-
window of measurements will be used. The micro-processor on-board of the Crazyflie does not
have the computation power necessary to implement the standard MHE, so an alternative
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is proposed. This alternative is an adaptation of the Visual Model-predictive Localization
method, that uses position estimates from camera images [5]. In this work, we assume that
the quadrotor does not have access to a camera and is limited to range measurements. The
method is denominated the Moving Horizon Model Parametrization (MH-MP), since not all
the states are estimated at every time-step, but only the offset parameters from the initial
position and velocity in the time-window. Three methods for using the range measurements to
obtain a position measurement are discussed and implemented. Besides, methods of reducing
the influence of outliers and methods to reduce overfitting to the measurement data are
discussed. From the analysis of data that was obtained from simulation and real test-flights,
it followed that this MH-MP method is implementable in real-time and produces accurate
position and velocity estimates.

6-2 Answers to the Research Questions

The main research goal of this thesis was to implement a Moving Horizon inspired estimator
that uses range-measurements and is able to run in real time on the Crazyflie. Besides, an
investigation into the bias characteristics of the UWB-measurements in our setup was planned.
The following answers to the initial research questions were the results of this thesis:

Design an estimation method that uses a time-window of range measurements
for a micro-quadrotor by using Ultra Wideband (UWB) measurements
The proposed MH-MP has to be both implementable in real-time and produce accurate
position and velocity measurements. In comparison to the EKF, the MH-MP increases the
Root Mean Squared Error (RMSE) of the position with 15% and of the velocity with 75%.
From test results, the estimator has a computation time comparable to the computation time
of the EKF with a window of 10 samples but grows with an increasing window. However,
the maximal window of 40 samples that was used in our tests still requires an estimation
time that is lower than the average UWB data-rate. The Crazyflie was commanded to fly a
square pattern by using position and velocity estimates from the MH-MP that were produced
in real-time with success.

Design a low-dimensional bias model that can be used to reduce the error in the
ranging measurements
A three-dimensional model has been designed and tested. This model reduced the Frobenius
norm of the validation set with about 30-60% and reduced the standard deviation with about
25-50% for each beacon. Since this is a low-dimensional linear model, it can easily be used in
online estimators and the model parameters might be estimated online.

6-3 Recommendations and Future Work

In this section some recommendations and guidelines for further research are discussed.

Implementation in the Crazyflie firmware
The main recommendation that follows from this research is the real-time implementation in
the Crazyflie firmware. Our real-time tests showed the possibility of flying with our estimator,
but in order to make a qualitative comparison to the EKF, both estimators should be tested
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on-board. This also includes a study into the ideal window size N and tuning matrix Q, since
these depend on the update frequency and method of implementing the range measurements.

Online estimation of the UWB bias parameters
In this research the bias parameters were estimated by examining gathered data offline. Re-
ducing the spatially-varying bias with a simple model would even be more effective if the
parameters of this model can be estimated online. As long as an over-determined UWB-
configuration is used, patterns in the estimation correction might be used to estimate the
bias of a specific anchor.

Online estimation of the accelerometer bias
The proposed estimator assumes that the accelerometer bias in a short time-window is con-
stant and is the main consequence for the divergence of the prediction model. If this ac-
celerometer bias can be estimated in-flight, the prediction model will be more accurate and
this will influence the estimators performance.

Implement the MH-MP on alternative applications
Considering the linear nature of the proposed method, it could potentially also be successfully
implemented on different robotic agents. This is especially the case for agents with an accurate
prediction model that might suffer from data loss from time to time. An example of such an
agent is the two-wheel-drive robot.

Extensive research into the projection method
Using the projection method to transform range-measurement into position-measurements
was shown to produce accurate estimation results, even with only two beacons. This can
significantly reduce the amount of beacons necessary in a large area while still maintaining
a high accuracy. Although it was implemented and tested on simulated and real data, a
thorough stability- and error-analysis should provide more details on the usability of this
method in a real-time implementation.
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List of Acronyms

AHRS Attitude and Heading Reference System

BLE Bluetooth Low Energy

CPU Central Processing Unit

EKF Extended Kalman Filter

EM Electro Magnetic

GPS Global Positioning System

IMU Inertial Measurement Unit

LOS Line Of Sight

MEKF Multiplicative Extended Kalman Filter

MHE Moving Horizon Estimation

MH-MP Moving Horizon Model Parametrization

MOCAP Motion Capture

PWM Pulse Width Modulation

RANSAC Random Sample Consensus

RF Radio Frequency

RMSE Root Mean Squared Error

RPM Rounds Per Minute

RSS Received Signal Strength

TDOA Time Difference Of Arrival
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74 Glossary

TOA Time Of Arrrival

TOF Time Of Flight

TU Delft Delft University of Technology

TWR Two Way Ranging

TWR-RR Two Way Ranging with Repeated Reply

UAV Unmanned Aerial Vehicle

UKF Unscented Kalman Filter

UWB Ultra Wideband

WLAN Wireless Local Area Network

List of Symbols

αq Quaternion rotation angle
ηacc Accelerometer measurement noise
ηgdrift Gyro bias drift noise
ηgyro Gyro measurement noise
ω Angular velocities of quadrotor in global frame
Ψ Extrinsic ZYX Tait-Bryan angles
τ Moment applied to quadrotor by the rotors
bacc Accelerometer bias
bgyro Gyro bias
eq Quaternion principal rotation axis
p (x,y,z)-position of quadrotor in global frame
pdes,k Desired position at time k
q Quaternion vector
∆tantenna Antenna delay
θ̇i Angular velocity of rotor i
ηuwb UWB distance measurement noise
d̂opti, k Converted OptiTrack range measurement
φ Quadrotor roll value
ρ Density of air
PWMi Input signal for motor i
θ Quadrotor pitch value
θoffset Clock offset between transmitting and receiving beacon
Ari Rotor disk area
buwb UWB distance bias
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c Speed of light
cQ Lumped torque parameter
CT Thrust coefficient
cT Lumped thrust parameter
dPWM PWM duty cycle
duwb, i Distance between quadrotor and beacon i
f Thrust force of the quadrotor
I Quadrotor inertia matrix
k⊥ Force constant in the plane of the quadrotor
kaero Linear drag coefficient
m Mass of the quadrotor
N Moving Horizon Model Parametrization Time Window
ri Rotor radius
S Set of (x,y) locations of all beacons
tdelay Predetermined waiting time before the reply will be sent
tf Time of flight
tround Roundtrip time
td Time of departure
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