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The study of real-world communication systems via complex network models has greatly expanded our
understanding on how information flows, even in completely decentralized architectures such as mobile wireless
networks. Nonetheless, static network models cannot capture the time-varying aspects and, therefore, various
temporal metrics have been introduced. In this paper, we investigate the robustness of time-varying networks
under various failures and intelligent attacks. We adopt a methodology to evaluate the impact of such events
on the network connectivity by employing temporal metrics in order to select and remove nodes based on how
critical they are considered for the network. We also define the temporal robustness range, a new metric that
quantifies the disruption caused by an attack strategy to a given temporal network. Our results show that in
real-world networks, where some nodes are more dominant than others, temporal connectivity is significantly
more affected by intelligent attacks than by random failures. Moreover, different intelligent attack strategies
have a similar effect on the robustness: even small subsets of highly connected nodes act as a bottleneck in the
temporal information flow, becoming critical weak points of the entire system. Additionally, the same nodes are
the most important across a range of different importance metrics, expressing the correlation between highly
connected nodes and those that trigger most of the changes in the optimal information spreading. Contrarily,
we show that in randomly generated networks, where all the nodes have similar properties, random errors and
intelligent attacks exhibit similar behavior. These conclusions may help us in design of more robust systems and
fault-tolerant network architectures.
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I. INTRODUCTION

In the famous example of the “six degrees of separation”
[1], a message initiated by one person needs at most six
intermediate steps to reach anyone on the planet. Yet these
social networks constantly evolve over time. For instance,
the fact that two people met at some point in time does not
necessarily indicate that they will meet again in future. These
temporal correlations greatly affect information propagation,
as a specific time ordering of events is required to allow
two entities to communicate. Consequently, temporal-network
metrics have been introduced, since they allow a better
understanding of the dynamic properties of such systems. In
addition, it has been shown [2,3] that such temporal aspects
cannot be ignored, otherwise the system performance can be
greatly overestimated.

An important issue in communication networks is to
understand whether these systems can maintain acceptable
performance when they sustain varying degrees of damage.
In general, network damages can be divided into two classes:
random errors, reflecting internal faults, and intelligent attacks,
which represent malicious external damage on influential
nodes (e.g., electric power stations).

While the reliability of static networks has been widely
studied [4–7], network robustness and temporal network
analysis have rarely been used together in performance
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evaluation of time-varying systems [8]. Our work considers
temporal network vulnerability under several intelligent attack
strategies. The present paper further expands this research
thread by studying the effects of several error and attack
strategies on real systems and theoretical models with either
presence or absence of dominant nodes. Our main goal is to
understand how time-varying networks react to random errors
and targeted attacks.

Network robustness has been intensively studied in the past
years [9,10]. Initially, such studies investigated connectivity
after failures [11–13], using common theoretical [14] and
empirical methodologies. The robustness of power-law net-
works has been studied [4,15,16], as they accurately model real
world examples, such as World Wide Web [17]. In particular,
the robustness of the Internet has been considered by Cohen
et al. under random errors [15] or targeted attacks [16].
In order to fully characterize network vulnerability, several
metrics different from connectivity have been used, such as
average shortest path [18], global clustering coefficient [19],
or bicomponent [6]. The vulnerability of static networks under
errors and different types of attacks has been intensively
researched [4,5,7]. Intelligent attacks are usually based on
centrality node measures [20], such as node degree [21],
closeness [22–24], betweenness [25], or data-information
centrality [26]. However, all these studies used a static network
representation that, as it was shown in Refs. [2,3], vastly
overestimate the network robustness in temporal networks.
The first attempt to express temporal network properties was
made by Kempe et al. [27], considering time labels of links,
but neglecting temporary disconnected nodes. A thorough
survey on temporal networks and existing analysis methods
has been proposed by Holme and Saramäki [28]. Temporal
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correlations and periodical behavior of human interactions
was considered in Ref. [29]. The concept of temporal networks
as a collection of static network topologies taken in suitable
time resolution was proposed in Ref. [30]. More recently, in
Refs. [2,3] the authors defined a set of temporal metrics in
order to characterize the properties of such dynamic networks.
Finally, in Ref. [8] the concept of temporal network robustness
is explored. However, this work only considered random
failures. Our work applies temporal network theory to study the
robustness of dynamic real-world networks against intelligent
attacks. Furthermore, we describe how our results can be used
to characterize the importance of nodes based on their temporal
properties.

The paper continues as follows. Section II presents the
concepts of temporal metrics, temporal robustness, and used
error and attacking strategies. In Sec. III, theoretical models
are introduced and the results of temporal robustness eval-
uation are discussed. Section IV presents the real temporal
networks; the results of the evaluation are given and possible
directions for improving the robustness of temporal networks
are suggested. Finally, we conclude in Sec. V.

II. TEMPORAL ROBUSTNESS AND
ATTACKING STRATEGIES

Before introducing the temporal metrics that we use for our
study, we will describe the notion of temporal networks as in
Ref. [30].

Definition 1. A temporal network G(t) = G(V,E(t)) is
a sequence of n undirected static network representations
{G(ti)} = {G(V,E(ti))} (i = 1,2, . . . ,n − 1,n ).

A temporal network may be thought as sequence of
consecutive static graphs with a fixed set of nodes V and
time evolving set of links (Fig. 1).

At a certain time instance t , a node b receives a message
from node a if and only if there is a direct link between a and
b at that moment t . We define a temporal path between nodes
a and b as a sequence of nodes {ni} by a flooding concept: a
message sent by a at time t0 is received by n1 at time (t0 + 1);
the message sent by n1 is received by n2 at the next time step
(t0 + 2); a message sent by ni is received by ni+1 at (t0 + i),
where a ≡ n0 and b ≡ nd . The temporal length of this path is
d—the time required for a message sent by a to be received
by b. In general, there might be more than one temporal path
between two nodes. At this point, temporal distance can be
defined.

Definition 2. Temporal distance dij (t1,t2) between nodes i

and j is the smallest temporal length among all the temporal
paths between i and j in the time interval [t1,t2].

t=1 t=2 t=n

time

FIG. 1. (Color online) Example of temporal network. During the
time evolution, the number of nodes is fixed and the presence of each
link changes.

In the case where it is not possible to spread the message
between two particular nodes i and j , the temporal distance
is infinity. In order to resolve those cases, the inverse value of
temporal length is considered.

Definition 3. Temporal efficiency is the averaged sum of the
inverse temporal distances over all pairs of nodes in the time
interval [t1,t2]:

EG(t1,t2) = 1

N (N − 1)

∑
i,j ;i �=j

1

dij (t1,t2)
.

The average temporal efficiency is normalized in the
interval [0,1]. The value 0 is achieved if and only if there are
no links in the network and all the nodes are isolated during
the whole period [t1,t2]. On the other hand, value 1 is achieved
if and only if the temporal network is fully connected.

Due to the network’s constant evolving, we need to define
an appropriate window τ = t2 − t1 to evaluate the efficiency. In
essence, the efficiency EG(t) of a network at time t is evaluated
in a time window [t − τ,t]. The size of the window τ effec-
tively imposes an upper bound on the temporal distances as all
paths longer than τ will be ignored. It has been shown [8] that
temporal efficiency has an increasing and transient behavior,
which depends on the size of the network, until reaching a
stable stationary value. Therefore, τ should be large enough
so that any possible communication delay can be considered.

Definition 4. Temporal network robustness is the relative
change of the efficiency after a structural damage D. If the
temporal efficiency of the damaged network is EGD

, then the
temporal robustness is expressed by

RG(D) = EGD

EG

= 1 − �E(G,D)

EG

,

where EG is the efficiency of the temporal network G(t) before
the damage.

It is important to highlight that both EGD
and EG have to be

taken as stable values (τ large enough) for relevant robustness
evaluation. The effect of taking a small τ is also shown in the
evaluation.

A. Random error

When such errors occur, a random subset of the nodes is
removed. The selection of nodes is not related to some static
or temporal property as each node can fail with independent
identical probability Perror. Therefore, the expected number of
attacked nodes is Nattacked = PerrorN , where N is the original
number of nodes in the network.

B. Intelligent attacks

A planned attack might quickly cripple real-world networks
where few nodes are significantly more important than all the
other. Intelligent attacks are strategies that target nodes that
exhibit some specific temporal properties. The knowledge of
how well a system operates when the most important nodes
are damaged can help in the decision for future protection of
such nodes or even to design robust architectures and mobility
models. To evaluate the temporal robustness of a network
under intelligent attacks, we designed a methodology that
consists of two steps: (i) initially, nodes are ranked using a
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certain temporal property and (ii) the top Nattacked = PattackN

nodes are removed. Based on the selected classifying metric,
these nodes represent the most important nodes in the network.
Furthermore, to study whether this metric is capable of truly
selecting those nodes that are significant we also study the
robustness of the network when the bottom Nattacked are
selected. The fluctuation between the best-case and worst-case
scenario is defined as the robustness range.

Definition 5. If R1 and R2 is the temporal robustness of the
best and worse case scenario, respectively, then for a particular
attack strategy we define the interval [R1,R2] as the temporal
robustness range.

For each of the strategies we remove the same portion Pattack

of the initial set of N nodes. The difference is how these nodes
are ranked. In the following part, we will define a number of
attack strategies that are based on various temporal metrics.

1. Temporal closeness nodes attack

This attacking strategy is closely related to the closeness
centrality of a node: this metric has been initially defined for
a static graph as the average shortest path length to all other
nodes. Nodes with smaller values are considered more central
than nodes with higher values. This metric was extended to be
used in temporal networks.

Definition 6. In a given time interval [t1,t2], the temporal
closeness Ci(t1,t2) = 1

N−1

∑
j ;j �=i dji(t1,t2) of a node i is

defined as an average sum of all temporal distances between i

and other nodes in the temporal network.
Therefore, the resulting attack strategy picks the nodes with

the lowest temporal closeness centrality as these nodes are
considered more central and, thus, more “important”in the
network.

2. Average node degree attack

In the static graph, the degree of a node i is defined as
the number of other nodes that are directly connected to i. For
temporal networks, we can define the average degree of a node
as follows.

Definition 7. In a given time interval [t1,tn] the temporal
degree degG (i; t1,tn) = 1

N−1

∑n
j=1 degG(tj )(i) of a node i is

the average degree of i during this time interval.
Therefore, in this attack strategy the nodes with the highest

temporal degree are attacked, as these are likely to quickly
spread messages.

3. Number of node contacts-updates attack

Another important metric is to identify the nodes that pass
on more messages in the network. These can be highly mobile
nodes or even nodes that bridge distant clusters. For example,
in an epidemic routing protocol the nodes that forward the
latest information are more important than the nodes that send
less updates. In static graphs, we have betweenness centrality
as a measure of what fraction of the shortest paths between all
pairs of nodes pass through a certain node [31]. Similarly, in
temporal networks we can capture this notion by measuring
the number of message exchanges that occur when two nodes
meet. Node i triggers an update when it connects with node j

and node i is aware of a shorter temporal distance for another
node k. Formally, i updates j for a distance to node k when
dik(t1,t2) < 1 + djk(t1,t2).

III. TEMPORAL MODELS

In this section, we evaluate the robustness of various
synthetic models. By analyzing theoretical models we can
investigate particular properties on very controlled topologies
(i.e., we can vary the number of nodes, density, mobility, etc).
We consider three classes of such models: the Erdős-Rényi
model, the Markov model, and various mobility models.

A. Erdős-Rényi temporal model

In the Erdős-Rényi model, a link between a pair of nodes
may appear independently with fixed probability. The static
version of the model is well studied, as most of its features (e.g.,
degree distribution, expected number of edges) are already
known [32,33]. The temporal version of this model Gp(N,t)
is considered as a sequence of Erdős-Rényi static random
graphs Gp(N,ti) taken in several moments ti . The Markov
temporal model [Fig. 2(a)] is a generalization of Erdős-Rényi
temporal model [Fig. 2(b)]. The theorems, regarding average
node degree or temporal closeness, also hold for Erdős-Rényi
temporal model.

B. Markov temporal model

The Erdős-Rényi model does not take into account temporal
correlations and time dependencies at previous moments.
The Markov model, which is based on the Markov process
evolution, extends the previous model by adding temporal
dependencies on previous states.

Depending on the presence or absence of a link, we can de-
fine two possible states: ON and OFF. In the sequel of the paper,
we denote the probabilities that a link is in the state ON and OFF

by Pr[ON] and Pr[OFF], respectively (Pr[ON] + Pr[OFF] = 1).
Considering a two-state Markov process [Fig. 2(a)], we denote
a transition probability p that a link present at the moment t will
not appear at the moment (t + 1); and probability q that a link
will be added at the moment (t + 1), if it was not present at the
moment t . According to the Markovian model and the formula
for total probability we can calculate the probability for both
states ON and OFF [8,34]: Pr[ON] = q

p+q
and Pr[OFF] = p

p+q
.

In a special case where p + q = 1, there is no time corre-
lation and we have a fixed probability q for a link appearance,
which corresponds to Erdős-Rényi temporal network as shown
in Fig. 2(b).

ON OFF

p

q1-p

1-q

ON OFF

p

q1-p = q

1-q = p

(a) (b)

FIG. 2. (Color online) (a) Diagram for link appearance probabil-
ities in Markov temporal model. (b) Erdős-Rényi temporal model. If
p + q = 1, one can notice that for each link the probability that the
same is in the state ON is fixed and equal to q and does not depend on
the previous state (ON or OFF). Similarly, for each link the probability
that the same is in the state OFF is fixed and equal to p and does not
depend on the previous state (ON or OFF). Consequently, it represents
the Erdős-Rényi temporal model.
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FIG. 3. (Color online) Temporal robustness as a function of
removed (attacked) nodes percentage. The small τ effect (τ = 20) in
Erdős-Rényi temporal network. Variations and instability in temporal
efficiency cause differences in temporal robustness. (a) For different
attacking strategies and fixed Pr[ON] = 10−3; and (b) for average node
degree strategy and different probability of link appearance Pr[ON].

The following Lemma 1 is a generalization for the Markov
models of Lemma 1 in Ref. [8].

Lemma 1. The probability that a node will receive a
message, if exactly m other nodes have the message is
pm = 1 − Pr[OFF]m.

Based on Lemma 1, the theoretical results for Erdős-Rényi
in Ref. [8] regarding temporal metrics and temporal robustness
under random errors are applicable for Markov temporal
models. Regarding targeted attacks, we have Lemmas 2 and 3.

Lemma 2. The average node degree in Markov temporal
network is (N − 1)Pr[ON].

Similarly, for temporal closeness of a node in a Markov
temporal network we have the following.

Lemma 3. The expected value of temporal closeness in
Markov temporal random network is the same for each node.

The proofs of Lemmas 1, 2, and 3 can be found in the
Appendix at the end of the paper.

Lemmas 2 and 3 are strong arguments for absence of
predominant and important node in Markov temporal models,
as simulations (Fig. 14) will confirm later. In conclusion, all the
nodes in Markov temporal model have the same properties on
average, resulting with a unique robustness curve, independent
from the choice of targeted attack or random error. Therefore,
we have the same robustness behavior either attacking from
the top or the bottom of the ranked list of nodes. In this case,
the length of the robustness range interval is 0.
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FIG. 4. (Color online) Temporal robustness as a function of
removed (attacked) nodes percentage for Erdős-Rényi and Markov
temporal network (N = 100, τ = 150). Similar results are obtained
(a) for different attacking strategies and fixed Pr[ON] = 10−3; and
(b) for average node degree strategy and different probability of link
appearance Pr[ON].
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FIG. 5. (Color online) Temporal robustness as a function of
removed (attacked) nodes percentage in RWP mobility models
(τ = 3600). (a) Temporal closeness, (b) average node degree,
(c) nodes number of contacts-updates, and (d) random errors.

C. Mobility models

This group of theoretical models aims to simulate the be-
havior of mobile networks. Like the Markov temporal model,
mobility models preserve time correlations with the previous
state. Unlike the Markov temporal model, the probability for
changing the state from link presence to absence and vice versa
is not constant as it depends on spatio-temporal correlations.
These models consider a fixed geographic area where nodes
move from one coordinate to another. The probability of link
appearance PON is determined by the communication range r
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FIG. 6. (Color online) Temporal robustness as a function of
removed (attacked) nodes percentage. RWPG mobility models (τ =
3600). (a) Temporal closeness, (b) average node degree, (c) nodes
number of contacts-updates, and (d) random errors.
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FIG. 7. (Color online) Temporal robustness of RWP and RWPG
mobility models (τ = 3600) for different probability of link appear-
ance Pr[ON] as a function of removed (attacked) nodes percentage.
As Pr[ON] increases, temporal robustness decreases slowly and
intelligent attack robustnesses are closer to the random error. (a)
RWP: Pr[ON] = 10−4; (b) RWP: Pr[ON] = 10−3; (c) RWP: Pr[ON] =
10−1; (d) RWPG: Pr[ON] = 10−4; (e) RWPG: Pr[ON] = 10−3; and
(f) RWPG: Pr[ON] = 10−1.

and by the density of nodes in the area: if at time t the Euclidean
distance between two nodes is shorter than r then we consider
that there is a link. We used the UMMF [35] mobility simulator
to generate two sets of mobility traces with 100 nodes moving
in a 1000m × 1000m area.

A node in the random waypoint model (RWP) uniformly
chooses a random location and moves toward this location
with a velocity randomly and uniformly chosen in the interval
(5–40 mph). After a node has reached the picked destination,
it first waits for a randomly chosen number of seconds in the
range (0–120 s) and the procedure starts again by picking a
destination and appropriate speed. The benefit of the model is
that it provides homogeneous spatial mixing among nodes.
However, randomness may not express all the aspects of
mobility behavior.

In the random waypoint group model (RWPG) there are
two types of nodes: group leaders and followers. Denoting
the number of group leaders by M , (N − M) followers are
assigned to a group with a unique leader. The size of each
group is N

M
nodes in total, with 1 leader and ( N

M
− 1) followers.

The movement rule here is that only the leader of a group picks
a destination, as in the RWP model. Followers in a group just

follow their leader, such each keeping a distance shorter than
a given span (e.g., 100 meters).

D. Results and discussion

In this section, we investigate the temporal robustness for
temporal network models under different attacking strategies
and random errors. Temporal network models are generated,
such that they contain a fixed number of nodes and in a
certain moment a link exists according to the link activation
rules for different models. For random temporal networks
models (Erdős-Rényi and Markov), the results are obtained
after averaging the simulations over 100 repetitions.

1. Erdős-Rényi and Markov temporal models

For Erdős-Rényi and Markov models the total length of the
time window is 2τ = 300, the resolution of the temporal model
is 1 (unit time), and the network is attacked in the middle of the
time window after τ = 150 moments from the start, which is
used for all the simulations regarding Erdős-Rényi and Markov
models. It was shown that this time is enough for achieving a
stable value for temporal efficiency before and after the error
or attack. However, in order to investigate the effect when
temporal efficiency does not reach a stable value before and
after the error or attack, additional simulations were conducted
for τ = 20. The results are shown in Fig. 3.

In Fig. 4(a) we plot the values of temporal robustness
for the Erdős-Rényi temporal network with N = 100 nodes
and probability of link appearance Pr[ON] = 10−3 for various
intelligent attacks or random error strategies. As we observe,
the temporal robustness is irrelevant to the choice of strategy.
Furthermore, we obtain similar results for different values of
the probability of link appearance Pr[ON] [Fig. 4(b)]. This be-
havior can be understood taking into account Lemmas 2 and 3.

The Markov temporal model shows similar features to the
ones of the Erdős-Rényi. Although there are time correlations
in the network evolution, all nodes exhibit the same properties.
This leads to a unique curve for temporal robustness for all the
attacking strategies.

2. Mobility models

Here we present the evaluation for the random waypoint
model (RWP) and the random waypoint group model (RWPG)
that were presented in Sec. III C.

With regards to the mobility models, in Fig. 5 the temporal
robustness of the random waypoint mobility (RWP) under
different attacks is plotted. The value of τ = 3600 has been
used for correct robustness evaluation. We observe that under
different densities, random errors affect the network in the
same manner [Fig. 5(d)]. However, the model is less robust
in poor-connected cases (lower Pr[ON]), whereby intelligent
attacks are applied.

Like the RWP model, the temporal robustness for the
random waypoint group mobility model (RWPG) (Fig. 6)
shows similar decreasing behavior for different probability of
link appearance Pr[ON]. Unlike the RWP model, the temporal
robustness decreases faster for the RWPG model.

In Fig. 7, for both the RWP and the RWPG mobility
models we can see that for a fixed Pr[ON] the choice of
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FIG. 8. (Color online) Robustness range of RWP models (τ = 3600) for different attacking strategies: (a) temporal closeness, (b) average
node degree, and (c) nodes number of contacts-updates as a function of removed (attacked) nodes percentage. As Pr[ON] decreases, the
robustness range area becomes wider.

an intelligent attack strategy is irrelevant and all types of
intelligent attacks are more effective than random errors,
particularly for smaller Pr[ON]. In well-connected RWPG
(Pr[ON] = 0.1), the temporal robustness values for intelligent
attacks and random failures are leveled.

3. Comparison

The difference for temporal robustness by the choice of
nodes can be evaluated by the robustness range. Figure 8
illustrates the robustness range for different attacking strategies
in RWP models. This is the area demarcated by the lines or
the temporal robustness curves when both the most and least
important nodes are attacked. For smaller values of Pr[ON]
we have larger robustness range area, which indicates that the
choice of attacked nodes significantly influences the temporal
robustness value. Contrarily, for well-connected networks
(larger values of Pr[ON]), the robustness range area is small
as there are multiple redundant paths that keep the network
connected. In the RWPG model (Fig. 9), the choice of attacked
nodes (e.g., group leaders) plays a crucial role and this is why
the robustness range is larger than the one in the RWP models.

As we observed, Erdős-Rényi and Markov temporal net-
works do not contain predominant nodes. This is a corollary
of Lemmas 2 and 3, as all the nodes are statistically identical;
the expected degree and temporal closeness of a node are
fixed values for all the nodes. This means that for each
attacking strategy, the nodes are equally ranked and any

choice of the attacked nodes affects the robustness in the
same way. Therefore, the robustness range area is 0. The
Markov temporal model differs from the Erdős-Rényi because
we have transitional probabilities from link appearance to
absence. However, the relative changes of temporal efficiency
are the same, which results in the same value of temporal
robustness. In Fig. 14 we show histograms about the average
degree, the temporal closeness and the number of updates
for the Markov temporal network, which once again confirm
Lemmas 2 and 3.

For the mobility models, when the most important nodes are
attacked, the resulting robustness is similar between different
attacking strategies as the same nodes are ranked as most
important. Additionally, sparse mobility models (with smaller
Pr[ON]) are more affected as in these models some crucial
temporal paths are more likely to be removed than in the dense
models. The robustness range is wider for the RWPG than
the RWP models because of the existence of “leaders,”whose
removal influences the temporal robustness more than the other
nodes.

IV. REAL TEMPORAL NETWORKS

A. Cabspotting traces

This case study uses the data from the Cabspotting system
for collecting information [36] from taxi movements in the San
Francisco area. All 488 participating taxis have been equipped

FIG. 9. (Color online) Robustness range of RWPG models (τ = 3600) for different attacking strategies: (a) temporal closeness, (b) average
node degree, and (c) nodes number of contacts-updates as a function of removed (attacked) nodes percentage. As Pr[ON] decreases the robustness
range area becomes wider.
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FIG. 10. (Color online) Temporal robustness and robustness
range of INFOCOM temporal network (τ = 345600) as functions
of removed (attacked) nodes percentage. (a) The temporal robustness
is similar for different attacking strategies. The robustness range for
(b) temporal closeness, (c) average node degree, and (d) nodes number
of contacts-updates strategies.

with GPS devices. The data contain information for a 24 h
period on 21 May 2008 in an area 20 km × 20 km around San
Francisco. The resulting temporal network has been derived
by considering that a link exists when two taxis are within
200m of each other, which is a common distance for WiFi
devices. The sampling time granularity is 1 s and the value of
τ = 86400 is used for a correct robustness evaluation.
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FIG. 11. (Color online) Temporal robustness and robustness
range of Cabspotting temporal network (τ = 86400) as functions
of removed (attacked) nodes percentage. (a) The temporal robustness
is similar for different attacking strategies. The robustness range for
(b) temporal closeness, (c) average node degree, and (d) nodes number
of contacts-updates strategies.
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FIG. 12. (Color online) Temporal robustness of various temporal
networks under unique attacking strategy (average node degree) as a
function of attacked nodes percentage.

B. INFOCOM traces

The data were collected over four days at the IEEE
INFOCOM 2006 conference in Barcelona. Participants in the
experiment were 78 students and researchers, equipped with
mobile communication devices (iMotes) [37] and an additional
20 stationary iMotes were deployed as location anchors. The
wireless range of mobile iMotes is 30 m and that of stationary
devices is about 100 m [37]. The value of τ = 345 600 has
been used for correct robustness evaluation. In the temporal
network, a link is constructed at a certain time, if the two
nodes were within communication range. The intensity of the
communication was different during the overnight periods and
the peak periods (conference’s sessions).

C. Results and discussion

Here, we present the results for the real networks. For
random errors, the final results are obtained after averaging
the simulations over 100 repetitions.

In Fig. 10(a), we observe that all intelligent attack strategies
clearly outperform random errors due to the topology of the
INFOCOM temporal network, while Figs. 10(b)–10(d) show
the robustness range for each particular attacking strategy.
Similar analysis (Fig. 11) is conducted on the Cabspotting
data set for the temporal robustness and the robustness range.
The aim of the simulations is to spot the difference when
targeted nodes are attacked rather than randomly chosen
nodes. In addition, the range of all possible values shows the
significance of the important hubs and their contribution to
the network performance.
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FIG. 13. (Color online) (a) Cabspotting network and (b) INFO-
COM network. Correlation between targeted attacks. For instance, it
indicates whether nodes that appear to be with high degrees have also
high betweenness.
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FIG. 14. (Color online) Histograms of Markov model nodal properties. The nodal properties are similar for all the centrality measures:
(a) average node degree, (b) temporal closeness, and (c) nodes number of contacts-updates.

The comparison of the temporal robustness for different
temporal networks under the average node degree attack
strategy is given in Fig. 12. Temporal robustness curves for
the real temporal networks and mobility models decrease faster
than random models for a certain attacking strategy, because
of the predominant nodes.

The analysis of the real-world data sets shows that intel-
ligent attacks are significantly more effective than random
errors, because of the presence of important nodes. Moreover,
different attacking strategies equally affect the network. The
main reason is that the same nodes are most important accord-
ing to all three attacking strategies, which has been confirmed
by our nodes correlation analysis. Figure 13 expresses the
nodes correlation between different attacking strategies in tem-
poral networks. The x axis presents the percentage of the nodes
considered from the top of the lists of targeted attacks, while
the y axis presents “the correlation” (percentage of overlapping
nodes) for each pair of targeted attacks. It indicates whether
the same nodes are highly ranked according to two attacking
strategies. Particularly, it shows whether the same nodes that
appear to be the highest connected are also important hubs on
the shortest paths in the temporal network and contribute the
most in the information spreading in a temporal network.

Figure 13 shows a general trend that targeted attacks are
pairwise correlated, which means “important” (highly ranked)
nodes for one are also important for other targeted attacks.
For instance, the overlapping between the highest 25% ranked
nodes is more than 70% for each pairwise combination of
targeted attacks in both Cabspotting and INFOCOM temporal

networks. Particularly, the correlation is the highest for the
temporal closeness and the average degree for both real
networks. In addition, the correlation is more expressed in large
temporal networks (those with more nodes), which is shown
by the comparison of the Cabspotting network [in Fig. 13(a)]
and the INFOCOM temporal network [in Fig. 13(b)].

The temporal robustness also decreases faster in real net-
works than “balanced”models (Erdős-Rényi and Markovian)
under all intelligent attacks. Moreover, as shown in Figs. 15
and 16, nodes in real networks significantly differ in temporal
properties: the average degree, the temporal closeness, and the
number of contacts-updates. In real networks, groups of nodes
with similar values of temporal properties are less than 30%
of all the nodes in all three strategies.

Furthermore, real temporal networks can be related with
mobility models. More precisely, the robustness range of
both INFOCOM and Cabspotting networks are similar to the
RWP mobility model for small Pr[ON] values. This indicates
a presence of predominant entities and important hubs. For
the INFOCOM network, the reason relies on the fact that
some of the conference participants were widely recognized,
thus attracting more connections, while for the Cabspotting
network some of the taxi cabs used to drive in central places
and to wait for clients in specific locations. Although there
are important entities in both real-world networks, no nodes
cannot be characterized as “leaders” as in RWPG models.

Based on the results, in a centralized network system
it is worth introducing an additional protection in “central
nodes.”Particularly, mobile networks are more sensitive on
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FIG. 15. (Color online) Histograms of Cabspotting nodal properties. The nodal properties are different for all the centrality measures:
(a) average node degree, (b) temporal closeness, and (c) nodes number of contacts-updates.
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FIG. 16. (Color online) Histograms INFOCOM nodal properties. The nodal properties are different for all the centrality measures:
(a) average node degree, (b) temporal closeness, and (c) nodes number of contacts-updates.

malicious attacks [38], which emphasize the requirement
for better protection (e.g., multilevel instead of link-level
encryption). However, decentralizing of the topology works
better in networks, where an additional protection is expensive
or causes deployment problems.

V. CONCLUSION

The paper investigates temporal network robustness for dif-
ferent time-varying networks under several attacking strategies
and random errors. The main contributions of this paper can
be summarized as follows: (i) using temporal robustness as
a metric to quantify the ability of a time-varying network to
function after an attack, we introduce a methodology in order
to identify critical nodes that, when removed, can cripple the
network’s performance; (ii) we describe a method to quantify
the impact of intelligent attacks: the temporal robustness range;
based on this metric, we design various attack strategies
and we show which one is the most disruptive for various
real-world scenarios; and (iii) we thoroughly evaluate these
attack strategies for various synthetic temporal models and for
real-world temporal networks.

Our results show that, in homogeneous networks, intelligent
attacks and random errors show similar performance, as all
the nodes have similar temporal properties. These findings
have been confirmed theoretically and by simulations as that
nodes have similar values for the average degree, the temporal
closeness, and the number of contacts-updates. However,

in real-world networks, the impact of intelligent attacks is
considerably higher, with about 50–75% reduced network
performances compared to random errors. This significant
difference demonstrates how by better protecting or disguising
the important hubs in the network more robust network
architectures can be achieved. Moreover, we show that there
exists a high correlation between intelligent attacks, which
expresses that highly connected nodes also trigger most of the
changes in the optimal information spreading.

APPENDIX: PROOFS OF THE LEMMAS

Proof of Lemma 1. Assuming that m nodes have the
message, a node will not receive it, if all the links between the
node and the m nodes are in the state OFF. Therefore, the prob-
ability that a node will not receive the message is (Pr[ON]p +
Pr[OFF](1 − q))m = ( p

p+q
)m = (Pr[OFF])m. Hence pm = 1 −

Pr[OFF]m.
Proof of Lemma 2. Let us consider possible states (ON or

OFF) of all possible (N − 1) links of a fixed node and all the
other nodes. A node a in a Markov temporal network has a
degree k in a moment (t + 1), if for the links where a is an
end-node hold: i links move from the state OFF in the moment
t to the state ON in (t + 1); (k − i) links preserve the state
ON; exactly j links move from the state ON in the moment t

to the state OFF in (t + 1) and exactly (N − 1 − k − j ) links
preserve the state OFF for each i ∈ {0,1, . . . ,N − 1} and j ∈
{0,1, . . . ,N − 1 − k}. There are exactly

P (i,j,k,N ) =
(

N − 1

i

)(
N − 1 − i

j

)(
N − 1 − i − j

k − i

)
=

(
N − 1

k

)(
k

i

)(
N − 1 − k

j

)

possible combinations for i and j . Hence the degree distribution Pr[D = k] in the Markov temporal model is

Pr[D = k] =
k∑

i=0

N−1−k∑
j=0

P (i,j,k,N )(qPr[OFF])i((1 − p)Pr[ON])k−i(pPr[ON])j ((1 − q)Pr[OFF])N−1−k−j

=
(

N − 1

k

) k∑
i=0

(
k

i

)(
pq

p + q

)i(
q

p + q
− pq

p + q

)k−i
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×
N−1−k∑

j=0

(
N − 1 − k

j

)(
pq

p + q

)j(
p

p + q
− pq

p + q

)N−1−k−j

=
(

N − 1

k

)(
q

p + q

)k(
p

p + q

)N−1−k

=
(

N − 1

k

)
Pr[ON]kPr[OFF]N−1−k.

Therefore, the degree distribution in the Markov temporal model is binomial. For the binomial distribution B(N,p), it is known
[32–34] that the average degree is (N − 1)p. Hence the average node degree in the Markov temporal model is (N − 1)Pr[ON].

Proof of Lemma 3. Denoting by Rt the probability that a node has received the message after t steps and using the result in [8],
for the random variable dji we have Pr[dji = t] = Rt+1 − Rt . Therefore,

E[Ci(t1,t2)] = 1

N − 1

∑
j ;j �=i

dji(t1,t2) =
t2∑

t=t1

tPr[dji = t] =
t2∑

t=t1

t(Rt+1 − Rt ) = t2Rt2+1 − (t1 − 1)Rt1 −
t2∑

t=t1

Rt .

Consequently, the temporal closeness does not depend on the choice i.

[1] S. Milgram, Psych. Today 2, 60 (1967).
[2] J. Tang, M. Musolesi, C. Mascolo, and V. Latora, in Proceedings

of the 2nd ACM workshop on Online social networks, WOSN ’09
(ACM, New York, USA), pp. 31–36.

[3] J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora,
Phys. Rev. E 81, 055101 (2010).

[4] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, Phys. Rev. E
65, 056109 (2002).

[5] R. Albert, H. Jeong, and A.-L. Barabasi, Nature (London) 406,
378 (2000).

[6] M. E. J. Newman and G. Ghoshal, Phys. Rev. Lett. 100, 138701
(2008).

[7] V. Latora and M. Marchiori, Phys. Rev. E 71, 015103 (2005).
[8] S. Scellato, I. Leontiadis, C. Mascolo, P. Basu, and M. Zafer,

in Proceedings of INFOCOM, 2011 (IEEE, Shanghai, China,
2011).

[9] P. Cholda, A. Mykkeltveit, B. Helvik, O. Wittner, and
A. Jajszczyk, Commun. Surv. Tutorials, IEEE 9, 32 (2007).

[10] C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and
H. J. Herrmann, Proc. Natl. Acad. Sci. USA 108, 3838 (2011).

[11] A. Satyanarayana and A. Prabhakar, IEEE Trans. Reliability
R-27, 82 (1978).

[12] R. Wilkov, IEEE Trans. Commun. 20, 660 (1972).
[13] S. Rai and K. K. Aggarwal, IEEE Trans. Reliability R-27, 206

(1978).
[14] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.

Watts, Phys. Rev. Lett. 85, 5468 (2000).
[15] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.

Lett. 85, 4626 (2000).
[16] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.

Lett. 86, 3682 (2001).
[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos, in Proceedings of

SIGCOMM ’99 (ACM, New York, 1999), pp. 251–262.
[18] R. Albert, I. Albert, and G. L. Nakarado, Phys. Rev. E 69, 025103

(2004).
[19] L. D. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas

Boas, Adv. Phys. 56, 167 (2007).
[20] P. Crucitti, V. Latora, and S. Porta, Phys. Rev. E 73, 036125

(2006).

[21] J. Nieminen, Scand. J. Psych. 15, 322 (1974).
[22] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang,

Phys. Rep. 424, 175 (2006).
[23] J. Scott, Social Network Analysis: A Handbook (SAGE Publica-

tions Ltd, London, UK, 2000).
[24] G. Sabidussi, Psychometrika 31, 581 (1966).
[25] L. C. Freeman, Social Netw. 1, 215 (1978/79).
[26] V. Latora and M. Marchiori, New J. Phys. 9, 188 (2007).
[27] D. Kempe, J. Kleinberg, and A. Kumar, J. Comput. Syst. Sci.

64, 820 (2002).
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