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Summary

The goal of this thesis is to investigate numerically the influence of rotation sense of a
propeller on propeller-wing interaction effects for a large multi-engined military transport
aircraft using the commercial software FLUENT. One must be able to perform the sim-
ulations in a preliminary design stage, even when detailed propeller data is unavailable.
From a previously performed literature study it was concluded that the actuator disk
theory would be the best model to perform this study.
Although FLUENT provides the FAN boundary condition (mimics an actuator disk) to
model propeller induced flow, this option was discarded due to compatibility problems
with the earlier FLUENT 6.3 version. Therefore a so called “actuator volume” was created
which contains only one column of cells in the axial direction. Thus instead of imposing
a jump in pressure, tangential and radial velocity at the trailing edge of the propeller
blade; a jump in axial, tangential and radial velocity is imposed at the cell centers of the
“actuator volume”. The axial, tangential and radial velocities were imposed by loading
a User Defined Function (UDF) in FLUENT. This is basically a user-written code in C-
programming language that allows the user to create its own numerical models which can
be loaded with the FLUENT solver. The equations which were used to calculate these
velocities were obtained by slightly modifying the equations for an actuator disk with vari-
able radial loading distribution as obtained by J.T. Conway. The assumptions that were
made during the derivation is that one assumes steady, incompressible and inviscid flow.
Outside this actuator volume the flow was calculated by using the Reynolds-Averaged
Navier-Stokes equations (RANS). The k − ε model with non-equilibrium wall functions
was used to model turbulent flow.
To assess the performance of the UDF and the propeller model in general some validation
simulations were performed. To this end a single propeller-nacelle geometry was created
based on the NASA SR-1 propeller. Flow parameters such as Mach number, static pres-
sure, etc. were extracted along three different lines of constant radius and compared with
the results of a full blade modelling simulation using RANS as obtained by B. Marinus.
To investigate the influence of the nacelle on the propeller another UDF was set up, which
reads in the inflow velocity at the leading edge of the propeller blade. The equations of
the axial, tangential and radial velocity are similar to the original UDF (uniform actuator
disk), which assumes a uniform inflow velocity equal to freestream, however the freestream
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vi Summary

velocity terms are replaced by the inflow velocity at the blade. Also a UDF was set up
which makes use of Phillips’ equations in order to investigate the effect of excluding the
radial velocity.
From the validation simulations it appeared that the UDF which assumes a uniform in-
flow velocity equal to freestream and the UDF which makes use of a non uniform inflow
velocity (non-uniform actuator disk) produce similar results. Although no radial velocity
was imposed by the UDF which makes use of Phillips equations the prediction of the
radial velocity was reasonably accurate, suggesting the dominant influence of the nacelle,
however the tangential velocity prediction was worse than the other models. Since the
non-uniform actuator disk UDF is more complex and hence computationally more ex-
pensive, the uniform actuator disk model was chosen as the numerical model to study
propeller-wing interaction effects.
To investigate propeller-wing interference a simplified model of a generic large multi-
engined military transport aircraft was created. Since stability and control characteristics
are of no interest and the focus lies on the influence of the propeller induced flow on the
wing, the airplane geometry only consists of a simplified fuselage, a clean wing and en-
gines (nacelles+propellers). Furthermore the geometry is assumed to be symmetric, thus
only half of the geometry needs to be modelled. In order to investigate the influence of
rotation sense on the aerodynamic performance of the wing three different rotation senses
were performed: both engines rotate inboard up, both engines rotate outboard up and
the down-between-engines (DBE) rotation.
From the simulations it could be concluded that the inboard up case has the best aero-
dynamic performance in terms of lift-to-drag ratio and endurance. This is caused by a
higher lift production while still maintaining a reasonable overall drag. The outboard
up case has the worst aerodynamic performance while the performance of the DBE case
is in between the inboard and outboard up case. However it is strongly recommended
to investigate the control and stability characteristics of the airplane to see whether the
better aerodynamic performance of the inboard up case outweighs the necessary require-
ments to ensure longitudinal stability of the airplane. If for example larger tail surfaces
are necessary to counteract the moments produced in case of one-engine-out, the airplane
geometry will be heavier. This can undo the aerodynamic performance benefits.
By inspecting the pressure coefficient plots which were extracted from several span loca-
tions along the wing and the spanwise distribution of lift and drag coefficient it followed
that the DBE case follows the same trend as the inboard up case from the wing’s root
till in between both engines, where it displays a behaviour different from the inboard and
outboard up case. From here on the behaviour of the DBE configuration is similar to the
trend of the outboard up case. The spanwise lift coefficient distribution is similar to the
one presented in Malard et al. [2005].
The wing sections which are situated behind the up going blade of the propeller experi-
ence an increase in local lift coefficient w.r.t. the prop off case. While the wing sections
which are located behind the slipstream of the down going blade experience a decrease in
local lift coefficient w.r.t the prop off case. The same observations were made by Moens
& Gardarein [2001], Colin et al. [1996], Barber & Nelson [1996] and Zang et al. [2001]. By
investigation of the total pressure contours in a plane 1 m upstream and downstream of
the wing it can be concluded that the propeller induces a large increase in total pressure
which is consumed by the wing. Furthermore by observing the contours for the tangential
velocity 1 m up- and downstream of the wing it can be seen that the wing lowers the



Summary vii

tangential velocity. Hence the wing acts as a stator.
It can be concluded that the propeller model fulfills the thesis requirements. It is able to
simulate propeller-wing interaction effects in the preliminary design stage. It should be
noted however that this model does not simulate the effect of the wing on the propeller
blades. The upwash in front of the wing alters the thrust distribution along the span of the
propeller. It is therefore recommended to investigate how the upwash effect of the wing
on the propeller blades can be implemented in the UDF. Although the propeller model
assumes steady, incompressible and inviscid flow, these assumptions do not compromise
the results of the simulations since they are only applied to the actuator volume while the
rest of the domain was simulated by making use of RANS. Furthermore the validation
simulations showed good agreement with the full blade modelling simulations one radius
downstream of the disk where compressibility effects are accounted for. However it is rec-
ommended to investigate whether the current propeller model can be further improved
by incorporating unsteady effects. But despite these flaws the current propeller model
produces reasonably accurate results at a low computational cost (resources and time).
It can therefore be used in other projects e.g.: effect of engine placement or stability and
control issues in case of engine failure.
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l Turbulent length scale [m]

Lc Cut-off length [m]

M Mach number [−]

n Number of rotations per unit time (rps) [/s]

Nf Number of faces [−]

P Propeller shaft power [W ]

p Static pressure [Pa]

pt Total pressure [Pa]

pop Operating pressure [Pa]

Q Torque [N ·m]

q Thermal conductivity [W/(Km)]

r Radius [m]

Re Reynolds number [−]

S Surface area [m2]

Sφ Source of φ [−]

Sij Mean strain rate [J ]

T Propeller net thrust [N ]

Ts Static temperature [K]

Tt Total temperature [K]

u Instantaneous velocity component [m/s]

u′ Fluctuation of the velocity component w.r.t. the mean velocity [m/s]

V Velocity [m/s]

v Induced velocity [m/s]

V ol Volume [m3]

W Weight [N ]



Nomenclature xix

w Downwash or upwash [N ]

x x-coordinate [−]

y y-coordinate [−]

z z-coordinate [−]

Greek Symbols

α Angle of attack [radians]

αp Under-relaxation factor of pressure [−]

β Blade angle [radians]

∆ Difference [−]

δij Kronedecker delta [−]

ε Dissipation rate [−]

η Efficiency [−]

ηj Propulsive efficiency [−]

Γ Circulation [m2/s]

γ Specific air ratio [−]

Γφ Diffusion coefficient of φ [−]

κ von Karman constant [−]

µ Dynamic viscosity [kg/(ms)]

ν Kinematic viscosity [m2/s]

Ω Angular velocity [radians/s]

Ω Volume [m3]

ω Induced angular velocity [radians/s]

φ Inflow angle [radians]

φ Scalar quantity [−]

φ0 Advance angle [radians]

ρ Air density [kg/m3]

σ Prandtl number [−]

τ Time scale [s]

τw Wall shear stress [Pa]

τij Stress tensor [Pa]

Subscripts

0 Location far upstream of the propeller plane

1 Location just upstream of the propeller plane



xx Nomenclature

2 Location just downstream of the propeller plane

∞ Freestream

θ Tangential

a Axial

ext Extrapolated

e Effective

i Induced

P At a certain point P

p Propeller

ref Reference

rel Relative

r Radial

s Location far downstream of the propeller plane, also called the ultimate
slipstream

t Turbulent

Abbreviations

GCIfine Fine Grid Convergence Index

LE Leading Edge

RMA Royal Military Academy

TE Trailing Edge

Other Symbols

¯ Mean



Chapter 1

Introduction

1.1 Background

Today’s world is concerned with global warming and other environmental issues. Hence
scientists and engineers are investigating more sustainable energy resources to replace
fossil fuels. The aerospace industry can of course not lagg behind and is therefore in-
vestigating more sustainable ways of propulsion. This has caused a renewed interest in
propeller driven aircraft since they are more fuel efficient than jets. Furthermore the
prospect of combining propellers with an electrical engine can indeed help solving the
current emissions problem.
The strong point of a propeller-driven aircraft is its ability to accelerate a large amount of
air at low speeds, which translates into a shorter take-off length and climbing time. These
features makes a propeller-driven airplane attractive for military transport operations.
A propeller-driven aircraft in tractor configuration produces a complicated flow field since
there is a mutual interaction between the propeller slipstream and other aircraft parts.
Due to the rotation of the propeller, there is an increase in axial velocity and a tangential
or swirl velocity is induced. Therefore the aircraft geometry must be designed carefully
in order to prevent undesired interaction behaviour.
In the preliminary design stage of an airplane, windtunnel tests are too expensive to
investigate the best configuration since the geometry will be continuously adapted until
the desired design is found. CFD simulations seem to be the best option in this early
design stage to find the “optimum” configuration. That is, if the code is inexpensive in
terms of time and calculation resources. This is the subject of this thesis: to numerically
simulate propeller-wing interaction effects in the preliminary design stage of an airplane.
For this thesis project the commercial software FLUENT will be used and the airplane
model under consideration is a generic multi-engined military transport aircraft.
Instead of investigating the placement of the nacelles, the influence of rotation sense of
the propellers will be investigated. To this end three cases were considered: both en-
gines on a wing rotate inboard up, outboard up and the Down-Between-Engine concept
(DBE). The main disadvantage of a propeller-driven aircraft is of course the interaction
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of the propeller slipstream with tail surfaces, which can lead to detrimental stability and
control characteristics. The DBE concept or counter-rotating propellers can relieve these
stability and control issues. This was also acknowledged by Airbus, who designed the
A400M: a military transport aircraft with four turboprop engines which implements the
down-between-engine concept.
Since this thesis will only focus on the propeller-wing interaction effects, no stability and
control analysis will be made. This thesis will consist of three main parts:

• Part I: Theory

• Part II: Validation

• Part III: Propeller-wing interaction study

In part I the terminology concerning propellers will be introduced as well as the math-
ematical model which will be used to simulate propeller-wing interaction effects. Also
general meshing guidelines and FLUENT settings will be discussed.
Part II will show how this mathematical model is transformed into a User-Defined-
Function (UDF) in order to incorporate it in FLUENT. Furthermore validation simu-
lations will be performed in order to investigate the performance of this numerical model.
To this end a mesh was created for a propeller-nacelle configuration. The simulations
performed on this mesh will then be compared with the results of full blade modelling
simulations which were conducted by B. Marinus (Marinus [2007]).
Part III will treat the mesh creation and FLUENT settings for the propeller-wing con-
figuration. Furthermore a detailed discussion of the results for the inboard up, outboard
up and DBE case will be given and general conclusions will be drawn. But first a clear
formulation of the thesis’ goal and set-up will be given in section 1.2.

1.2 Thesis objective and set-up

This section will state the main objective of the thesis and which steps will be taken to
complete the thesis goal.

Thesis objective

The main objective of the thesis is formulated as follows:

Investigate the influence of rotation sense of the propellers on propeller-wing interac-
tion effects for a large multi-engined military transport aircraft with special attention
to the down-between-engine concept by using the CFD program FLUENT.

FLUENT provides the “FAN” model in order to simulate propeller induced flow. This is
done by imposing a jump in total pressure and a swirl velocity. In order to give the user
more options than the basic FLUENT models, a so called User-Defined-Function (UDF)
can be loaded in FLUENT. This is basically a user-written “code” in C-programming
language that allows the user to create its own numerical models which can be loaded with
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the FLUENT solver. A UDF can also be used to prescribe the pressure jump, tangential
and radial velocity which needs to be imposed at the FAN boundary. However due to
compatibility problems with the earlier FLUENT 6.3 version no UDF could be loaded
with the FAN boundary condition. Hence the FAN option was discarded and another
method was applied to load the UDF which simulates the actuator disk boundary.
There are four additional requirements attached to the main thesis objective:

1. The code (UDF) must already be applicable in a preliminary design stage.

2. The calculation cost has to be kept at a minimum while aiming for high accuracy
of the results.

3. The code (UDF) must be developer-friendly (readable and maintainable for the
unfamiliar programmer).

4. Only the aerodynamic performance is of interest. The influence of the interaction
effects on stability and control parameters is not required.

The first requirement implies that the code must also be applicable when detailed propeller
data e.g. CL(r), CD(r), . . . is unavailable. This data is unknown during the preliminary
design stage of an aircraft, especially when one decides to use a new engine (not yet (fully)
developed).

Thesis set-up

In order to perform an accurate numerical simulation, a calculation domain or mesh and
suitable mathematical model need to be set up. Once the mathematical model is ob-
tained, it needs to be implemented in FLUENT. This is done by writing a User Defined
Function (UDF), which is a user-written program that can be dynamically loaded with
the FLUENT solver to customize FLUENT to the specific modelling needs of the user.
The mesh is created using the program Gambit and/or T-Grid. In order to assess the
accuracy and shortcomings of the developed mathematical model, several validation sim-
ulations must be performed. The validation process compares the results of the developed
numerical model with the results of a full blade modelling simulation. The full propeller
blade modelling simulations make use of the Reynolds-Averaged Navier-Stokes equations
(RANS) and were obtained by B. Marinus (Marinus [2007]). If the results of the vali-
dation simulations are accurate enough, one is able to apply this numerical model to a
simplified aircraft model to investigate the interaction between propeller installation and
wing. The aircraft model will consist only of a fuselage, clean wing (no high-lift devices
incorporated) and engine installation. The tail surfaces can be neglected since the goal
of the thesis only comprises the investigation of the influence of interaction effects on
the aerodynamic flow field without looking at stability and control characteristics. The
rotation direction of the propellers will be varied in order to study the importance of
rotation sense on propeller-wing interaction effects. Special attention will be paid to the
down-between-engine concept: two propeller engines, placed on the same wing, which
rotate in opposite direction. A schematical representation of the set-up of the thesis can
be found in Figure 1.1.
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Figure 1.1: Thesis set-up.



Part I: Theory

This part of the thesis elaborates on the background theory, which is necessary to under-
stand the chapters, which treat the validation of the numerical model and the propeller-
wing interaction study. As stated in section 1.2 the goal of the thesis is to investigate
the influence of rotation sense of the propellers on propeller-wing interaction effects for
a large multi-engined military transport aircraft. Since stability and control character-
istics are of no interest the airplane geometry can be simplified: it only consists of a
simplified fuselage, a clean wing and engines (nacelles+propellers). Since the aircraft
geometry is assumed to be symmetric, only half of the geometry needs to be modelled.
A representation of the geometry of the airplane can be found in Figure 1.2 and a de-
tailed description of the creation of this geometry and its mesh can be found in section 5.1.

Figure 1.2: Simplified aircraft model and area of interest.

The main interest of this study is to evaluate how the propeller slipstream changes the
aerodynamic performance of the wing for different rotation directions of the propellers.

5
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Hence the main area of interest is indicated by the box in Figure 1.2. The main actors
influencing propeller-wing interaction effects are the wing, the propellers and nacelles.
Section 2.1 will give a clear description of the mutual interaction effects between these
components. Then a clear introduction to propeller terminology will be given such that
the different mathematical theories that were developed to model propeller induced flow
can be introduced in section 2.3.
The last chapter of this part of the thesis is named “Numerical considerations” and
consists of 2 sections. The first section will introduce the terminology concerning meshing
and general guidelines for grid creation. The last section will discuss the settings available
in FLUENT which were used during the simulations.



Chapter 2

Background theory

2.1 Propeller, nacelle and wing interaction effects

The flow field of an isolated propeller or stand-alone propeller and an installed propeller
(nacelle and/or wing included) differs significantly. The upwash induced by the wing
influences the flow field of the propeller blades, which will be discussed in section 2.1.1.
Most propeller-driven airplanes use nacelles to incorporate the engine installation aero-
dynamically in the design. The presence of the nacelle influences the flow field of the
propeller while the propeller itself also influences the flow around the nacelle. Section
2.1.2 will discuss how the interaction effects cause loads on the propeller hub, while the
overall effects on and caused by the nacelle are shortly discussed in section 2.1.3. At
the same time, the flow field of a wing emersed in the propeller slipstream has different
aerodynamic properties than a clean wing as will be discussed in section 2.1.4.

2.1.1 Effect of the wing on the propeller.

The upwash induced by the airplane’s wing changes the local angle of attack of the pro-
peller blades similar to an uninstalled propeller subjected to an angle of attack (see Figure
2.1). The effective velocity experienced by the downward rotating blade is increased by
the wing’s upwash, which leads to a local angle of attack increase. This results in an
increase in elemental lift and blade loading, which augments the thrust and torque on the
blade.

The upward rotating blade on the other hand experiences a decrease in the local angle of
attack leading to a decreased elemental lift and blade loading. Thus the upward rotating
blade experiences a decrease in thrust and torque.

2.1.2 Effect of the propeller-wing configuration on the propeller hub.

The effects of the propeller-wing configuration on the hub of a propeller are caused by the
interaction of the propeller and the wing’s circulation. The propeller hub loads that are

7
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Figure 2.1: Effect of the wing’s upwash on the propeller blades. “Veldhuis [2005]”

caused by these interaction effects were investigated by Witkowsky and Lee (Witkowsky
et al. [1988]). Their main results are summarized below .

Figure 2.2: Influence of the wing upwash on the propeller blades of a tractor configuration.
“Witkowsky et al. [1989]”

The effects of the wing’s upwash on the propeller blades was discussed previously in
section 2.1.1. The resulting hub loads can be found in Figure 2.2. Since the thrust is
increased on the downward going blade and decreased on the upward rotating blade, there
will be an imbalance in thrust causing a yawing moment on the hub.

Figure 2.3: Influence of the wing circulation on the propeller blades of a tractor configura-
tion. “Witkowsky et al. [1989]”

The hub side force and pitching moment are caused by the influence of the wing circulation
on the axial velocity at the propeller plane. At the blade below the wing there is a
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decrease in axial velocity, leading to an increase in angle of attack of the blade and its
loads. Concurrently, the blade which is situated above the wing experiences an axial
velocity increase leading to a decrease in angle of attack of the blade and its loads. This
difference in axial velocity for the blades situated below and above the wing causes an
imbalance in thrust force which result in a hub pitching moment. The resulting imbalance
in tangential force causes a hub side force, as can be seen in Figure 2.3.

As follows from the previous discussion the hub loads affect the aircraft’s stability and
structural integrity. This thesis will not investigate these effects so they are not included
in the numerical simulations.

2.1.3 Effect of the nacelle on the propeller and vice-versa.

The presence of the nacelle changes the velocity field with respect to the one of an iso-
lated propeller. For today’s common used nacelle types, the local velocity distribution is
higher than freestream, changing to freestream toward the tip of the propeller blade as
can be seen from Figure 2.4. This non-uniform axial velocity distribution is caused by
the blockage effect introduced by the presence of the nacelle and will affect the thrust
distribution along the blade.

Figure 2.4: Influence of the nacelle on the velocity over the propeller blades. “Veldhuis
[2005]”

There is also a strong effect of the propeller on the nacelle leading to propeller-nacelle
interaction effects due to an increase in axial and tangential velocity downstream of the
propeller. The velocity changes inside the propeller slipstream increases the drag of the
nacelle. This drag can even be further increased due to flow separation (Borst [1981]).

This thesis investigates the effects of different propeller rotations on the wing, therefore
from all above mentioned effects only the non-uniform axial velocity distribution will
be taken into account; since this has a strong influence on the flow downstream of the
propeller.

2.1.4 Effect of the propeller slipstream on the wing

By using numerical and experimental methods, one came to the conclusion that the
propeller-wing interaction effects for certain tractor propeller configurations resulted in
significant wing drag reduction (Witkowsky et al. [1988], Witkowsky et al. [1989] and
Veldhuis [2005]). This section will elaborate how this drag reduction can be obtained.
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Consider an infinite wing, which does not produce lift at zero angle of attack. The
propeller swirl produces regions of propeller upwash and downwash on the wing. The
section of the wing which is situated in the upwash region experiences a local increase in
angle of attack leading to an increase in local lift coefficient and thus an augmentation of
the lift. Furthermore the force vector is tilted forward which leads to a positive lift and
negative drag component or thrust (See Figure 2.5).

Figure 2.5: Local forces on a wing section located inside the propeller upwash region (left)
and the propeller downwash region(right).

If the wing is located in the downwash region of the propeller, the local angle of attack
is decreased. This leads to a decrease in local lift coefficient and the force vector is tilted
backwards producing a negative lift component and a negative drag component.

Suppose now that the infinite wing is given a positive angle of attack. The generated local
force vector in the upwash region is augmented and rotated forward as before leading to a
positive lift and reduction in drag. In the propeller downwash region the local force vector
is diminished and rotated backward producing positive lift and drag. The net induced
drag loading on the wing is still less since the forward rotating force vector is increased
and the backward rotating force vector decreased.

If the wing is finite, the wing spanload affects the drag reduction which is obtained by
propeller-wing interaction. For finite wings the wing lift loading is larger inboard than
outboard. This causes a larger drag reduction for inboard up rotating propellers compared
to outboard up rotating propellers. A change in a wing’s spanloading will thus either
augment or diminish the spanload gradients resulting in better or worse performance
characteristics when compared to the original wing. Since spanload gradients are the
strongest near the wing tip the positive effect of the propeller slipstream will be stronger
if the propeller is placed there (Miranda & Brennan [1986]).

As discussed earlier, there is an increase in axial velocity inside the propeller slipstream
and a large amount of swirl. Since the axial velocity inside the slipstream is higher than on
the clean wing, there is an increase in dynamic pressure. This increase in dynamic pressure
does not change the local lift and drag coefficients when based on the local flow conditions
inside the slipstream. However it does increase the local lift and drag coefficients when
based on the undisturbed flow conditions. For a propeller at zero angle of attack the
axial velocity distribution is symmetrical with respect to the thrust axis. Therefore the
change in lift and drag coefficients will also behave symmetrical (See Figure 2.6). The
axial velocity does however differ in radial direction, thus the increase in dynamic pressure
depends on the vertical position of the propeller with respect to the wing.

As discussed previously, the tangential velocity in the slipstream causes an angle of at-
tack increase or decrease depending on the fact whether the blade is going upwards or
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Figure 2.6: Effect of Axial Velocity on the the wing lift coefficient. “Veldhuis [2005]”

downwards in front of the wing, see Figure 2.7 .

Figure 2.7: Effect of swirl for Outboard up rotation (left) and Inboard up rotation (right).

An increase in local angle of attack leads to an increase in local lift coefficient while a
decrease in local angle of attack leads to a decrease in local lift coefficient. The effect of
the tangential velocity on the local lift coefficient of the wing is anti-symmetrical and is
depicted in Figure 2.8.

Figure 2.8: Effect of Tangential Velocity on the the wing lift coefficient. “Veldhuis [2005]”
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It should be noted that Figure 2.6 and 2.8 only show the effect of the propeller on the wing
inside the slipstream. However the propeller also influences the wing regions outside the
slipstream. This is caused by the distortion of the vorticity sheet, when leaving the wing.
Combining the effects of the axial and tangential velocity and also taking the influences
on the wing parts outside the slipstream into account leads to Figure 2.9.

Figure 2.9: Effect of propeller slipstream on the wing lift coefficient. “Veldhuis [2005]”

The modification of the wing’s local angle of attack caused by the propeller swirl can be
predicted by the actuator disk model as was pointed out by Colin et al. [1996]. Further-
more Feng [2001] showed that the actuator disk approach manages to model propeller-
wing interaction effects reasonably accurate, even when the fuselage, nacelle and flaps are
included in the geometry.
It should be noted that the influence of the propeller slipstream on the wing’s wake will
not be investigated.
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2.2 General definitions and terminology

This chapter will shortly discuss the basic terminology and definitions used in propeller
aerodynamics, which will be used throughout this document.
For several classical propeller theories such as the blade element method, a propeller blade
is divided into several blade elements. Consider such a blade element extending over an
elementary height dr along the radius at a distance rp from the axis of rotation as shown
in Figure 2.10.

The propeller has an angular velocity Ωp. The blade element has a chord length, c, while
the angle between the chord line of the blade element and the plane of rotation is β. The
advance angle, φ0, is defined by the freestream velocity, V∞, and the rotational velocity
as follows:

φ0 = arctan
V∞

Ωprp
=

V∞
2πnrp

(2.1)

with: n=number of revolutions per unit time

As can be seen from Eq (2.1) the advance angle decreases from root to tip for specified
values of freestream and angular velocity.

If one neglects the induced velocities due to the vortex system, the velocity of the blade
element relative to the air is given by Eq (2.2)

Vrel =
√
V 2
∞ + (Ωprp)2 (2.2)

Applying the concept of airfoil theory to the propeller, it is apparent that there must be a
circulation of flow around the blades in order to produce lift. This circulation is caused by
the presence of a vortex line bound to the blade and running from root to tip. According
to the vortex theory, a vortex line cannot begin nor end abruptly. So this bound vortex
continues as two free vortices, one emerging from the tip and the other one from the root
of the blade. The induced velocity vi can be broken down in 3 components:

• the axial induced velocity va

• the tangential induced velocity vθ

• the radial induced velocity vr

Compared to the axial and tangential induced velocity, the radial induced velocity is
small and is therefore often neglected in calculations. The radial induced velocity is not
displayed in Figure 2.10 since it is in the direction perpendicular to the page. The induced
velocity shifts the flow under an angle αi, which is called the induced angle of attack. So
the actual flow acting on the blade element makes an angle φ with the plane of rotation.
This so called aerodynamic advance angle or inflow angle is given by Eq (2.3).

φ = arctan
V∞ + va

Ωprp − vθ
(2.3)
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Figure 2.10: Terminology of a blade element. “Jansen [1991]”
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The effective velocity can be calculated as:

Ve =
√

(V∞ + va)2 + (Ωprp − vθ)2 (2.4)

The difference between the blade angle and the inflow angle is the effective angle of attack
αe:

αe = β − φ (2.5)

The drag works in the direction of the effective velocity and the lift acts perpendicular
to it. The thrust and torque force can be found by decomposing the lift and drag forces
respectively onto the axis of rotation and the plane of rotation. The thrust T and torque
Q can also be expressed in terms of the following non-dimensional coefficients:

• Thrust Coefficients

CT =
T

ρn2D4
(2.6)

C ′T =
T

ρV 2
∞D

2
(2.7)

C ′′T =
T

1
2ρV

2
∞S

(2.8)

• Torque Coefficients

CQ =
Q

ρn2D5
(2.9)

C ′Q =
Q

ρV 2
∞D

3
(2.10)

• Power Coefficient

CP =
P

ρn3D5
(2.11)

Equations (2.6) and (2.9) are referenced to the propeller characteristics such as the number
of revolutions per unit time and the propeller diameter while Equations (2.7) and (2.10)
are referenced to the freestream velocity and propeller diameter.

Eq (2.8) can be compared to the aircraft’s coefficients since they both use the wing area
and dynamic pressure as reference variables, but it is not commonly used nowadays.

Eq (2.7) and Eq (2.10) can also be expressed in terms of the non-dimensional Advance
Ratio J, which is a measure of the advance of the propeller per revolution:

J =
V∞
nD

(2.12)

Substitution of the expression for J into Eq (2.7) and Eq (2.10) leads to the following
expressions:

C ′T =
CT
J2

(2.13)



16 Background theory

C ′Q =
Q

J3
=
CQ
J2

(2.14)

Dimensional analysis shows that these coefficients are a function of advance ratio, blade
angle, Mach number and Reynolds number. So CT = f(J, β,M,Re) and CQ = f(J, β,M,Re).

Other important parameters of the propeller are:

• Propeller net efficiency

η =
TV∞
P

(2.15)

with: P = Propeller shaft power

Eq (2.15) can also be expressed in terms of the non-dimensional coefficients, CT ,
CQ and J as follows:

η =
CTJ

CP
(2.16)

• Propeller solidity, which is the ratio of blade area to disk area:

σ =
Bc

2πrp
(2.17)

with:
B = Number of blades
c = Chord of a blade element

2.3 The actuator disk theory

Over the past centuries several mathematical models have been developed to predict
propeller induced flow. From a previously performed literature study Lino [2010] it was
concluded that from all these theories, the actuator disk theory would comply the best
with the stated thesis objectives. Therefore this chapter will be dedicated to the derivation
of the actuator disk theory. The axial momentum theory was developed in the 19th
century and is a very simple model since it neglects the swirl velocity inside the slipstream.
Therefore the axial momentum theory was later updated into the general momentum
theory, which does take the effect of propeller swirl into account. This chapter consists
of 3 subsections and is based on references Durand & Glauert [1935], De Lathouder
[1948], Ruijgrok [1996] , Carlton [2007], Phillips [2004] and Jansen [1991]. The first
subsection will treat the simple axial momentum theory to make the reader familiar with
the basic concepts of the actuator disk theory. The second subsection will derive the
general momentum theory which does include the tangential and radial induced velocity
in its derivation. However no general expression for the radial induced velocity was
obtained in this section. The last subsection will introduce a general momentum theory
which takes the tangential and radial induced velocity into account and will give general
expressions to determine the axial, tangential and radial induced velocities. This theory
for variable blade loading was developed by J.T Conway (Conway [1995]) and will be used
in the numerical simulation to study propeller-wing interaction effects.
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2.3.1 Axial Momentum theory

The axial momentum theory was developed by Rankine in 1865 for marine propellers.
This simple theory is based on the following assumptions:

• The flow is considered to be incompressible and inviscid.

• The propeller acts as a disk with an infinite number of blades (actuator disk).

• The flow through the disk is uniform and there is no rotational motion in the
slipstream.

• The propeller produces a pressure jump across the disk equal to the thrust per unit
area of the disk.

It is assumed that the pressure perturbations induced by the propeller vanish far upstream
and far downstream of the propeller. Since the propeller does not influence the flow far
upstream of the propeller, its velocity is that of the freestream. A propeller sucks in
air through its disk area, so the velocity just in front of the disk must be greater than
freestream. According to Bernoulli’s Equation the pressure just in front of the propeller
must then be less than ambient and the continuity equation states that the area of the
streamtube must decrease (See Figure 2.11). Since the disk adds mechanical energy to
the flow which passes through it, the velocity far behind the propeller will become larger
than freestream. Because of the increase in energy of the flow just behind the propeller,
the pressure will be greater than ambient, but its velocity will be the same as just in front
of the disk. Far behind the disk, in the slipstream, the pressure will return to ambient
pressure.

Let Vas be the axial velocity in the ultimate slipstream, where the pressure has returned
to its original value. If ρ is the density of the flow and As the cross-sectional area of the
slipstream, then the thrust of the propeller is given by:

T = ρVasAs(Vas − V∞) (2.18)

Eq (2.18) states that the thrust of the propeller is equal to the time rate of change of
axial momentum. The thrust is also represented by the increase of pressure at the disk:

T = Ap(p2 − p1) = Ap∆p (2.19)

Application of Bernoulli’s equation upstream and downstream of the disk leads to the
following set of equations:

• Upstream of the disk:

p0 +
1

2
ρV 2
∞ = p1 +

1

2
ρV 2

ap (2.20)

• Downstream of the disk:

p2 +
1

2
ρV 2

ap = p0 +
1

2
ρV 2

as (2.21)
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Figure 2.11: Velocity and static pressure distribution according to the axial momentum
theory. “Ruijgrok [1996]”

By subtracting Eq (2.21) from Eq (2.20), one finds the following results:

1

2
ρ(V 2
∞ − V 2

as) = p1 − p2 = −∆p (2.22)

⇒ ∆p =
1

2
ρ(V 2

as − V
2
∞) (2.23)

Filling in Eq (2.23) into Eq (2.19) gives the following formula:

T =
1

2
ρAp(V

2
as − V

2
∞) (2.24)

The continuity condition states that:

VapAp = VasAs (2.25)

Combining Eq (2.18), Eq (2.24) and Eq (2.25) leads to the following result:

T = ρApVap(Vas − V∞) =
1

2
ρAp(V

2
as − V

2
∞)

⇒ Vap(Vas − V∞) =
1

2
(V 2
as − V

2
∞)

Or

Vap =
1

2

(V 2
as − V

2
∞)

(Vas − V∞)
(2.26)
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Vap =
1

2
(V∞ + Vas) (2.27)

Eq (2.27) states that the axial velocity at the actuator disk is the arithmetic mean of the
axial freestream velocity V∞ and the axial slipstream velocity Vas . The axial velocity is
the sum of the freestream velocity and the induced axial velocity, va. The axial velocity
at the actuator disk and in the ultimate slipstream are then given by Eq (2.28) and Eq
(2.29), respectively.

Vap = V∞ + vap (2.28)

Vas = V∞ + vas (2.29)

Combining Eq (2.27), Eq (2.28) and Eq (2.29) leads to formula (2.30).

vap =
1

2
vas (2.30)

From Eq (2.30) one can conclude that the induced axial velocity at the propeller plane is
half the value of the axial induced velocity in the slipstream.

The propeller power P is equal to the increase of kinetic energy of the air mass flow rate:

P =
1

2
ρApVap(V

2
as − V

2
∞) (2.31)

From Eq (2.15) the propulsive efficiency can then be expressed as:

η =
ρVasAs(Vas − V∞)V∞

1
2ρApVap(V

2
as − V 2

∞)

⇒ η =
2V∞

Vas + V∞
(2.32)

Eq (2.32) states that the propulsive efficiency increases as the slipstream velocity de-
creases.

Filling in Eq (2.27) into Eq (2.32) leads to the following expression:

η =
V∞
Vap

(2.33)

The efficiency can also be expressed in terms of the thrust. Combining Eq (2.18) and Eq
(2.25) leads to the following equation:

T = 2ρVapAp(Vap − V∞) (2.34)

Eq (2.34) can be rewritten as an ordinary second order equation in Vap as follows:

2ρApV
2
ap − 2ρApV∞Vap − T = 0 (2.35)
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Solving Eq (2.35) for Vap gives:

Vap =
V∞
2

+

√
V 2
∞
4

+
T

2ρAp
(2.36)

Using Eq (2.36), the induced axial velocity can be determined by means of Eq (2.37).

vap =

√
V 2
∞
4

+
T

2ρAp
− V∞

2
(2.37)

Filling in the obtained expression for Vap into Eq (2.33) leads to the following expression:

η =
V∞

V∞
2 +

√
V 2
∞
4 + T

2ρAp

(2.38)

Or

η =
2

1 +
√

1 + T
1
2
ρV 2
∞Ap

(2.39)

Eq (2.38) expresses the propulsive efficiency in function of the propeller area, thrust and
freestream velocity. However keep in mind that this propulsive efficiency is the theoretical
upper limit of the attainable propulsive efficiency since the axial momentum theory does
not include any losses such as the turbulent mixing and the rotational energy of the air
lost in the slipstream.

2.3.2 General Momentum theory

The axial momentum theory which was derived in the previous section was based on the
assumption that a propeller can be replaced by an actuator disk which produces a sudden
increase in pressure at the disk without a change in velocity. The rotational motion in
the slipstream was neglected. In order to have a more realistic representation of the
flow, the rotational motion has to be included in the analysis. R.E. Froude improved the
axial momentum theory by including the rotational velocity to the slipstream induced by
the propeller, while the axial and radial components remain unchanged. This so called
General Momentum Theory will be elaborated in this section.
Since fluid rotation is taken into account in this model, the assumption of a uniform
pressure distribution is no longer valid when a finite amount of thrust is supposed to be
generated by the propeller. Therefore the pressure inside the slipstream tube is allowed
to depend on the axial and radial position. When the air flows through the propeller,
it is subjected to an angular velocity. However far upstream of the propeller plane, the
angular velocity is zero, hence the angular velocity must also be zero everywhere inside
the streamtube upstream of the propeller plane. Define rp as the radial distance to an
annular element of the propeller disk. The terms Va and Vr are then respectively the axial
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and radial components of the fluid velocity. The pressure just in front of the propeller
is called p, while ∆p is the increase in pressure just behind the propeller associated with
an angular velocity ω2. Let ps be the pressure, Vas the axial velocity and ωs the angular
velocity in the ultimate slipstream at a radial distance rs from the axis of rotation. Eq
(2.40) then states the condition for constancy of angular momentum of the fluid as it
passes down the slipstream. A representation of the slipstream tube can be found in
Figure 2.12.

Figure 2.12: Representation of a streamtube. “Sanchez-Caja [2009]”

ωsr
2
s = ω2r

2
p (2.40)

Because of Bernoulli’s theorem, the axial velocity increases from far upstream of the
propeller (region 0) to the near upstream side of the propeller(region 1). Since the static
pressure is equal to ambient pressure far upstream of the propeller and decreases to a
value below ambient at the near upstream side of the propeller. The pressure at the near
downstream side of the propeller plane (region 2) is higher than ambient and decreases
back to ambient pressure in the ultimate slipstream (region s). Because of this increase
in axial velocity, the slipstream tube contracts radially. The amount of contraction of
the streamtube increases with increasing distance downstream of the propeller. From Eq
(2.40) it follows that the angular velocity inside the slipstream will increase when moving
further downstream of the propeller.

Applying the continuity equation to any segment of the propeller disk leads to Eq (2.41).

Va1 = Va2 (2.41)

Since ω1 = 0 the term Va1 can be expressed as follows:

Va1 = V∞ + vap (2.42)

By combining Eq (2.41) and Eq (2.42) the axial velocity near the downstream side of the
propeller can be expressed with formula (2.43).

Va2 = V∞ + vap (2.43)

Applying Bernoulli’s equation upstream and downstream of the propeller leads to:
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• Upstream of the propeller

pt0 = p0 +
1

2
ρV 2
∞ = p1 +

1

2
ρ(V 2

ap + V 2
rp) (2.44)

• Downstream of the propeller

pts = p2 +
1

2
ρ(V 2

ap + V 2
rp + ω2

2r
2
p) = ps +

1

2
ρ(V 2

as + ω2
sr

2
s) (2.45)

= p1 + ∆p+
1

2
ρ(V 2

ap + V 2
rp + ω2

2r
2
p) = ps +

1

2
ρ(V 2

as + ω2
sr

2
s) (2.45b)

Taking the difference of Eq (2.44) and Eq (2.45b) gives:

ps − p0 +
1

2
ρ
(
V 2
as + ω2

sr
2
s − V 2

∞
)

= p2 − p1 +
1

2
ρω2

2r
2
p (2.46)

The difference in total pressure can also be expressed by Eq (2.47).

pts − pt0 = ∆p+
1

2
ρω2

2r
2
p (2.47)

Eq (2.47) states that the increase in total pressure through the propeller is larger than
the pressure increase ∆p. One must include the kinetic energy of the rotational motion
imparted to the fluid by the torque of the propeller. The difference in static pressure can
be determined as follows:

p0 − ps =
1

2
ρ(V 2

as − V
2
∞) +

1

2
ρ(ω2

sr
2
s − ω2

2r
2
p)−∆p (2.48)

From Eq (2.48) it follows that the pressure in the slipstream ps is normally less than the
ambient pressure p0.

In the ultimate slipstream, the flow becomes independent of the axial position. Therefore
the continuity and momentum equations in radial coordinates for this steady, incom-
pressible, inviscid and axisymmetric flow can be expressed in the ultimate slipstream as
follows:

∂(rsVrs)

∂drs
= 0 (2.49)

ρ

(
Vrs

∂Vrs
∂drs

−
V 2
θs

rs

)
= −∂ps

∂rs
(2.50)

ρ

(
Vrs

∂Vθs
∂drs

+
VrsVθs
rs

)
= 0 (2.51)

ρVrs
∂Vas
∂drs

= 0 (2.52)
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Since there is no radial velocity at the outer edge of the ultimate slipstream, Eq (2.49)
reduces to:

Vrs = 0 (2.53)

Formula (2.53) states that there is no slipstream contraction in the ultimate slipstream.

Eq (2.51) and Eq (2.52) comply with Eq (2.53) while Eq (2.50) can be rewritten as:

∂ps
∂rs

= ρ
V 2
θs

rs
= ρω2

srs (2.54)

The pressure at the outer edge of the slipstream, where rs = Rs is equal to the freestream
pressure, p∞. Using this boundary condition and integrating Eq (2.54) gives the following
relation:

ps = p∞ −
ρω2

s

2

(
R2
s − r2

s

)
or ps − p∞ = −ρω

2
s

2

(
R2
s − r2

s

)
(2.55)

Substituting formula (2.55) into Eq (2.46) leads to Eq (2.56):

ρω2
s

(
r2
s −

R2
s

2

)
+

1

2
ρ
(
V 2
as − V

2
∞
)

= p2 − p1 +
1

2
ρω2

2r
2
p (2.56)

By applying conservation of mass Eq (2.57) is obtained.

πr2
pρ
(
V∞ + vap

)
= πr2

sρVas (2.57)

Rewriting Eq (2.57) in terms of rs leads to the following expression for rs:

rs =

√
V∞ + vap
Vas

rp (2.58)

Substituting above expression for rs into Eq (2.56) and Eq (2.40) leads to Eq (2.59) and
Eq (2.60) respectively.

ρω2
s

(
r2
p −

R2
p

2

)
V∞ + vap
Vas

+
1

2
ρ
(
V 2
as − V

2
∞
)

= p2 − p1 +
1

2
ρω2

2r
2
p (2.59)

ω2rp =
V∞ + vap
Vas

rpωs (2.60)

Substituting Eq (2.60) into formula (2.59) leads to Eq (2.61).

ρω2
s

(
r2
p −

R2
p

2

)
V∞ + vap
Vas

+
1

2
ρ
(
V 2
as − V

2
∞
)

= p2 − p1 +
1

2
ρ

(
V∞ + vap
Vas

)2

r2
pω

2
s (2.61)

Eq (2.61) can be rewritten in terms of the static pressure difference as follows:

p2 − p1 = ρω2
s

[(
1−

V∞ + vap
Vas

)
r2
p −

R2
p

2

]
V∞ + vap
Vas

+
1

2
ρ
(
V 2
as − V

2
∞
)

(2.62)
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By extending the analysis of the previous section, one obtains the following equation of
axial momentum for the propeller:

T =

∫
ρVas(Vas − V∞)dAs −

∫
(p0 − ps)dAs (2.63)

Filling in Eq (2.55) above formula can be rewritten as:

T +

∫ Rs

rs=0

ρω2
s

2

(
R2
s − r2

s

)
2πrsdrs =

∫ Rs

rs=0
ρVas(Vas − V∞)2πrsdrs (2.64)

Integrating Eq (2.64) leads to to Eq (2.65).

T = ρπR2
s

(
Vas(Vas − V∞)− R2

sω
2
s

4

)
(2.65)

By using Eq (2.58) formula (2.66) is obtained.

T = ρπR2
p

[
(V∞ + vap)(Vas − V∞)−

(
V∞ + vap
Vas

)2

ω2
sR

2
p

]
(2.66)

The total thrust can also be expressed by means of Eq (2.67).

T =

∫
Ap

(p2 − p1)dAp =

∫ RP

rp=0
(p2 − p1)2πrpdrp (2.67)

Integrating Eq (2.67) yields:

T =
1

2
ρπR2

p

[
V 2
as − V

2
∞ −

(
V∞ + vap
Vas

)2

ω2
sR

2
p

]
(2.68)

Combining Eq (2.66) and Eq (2.68) gives the following result.

T =
1

2

(
V 2
as − V

2
∞
)

= (V∞ + vap)(Vas − V∞) (2.69)

Solving Eq (2.69) for the axial velocity in the slipstream Vas lead to Eq (2.70).

Vas = V∞ + 2vap (2.70)

Eq (2.70) is identical to the expression for Vas , obtained by the axial momentum theory
(section 2.3.1).

The propeller torque can be determined by means of Eq (2.71).

dQ =

∫
As

ωsr
2
sdṁ =

∫ Rs

rs=0
ωsr

2
sρVas2πrsdrs (2.71)
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Integrating Eq (2.71) and using Eq (2.58) leads to Eq (2.72)

dQ = πρ
(V∞ + vap)

2

2Vas
ωsR

4
p (2.72)

The brake power of the propeller can be expressed with formula (2.73)

dQΩp =

∫
As

(
hs − h∞ +

V 2
as + (ωsrs)

2 − V 2
∞

2

)
dṁ (2.73)

For uniform, incompressible flow formula (2.73) can be rewritten as:

dQΩp =

∫ Rs

rs=0

(
ps
ρ
− p∞

ρ
+
V 2
as + (ωsrs)

2 − V 2
∞

2

)
ρVas2πrsdrs (2.74)

Integrating above equation and applying Eq (2.58) yields the following expression:

dQΩp =
1

2
πR2

pρ(V∞ + vap)
(
V 2
as − V

2
∞
)

(2.75)

By combining Eq (2.72) and Eq (2.75) the following expression is found for the determi-
nation of the angular velocity in the slipstream ωs:

ωs =
Vas
(
V 2
as − V

2
∞
)

ΩpR2
p(V∞ + vap)

(2.76)

By substituting Eq (2.70) and Eq (2.76) into Eq (2.69) the total thrust can also be
expressed with formula (2.77).

T = 2πR2
pρ(V∞ + vap)vap

[
1−

2(V∞ + vap)vap
Ω2
pR

2
p

]
(2.77)

The propeller brake power can be expressed as:

T = ΩpQ = 2πR2
pρ(V∞ + vap)

2vap (2.78)

The propeller net efficiency can be determined by means of Eq (2.15), which can be
rewritten as Eq (2.79) after substitution of formulae (2.77) and (2.78).

η =
V∞

V∞ −
2V∞vap
Ω2
pR

2
p

(2.79)

Eq (2.77) is an ordinary second order equation in terms of (V∞ + vap)vap . Solving this
equation for (V∞ + vap)vap leads to formula (2.80).

(V∞ + vap)vap =
Ω2
pR

2
p

4

(
1±

√
1− 4T

πρΩ2
pR

4
p

)
(2.80)
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Solving Eq (2.80) for the induced axial velocity term vap leads to Eq (2.81).

vap =

√√√√V 2
∞
4

+
Ω2
pR

2
p

4

(
1±

√
1− 4T

ρπΩ2
pR

4
p

)
− V∞

2
(2.81)

Since the induced axial velocity has to be finite and positive if the angular velocity of the
propeller becomes large, Eq(2.81) reduces to:

vap =

√√√√V 2
∞
4

+
Ω2
pR

2
p

4

(
1−

√
1− 4T

ApρΩ2
pR

2
p

)
− V∞

2
(2.82)

By comparing Eq (2.82) with Eq (2.37) it can be seen that the slipstream rotation increases
the induced axial velocity. Figure 2.13 displays the difference in propeller net efficiency
and induced axial velocity when using the axial and general momentum theory. The
displayed error in the plots is given with respect to the general momentum equations.
This implies that the induced axial velocity is underestimated while the propeller net
efficiency is overestimated when slipstream rotation is neglected.

Figure 2.13: Errors introduced by neglecting slipstream rotation for the induced axial veloc-
ity (a) and propeller net efficiency (b). “Phillips [2004]”

2.3.3 Analytical model for an actuator disk with variable radial loading
distribution

This section will derive the expressions for the axial, tangential and radial velocities at
the outflow plane of a general radial loaded actuator disk and is split into two subsections.
The first subsection will treat the derivation of the expressions of the axial, tangential and
radial induced velocities as obtained by J.T. Conway (Conway [1995]). This derivation
is only a short summary of these formulae, for a more detailed discussion the reader is
referred to Conway [1995]. The second subsection will show how the analytical solution as
obtained by J.T. Conway are used to find expressions for the axial, tangential and radial
velocities which will be implemented in the UDF in order to simulate propeller induced
flow.
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Original expressions for the axial, tangential and radial velocities induced by
the actuator disk

The Biot-Savart law linearly relates the instantaneous velocity fields to the instantaneous
vorticity distribution for an unsteady, incompressible flow. This implies that the time-
averaged velocity fields are given by the steady flow induced by the time-average of the
vorticity distribution. The time-averaged velocity field induced by a propeller can be
approximated by an actuator disk model if the bound circulation of the propeller blades
is represented by straight lifting lines which lie in a plane. The time-average of the bound
and shed vorticity of a propeller is the superposition of the vorticity distribution shown
in Figure 2.14 . These two self-conservering vortex systems (ring and longitudinal vortex
system) consist of four vortex distributions which are responsible for the axial, tangential
and radial induced velocities:

1. A vortex tube consisting of ring vortices.

2. A constant-strength hub vortex along the axis of symmetry.

3. A distribution of radial vorticity on the actuator disk.

4. A surface distribution of vorticity on the slipstream surface normal to the ring
vortices and equal in strength to the hub vortex.

Figure 2.14: Vortex systems for a uniformly loaded actuator disk. (a) Ring vortex system.
(b) Longitudinal vortex system. “Conway [1995]”

The ring vortex system consists only of the ring vortices and is directly responsible for
the slipstream contraction and all axial and radial induced velocities. The induced axial
velocity is derived by constructing the velocity and potential fields induced by a ring vor-
tex as integrals over the allowed values of the separation constant of the eigensolutions of
Laplace’s equation in cylindrical coordinates. The ring vortex solutions are then combined
to give the solution for a general loaded actuator disk as triple integrals of these eigenso-
lutions. The integrals are first integrated in radial direction to give analytical solutions
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in terms of elliptic integrals for the velocities and of vector potential by representing the
radial variation as an even polynomial. One then obtains Eq (2.83), which is also given
in the elementary momentum theory.

va(r, 0) =
va(r,∞)

2
(2.83)

Eq (2.83) and all following equations are written in cylindrical coordinates (r, θ, x) with the
x-axis pointing downstream and aligned with the propeller axis. The origin is positioned
at the intersection of the x-axis actuator plane. Because of axisymmetric considerations,
the θ coordinate is neglected so that everything is expressed in terms of (r, x) coordinates.
Eq (2.83) states that the induced axial velocity at the actuator disk is half the value of
the induced axial velocity far downstream (in the ultimate wake).

The longitudinal vortex system consists of the hub vortex, the radial vorticity and the
vorticity on the slipstream surface. By using the axial symmetry of the distributions
together with Stoke’s theorem one can show that vθ is the only non-zero induced velocity
component for this system, regardless of axial position and contraction of the slipstream
and is given by Eq (2.84) and Eq (2.85). The term Rp in these two equations stands for
the tip radius of the actuator disk (i.e. the tip radius of the to be modelled propeller)

• Inside the slipstream (x > 0 and r < Rp)

vθ(r, x) =
Γ(r)

2πr
(2.84)

• Outside the slipstream (x < 0 or r > Rp)

vθ(r, x) = 0 (2.85)

Thus the induced tangential velocity is zero outside the slipstream and does not vary with
axial position within the slipstream. The blade-bound circulation, Γ(r), is given by Eq
(2.86).

Γ(r) =
4πva(r, 0) (V∞ + va(r, 0))

Ωp
(2.86)

where the term Ωp represents the angular velocity of the propeller.

The thrust on an annular element of the actuator disk is calculated from the pressure
discontinuity and is given by Eq (2.87).

dT (r) = 2πρr

[
2va(r, 0)(V∞ + va(r, 0))−

v2
θ(r,∞)

2

]
(2.87)
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The radial induced velocity for a general loaded actuator has a very complex integral
form. However the expression for the radial induced velocity for an elliptic axial velocity
inflow at the actuator disk is very simple and is given by Eq (2.88).

vr(r, 0) = −va(0, 0)πr

4Rp
(2.88)

If the actuator disk is combined with a nacelle, the term va(0, 0) is non-existing. It is

therefore assumed that va(0, 0) = va(r, 0) =
∫ rtip
rhub

va(r,0)
rtip−rhubdr.

Modification of the equations obtained by Conway

In order to be able to calculate the axial velocity at the outflow plane of the actuator
disk, one has to know the radial distribution of the thrust. It is valid to assume that the
velocity inside the ultimate slipstream is uniform, implying that the induced axial velocity
will also have a uniform distribution. This assumption enables the use of expressions for a
uniform induced axial velocity as obtained by Phillips (Phillips [2004]). A short derivation
of these equations is given below. The elemental thrust of an annular element, dT (r), can
be found by considering the momentum equation in axial direction inside the ultimate
slipstream.

dT (r) + (p∞ − ps)dAs = (Vas − V∞)dṁ (2.89)

with:
dṁ = ρVasdAs
dAs = 2πrsdrs

The term Vas is the axial velocity in the ultimate slipstream and is given by Eq (2.90) in
which the term va(r,∞) is assumed to be uniformly distributed.

Vas = V∞ + va(r,∞) (2.90)

= V∞ + va(r,∞)

= V∞ +

∫ rtip

rhub

va(r,∞)

rtip − rhub
dr

= V∞ + 2vi (2.91)

The term vi in Eq (2.91) denotes the axial induced velocity of the uniform theory for
which va(r, 0) = vi should be true at any r. Note that with this theory vi is independent
of r and this is also the major shortcoming of this theory, since it implies that the load is
uniformly distributed on the actuator plane (dT (r) = constant), which is usually not the
case. Rewriting Eq (2.89) gives the following expression for dT :

dT (r) = 2πρrs(Vas − V∞)Vasdrs + (ps − p∞)2πrsdrs (2.92)

In order to find an expression for the pressure in the ultimate wake ps, consider the
continuity and momentum equation in radial coordinates. Since in the ultimate wake,
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the considered axisymmetric flow becomes independent of the axial position, they take
the following form:

∂(rsVrs)

∂drs
= 0 (2.93)

ρ

(
Vrs

∂Vrs
∂drs

−
V 2
θs

rs

)
= −∂ps

∂rs
(2.94)

Since there is no radial velocity at the outer edge of the ultimate slipstream, Eq (2.93)
reduces to:

Vrs = 0 (2.95)

Formula (2.93) states that there is no slipstream contraction in the ultimate wake.

Eq (2.95) then becomes:

∂ps
∂rs

= ρ
V 2
θs

rs
= ρω2

srs (2.96)

The pressure at the outer edge of the slipstream, where rs = Rs is equal to the freestream
pressure, p∞. Using this boundary condition and integrating Eq (2.96) gives the following
relation:

ps = p∞ −
ρω2

s

2

(
R2
s − r2

s

)
or ps − p∞ = −ρω

2
s

2

(
R2
s − r2

s

)
(2.97)

The expressions for the induced angular and axial velocity in the ultimate slipstream are
given by Eq (2.98) and Eq (2.99), respectively.

ωs =
4 (V∞ + 2vi) vi

ΩpR2
p

(2.98)

vi =

√√√√V 2
∞
4

+
Ω2
pR

2
p

4

(
1−

√
1− 4T

ApρΩ2
pR

2
p

)
− V∞

2
(2.99)

The expressions for the terms rs, drs and Rs can be found by considering the continuity
equation:

πr2
pρ (V∞ + vi) = πr2

sρVas (2.100)

Rewriting Eq (2.100) in terms of rs leads to the following expression for rs:

rs =

√
V∞ + vi
Vas

rp (2.101)

The formulae for Rs and drs are given by Eq (2.102) and Eq (2.103) respectively:

Rs =

√
V∞ + vi
Vas

Rp (2.102)
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drs =

√
V∞ + vi
Vas

dr (2.103)

where the term dr is the elemental width of an annular element at the outflow plane of
the actuator disk.

Now that all necessary parameters in the ultimate uniform slipstream are known, one is
able to calculate the elemental thrust term dT (r) by means of Eq (2.92). The obtained
elemental thrust can now be propagated back into Eq (2.87) to yield a non-uniform
distribution of va(r, 0). This relieves the uniform distribution hypothesis at the actuator
plane. In this newly obtained equation, the term vθ(r,∞) denotes the tangential induced
velocity in the ultimate slipstream and can also be expressed as follows:

vθ(r,∞) = ωsrs (2.104)

Where the term ωs stands for the angular induced velocity in the ultimate slipstream as
given by Eq (2.98).

By filling in the expression for ωs into Eq (2.87) and rewriting in terms of va(r, 0) the
following ordinary second order equation is found:

v2
a(r, 0) + V∞va(r, 0)−

(
v2
θ(r,∞)

4
+

dT (r)

4πρrdr

)
= 0 (2.105)

Solving for va(r, 0) leads to the following expression for the axial induced velocity:

va(r, 0) =
1

2

(
−V∞ +

√
V 2
∞ + v2

θ(r,∞) +
dT (r)

ρπrdr

)
(2.106)

since the term 1
2

(
−V∞ −

√
V 2
∞ + v2

θ(r,∞) + dT (r)
ρπrdr

)
has no physical meaning.

The axial velocity at the outflow plane of the actuator disk is given by Eq (2.107).

Va(r, 0) = V∞ + va(r, 0) (2.107)

By filling in the expression for va into Eq (2.107), formula (2.108) is obtained.

Va(r, 0) =
V∞
2

+
1

2

(√
V 2
∞ + v2

θ(r,∞) +
dT (r)

ρπrdr

)
(2.108)

Since the tangential velocity is zero before the actuator disk, the tangential velocity can
be obtained by combining Eq (2.84), Eq (2.85) and Eq (2.86) which leads to Eq (2.109).

Vθ(r, 0) =
4πva(r, 0) (V∞ + va(r, 0))

2πrΩp
(2.109)
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The radial velocity is also zero before the actuator disk. The radial velocity at the actuator
plane can then be obtained by using Eq (2.110):

Vr(r, 0) = vr(r, 0) = −va(0, 0)πr

4Rp
(2.110)

Eq (2.108), Eq (2.109) and Eq (2.110) will be imposed at the actuator disk plane. The
rest of the computational domain, including the slipstream and its contraction initiated
at the actuator plane will be modelled using the Navier-Stokes equations.



Chapter 3

Numerical considerations

Chapter 2.3.3 discussed the derivation of the mathematical model which will be used in
the propeller-wing interaction study. As stated before, in order to ensure that the model
will perform its job correctly, it has to be validated first. This means that the results of
the chosen mathematical model have to agree well with reference data. For the validation
process, the wing will be omitted and a simulation will be performed which only involves
a propeller-nacelle configuration. In order to perform the simulation, the mathematical
model has to be translated into a UDF and a suitable mesh needs to be created. It is
inevitable that the UDF will depend on the geometric features of the propeller-nacelle
configuration and hence its mesh. It is therefore recommended that the reader is familiar
with the basic mesh terminology and procedure in order to understand the UDF set-
up which will be treated in Chapter 4.2. Therefore the first section of this chapter is
dedicated to the basic mesh terminology and general guidelines for meshing. The second
section will treat the FLUENT settings which were used during the validation and/or
propeller-wing interaction study.

3.1 General meshing terminology and guidelines

A mesh consists of different control volumes or cells. Each cell is defined by a set of nodes,
a cell center (centroid) and the faces that bound the cell. The terminology for a cell, face,
node and cell center can be found in Figure 3.1 for 2D and 3D grids.

The different cell types that can be used in 2 or 3-dimensional grids is depicted in Figure
3.2. In a 2-dimensional grid, there are 2 different cell types: quadrilateral and triangu-
lar. Hexahedral, tetrahedral, pyramid, wedge, and polyhedral cells are 3-dimensional cell
types.

The choice of cell type is important since it affects the time spent on grid creation, the
computational cost and the amount of numerical diffusion. A grid can be structured
or unstructured. In most cases, quadrilateral and hexahedral cells are used in structured
grids, while unstructured grids consist of triangular or tetrahedral cells. However it is also

33
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(a) Terminology for a 2D grid (b) Terminology for a 3D grid

Figure 3.1: Terminology for a 2D (left) and 3D (right) cell “ANSYS FLUENT 12.0 UDF
Manual” [2009]

Figure 3.2: Cell types accepted by Fluent “ANSYS FLUENT 12.0 User’s Guide” [2009]

possible to create unstructured grids with quadrilateral or hexahedral cells. For complex
geometries, the creation of a structured grid is more time-consuming than the setup of an
unstructured grid. Depending on the grid geometry, triangular or tetrahedral cells will
fill up the grid with less cells than using their quadrilateral or hexahedral counterparts
and vice-versa.
The skewness of a cell also determines the type of cell that should be used. The skewness
of a cell depends on its aspect ratio. Skewness is defined as the difference between the
shape of the cell and the shape of an equilateral cell of equivalent volume. A large aspect
ratio (a measure of the stretching of a cell) in a triangular or tetrahedral cell can result
in a high skewness factor, which affects the accuracy and convergence of the solution.
Numerical diffusion is minimized when the flow is aligned with the mesh. In triangular
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or tetrahedral cells this is never the case. For simple flows, it could be the case for
quadrilateral or hexahedral cells, however in complex flows alignment of the flow with the
mesh will probably not occur either.
Another important consideration in grid generation is the change in cell volume between
adjacent cells. If the cell volume between adjacent cells changes rapidly, large truncation
errors will appear. The truncation error is the difference between the partial derivatives in
the governing equations and their discrete approximations. So minimizing the truncation
error minimizes the error introduced by discretizing the governing equations, which will
lead to more accurate results.

The above stated guidelines were followed as much as possible for the mesh creation of
the validation model and the propeller-wing interaction study. For a detailed discussion
about the geometry and meshing procedure of the validation simulations, the reader is
referred to section 4.1.

3.2 General FLUENT settings

The validation and propeller-wing interaction simulations have been performed with the
commercial software FLUENT and more particularly the FLUENT 12.0.16 version was
used. This chapter will elaborate on the settings that can be applied with FLUENT and
is based on references “ANSYS FLUENT 12.0 User’s Guide” [2009], “ANSYS FLUENT
12.0 Theory Guide” [2009], “ANSYS FLUENT 12.0 UDF Manual” [2009], Davidson [2004]
and Marinus [2009]. Since there is such a vast availability of FLUENT settings, only
a detailed discussion of the FLUENT settings used in the validation process and the
propeller-wing interaction study will be presented here. For a detailed discussion of all
the other FLUENT settings, the reader is referred to the FLUENT manuals “ANSYS
FLUENT 12.0 User’s Guide” [2009] and “ANSYS FLUENT 12.0 Theory Guide” [2009].
If the reader is already familiar with FLUENT, he is allowed to skip this section.

The main FLUENT settings can be split into the following 4 main categories:

1. Model settings

2. Material properties

3. Solver controls

4. Boundary conditions

The model settings are used to characterize the flow, e.g. whether it is steady or unsteady,
laminar or turbulent, (in)compressible. FLUENT provides the option to define the ma-
terial properties, not only of the solid used in the geometric model (aluminum nacelle for
example), but also the properties of the fluid itself can be adjusted. The solver controls
are used to define the used algorithm and discretization of the governing equations in or-
der to model the flow numerically (e.g. first order upwind or second order scheme). The
boundary conditions are used to define the type of faces and volumes of the imported
mesh (e.g. wall, pressure inlet).
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3.2.1 Model settings

The model settings specify the type of flow. The main specifications involve the space
(2D or 3D flow), time ((un)steady), viscous settings and flow state (laminar or turbu-
lent). Other additional settings involve heat transfer, radiation, pollutants and species
transport. The choice of the turbulence model depends on the type of flow, the required
accuracy level and the available computational resources.
Turbulence is a result of the instability of the mean flow that causes large vortical struc-
tures (eddies) to break-up or evolve into smaller vortices. For flows with a high Reynolds
number, there is a broad spectrum of eddy sizes that appear in the flow. According to
Richard’s Energy Cascade theory this breaking-up of the vortices into smaller and smaller
vortices continues until the Reynolds number based on the length scale of the smallest
eddy reaches unity. Figure 3.3 shows a schematic representation of the break-up of the
large vortices into smaller eddies according to the energy cascade concept.

Figure 3.3: Richard’s energy cascade. “Davidson [2004]”

In theory it is possible to resolve (compute) all the turbulent length scales by applying
direct numerical simulation (DNS) since turbulent flows are fully described by the Navier-
Stokes Equations. However DNS is not an option for high Reynolds flow (break-up into
smaller and smaller length scales) since the computational cost is proportional to Re3.
Instead of computing all turbulent length scales, one could only resolve the large eddies
directly in a time-dependent simulation while the small eddies are modelled. This ap-
proach is called Large Eddy Simulation (LES) and uses less computational resources than
DNS but is not suitable for most practical applications because of its high computational
cost.

Turbulent flows are characterized by the following two properties:

1. The velocity field fluctuates randomly in time, is highly disordered in space and
contains a wide range of length scales.

2. The velocity field is unpredictable in the sense that a small change to the initial
conditions will produce a large change to the subsequent motion.

Although the velocity field, u(x, t) is random and unpredictable, its statistical properties
are not. So by averaging the Navier-Stokes equations, the statistical properties of the
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flow can be determined. This procedure in which one statistically averages the Navier-
Stokes equations before solving them is very common in today’s practices because of its
low computational cost. But what is meant by the term “averaging”? The most common
approach is to time-average the Navier-Stokes equations, which leads to the Reynolds-
Averaged Navier-Stokes equations or RANS. This is done by applying Reynolds and Favre
averaging which will now shortly be illustrated.
Reynolds averaging an instantaneous velocity component e.g. u(x, t) is done by specifying
this variable as the sum of its mean value, ū and its fluctuating component u′(x, t) as can
be seen from Eq (3.1).

u(x, t) = ū+ u′(x, t) (3.1)

The time-averaged values of the velocity is calculated as follows:

ū =

∫ +T
2

−T
2

u(t+ τ)dτ (3.2)

Favre averaging on the other hand is performed as follows:

ui(x, t) = ũ(x, t) + u′′(x, t) (3.3)

with

ũ(x, t) =
1

ρ̄T

∫ +T
2

−T
2

ρ(x, t)u(x, t)dt (3.4)

In order to obtain the RANS equations, the density and pressure terms are Reynolds-
averaged, while all the other terms are Favre-averaged. The resulting Reynolds-Averaged
equations are given by Eq (3.5) to Eq (3.7).

∂ρ̄

∂t
+
∂ρ̄ũi
∂xi

= 0 (3.5)

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= −
∂ρu′′i u

′′
j

∂xj
− ∂p̄

∂xi
+
∂2µ(Sij − 1/3δijSii)

∂xj
(3.6)

∂ρ̄Ẽ

∂t
+
∂ρ̄ũjH̃

∂xj
=

∂

∂xj

[
−q̄j − ρu′′jh′′ + τ ′′iju

′′
i − 1/2ρu′′ju

′′
i u
′′
i

]
(3.7)

+
∂

∂xj

[
ũi(τ̄ij − ρu′′i u′′j )

]
By inspecting the RANS equations it can be seen that there are two additional terms,
which are a direct result of averaging. The Reynolds-stress term−ρu′′i u′′j and the turbulent

heat flux vector ρu′′jh
′′ − τ ′′iju

′′
i + 1/2ρu′′ju

′′
i u
′′
i . These additional terms are responsible

for the so called “closure problem” since the Reynolds-stress term creates 6 additional
unknowns in the equations while the turbulent heat flux vector introduces 3 additional
unknowns. Over time several “closure models” have been proposed in order to solve the
RANS equations.
One of these models is the “Eddy viscosity assumption”. This assumption results from
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Boussinesq hypothesis which relies on a turbulent viscosity µt, depending on flow features,
to connect the Reynolds-stress components to the strain rate. This hypothesis is quite
similar to Newton’s law for molecular viscosity. This hypothesis can be written as:

τReynoldsij = −ρu′′i u′′j = 2µt(S̃ij − 1/3δijS̃kk)− 2/3ρkδij (3.8)

For more information concerning the other closure models the reader is referred to one of
the references as stated above.
Since the validation and propeller-wing interaction simulations make use of the same
turbulence model (Realizable k-ε) only this model will be shortly discussed. But a short
introduction to the law of the wall will be given first.

The law of the wall

The presence of a boundary (wall) has a profound effect on a turbulent shear flow. Not
only does the flow need to comply with the no-slip condition, also the physical behaviour of
the flow is altered due to the presence of the wall which reduces the normal and tangential
velocity fluctuations very close to the wall. One can distinct 3 layers in a turbulent flow
near the wall: the viscous sublayer, the buffer layer and fully-turbulent layer, see Figure
3.4.

Figure 3.4: Different layers in a turbulent flow close to the wall. “Marinus [2009]”

The viscous sublayer is that part of the flow that is the closest to the wall. The flow is there
almost laminar and the molecular viscosity plays a dominant role in the momentum, heat
and mass transfer. The fully-turbulent layer is the most outer layer and is dominated by
turbulence. The buffer layer is situated in between the viscous sublayer and fully-turbulent
layer. Here, the effects of molecular viscosity and turbulence are equally important.

Models based on the eddy viscosity concept are constructed to be consistent with the
law of the wall i.e. the expression of the velocity profile in the logarithmic part of the
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boundary layer (See Figure 3.5). One defines uτ =
√
τw/rho, u

+ = u/uτ and y+ = yuτ/ν.
Derivation of the Navier-Stokes equations in the boundary layer close to the wall, where
the viscous stresses are dominant, leads to Eq (3.9)

u+ = y+ (3.9)

In this viscous sub-layer, one can show that the dissipation at the wall is non-zero and a
limiting value for ε can be computed: ε = 2νk/y2 for y → 0 or in terms of ω = ε/(cµk) =
2ν/(cµy

2).

Furthermore, if one admits that close to the wall but not extremely close, there is a region
where the velocity profile is determined by the turbulent shear stress but not by the shear
stress due to molecular viscosity, one can deduce the following relation:

u+ =
1

κ
ln y+ +B (3.10)

where κ is the von Karman constant and B another constant. This law is valid in the
logarithmic layer and expresses that in this layer, the Reynolds stresses are dominant on
viscous stresses. Different experimental results tend to confirm this hypothesis and the
validity of the law of the wall (logarithmic profile). Generally, the law of the wall applies
from y+ = 30 to y/δ ≈ 0.1.

Figure 3.5: Velocity profile in a turbulent boundary layer. “Marinus [2009]”
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Standard k − ε model

The standard k − ε model was developed by Jones and Launder in 1972 and uses the
RANS-equations together with the TKE-equation (Eq(.3.11)), the ε-equation (Eq( 3.12)),
and the eddy-viscosity (Eq (3.13)).

Dρ̄k

Dt
= ρ̄Pk − ρ̄ε+

∂

∂xi

[
(µ+

µt
σk

)
∂k

∂xi

]
(3.11)

Dρ̄ε

Dt
= cε1ρ̄

ε

k
Pk − cε2ρ̄

ε

k
ε+

∂

∂xi

[
(µ+

µt
σε

)
∂ε

∂xi

]
(3.12)

νt = cµ
k2

ε
(3.13)

where σk is the Prandtl number and Pk = 2νtS̃ijS̃ij .

Standard values for the constants cµ, σk, σε, cε1 and cε2 have been obtained from simple
flows. The constant cµ comes from the observation of thin shear flows with approximate
balance between production and dissipation, the constant cε2 from the decay of homoge-
neous turbulence and the constant cε1 from homogeneous shear flow experiments. The
Prandtl number σk is a priori taken as unity since it governs the turbulent diffusion of
the TKE by the turbulent motion itself. And the Prandtl number σε comes from con-
sideration of the diffusion of ε in the logarithmic layer. For that Prandtl number, it is
imperative to satisfy Eq (3.14) in order to ensure that the law of the wall can be predicted
correctly.

σε =
κ2

(cε2 − cε1)
√
cµ

(3.14)

The set of equations for this model is:

Dk

Dt
= Pk − β∗ωk +

∂

∂xi

[
(ν + σ∗νt)

∂k

∂xi

]
Dρ̄ε

Dt
= cε1ρ̄

ε

k
Pk − cε2ρ̄

ε

k
ε+

∂

∂xi

[
(µ+

µt
σε

)
∂ε

∂xi

] (3.15)

Realizable k − ε model

The realizable k − ε model differs from the standard k − ε model in:

• A critical coefficient of the model, cµ, is expressed as a function of mean flow and
turbulence properties, rather than assumed to be constant as in the standard model.

• A new expression for the dissipation rate.

This allows the model to satisfy certain mathematical constraints on the normal stresses
consistent with the physics of turbulence (realizability). The realizable k − ε model has
shown substantial improvements over the standard k − ε model where the flow features
include strong streamline curvature, vortices and rotation.
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Wall functions

When low-Reynolds modelling is used (i.e. when the k-ε or k-ω models are used up to the
wall), the near-wall behaviour of turbulent quantities must be carefully modelled. Indeed,
close to the wall, turbulence is damped and the turbulent Reynolds number Ret = k2/(νε)
becomes small. To achieve this, damping functions are introduced into Equation (3.15).
In many applications, the precise description near the walls is not needed and high
Reynolds modelling can be used. As with low Reynolds modelling the first grid point
should be at y+ ≈ 1, the numerical cost is elevated because around 50 grid points are
necessary in the boundary-layer. In high Reynolds modelling, the first grid point is typ-
ically so that y+ ∈ [30, 100]. At this point P , special boundary conditions are imposed
which are given by Eq (3.16):

τP = τw kP =
u2
τ√
cµ

εP =
u3
τ

κy
(3.16)

where uτ is determined from
u

uτ
=

1

κ
ln

(
B2yuτ
ν

)
with u from the previous iteration, κ = 0.41 and B2 = 7.768. The backdraw of this
method is that it corresponds to imposing a constant value of k at the first grid point
in the logarithmic-layer although in reality, the TKE has a pronounced maximum in the
buffer-layer so there is no zone of constant TKE between the first grid point and the
wall. The TKE-equation (Eq(3.11)) can be solved at the first grid point by imposing

Pk = τP∂u/∂y with ∂u/∂y = uτ/(κy). Then ε can be determined as uτ = k1/2c
1/4
µ so

ε = c
3/4
µ /(κy). In this, uτ or τw are determined from the following formulae:

u

uτ

uτ
uτ
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κ
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B2yuτ
ν

)
⇒ u
√
kc

1/4
µ

u2
τ

=
1

κ
ln
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B2y

√
kc

1/4
µ

ν

)

⇒ u2
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τw
ρ

=

√
kc

1/4
µ κ

ln(B2y
+
P )
u where y+

P =
c

1/4
µ

√
kyP

ν

(3.17)

In this approach, the assumption µ = µt is made so that molecular viscosity is set to zero.
The high Reynolds approach is not valid for flows with re-circulation as for these flows,
a sign-change occurs for uτ . |uτ | is used in the determination of y+ but the condition
y+ ∈ [30, 100] cannot be satisfied in the recirculation region (generally with lower veloci-
ties). Although the above algorithm does not cause problems for regions of recirculation

(because uτ is replaced by c
1/4
µ

√
k for the computation of y+), blindly applying it cor-

responds to enforcing the log-law in a region where the laws of the viscous sub-layer
should be used. In such a case, standard wall functions are inappropriate and are often
replaced by a two-layer approach so that low Reynolds modelling does not have to be
implemented. This approach provides two sets of equations for which the choice of the to
be used equations depends on the value of y+

P :

y+
P =

c
1/4
µ

√
kyP

ν
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y+
P > 11.3 → log-law y+

P ≤ 11.3 → linear-law

τw =
ρ
√
kP c

1/4
µ κ

ln(B2y
+
P )

uP τw = µ
yP
uP

uτ =
√
|τw|
ρ

(
τw
|τw|

)
uτ =

√
|τw|
ρ

(
τw
|τw|

)
uy = uτ

κy uy = τw
µ

Pk = τwuy Pk = τwuy

ε =
c
3/4
µ k3/2

κy ε = 2νkP
y2P

3.2.2 Material properties

The material properties of the fluids and solids used in the simulation can be defined by
the user. The fluid properties that can be adjusted are the density (e.g. constant, ideal
gas), specific heat capacity cp (e.g. constant, piecewise linear), thermal conductivity, vis-
cosity(e.g. constant, Sutherland) and molecular weight. For a solid the density, cp and
thermal conductivity need to be defined.

3.2.3 Solver controls

There are two different solvers available in FLUENT:

1. Pressure-based solver

2. Density-based solver

Both solvers use a finite-volume discretization to discretize the governing flow equations,
however the approach to linearize and solve the obtained discretized equations is differ-
ent. The velocity field of the solution is by both methods obtained from the momentum
equations. However the pressure field is determined differently. The density-based solver
determines the pressure field by means of the Equation Of State. On the other hand the
pressure-based solver calculates the pressure field by solving a pressure or pressure correc-
tion equation, which is obtained by manipulating the continuity and momentum equations
in such a way that the velocity field, which is corrected by the pressure equation, satis-
fies the continuity equation. For both algorithms, the governing equations are non-linear
and coupled. However the solution process of these coupled equations are different. The
density-based approach solves the continuity, momentum, energy and species equations
simultaneous while the pressure-based does not. The solution procedure of the pressure-
based solver decouples the governing equations and solves them sequentially. There are
however two ways of doing this, either the Pressure-based Segregated algorithm or the
Pressure-based Coupled algorithm is applied. As the name segregated implies, each gov-
erning equation is decoupled from the other equations during the solution process and are
solved one after another. The Pressure-based Coupled algorithm on the other hand sees
the momentum and pressure-based continuity equation as a coupled, non-segregatable
system. The remaining equations are however again decoupled and solved sequentially as
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was the case in the Segregated algorithm. The difference between the two Pressure-based
and the Density-based algorithm is depicted in Figure 3.6. The integral form of the un-
steady conservation equation for the transport scalar, φ, for an arbitrary control volume
Ω is given by formula (3.18)∫

Ω

∂ρφ

∂t
dΩ +

∮
ρφ~V d ~A =

∮
Γφ∇φd ~A+

∫
Ω
SφdΩ (3.18)

Where:
ρ = density
~V = velocity vector
~A = surface area vector
Γφ = diffusion coefficient of φ
∇φ = gradient of φ
Sφ = source of φ per unit volume

Discretizing Eq (3.18) by means of the finite volume method leads to formula (3.19).

∂ρφ

∂t
Ω +

Nfaces∑
f

ρ ~Vfφf ~Af =

Nfaces∑
f

Γφ∇φf ~Af + SφΩ (3.19)

Where:
Nf = number of faces enclosing the cell
φf = value of φ convected through face f

ρ ~Vfφf ~Af = mass flux through face f
~Af = area of face f
∇φf = gradient of φ at face f
Ω = cell volume

FLUENT stores the discrete values of the scalar quantity φ at the cell centers, however
inspection of Eq (3.19) shows that the face values need to be known as well. There
are 8 different discretization schemes in FLUENT available for the discretization of the
convection terms of Eq (3.19) in order to obtain the face values of the scalar quantity
φ. They consist of the first and second-order Upwind Scheme, the Power-Law Scheme,
Central and Bounded Differencing Scheme, Quick Scheme, third-order MUSCL Scheme
and the modified HRIC Scheme. The choice of the discretization type depends on the
complexity of the mesh and the accuracy needed. The Central and Bounded Differencing
Scheme are only available when one uses the LES turbulence model while the QUICK
Scheme works only for hexahedral meshes and works best when the cells are aligned with
the flow. As with all numerical methods, each discretization method has it benefits and
disadvantages.

The gradient term ∇φ present in Eq (3.19) needs to be evaluated as well. FLUENT offers
3 different methods for gradient computation:

1. Green-Gauss Cell-Based
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Figure 3.6: Difference in solution process of Pressure-Based and Density-Based Algorithms.
“ANSYS FLUENT 12.0 Theory Guide” [2009]

2. Green-Gauss Node-Based

3. Least Squares Cell-Based

Eq (3.20) represents the Green-Gauss computation theorem in order to compute the
gradient of the scalar entity φ at the cell center c0.

(∇φ)c0 =
1

V

∑
f

φ̄f ~Af (3.20)

The difference in the Green-Gauss Cell-Based and Node-Based approach lies in the eval-
uation of the term φ̄f . The Cell-Based Green-Gauss theorem takes the arithmetic mean
of the values of the neighbouring cell centers to calculate the face value, φf :

φ̄f =
φc0 + φc1

2
(3.21)

The Node-Based Green-Gauss theorem on the other hand takes the arithmetic mean of
the nodal values of the face to calculate the face value, φf :

φ̄f =
1

Nf

Nf∑
n

φ̄n (3.22)

The term Nf appearing in Eq(3.22) represents the number of nodes on the face while
the term φ̄n represent the nodal values which are obtained by calculating the weighted
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average of the cell values surrounding the nodes. For unstructured meshes the node-based
gradient evaluation is more accurate than the cell-based gradient calculation.

The Least-Squares Cell-Based Gradient theorem assumes a linear solution. Therefore one
can express the the change in cell values between cell c0 and ci along the vector δri,
connecting cell c0 and ci (See Figure 3.7) as follows:

(∇φ)c0 · δri = (φci − φc0) (3.23)

Figure 3.7: Least-Squares Gradient determination. “ANSYS FLUENT 12.0 Theory Guide”
[2009]

This procedure can be repeated for all cells surrounding the cell c0, which leads to the
following expression:

[J ](∇φ)c0 = δφ (3.24)

The cell gradient is then obtained by solving the minimization problem of Eq (3.24) in a
least-squares sense.

By inspection of Eq (3.19), one can see that the values of the density at the faces needs to
be known as well. For incompressible flows, FLUENT calculates the arithmetic average
to obtain the density value at a face. For compressible flows however, this method is
not suitable. As was the case with the convective terms FLUENT provides the following
methods to calculate the face density for a compressible flows: first and second-order
Upwind Scheme, the Power-Law Scheme, Central and Bounded Differencing Scheme,
Quick Scheme and third-order MUSCL Scheme.

As stated before, the Pressure-based algorithm discretizes the continuity and momentum
equation and connects the pressure and velocity field by means of a pressure correction
equation. This discretization of the continuity and momentum equation is similar to the
discretization of Eq (3.18) if the pressure field and face mass fluxes are known. However
this is not the case, therefore these values have to be obtained as a part of the solution.
FLUENT uses a co-located scheme, in which pressure and velocity are stored at the cell
center. In order to obtain the pressure values at the faces different pressure interpolation
schemes can be used. The STANDARD scheme in FLUENT interpolates the pressure
values at the faces by making use of momentum equation coefficients. As long as the
pressure variation is smooth, this procedure works well. However when there are large
jumps, this method is unsatisfactory. For these cases use can be made of the second-
order scheme, the body-force-weighted average scheme or the PRESTO! scheme. The
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PRESTO! (Pressure Staggering Option) is similar to the staggered-grid schemes and is
useful for flows with high-swirl numbers, high-Rayleigh number natural convection and
porous media while the body-force-weighted scheme is recommended for flows subjected
to large body forces. The second-order scheme is best used for compressible flows and
when the accuracy of the other schemes is insufficient.

For the Segregated Pressure-Based algorithm, different approaches to find the pressure
correction equation can be used. The SIMPLE algorithm is FLUENT’s default algorithm
and is an iterative solution method. First the momentum equation is solved with a
guessed pressure field p∗. The resulting face flux, J∗f does not satisfy the continuity
equation, therefore a correction factor, J ′f is added such that the continuity equation is
satisfied leading to the following corrected face flux (Jf ) equation:

Jf = J∗f + J ′f (3.25)

The SIMPLE algorithm assumes that the correction factor for the face flux can be written
as Eq (3.26).

J ′f = df ∗
(
p′c0 − p′c1

)
(3.26)

The term p′ represents the pressure correction for a cell. Eq (3.25) and (3.26) are substi-
tuted in the discrete continuity equation to obtain a discrete expression for the pressure
correction term, p′, which is expressed by Eq (3.27)

app
′ =

∑
nb

anb p
′
nb + b (3.27)

The term b is the net flow rate into the cell and is given by formula (3.28).

b =

Nfaces∑
f

J∗f Af (3.28)

The pressure-correction equation is solved using the AMG method (Algebraic Multigrid
Method). After obtaining a solution for Eq (3.27), each cell pressure and face flux is
corrected by means of respectively Eq (3.29) and Eq (3.30).

p = p∗ + αpp
′ (3.29)

Jf = J∗f + df
(
p′c0 − p′c1

)
(3.30)

The term αp in Eq (3.29) is the under-relaxation factor for the pressure.

A method similar to the SIMPLE algorithm is the SIMPLEC method (SIMPLE-Consistent).
It follows the same procedure as the SIMPLE algorithm, except for the expression used for
the face flux correction. The term df in this equation differs from the SIMPLE algorithm
such that it accelerates convergence. For most problems, the SIMPLE and SIMPLEC
algorithm is sufficient. However for transient flow calculations or calculations on highly
skewed meshes, the PISO (Pressure-Implicit with Slitting Operation) scheme is recom-
mended. This solution method is part of the SIMPLE family of algorithms but is based
on a higher order of the approximate relation between the corrections for pressure and
velocity. After one or more additional PISO iterations the corrected velocities satisfy the
momentum equation better than the SIMPLE(C) algorithms. This decreases the number
of iterations required for convergence with respect to the SIMPLE(C) method.
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3.2.4 Boundary conditions

Boundary conditions need to applied to faces that confine a calculation domain. The
following boundary conditions were used during the validation and propeller-wing inter-
action study:

1. Pressure Inlet

2. Pressure Outlet

3. Pressure Far-field

4. Mass flow Inlet

5. Wall

6. Periodic

7. Symmetry

3.2.5 Pressure in- and outlet

The difference in pressure of the pressure inlet and outlet boundaries is used to control
the desired freestream Mach number. For the pressure inlet the so called “gauge” total
pressure has to be specified. The gauge total pressure is defined as follows:

pgauge = pt − pop (3.31)

Thus the gauge pressure is the difference of the total and operating pressure. If the
operating pressure is known, the gauge total pressure can be determined by using the
following isentropic relation:

pt
pop

=

(
1 +

γ − 1

2
M2
∞

) γ
γ−1

(3.32)

Combining Eq (3.32) with Eq (3.31) leads to Eq (3.33).

ptgauge = pop

(
1 +

γ − 1

2
M2

) γ
γ−1

− pop (3.33)

For the pressure outlet, the gauge static pressure has to be inputted. By setting the
gauge static pressure of the pressure outlet boundary to zero, Eq (3.33) will give the
correct gauge total pressure needed at the inlet to obtain the desired freestream Mach
number. However, due to numerical losses, the gauge total pressure has to be set at a
somewhat larger value than the calculated one.

Besides pressure, also the total temperature has to be specified for both the pressure in- as
outlet(backflow total temperature). The total temperature can by determined by means
of the isentropic relation given by formula (3.34).

Tt
Ts

=

(
1 +

γ − 1

2
M2
∞

)
(3.34)
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Since no backflow is expected to occur, the backflow Mach number can be set to zero
resulting in a total temperature for the outlet that is equal to freestream static tempera-
ture. Other important inputs for both the pressure in- and outlet boundary are turbulence
parameters such as turbulent length scale and intensity.

Pressure Far-field

The “pressure far-field boundary condition” is used to model a freestream condition at
infinity. Important input parameters are: gauge pressure, Mach number, static tempera-
ture, flow direction and turbulence parameters.

Mass flow Inlet

If a specific mass flow rate needs to be prescribed at a boundary, the mass flow inlet
boundary condition is used. Required inputs are: the mass flow rate, total temperature,
flow direction and turbulence parameters. By specifying the direction opposite to the
flow direction, a mass flow outlet can be simulated as well.

Wall

If the “wall option ” is chosen as boundary condition, the users has two options: either
the wall is stationary or moving. Other important inputs are the shear options (no slip
or specified shear) and the wall roughness parameters.

Symmetry

The symmetry boundary condition will only be used in the propeller-wing interaction
study. By making use of this boundary condition, only half of the airplane needs to be
modelled. This will reduce the amounts of cells needed and hence the calculation cost.

Periodic

The periodic boundary condition will only be used in the validation process and not in
the propeller-wing interaction study. The geometry and flow pattern of the validation
simulation are axis-symmetric. By making use of the rotational periodic boundary condi-
tion only a part of the model needs to be modelled. Hence the mesh will consist of fewer
cells, leading to a reduction in computational cost.



Part II: Validation

This part of the thesis treats the validation of the numerical model that will be used in
propeller-wing interaction study.
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Chapter 4

Validation of the numerical propeller
model

This chapter deals with the validation of the numerical model, which will be set up in
section 4.2 and is based on the mathematical model developed in section 2.3.3. For the
validation process, the wing will be omitted and a simulation will be performed which
only involves a propeller-nacelle configuration. In order to evaluate the performance of
the numerical model, it will be compared to the results obtained by full blade modelling
using RANS (Marinus [2007]). To this end, flow parameters such as Mach number, static
pressure, etc. are extracted along 3 different lines of constant radius (50%Rp, 75%Rp &
96%Rp) for both simulations and compared.
From the discussion in section 2.1.3 it followed that the presence of the nacelle changes
the inflow velocity at the propeller blade. To investigate whether the inclusion of this
change in inflow velocity will lead to more accurate results the non-uniform actuator disk
model was created. This model makes also use of the same equations as the uniform ac-
tuator disk model, which assumes a uniform inflow velocity equal to freestream. The only
difference between the equations of the uniform and non-uniform actuator disk model is
the fact that the term V∞ is replaced by the term Vin, the inflow velocity at the propeller
blade.
The induced radial velocity is neglected in most numerical investigations concerning
propeller-wing interaction effects. To see whether the inclusion of the induced radial
velocity in the current numerical model delivers superior results with respect to the ones
that neglect it, Phillips’ equations (Phillips [2004]) are also implemented in a UDF. These
equations neglect the induced radial velocity and assume a uniform inflow velocity equal
to freestream.
This chapter contains 3 sections. The first section will treat the creation of the geometric
model and its mesh. Then the setup of the UDF for the uniform and non-uniform actu-
ator disk as well as Phillips’ equations will be discussed. The third section will elaborate
on the Fluent settings and why they were chosen as such. This chapter will conclude
with a discussion of the performance of the different models and which one is best fit to
investigate propeller-wing interference effects.
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4.1 SR-1 mesh creation

The propeller that will be used in the validation simulations is the NASA SR-1 propeller
because of the wide availability of data involving its shape. The SR-1 blade has a moder-
ate sweep angle of 30◦ and was part of the NASA Advanced Turboprop Project (ATP).
A scale model of this propeller was tested in the NASA Lewis Wind Tunnel. The scaled
propeller has a diameter of 0.622 m and its characteristics can be found in table 4.1. For
the validation process, the propeller will be modelled as an actuator disk and the nacelle
will be included in the geometry. The coordinates specifying the spinner-nacelle geometry
can be found in Appendix A.

Table 4.1: Installation characteristics of the SR-1 propeller

property value

Diameter 0.622 m

x-coordinate LE of blade 0.13 m

x-coordinate TE of blade 0.215 m

The coordinate system has its origin at point (0,0,0), which corresponds to the nose of
the spinner-nacelle geometry, the latter is axisymmetric around the x-axis. By import-
ing the coordinates, which specify the spinner-nacelle geometry, in Gambit and draw-
ing “NURBS” lines through the imported coordinates the nacelle geometry is obtained.
NURBS stands for Non-Uniform Rational B-Spline and it is Gambit’s curve-fitting rou-
tine, which fits a smooth curve onto several vertices. (“GAMBIT 2.4 Modeling Guide”
[2007])

The x-axis is the axisymmetric symmetry axis and the x-velocity corresponds to the
axial velocity. The z-axis is positively defined upwards while the y-axis is positively
defined pointing to the left. In order to speed up the calculation process, only 1

8 th of the
actuator disk is modelled and periodic conditions are applied on the flanks. So instead
of obtaining a cylindrical shaped domain, the geometry resembles a “pie-shape” that is
extruded downstream as can be seen from Figure 4.1.

Since the calculations performed on these geometries will be used to validate the per-
formance of the UDF, which will be used in a later stage to investigate propeller-wing
interaction effects, it must be ensured that the domain extends sufficiently far down-
stream. In a convential tractor configuration, the wing is placed 1 or more radii behind
the propeller. Therefore the limits of the domain are chosen as follows:

• −2Rp <= xorigin <= 4.8Rp (axial direction)

• 0 <= rorigin <= 3Rp (radial direction)

So the domain extends 2 radii upstream, as measured from the origin, 4.8 radii down-
stream, which is 4.1 radii measured from the outflow plane (corresponds to TE of blade)
of the actuator.
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Figure 4.1: 3D view of propeller-nacelle geometry and corresponding nomenclature

In order to validate the results obtained by the actuator disk based simulations, governing
flow parameters of the simulations performed on the propeller-nacelle configuration will be
compared with Reynolds-Averaged Navier-Stokes (RANS) calculations. These reference
data were obtained by B. Marinus, who modelled the propeller blade and nacelle by
making use of a sliding mesh (Marinus [2007]). In order to compare the flow variables,
plots will be made at different radii positions across the propeller blade. Therefore it is
important that the mesh is dense enough to capture all parameters accurately in that
part of the domain for which r < Rp. Therefore a clear division is made which separates
the domain into 2 subdomains: one extending from rnacelle to Rp (lower part) and one
extending from Rp to 3Rp (upper part). The term rnacelle is the radius measured from the
symmetry axis to the nacelle’s surface. All “upper part” volumes are subjected to a size
function which ensures that the cell size will grow in the radial direction since the mesh
is not required to be as dense as in the lower part of the domain. This will reduce the
amount of cells needed to fill up the upper part of the domain and thus the calculation
time. In axial direction the domain is divided into 7 volumes.

1. volume 1: −2Rp <= x <= 0

2. volume 2: 0 <= x <= 0.08 m

3. volume 3: 0.08 m <= x <= 0.13 m(LE) (Inflow volume)

4. volume 4: 0.13 m(LE) <= x <= 0.209 m(TE) (Propeller volume)

5. volume 5: 0.209 m <= x <= 0.215 m (Actuator volume)

6. volume 6: 0.215 m <= x <= 0.85 m

7. volume 7: 0.85 m <= x <= 3 m

Volume 4 and 5 together form the volume beaten by the real propeller. The UDF that
will be incorporated in Fluent imposes velocities at the outflow plane of the actuator disk.
This is not possible by making use of the density-based solver of FLUENT. Therefore the
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pressure-based solver will be used. The difference between the density and pressure-based
solver was adressed in chapter 3.2. FLUENT can only impose velocities at boundary faces
of a domain, while the actuator outflow plane is an interior face. Therefore one is not
able to impose the velocities directly at the outflow plane of the actuator. In order to
bypass this problem, velocities will be imposed in the row of cells, which are located just
before the outflow plane of the actuator, thus in volume 5. Volume 5 will from now on be
referred to as “Actuator volume”, while volume 4 will be named “Propeller volume” and
volume 3 will be called “Inflow volume”, which will be used to read the inflow velocities
at the inflow plane of the blade. A side view (xz-plane) of the geometry can be found in
Figure 4.2.

Figure 4.2: Side view of propeller-nacelle geometry and corresponding nomenclature

In order to minimize numerical diffusion hexahedral cells were used as much as possible.
If the nacelle is not included the flow is alligned with the mesh until the actuator outflow
plane is reached, where the flow is subjected to swirl. However the nacelle is part of
the geometry, therefore the flow will already have a radial velocity component when it
reaches the nacelle. Especially at the inflow and actuator volume, hexahedral elements
are required since the applied UDF needs to extract geometry and flow variables of cells
at the same radial distance (Section 4.2). Hexahedral elements ensure that the mesh is
more structured, which makes it easier to find centroids located at similar radial positions.

As a first guess a cell height at the inflow plane of the actuator of 0.012 m (in r-direction)
was applied, which resulted in 21 cells in radial direction. After a test run of the mesh in
FLUENT however it was found that the convergence of the residuals was not satisfactory.
Therefore the number of cells in radial direction was doubled to 42, leading to a cell
height of 0.006 m at the actuator inflow plane. In order to ensure also a good resolution
in axial direction, the length of the actuator volume is 0.006 m which comprises only one
column of cells. The total number of cells in tangential direction is 40, which leads to a
cell’s width of 0.0061 m at r = Rp. For the lower part of the domain, the total number
of cells in both tangential as radial direction is now fixed as 40 and 42, respectively. The
total number of cells in axial direction for the other volumes, except volume 7, of both
the lower as upper part of the domain is chosen such that the cell’s length within these
volumes is close to 0.006 m. A size function in axial direction is imposed at volume 7 in
order to reduce the number of cells. All volumes are made up of hexahedron cells, except
volumes 1 and 2. Volume 1 is a prism which does not allow a hexahedral meshing type,
therefore it is filled with tetrahedral cells. Volume 2 contains tetrahedrons and pyramid
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cells. The tetrahedral cells can be found everywhere in volume 2 except at the boundary
with volume 3. Here pyramid cells can be found to ensure a smooth transition from
tetrahedrons to hexahedron cell types. The mesh of the SR-1 propeller-nacelle geometry
can be found in Figure 4.3. A zoom-in of the tetrahedrons in the first lower volume can
be found in Figure 4.4

Figure 4.3: Mesh of the SR-1 propeller-nacelle geometry

Figure 4.4: Zoom-in of the thetrahedrons of the SR-1 propeller-nacelle mesh
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4.2 Set up of the numerical model using a UDF

An actuator disk model imposes a jump in pressure and tangential velocity at the actua-
tor disk. This way of modelling the actuator disk is also available in FLUENT by means
of the FAN boundary condition. However, the developed actuator disk model (uniform
actuator disk) will impose an axial, tangential and radial velocity at all the cells of the
actuator volume to simulate propeller induced flow, by means of Eq (2.108), Eq (2.109)
and Eq (2.110). From the discussion in section 2.1.3 it followed that the presence of the
nacelle changes the inflow velocity at the propeller blade. This change in inflow velocity
will be taken into account by reading out the velocity at the inflow plane of the propeller
blade. The source code that takes this non-uniform inflow velocity into account will be
referred to as non-uniform actuator disk and is based on the same equations as the uni-
form actuator disk model except for the fact that the term V∞ is replaced by Vin, the
inflow velocity at the blade.
In order to investigate the effect of inclusion of the induced radial velocity, another mathe-
matical model will be included in the validation process. This model neglects the induced
radial velocity and is based on Eq (2.89) till Eq (2.104) which are set up for a uniform
inflow velocity equal to freestream (Phillips [2004]). This numerical model which does
not incorporate the radial velocity induced by the rotating propeller, will be referred to
as Phillips’ equations.
This chapter will elaborate how these 3 different models are transformed into a User De-
fined Function (UDF). A UDF is a user-written program that can be dynamically loaded
with the FLUENT solver to customize FLUENT to the specific modelling needs of the
user. A UDF is written in C-programming language using any text editor and makes use
of special macros or commands, which can be accessed by adding the header file udf.h in
the source file. These special macros can be split up into 2 categories: the define-macros
and the other macros which are used to access cell variables for example. The define
macro actually states the main function of the UDF, examples of define macros are:

• DEFINE ADJUST is a macro that can be used to adjust or modify variables that
are not passed as arguments. For example, it can be used to modify flow variables
(e.g., velocities, pressure) and compute integrals.

• DEFINE EXECUTE AFTER CASE and DEFINE EXECUTE AFTER DATA are
general-purpose macros that can be used to specify a function that executes after
the case and/or data file is read in FLUENT.

• DEFINE PROFILE can be used to define a custom boundary profile that varies as
a function of spatial coordinates or time.

Besides accessing cell or face variables, other macros are available which allow for setting
boundary condition values and looping over cells, faces or nodes. Since the UDF makes
use of macros, it is only applicable for a certain version of FLUENT, since some macros
were not yet defined in earlier software versions. The UDF was developed for the 12.0.16
FLUENT version, hence compatibility with older or newer versions of FLUENT can not
be ensured. A UDF needs to be compiled and loaded before it can be used. Some
define macros, such as DEFINE PROFILE, need to be hooked to the FLUENT solver
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using a graphical user interface dialog box in order to be executed. Since the developed
actuator disk model will impose an axial, tangential and radial velocity at all the cells of
the actuator volume to simulate propeller induced flow, the written C or source file will
consist of 3 different UDF’s for all numerical models:

• One that imposes the velocity in x-direction (axial velocity)

• One that imposes the velocity in y-direction (consists of components of the tangen-
tial and radial velocity)

• One that imposes the velocity in z-direction (consists of components of the tangential
and radial velocity)

The code for the uniform and non-uniform actuator disk can be found in respectively
Appendix B.1 and B.2, while the UDF which implements Phillips’ equations can be found
in Appendix B.3.

All codes start with calling the header files to enable the use of the different macros.
After which the constant variables are defined. These constant variables are global
variables, meaning that they are known and accessible everywhere in the code. Then
the global non-constant variables are defined, such as loop counters and other vari-
ables that needs to be known and accessible throughout the entire UDF. Besides global
variables, also local variables are available. These local variables are only known and
available inside the define macro in which it is declared. For the declaration of a con-
stant, non-constant global or local variable a certain procedure must be followed. A
constant global variable is mostly written in capital letters and must be defined as e.g.:
“#define RP 0.311”, while a non-constant global or local variable does not consist of
capital letters and is defined by stating its type, followed by its name and semi-colon
e.g.: “int i”;. After the declaration of all global variables, the first define macro is
used: DEFINE EXECUTE AFTER CASE. The purpose of this define macro is to de-
termine of how many faces the outflow plane of the actuator consists. This variable
is called “total nr faces outflowface” and also corresponds to the total number of cells
inside the actuator volume since this volume only consists of a depth of 1 cell. The “to-
tal nr faces outflowface” parameter is very important since it will be used to declare the
arrays of several cell parameters throughout the entire UDF. In order to declare an array,
the type and name of the array must be stated together with the number of elements of
which the array consists e.g. double r actuator[total nr faces outflowface]; . By using the
DEFINE EXECUTE AFTER CASE macro, the “total nr faces outflowface variable” is
determined after reading in the case and hence it is a known variable before the other
define macros of the UDF will be executed.
After the DEFINE EXECUTE AFTER CASE macro, the velocity in x-direction will be
calculated and imposed at the cells inside the actuator volume. To this end the DE-
FINE PROFILE macro is used. From here on the source codes for the 3 different models
will differ. First a discussion of the calculation of the velocity in x-, y-, and z-direction
will be given concerning the uniform actuator disk model. Since this is the numerical
model that will be used in the propeller-wing interaction study, the adjustments of the
source code of the other models will be discussed with respect to the uniform actuator
disk model and is given in section 4.2.2 and 4.2.3. For these UDF’s only that part of the
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code differs in which the velocity in x-direction is calculated and imposed. The code for
the velocity in y- and z-direction are identical and will therefore not be discussed.

4.2.1 UDF implementation of the calculation of the x-,y- and z-velocities
concerning the uniform actuator disk model

UDF imposing the x-velocity

The source code for imposing the x-velocity can be found in Appendix B.1. The DE-
FINE PROFILE macro is used to impose the x-velocity and consists of 3 arguments, the
UDF name, a general pointer and a general index e.g. DEFINE PROFILE(x vel inboard,
t1, indices). Then the local variables will be declared. The global variables which will be
calculated in this function and which have already been declared in the global variables
declaration part, need to be malloced here. The expression “mallocing a variable” refers
to the assignment of memory space for a variable. To ensure that it is only malloced
once, meaning that the program will only free memory space for the variable once and
not every iteration the following part of code was entered e.g. for the variable V axial:

if(!V_axial)

{

Message0("Allocating V_axial\n");

V_axial = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

After the declaration of the local variables and the mallocing of the global variables, the
elemental thrust of each cell inside the actuator volume will be calculated. This is done
by implementing Eq (2.92), Eq (2.97) till Eq (2.99) and Eq (2.101) to Eq (2.103) from
section 2.3.3. The term dr end has a constant value, when the validation simulations
are considered since it denotes the height of a cell in radial direction inside the actuator
volume. However for the propeller-wing interaction study a boundary layer will be applied
which will lead to a variable cell height inside the actuator volume (See Figure 4.5).

To take this variation of the term dr end into account, a general calculation method for
this term was developed, making it applicable to both the validation simulations as the
propeller-wing interaction study. After all, the validation simulations are performed to
ensure that the numerical model is accurate enough, thus ensuring that it can be used to
study the propeller-wing interference effects. The determination of the term dr end will
be elaborated below.
Consider a cell inside the actuator volume as represented in Figure 4.6. The macro
C VOLUME can be used to determine the volume of each cell inside the actuator vol-
ume. The length of each cell in x-direction, dx is known and is equal to the thickness of
the actuator volume. The width of a cell in tangential direction, denoted as dy can be
calculated by dividing the circumference of the actuator disk at that radius position by
the total number of cells in tangential direction, nr arc cells. The height, dr end can then
simply be determined by dividing the cell’s volume by the cell’s area (= dx·dy). Although
the edges of the cell in tangential and axial direction are curved, it is assumed that the
upper and lower side for both the axial and tangential direction have the same amount
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Figure 4.5: Variation of the height of a cell in radial direction

of curvature, allowing the above stated calculation procedure. The parameter dr end is
crucial for the calculation of the elemental thrust and hence for the determination of the
induced axial velocity. In order to apply this method for the determination of dr end
the cells of the mesh inside the actuator volume have to be of hexahedral type. This
illustrates the close coupling between mesh and UDF.
To check whether the calculation of the elemental thrust is correct, a short verification
loop is set up, which sums the elemental thrusts over all the cells of the actuator vol-
ume. Since the cells on the same radius have the same elemental thrust and Eq (2.92)
is valid for an annular ring. The total elemental thrust is found by dividing the sum
of the elemental thrust of all cells by the term divider. This term is the division of the
total nr faces outflowface/total nr cells z, in which the term total nr cells z denotes the
total amount of cells in radial direction inside the actuator volume. Now that the ele-
mental thrust of each cell is known, the axial velocity can be determined. This is done by
using Eq (2.104), Eq (2.106) and Eq (2.107) from section 2.3.3. Since at this point in the
UDF all induced axial velocities are known, the sum of all these induced axial velocities
(sum v A) is taken since it will be needed in the calculation of the induced radial velocity.

UDF imposing the y-velocity

For imposing the y-velocity, the DEFINE PROFILE macro is used. First the global
variables are malloced and the local variables are declared. Then a loop is initiated in
which the radius of the centroid of each cell is calculated, together with its corresponding
y- and z-coordinate. Since the y-velocity consists of the y-component of the tangential
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Figure 4.6: Calculation of the height of a cell in radial direction

and radial velocity, the tangential and radial velocities must be calculated first. This is
done by making use of Eq (2.109) and (2.110), respectively. The decomposition of the
tangential and radial components into their y- and z-component for a clockwise rotating
propeller (when viewed from the front) can be found in Figure 4.7a and 4.7b respectively.

(a) Tangential velocity (b) Radial velocity

Figure 4.7: Decomposition of the tangential and radial velocity into its x- and y-component
for a clockwise rotating propeller

Suppose that Figure 4.7 gives a schematic representation of an clockwise rotating pro-
peller, which has its hub point positioned at coordinates (xE , yE , zE) which does not
coincide with the origin of the system. The actuator disk can then be split up in 4 differ-
ent quadrants indicated by the Roman numbers I, II, III and IV. The sign of the angle θ
differs for each region. To generalize the expressions for Vty and Vtr the absolute value of
θ will be taken:
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θ =

{
arctan

∣∣∣ z−zEy−yE

∣∣∣ If (y 6= yE)
π
2 else

Both the tangential and radial component will now be decomposed in their y- and z-
velocity components. Since the variables Vtz and Vrz are global variables, they can easily
be called in the UDF that imposes the z-velocity, hence eliminating the need to calculate
them again. The components of the tangential and radial velocities are then obtained
from the equations in Table 4.2.

Table 4.2: Equations expressing the y- and z-velocity for a clockwise rotating propeller

Region I Region II

Vty = −Vt · sin θ Vty = Vt · sin θ
Vtz = −Vt · cos θ Vtz = −Vt · cos θ
Vry = Vr · cos θ Vry = Vr · cos θ
Vrz = −Vr · sin θ Vrz = Vr · sin θ
Region III Region IV

Vty = Vt · sin θ Vty = −Vt · sin θ
Vtz = Vt · cos θ Vtz = Vt · cos θ
Vry = −Vr · cos θ Vry = −Vr · cos θ
Vrz = Vr · sin θ Vrz = −Vr · sin θ

For a counter-clockwise rotating propeller only the sign of the terms Vty and Vtz change.
Define the parameter “sense”, which is 1 for a clockwise rotating propeller and 0 for
a counter-clockwise rotating propeller. The expressions for a clockwise and counter-
clockwise rotating propeller can now be grouped as follows:

Table 4.3: General equations expressing the y- and z-velocity for clockwise and counter-
clockwise propellers

If z < zE If z > zE

Vty = (−1)sense+1Vt · sin θ Vty = (−1)senseVt · sin θ
Vrz = Vr · sin θ Vrz = −Vr · sin θ
If y < yE If y > yE

Vtz = (−1)senseVt · cos θ Vtz = (−1)sense+1Vt · cos θ
Vry = Vr · cos θ Vry = −Vr · cos θ

After the determination of the y-components of the tangential and radial velocity, the
velocity in y-direction can be evaluated with Eq (4.1).

Vy = Vty + Vry (4.1)
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UDF imposing the z-velocity

As was the case with the x- and y-velocity, the DEFINE PROFILE macro is used to
calculate and impose the z-velocity. After mallocing the global variable Vz, the velocity
in z-direction is determined by means of formula (4.2):

Vz = Vtz + Vrz (4.2)

4.2.2 UDF implementation of the calculation of the x-velocity concern-
ing the non-uniform actuator disk model

The UDF that will be discussed in this subsection is valid for a non-uniform inflow velocity
at the propeller blade and is based on an older version of the uniform actuator disk UDF.
In this older version of the UDF it was assumed that the variable dr end was constant,
which is only true for the validation mesh. Hence the term dr end can be calculated as:

dr end =
Rp −RTE

total nr cells z
(4.3)

with: RTE = radius of the nacelle at the trailing edge of the propeller blade

The source file for the non-uniform actuator disk can be found in B.2. After the decla-
ration of the local and global variables, the variables C 1 and C 2 are imported. These
variables are the constants of the linearized relation that describes the pathline of a par-
ticle when traveling over the propeller hub. These variables will be used to find out which
inflow velocity belongs to which cell at the outflow plane of the actuator volume. It is
assumed that this relation is axisymmetric, since the nacelle is also axisymmetric. These
variables are obtained by drawing the plane y=0 in FLUENT and intersecting this plane
with the inflow and outflow plane of the actuator volume, creating 2 vertical lines. From
the line at the inflow plane of the actuator volume, particle lines are released. The infor-
mation regarding the particle lines are stored in the file pathline.fvp, furthermore the x,
y, and z-coordinates of the centroids of the cells lying on the line at the inflow and outflow
plane are extracted as well. By means of the particles path lines a relationship is found
between the inflow radius at the centroid of the cells and the outflow radius, which does
not necessarily correspond to the centroid of a cell, see Figure 4.8.

It is then assumed that the relationship between the outflow radii that do correspond to
a cell’s centroid and the inflow radii which are not necessarily located at the centroids of
the cells at the inflow plane is the same. So the terms C 1 and C 2 can then be used to
calculate the radius of the cells at the inflow plane which corresponds to the radius of the
corresponding cell at the outflow plane. Since it is impossible to read out face variables
if the face does not represent a boundary, the inflow velocity is read at the last column
of cells of the inflow volume. Hence the velocity at the inflow plane is approximated by
reading out the velocity at the cells just before this plane. Since the nacelle geometry
is axisymmetric around the x-axis, it is possible to collect the cells that lie on the same
radius. Therefore the radii of the cells are compared to each other to find total nr cells z
different radii with their corresponding inflow velocity. These arrays are then sorted in an
ascending order since the C 1 and C 2 parameters are also sorted in an ascending order
and consists of total nr cells z different entries. The radii of the cells inside the actuator
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Figure 4.8: Relation between the inflow velocity and the outflow plane

volume are also extracted and compared to each other in order to have total nr cells z
different outflow radii and are also sorted in ascending order. Then the term r begin is
calculated using the C 1 and C 2 terms. The corresponding inflow velocity Vin is then
found by interpolating the values that have been read at the inflow plane. The elemental
thrust can then be found by using Eq (2.92), Eq (2.97) till Eq (2.99) and Eq (2.101) to Eq
(2.103) from section 2.3.3. The axial velocity can now be calculated by using Eq (2.104),
Eq (2.106) and Eq (2.107). As was the case with the uniform UDF, the term sum v A is
also determined in this part of the code. Finally a loop is created to couple the correct
inflow, axial and axial induced velocity to the corresponding radius since until now these
parameters were only known for total nr cells z different radii, but they need to be know
for all the cells of the actuator volume. Finally, the axial velocity is imposed at all the
cells of the actuator volume.

4.2.3 UDF implementation of the calculation of the x-velocity concern-
ing Phillips’ equations

The UDF based on Phillips’ equations is set up in the same way as the non-uniform
actuator disk UDF, except for the equations concerning the axial, tangential and radial
velocity. Furthermore the non-uniform inflow velocity is no longer taken into account, so
all terms related to the inflow velocity are replaced by V∞. The induced radial velocity
is neglected, hence the y- and z-velocity only consist of the components of the tangential
velocity which is calculated by means of Eq (4.4).

Vt = ωsrs (4.4)

The axial velocity is calculated by means of Eq (4.5).

Va = V∞ + vi (4.5)

where the expression of vi given by Eq (2.99).



64 Validation of the numerical propeller model

For more information regarding the set up of the UDF, which incorporates Phillips’ equa-
tions, the reader is referred to Appendix B.3.

4.3 FLUENT settings involving the validation simulations

This section will discuss the settings that were applied in FLUENT for the validation
simulations.

4.3.1 Model settings

A 3-dimensional, steady, compressible, turbulent flow without heat transfer will be mod-
elled. The “Realizable k−ε” method is chosen as turbulent model with “Non-equilibrium
wall functions”. See section 3.2.1 for more information concerning this turbulence model.

4.3.2 Material properties

The material properties of the fluid (air) are default except for the viscosity, which is
set to 1.7819 ·10−5 kg

ms . This value is obtained by Sutherland’s law in order to simulate
a correct Re75%c correponding to a freestream Mach number of 0.6 at an ISA altitude
of 35000 ft. Furthermore it is treated as an ideal gas. The nacelle material is set to
aluminum and the default values are used.

4.3.3 Solver controls

As stated previously, the pressure-based solver is used since the density-based solver does
not allow the attachment of a UDF in order to impose the velocities in the actuator
volume. Both solvers employ finite-volume discretization method, but the approach to
linearize and solve the discretized equations is different. The velocity field of the solu-
tion is by both methods obtained from the momentum equations. However the pressure
field is determined differently. The density-based solver determines the pressure field by
means of the Equation of state. On the other hand the pressure-based solver calculates
the pressure field by solving a pressure or pressure correction equation, which is obtained
by manipulating the continuity and momentum equations in such a way that the velocity
field, which is corrected by the pressure equation, satisfies the continuity equation. The
pressure-based solver algorithm is chosen to be segregated. This implies that the indi-
vidual governing equations for the solution variables (e.g. V, p, T) are solved one after
another. In contrast, the coupled algorithm solves the governing equations for the solu-
tion variables simultaneously. Therefore it is not suitable for UDF employment, which
imposes velocities. Since it calculates the values for velocity and pressure at the same
moment and hence it ignores the UDF since it already has imposed a velocity together
with the pressure at a cell. The SIMPLE algorithm is chosen for the pressure-velocity
coupling.
There are different discretization schemes available for the pressure, density, momentum,
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energy, turbulent kinetic energy and turbulent dissipation rate. For the validation simula-
tions the first order discretization method is assumed to be accurate enough. The gradient
terms are determined by means of the Green-Gauss cell-based calculation method.

4.3.4 Boundary conditions

For the flanks of the domain, rotationally periodic boundary conditions are imposed in
order to obtain the same results as when one would model a complete actuator. The top
faces of the domain are categorized as pressure-far-field boundary conditions, which is
used to model freestream conditions at infinity. The freestream Mach number (0.6) and
direction must be given as input as well as the freestream static temperature (218.81 K).
The inlet is modelled as a pressure-inlet on which a gauge total pressure of 6800 Pa is
employed (Eq 3.33) and a total temperature of 234.56 K (Eq (3.34)), while the outlet is
modelled as a pressure outlet, with zero gauge static pressure and radial pressure distri-
bution. The difference in gauge pressure between the inlet and outlet will produce a flow
with Mach number 0.6. The nacelle surface is modelled as an adiabatic no slip wall, while
all the other faces are stated to be interior faces. Since the flow is turbulent, turbulence
parameters need to be specified for all boundaries of the domain. The turbulence param-
eters are the turbulent intensity and length scale, which are chosen as 1% and 0.05 m
respectively.

4.4 Discussion of the results of the validation simulation

This section will discuss the results for the simulation performed with the uniform and
non-uniform actuator disk model, developed in section 4.2 for the SR-1 propeller-nacelle
configuration. In order to validate the results of these numerical models, a simulation was
performed for M=0.6 & J=3.08 at an altitude of 35 000 ft or 10 668 m and results for
different flow parameters (M, ρ, etc.) are shown at 3 different radius locations along the
blade (50%Rp, 75%Rp and 96%Rp). The only data, needed to perform the simulation, is
the total thrust of the propeller, the rotational speed, geometric and mesh data such as
the radius and number of cells in radial direction. Therefore the model is suitable during
the preliminary design of an aircraft when propeller data is scarce and subject to change.
As stated before, 3 different numerical models are used in the validation simulation: the
uniform and non-uniform actuator disk model and Phillips’ equations. The results of
these simulations will be compared to each other, but also with the full-blade modelling
results using RANS.
The wing of an aircraft is placed one or more radii behind the propeller for most tractor
configurations. Since the goal of this thesis is to study propeller-wing interaction effects,
it is sufficient that the results obtained by the uniform and/or non-uniform actuator
disk simulations agree well with the Reynolds-averaged Navier-Stokes simulations for x >
0.53 m. In case one would be interested in studying propeller-overlap configurations, the
afore mentioned models need to agree well with the RANS simulations for x => 0.215 m,
which corresponds to the outflow plane of the actuator (TE of the blade). In order to
assess the performance of the non-uniform and uniform actuator disk model, the Mach
number, axial, radial and tangential velocity, total and static pressure and density plots
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at 50%, 75% and 96% radius for the different numerical models will be given below.
Sometimes errors and reference values are given to illustrate the difference or similarity
in performance of the different models. These errors or reference values are considered at
1 radius behind the trailing edge of the propeller blade. The black vertical lines which
are present in all figures represent the LE and TE of the actuator.

4.4.1 Variation of Axial velocity with axial position

As can be seen from Figure 4.9, Phillips equations show the best agreement with the
RANS simulation for 50 and 96% radius. For 50% radius, the uniform actuator disk and
Phillips’ equations display the same behaviour, they only differ in the error w.r.t. the
RANS results: for one radius behind the propeller their error is respectively 1% and 2%.
The error is the largest at 75 % radius for all numerical models, however the difference
between the non-uniform and Phillips equations is small. Downstream of the TE, the
error with respect to the RANS simulations decreases with increasing axial position for
all models. Far upstream of the LE all flows show a similar behaviour, however just
upstream of the LE all flows deviate from the RANS simulation. This is probably caused
by the fact that the RANS simulation models the blade surfaces as a wall, while they
are modelled as interior faces for all the other simulations. This is also the cause of the
bad modelling of the axial velocity inside the actuator disk. So the modelling inside the
actuator disk should be ignored for all figures.
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(a) 50 % radius (b) 75 % radius

(c) 96 % radius

Figure 4.9: Axial velocity variation with axial position for M=0.6 & J=3.08.

4.4.2 Variation of Radial velocity with axial position

As can be seen from Figure 4.10, the non-uniform and uniform actuator disk model
produce similar results. At one radius behind the TE and further downstream, all models
produce identical results for all radii. This is quite surprising since the model based on
Phillips’ equations does not incorporate the induced radial velocity in the derivation of its
formulae. As stated before, the flow upstream of the LE of the actuator disk is modelled
quite accurately, until just in front of the LE. The under- or overestimation of the radial
velocity of the actuator disk simulations downstream of the actuator disk is caused by
the fact that they do not include the effect of the tip vortices while the RANS similation
does.



68 Validation of the numerical propeller model

(a) 50 % radius (b) 75 % radius

(c) 96 % radius

Figure 4.10: Radial velocity variation with axial position for M=0.6 & J=3.08.

4.4.3 Variation of Tangential velocity with axial position

As can be seen from Figure 4.11, the non-uniform and uniform actuator disk model
produce identical results. Both actuator disk models produce more accurate results than
Phillips’ equations. Except at 75% radius where Phillips’ equations show a slightly better
agreement with the RANS results, however the difference between Phillips’ and both
actuator disk models is only 1.5 m/s. Since the uniform and non-uniform actuator disk
models produce an error within 0.5 m/s for 50% radius and for 75 and 96% radius an error
smaller than 3.5 m/s when compared to the RANS simulations they definitely outperform
Phillips’ equations which produce a difference of 10 m/s for 50 and 96% radius and an
error of 3 m/s at 75% radius.
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(a) 50 % radius (b) 75 % radius

(c) 96 % radius

Figure 4.11: Tangential velocity variation with axial position for M=0.6 & J=3.08.

4.4.4 Variation of Mach number with axial position

By inspection of Figure 4.9 and 4.12 it can be seen that the variation of the Mach number
is similar to the variation of the axial velocity. This makes sense since the radial and
tangential velocity are small compared to the axial velocity. Hence it is primarily only
the axial velocity that influences the Mach number. Therefore the same conclusions apply
as were drawn in section 4.4.1.
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(a) 50 % radius (b) 75 % radius

(c) 96 % radius

Figure 4.12: Mach number variation with axial position for M=0.6 & J=3.08.

4.4.5 Variation of total pressure with axial position

From Figure 4.13 it can be seen that Phillips’ equations correspond the best with the
results obtained by RANS for 96% radius. However the difference in error is small for all
radii. For 96% radius the error of all simulations are below 2%, while at 75% radius the
error stays lower than 2.5%. For 50% radius, the error is 0.7% for Phillips’ equations and
0.6 and 1.7% for respectively the non-uniform and uniform actuator disk models.
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(a) 50 % radius (b) 75 % radius

(c) 96 % radius

Figure 4.13: Total pressure variation with axial position for M=0.6 & J=3.08.

4.4.6 Variation of static pressure with axial position

All numerical models show a small difference in static pressure when compared to the
RANS simulations as can be seen from Figure 4.14. However the error introduced is so
small that it can be ignored.
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(a) 50 % radius (b) 75 % radius

(c) 96 % radius

Figure 4.14: Static pressure variation with axial position for M=0.6 & J=3.08.

4.4.7 Variation of density with axial position

From Figure 4.13 it can be seen that there is a small discrepancy in density between all
numerical models when compared to the RANS simulations. However the error introduced
is so small that it is negligible.
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(a) 50 % radius (b) 75 % radius

(c) 96 % radius

Figure 4.15: Density variation with axial position for M=0.6 & J=3.08.

4.4.8 Comparison of axial, radial and tangential velocity distribution in
radial direction

Figure 4.16 represents the axial, radial and tangential velocity distribution in radial di-
rection of the different numerical models at 1 radius behind the trailing edge of the blade,
so at x = 0.526 m or x

R = 1.69. To this end the data concerning the RANS simulation is
averaged circumferentially. This is done by extracting data along 11 different radial lines
in the plane x

R = 1.69 and then averaging it by taking the mean value.
It can be seen from Figure 4.16a that both actuator disk models as Phillips’ equations
agree well with the axial velocity distribution predicted by the RANS simulations. For
0.3 <= x/r <= 0.5 the non-uniform actuator disk model provides the best agreement
with the RANS results, while for 0.5 <= x/r <= 0.8 the uniform actuator disk model
shows the best agreement.
Concerning the radial velocity, all simulations agree well with the RANS simulation.
However it appears that the uniform actuator model shows a slightly better agreement,
although the difference is small and decreases with increasing radial position.
The strong point of the uniform and nonuniform actuator disk model is apparent in Fig-
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ure 4.16c, where it can be clearly seen that the tangential velocity is better predicted
than Phillips’ equations. However the tangential velocity on the nacelle’s surface is un-
derestimated for both actuator disk models and Phillips’ equations. This proves that the
actuator disk model can not take the viscous entrainment effect into account. However
further away from the spinner’s surface, the prediction agrees quite well with the RANS
results.
The better agreement of the tangential velocity and a good representation of the axial
and radial velocity makes the uniform and non-uniform actuator disk model superior with
respect to Phillips equations.

(a) Axial velocity (b) Radial velocity

(c) Tangential velocity

Figure 4.16: Distribution in radial direction for at x
R = 1.69 for M=0.6 & J=3.08.

4.5 Choice of numerical model

From the previous section, the following general conclusions can be drawn:

• The uniform actuator disk model gives more accurate results than the non-uniform
actuator disk model for x < xLE . For x > xTE these models produce similar results.
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• The uniform and non-uniform actuator disk model give a better prediction of the
tangential velocity at 50% and 96% radius than Phillips’ equations. For 75% radius
the results are similar.

• The non-uniform actuator disk model shows the best agreement with the axial
velocity of the RANS simulations at one radius behind the TE of the propeller for
0.3 <= x/r <= 0.5, while for 0.5 <= x/r <= 0.8 the uniform actuator disk model
provides the best prediction.

• The radial velocity distribution at one radius behind the propeller is slightly better
predicted by the uniform actuator disk model when compared to the other models.

• The tangential velocity distribution at one radius behind the propeller is much
better predicted by the uniform and nonuniform actuator disk models than Phillips’
equations.

The uniform and nonuniform actuator disk models produce similar results. Surprisingly
the prediction of the radial velocity obtained by means of Phillips’ equations is only
slightly worse than the prediction made by both actuator disk models although the radial
induced velocity is neglected in the derivation of Phillips’ equations. However the uniform
and nonuniform actuator disk model outperform Phillips’ equations when considering the
prediction of the tangential velocity.

Similar simulations were performed with Phillips’ equations and both actuator disk models
at the same Mach number, but with different advance ratio (J=2.7) and at a lower Mach
number of 0.2 (J=1.4). From these simulations the same conclusions as above could be
drawn.
Therefore one can state that the uniform and nonuniform actuator disk model give a
good representation of the steady flow field downstream of a propeller. However the non-
uniform UDF is more complex than the one of the uniform actuator disk model and is
computationally more expensive. Hence the uniform actuator disk model will be used as
the numerical model to study propeller-wing interaction effects.





Part III: Propeller-wing interaction
study

This part of the thesis will investigate the propeller-wing interaction effects numerically
by making use of the numerical model that was developed in part II.
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Chapter 5

Investigation of propeller-wing
interaction effects

This chapter will focus on the propeller-wing interaction study and will especially inves-
tigate the influence of the rotation sense of the propellers on the resulting flow field. To
this end four different simulations were performed:

1. Propellers off

2. Propellers on, both rotating inboard up

3. Propellers on, both rotating outboard up

4. Propellers on, down-between-engine concept

First a short discussion will be given concerning the creation of the geometry and mesh.
The second section will treat the Fluent settings that were applied for the propeller-wing
interaction study. The third section will provide several illustrations and graphs that
characterize the flow field for each above-mentioned case. This chapter will conclude with
the most important observations and remarks concerning the effect of rotation sense of
the propellers on the propeller-wing interference effects.

5.1 Geometry and mesh creation of the aircraft model

This section will elaborate on the generation of the geometry of the aircraft model used
in the propeller-wing interaction study and will discuss the creation of its mesh. As was
the case with the validation process (Chapter 4) the program Gambit was used to create
the geometry and the surface mesh. However, the volume mesh was generated by making
use of the program T-Grid.
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5.1.1 Creation of the geometry

The geometry used in the simulations is a generic aircraft and consists of:

• A wing

• 2 wing-mounted propeller engines (including nacelles)

• A fuselage

No tail surfaces are included in this geometry since the primary goal of this thesis is
the study of the importance of the rotation sense of the propellers on the propeller-wing
interference effects. No attention is paid to the effect of the slipstream on the stability
and control characteristics of the airplane.
Since the tail surfaces are excluded and the geometry of the model is symmetric with
respect to the xz-plane, only half of the airplane geometry needs to be modelled. This
will greatly reduce the amount of cells that are needed to mesh the geometry, leading to
a less expensive grid. Hence the calculation time and resources are reduced or one can
opt for a more dense mesh. The set-up of the geometry is based on the geometry used in
the master thesis of Tom Mullier (Mullier [2009]). The wing was created by Tom Mullier
by making use of 2 different airfoil geometries (NACA 64a410 & NACA 64a380). Part
of the wing extending from root to tip has a constant chord and makes use of the same
airfoil geometry. At a certain point (y/yref=0.27) the trailing edge of the wing varies
linearly towards the tip of the wing. A representation of the wing can be found in Figure
5.1 while Table 5.1 contains information regarding the wing span and the root, tip and
mean chord length. In contrast to the geometry drawn by Tom Mullier, who placed the
wing at a zero angle of attack, an angle of attack of 2◦ is used in the current geometry.

Figure 5.1: Wing geometry

The nacelles of the engines were extracted from a CAD drawing and “cleaned” for impor-
tation in Gambit by Tom Mullier. Although the same geometry of the nacelles were used,
the placement of the nacelles differs. The coordinates of the hub point of the inboard
and outboard engine can be found in Table 5.2. From this table it can be seen that the
outboard nacelle has a larger z-coordinate than the inboard nacelle, hence it is located at
a higher position with respect to the leading edge. This can also be seen by inspecting
Figure 5.2.
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Table 5.1: Characteristics of the wing

Parameter Value

wing span, b 40.41 m
root chord, croot 4.88 m
tip chord, ctip 2.37 m
mean chord c̄ 3.73 m
Wing surface area, Swing 75.29 m2

Table 5.2: Hub point coordinates

Engine Hub point coodinates

Inboard engine (-3.3, 15.205, -0.28)
Outboard engine (-3.3, 10.205, -0.12)

The fuselage is represented by a simple cylinder with a diameter of 4 m extending from the
inlet to the outlet of the domain. The calculation domain consists of a rectangular block
with a length of 21.32 m, a height of 16.44 m and a width of 22,595 m. A representation
of the airplane geometry and calculation domain can be found in Figure 5.2.

Figure 5.2: Complete airplane geometry

5.1.2 Generation of the mesh

The mesh of the propeller-wing geometry is created by making use of the programs Gambit
and T-Grid. Gambit is used to create the surface mesh of the aircraft geometry, the
boundaries of the calculation domain and the volume mesh of the propeller disks. T-Grid
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is used to fill up the rest of the domain.
After the creation of the mesh, it will be locally refined in the region between the propeller
and the TE of the wing. Therefore this section is divided into three subsections: the first
subsection will discuss the mesh generation using Gambit while the second one will focus
on the volume mesh generation by making use of T-Grid. The last subsection will shortly
explain how the mesh is refined by making use of the “Adapt” option in FLUENT.

Mesh generation using Gambit

From the the previous section it followed that the propeller-wing geometry consists of 3
parts: the fuselage, the wing and both engines. The engines consist of a spinner-nacelle
geometry and the propeller disk. From the discussion of the UDF set-up in section 4.2
it followed that there are specific requirements for the mesh of the propeller in order for
the UDF to work properly. As was the case with the validation simulations, the volume
beaten by the propeller will be split into two separate volumes:

1. Propeller volume

2. Actuator volume

As required by the UDF, the actuator volume consists of a depth of one cell. These cells
have a width of 0.05 m in order to have a good resolution while keeping the maximum
total amount of cells to a minimum. At the moment of the mesh creation the RMA RMA
was limited to a maximum amount of cells of 7 ·106 cells due to a limited amount of mem-
ory and licenses. The current limit of the maximum amount of cells is around 20 · 106

since the memory problem has been solved due to the purchase of a “super computer”.
However the limited amount of licenses is still limiting the maximum amount of cells.
There are 53 cells in radial direction due to the applied size function. The cells’ starting
size and growth rate of this size function is equal to the one used to create the boundary
layer on the aircraft’s surface (see next subsection) in order to have a smooth transition
from the nacelle’s hub to the volumes beaten by the propeller (see Figure 5.3). The max-
imum cell volume for the size function in radial direction is equal to the depth of the
actuator volume. Since it is impossible to mesh a complete circle with a radial size func-
tion, the volumes beaten by the propeller consist of four one-quarter cylinders, enabling
the use of a size function in radial direction. There are 260 cells in tangential direction,
leading to a tangential cell size of 0.05 m at the tip of the blade.

Again an inflow and outflow volume is added as was the case with the SR-1 mesh. The
reason for the inclusion of these volumes is to ensure that the solution is not influenced
by the transition from tetrahedrons to hexahedrons. Since only the inflow, propeller,
actuator and outflow volumes will be meshed with hexahedrons (necessary for the UDF)
while all the other surfaces and volumes will be meshed with tetrahedrons. The use of
hexahedrons in this complex geometry is very difficult, and more cells would be needed
to fill up the calculation domain.
Two size functions are imposed in axial direction: one at the inflow volume and one at the
propeller volume. These size functions are applied to ensure a smooth transitions from



5.1 Geometry and mesh creation of the aircraft model 83

Figure 5.3: Zoom of transition of mesh from hub to propeller

the small cell size on the hub to the required axial cell size of 0.05 m inside the actuator
volume (see Figure 5.4). Both size functions have a growth rate of 1.2 and a maximum
size of 0.05 m however the starting size differs. The starting size of the inflow volume size
function is 0.004 m (which corresponds with the size at the hub) while the starting size
of the propeller volume size function is the size of the largest cell of the inflow volume.
This leads to 7 columns of cells in axial direction for the inflow volume and 10 columns
of cells for the propeller volume. Since the depth of the outflow volume is just 0.06 m,
only one column of cells is used in axial direction.

While applying the UDF for the first time, it was discovered that the nacelle of this
geometry is not 100% axisymmetric. Although the error is only of the order of 0.001 m,
it has a profound effect on the proper function of the UDF because of the boundary layer
which has a starting size (first height of the boundary layer) of 0.001 m (see section 5.1.2).
Hence the original UDF was rewritten as was already mentioned in section 4.2.

The surface mesh of all surfaces, except the surfaces belonging to the propeller, are
meshed with triangular elements. The nacelle’s mesh uses a very fine mesh for the hub
cone (0.0041 m interval size). A size function is applied to that part of the nacelle that
is located after the outflow volume of the propeller, such that the cells will grow to a
maximum interval cell size of 0.05 m. This is done to ensure a smooth transition from
nacelle to wing surfaces which will also consist of triangular cell elements with an interval
size 0.05 m, see Figure 5.5. The hub’s mesh of the outboard engine is depicted in Figure
5.6.

A curvature size function is applied to the LE of the wing to grow cells with an interval
size of 0.01 m to 0.05 m. Also a size function is applied at the wing’s upper and lower
surfaces to decrease from 0.05 m to an interval size of 0.015 m since this is the interval
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Figure 5.4: Zoom of transition of the surface mesh from hub to propeller

size that is used to fill up the TE face (see Figure 5.7). Although the behaviour of the
flow near and at the fuselage is not of primary concern, a meshed size function is created
with the intersection edge of the wing and the fuselage as source, a growth rate of 1.2
and a maximum cell size of 0.5 m. This meshed size function is applied to ensure that
the solution near the inboard propeller is not affected due to a too crude meshing of the
fuselage. The symmetry boundary faces above and below the fuselage are also subjected
to a size function with a starting size of 0.5 m, a growth rate of 1.1 and a maximum cell
size of 1 m in order to minimize the number of cells. The mesh of the symmetry boundary
can be found in Figure 5.8.

Also size functions are applied to the other boundaries, leading to a maximum cell size
of 1 m to minimize calculation costs. Since the volume mesh around the aircraft will be
generated from the cells on the aircraft’s surface the larger cell sizes on the boundaries
will not affect the volume cells close to the airplane’s wing and engines. Furthermore the
mesh behind the propellers will be refined in cylinders that extend till just downstream
of the TE of the wing, and have a slightly larger diameter than the propeller (see the last
subsection).

Mesh generation using T-Grid

After the creation of all surface meshes and the volume mesh of the propellers the volume
mesh of the remaining domain will be generated by making use of T-grid. The first step
is the generation of the boundary layer of the aircraft. The creation of a boundary layer
is necessary to correctly simulate the turbulent behaviour near the wall, especially when
using the k−ε and k−ω turbulent models (see section 3.2.1). These models were designed
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Figure 5.5: Zoom of transition of mesh from nacelle to wing

for freestream flows, located far away from walls. Therefore the behaviour near the wall
can not be resolved but use is made of a wall function to simulate its behaviour close to
the wall. The parameter y+ is a parameter which states whether the boundary layer is
suitable to resolve turbulent flow. The formula for the determination of y+ was already
given in Eq (3.17), but it is repeated below for convenience:

y+ =
c
1
4
µ

√
k yP
ν

(5.1)

The term yP denotes the height of the first cell. Since the friction velocity can be expressed

with formula (5.2) and the wall shear stress with Eq (5.3), the friction velocity, uτ = c
1
4
µ

√
k

can also be rewritten as Eq (5.4).

uτ =

√
τw
ρ

(5.2)

τw = cf
1

2
ρV 2
∞ (5.3)

uτ = V∞

√
cf
2

(5.4)

The term cf is the skin friction coefficient and can for a turbulent boundary layer on a
flat plate according to Prandtl’s Power law (White [2006]) be predicted by Eq (5.5).

cf = 0.058Re
−1
5 (5.5)

Substituting Eq (5.4) into Eq (5.1) the expression for y+ becomes:

y+ =
Rec̄

√
cf
2 yP

c̄
(5.6)
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Figure 5.6: Zoom of transition of mesh from hub to propeller

The term c̄ is the average chord of the wing.

Solving Eq (5.6) for the first cell’s height, yP leads to formula (5.7):

yP =
y+c̄

Rec̄

√
cf
2

(5.7)

Since FLUENT stores flow variables in the centroid of a cell, Eq (5.7) needs to be doubled
in order to have the correct estimation of the height of the first cell:

h1st cell =
2y+c̄

Rec̄

√
cf
2

(5.8)

From the previous discussion in section 3.2.1 it followed that it is desirable that y+ <=
100. Taking y+ equal to 80 and filling in the flight parameters from Table 5.5, leads to
h1st cell = 0.001.

Hence the boundary layer will have a starting size of 0.001 m, with a growth factor of 1.2
and will consist of 8 layers.

In order to have a smooth transition from hexahedrons to tetrahedrons a layer of pyramid
cells is “glued” to all rectangular mesh faces of the outer boundaries of the propeller disks.
To fill up the rest of the domain the “auto mesh” function of T-Grid is used which will grow
cells from the airplane’s surface, making use of the surface mesh, towards the boundaries.
In order to minimize calculation cost, the growth rate is chosen to be 1.4. This results in
a total number of cells of 6 012 070.
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Figure 5.7: Size functions applied to the wing

Local mesh refinement

After importation of the mesh file in FLUENT, the grid is modified by using the “Adapt”
command. The grid will not be adapted everywhere in the calculation domain, hence the
“region” option is selected. Only the cells are changed that are enclosed by the cylinder
which has a radius of 2.15 m and an axis of rotation specified by a starting and end point
of which the coordinates are given in Table 5.3. Hence the cylinders extend from the
outflowface of the outflow volume to about 1.46 m behind the TE of the wing.

Table 5.3: Coordinates specifying the axis of rotation of the refinement cylinder

Engine Coordinates of the starting point Coordinates of the end point

Inboard engine (-2.589, 15.205, -0.20) (6, 15.205, -0.20)
Outboard engine (-2.589, 10.205, -0.12) (6, 10.205, -0.12)

The control parameters for the refinement are summarized in Table 5.4. The minimum
cell volume is calculated by means of Eq (5.9), which is the formula to calculate the
volume of a tetrahedron based on the edge length a:

Vol =

√
2

12
a3 (5.9)

where a = 0.05 m.
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(a) Symmetry boundary and fuselage
mesh

(b) Zoom-in of fuselage mesh

Figure 5.8: Symmetry boundary and fuselage mesh

Table 5.4: Refinement controls

Parameter Outboard Engine Inboard Engine

Minimum cell volume 1.47 · 10−5m3 1.47 · 10−5m3

Minimum number of cells 0 0
Maximum number of cells 9 012 070 12 012 070
Maximum level of refine 2 2
Volume weight 1 1

FLUENT adapts the mesh according to the “hanging node principle”, which is depicted
in Figure 5.9. From Figure 5.9 it can be seen that the “hanging node principle” splits one
large triangular 2D element into 4 smaller triangles. For a 3D triangular element: one
large tetrahedron is divided into 8 smaller tetrahedra, while a prism is split into 8 smaller
prisms. After the mesh refinement has been applied, the grid consists of 10 683 076 cells
in total.
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(a) 2D (b) 3D

Figure 5.9: The hanging node adaption principle “ANSYS FLUENT 12.0 Theory Guide”
[2009]
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5.2 Flight conditions and cases

This section will discuss the cases that will be treated in this thesis. The reference and
most simple case is the prop off case in which the engines are running but the propellers
are not producing thrust, hence no induced velocity is imposed. The influence of the
rotation sense will then be investigated by rotating the propellers as in Figure 5.10:

• Inboard up

• Outboard up

• Down-Between-Engine (DBE)

(a) Inboard up rotation (b) Outboard up rotation

(c) DBE rotation

Figure 5.10: Rotation cases

The flight parameters are stated in Table 5.5 and the parameters for the engines at the
stated flight altitude and speed are summarized in Table 5.6.
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Table 5.5: Flight conditions

Parameter Value

Flight altitude 35 000 feet or 10 668 m
Freestream Mach number M∞ 0.6
Static (operating) pressure 23840 Pa
Static temperature 218.81 K
Density 0.3796 kg/m3

Freestream velocity, V∞ 177.91 m/s

Table 5.6: Engine parameters

Parameter Value

Air flow intake 6.5 kg/s
Mass flow oil cooling 1 kg/s
ESFC 0.5 kg/(W s)
Mass flow exhaust 8 kg/s
Jet total temperature 824.3 K
Propeller total thrust 8489.69 N
Propeller rotational speed 17.17 rps
Propeller diameter 4.11 m
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5.3 Fluent settings

This section will shortly discuss which FLUENT settings were applied in the propeller-
wing interaction study.

5.3.1 Model settings

A 3-dimensional, steady, compressible, turbulent flow without heat transfer will be mod-
elled. The “Realizable k−ε” method is chosen as turbulent model with “Non-equilibrium
wall functions” and standard parameters.

5.3.2 Material properties

The air is considered as an ideal gas. The freestream Mach number is set to 0.6, which
corresponds to a Reynolds number of 14 · 106.
The nacelle material is set to aluminum and the default values are used.

5.3.3 Solver controls

As stated previously, the pressure-based solver is used since the density-based solver does
not allow the attachment of a UDF in order to impose the velocities in the actuator
volume. For more information concerning these solvers, the reader is referred to section
3.2.3. The SIMPLE algorithm is chosen for the pressure-velocity coupling.
There are different discretization schemes available for the pressure, density, momentum,
energy, turbulent kinetic energy and turbulent dissipation rate. To initialize the solution,
the first order discretization method is used for all parameters. Afterwards the second
order discretization scheme is selected. The gradient terms are determined by means of
the Green-Gauss node-based calculation method since this method is more accurate than
cell-based gradient calculation when an unstructured mesh is used.

5.3.4 Boundary conditions

The top, bottom and tip faces of the domain are categorized as a pressure-far-field bound-
ary condition, which is used to model freestream conditions at infinity. The freestream
Mach number and direction must be given as input as well as the freestream static temper-
ature. A symmetry boundary condition is applied to the root face, see Figure 5.2. This
boundary condition allows to model only half of the airplane geometry, which greatly
reduces the total amount of cells of the mesh. The inlet is modelled as a pressure-inlet
on which a certain gauge total pressure is employed, while the outlet is modelled as a
pressure outlet, with zero gauge static pressure. This difference in gauge pressure between
the inlet and outlet will produce a flow of prescribed Mach number. From section 3.2.4 it
followed that Eq (3.33) is used to obtain the required total gauge pressure at the inlet and
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Eq (3.34) to find the corresponding total temperature. For convenience both formulae
are repeated below:

ptgauge = pop

(
1 +

γ − 1

2
M2

) γ
γ−1

− pop (3.33)

Tt
Ts

=

(
1 +

γ − 1

2
M2
∞

)
(3.34)

Filling in the parameters from Table 5.5 and γ = 1.4 leads to:
ptgauge = 6800 Pa & Tt = 234.56 K

All surfaces related to the airplane’s geometry are modelled as adiabatic no slip walls,
except for the surfaces related to the actuators, which are set to interior faces. Since
the flow is turbulent, turbulence parameters need to be specified for all boundaries of
the domain. The governing turbulence parameters are the turbulent intensity and length
scale. The length scale was obtained by Eq (5.10):

l = 0.07 · Lc (5.10)

The term Lc is the characteristic length scale of the object. Since we also want to take
the smallest characteristic length scale into account Lc = ctip = 2.37 m. The turbulent
length scale is then equal to 0.17 m.
The turbulence intensity is set to 1% for all boundaries except for the mass flow inlet
boundary conditions which are applied at the engines. Table 5.7 gives an overview of the
turbulence parameters for each boundary.

Table 5.7: Turbulence parameters

Boundary Turbulence intensity

Oil cooling inboard & outboard engine 1.5%
Intake inboard & outboard engine 1.5%
Exhaust inboard & outboard engine 2%
Top, bottom and tip domain (pressure-far-field BC) 1%

5.4 Set-up of the simulation and iterative convergence

The simulations can not be performed by immediately imposing the Fluent settings as
described in section 5.3, since these conditions are too demanding for the FLUENT solver.
A way around this problem is to start up the simulation with very simple settings e.g.
M=0.2 & laminar flow. Let this simulation iterate until the residuals show a nice decreas-
ing or steady behaviour and save the obtained data. Then alter the settings e.g. higher
Mach number, load the previous data and let it iterate again as before. Repeat this pro-
cess until the desired settings are obtained and the required freestream Mach number is
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found at the inlet of the calculation domain. In total 7800 iterations were performed to
find a uniform flow which complies with all boundary conditions and flight parameters for
the prop off case. Then the mesh was locally refined in cylinders behind the propellers, as
was discussed in section 5.1.2. Another 2000 iterations were performed without imposing
the UDF (prop off case). The case and data file which were obtained by this simulation
is the start-up file for all the other cases. To ensure that the simulation is converged for
all cases, 6000 iterations are performed when the UDF is imposed. For one of the cases
the overall lift and drag coefficient was written to a text file. From this file it could be
seen that the overall lift coefficient did not change anymore for 3 significant digits for the
last 2000 iterations. The overall drag coefficient did not change for 4 significant digits
for the last 1500 iterations. This is a clear indication that the solution is converged since
these 2 important parameters remain constant. Normally the residuals of the simulation
also give a good indication of the convergence of the solution if they are small enough
and don’t fluctuate much. However they can also be misleading and it is therefore nec-
essary to monitor whether import parameters such as CL and CD remain constant. In
order to compare the prop on cases with the prop off case, also 6000 extra iterations were
performed for the prop off case. This was done to ensure iterative convergence.

5.5 Results of the propeller-wing interaction study

This section will discuss the results of the propeller-wing interaction study. The main
interest of this study is the influence of the propeller on the wing and how the rotation
sense influences the spanwise distribution of the lift and drag of the wing. This section
is divided into three subsections: first the lift and drag characteristics for each case will
be considered. Then Cp isolines and pressure coefficient plots will be given to explain the
results of the first subsection. This section will conclude by specifying the main results
that were obtained by comparing all cases.

5.5.1 Lift and drag characteristics of the wing

It is possible to calculate the overall lift and drag force by means of FLUENT. Since
the dynamic pressure and the reference wing surface is known the overall lift and drag
coefficient can be calculated by means of respectively Eq (5.11) and Eq (5.12):

CL =
L

1
2ρV

2
∞Swing

(5.11)

CD =
D

1
2ρV

2
∞Swing

(5.12)

The lift and drag forces obtained by FLUENT for all cases and the corresponding lift and
drag coefficients1 are summarized in Table 5.8

1The lift and drag is only calculated for the wing and nacelles, the effect of the fuselage is not taken
into account.
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Table 5.8: Lift and drag parameters of the wing as obtained by Fluent

Case L [N] D [N] CL [-] CD [-] ∆CL [-] ∆CD [-]

Prop off 182698 11420 0.404 0.0253 - -
Inboard up 192195 14961 0.425 0.0331 +5% +30.8%
Outboard up 184602 15060 0.408 0.0333 +1% +31.6%
DBE 185584 14852 0.410 0.0328 +1.5% +29.6%

The inboard up case appears to deliver the highest overall lift coefficient according to
Table 5.8. By letting both propellers rotate outboard up only a slight increase in lift
coefficient w.r.t. the prop off case is obtained while it produces the highest overall drag
coefficient, leading to the worst aerodynamic performance of all three cases. The DBE
case has one inboard up and one outboard up rotating propeller, which leads to a small
augmentation in overall lift coefficient which is larger than the outboard up case, but
smaller than the inboard up case. The overall drag coefficient is however the smallest of
all three cases.

In order to know the spanwise distribution of the lift and drag coefficients a Matlab m-file
was created which calculates the local lift and drag coefficient by chordwise integration
of the pressure and friction forces. To this end 51 airfoil sections were extracted from
the wing. For each section the static pressure and friction forces were extracted. The
sectional lift and drag coefficient are based on the local chord of the wing. The local lift
and drag coefficients can be determined with formulae (5.13) and (5.14):

Cl =
l

1
2ρV

2
∞c

(5.13)

Cd =
d

1
2ρV

2
∞c

(5.14)

where l and d are the sectional lift and drag force respectively.

The m-file which calculates the local lift and drag coefficient can be found in Appendix
C. Appendix D contains the journal files that were used to extract the airfoils and their
data. The resulting spanwise distribution of the lift and drag coefficients can be found
in Figure 5.11 and Figure 5.12, respectively. It should be noted that the wing sections
which intersect the nacelles are not included in the figures. The full black verticals in
Figure 5.11 and Figure 5.12 mark the outlines of the nacelles, while the dashed verticals
indicate the outerlines of the propellers.

From Figure 5.11 it can be seen that inboard up rotation of the propellers produces the
highest lift in contrast to the wing with outboard up rotating propellers which produces
the lowest lift. This could also be derived from Table 5.8. Furthermore it can be seen
that the spanwise lift distribution of the DBE case follows the same trend as the inboard
up rotating propellers, however with a small offset, until it is in between both propellers.
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Figure 5.11: Spanwise lift coefficient (“−” nacelle borders, “- -” propeller diameter)

Figure 5.12: Spanwise drag coefficient (“−” nacelle borders, “- -” propeller diameter)

There the lift distribution decreases and starts following the same trend as the lift dis-
tribution of the outboard up case. The offset in lift coefficient between the DBE and
outboard up rotating case is smaller than the one observed for the inboard up and DBE
rotation. The larger offset is probably caused by the mutual interaction of both inboard
up rotating propellers, which has a favourable effect on the lift distribution. For the DBE
case this favourable interaction disappears resulting in lower Cl values when compared to
the inboard up case. Also the proximity of the fuselage plays a role in this matter as the
outboard engine is less influenced. At 95% of the span the Cl-line of all cases coincide. At
this span position the propeller slipstream no longer influences the wing lift distribution.
By comparing Figure 5.11 with Figure 2.9 from section 2.1.4, one can see that the numer-
ical prediction of the spanwise lift coefficient agrees well with the shape and behaviour
predicted by theory. Due to the spanwise gradients of the wing, the change in lift coef-
ficient distribution caused by the propeller slipstream is not limited to the wing located
inside the slipstream. Therefore for an inboard up rotating propeller the local Cl at the
root is larger than the prop off case. The opposite is true for an outboard up rotating
propeller which has a lower local lift coefficient at the wing’s root. The effect of increase
in dynamic pressure due to the induced axial velocity generated by the propeller behaves
symmetrical with respect to the thrust axis. When based on the local flow conditions, the
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local lift coefficient does not change. However, based on the undisturbed conditions, there
is an increase in local lift coefficient independent of rotation sense of the propeller (Figure
2.6). Furthermore the tangential velocity causes an in- or decrease in local angle of attack
of the trailing wing, depending on the fact whether the wing is located in the upwash
(upward going blade) or downwash (downward going blade) region of the propeller blade
(Figure 2.8). The combined effect of the induced axial, tangential and spanwise wing
gradient is depicted in Figure 2.9. The same behaviour is displayed in Figure 5.11.

By inspecting Figure 5.12 one can deduce that the spanwise distribution of the drag co-
efficient of the DBE rotation first follows the same trend as the inboard up case and then
switches again to follow the trend of the outboard up rotating propellers. It is difficult to
derive which case produces the least drag. From Table 5.8 it followed that the outboard
up case produces the largest overall drag coefficient. But the difference in overall drag
coefficient is very small.
There is no longer an offset between the inboard up rotating propeller and the DBE ro-
tation as was observed for the lift coefficient. And also the Cd-line of the outboard up
case and DBE configuration coincide when they display the same behaviour. Only in
the interaction region of both propellers a small offset between the DBE and the in- and
outboard up case can be observed. Furthermore the Cd-line for all configurations coincide
at a spanwise position of 75%. It can therefore be concluded that the rotation sense of the
propellers has a stronger influence in spanwise direction on the spanwise lift distribution
than on the spanwise drag distribution.

Concerning the performance of the aircraft, the range and endurance are important pa-
rameters. Their formulae are given by respectively Eq (5.15) and Eq (5.16)(Ruijgrok
[1996]).

R =
ηj
cp
· CL
CD
· lnW1

W2
(5.15)

E =
ηj
cp
·

√
C3
L

CD
· ρSwing

2
·
(

2√
W2
− 2√

W1

)
(5.16)

The term W1 represents the initial weight at the start of cruise, while W2 is the weight
at the end of cruise. The parameter ηj indicates the propulsive efficiency and the term cp
the specific fuel consumption. From above equations it can be seen that the term CL/CD
or lift-to-drag ratio plays an important role in the outcome of the maximum range while

the term C
3/2
L /CD influences the maximum endurance of the airplane. These terms are

summarized in Table 5.9.

From Table 5.9 it can be deduced that the inboard up configuration delivers the best
results concerning range and endurance. However the differences are small. The outboard
up case will have the shortest range and endurance of all cases. The performance numbers
of the DBE configuration is located somewhere in between the inboard up and outboard
up case. Hence from an aerodynamic point of view, the DBE case is not the best design
solution. Although it will probably give better handling characteristics in case of engine
failure. It is therefore recommended that also a stability and control check is done in
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Table 5.9: Lift and drag parameters of the wing as obtained by Fluent

Case CL
CD

[-]
C

3
2
L

CD
[-]

Prop off 16 10.2
Inboard up 12.8 8.4
Outboard up 12.3 7.8
DBE 12.5 8

the preliminary design phase in order to see whether the performance advantages of the
inboard up case outweigh the disadvantages of the stability and control characteristics
in case of engine failure. Since the lift-to-drag ratio of the inboard up case is only 2.4%
larger than the DBE case, while the endurance term is 5% larger.

The lift-to-drag ratio and the term C
3/2
L /CD based on the pressure and stress distribution

of the wing can be found in Figure 5.13 and 5.14 respectively. Again the DBE case displays
first the same trend as the inboard up case and switches afterwards to follow the trend of
the outboard up configuration.

Figure 5.13: Spanwise lift-to-drag ratio (“−” nacelle borders, “- -” propeller diameter)

5.5.2 Pressure coefficients plots

In order to better understand the spanwise lift and drag distributions, pressure coefficient
isolines will be given, together with pressure coefficient plots for certain spanwise locations
(which are also indicated in Figure 5.15 to 5.21):

1. Close to the wing’s tip, outside the influence zone of the outboard propeller (y/yref=0.901)

2. Outboard, outside the propeller diameter of the outboard engine (y/yref=0.633)

3. Outboard, inside the propeller diameter of the outboard engine (y/yref=0.546)

4. Inboard, inside the propeller diameter of the outboard engine (y/yref=0.44)
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Figure 5.14: Spanwise distribution of
C

3
2
L

CD
(“−” nacelle borders, “- -” propeller diameter)

5. In between the in- and outboard engine (y/yref=0.371)

6. Outboard, inside the propeller diameter of the inboard engine (y/yref=0.297)

7. Inboard, inside the propeller diameter of the inboard engine (y/yref=0.197)

8. Inboard, outside the propeller diameter of the inboard engine (y/yref=0.109)

The pressure coefficient can be calculated by means of Eq (5.17):

Cp =
2

γM2
∞

(
p

p∞
− 1

)
(5.17)

The pressure coefficient isolines for the prop off case as well as its Cp-plots can be found
in Figure 5.15.

From this figure it can be observed that there is a difference in pressure coefficient isolines
for the in- and outboard nacelles. This difference is probably mainly caused by the differ-
ence in height of the engine placement. The outboard engine is placed at a slightly higher
z-coordinate than the inboard engine as was already stated in the previous section. The
presence of the fuselage can of course also have an influence on the pressure distribution
of the inboard engine. The pressure coefficient isolines for the inboard up, outboard up
and DBE cases can be found in Figure 5.17, 5.19 and 5.21 respectively. In these figures,
the pressure coefficient plots are displayed with respect to the prop off case. Therefore
the discussion presented below is always given with respect to the prop off case, unless
mentioned otherwise.

Inboard up rotation

From Cp-plot 1 from Figure 5.17 it can be seen that the distribution of the pressure
coefficient for the inboard up rotation and the prop off case is identical. This implies
that the outboard propeller has no influence on this section. The same conclusion can
be drawn by comparing the pressure coefficient isolines of Figure 5.17 with Figure 5.15.
This also corresponds with the observation made in the previous section where it followed
from Figure 5.11 that the Cl-lines of the prop off and inboard up case coincide at 90% of
the span.
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Figure 5.15: Cp plots and Cp isobars for Prop off case suction side

Although location 2 is located outside the propeller slipstream, there is a slight difference
in pressure coefficient. Close to the LE Cp is slightly less negative for the suction side
and slightly more negative for the pressure side. Furthermore between 35 and 64% chord
there is slightly more suction on the suction side for the inboard up rotating propellers.
For the pressure side, the Cp-values are slightly more negative from the LE till 70% chord.
The overall effect is a decrease in overall airfoil Cl.

At section 3, a larger difference in Cp is noticed, which is not so surprising since the airfoil
is located inside the slipstream of the propeller. There is a negative lift production close
to the LE of the wing since the static pressure is decreased at the lower surface, leading
to a more negative Cp while the pressure is augmented at the suction side. This can also
be seen by comparing Figure 5.15 and 5.16 with respectively Figure 5.17 and 5.18. The
Cp-values remain more negative for the pressure side until 75% chord, from here on it is
slightly more positive. The pressure is augmented for the upper surface until 20% chord,
where it starts to decrease w.r.t. the prop off case until 80% chord with a local peak in Cp
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Figure 5.16: Cp plots and Cp isobars for Prop off case pressure side

at 44% chord. This behaviour leads to lower local lift coefficient, which is also confirmed
by Figure 5.11

The LE suction peak is increased and the pressure coefficient is more negative for the
suction side until 75% chord for section 4. While the pressure is increased until 20%
chord for the pressure side, producing more positive Cp-values. From this point on the
Cp-values become more negative until 65% chord, where it starts to augment again for
the lower surface. The resulting local lift coefficient for this section is larger than the one
obtained with the propellers off.

Right in the middle between the two engines (section 5), the pressure side is almost not
affected. There is no longer an increase in LE suction, although there is a more negative
Cp for the suction side from 15 till 70% chord. This leads to a higher sectional lift
coefficient.

Section 6 is located inside the slipstream of the inboard propeller and more particulary
in the region of the downward going blade. The behaviour of the pressure coefficient is
similar to the one observed for section 3, although the negative effect on the sectional
lift coefficient seems to be less pronounced. Since the production of a negative lift near
the LE of the wing is less and the decrease in pressure for the suction side seems to be
larger. The sectional lift will be less when compared to the prop off case, but its decrease
in lift coefficient w.r.t. the prop off case will be lower than the one of the inboard case
observed for section 3. This effect is probably caused by the interaction of the two rotating
propellers.

Just outboard of the inboard engine (section 7) the increase in LE suction peak with
respect to the prop off case is lower than the one observed for section 4 while the behaviour
of the Cp values of the pressure side is similar. Furthermore the propeller slipstream seems
to diminish the static pressure at the suction side more gradual and less strong than at
section 4. Because of these changes in pressure distribution with respect to the prop
off case, the sectional lift coefficient has a much higher value, but lower than the one of
section 4 for the inboard up case.
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Figure 5.17: Cp plots and Cp isobars for Inboard-up rotating props suction side

Although section 8 is located outside the diameter of the inboard propeller, the influence
of the slipstream is still visible. This influence, however small, translates into a slightly
more negative Cp for the suction side and a slightly more positive Cp for the pressure
side. Hence the sectional lift coefficient is higher.

In summary, sections 4, 5, 7 and 8 produce a larger lift coefficient when compared to the
prop off case. This is the result of a more favourable pressure coefficient distribution as
well as higher local velocities. Furthermore the sectional lift coefficient is unaltered for
section 1 and diminished for sections 2, 3 and 6. Apparently the suction side of the wing
is more affected by the propeller slipstream than the pressure side for the sections washed
by the upward going blade while the opposite is true for the sections located behind the
downward going blade

Outboard up rotation

By inspection of Cp-plot 1 from Figure 5.19 it can be seen that the distribution of the
pressure coefficient for the airfoil of section 1 for the outboard up rotation is almost
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Figure 5.18: Cp plots and Cp isobars for Inboard-up rotating props case pressure side

identical to the prop off case. There is a very small decrease in static pressure for the
suction side until 72% chord. Hence the outboard up rotation of the outboard engine
seems to have a slight effect on section 1, although it is not located inside the propeller
slipstream. This is in contrast with the inboard up case, where the Cp-plots for the prop
off and inboard up case were identical. This also corresponds with Figure 5.11, which
also predicted a larger Cl value for this section.

Considering section 2, there is a slight decrease in static pressure for the suction side
and a slight increase in static pressure for the pressure side when compared to the prop
off case. Although this de- and increase is very small, it does increase the sectional lift
coefficient with respect to the prop off case.

At section 3 the influence of the outboard up rotating propeller becomes more apparent.
Especially the suction side of the airfoil is affected, leading to a lower pressure on the
upper side of the airfoil. Especially the LE suction peak is increased w.r.t. the prop
off case. Furthermore the pressure increases on the airfoils’ lower side till about 20%
chord, where it starts to diminish slightly until 45% chord. However the decrease in static
pressure for the suction side is higher than the decrease in static pressure for the pressure
side, leading to a higher sectional lift coefficient.

That part of the airfoil that is located close to the LE of the wing produces negative lift
for section 4. In contrast to section 3 the propeller slipstream seems to affect mainly the
pressure side leading to more negative Cp-values until 65% chord where it starts becoming
more positive. The upper surface is displaying a decrease in LE suction peak and a local
Cp peak at 45% chord. This behaviour leads to a lower sectional lift coefficient and this
is also confirmed by Figure 5.11

For the section located in between both engines, the Cp-values on the pressure side are
more negative from 10 to 60% chord. There is also a slight increase in static pressure for
the upper side until 10% chord. While the suction side has more negative Cp-values from
25 till 70% chord. Hence the sectional lift coefficient for the outboard up case is higher
than the one of the prop off case.
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Figure 5.19: Cp plots and Cp isobars for Outboard-up rotating props

Outboard of the inboard engine, the pressure side displays the same behaviour as the lower
side of section 3. The suction side produces more negative pressure coefficients until 75%
chord, while there is a strong increase in static pressure for the suction side close to
the LE. This translates into a higher sectional lift coefficient. However this sectional lift
coefficient is lower than the one observed for section 3.

The changes in Cp for section 7 of the outboard up case with respect to the prop off case
is similar as the changes that were noticed for section 4. Again a negative lift is produced
close to the LE of the wing. The decrease in static pressure of the suction side is however
less pronounced than observed for section 6. This leads to a strong decrease in sectional
lift coefficient when compared to the prop off case and it is lower than the Cl of section
4.

Although section 8 is located outside the slipstream of the inboard propeller, its Cp-values
are different than the prop off case. The Cp-values become more negative for the pressure
side and more positive for the suction side, leading to a decreased sectional lift coefficient.
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Figure 5.20: Cp plots and Cp isobars for Outboard-up rotating props case pressure side

In summary, sections 4, 7 and 8 produce a smaller lift coefficient when compared to the
prop off case. Furthermore the static pressure distribution close to the TE of the wing
changes more quickly to a higher value for sections located between section 4 and 7, which
explains the lower value for the TE point in the pressure plots of sections 4 and 7. It also
appears that the pressure side of the wing sections located behind the downward going
blade is more affected by the propeller slipstream than the suction side. The opposite is
true for he sections located in the upwash region of the propeller. The same observation
was made for the inboard up case.

DBE rotation

By inspection of Cp-plot 1 from Figure 5.21 it can be seen that the distribution of the
pressure coefficient for the airfoil of section 1 for the DBE rotation is almost identical to
the prop off case. There is a very small decrease in static pressure for the suction side.
Hence the outboard up rotation of the outboard engine seems to have a slight effect on
section 1, although it is not located inside the propeller slipstream. This corresponds with
the outboard up case, where a similar observation for the Cp-plot of section 1 was made.

The pressure coefficient plot of section 2 seems identical to section 2 of the outboard up
case, however there is a very small difference. For the outboard up case, there is slightly
more suction on the suction side and the static pressure is slightly larger for the pressure
side. Hence the local lift coefficient of the DBE case is slightly less than the one of the
outboard up case but it is larger than the sectional lift coefficient of the prop off case.

The pressure coefficient plot for the section 3 seems identical to the pressure plot of the
outboard up case, however there is a small difference. The Cp values for the upper section
is less negative for the DBE case. Hence the local lift coefficient is slightly lower than the
one of the outboard up case but larger than Cl of the prop off case.

Although the Cp-plot from section 4 of the DBE case looks similar to the outboard up
case, they are not identical. The main difference is the slightly larger suction peak at 45%
chord and the slightly more negative Cp for the pressure side concerning the DBE case.
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Figure 5.21: Cp plots and Cp isobars for DBE rotating props

This leads to a lower sectional lift coefficient than the outboard up case and hence it is
also lower than the one of the prop off case.

The section located in between both engines displays neither the behaviour of the outboard
up nor the inboard up case. The static pressure at the suction side is increased until 25%
chord where it starts to decrease slightly until 65% chord. While the static pressure is
diminished on the lower surface until 70% chord. The overall sectional lift coefficient is
less than the prop off case and hence it is also lower than the inboard and outboard up
case. This is also confirmed by Figure 5.11

With respect to the inboard up rotating case, section 6 of the DBE simulation has a
slightly larger static pressure for the suction side and a smaller static pressure for the
pressure side. Therefore for this airfoil section the DBE case has a lower sectional lift
coefficient than the inboard up case and the prop off case.

The Cp-plot of section 7 of the DBE simulation has the same shape as the Cp-plot of the
inboard up rotating case. However the increase in suction of the upper side with respect
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Figure 5.22: Cp plots and Cp isobars for DBE rotating props case pressure side

to the prop off case is less and the Cp-values at the pressure side are less positive. Hence
this section will produce a lower lift coefficient compared to the inboard up case but it is
still larger than the prop off case.

For section 8 one can again state that the shape of the pressure coefficient distribution
is identical as the inboard up case, however the increase in suction on the suction side is
less. And the Cp values on the pressure side seem to be more negative for the DBE case
with respect to the inboard up case. This translates into a lower sectional lift coefficient
for the DBE case with respect to the inboard up simulation, however it will be larger
than the prop off case.

In summary the DBE case displays a similar behaviour as the outboard up configuration
for sections 1 to 4. However the sectional lift coefficient for these sections are lower than
the ones produced by the outboard up case. But they are higher than the Cl values of
the prop off case for sections 1 to 3. The Cp-plots of the DBE case follow the same trend
as the inboard up case for sections 6 to 8. The sectional lift coefficients of these sections
produced by the DBE case are however lower than the ones produced by the inboard up
configuration, but higher than the prop off case for sections 7 and 8. At section 5, which
is located in between both engines, the Cp-plot differs from the Cp-plot of the inboard
up and outboard up case. At this section a lower local lift coefficient is produced w.r.t.
the prop off case but also w.r.t the inboard and outboard up case. All these observations
correspond with the ones observed for the spanwise lift coefficient (Figure 5.11).

5.5.3 Influence of the wing on the total pressure

The actuator introduces a sudden jump in total pressure as could also be observed from
Figure 4.13 of section 4.4.5. This corresponds to a more energetic flow due to the work
delivered by the propeller. The influence of the wing on the total pressure can be deduced
by inspection of the pressure contours in a plane 1 m upstream and downstream of the
wing. The change in total pressure contours for the inboard up, outboard up and DBE
case are given in respectively Figure 5.23 , 5.24 and 5.25.
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(a) 1 m upstream of LE wing (b) 1 m downstream of TE wing

Figure 5.23: Total pressure contours for the inboard up case.

(a) 1 m upstream of LE wing (b) 1 m downstream of TE wing

Figure 5.24: Total pressure contours for the outboard up case.

By inspection of Figures 5.23 , 5.24 and 5.25 it can be clearly seen that the wing extracts
most of the energy induced by the propeller slipstream as indicated by the decrease in
total pressure for the plane located 1 m downstream of the TE of the wing. The positive
interaction between the upward going blade and the fuselage causes high values in total
pressure around the upper side of the fuselage as can be seen from Figure 5.23a. The total
pressure contours upstream of the wing of the DBE case inboard of the inboard engine
are similar to the contours of the inboard up case. For the outboard engine the DBE case
displays a similar behaviour as the outboard up case.

5.5.4 Influence of the wing on the tangential velocity

Upstream of the actuator disk the tangential velocity is zero, but at the actuator disk itself
there is a jump in tangential velocity. Again planes are extracted 1 m upstream of the LE
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(a) 1 m upstream of LE wing (b) 1 m downstream of TE wing view

Figure 5.25: Total pressure contours for the DBE case.

and 1 m downstream of the TE of the wing. The resulting tangential velocity distribution
is given in Figures 5.26 , 5.27 and 5.28 for respectively the inboard up, outboard up
and DBE case. It should be noted that these figures display the absolute value of the
tangential velocity.

(a) 1 m upstream of LE wing (b) 1 m downstream of TE wing

Figure 5.26: Tangential Velocity contours for the inboard up case.

From these figures it can be seen that the tangential velocity 1 m downstream of the
TE of the wing is less than 1 m upstream of the wing’s LE. Hence the wing acts as a
stator. Furthermore it can be clearly seen that the tangential velocity contours around the
inboard propeller of the DBE case resembles the ones around the inboard propeller of the
inboard up configuration. On the other hand, the velocity contours around the outboard
propeller of the DBE case is similar to the ones observed for the outboard propeller of the
outboard up configuration. The tangential velocity distribution is not perfectly circular,
but the upper and lower halves of the slipstream are shifted in opposite direction. This
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(a) 1 m upstream of LE wing (b) 1 m downstream of TE wing

Figure 5.27: Tangential Velocity contours for the outboard up case.

(a) 1 m upstream of LE wing (b) 1 m downstream of TE wing view

Figure 5.28: Tangential velocity contours for the DBE case.

phenomenon was also observed by Veldhuis [1996]. It should be noted however that the
axes system of Figure 5.26b and reference Veldhuis [1996] differ, however corresponding
results were obtained.

5.5.5 Comparison of airfoil data with XFoil

In order to verify whether the propeller-wing interaction study gives accurate results con-
cerning the wing parameters Cl and Cd the software “XFOIL” was used on the root airfoil
section. The imported file in XFOIL contains the x- and z-coordinates of the root profile.
A viscid calculation was performed with the same Mach and corrected Reynolds number
(Drela & Youngren [2001]) to match the same flow conditions of the propeller-wing in-
teraction study. The user can impose a certain local lift coefficient in XFOIL in order to
find the corresponding local drag coefficient and pressure coefficient distribution.
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The airfoil wing section of the FLUENT model that was used as comparison is located
at y/yref = 0.124 and its position is indicated in Figure 5.29. The lift coefficient for
this airfoil was extracted from Figure 5.11 and the drag coefficient is the parasite drag
coefficient as was obtained from the spanwise integration of pressure and friction forces
for the prop off case since the propeller and 3D effects can not be included in XFOIL.
Since 3D effects are not included by the XFOIL calculation, also a 2D FLUENT calcula-
tion on the same airfoil section was performed.

Figure 5.29: Position of “comparison” root section in Fluent.

The Cp-distribution calculated by XFOIL and the one obtained by a 2D and 3D simulation
in FLUENT is displayed in Figure 5.30.

Figure 5.30: Cp distribution for the wing’s root section as obtained By Fluent 3D, 2D and
XFOIL.

As can be seen from Figure 5.30 the Cp-distributions are similar, however they are not
identical. As expected, the XFOIL results correspond the best to the 2D FLUENT Cp-
distribution. From Figure 5.29 it can be seen that the airfoil section is located in between
the fuselage and the propeller tip. Hence a possible explanation for the discrepancy in
Cp-plots is the fact that the upwash of the fuselage is not incorporated in the XFOIL and
2D FLUENT calculation.
The comparison of the sectional drag coefficient for the prescribed lift coefficient is given
in Table 5.10. In this table also a difference is made between “matlab” and “fluent” 2D
FLUENT results. By which is implied that the “matlab” results are obtained by chordwise
integration of pressure and friction forces while the “fluent results” are obtained by making
use of “force report” in FLUENT. This is done to assess the performance of the created
m-file ( Appendix C).
From Table 5.10 it can be concluded that all calculation methods predict different values
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for the local drag coefficient of the wing’s root. Even the 2D FLUENT(fluent) and XFOIL
calculation produce different results. This is partially caused by the slightly higher lift
coefficient of the 2D FLUENT(fluent) simulation. However the density and quality of the
mesh also plays an important factor in the drag calculation of FLUENT. Furthermore the
domain of the 2D FLUENT calculation was larger than the domain of the 3D FLUENT
calculation. This implies that the calculation of the drag coefficient can be influenced by
the distance of the airfoil w.r.t. the boundaries of the calculation domain. However this
does not compromise the general conclusions that will be drawn from the inboard up,
outboard up and DBE simulations since they are all performed on the same mesh. So
the “error” introduced by a boundary proximity is probably similar for all cases. But it
should be noted that a 2-dimensional approximate of 3-dimensional flow should always
be considered with care. Furthermore the m-file which predicts the local lift and drag
coefficient by means of chordwise integration of pressure and friction forces produces good
results.

Table 5.10: sectional drag coefficient of the root section: XFOIL vs 2D & 3D FLUENT.

Case CL [-] CD [-]

FLUENT(matlab) 3D 0.3427 0.0175
FLUENT(matlab) 2D 0.3418 0.0063
FLUENT(fluent) 2D 0.3440 0.0067
XFOIL 0.3427 0.00409

5.5.6 Conclusions

This section will summarize the main observations and conclusions that were drawn in
sections 5.5.1 and 5.5.2.
The inboard up case has the best aerodynamic performance since it has the highest lift-to-
drag ratio and will therefore be able to cover a larger range than the other configurations.

Furthermore its endurance is also the longest since the term C
3/2
L /CD is the highest of all

cases considered. The main reason for these better performance parameters is the higher
lift production while still maintaining a reasonable drag coefficient. This can be clearly
seen by inspection of Table 5.8, which summarizes the percent in- or decrease in overall lift
and drag coefficient with respect to the prop off case as obtained by using “force report”
in FLUENT. From this table it can be seen that the slipstream generated by two adjacent
inboard up rotating propellers is responsible for a 5% increase in overall lift coefficient
and an augmentation of 30.8% of the overall drag coeffcient. Although the DBE case has
the lowest overall drag coefficient the increase in overall lift coefficient w.r.t. the prop off
case is only 1.5 %. This leads to a worse lift-to-drag ratio and endurance term than the
inboard up case, but it will have a better aerodynamic performance than the outboard
up case.
By inspection of the pressure coefficient plots of several sections along the wing it was
discovered that for the wing sections located behind the upward going blade mainly the
upper (suction) side of the wing is affected by locally decreasing the static pressure. Hence
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producing a more negative pressure coefficient for the suction side, leading to a higher lift
coefficient. The opposite is true for the wing sections located behind the downward going
blade, where mainly the lower (pressure) side of the wing is affected by the propeller
slipstream. This leads to a lower sectional lift coefficient, since the static pressure on
the pressure side is decreased. The same conclusions can be found in references Moens
& Gardarein [2001], Colin et al. [1996], Barber & Nelson [1996], Zang et al. [2001] and
this was also predicted by theory. The effects induced by the propeller are of course
most noticeable inside the propeller slipstream, however they are not limited to the wing
sections located within this slipstream. Due to the spanwise gradients of the wing, the
wing sections located outside the slipstream are also affected. Whether this has a positive
or negative effect on the local lift production depends on the fact whether the wing
section is located close to an upward or downward going blade. Again the downward
going blade causes a decrease in local lift coefficient while the upward going blade induces
an augmentation of the sectional lift coefficient.
The DBE case appears to follow the same trend concerning the pressure distribution as
the outboard up case from the wing’s tip till the section is reached which is located in
between both engines. Here the pressure coefficient plot displays a different behaviour
than both the inboard as outboard up case. From here on until the root of the wing, the
pressure distribution of the DBE case will follow the same trend as the one observed for
the inboard up configuration. However the local lift coefficient will always be less than
the one observed for the inboard up (root to middle engines) and outboard up (middle
of engines to tip) case. Furthermore the spanwise lift coefficient distribution of the DBE
configuration is similar as the one predicted in Malard et al. [2005].
The same behaviour was observed by considering the spanwise distribution of lift (Figure
5.11) and drag (Figure 5.12) coefficient which was obtained by a chordwise integration of
the pressure and friction forces acting on the wing.

5.6 Quality check of the mesh

5.6.1 Boundary layer assessment

As discussed in section 5.1.2 the y+ value is a parameter which states whether the bound-
ary layer mesh is suitable to resolve turbulent flow. The height of the first cell is directly
related to the y+ parameter. For a first cell height of 1 mm, y+ equals 80. To check
whether the created boundary layer is indeed suitable to resolve turbulent flow, the y+-
values were determined for the prop off case and are depicted in Figure 5.31. Since all cases
use the same mesh the results are similar for the inboard up, outboard up and DBE case.
From Figure 5.31 it can be deduced that the created boundary layer is suitable to resolve
turbulent flow since FLUENT’s non-equilibrium wall function requires y+ ε [30 300].

5.6.2 Grid independence check

In order to ensure that the results of the propeller-wing interaction study are valid in
general, a grid dependency check has been performed. To this end a finer mesh was
created. This mesh has the same surface mesh as the “original” mesh, however the
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(a) top view (b) bottom view

(c) 3D view (d) legend

Figure 5.31: y+ contours of the aircraft model.

growth factor used to grow cells from the boundary layer to fill up the domain is 1.2
instead of 1.4. This leads to a total number of cells of 11 245 973. Furthermore the
refinement of the cells situated in the cylinders behind the propellers is different: instead
of using the procedure described in section 5.1.2, the refinement in the cylinders depends
on the maximum volume change. This means that only those cells will be refined which
violate the maximum volume change. For this mesh a maximum volume change of 1.2
was chosen, which led to a very fine mesh which contains 18 865 930 cells in total. A
formal procedure to check grid independency is described by Celik [2008]. This method
is also recommended by the “Journal of Fluids Engineering” in its editorial policy. In
order to follow this procedure, a third grid is necessary, which is more coarse or finer than
the other meshes. Since the maximum number of cells has already been reached by the
grid which contains almost 19 · 106 cells because of the considered cost, the third mesh
will be more coarse. Instead of creating a new mesh, the mesh without refinement in the
cylinders behind the propellers will be used. Thus three different meshes are compared:

1. “Coarse mesh” (Contains about 6 million cells)

2. “Original mesh” (The mesh used in the propeller-wing interaction study. Contains
almost 11 million cells)

3. “Fine mesh” (Contains almost 19 million cells)

For the comparison of the three different grids only the prop off case is considered in order
to limit the calculation cost (time and recources). Although the prop on cases induce a
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different flow field, the trends that are visible for the different grids for the prop off case
are expected to be similar for the prop on cases.
Besides the formal procedure, another way to check whether the results are mesh inde-
pendent is to compare important parameters for all three grids and see how they differ.
Since the lift and drag coefficients are the most important parameters in this study the
overall lift and drag coefficients (Table 5.11) of all three different meshes will be compared
as well as their spanwise distribution (Figure 5.32 and 5.33).

Table 5.11: Lift and drag parameters of the wing as obtained by Fluent

Case L [N] D [N] CL [-] CD [-] ∆CL [-] ∆CD [-]

Fine mesh 186593 12369 0.4125 0.0273 -0.2% -0.6%
Original mesh 186974 13155 0.4134 0.0291 - -
Coarse mesh 176003 22631 0.3891 0.0500 -6% +42%

From Table 5.11 it follows that the difference in overall lift coefficient is negligible for the
original and fine mesh while the coarse mesh gives an underestimation of 6%. Furthermore
it can be noticed that the overall drag coefficient is more influenced by grid changes. The
original mesh overestimates the overall drag coefficient with 6% w.r.t. the fine mesh,
while the difference with the coarse mesh is 42%.
The spanwise lift and drag coefficients can be found respectively in Figures 5.32 and 5.33.
Although the overall lift coefficient is almost similar for the original and fine mesh, locally
there are some differences as can be seen from Figure 5.32. For the original and fine mesh
the main differences occur close to the nacelle, while smaller differences can be observed
for the wing regions situated inside the propeller diameter. Outside these regions the
local CL-values are identical. Apparently the difference in local lift coefficient is detected
more accurately in the refinement region of the cylinders behind the propellers, although
the size of the cells located outside these cylinders differ as well.

Figure 5.32: Spanwise lift coefficient (“−” nacelle borders, “- -” propeller diameter)

As can be seen from Figure 5.33, the original mesh values predicts local drag coefficients
which are larger than the ones predicted by the fine mesh and smaller than the ones
obtained by the coarse mesh. The overall trend of the original mesh agrees well with the
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Figure 5.33: Spanwise drag coefficient (“−” nacelle borders, “- -” propeller diameter)

fine mesh even in the regions situated in the cylinder refinement zones. This is in contrast
to the local lift coefficients and rather unexpected since from the overall drag coefficient
values it appeared that the drag coefficient is more susceptible to grid changes.

For the formal procedure to check grid dependency the following parameters are impor-
tant:

• The approximate relative error, ea

• The extrapolated relative error, eext

• The fine grid convergence index, GCIfine

The approximate relative error can be computed with Eq (5.18):

e21
a =

∣∣∣∣φ1 − φ2

φ1

∣∣∣∣ (5.18)

where φ indicates the local or global variable under consideration. The subscript indicates
the grid, where 1 indicates the finest mesh and 3 the grid which is the coarsest one.
Thus the term e21

a is the approximate relative error when considering the finest(1) and
original(2) mesh.

Formula (5.19) determines the extrapolated relative error, while the fine grid convergence
index can be calculated with Eq (5.20)

e21
ext =

∣∣∣∣φ21
ext − φ1

φ21
ext

∣∣∣∣ (5.19)

GCI21
fine =

1.25 e21
a

rp21 − 1
(5.20)

where the term r21 = h2/h1. The parameter h is a representive cell, mesh or grid size.
In case of a local variable the local cell size can be used, while for a global variable an
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“ average global” cell size is used. For this calculation the “Volume-weighted-average”
cell volume was used of the fluid zone that lies outside the boundary layer and does not
include actuator related volumes nor transition cells. Hence this zone consists only of
thetrahedrons.
The term φ21

ext represents the extrapolated value of grid 1 and 2 such that:

φ21
ext =

rp21φ1 − φ2

rp21 − 1
(5.21)

The power term p can be obtained by solving the system of equations (5.22) to (5.24) by
using a fixed-point iteration.

p =
1

ln(r21)

∣∣∣∣ln ∣∣∣∣ε32

ε21

∣∣∣∣+ q(p)

∣∣∣∣ (5.22)

q(p) =

(
rp21 − s
rp32 − s

)
(5.23)

s = 1 · sign
(
ε32

ε21

)
(5.24)

where the terms ε21 and ε32 can be determined as follows: ε32 = φ3 − φ2 & ε21 = φ2 − φ1

Above equations are applied to the relation between the first and second grid, for the
relation concerning the second and third grid e.g. e32

a a similar procedure as previously
described needs to be followed. The results of this formal grid dependency check for the
global variables CL and CD can be found in Table 5.12.

From Table 5.12 it follows that for grid 2 and 3 the numerical error in fine-grid solution
is 0.3% and 7.5 % for respectively the overall lift and drag coefficient. This shows that
the coarse mesh is not fine enough to correctly predict the overal drag coefficient. While
the numerical uncertainty in the fine-grid solution for the overall lift and drag coefficient
concerning grid 1 and 2 is 0%, which indicates that the “original mesh” can be considered
as grid-independent. This could also be deduced from Table 5.11.



118 Investigation of propeller-wing interaction effects

Table 5.12: Calculation of the discretization error for global variables CL and CD

parameter φ = CL φ = CD

N1, N2, N3 18 856930, 10 683 076, 6012070 18 856930, 10 683 076, 6012070

h1, h2, h3 0.0742, 0.0870, 0.0872 0.0742, 0.0870, 0.0872

r21 1.1712 1.1712

r32 1.0026 1.0026

φ1 0.4125 0.0273

φ2 0.4134 0.0291

φ3 0.3891 0.0500

p 1.2475 · 103 973.5477

φ21
ext 0.4125 0.0273

φ32
ext 0.4143 0.0273

e21
a 0.0021 0.0636

e32
a 0.0587 0.7204

e21
ext 0 0

e32
ext 0.0023 0.0636

GCI21
fine 0 0

GCI32
fine 0.0028 0.0747



Conclusions and recommendations

A propeller-driven aircraft in tractor configuration produces a complicated flow field since
there is a mutual interaction between the propeller and other aircraft parts. The pro-
peller induces an increase in axial velocity on top of a tangential and radial velocity. If the
airplane geometry is designed carefully a decrease in wing’s drag can be obtained. The
upwash generated by the wing alters the inflow angle of the propeller blade and hence
the propeller thrust and torque. On the other hand the increase in axial velocity inside
the propeller slipstream increases the drag production of the nacelles. Furthermore the
nacelles introduce a blockage effect, which translates into a radial varying inflow velocity
at the propeller and hence the thrust and torque production of the propeller is altered.
From the validation simulations performed in chapter 4 it followed that the uniform and
non-uniform actuator disk model were the best numerical models to simulate propeller
induced flow. Especially concerning the tangential velocity they outperformed Phillips’
equations. Although the UDF involving Phillips’ equations does not impose a radial ve-
locity, the prediction of the radial velocity is surprisingly accurate since it is only slightly
worse than the prediction made by both actuator disk models. Since the non-uniform
actuator disk model is more complex and more expensive in terms of computational cost
and resources the uniform actuator disk model was chosen as the numerical model to
simulate propeller induced flow.
The results of the propeller-wing simulations showed that the configuration with two ad-
jacent propellers which rotate inboard up has the best aerodynamic performance in terms
of lift-to-drag ratio and endurance. The outboard up case produced the lowest overall
lift coefficient and the highest overall drag coefficient, hence it has the worst aerody-
namic performance of all cases. The Down-Between-Engine (DBE) configuration had a
lower overall lift and drag coefficient than the inboard up case which led to performance
parameters which are better than the outboard up case but worse than the inboard up
configuration. However it is recommended to investigate the stability and control charac-
teristics of the airplane before making a choice concerning rotation sense to verify whether
the better performance of the inboard up case is indeed more valuable than the better
stability characteristics of the DBE configuration in case of engine failure.
From the spanwise distribution of lift and drag coefficient and several pressure coefficient
plots of different wing sections it could be concluded that the DBE configuration follows
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the same trend as the inboard up case from root till in between both engines, were it
deviates from the inboard and outboard up configuration. From here on till the wing tip
it displays the same behaviour as the outboard up configuration. Wing sections which
are located in the slipstream of a downward going blade experience a decrease in local
lift coefficient. The opposite is true for the sections situated behind an upward going
blade: their sectional lift coefficients are increased. The same conclusions can be found in
references Moens & Gardarein [2001], Colin et al. [1996], Barber & Nelson [1996], Zang et
al. [2001] and this was also predicted by theory. Furthermore the spanwise lift coefficient
distribution of the DBE configuration is similar as the one predicted in Malard et al.
[2005]. It should be noticed however that despites the fact that the inboard case delivers
the better overall lift coefficient, the outboard up and DBE configuration have a better
distribution of the local lift coefficient towards the tip, since the local Cl values are higher
than the prop off and inboard up configuration.

The numerical model used to predict propeller-wing interaction effects is only valid for
a zero angle of attack of the propeller. Due to the upwash produced by the wing this
assumption is no longer valid. This is the major drawback of this model as the action
of the wing on the propeller is not included. The non-zero propeller angle of attack can
be included in the code by predicting the average change in inflow angle per quadrant
of the actuator disk. However this is also a crude approximation of the real flow and
it is recommended to investigate this matter more thorough. Furthermore it has to be
investigated whether the calculations which are necessary to predict the inflow angle of
the propeller can be incorporated in a UDF for FLUENT since the macro commands limit
the user.
Although the propeller model assumes steady, incompressible and inviscid flow, these
assumptions do not compromise the results of the simulations since they are only applied
to the actuator volume while the rest of the domain was simulated by making use of
RANS. However it is recommended to investigate whether the current propeller model
can be further improved by incorporating unsteady effects.
Despite the zero propeller angle of attack and steady flow limitation, interesting flow
features of the steady part of the flow field are retrieved and this explains the success
of comparable methods in recent designs (Moens & Gardarein [2001]). The strong point
of the UDF is the fact that it only needs a few parameters (e.g. propeller diameter and
thrust) as input variables. Furthermore the computational cost is low while the results
are quite accurate. Therefore the UDF is already applicable in the preliminary design
stage of an aircraft.
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Appendix A

SR-1 spinner-nacelle coordinates

Table A.1: Spinner-nacelle coordinates for the SR-1 propeller

x-coordinate y-coordinate z-coordinate

0.0 0 0.0

0.005 0 0.008

0.01 0 0.013

0.015 0 0.017

0.02 0 0.02

0.03 0 0.025

0.04 0 0.029

0.05 0 0.033

0.06 0 0.0365

0.08 0 0.043

0.1 0 0.05

0.125 0 0.0592

0.150 0 0.068

0.175 0 0.076

0.200 0 0.085

0.225 0 0.093

0.250 0 0.1

0.275 0 0.105

0.300 0 0.109

0.325 0 0.110

0.350 0 0.110

0.375 0 0.108
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126 SR-1 spinner-nacelle coordinates

x-coordinate y-coordinate z-coordinate

0.400 0 0.105

0.425 0 0.103

0.450 0 0.101

0.475 0 0.1

0.500 0 0.0999

0.525 0 0.097

0.550 0 0.095

0.575 0 0.095

0.600 0 0.094

0.625 0 0.094

0.650 0 0.094

0.675 0 0.0945

0.700 0 0.095

0.725 0 0.096

0.750 0 0.096

0.775 0 0.096

0.800 0 0.096

0.825 0 0.096

0.850 0 0.096

1.000 0 0.096

1.5 0 0.096

5.0 0 0.096



Appendix B

UDF source codes

B.1 UDF uniform actuator disk

/*UDF for M=0.6 & J=3.08 @ 35000 ft, uniform Vin equal to freestream inboard engine*/

/*The following 2 commands are always necessary for the importation of a UDF in Fluent*/

#include "udf.h"

#include "stdio.h"

/*UDF description*/

/*This UDF will impose the x, y and z velocities at the actuator volume in order to simulate the effects of a rotating propeller by

using Conway’s actuator disk model.

A UDF is employed for each engine. So the UDF needs to be adjusted accordingly. This can be done by adjusting the constant variables

inside the section "Define the constant variables" which differ for different cruise conditions and different geometry and mesh

set-ups. The variables related to the geometry are: The (x,y,z) coordinate of the engine hub point, (xE,yE,zE)

The coordinates of the propeller leading (LE) and trailing (TE) edge (axial position and radius)

The variables related to the geometry are: The nr of cells in z-direction for the actuator volume, total_nr_cells_z

The zone_ID’s assigned by Fluent to define the different zones of the mesh

The variables related to the cruise conditions are: The freestream velocity, VINF [m/s]

The angulear velocity of the propeller, omega [rps]

The total thrust of the propeller, T [N]

The density at the cruise altitude RHO [kg/m^3]

The rotation sense of the propeller, sense (1 indicates clockwise and 0 counter-clockwise)

The UDF is written by Marilyne Lino, Aerospace Engineering Msc student TU Delft and is last adjusted 25-02-10*/

/*End UDF description*/

/*************************************************************************************************************************************

Define the constant variables

******************************************************/

/*Variables that are geometry and mesh related*/

#define xE 1 /*x-coordinate of hub point of the engine wrt global coordinate system*/

#define yE 2 /*y-coordinate of hub point of the engine wrt global coordinate system*/

#define zE -1 /*z-coordinate of hub point of the engine wrt global coordinate system*/

#define RP 0.311 /*Actuator disk radius [m]*/

#define RLE 0.06 /*Distance from z=0 axis to nacelle contour at x=LE or radius of the nacelle at x=LE [m] (axisymmetric nacelle)*/

#define RTE 0.09 /*Distance from z=0 axis to nacelle contour at x=TE or radius of the nacelle at x=LE [m] (axisymmetric nacelle)*/

#define total_nr_cells_z 42 /*Number of cells in radial direction (which is equal to z-direction(=along blade span) for y=yE)*/

#define nr_arc_cells 40 /* Number of cells in along the actuator’s arc.*/

#define dx 0.006 /*width of the cells of the actuator volume in axial direction*/

#define outflow_zone_nr 28; /*ID_number for the zone of outflow of the actuator disk*/

#define flatdisk_zone_nr 14; /*ID_number for the zone of the flatdisk*/

/*End Variables that are geometry and mesh related*/

/*Variables that are related to cruise conditions*/

#define VINF 177.91 /*Freestream velocity [m/s].*/

#define omega 92.86 /*Propeller angular velocity (RPS)*/

#define T 197.23 /*Proppeller total thrust (N) for one blade was 15.068*/

#define RHO 0.3796 /*Air density at flight Altitude (kg/m^3)*/

#define sense 1 /*Sense=1 for clockwise rotating propellers and 0 for counter-clockwise rotating propellers*/

/*End Variables that are related to cruise conditions*/

#define PI 3.14159265358979323846 /*The number pi*/

/************************************************************************************************************************************/

/******************************************************/

127



128 UDF source codes

/*************************************************************************************************************************************

Declarations of the global variables used in DEFINE_EXECUTE_AFTER_DATA and all the 3 DEFINE_PROFILE progs

***********************************************************************************************************/

/*General domain variables to define the domain, threat, face, cell, zone_ID and centroids*/

Domain *domain;

Thread *t;

face_t f;

cell_t c;

int zone_ID; /*the term zone_ID is used to move the pointer from one computational zone to another*/

double x[ND_ND]; /*the vector x refers always to the coordinates of the centroid of a face or cell*/

/*End General domain variables to define the domain, threat, face, cell, zone_ID and centroids*/

/*Counters in a loop*/

int i;

int j;

/*End Counters in a loop*/

/*Definition of the disk_inflow and disk_outflow thread pointers*/

Thread *disk_outflow; /*Used to move pointer to the outflow plane of the actuator disk*/

Thread *flatdisk; /*Used to move pointer to the flatdisk*/

/*End Definition of the disk_inflow and disk_outflow thread pointers*/

/*Variables needed to define the array sizes*/

int total_nr_faces_outflowface; /*total number of faces of the outflow plane of disk*/

/*End Variables needed to define the array sizes*/

double *v_A=NULL;

double *V_axial=NULL;

double *VT_z=NULL;

double *VR_z=NULL;

double *Vy=NULL;

double *Vz=NULL;

double OMEGA; /*OMEGA =omega*2PI*/

double mean_v_A;

double sum_v_A;

/*************************************************************************************************************************************

DEFINE_EXECUTE_AFTER_CASE UDF

**************************************************************************************************************************************/

/*Use a DEFINE_EXECUTE_AFTER_CASE UDF to calculate the global variables total_nr_faces_inflowface and total_nr_faces_outflowface in

order to prevent mallocing, leading to less memory usage*/

DEFINE_EXECUTE_AFTER_CASE(Flatdisk_uniform_M06J308_validation, libudf_inb)

{

#if !RP_HOST

/**Calculation of the number of faces of the outflow plane of the actuator disk**/

domain = Get_Domain(1); /*The calculation domain needs to be specified at the beginning of the code*/

zone_ID = outflow_zone_nr; /*ID_number for the zone of outflow of the actuator disk*/

disk_outflow = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the outflow domain of the actuator disk*/

/**Count nr of faces loop**/

/**This loop runs over all the faces of the outflow plane, to count the total number of faces of the outflow plane of

the actuator disk**/

i=0;

begin_f_loop_int(f,disk_outflow)

{

i=i+1;

}

end_f_loop_int(f,disk_outflow)

total_nr_faces_outflowface=i;

total_nr_faces_outflowface=PRF_GISUM1(total_nr_faces_outflowface);

Message0("Content of variable total_nr_faces_outflowface is: %d\n", total_nr_faces_outflowface);

/**End Count nr of faces loop**/

/**End Calculation of the number of faces of the outflow plane of the actuator disk**/

#endif /*!RP_HOST*/

}

/*************************************************************************************************************************************

End DEFINE_EXECUTE_AFTER_CASE UDF

**************************************************************************************************************************************/

/*************************************************************************************************************************************

VELOCITY IN X-DIRECTION

**************************************************************************************************************************************/

DEFINE_PROFILE(x_vel_inboard, t1, indices)

{

#if !RP_HOST

/******************************

Declaration of local variables

*******************************/
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/*Mallocing global variables by ensuring that it is only malloced once hence the if statement*/

/*Variables which are also used globally needs to be malloced first.*/

if(!V_axial)

{

Message0("Allocating V_axial\n");

V_axial = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!v_A)

{

Message0("Allocating v_A\n");

v_A = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

/*Mallocing global variables by ensuring that it is only malloced once.*/

/**Define variables belonging to the flatdisk**/

double v_i;

double Vas;

double omega_s;

double Rs;

double r_actuator[total_nr_faces_outflowface];

double vol;

double dy;

double dr_end[total_nr_faces_outflowface];

double drs[total_nr_faces_outflowface];

double rs[total_nr_faces_outflowface];

double difference_p[total_nr_faces_outflowface];

double dT_centroid[total_nr_faces_outflowface];

double check_thrust1;

double check_thrust;

double check_thrusttotal;

int divider;

int jtotal;

double vT_inf[total_nr_faces_outflowface];

double sum_v_Atotal;

/**End Define variables belonging to the flatdisk**/

/**Define all array elements related to total_nr_faces_outflowface equal to zero to ensure that computation works in parallel mode**/

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

r_actuator[j]=0;

dr_end[j]=0;

drs[j]=0;

rs[j]=0;

difference_p[j]=0;

dT_centroid[j]=0;

vT_inf[j]=0;

}

/**End Define all array elements related to total_nr_faces_outflowface equal to zero to ensure that computation works in

parallel mode**/

/**Define files to write data for checking the UDF**/

/*FILE *file1;*/

/*FILE *file2;*/

/**End Define files to write data for checking the UDF**/

/*********************************

End Declaration of local variables

**********************************/

/**Calculation of the radii of the centroids inside the actuator volume and their corresponding elemental thrust**/

zone_ID = flatdisk_zone_nr; /*ID_number for the zone of the flatdisk*/

/*zone_ID = 14; /*ID_number for the zone of the flatdisk*/

flatdisk = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the flatdisk domain*/

OMEGA = 2*PI*omega; /*Calculation of angular velocity in rad/s*/

/*Calculation of Phillips’ parameters in order to calculate the elemental thrust of each elemental annular element*/

v_i=sqrt((pow(VINF,2)/4)+((pow(OMEGA,2)*pow(RP,2))/4)*

(1-sqrt(1-((4*T)/(PI*(pow(RP,2)-pow(RTE,2))*RHO*pow(OMEGA,2)*pow(RP,2))))))-(VINF/2);

Vas = VINF+2*v_i;

omega_s = (4*(VINF+2*v_i)*v_i)/(OMEGA*pow(RP,2));

Rs =sqrt((VINF+v_i)/Vas)*RP;

/*End Calculation of Phillips’ parameters in order to calculate the elemental thrust of each elemental annular element*/

/*file1 = fopen("check1.dat","w");*/

i=0;

begin_c_loop_int(c, flatdisk)

{

C_CENTROID(x,c,flatdisk); /*Calculates the cell’s centroid*/

r_actuator[i]=sqrt(pow((x[1]-yE),2)+pow((x[2]-zE),2)); /*Radius computation of centroid of the cells of the flatdisk*/

vol=C_VOLUME(c,flatdisk);

dy=(2*PI*r_actuator[i])/(8*nr_arc_cells); /*The term 1/8 is included since only 1/8th of prop is modelled*/

dr_end[i]=vol/(dx*dy);

drs[i] =sqrt((VINF+v_i)/Vas)*dr_end[i]; /*Calculation of the elemental width drs*/

rs[i] =sqrt(((VINF+v_i)/Vas)*(pow(r_actuator[i],2)));
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difference_p[i] = -(RHO*pow(omega_s,2)/2)*(pow(Rs,2)-pow(rs[i],2));

dT_centroid[i] =(Vas-VINF)*RHO*Vas*((2*PI)*rs[i]*drs[i])+difference_p[i]*((2*PI)*rs[i]*drs[i]); /*Elemental thrust of an

annular element*/

/*fprintf(file1," %.6g \n",r_outflow_centroid[i]);*/

i=i+1;

}

end_c_loop_int(c, flatdisk)

/*fclose(file1);*/

/**End Calculation of the radii of the centroids inside the actuator volume and their corresponding elemental thrust**/

/**Check whether the thrust calculation is correct.**/

/*The total thrust is divided over all the individual faces of the outflow plane.

Since we have ttotal_nr_faces_outflowface different r_actuator, we will have total_nr_faces_outflowface different thrusts.

The total thrust is equal to the sum of all the elemental thrusts of each face of the outflow plane.

So the sum of all dT_centroid*total_nr_faces_outflowface must equal the total Thrust T*/

check_thrust1 = dT_centroid[0];

for (i=0; i<=total_nr_faces_outflowface-2; i++)

{

check_thrust1 = check_thrust1 + dT_centroid[i+1];

check_thrust1 = check_thrust1;

}

divider=total_nr_faces_outflowface/total_nr_cells_z;

check_thrust = check_thrust1/(total_nr_faces_outflowface/total_nr_cells_z);

/*Check whether the thrust calculation is correct. All dT_centroids must be positive*/

j=0;

for (i=0; i<=total_nr_faces_outflowface-1; i++)

{

if (dT_centroid[i]>=0)

{

j=j+1;

}

}

check_thrusttotal=PRF_GRSUM1(check_thrust);

Message0("Content of divider is: %d\n", divider);

Message0("Content of check_thrusttotal is: %f\n", check_thrusttotal);

jtotal=PRF_GISUM1(j);

Message0("Content of j is: %d\n", jtotal);

/**End Check whether the thrust calculation is correct. The sum of all dT_centroid must equal T**/

/**Calculation of the axial velocity at flatdisk**/

/*file2= fopen("check2.dat","w");*/

i=0;

begin_c_loop_int(c, flatdisk)

{

vT_inf[i] = omega_s*rs[i];

v_A[i] = 0.5*(-VINF + sqrt(pow(VINF,2) + pow(vT_inf[i],2) +dT_centroid[i]/(RHO*PI*r_actuator[i]*dr_end[i])));

V_axial[i]= VINF +v_A[i];

/*fprintf(file2,"%.6g \t %.6g \t %.6g \t %.6g \t %.6g \n", r_actuator[i], dT_centroid[i], vT_inf[i], v_A[i], V_axial[i]);*/

i=i+1;

}

end_c_loop_int(c, flatdisk)

/*fclose(file2);*/

sum_v_A = v_A[0];

for (i=0; i<=total_nr_faces_outflowface-2; i++)

{

sum_v_A = sum_v_A + v_A[i+1];

sum_v_A = sum_v_A;

}

sum_v_Atotal=PRF_GRSUM1(sum_v_A);

Message0("Content of sum_v_A is: %f\n", sum_v_Atotal);

/**End Calculation of the axial velocity at flatdisk**/

/**Impose the axial velocity using F_PROFILE**/

i=0;

begin_c_loop_int(c, t1)

{

F_PROFILE(c, t1, indices) = V_axial[i];

i=i+1;

}

end_c_loop_int(c, t1)

/**End Impose the axial velocity using F_PROFILE**/

#endif /*!RP_HOST*/

}

/*************************************************************************************************************************************

End VELOCITY IN X-DIRECTION

**************************************************************************************************************************************/

/*************************************************************************************************************************************

VELOCITY IN Y-DIRECTION
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**************************************************************************************************************************************/

/*This part calculates the y-velocity inside the actuator disk volume. The y-velocity consists of the y-component of the

tangential velocity and the y-component of the radial velocity.

The tangential velocity is calculated first. Folowed by the computation of the radial velocity*/

DEFINE_PROFILE(y_vel_inboard, t1, indices)

{

#if !RP_HOST

/******************************

Declaration of local variables

*******************************/

/*Mallocing global variables by ensuring that it is only maloced once hence the if statement*/

/*Variables which are also used globally needs to be malloced first.*/

if(!VT_z)

{

Message0("Allocating VT_z\n");

VT_z = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!Vy)

{

Message0("Allocating Vy\n");

Vy = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!VR_z)

{

Message0("Allocating VR_z\n");

VR_z = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

/*Mallocing global variables by ensuring that it is only malloced once*/

double VT_y[total_nr_faces_outflowface];

double VR_y[total_nr_faces_outflowface];

double r_centroid_flatdisk;

double ycoord;

double zcoord;

double VT;

double VR;

double theta;

double mean_v_Atotal;

/**Define all array elements related to total_nr_faces_outflowface equal to zero to ensure that computation works in parallel mode**/

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

VT_y[j]=0;

VR_y[j]=0;

}

/**End Define all array elements related to total_nr_faces_outflowface equal to zero to ensure that computation works in

parallel mode**/

/*FILE *fileben;*/

/**********************************

End Declaration of local variables

***********************************/

/**Calculate first the tangential velocity inside the flatdisk**/

i=0;

/*fileben = fopen("check_Vtan.dat","w");*/

begin_c_loop_int(c, t1)

{

C_CENTROID(x,c, t1); /*Calculates the cells’ centroid*/

r_centroid_flatdisk = sqrt(pow((x[1]-yE),2)+pow((x[2]-zE),2));

ycoord = x[1];

zcoord = x[2];

VT = (4*PI*v_A[i]*(VINF+v_A[i]))/(2*PI*r_centroid_flatdisk*OMEGA);

/**End Calculate first the tangential velocity inside the flatdisk**/

/**Calculation of radial velocity**/

mean_v_A = sum_v_A/total_nr_faces_outflowface;

VR = (mean_v_A*PI*r_centroid_flatdisk)/(4*RP);

/* Message("Content of variable mean_v_A is: %d\n", mean_v_A); */

/**End Calculation of radial velocity**/

/**Calculation of the angle Theta**/

if (ycoord!=yE)

{

theta = fabs(atan((zcoord-zE)/(ycoord-yE)));

}

else

{

theta = PI/2;

}

/**End Calculation of the angle Theta**/

/**General Condition for VT_y**/

if (zcoord<zE)

{
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VT_y[i] = pow(-1, sense+1)*VT*sin(theta);

VR_z[i] = VR*sin(theta);

}

if (zcoord>zE)

{

VT_y[i] = pow(-1, sense)*VT*sin(theta);

VR_z[i] = -VR*sin(theta);

}

/**End General Condition for VT_y**/

/**General Condition for VT_z**/

if (ycoord<yE)

{

VT_z[i] = pow(-1, sense)*VT*cos(theta);

VR_y[i] = VR*cos(theta);

}

if (ycoord>yE) /*z<zE & y!=yE*/

{

VT_z[i] = pow(-1, sense+1)*VT*cos(theta);

VR_y[i] = -VR*cos(theta);

}

/**End General Condition for VT_z**/

/**End Calculation of VT_y and VT_z**/

/**Calculating and imposing the y-velocity**/

Vy[i] = VT_y[i]+VR_y[i];

F_PROFILE(c, t1, indices) = Vy[i];

/*fprintf(fileben,"%.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \n",OMEGA, ycoord, zcoord, theta,

r_centroid_flatdisk, v_A[i], VT, VT_y[i], VT_z[i], Vy[i]);*/

i=i+1;

}

end_c_loop_int(c, t1)

/*fclose(fileben);*/

/**End Calculating and imposing the y-velocity**/

mean_v_Atotal=PRF_GRSUM1(mean_v_A);

Message0("Content of mean_v_A is: %f\n", mean_v_Atotal);

/*Check values*/

/*Message("Content of counter i is: %d\n", i );

for (j=0; j<=2*total_nr_faces_outflowface-1; j++)

{

Message("Content of VT_y[i] is: %f\n", VT_y[j] );

/*Message("Content of VT_z[i] is: %f\n", VT_z[j] );*/

/*Message("Content of V_y[i] is: %f\n", V_y[j] );*/

/* }*/

#endif /*!RP_HOST*/

}

/*************************************************************************************************************************************

End VELOCITY IN Y-DIRECTION

**************************************************************************************************************************************/

/*************************************************************************************************************************************

VELOCITY IN Z-DIRECTION

**************************************************************************************************************************************/

DEFINE_PROFILE(z_vel_inboard, t1, indices)

{

#if !RP_HOST

/******************************

Declaration of local variables

*******************************/

/*Mallocing global variables by ensuring that it is only malloced once hence the if statement*/

/*Variables which are also used globally needs to be malloced first.*/

if(!Vz)

{

Message0("Allocating Vz\n");

Vz = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

/*End Mallocing global variables by ensuring that it is only malloced once hence the if statement*/

/**Calculating and imposing the z-velocity**/

i=0;

begin_c_loop_int(c, t1)

{

Vz[i]=VT_z[i]+VR_z[i];

F_PROFILE(c, t1, indices) = Vz[i];

i=i+1;

}

end_c_loop_int(c, t1)

/**End Calculating and imposing the z-velocity**/
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#endif /*!RP_HOST*/

}

/************************************************************************************************************************************

End VELOCITY IN Z-DIRECTION

*************************************************************************************************************************************/
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B.2 UDF non-uniform actuator disk

#include "udf.h"

#include "stdio.h"

/*UDF for M=0.6 & J=3.08 non-uniform Vin (read inflow velocity)*/

/**********************************************************************************************************************

Define the constant variables

******************************************************/

#define VINF 177.91 /* Freestream velocity [m/s].*/

#define omega 92.86 /* Propeller angular velocity (RPS)*/

#define T 197.23 /* proppeller total thrust (N) for one blade was 15.068*/

#define RP 0.311 /* Actuator disk radius [m]*/

#define RLE 0.06 /* Distance from z=0 axis to nacelle contour at x=LE of the blade [m]*/

#define RTE 0.09 /* Distance from z=0 axis to nacelle contour at x=TE of the blade [m]*/

#define x_end 0.215 /*x-coord of the trailing edge of blade [m]*/

#define x_begin 0.13 /*x-coord of the leading edge of blade [m]*/

#define RHO 0.3796 /* Air density at flight Altitude (kg/m^3)*/

#define PI 3.14159265358979323846

#define total_nr_cells_z 42 /* Number of cells in z-direction(=along blade span)*/

#define total_nr_cells_x 13 /* Number of cells in x-direction in blade volume*/

#define x_end_Xtra 0.08 /*x-coord where the extra_volume ends [m] */

#define total_nr_cells_x_Xtra 8 /*Number of cells in x-direction for the extra_volume*/

#define sense 1 /*Sense=1 for clockwise rotating propellers and 0 for counter-clockwise rotating propellers*/

/***********************************************************************************************************************/

/******************************************************/

/***********************************************************************************************************************

Declarations of the global variables used in DEFINE_EXECUTE_AFTER_DATA and all the 3 DEFINE_PROFILE progs

***********************************************************************************************************/

/*General domain variables to define the domain, threat, face, cell, zone_ID and centroids*/

Domain *domain;

Thread *t;

face_t f;

cell_t c;

int zone_ID; /*the term zone_ID is used to move the pointer from one computational zone to another*/

double x[ND_ND]; /*the vector x refers always to the coordinates of the centroid of a face or cell*/

/*End General domain variables to define the domain, threat, face, cell, zone_ID and centroids*/

/*Counters in a loop*/

int i;

int j;

int n;

int teller;

/*End Counters in a loop*/

/*Definition of the disk_inflow and disk_outflow thread pointers*/

Thread *disk_inflow; /*Used to move pointer to the inflow plane of the actuator disk*/

Thread *disk_outflow; /*Used to move pointer to the outflow plane of the actuator disk*/

Thread *extra_volume; /*Used to move pointer to extra_volume*/

Thread *flatdisk; /*Used to move pointer to the flatdisk*/

/*End Definition of the disk_inflow and disk_outflow thread pointers*/

/*Variables needed to define the array sizes*/

int total_nr_faces_inflowface; /*total number of faces of the inflow plane of disk*/

int total_nr_faces_outflowface; /*total number of faces of the outflow plane of disk*/

/*End Variables needed to define the array sizes*/

double *Vin_flatdisk=NULL;

double *U_A_flatdisk=NULL;

double *V_axial_flatdisk=NULL;

double *VT_z=NULL;

double *VR_z=NULL;

double *Vy=NULL;

double *Vz=NULL;

double OMEGA; /*OMEGA =omega*2PI*/

double Vin[total_nr_cells_z];

double mean_U_A_outflow;

double sum_U_A_outflow;

/***********************************************************************************************************************

DEFINE_EXECUTE_AFTER_CASE UDF

************************************************************************************************************************/

/*Use a DEFINE_EXECUTE_AFTER_CASE UDF to calculate the global variables total_nr_faces_inflowface and

total_nr_faces_outflowface in order to prevent mallocing, leading to less memory usage*/

DEFINE_EXECUTE_AFTER_CASE(SR1_flat_disk_final_adj, libudf)

{

/*Calculation of the inflow velocities of the centroids of the faces of the inflow plane of the blade*/

domain = Get_Domain(1);

zone_ID = 30; /*ID_number for the zone of inflow of the blade*/

disk_inflow = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the inflow domain of the blade*/

/**Count nr of faces loop**/

/**This loop runs over all the faces of the inflow plane, to count the total number of faces of the inflow plane of the blade**/

i=0;

begin_f_loop(f,disk_inflow)

{
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i=i+1;

}

end_f_loop(f,disk_inflow)

total_nr_faces_inflowface=i;

Message("Content of variable total_nr_faces_inflowface is: %d\n", total_nr_faces_inflowface);

/**End Count nr of faces loop**/

/**End Calculation of the number of faces of the inflow plane of the blade**/

/**Calculation of the number of faces of the outflow plane of the actuator disk**/

zone_ID = 28; /*ID_number for the zone of outflow of the actuator disk*/

disk_outflow = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the outflow domain of the actuator disk*/

/**Count nr of faces loop**/

/**This loop runs over all the faces of the outflow plane, to count the total number of faces of the outflow plane of the disk**/

i=0;

begin_f_loop(f,disk_outflow)

{

i=i+1;

}

end_f_loop(f,disk_outflow)

total_nr_faces_outflowface=i;

Message("Content of variable total_nr_faces_outflowface is: %d\n", total_nr_faces_outflowface);

/**End Count nr of faces loop**/

/**End Calculation of the number of faces of the outflow plane of the actuator disk**/

/**Specify thread of the extra_volume to read the inflow velocities**/

zone_ID = 13; /*ID_number for the zone of the extra_volume*/

extra_volume = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the extra_volume*/

/**End Specify thread of the extra_volume to read the inflow velocities**/

}

/*************************************************************************************************************************

End DEFINE_EXECUTE_AFTER_CASE UDF

**************************************************************************************************************************/

/*************************************************************************************************************************

VELOCITY IN X-DIRECTION

**************************************************************************************************************************/

DEFINE_PROFILE(axial_velocity, t1, indices)

{

/******************************

Declaration of local variables

*******************************/

if(!V_axial_flatdisk)

{

Message("Allocating V_axial_flatdisk\n");

V_axial_flatdisk = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!U_A_flatdisk)

{

Message("Allocating U_A_flatdisk\n");

U_A_flatdisk = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!Vin_flatdisk)

{

Message("Allocating Vin_flatdisk\n");

Vin_flatdisk = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

/**Define the import variables from matlab files**/

/*Polynomial coefficients C1 & C2 describing the local pathlines C1*x+C2*/

float C_1[total_nr_cells_z];

float C_2[total_nr_cells_z];

FILE *inputFileC2;

FILE *inputFileC1;

/**End Define the import variables from matlab files**/

/**Define variables belonging to the inflow_face of the blade**/

double criterium;

double r_xtra;

double x_xtra;

double u_inflow;

double v_inflow;

double w_inflow;

double r_inflow_centroid[total_nr_faces_inflowface]; /*Radius of the centroid of the faces of inflow plane of actuator*/

double V_axial_centroid_in[total_nr_faces_inflowface]; /*Velocity of the centroid of the faces of inflow plane of actuator*/

int rnew_in[total_nr_faces_inflowface];

double checkpoint_in;

int newcheckpoint_in;

int positie_in;

int teller_in;
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double inflow_centroid_r[total_nr_faces_inflowface];

double inflow_centroid_V[total_nr_faces_inflowface];

double old_inflow_centroid_r[total_nr_faces_inflowface];

double old_inflow_centroid_V[total_nr_faces_inflowface];

int size_inflow_array;

double max_inflow_centroid_r;

double min_inflow_centroid_r;

double arranged_inflow_centroid_r[total_nr_faces_inflowface];

double arranged_inflow_centroid_V[total_nr_faces_inflowface];

int position_min;

double old_positionvector[total_nr_faces_inflowface];

int maximum_position;

int maximum_pos[total_nr_faces_inflowface];

int max_pos;

/**End Define variables belonging to the inflow_face of the blade**/

/**Define variables belonging to the flatdisk**/

double r_outflow_centroid[total_nr_faces_outflowface];

double saved_outflow_centroid_r[total_nr_faces_outflowface];

double xcoord[total_nr_faces_outflowface];

/*double ycoord[total_nr_faces_outflowface];

double zcoord[total_nr_faces_outflowface];*/

double dr_end;

int r_outnew[total_nr_faces_outflowface]; /*Integer to ensure the needed significant digits*/

double checkpoint_out;

int newcheckpoint_out;

int positie_out;

int teller_out;

double outflow_centroid_r[total_nr_faces_outflowface];

double old_outflow_centroid_r[total_nr_faces_outflowface];

int size_outflow_array;

double max_outflow_centroid_r;

double min_outflow_centroid_r;

double arranged_outflow_centroid_r[total_nr_faces_outflowface];

int position_min_out;

double old_positionvector_out[total_nr_faces_outflowface];

int maximum_position_out;

int maximum_pos_out[total_nr_faces_outflowface];

double r_polynomial[total_nr_cells_z];

int index;

double lower_r_polynomial;

double upper_r_polynomial;

double differ_polynomial;

double dif_poly_centroid;

double fraction_poly;

double r_begin[total_nr_cells_z];

double r_lower ;

double V_lower;

double r_upper;

double V_upper;

double dif_r;

double ref_r;

double perc_r;

double V_i;

double Vxs;

double omega_s;

double drs;

double rs[total_nr_cells_z];

double Rs;

double difference_p[total_nr_cells_z];

double dT_centroid[total_nr_cells_z];

double check_thrust1;

double VT_inf[total_nr_cells_z];

double U_A_outflow[total_nr_cells_z];

double V_axial[total_nr_cells_z];

int r_new[total_nr_cells_z]; /*Integer to ensure the needed significant digits*/

int newcheckpoint[total_nr_faces_outflowface];

int positie;

/*FILE *file1;

FILE *file2;

FILE *file3;

FILE *file4;

FILE *file5;

FILE *file6;

FILE *file7;

FILE *file8;

FILE *filedT;

FILE *file9;

FILE *file10;

FILE *file11;

FILE *file12;*/
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/**End Define variables belonging to the flatdisk**/

/*********************************

End Declaration of local variables

**********************************/

/**Import variables from matlab files**/

inputFileC1 = fopen("pathline_C1.txt", "rb");

i=0;

while(!feof(inputFileC1))

{

fscanf(inputFileC1, "%f", &C_1[i]);

i++;

}

fclose(inputFileC1);

inputFileC2 = fopen("pathline_C2.txt", "rb");

i=0;

while(!feof(inputFileC2))

{

fscanf(inputFileC2, "%f", &C_2[i]);

i++;

}

fclose(inputFileC2);

/**End Import variables from matlab files**/

/**Calculate r_inflow_centroid and the inflow velocities of the centroids, V_axial_centroid_in.**/

/*file1 = fopen("check1.dat","w");*/

criterium = x_begin-((x_begin-x_end_Xtra)/total_nr_cells_x_Xtra);

j=0;

n=0;

begin_c_loop(c, extra_volume)

{

C_CENTROID(x,c,extra_volume); /*Calculates the cells’ centroid*/

r_xtra =sqrt((x[1])*(x[1])+(x[2])*(x[2])); /*Radius computation of centroid of the cells of iextra_volume*/

x_xtra = x[0];

if (x_xtra > criterium) /*Find the last column of extra_volume*/

{

r_inflow_centroid[n]=sqrt((x[1])*(x[1])+(x[2])*(x[2])); /*Radius computation of centroid at cells of the extra_volume*/

u_inflow=C_U(c,extra_volume); /*Read the x, y and z components of inflow velocity using C_U, C_V and C_W.*/

v_inflow=C_V(c,extra_volume);

w_inflow=C_W(c,extra_volume);

V_axial_centroid_in[n]= sqrt(pow(u_inflow,2)+pow(v_inflow,2)+pow(w_inflow,2)); /*V=sqrt(u^2+v^2+w^2)*/

/*fprintf(file1,"%.6g \t %.6g \n",r_inflow_centroid[n], V_axial_centroid_in[n]);*/

n=n+1;

}

j=j+1;

}

end_c_loop(c, extra_volume)

Message("Content of variable criterium is: %f\n", criterium);

Message("Content of variable n should be equal to total_nr_faces_inflowface and is: %d\n", n);

/**n should be equal to total_nr_faces_inflowface**/

/*fclose(file1);*/

/**End Calculate r_inflow_centroid and the inflow velocities of the centroids, V_axial_centroid_in.**/

/**It is sufficient to define the r_inflow_centroid until 4 digits after the comma. In order to isolate the same

r_inflow_centroid from the total array, define an int which is (1000* r_inflow_centroid). Do the same thing for

the reference values checkpoint and call the corresponding

integers newcheckpoint*/

/**Define new integer rnew to ensure the needed significant digits**/

for (j=0; j<=total_nr_faces_inflowface-1; j++)

{

rnew_in[j] =pow(10,3)*r_inflow_centroid[j];

}

/**Define new integer rnew to ensure the needed significant digits**/

/**Loop to extract the same r_inflow_centroid from the array and declaration of the corresponding inflow velocities**/

for (j=0; j<=total_nr_faces_inflowface-1; j++)

{

for (n=j+1; n<=total_nr_faces_inflowface-1; n++)

{

checkpoint_in = r_inflow_centroid[j];

newcheckpoint_in=pow(10,3)*checkpoint_in;

if (newcheckpoint_in == rnew_in[n])

{

if(newcheckpoint_in!=0)

{

positie_in = n;

r_inflow_centroid[positie_in]= 0;

V_axial_centroid_in[positie_in] = 0;

}

}

}

}

/**Loop to extract the same r_inflow_centroid from the array and declaration of the corresponding inflow velocities**/

/**Count how many r_inflow_centroid are non-zero. This must be equal tot the total_nr_cells_z**/

teller_in=0;

for (j=0; j<=total_nr_faces_inflowface-1; j++)

{

if (r_inflow_centroid[j]!=0)



138 UDF source codes

{

teller_in=teller_in+1;

}

}

Message("teller_face is: %d\n", teller_in);

/*for (j=0; j<total_nr_faces_inflowface-1; j++)

{

Message("Content of variable r_inflow_centroid is: %f\n", r_inflow_centroid[j]);

}

/**End Count how many r_inflow_centroid are non-zero.**/

/**Gather all non-zero elements of r_inflow_centroid in one single array called new_r_inflow_centroid**/

/**Gather all non-zero elements of V_axial_centroid_in in one single array called V_in_centroid**/

/*file2 = fopen("check2.dat","w");*/

i=0;

for (j=0; j<=total_nr_faces_inflowface-1; j++)

{

if (r_inflow_centroid[j]!=0)

{

inflow_centroid_r[i] = r_inflow_centroid[j];

old_inflow_centroid_r[i] = inflow_centroid_r[i];

inflow_centroid_V[i] = V_axial_centroid_in[j];

old_inflow_centroid_V[i] = inflow_centroid_V[i];

/*fprintf(file2,"%.6g \t %.6g \t %.6g \t %.6g \n",old_inflow_centroid_r[i], inflow_centroid_r[i],

inflow_centroid_V[i], old_inflow_centroid_V[i]);*/

i=i+1;

}

}

size_inflow_array = i;

/*fclose(file2);*/

Message("size_inflow_array is: %d\n", size_inflow_array);

/*for (j=0; j<=teller-1; j++)

{

Message("Content of inflow_centroid_r is: %f\n", inflow_centroid_r[j]);

}*/

/**End Gather all non-zero elements of r_inflow_centroid in one single array called new_r_inflow_centroid**/

/**End Gather all non-zero elements of V_axial_centroid_in in one single array called V_in_centroid**/

/**Arrange the values of r_inflow_centroid from small to large and find the corresponding Velocity**/

/*file3 = fopen("check3.dat","w");*/

for (j= 0; j<=size_inflow_array-1; j++)

{

i=1;

/**Find maximum value of array inflow_centroid_r**/

max_inflow_centroid_r = 0;

for (n=0; n<=size_inflow_array-1; n++)

{

if (inflow_centroid_r[n]> max_inflow_centroid_r)

{

max_inflow_centroid_r = inflow_centroid_r[n];

maximum_position = n;

}

}

maximum_pos[j] = maximum_position;

/**End Find maximum value of array inflow_centroid_r**/

/**Find minimum value of array r_random**/

min_inflow_centroid_r = max_inflow_centroid_r;

for (n=0; n<=size_inflow_array-1; n++)

{

if (inflow_centroid_r[n]< min_inflow_centroid_r)

{

min_inflow_centroid_r = inflow_centroid_r[n];

position_min = n;

}

}

/**End Find minimum value of array r_random**/

old_positionvector[j]= position_min;

arranged_inflow_centroid_V[j] = old_inflow_centroid_V[position_min];

/**Arrange inflow_centroid_r from small to large**/

arranged_inflow_centroid_r[j] = min_inflow_centroid_r;

/**Replace inflow_centroid_r[position_min] with max_inflow_centroid_r so that we can find the next minimum**/

inflow_centroid_r[position_min]= max_inflow_centroid_r;

/*fprintf(file3,"%.6g \t %.6g \t %.6g \t %.6g \n",old_inflow_centroid_r[j], arranged_inflow_centroid_r[j],

old_inflow_centroid_V[j], arranged_inflow_centroid_V[j]);*/

}

/*fclose(file3);*/

/**The last entry of arranged_inflow_centroid_r will be the max of old_inflow_centroid_r. So the last entry

of arranged_inflow_centroid_V must be the velocity that corresponds to the max of old_inflow_centroid_r, which

position is given by the first entry of maximum_pos, which stores the position values of the maxima**/

max_pos = maximum_pos[0];

arranged_inflow_centroid_V[total_nr_cells_z-1] = old_inflow_centroid_V[max_pos];

Message("Content of last arranged_inflow_centroid_V is: %f\n", arranged_inflow_centroid_V[total_nr_cells_z-1]);

/*Check of the answers*/

/*for (j=0; j<=size_inflow_array-1; j++)

{

Message("Content of arranged_inflow_centroid_r is: %f\n", arranged_inflow_centroid_r[j]);

Message("Content of arranged_inflow_centroid_V is: %f\n", arranged_inflow_centroid_V[j]);
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}

for (j=0; j<=size_inflow_array-1; j++)

{

Message("Content of old_inflow_centroid_r is: %f\n", old_inflow_centroid_r[j]);

Message("Content of old_inflow_centroid_V is: %f\n", old_inflow_centroid_V[j]);

}

/*End Check of the answers*/

/**End Arrange the values of r_inflow_centroid from small to large and find the corresponding Velocity**/

/**Calculate the radii of the centroids of flatdisk**/

zone_ID = 14; /*ID_number for the zone of the flatdisk*/

flatdisk = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the flatdisk domain*/

dr_end =(RP-RTE)/total_nr_cells_z; /*Calculation of the elemental width dr_end*/

OMEGA = 2*PI*omega;

/*file4 = fopen("check4.dat","w");*/

i=0;

begin_c_loop(c, flatdisk)

{

C_CENTROID(x,c,flatdisk); /*Calculates the cell’s centroid*/

r_outflow_centroid[i]=sqrt((x[1])*(x[1])+(x[2])*(x[2])); /*Radius computation of centroid of cells of the flatdisk*/

saved_outflow_centroid_r[i] = r_outflow_centroid[i]; /*We need this to now the V_axial_flatdisk for each cell

within flatdisk*/

xcoord[i] = x[0];

/*ycoord[i] = x[1];

zcoord[i] = x[2];*/

/* fprintf(file4," %.6g \n",r_outflow_centroid[i]);*/

i=i+1;

}

end_c_loop(c, flatdisk)

/* fclose(file4);*/

/**End Calculate the radii of the centroids of flatdisk**/

/**It is sufficient to define the r_outflow_centroid until 3 digits after the comma. In order to isolate the same

r_outflow_centroid from the total array, define an int which is (1000* r_outflow_centroid). Do the same thing

for the reference values checkpoint and call the corresponding integers newcheckpoint*/

/**Define new integer rnew to ensure the needed significant digits**/

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

r_outnew[j] =pow(10,3)*r_outflow_centroid[j];

}

/**End Define new integer r_outnew to ensure the needed significant digits**/

/**Loop to extract the same r_outflow_centroid from the array**/

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

for (n=j+1; n<=total_nr_faces_outflowface-1; n++)

{

checkpoint_out = r_outflow_centroid[j];

newcheckpoint_out=pow(10,3)*checkpoint_out;

if (newcheckpoint_out == r_outnew[n])

{

if(newcheckpoint_out!=0)

{

positie_out = n;

r_outflow_centroid[positie_out]= 0;

}

}

}

}

/**Loop to extract the same r_outflow_centroid from the array and declaration of the corresponding outflow velocities**/

/**Count how many r_outflow_centroid are non-zero. This must be equal tot the total_nr_cells_z**/

teller_out=0;

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

if (r_outflow_centroid[j]!=0)

{

teller_out=teller_out+1;

}

}

Message("teller_out is: %d\n", teller_out);

/**End Count how many r_outflow_centroid are non-zero. This must be equal tot the total_nr_cells_z**/

/**Gather all non-zero elements of r_outflow_centroid in one single array called new_r_outflow_centroid**/

/*file5= fopen("check5.dat","w");*/

i=0;

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

if (r_outflow_centroid[j]!=0)

{

outflow_centroid_r[i] = r_outflow_centroid[j];

old_outflow_centroid_r[i] = outflow_centroid_r[i];

/*fprintf(file5,"%.6g \t %.6g \n",outflow_centroid_r[i], old_outflow_centroid_r[i]);*/

i=i+1;

}

}

size_outflow_array = i;

/* fclose(file5);*/

Message("size_outflow_array is: %d\n", size_outflow_array);

/*for (j=0; j<=teller_out-1; j++)
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{

Message("Content of outflow_centroid_r is: %f\n", outflow_centroid_r[j]);

}*/

/**End Gather all non-zero elements of r_outflow_centroid in one single array called new_r_outflow_centroid**/

/**Arrange the values of r_outflow_centroid from small to large**/

/*file6= fopen("check6.dat","w");*/

for (j= 0; j<=size_outflow_array-1; j++)

{

i=1;

/**Find maximum value of array inflow_centroid_r**/

max_outflow_centroid_r = 0;

for (n=0; n<=size_outflow_array-1; n++)

{

if (outflow_centroid_r[n]> max_outflow_centroid_r)

{

max_outflow_centroid_r = outflow_centroid_r[n];

maximum_position_out = n;

}

}

maximum_pos_out[j] = maximum_position_out;

/**End Find maximum value of array outflow_centroid_r**/

/**Find minimum value of array r_random**/

min_outflow_centroid_r = max_outflow_centroid_r;

for (n=0; n<=size_outflow_array-1; n++)

{

if (outflow_centroid_r[n]< min_outflow_centroid_r)

{

min_outflow_centroid_r = outflow_centroid_r[n];

position_min_out = n;

}

}

/**End Find minimum value of array r_random**/

old_positionvector_out[j]= position_min_out;

/**Arrange outflow_centroid_r from small to large**/

arranged_outflow_centroid_r[j] = min_outflow_centroid_r;

/**Replace outflow_centroid_r[position_min] with max_outflow_centroid_r so that we can find the next minimum**/

outflow_centroid_r[position_min_out]= max_outflow_centroid_r;

/*fprintf(file6,"%.6g \t %.6g \n", old_outflow_centroid_r[j], arranged_outflow_centroid_r[j]);*/

}

/* fclose(file6);*/

/*Check of the answers*/

/*for (j=0; j<=size_outflow_array-1; j++)

{

Message("Content of arranged_outflow_centroid_r is: %f\n", arranged_outflow_centroid_r[j]);

}

for (j=0; j<=size_outflow_array-1; j++)

{

Message("Content of old_outflow_centroid_r is: %f\n", old_outflow_centroid_r[j]);

}*/

/*End Check of the answers*/

/**End Arrange the values of r_outflow_centroid from small to large and find the corresponding Velocity**/

/**Calculate the r_begin corresponding to arranged_outflow_centroid_r**/

/*file7= fopen("check7.dat","w");*/

for (i=0; i<=total_nr_faces_outflowface-1; i++)

{

for (j=0; j<=total_nr_cells_z-1; j++)

{

r_polynomial[j] = C_1[j]*xcoord[i]+C_2[j];

}

}

for(i=0; i<=total_nr_cells_z-1;i++)

{

for(j=0; j<=total_nr_cells_z-2;j++)

{

if(arranged_outflow_centroid_r[i]>=r_polynomial[j] && arranged_outflow_centroid_r[i]<=r_polynomial[j+1])

{

index=j;

}

else

{

index=-1;

}

if (index!=-1)

{

lower_r_polynomial = r_polynomial[index];

upper_r_polynomial = r_polynomial[index+1];

differ_polynomial=upper_r_polynomial-lower_r_polynomial;

dif_poly_centroid = upper_r_polynomial-arranged_outflow_centroid_r[i];

fraction_poly = dif_poly_centroid/differ_polynomial;

r_begin[i]=(C_1[index+1]*(1-fraction_poly)+C_1[index]*fraction_poly)*x_begin+(C_2[index+1]*(1-fraction_poly)+

C_2[index]*fraction_poly);

}

else

{

if(arranged_outflow_centroid_r[i]<=r_polynomial[0])

{

r_begin[i]=C_1[0]*x_begin + C_2[0];
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}

if(arranged_outflow_centroid_r[i]>=r_polynomial[total_nr_cells_z-1])

{

r_begin[i]=C_1[total_nr_cells_z-1]*x_begin + C_2[total_nr_cells_z-1];

}

}

}

/*fprintf(file7,"%.6g \t %.6g \t %.6g \t %.6g \n", lower_r_polynomial, arranged_outflow_centroid_r[i],

upper_r_polynomial, r_begin[i]);*/

}

/*fclose(file7);*/

/**End Calculate the r_begin corresponding to arranged_outflow_centroid_r**/

/**Find Vin corresponding to r_begin[i]**/

/*file8= fopen("check8.dat","w");*/

for (j=0; j<=total_nr_cells_z-1; j++)

{

if(r_begin[j]<= arranged_inflow_centroid_r[0])

{

Vin[j]=arranged_inflow_centroid_V[0];

}

if(r_begin[j]>= arranged_inflow_centroid_r[total_nr_cells_z-1])

{

Vin[j]=arranged_inflow_centroid_V[total_nr_cells_z-1];

}

for (n=0; n<=total_nr_cells_z-2; n++)

{

if(r_begin[j]>= arranged_inflow_centroid_r[n] && r_begin[j]<= arranged_inflow_centroid_r[n+1])

{

r_lower = arranged_inflow_centroid_r[n];

V_lower=arranged_inflow_centroid_V[n];

r_upper = arranged_inflow_centroid_r[n+1];

V_upper=arranged_inflow_centroid_V[n+1];

dif_r= r_upper-r_lower;

ref_r = r_upper-r_begin[j];

perc_r=ref_r/dif_r;

Vin[j] = V_upper*(1-perc_r)+V_lower*perc_r;

/*fprintf(file8,"%.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \n",r_lower, r_begin[j], r_upper, V_lower,

Vin[j], V_upper);*/

}

}

}

/*fclose(file8);*/

/**End Find Vin corresponding to r_begin[i]**/

/**Now that we have total_nr_cells_z non-zero arranged_outflow_centroid_r arranged from small to large and

corresponding Vin, one can determine the elemental thrust for these elements.*/

/*filedT = fopen("dT.dat","w");*/

for (i=0; i<=total_nr_cells_z-1; i++)

{

V_i=sqrt((pow(VINF,2)/4)+((pow(OMEGA,2)*pow(RP,2))/4)*

(1-sqrt(1-((4*T)/(PI*(pow(RP,2)-pow(RTE,2))*RHO*pow(OMEGA,2)*pow(RP,2))))))-(VINF/2);

Vxs = VINF+2*V_i;

omega_s = (4*(VINF+2*V_i)*V_i)/(OMEGA*pow(RP,2));

drs =sqrt((VINF+V_i)/Vxs)*dr_end; /*Calculation of the elemental width drs*/

rs[i] =sqrt(((VINF+V_i)/Vxs)*(pow(arranged_outflow_centroid_r[i],2)));

Rs =sqrt((VINF+V_i)/Vxs)*RP;

difference_p[i] = -(RHO*pow(omega_s,2)/2)*(pow(Rs,2)-pow(rs[i],2));

dT_centroid[i] =(Vxs-VINF)*RHO*Vxs*((2*PI)*rs[i]*drs)+difference_p[i]*((2*PI)*rs[i]*drs); /*Elemental thrust of annular element*/

/*Check values. Make sure that the root is taken of a positive number*/

/*sqrt_Vi= 1-((4*T)/(PI*(pow(RP,2)-pow(RTE,2))*RHO*pow(OMEGA,2)*pow(RP,2)));*/

/* fprintf(filedT,"%.6g \t %.6g \n", arranged_outflow_centroid_r[i], dT_centroid[i]);*/

}

/*fclose(filedT);*/

/*End Loop to calculate the elemental thrust of the centroids of the outflow plane (dT_centroid)*/

/*Check whether the thrust calculation is correct. The total thrust is divided over all the individual faces of

the outflow plane.Since we have total_nr_cells_z different outflow_centroid_r, we will have total_nr_cells_z elemental

thrusts. The total thrust is equal to the sum of all the elemental thrusts of each face of the outflow plane.

So the sum of all dT_centroid*(total_nr_faces_outflowface/total_nr_cells_z) must equal the total Thrust T*/

check_thrust1 = dT_centroid[0];

for (i=0; i<=total_nr_cells_z-2; i++)

{

check_thrust1 = check_thrust1 + dT_centroid[i+1];

check_thrust1 = check_thrust1;

}

/*Check whether the thrust calculation is correct. All dT_centroids must be positive*/

j=0;

for (i=0; i<=total_nr_cells_z-1; i++)

{

if (dT_centroid[i]>=0)

{

j=j+1;

}

}

Message("Content of check_thrust1 is: %f\n", check_thrust1);
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Message("Content of j is: %d\n", j );

/*End Check whether the thrust calculation is correct. The sum of all dT_centroid must equal T*/

/**Calculation of the axial velocity at flatdisk**/

/* file9= fopen("check9.dat","w");*/

for(i=0; i<=total_nr_cells_z-1; i++)

{

VT_inf[i] = omega_s*rs[i];

U_A_outflow[i] = 0.5*(-Vin[i] + sqrt(pow(Vin[i],2) + pow(VT_inf[i],2) +

dT_centroid[i]/(RHO*PI*arranged_outflow_centroid_r[i]*dr_end)));

V_axial[i]= Vin[i] +U_A_outflow[i];

/*fprintf(file9,"%.6g \t %.6g \t %.6g \t %.6g \t %.6g \n", arranged_outflow_centroid_r[i], dT_centroid[i], VT_inf[i],

U_A_outflow[i],V_axial[i]);*/

}

sum_U_A_outflow = U_A_outflow[0];

for (i=0; i<=total_nr_cells_z-2; i++)

{

sum_U_A_outflow = sum_U_A_outflow + U_A_outflow[i+1];

sum_U_A_outflow = sum_U_A_outflow;

}

/*fclose(file9);/*

/**End Calculation of the axial velocity at flatdisk**/

/**Find V_axial_flatdisk for total_nr_faces_outflowface number of cells**/

/**The axial velocity is now known for total_nr_cells_z, which is axisymmetric so now we have to impose the right V_axial to

the right saved_outflow_centroid_r. the array saved_outflow_centroid_r must be used since the original r_outflow_centroid is

changed because of the sorting prog**/

/**It is sufficient to define the arranged_r_outflow_centroid until 3 digits after the comma. In order to isolate the same

saved_outflow_centroid_r from the total array, define an int which is (1000* arranged_r_outflow_centroid). Do the same thing

for the reference values checkpoint and call the corresponding integers newcheckpoint*/

/**Define new integer rnew to ensure the needed significant digits**/

/* file10= fopen("check10.dat","w");*/

for (j=0; j<=total_nr_cells_z-1; j++)

{

r_new[j] =pow(10,3)*arranged_outflow_centroid_r[j];

/*fprintf(file10," %.6g \n",arranged_outflow_centroid_r[j]);*/

}

/*fclose(file10);*/

/*file11= fopen("check11.dat","w");*/

for (n=0; n<=total_nr_faces_outflowface-1; n++)

{

newcheckpoint[n] =pow(10,3)*saved_outflow_centroid_r[n];

/*fprintf(file11," %.6g \n", saved_outflow_centroid_r[n]); */

}

/*fclose(file11);*/

/**End Define new integer r_outnew to ensure the needed significant digits**/

/**Loop to extract the same r_outflow_centroid from the array**/

for (j=0; j<=total_nr_cells_z-1; j++)

{

for (n=0; n<=total_nr_faces_outflowface-1; n++)

{

if (r_new[j] == newcheckpoint[n])

{

if(newcheckpoint[n]!=0)

{

positie = n;

V_axial_flatdisk[positie]= V_axial[j];

Vin_flatdisk[positie]= Vin[j];

U_A_flatdisk[positie] = U_A_outflow[j];

}

}

}

}

/* file12= fopen("check12.dat","w");

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

fprintf(file12,"%.6g \t %.6g \n", V_axial_flatdisk[j], Vin_flatdisk[j]);

}

fclose(file12);*/

/**End Find V_axial_flatdisk for total_nr_faces_outflowface number of cells**/

/**Impose the axial velocity using F_PROFILE**/

i=0;

begin_c_loop(c, t1)

{

F_PROFILE(c, t1, indices) = V_axial_flatdisk[i];

i=i+1;

}

end_c_loop(c, t1)

/**End Impose the axial velocity using F_PROFILE**/

}

/*************************************************************************************************************************

End VELOCITY IN X-DIRECTION
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**************************************************************************************************************************/

/*************************************************************************************************************************

VELOCITY IN Y-DIRECTION

**************************************************************************************************************************/

/*This part calculates the y-velocity inside the actuator disk volume. The y-velocity consists of the y-component of

the tangential velocity and the y-component of the radial velocity.

The tangential velocity is calculated first. Folowed by the computation of the radial velocity*/

DEFINE_PROFILE(y_velocity, t1, indices)

{

if(!VT_z)

{

Message("Allocating VT_z\n");

VT_z = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!Vy)

{

Message("Allocating Vy\n");

Vy = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!VR_z)

{

Message("Allocating VR_z\n");

VR_z = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

double VT_y[total_nr_faces_outflowface];

double VR_y[total_nr_faces_outflowface];

/*******************************

Declaration of local variables

********************************/

double r_centroid_flatdisk;

double ycoord;

double zcoord;

double VT;

double VR;

double theta;

/*FILE *fileben;*/

/**********************************

End Declaration of local variables

***********************************/

/**Calculate first the tangential velocity inside the flatdisk**/

i=0;

/*fileben = fopen("check_Vtan.dat","w");*/

begin_c_loop(c, t1)

{

C_CENTROID(x,c, t1); /*Calculates the cells’ centroid*/

r_centroid_flatdisk = sqrt((x[1])*(x[1])+(x[2])*(x[2]));

ycoord = x[1];

zcoord = x[2];

VT = (4*PI*U_A_flatdisk[i]*(Vin_flatdisk[i]+U_A_flatdisk[i]))/(2*PI*r_centroid_flatdisk*OMEGA);

/**End Calculate first the tangential velocity inside the flatdisk**/

/**Calculation of radial velocity**/

mean_U_A_outflow = sum_U_A_outflow/total_nr_cells_z;

VR = (mean_U_A_outflow*PI*r_centroid_flatdisk)/(4*RP);

/**End Calculation of radial velocity**/

/**Calculation of the angle Theta**/

if (ycoord!=0)

{

theta = fabs(atan(zcoord/ycoord));

}

else

{

theta = PI/2;

}

/**End Calculation of the angle Theta**/

/**General Condition for VT_y**/

if (zcoord<0)

{

VT_y[i] = pow(-1, sense+1)*VT*sin(theta);

VR_z[i] = VR*sin(theta);

}

if (zcoord>0)

{

VT_y[i] = pow(-1, sense)*VT*sin(theta);

VR_z[i] = -VR*sin(theta);

}

/**End General Condition for VT_y**/

/**General Condition for VT_z**/

if (ycoord<0)
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{

VT_z[i] = pow(-1, sense)*VT*cos(theta);

VR_y[i] = VR*cos(theta);

}

if (ycoord>0) /*z<0 & y!=0*/

{

VT_z[i] = pow(-1, sense+1)*VT*cos(theta);

VR_y[i] = -VR*cos(theta);

}

/**End General Condition for VT_z**/

/**End Calculation of VT_y and VT_z**/

Vy[i] = VT_y[i]+VR_y[i];

F_PROFILE(c, t1, indices) = Vy[i];

/*fprintf(fileben,"%.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \n",OMEGA, ycoord,

zcoord, theta, r_centroid_flatdisk, Vin_flatdisk[i], V_axial_flatdisk[i], VT, VT_y[i], VT_z[i]);*/

i=i+1;

}

end_c_loop(c, t1)

/*fclose(fileben);*/

/**End Calculation of Vr_y and Vr_z**/

/* Message("Content of counter i is: %d\n", i );

Message("Content of counter teller is: %d\n", teller );

Message("Content of counter teller2 is: %d\n", teller2 );

for (j=0; j<=2*total_nr_cells_z-1; j++)

{

Message("Content of VT_y[i] is: %f\n", VT_y[j] );

/*Message("Content of VT_z[i] is: %f\n", VT_z[j] );*/

/*Message("Content of V_y[i] is: %f\n", V_y[j] );*/

/* }*/

}

/*************************************************************************************************************************

End VELOCITY IN Y-DIRECTION

***************************************************************************************************************************/

/**************************************************************************************************************************

VELOCITY IN Z-DIRECTION

***************************************************************************************************************************/

DEFINE_PROFILE(z_velocity, t1, indices)

{

if(!Vz)

{

Message("Allocating Vz\n");

Vz = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

i=0;

begin_c_loop(c, t1)

{

Vz[i]=VT_z[i]+VR_z[i];

F_PROFILE(c, t1, indices) = Vz[i];

i=i+1;

}

end_c_loop(c, t1)

}

/**************************************************************************************************************************

End VELOCITY IN Z-DIRECTION

***************************************************************************************************************************/

B.3 UDF Phillips’ equations

#include "udf.h"

#include "stdio.h"

/*UDF for M=0.6 & J=3.08 uniform Vin equal to freestream using Phillips’ equations*/

/*****************************************************************************************************************************

Define the constant variables

******************************************************/

#define VINF 177.91 /* Freestream velocity [m/s].*/

#define omega 92.86 /* Propeller angular velocity (RPS)*/

#define T 197.23 /* proppeller total thrust (N) for one blade was 24.654*/

#define RP 0.311 /* Actuator disk radius [m]*/

#define RLE 0.06 /* Distance from z=0 axis to nacelle contour at x=LE of the blade [m]*/

#define RTE 0.09 /* Distance from z=0 axis to nacelle contour at x=TE of the blade [m]*/
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#define x_end 0.215 /*x-coord of the trailing edge of blade [m]*/

#define x_begin 0.13 /*x-coord of the leading edge of blade [m]*/

#define RHO 0.3796 /* Air density at flight Altitude (kg/m^3)*/

#define PI 3.14159265358979323846

#define total_nr_cells_z 42 /* Number of cells in z-direction(=along blade span)*/

#define total_nr_cells_x 14 /* Number of cells in x-direction*/

#define arc_cells 40 /* Number of cells in along the actuator’s arc. It should normally be equal to the total_nr_cells_z */

#define sense 1 /*Sense=1 for clockwise rotating propellers and 0 for counter-clockwise rotating propellers*/

/*****************************************************************************************************************************/

/******************************************************/

/*****************************************************************************************************************************

Declarations of the global variables used in DEFINE_EXECUTE_AFTER_DATA and all the 3 DEFINE_PROFILE progs

***********************************************************************************************************/

/*General domain variables to define the domain, threat, face, cell, zone_ID and centroids*/

Domain *domain;

Thread *t;

face_t f;

cell_t c;

int zone_ID; /*the term zone_ID is used to move the pointer from one computational zone to another*/

double x[ND_ND]; /*the vector x refers always to the coordinates of the centroid of a face or cell*/

/*End General domain variables to define the domain, threat, face, cell, zone_ID and centroids*/

/*Counters in a loop*/

int i;

int j;

int n;

int teller;

/*End Counters in a loop*/

/*Definition of the disk_inflow and disk_outflow thread pointers*/

Thread *disk_inflow; /*Used to move pointer to the inflow plane of the actuator disk*/

Thread *disk_outflow; /*Used to move pointer to the outflow plane of the actuator disk*/

Thread *flatdisk; /*Used to move pointer to the flatdisk*/

/*End Definition of the disk_inflow and disk_outflow thread pointers*/

/*Variables needed to define the array sizes*/

int total_nr_faces_inflowface; /*total number of faces of the inflow plane of disk*/

int total_nr_faces_outflowface; /*total number of faces of the outflow plane of disk*/

/*End Variables needed to define the array sizes*/

double V_i;

double Vxs;

double omega_s;

double *rs=NULL;

double *Vin_flatdisk=NULL;

double *U_A_flatdisk=NULL;

double *V_axial_flatdisk=NULL;

double *VT_z=NULL;

/*double *VR_z=NULL;*/

double *Vy=NULL;

double *Vz=NULL;

double OMEGA; /*OMEGA =omega*2PI*/

double Vin[total_nr_cells_z];

/*double mean_U_A_outflow;

double sum_U_A_outflow;*/

/*****************************************************************************************************************************

DEFINE_EXECUTE_AFTER_CASE UDF

******************************************************************************************************************************/

/*Use a DEFINE_EXECUTE_AFTER_CASE UDF to calculate the global variables total_nr_faces_inflowface and total_nr_faces_outflowface

in order to prevent mallocing, leading to less memory usage*/

DEFINE_EXECUTE_AFTER_CASE(SR1_flat_disk_fluent12_Vr_correct_Phillips_corrected_atan, libudf)

{

/*Calculation of the inflow velocities of the centroids of the faces of the inflow plane of the blade*/

domain = Get_Domain(1);

zone_ID = 30; /*ID_number for the zone of inflow of the blade*/

disk_inflow = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the inflow domain of the blade*/

/**Count nr of faces loop**/

/**This loop runs over all the faces of the inflow plane, to count the total number of faces of the inflow plane of blade**/

i=0;

begin_f_loop(f,disk_inflow)

{

i=i+1;

}

end_f_loop(f,disk_inflow)

total_nr_faces_inflowface=i;

Message("Content of variable total_nr_faces_inflowface is: %d\n", total_nr_faces_inflowface);

/**End Count nr of faces loop**/

/**End Calculation of the number of faces of the inflow plane of the blade**/

/**Calculation of the number of faces of the outflow plane of the actuator disk**/

zone_ID = 28; /*ID_number for the zone of outflow of the actuator disk*/

disk_outflow = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the outflow domain of the actuator disk*/
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/**Count nr of faces loop**/

/**This loop runs over all the faces of the outflow plane, to count the total nr of faces of the outflow plane of the disk**/

i=0;

begin_f_loop(f,disk_outflow)

{

i=i+1;

}

end_f_loop(f,disk_outflow)

total_nr_faces_outflowface=i;

Message("Content of variable total_nr_faces_outflowface is: %d\n", total_nr_faces_outflowface);

/**End Count nr of faces loop**/

/**End Calculation of the number of faces of the outflow plane of the actuator disk**/

}

/*****************************************************************************************************************************

End DEFINE_EXECUTE_AFTER_CASE UDF

******************************************************************************************************************************/

/*****************************************************************************************************************************

VELOCITY IN X-DIRECTION

******************************************************************************************************************************/

DEFINE_PROFILE(axial_velocity, t1, indices)

{

/******************************

Declaration of local variables

*******************************/

if(!rs)

{

Message("Allocating rs\n");

rs = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!V_axial_flatdisk)

{

Message("Allocating V_axial_flatdisk\n");

V_axial_flatdisk = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!U_A_flatdisk)

{

Message("Allocating U_A_flatdisk\n");

U_A_flatdisk = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!Vin_flatdisk)

{

Message("Allocating Vin_flatdisk\n");

Vin_flatdisk = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

/**Define the import variables from matlab files**/

/*Polynomial coefficients C1 & C2 describing the local pathlines C1*x+C2*/

/*float C_1[total_nr_cells_z];

float C_2[total_nr_cells_z];

FILE *inputFileC2;

FILE *inputFileC1;

/**End Define the import variables from matlab files**/

/**Define variables belonging to the inflow_face of the blade**/

double r_inflow_centroid[total_nr_faces_inflowface]; /*Radius of the centroid of the faces of inflow plane of actuator*/

double V_axial_centroid_in[total_nr_faces_inflowface]; /*Velocity of the centroid of the faces of inflow plane of actuator*/

int rnew_in[total_nr_faces_inflowface];

double checkpoint_in;

int newcheckpoint_in;

int positie_in;

int teller_in;

double inflow_centroid_r[total_nr_faces_inflowface];

double inflow_centroid_V[total_nr_faces_inflowface];

double old_inflow_centroid_r[total_nr_faces_inflowface];

double old_inflow_centroid_V[total_nr_faces_inflowface];

int size_inflow_array;

double max_inflow_centroid_r;

double min_inflow_centroid_r;

double arranged_inflow_centroid_r[total_nr_faces_inflowface];

double arranged_inflow_centroid_V[total_nr_faces_inflowface];

int position_min;

double old_positionvector[total_nr_faces_inflowface];

int maximum_position;

int maximum_pos[total_nr_faces_inflowface];

int max_pos;

/**End Define variables belonging to the inflow_face of the blade**/

/**Define variables belonging to the flatdisk**/

double r_outflow_centroid[total_nr_faces_outflowface];

double saved_outflow_centroid_r[total_nr_faces_outflowface];
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/*double xcoord[total_nr_faces_outflowface];

double ycoord[total_nr_faces_outflowface];

double zcoord[total_nr_faces_outflowface];*/

double dr_end;

int r_outnew[total_nr_faces_outflowface]; /*Integer to ensure the needed significant digits*/

double checkpoint_out;

int newcheckpoint_out;

int positie_out;

int teller_out;

double outflow_centroid_r[total_nr_faces_outflowface];

double old_outflow_centroid_r[total_nr_faces_outflowface];

int size_outflow_array;

double max_outflow_centroid_r;

double min_outflow_centroid_r;

double arranged_outflow_centroid_r[total_nr_faces_outflowface];

int position_min_out;

double old_positionvector_out[total_nr_faces_outflowface];

int maximum_position_out;

int maximum_pos_out[total_nr_faces_outflowface];

/*double r_begin[total_nr_cells_z];*/

/*double V_i;*/

/*double Vxs;*/

/*double omega_s;*/

double drs;

/*double rs[total_nr_cells_z];*/

double Rs;

double difference_p[total_nr_cells_z];

double dT_centroid[total_nr_cells_z];

double check_thrust1;

double VT_inf[total_nr_cells_z];

double U_A_outflow[total_nr_cells_z];

double V_axial[total_nr_cells_z];

int r_new[total_nr_cells_z]; /*Integer to ensure the needed significant digits*/

int newcheckpoint[total_nr_faces_outflowface];

int positie;

/*FILE *file1;

FILE *file2;

FILE *file3;

FILE *file4;

FILE *file5;

FILE *file6;

FILE *file7;*/

/*FILE *file8;

FILE *file9;

/*FILE *file10;

FILE *file11;*/

/* FILE *file12;

/**End Define variables belonging to the flatdisk**/

/*********************************

End Declaration of local variables

**********************************/

/**Import variables from matlab files**/

/* inputFileC1 = fopen("pathline_C1.txt", "rb");

i=0;

while(!feof(inputFileC1))

{

fscanf(inputFileC1, "%f", &C_1[i]);

i++;

}

fclose(inputFileC1);

inputFileC2 = fopen("pathline_C2.txt", "rb");

i=0;

while(!feof(inputFileC2))

{

fscanf(inputFileC2, "%f", &C_2[i]);

i++;

}

fclose(inputFileC2);

/**End Import variables from matlab files**/

/**Calculate r_inflow_centroid and the inflow velocities of the centroids, V_axial_centroid_in.**/

/*file1 = fopen("check1.dat","w");*/

j=0;

begin_f_loop(f, disk_inflow)

{

F_CENTROID(x,f,disk_inflow); /*Calculates the faces’ centroid*/

r_inflow_centroid[j]=sqrt((x[1])*(x[1])+(x[2])*(x[2])); /*Radius computation of centroid at faces of inflow plane

of actuator*/

V_axial_centroid_in[j]= VINF; /*Assume a uniform inflow velocity*/

/*fprintf(file1,"%.6g \t %.6g \n",r_inflow_centroid[j], V_axial_centroid_in[j]);*/
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j=j+1;

}

end_f_loop(f, disk_inflow)

/* fclose(file1);*/

/**End Calculate r_inflow_centroid and the inflow velocities of the centroids, V_axial_centroid_in.**/

/**It is sufficient to define the r_inflow_centroid until 4 digits after the comma. In order to isolate the same

r_inflow_centroid from the total array, define an int which is (1000* r_inflow_centroid). Do the same thing for

the reference values checkpoint and call thz corresponding

integers newcheckpoint*/

/**Define new integer rnew to ensure the needed significant digits**/

for (j=0; j<=total_nr_faces_inflowface-1; j++)

{

rnew_in[j] =pow(10,3)*r_inflow_centroid[j];

}

/**Define new integer rnew to ensure the needed significant digits**/

/**Loop to extract the same r_inflow_centroid from the array and declaration of the corresponding inflow velocities**/

for (j=0; j<=total_nr_faces_inflowface-1; j++)

{

for (n=j+1; n<=total_nr_faces_inflowface-1; n++)

{

checkpoint_in = r_inflow_centroid[j];

newcheckpoint_in=pow(10,3)*checkpoint_in;

if (newcheckpoint_in == rnew_in[n])

{

if(newcheckpoint_in!=0)

{

positie_in = n;

r_inflow_centroid[positie_in]= 0;

V_axial_centroid_in[positie_in] = 0;

}

}

}

}

/**Loop to extract the same r_inflow_centroid from the array and declaration of the corresponding inflow velocities**/

/**Count how many r_inflow_centroid are non-zero. This must be equal tot the total_nr_cells_z**/

teller_in=0;

for (j=0; j<=total_nr_faces_inflowface-1; j++)

{

if (r_inflow_centroid[j]!=0)

{

teller_in=teller_in+1;

}

}

Message("teller_face is: %d\n", teller_in);

/*for (j=0; j<total_nr_faces_inflowface-1; j++)

{

Message("Content of variable r_inflow_centroid is: %f\n", r_inflow_centroid[j]);

}

/**End Count how many r_inflow_centroid are non-zero.**/

/**Gather all non-zero elements of r_inflow_centroid in one single array called new_r_inflow_centroid**/

/**Gather all non-zero elements of V_axial_centroid_in in one single array called V_in_centroid**/

/*file2 = fopen("check2.dat","w");*/

i=0;

for (j=0; j<=total_nr_faces_inflowface-1; j++)

{

if (r_inflow_centroid[j]!=0)

{

inflow_centroid_r[i] = r_inflow_centroid[j];

old_inflow_centroid_r[i] = inflow_centroid_r[i];

inflow_centroid_V[i] = V_axial_centroid_in[j];

old_inflow_centroid_V[i] = inflow_centroid_V[i];

/*fprintf(file2,"%.6g \t %.6g \t %.6g \t %.6g \n",old_inflow_centroid_r[i], inflow_centroid_r[i],

inflow_centroid_V[i], old_inflow_centroid_V[i]);*/

i=i+1;

}

}

size_inflow_array = i;

/*fclose(file2);*/

/*grootte_double = sizeof(double);*/

Message("size_inflow_array is: %d\n", size_inflow_array);

/*for (j=0; j<=teller-1; j++)

{

Message("Content of inflow_centroid_r is: %f\n", inflow_centroid_r[j]);

}*/

/**End Gather all non-zero elements of r_inflow_centroid in one single array called new_r_inflow_centroid**/

/**End Gather all non-zero elements of V_axial_centroid_in in one single array called V_in_centroid**/

/**Arrange the values of r_inflow_centroid from small to large and find the corresponding Velocity**/

/*file3 = fopen("check3.dat","w");*/

for (j= 0; j<=size_inflow_array-1; j++)

{

i=1;

/**Find maximum value of array inflow_centroid_r**/

max_inflow_centroid_r = 0;

for (n=0; n<=size_inflow_array-1; n++)
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{

if (inflow_centroid_r[n]> max_inflow_centroid_r)

{

max_inflow_centroid_r = inflow_centroid_r[n];

maximum_position = n;

}

}

maximum_pos[j] = maximum_position;

/**End Find maximum value of array inflow_centroid_r**/

/**Find minimum value of array r_random**/

min_inflow_centroid_r = max_inflow_centroid_r;

for (n=0; n<=size_inflow_array-1; n++)

{

if (inflow_centroid_r[n]< min_inflow_centroid_r)

{

min_inflow_centroid_r = inflow_centroid_r[n];

position_min = n;

}

}

/**End Find minimum value of array r_random**/

old_positionvector[j]= position_min;

arranged_inflow_centroid_V[j] = old_inflow_centroid_V[position_min];

/**Arrange inflow_centroid_r from small to large**/

arranged_inflow_centroid_r[j] = min_inflow_centroid_r;

/**Replace inflow_centroid_r[position_min] with max_inflow_centroid_r so that we can find the next minimum**/

inflow_centroid_r[position_min]= max_inflow_centroid_r;

/*fprintf(file3,"%.6g \t %.6g \t %.6g \t %.6g \n",old_inflow_centroid_r[j], arranged_inflow_centroid_r[j],

old_inflow_centroid_V[j], arranged_inflow_centroid_V[j]);*/

}

/*fclose(file3);*/

/**The last entry of arranged_inflow_centroid_r will be the max of old_inflow_centroid_r. So the last entry

of arranged_inflow_centroid_V must be the velocity that corresponds to the max of old_inflow_centroid_r, which position is given

by the first entry of maximum_pos, which stores the position values of the maxima**/

max_pos = maximum_pos[0];

arranged_inflow_centroid_V[teller-1] = old_inflow_centroid_V[max_pos];

Message("Content of last arranged_inflow_centroid_V is: %f\n", arranged_inflow_centroid_V[teller-1]);

/*Check of the answers*/

/*for (j=0; j<=size_inflow_array-1; j++)

{

Message("Content of arranged_inflow_centroid_r is: %f\n", arranged_inflow_centroid_r[j]);

Message("Content of arranged_inflow_centroid_V is: %f\n", arranged_inflow_centroid_V[j]);

}

for (j=0; j<=size_inflow_array-1; j++)

{

Message("Content of old_inflow_centroid_r is: %f\n", old_inflow_centroid_r[j]);

Message("Content of old_inflow_centroid_V is: %f\n", old_inflow_centroid_V[j]);

}

/*End Check of the answers*/

/**End Arrange the values of r_inflow_centroid from small to large and find the corresponding Velocity**/

/**Calculate the radii of the centroids of flatdisk**/

zone_ID = 14; /*ID_number for the zone of the flatdisk*/

flatdisk = Lookup_Thread(domain, zone_ID); /*Moves the pointer to the flatdisk domain*/

dr_end =(RP-RTE)/total_nr_cells_z; /*Calculation of the elemental width dr_end*/

OMEGA = 2*PI*omega;

/*file4 = fopen("check4.dat","w");*/

i=0;

begin_c_loop(c, flatdisk)

{

C_CENTROID(x,c,flatdisk); /*Calculates the cell’s centroid*/

r_outflow_centroid[i]=sqrt((x[1])*(x[1])+(x[2])*(x[2])); /*Radius computation of centroid of the cells of the flatdisk*/

saved_outflow_centroid_r[i] = r_outflow_centroid[i]; /*We need this variable to now the V_axial_flatdisk for each

cell within flatdisk*/

/*xcoord[i] = x[0];

ycoord[i] = x[1];

zcoord[i] = x[2];*/

/*fprintf(file4," %.6g \n",r_outflow_centroid[i]);*/

i=i+1;

}

end_c_loop(c, flatdisk)

/*fclose(file4);*/

/**End Calculate the radii of the centroids of flatdisk**/

/**It is sufficient to define the r_outflow_centroid until 4 digits after the comma. In order to isolate the same

r_outflow_centroid from the total array, define an int which is (1000* r_outflow_centroid). Do the same thing for

the reference values checkpoint and call the corresponding

integers newcheckpoint*/

/**Define new integer rnew to ensure the needed significant digits**/

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

r_outnew[j] =pow(10,3)*r_outflow_centroid[j];

}

/**End Define new integer r_outnew to ensure the needed significant digits**/

/**Loop to extract the same r_outflow_centroid from the array**/

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

for (n=j+1; n<=total_nr_faces_outflowface-1; n++)

{

checkpoint_out = r_outflow_centroid[j];
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newcheckpoint_out=pow(10,3)*checkpoint_out;

if (newcheckpoint_out == r_outnew[n])

{

if(newcheckpoint_out!=0)

{

positie_out = n;

r_outflow_centroid[positie_out]= 0;

}

}

}

}

/**Loop to extract the same r_outflow_centroid from the array and declaration of the corresponding outflow velocities**/

/**Count how many r_outflow_centroid are non-zero. This must be equal tot the total_nr_cells_z**/

teller_out=0;

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

if (r_outflow_centroid[j]!=0)

{

teller_out=teller_out+1;

}

}

Message("teller_out is: %d\n", teller_out);

/**End Count how many r_outflow_centroid are non-zero. This must be equal tot the total_nr_cells_z**/

/**Gather all non-zero elements of r_outflow_centroid in one single array called new_r_outflow_centroid**/

/*file5= fopen("check5.dat","w");*/

i=0;

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

if (r_outflow_centroid[j]!=0)

{

outflow_centroid_r[i] = r_outflow_centroid[j];

old_outflow_centroid_r[i] = outflow_centroid_r[i];

/*fprintf(file5,"%.6g \t %.6g \n",outflow_centroid_r[i], old_outflow_centroid_r[i]);*/

i=i+1;

}

}

size_outflow_array = i;

/*fclose(file5);*/

Message("size_outflow_array is: %d\n", size_outflow_array);

/*for (j=0; j<=teller_out-1; j++)

{

Message("Content of outflow_centroid_r is: %f\n", outflow_centroid_r[j]);

}*/

/**End Gather all non-zero elements of r_outflow_centroid in one single array called new_r_outflow_centroid**/

/**Arrange the values of r_outflow_centroid from small to large**/

/*file6= fopen("check6.dat","w");*/

for (j= 0; j<=size_outflow_array-1; j++)

{

i=1;

/**Find maximum value of array inflow_centroid_r**/

max_outflow_centroid_r = 0;

for (n=0; n<=size_outflow_array-1; n++)

{

if (outflow_centroid_r[n]> max_outflow_centroid_r)

{

max_outflow_centroid_r = outflow_centroid_r[n];

maximum_position_out = n;

}

}

maximum_pos_out[j] = maximum_position_out;

/**End Find maximum value of array outflow_centroid_r**/

/**Find minimum value of array r_random**/

min_outflow_centroid_r = max_outflow_centroid_r;

for (n=0; n<=size_outflow_array-1; n++)

{

if (outflow_centroid_r[n]< min_outflow_centroid_r)

{

min_outflow_centroid_r = outflow_centroid_r[n];

position_min_out = n;

}

}

/**End Find minimum value of array r_random**/

old_positionvector_out[j]= position_min_out;

/**Arrange outflow_centroid_r from small to large**/

arranged_outflow_centroid_r[j] = min_outflow_centroid_r;

/**Replace outflow_centroid_r[position_min] with max_outflow_centroid_r so that we can find the next minimum**/

outflow_centroid_r[position_min_out]= max_outflow_centroid_r;

/*fprintf(file6,"%.6g \t %.6g \n", old_outflow_centroid_r[j], arranged_outflow_centroid_r[j]);*/

}

/*fclose(file6);*/

/*Check of the answers*/

/*for (j=0; j<=size_outflow_array-1; j++)

{

Message("Content of arranged_outflow_centroid_r is: %f\n", arranged_outflow_centroid_r[j]);

}
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for (j=0; j<=size_outflow_array-1; j++)

{

Message("Content of old_outflow_centroid_r is: %f\n", old_outflow_centroid_r[j]);

}*/

/*End Check of the answers*/

/**End Arrange the values of r_outflow_centroid from small to large and find the corresponding Velocity**/

/**Calculate the r_begin corresponding to arranged_outflow_centroid_r**/

/*file7= fopen("check7.dat","w");*/

for (j=0; j<=total_nr_cells_z-1; j++)

{

/*r_begin[j] = C_1[j]*x_begin+C_2[j];*/

Vin[j] = VINF;

/*fprintf(file7,"%.6g \t %.6g \t %.6g \n", r_begin[j], C_1[j], C_2[j]);*/

}

/*fclose(file7);*/

/**End Calculate the r_begin corresponding to arranged_outflow_centroid_r**/

/**Now that we have total_nr_cells_z non-zero arranged_outflow_centroid_r arranged from small to large and

corresponding Vin, one can determine

the elemental thrust for these elements.*/

/*filedT = fopen("dT.dat","a+b");*/

/* file8= fopen("check8.dat","w");*/

for (i=0; i<=total_nr_cells_z-1; i++)

{

V_i =sqrt((pow(VINF,2)/4)+((pow(OMEGA,2)*pow(RP,2))/4)*

(1-sqrt(1-((4*T)/(PI*(pow(RP,2)-pow(RTE,2))*RHO*pow(OMEGA,2)*pow(RP,2))))))-(VINF/2);

Vxs = VINF+2*V_i;

omega_s = (4*(VINF+2*V_i)*V_i)/(OMEGA*pow(RP,2));

drs =sqrt((VINF+V_i)/Vxs)*dr_end; /*Calculation of the elemental width drs*/

rs[i] =sqrt(((VINF+V_i)/Vxs)*(pow(arranged_outflow_centroid_r[i],2)));

Rs =sqrt((VINF+V_i)/Vxs)*RP;

difference_p[i] = -(RHO*pow(omega_s,2)/2)*(pow(Rs,2)-pow(rs[i],2));

dT_centroid[i] =(Vxs-VINF)*RHO*Vxs*((2*PI)*rs[i]*drs)+difference_p[i]*((2*PI)*rs[i]*drs); /*Elemental thrust of

an annular element*/

/*Check values. Make sure that the root is taken of a positive number*/

/*sqrt_Vi= 1-((4*T)/(PI*(pow(RP,2)-pow(RTE,2))*RHO*pow(OMEGA,2)*pow(RP,2)));*/

/*fprintf(filedT,"%.6g \t %.6g \n", arranged_outflow_centroid_r[i], dT_centroid[i]);*/

/*fprintf(file8,"%.6g \t %.6g \n", arranged_outflow_centroid_r[i], dT_centroid[i]);*/

}

/*fclose(file8);*/

/*close(filedT);*/

/*End Loop to calculate the elemental thrust of the centroids of the outflow plane (dT_centroid)*/

/*Check whether the thrust calculation is correct. The total thrust is divided over all the individual faces

of the outflow plane.Since we have total_nr_cells_z different outflow_centroid_r, we will have total_nr_cells_z

elemental thrusts. The total thrust is equal to the sum of all the elemental thrusts of each face of the outflow plane.

So the sum of all dT_centroid*(total_nr_faces_outflowface/total_nr_cells_z) must equal the total Thrust T*/

check_thrust1 = dT_centroid[0];

for (i=0; i<=total_nr_cells_z-2; i++)

{

check_thrust1 = check_thrust1 + dT_centroid[i+1];

check_thrust1 = check_thrust1;

}

/*Check whether the thrust calculation is correct. All dT_centroids must be positive*/

j=0;

for (i=0; i<=total_nr_cells_z-1; i++)

{

if (dT_centroid[i]>=0)

{

j=j+1;

}

}

Message("Content of check_thrust1 is: %f\n", check_thrust1);

Message("Content of j is: %d\n", j );

/*End Check whether the thrust calculation is correct. The sum of all dT_centroid must equal T*/

/**Calculation of the axial velocity at flatdisk**/

/*file9= fopen("check9.dat","w");*/

for(i=0; i<=total_nr_cells_z-1; i++)

{

/*VT_inf[i] = omega_s*arranged_outflow_centroid_r[i];

U_A_outflow[i] = 0.5*(-Vin[i] + sqrt(pow(Vin[i],2) +

VT_inf[i] +dT_centroid[i]/(RHO*PI*arranged_outflow_centroid_r[i]*dr_end)));*/

V_axial[i]= Vin[i] +V_i;

/*fprintf(file9,"%.6g \t %.6g \t %.6g \t %.6g \t %.6g \n", arranged_outflow_centroid_r[i], dT_centroid[i], VT_inf[i],

U_A_outflow[i], V_axial[i]);*/

}

/*sum_U_A_outflow = U_A_outflow[0];

for (i=0; i<=total_nr_cells_z-2; i++)

{

sum_U_A_outflow = sum_U_A_outflow + U_A_outflow[i+1];

sum_U_A_outflow = sum_U_A_outflow;

}*/
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/*fclose(file9);*/

/**End Calculation of the axial velocity at flatdisk**/

/**Find V_axial_flatdisk for total_nr_faces_outflowface number of cells**/

/**The axial velocity is now known for total_nr_cells_z, which is axisymmetric so now we have to impose the right V_axial

to the right saved_outflow_centroid_r. the array saved_outflow_centroid_r must be used since the original r_outflow_centroid

is changed because of the sorting prog**/

/**It is sufficient to define the arranged_r_outflow_centroid until 4 digits after the comma. In order to isolatethe same

saved_outflow_centroid_r from the total array, define an int which is (1000* arranged_r_outflow_centroid).

Do the same thing for the reference values checkpoint

and call the corresponding integers newcheckpoint*/

/**Define new integer rnew to ensure the needed significant digits**/

/*file10= fopen("check10.dat","w");*/

for (j=0; j<=total_nr_cells_z-1; j++)

{

r_new[j] =pow(10,3)*arranged_outflow_centroid_r[j];

/*fprintf(file10," %.6g \n",arranged_outflow_centroid_r[j]);*/

}

/*fclose(file10);*/

/*file11= fopen("check11.dat","w");*/

for (n=0; n<=total_nr_faces_outflowface-1; n++)

{

newcheckpoint[n] =pow(10,3)*saved_outflow_centroid_r[n];

/*fprintf(file11," %.6g \n", saved_outflow_centroid_r[n]); */

}

/*fclose(file11);*/

/**End Define new integer r_outnew to ensure the needed significant digits**/

/**Loop to extract the same r_outflow_centroid from the array**/

for (j=0; j<=total_nr_cells_z-1; j++)

{

for (n=0; n<=total_nr_faces_outflowface-1; n++)

{

if (r_new[j] == newcheckpoint[n])

{

if(newcheckpoint[n]!=0)

{

positie = n;

V_axial_flatdisk[positie]= V_axial[j];

Vin_flatdisk[positie]= Vin[j];

U_A_flatdisk[positie] = V_i;

}

}

}

}

/*file12= fopen("check12.dat","w");

for (j=0; j<=total_nr_faces_outflowface-1; j++)

{

fprintf(file12,"%.6g \t %.6g \n", V_axial_flatdisk[j], Vin_flatdisk[j]);

}

fclose(file12);*/

/**End Find V_axial_flatdisk for total_nr_faces_outflowface number of cells**/

/**Impose the axial velocity using F_PROFILE**/

i=0;

begin_c_loop(c, t1)

{

F_PROFILE(c, t1, indices) = V_axial_flatdisk[i];

i=i+1;

}

end_c_loop(c, t1)

/**End Impose the axial velocity using F_PROFILE**/

}

/*****************************************************************************************************************************

End VELOCITY IN X-DIRECTION

******************************************************************************************************************************/

/*****************************************************************************************************************************

VELOCITY IN Y-DIRECTION

******************************************************************************************************************************/

/*This part calculates the y-velocity inside the actuator disk volume. The y-velocity consists of the y-component of the

tangential velocity and the y-component of the radial velocity.

The tangential velocity is calculated first. Folowed by the computation of the radial velocity*/

DEFINE_PROFILE(y_velocity, t1, indices)

{

if(!VT_z)

{

Message("Allocating VT_z\n");

VT_z = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

if(!Vy)

{

Message("Allocating Vy\n");

Vy = (double *) malloc(total_nr_faces_outflowface*sizeof(double));
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}

/*if(!VR_z)

{

Message("Allocating VR_z\n");

VR_z = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}*/

double VT_y[total_nr_faces_outflowface];

/*double VR_y[total_nr_faces_outflowface];*/

/*******************************

Declaration of local variables

********************************/

double r_centroid_flatdisk;

double ycoord;

double zcoord;

double VT;

/*double VR;*/

int z_pos;

double theta;

/*FILE *fileben;*/

/**********************************

End Declaration of local variables

***********************************/

/**Calculate first the tangential velocity inside the flatdisk**/

i=0;

/*fileben = fopen("check_Vtan.dat","w");*/

begin_c_loop(c, t1)

{

C_CENTROID(x,c, t1); /*Calculates the cells’ centroid*/

r_centroid_flatdisk = sqrt((x[1])*(x[1])+(x[2])*(x[2]));

ycoord = x[1];

zcoord = x[2];

/*VT = (4*PI*U_A_flatdisk[i]*(Vin_flatdisk[i]+U_A_flatdisk[i]))/(2*PI*r_centroid_flatdisk*OMEGA);*/

VT = ((VINF+V_i)/Vxs)*omega_s*r_centroid_flatdisk;

/**End Calculate first the tangential velocity inside the flatdisk**/

/**Calculation of radial velocity**/

/*mean_U_A_outflow = mean_U_A_outflow/total_nr_cells_z;

VR = (mean_U_A_outflow*PI*r_centroid_flatdisk)/(4*RP);*/

/**End Calculation of radial velocity**/

/**Calculation of the angle Theta**/

if (ycoord!=0)

{

theta = fabs(atan(zcoord/ycoord));

}

else

{

theta = PI/2;

}

/**End Calculation of the angle Theta**/

/**General Condition for VT_y**/

if (zcoord<0)

{

VT_y[i] = pow(-1, sense+1)*VT*sin(theta);

/*VR_z[i] = VR*sin(theta);*/

}

if (zcoord>0)

{

VT_y[i] = pow(-1, sense)*VT*sin(theta);

/*VR_z[i] = -VR*sin(theta);*/

}

/**End General Condition for VT_y**/

/**General Condition for VT_z**/

if (ycoord<0)

{

VT_z[i] = pow(-1, sense)*VT*cos(theta);

/*VR_y[i] = VR*cos(theta);*/

}

if (ycoord>0) /*z<0 & y!=0*/

{

VT_z[i] = pow(-1, sense+1)*VT*cos(theta);

/*VR_y[i] = -VR*cos(theta);*/

}

/**End General Condition for VT_z**/

/**End Calculation of VT_y and VT_z**/

/*Vy[i] = VT_y[i]+VR_y[i];*/

Vy[i] = VT_y[i];

F_PROFILE(c, t1, indices) = Vy[i];

/*fprintf(fileben,"%.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \t %.6g \n",OMEGA,

ycoord, zcoord, theta, r_centroid_flatdisk, Vin_flatdisk[i], V_axial_flatdisk[i], VT, VT_y[i], VT_z[i]);*/

i=i+1;
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}

end_c_loop(c, t1)

/*fclose(fileben);*/

/**End Calculation of Vr_y and Vr_z**/

/* Message("Content of counter i is: %d\n", i );

Message("Content of counter teller is: %d\n", teller );

Message("Content of counter teller2 is: %d\n", teller2 );

for (j=0; j<=2*total_nr_cells_z-1; j++)

{

Message("Content of VT_y[i] is: %f\n", VT_y[j] );

/*Message("Content of VT_z[i] is: %f\n", VT_z[j] );*/

/*Message("Content of V_y[i] is: %f\n", V_y[j] );*/

/* }*/

}

/*****************************************************************************************************************************

End VELOCITY IN Y-DIRECTION

******************************************************************************************************************************/

/*****************************************************************************************************************************

VELOCITY IN Z-DIRECTION

******************************************************************************************************************************/

DEFINE_PROFILE(z_velocity, t1, indices)

{

if(!Vz)

{

Message("Allocating Vz\n");

Vz = (double *) malloc(total_nr_faces_outflowface*sizeof(double));

}

i=0;

begin_c_loop(c, t1)

{

/*Vz[i]=VT_z[i]+VR_z[i];*/

Vz[i]=VT_z[i];

F_PROFILE(c, t1, indices) = Vz[i];

i=i+1;

}

end_c_loop(c, t1)

}

/*****************************************************************************************************************************

End VELOCITY IN Z-DIRECTION

******************************************************************************************************************************/



Appendix C

m-file which calculates spanwise lift
and drag distribution

%Author: Marilyne Lino

% Master student Aerodynamic design

% Faculty of Aerospace Engineering

% University of Technology Delft (TUD)

%This file is created to extract CL and CD data from static pressure and

%Tau_wall data of Fluent in matlab.

%date: 16-04-10

%last updated:16-04-10

close all;

clear all;

clc;

%----definition of variables----%

yref=40.41/2;

p_operating=23840;

%----Import datafiles------%

nr_of_sections=57;

for j=0:nr_of_sections-1

filename=strcat(’section’,int2str(j));

datafile=dlmread(filename, ’’, 1,1);

%----End Import datafiles------%

%----Sort the datafile ------%

%Sort the datafile such that x is given in ascending order and order the

%other vectors in the same manner. This is done to ensure that we have for

%all rownumbers the corresponding data in all vectors

datasorted=sortrows(datafile,1);

%----End datafile----%

%----define rows of x-,y-&z-coord, pressure, twx & twz----% (differs for

%manual and jou extraction----%

xcoord=1;

ycoord=2;

zcoord=3;

pres=6;

twx=5;

twz=4;

%----Split the airfoil in lower and upper section----%

%To split the airfoil in an upper and lower part find the expression

%(linear relation) which describes chord of the airfoil

%Determination of the expression that describes the chord in terms of the

%linear relation: z=slope*x+b

%Determination of the slope

xmin_chord=datasorted(1,xcoord);

xmax_chord=datasorted(length(datasorted),xcoord);

zmin_chord=datasorted(1,zcoord);

zmax_chord=datasorted(length(datasorted),zcoord);
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chord_slope=(zmax_chord-zmin_chord)/(xmax_chord-xmin_chord);

chord_constant=zmin_chord-chord_slope*xmin_chord;

koorde(j+1)=xmax_chord-xmin_chord;

%End Determination of the expression that describes the chord

j_up=1;

j_bot=1;

for i=1:length(datasorted)

if (datasorted(i,zcoord)-(chord_slope*datasorted(i,xcoord)+chord_constant)>=0)

upperdata(j_up,:)=datasorted(i,:);

j_up=j_up+1;

else

lowerdata(j_bot,:)=datasorted(i,:);

j_bot=j_bot+1;

end

end

% plot(datasorted(:,xcoord), datasorted(:,zcoord), ’ro’);

% hold on

% plot(upperdata(:,xcoord), upperdata(:,zcoord), ’b+’);

% plot(lowerdata(:,xcoord), lowerdata(:,zcoord), ’sk’);

% figure(2)

% plot(datasorted(:,xcoord), datasorted(:,zcoord), ’r-’);

%----End Split the airfoil in lower and upper section----%

%----Calculate x and z component of Ps----%

%Upper part

for i=1:length(upperdata)-1

Ps_mean_upper(i)=((upperdata(i,pres)+upperdata(i+1,pres))/2)+p_operating;

l_upper(i)=sqrt((upperdata(i+1,zcoord)-upperdata(i,zcoord))^2+(upperdata(i+1,xcoord)-upperdata(i,xcoord))^2);

Ftx_upper(i)=((upperdata(i,twx)+upperdata(i+1,twx))/2)*l_upper(i);

Ftz_upper(i)=((upperdata(i,twz)+upperdata(i+1,twz))/2)*l_upper(i);

if (upperdata(i+1,xcoord)-upperdata(i,xcoord)~=0)

slope_upper(i)=abs(atan((upperdata(i+1,zcoord)-upperdata(i,zcoord))/(upperdata(i+1,xcoord)-upperdata(i,xcoord))));

else

slope_upper(i)=0;

end

if (upperdata(i+1,zcoord)>=upperdata(i,zcoord) && slope_upper(i)~=0)

Fpsx_upper(i)=Ps_mean_upper(i)*l_upper(i)*sin(slope_upper(i));

Fpsz_upper(i)=-Ps_mean_upper(i)*l_upper(i)*cos(slope_upper(i));

elseif (upperdata(i+1,zcoord)<upperdata(i,zcoord) && slope_upper(i)~=0)

Fpsx_upper(i)=-Ps_mean_upper(i)*l_upper(i)*sin(slope_upper(i));

Fpsz_upper(i)=-Ps_mean_upper(i)*l_upper(i)*cos(slope_upper(i));

end

end

Ps_mean_upper(length(upperdata))=((upperdata(1,pres)+lowerdata(1,pres))/2)+p_operating;

l_upper(length(upperdata))=sqrt((upperdata(1,zcoord)-lowerdata(1,zcoord))^2+(upperdata(1,xcoord)-lowerdata(1,xcoord))^2);

Ftx_upper(length(upperdata))=((upperdata(1,twx)+lowerdata(1,twx))/2)*l_upper(length(upperdata));

Ftz_upper(length(upperdata))=((upperdata(1,twz)+lowerdata(1,twz))/2)*l_upper(length(upperdata));

slope_upper(length(upperdata))=abs(atan((upperdata(1,zcoord)-lowerdata(1,zcoord))/(upperdata(1,xcoord)-lowerdata(1,xcoord))));

Fpsx_upper(length(upperdata))=Ps_mean_upper(length(upperdata))*l_upper(length(upperdata))*sin(slope_upper(length(upperdata)));

Fpsz_upper(length(upperdata))=Ps_mean_upper(length(upperdata))*l_upper(length(upperdata))*cos(slope_upper(length(upperdata)));

Ps_mean_upper(length(upperdata)+1)=((upperdata(length(upperdata),pres)+lowerdata(length(lowerdata),pres))/2)+p_operating;

l_upper(length(upperdata)+1)=sqrt((upperdata(length(upperdata),zcoord)-lowerdata(length(lowerdata),zcoord))^2+...

...(upperdata(length(upperdata),xcoord)-lowerdata(length(lowerdata),xcoord))^2);

Ftx_upper(length(upperdata)+1)=((upperdata(length(upperdata),twx)+lowerdata(length(lowerdata),twx))/2)*l_upper(length(upperdata)+1);

Ftz_upper(length(upperdata)+1)=((upperdata(length(upperdata),twz)+lowerdata(length(lowerdata),twz))/2)*l_upper(length(upperdata)+1);

slope_upper(length(upperdata)+1)=abs(atan((upperdata(length(upperdata),zcoord)-..

...lowerdata(length(lowerdata),zcoord))/(upperdata(length(upperdata),xcoord)-lowerdata(length(lowerdata),xcoord))));

Fpsx_upper(length(upperdata)+1)=-Ps_mean_upper(length(upperdata)+1)*l_upper(length(upperdata)+1)*sin(slope_upper(length(upperdata)+1));

Fpsz_upper(length(upperdata)+1)=-Ps_mean_upper(length(upperdata)+1)*l_upper(length(upperdata)+1)*cos(slope_upper(length(upperdata)+1));

%Lower part

for i=1:length(lowerdata)-1

Ps_mean_lower(i)=((lowerdata(i,pres)+lowerdata(i+1,pres))/2)+p_operating;

l_lower(i)=sqrt((lowerdata(i+1,zcoord)-lowerdata(i,zcoord))^2+(lowerdata(i+1,xcoord)-lowerdata(i,xcoord))^2);

Ftx_lower(i)=((lowerdata(i,twx)+lowerdata(i+1,twx))/2)*l_lower(i);

Ftz_lower(i)=((lowerdata(i,twz)+lowerdata(i+1,twz))/2)*l_lower(i);

if (lowerdata(i+1,xcoord)-lowerdata(i,xcoord)~=0)

slope_lower(i)=abs(atan((lowerdata(i+1,zcoord)-lowerdata(i,zcoord))/(lowerdata(i+1,xcoord)-lowerdata(i,xcoord))));

else

slope_lower(i)=0;

end

if (lowerdata(i+1,zcoord)>=lowerdata(i,zcoord) && slope_lower(i)~=0)

Fpsx_lower(i)=-Ps_mean_lower(i)*l_lower(i)*sin(slope_lower(i));

Fpsz_lower(i)=Ps_mean_lower(i)*l_lower(i)*cos(slope_lower(i));

elseif (lowerdata(i+1,zcoord)<lowerdata(i,zcoord) && slope_lower(i)~=0)

Fpsx_lower(i)=Ps_mean_lower(i)*l_lower(i)*sin(slope_lower(i));

Fpsz_lower(i)=Ps_mean_lower(i)*l_lower(i)*cos(slope_lower(i));

end

end
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%Calculation lift and drag caused by Ps for lower and upper part seperately

L_Ps_upper=sum(Fpsz_upper);

L_Ps_lower=sum(Fpsz_lower);

D_Ps_upper=sum(Fpsx_upper);

D_Ps_lower=sum(Fpsx_lower);

%Calculation lift and drag caused by t(tau) for lower and upper part seperately

L_t_upper=sum(Ftz_upper);

L_t_lower=sum(Ftz_lower);

D_t_upper=sum(Ftx_upper);

D_t_lower=sum(Ftx_lower);

%Calculation of lift and drag caused by Ps and t

L_Ps_tot=L_Ps_upper+L_Ps_lower;

D_Ps_tot=D_Ps_upper+D_Ps_lower;

L_t_tot=L_t_upper+L_t_lower;

D_t_tot=D_t_upper+D_t_lower;

%Calculation of total lift and drag

L_tot=L_Ps_tot+L_t_tot;

D_par_tot=D_Ps_tot+D_t_tot;

%Calculation of lift and drag coefficients

rho=0.3796;

Vinf=177.91;

dynamic_press=0.5*rho*Vinf^2;

S=75.29214;

c_ref=S/yref;

A=(yref^2)/S;

e=1.78*(1-0.045*A^0.68)-0.64;

t = datasorted(1,ycoord);

if (t< 14.7) && (9.69<=t && t<=10.722) || (14.69<=t && t<=15.72)

c(j+1)=0.156*t+2.34;

c_ypos(j+1)=datasorted(1,ycoord);

else

c(j+1)=koorde(j+1);

c_ypos(j+1)=datasorted(1,ycoord);

end

CL_Ps=L_Ps_tot/(dynamic_press*c(j+1));

CL_t=L_t_tot/(dynamic_press*c(j+1));

CD_Ps=D_Ps_tot/(dynamic_press*c(j+1));

CD_t=D_t_tot/(dynamic_press*c(j+1));

CL_tot=L_tot/(dynamic_press*c(j+1));

CD_par_tot=D_par_tot/(dynamic_press*c(j+1));

CDi=CL_tot^2/(pi*A*e);

CD_tot=CD_par_tot+CDi;

%----Determine the y-coordinate to know span position----%

span_position=(yref-datasorted(1,ycoord))/yref;

%----End Determine the y-coordinate to know span position----%

spanwise_Data(j+1,:)=[span_position CL_Ps CL_t CL_tot CD_Ps CD_t CD_par_tot CDi CD_tot];

clear datafile datasorted upperdata lowerdata i j ;

clear -regexp F Ps slope lower upper coord chord CL CD _tot tw;

end

%Save spanwise_Data in a mat file

savefile=’Datafile_spanwise_distribution.mat’;

save(savefile, ’spanwise_Data’);

%plot spanwise liftdistribution

figure(3)

plot(spanwise_Data(:,1),spanwise_Data(:,4), ’-ok’);

xlabel(’spanwise position [-]’);

ylabel(’CL [-]’);

title(’CL distribution’);

%plot spanwise dragdistribution

figure(4)

plot(spanwise_Data(:,1),spanwise_Data(:,9),’-ok’);

xlabel(’spanwise position [-]’);

ylabel(’CD [-]’);

title(’CD distribution’);

%Save data in file to plot with the other results

savefile2=’Datafile_spanwise_distribution_inboardup.mat’;

save(savefile2, ’spanwise_Data’);

figure(5)

plot(spanwise_Data(:,1),spanwise_Data(:,7),’-ob’);

hold on;
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plot(spanwise_Data(:,1),spanwise_Data(:,8),’-+r’);

xlabel(’spanwise position [-]’);

ylabel(’CD [-]’);

title(’CD distribution’);

legend(’CD_{par}’, ’CD_i’);



Appendix D

Journal files which extract airfoils
along the wing span and their data

D.1 Journal file which extracts airfoils along the wing span

;;

surface/iso-surface/y-coordinate

section0

le_inbetween_engines

le_outboard

le_root

le_tip

lower_wing_inbetween_engines

lower_wing_midsection

lower_wing_outboard

lower_wing_root

lower_wing_tip

te_midsection

te_root

te_tip

upper_wing_midsection

upper_wing_root

upper_wing_tip

exhaust_inboard_engine

exhaust_outboard_engine

hub_nose_inboard_engine

hub_nose_outboard_engine

intake_inboard_engine

intake_outboard_engine

midpart_nacelle_inboard_engine

mid_part_nacelle_outboard_engine

nacelle_inboard_engine_wing_intersection

nacelle_outboard_engine_wing_intersection

oil_cooling_inboard_engine

oil_cooling_outboard_engine

underneath_prop_inboard_engine

underneath_prop_inboard_engine:83

underneath_prop_inboard_engine:84

underneath_prop_inboard_engine:85

underneath_prop_outboard_engine

underneath_prop_outboard_engine:86
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underneath_prop_outboard_engine:87

underneath_prop_outboard_engine:88

0.05

quit

;;

etc.

D.2 Journal file which extracts airfoil data

;;

file/export/ascii

section0

section0

no

pressure

x-wall-shear

z-wall-shear

quit

no

quit

quit

;;

etc.
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