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Quantifying Landfill Emission Potential Using a Weakly
Coupled Particle Filter
L. Wang1 and T. J. Heimovaara1

1Department of Geoscience and Engineering, Faculty of Civil Engineering and Geosciences, Delft University of
Technology, Delft, The Netherlands

Abstract The emission potential, which represents the total leachable mass in landfill waste body, is hard to
measure directly. Therefore we propose to quantify it by assimilating available measurements. The leachate
production rate is influenced by the total water storage in the waste body, while both total chloride mass and
total water storage in the waste body influence the chloride concentration in the leachate. Thus assimilating
leachate volume and chloride concentration simultaneously will help quantify the uncertainties in emission
potential. This study investigated the feasibility of using a particle filter in a concentration‐volume coupled
travel time distribution model to estimate the emission potential. Leachate production rates and chloride
concentrations were assimilated simultaneously by a weakly coupled data assimilation method. The time lag
issue in the travel time distribution model was solved by adding a daily model error to cover layer states. The
proposed method was tested in synthetic experiments first to investigate the performance. The results show that
the uncertainties in chloride mass and waste body total water storage were quantified and reduced. The
predictions of chloride concentrations were also improved.

Plain Language Summary This study presents a method for estimating the amount of harmful
chloride in landfill waste and predicting leachate emissions. By combining measurements of water flow
(leachate production rate) and chloride concentration, we improved our understanding of total water storage and
chloride mass in the waste. Our approach performed best when both measurements were assimilated, and the
leachate production rate was sensitive to the variations in water storage within the waste body. The method
showed promise in estimating both water storage and chloride mass with correct model parameters, paving the
way for future research on understanding uncertainties caused by model parameters.

1. Introduction
Municipal solid waste (MSW) landfill leachate is a primary source of pollution to the surrounding environment
because it is a source of contamination for soil and groundwater (Brand, 2014; Fatoba et al., 2021; Gworek
et al., 2016). The environmental risk of leachate is determined by its composition and the amount released to the
environment. The leachate flux from old landfills is mainly controlled by the water balance of the landfill which
depends on precipitation and evapotranspiration. Leachate composition is influenced by the water storage and
pollutant mass present in the waste body (Grugnaletti et al., 2016; Laner et al., 2011; Yang et al., 2015). Also,
reliable predictions of leachate emissions in the long term require a quantitative assessment of total pollutant mass
and water storage in the waste body. As such, this quantitative assessment is an important criterion to determine
the aftercare strategy (Kattenberg & Heimovaara, 2011).

Direct measurement of pollutant mass and water storage is virtually impossible due to the size and heterogeneity
of waste bodies. As a result, researchers have developed alternative approaches that use forward modeling to
predict leachate flux, composition, and the evolution of pollutant mass and water storage over time. For instance,
Pantini et al. (2014) developed a process‐based landfill water balance model where biodegradation and waste
compression processes are included. Grugnaletti et al. (2016) got more accurate leachate production predictions
by carrying out a parameter calibration with available outflow measurements. J. Zhang et al. (2021) proposed a
pollutant concentration, leakage rate, and a solute transport coupled model that allows the prediction of con-
centrations. Generally, initial values of water and pollutant storages in the models are often approximated by
waste characteristics like waste initial moisture (São Mateus et al., 2012; Yang et al., 2015). However, these
estimations could be biased because of the significant spatial variation in initial states and the lack of information
on waste composition. Laboratory studies help quantify certain model parameters, but small‐scale tests often fail
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to capture the behavior of full‐scale landfills (Fellner et al., 2009). Even when initial moisture levels are calibrated
with observations, as in Grugnaletti et al. (2016), the results reflect an averaged value of the whole waste body.
While these models can reasonably predict leachate production rates, they struggle to capture the dynamics of
pollutant concentration in leachate.

It is generally known that the contaminants are leached out from waste through preferential flow (Fellner &
Brunner, 2010). It means we may not need to explicitly consider the heterogeneity of waste properties if we can
use a function to describe the preferential flow. Recent research shows that travel time distributions can be used to
characterize the flow pathway heterogeneity (Rinaldo et al., 2011). We have developed a travel time distribution
(TTD) model to predict leachate production rate (LPR) and chloride concentration from landfill waste bodies
(Heimovaara & Wang, 2024). The preferential water flow in landfill waste bodies is primarily characterized by
two travel time distributions: one for infiltration from the cover layer and another for baseflow from bulk storage.
The concentration states in this model are one‐way coupled to the water volume states, meaning changes in
concentration levels are controlled by changes in water volume. Parameters and initial states in this model are
obtained by optimization using the DREAMzs algorithm (Vrugt, 2016), a Markov chain Monte Carlo (MCMC)
method for Bayesian inference.

In recent years, MCMC methods have been widely applied to hydrology models. It allows for estimating the
probability distribution of model parameters by comparing model results with available measurements. However,
obtaining parameters by fitting or “history‐matching” to data is generally a batch processing method that defines
the best fit in an average way. This implies that we get the best fit of the measured data over the whole time range
rather than the best estimation of model states (Liu & Gupta, 2007). Hence, normal MCMC‐like batch processing
methods cannot recursively include new information when it becomes available.

Data assimilation (DA) is another class of Bayesian inference methods. It is widely used because of its power to
recursively assimilate new measurements to improve understanding of immeasurable or hidden states (Carrassi
et al., 2018; Liu et al., 2012). Most DA algorithms consist of alternating forecast and analysis steps. Model states
are propagated with time using a forward model to get predictions, and then measurements are used to update the
predictions in analysis steps. This sequential updating allows model states to be refined whenever new obser-
vations become available.

Filter and smoother are two main categories of data assimilation. Filters estimate current states using past and
current observations, making them efficient for real‐time applications. On the other hand, Smoothers use both past
and future observations to improve accuracy but are more computationally demanding. For example, the
ensemble Rauch‐Tung‐Striebel smoother (EnRTSS) (Raanes, 2016) leverages batch processing to recursively
update states, making it suitable for retrospective analysis. Since our objective is to update model states once new
observations are available, we focus on the more computationally efficient filtering methods.

Among the main data assimilation filtering methods, the ensemble Kalman filter (EnKF) (Evensen, 2003) and the
particle filter (PF) (Djurić et al., 2003) are commonly used for nonlinear forward models. The state update
performed by the EnKF is an affine transformation that is precise only when the joint distribution of states and
observations follows a multivariate Gaussian distribution. If it isn't, the update is only approximate and can violate
all manner of physics. In contrast, particle filtering approaches can preserve the physics because the measure-
ments are used to weigh particles instead of adjusting them. Due to its ability to handle fully nonlinear systems, it
has been widely used in hydrology (Abbaszadeh et al., 2019; Plaza Guingla et al., 2013; Vrugt et al., 2013; H.
Zhang et al., 2017).

A coupled data assimilation (CDA) method is typically employed when the forward model is a coupled system
with different types of measurements. CDA is popular due to its ability to enable each model component to
receive information from measurements in other domains (S. G. Penny & Hamill, 2017; S. Penny et al., 2019;
Laloyaux et al., 2016; Smith et al., 2015; Tardif et al., 2015). In weakly CDA, all model states are predicted
simultaneously by a coupled forward model but are updated separately within each domain (S. G. Penny &
Hamill, 2017). The updated states are then propagated to the next time step by the coupled model, integrating
measurement information from both domains. Conversely, in strongly CDA, states in individual domains are
predicted by the coupled model and updated simultaneously using measurements from all domains (Ng
et al., 2009). This approach is optimal compared to weakly CDA because it leverages information from all
measurements in both the prediction and update steps. However, the successful application of strongly CDA is
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limited due to the challenges associated with model error covariance (S. Zhang et al., 2020). Defining error
covariance in coupled data assimilation is particularly challenging because it requires defining the correlations
between states in different domains, which are often the least understood. Although some ensemble data
assimilation methods derive correlations through ensemble forecasts, it is difficult to determine if the low‐
dimensional approximation of the ensemble error covariance is acceptable (Županski, 2017). In methods
where the error covariance is not explicitly defined, such as particle filter, the problem still exists because of the
low quality of the fundamental Monte Carlo approximation. In addition, particle filter methods introduce issues
such as the “Curse of Dimensionality” and particle degeneracy because the state space encompasses all states in
both domains in strongly CDA. The drawbacks of strongly CDA were demonstrated in a 5‐variable test, where
strongly CDA outperformed weakly CDA only when the ensemble size was increased to approximately 104 (Han
et al., 2013). Consequently, most CDA systems in practical applications are weakly CDA (S. Zhang et al., 2020).

In a synthetic experiment, comparative research on weakly CDA was performed by El Gharamti et al. (2013),
where an ensemble Kalman filter was used in a 2D subsurface flow‐transport coupled model. The hydraulic head
and contaminant concentration observations in multiple wells are assimilated to estimate the evolution of these
two states. However, the problem with the Ensemble Kalman Filter (EnKF) persists when the states and ob-
servations do not follow a joint multivariate Gaussian distribution.

This study investigates the feasibility of using a weakly coupled particle filtering approach in a landfill TTD
model for estimating the emission potential. The emission potential is determined by the waste body's pollutant
mass states and water storage states. Based on our knowledge, no research has used particle filtering approaches to
estimate both volume quantities and solute concentrations in hydrochemical coupled models. We also believe this
is the first time data assimilation has been used to estimate landfill emission potential. Moreover, mass state
estimation remains a problem in many data assimilation applications in hydrology. Six synthetic assimilation
scenarios were tested to verify the proposed method and optimize the assimilation strategy. Several imple-
mentation steps of the algorithm were adjusted to make it suitable for the TTD model. The uncertainties of these
hidden states were quantified, and improvement in prediction was evaluated. The chloride mass in the landfill was
selected as the representative emission potential in this research.

2. Methods
This data assimilation framework uses a coupled TTD model as the forward model. The weakly coupled particle
filter was used as a data assimilation algorithm. The first part of this section describes the theory of weakly
coupled particle filter. The second part introduces the forward model and its specific characteristics, which must
be addressed in the DA application. The last part concerns synthetic experiment design, implementation pro-
cedure, and performance estimation matrices.

2.1. Weakly Coupled Particle Filter

2.1.1. Sequential Importance Sampling

The weakly coupled PF is based on the sequential importance sampling (SIS) PF. Model and measurement
equations are required during the state estimation process as given by Arulampalam et al. (2002). We take xt to
represent a state vector that contains all the model states at the current time step t. First, the state vector is
propagated from the former time step to the current step with the model equation

xt = Mt (xt− 1) + εmodel (1)

whereMt(⋅) denotes the forward model, and εmodel represents the model error vector caused by different sources of
uncertainty. The state vector will then be linked to measurements through the measurement equation

yt = Ht (xt) + εmea (2)

in which Ht(⋅) denotes the measurement operator that connects model states to measured states, and εmea rep-
resents the measurement error vector.
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The main task of state estimation is to estimate the probability density function (pdf) of immeasurable states
based on measurement series. We use the subscript 1 : t to represent the time range from the initial step to step t.
Hence, y1:t are the available measurements until current step t and p(xt ∣ y1:t) represents the pdf of current state
vector xt given y1:t. Bayes' theorem is used to calculate p(xt∣ y1:t) , the so‐called posterior pdf, by combining prior
pdf p(xt ∣ y1:t − 1) from last time step with likelihood pdf p( yt∣ xt) as

p(xt∣y1:t) =
p( yt∣xt) p(xt∣y1:t− 1)

p( yt∣y1:t− 1)
(3)

p( yt ∣ y1:t− 1) is a normalization factor in making sure the integral of pdf is 1. If the posterior pdf p(xt− 1∣ y1:t− 1) at the
previous assimilation step is known, the prior pdf p(xt∣ y1:t− 1) could be calculated as

p(xt∣y1:t− 1) =∫ p(xt∣xt− 1) p(xt− 1∣y1:t− 1) dxt− 1 (4)

Then we obtain the aim posterior pdf p(x ∣ y1:t) as

p(xt∣y1:t) =
p( yt∣xt)∫ p(xt∣xt− 1) p(xt− 1∣y1:t− 1) dxt− 1

p( yt∣y1:t− 1)
(5)

The core idea of sequential importance sampling is to approximate the required pdf through N independent
particles with weight wi respectively. More specifically, sampling from p(xt− 1∣ y1:t− 1) means several particles
are obtained from the previous time step. p(xt ∣ xt− 1) indicates propagating these particles with forward model
(Equation 1). The posterior pdf p(xt ∣ y1:t) can be approximated as

p(xt∣y1:t) ≈ ∑
N

i=1
witδ(xt − xit) (6)

In which δ represents the Dirac delta function. N is the number of particles. The wit is calculated recursively as

wit =
wit− 1p( yt∣xit)

∑N
i=1 (wit− 1p( yt∣xit))

(7)

The conditional probability p( yt∣ xt) is often computed as a Gaussian likelihood:

p( yt∣xt) = exp{− 0.5[yt − Ht (xit)]
TR− 1 [yt − Ht (xit)]} (8)

where Ht(⋅) is the measurement operator, R is the error covariance of the measurements (Van Leeuwen, 2009).
Common statistics can be easily acquired with the posterior pdf or weighted particles. For instance, the mean of
state vector x is calculated as

xt =∑
N

i=1
witx

i (9)

2.1.2. Systematic Resampling

Particle degeneracy is one main limitation of sequence importance sampling, which occurs after several
assimilation steps when the weights of all but one particle can be neglected (Snyder et al., 2008). The effective
ensemble size is used to evaluate the degeneracy problem. It is computed as
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Neff
t =

1
∑N

i=1(wit)
2 (10)

When the effective ensemble size is smaller than N/2, resampling should be performed. The idea of resampling is
duplicating particles with high weights and discarding those with low weights. After that, all weights will be set as
1/N. The general resampling algorithms include multinomial, stratified, systematic, and residual resampling
methods. In this research, we chose systematic resampling due to its superior resampling quality and computa-
tional efficiency compared with the others. A more detailed description of resampling algorithms is given in Hol
et al. (2006).

2.1.3. Weakly Coupled Data Assimilation (WCDA)

Coupled data assimilation is used when there is more than one measurement type. Also, a coupled model should
be available. In WCDA, a coupled model is used to predict all the model states at the current time step, while the
weighting and updating steps are performed within each component domain. Then the updated states are prop-
agated to the next step by the coupled model. Although the measurements in one model domain are used to update
the states in the same domain, the coupled model propagates the information to the other domain (S. Zhang
et al., 2020). The details about the implementation of WCDA are introduced in Section 2.7.

2.2. Coupled Travel Time Distribution Model

The coupled travel time distribution (TTD) model predicts leachate production rates and chloride concentrations.
For a detailed description and implementation of the coupled TTD model, we refer readers to the model paper
(Heimovaara & Wang, 2024) and our model scripts (Wang & Heimovaara, 2024). Here, we briefly introduce the
model to facilitate understanding of our approach.

As shown in Figure 1, the model consists of two layers representing a cover layer and waste body in a landfill. The
forcing data at the top boundary are rainfall (R) and potential evapotranspiration (Pev) , which will enter or leave
the landfill from the cover layer. The water storage in the cover layer determines the amount of water (qinf)

infiltrating the waste body. The waste body is conceptually divided into a single bulk storage and P cells to
represent different travel times of water parcels before they flow out (discretization of the travel time distribution).
The number of mobile cells needs to be large enough to capture the dilution pattern in the travel time distribution
of cover layer infiltration but not so large that it assumes the water in the mobile part of the landfill can stay too
long. The time difference between neighboring cells is one day. This means that it takes P days for leachate in the

Figure 1. A schematic overview of model structure.
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last cell to exit. It is important to note that these P cells do not refer to physical locations within the waste body, but
rather represent leachate parcels with different travel times. The discretization into P cells is a method used to
model the distribution of travel times.

The leachate that flows out from bulk storage is considered baseflow, and its volume is a function of bulk water
storage. This baseflow is modeled by a log‐normal distribution, parameterized by a shape parameter σbF and a
scale parameter ln(μbF) . The final baseflow value is obtained by multiplying the output of this log‐normal
distribution and the maximum baseflow value bF0. The baseflow will then be distributed to P cells according
to a Gamma travel time distribution function Γ(κbF,θ = 1) . Similarly, the qinf from the cover layer is distributed
to the waste body with another travel time distribution function. The infiltration TTD itself is modeled as a
mixture distribution that combines both fast‐flow and slow‐flow components, each represented by a separate log‐
normal distribution. We use parameter βf to describe the fast‐flow fraction, and 1 − βf is the fraction of slow
flow.

Similar to the transport model from El Gharamti et al. (2013), the chloride concentration is one‐way coupled in the
water balance model. The concentration states in P cells are determined by time propagation, as well as distributed
leachate from baseflow and infiltration from the cover layer. The parameters and initial states were optimized
using DREAM(ZS) (Shockley, 2020; Vrugt, 2016). The model parameters used in this manuscript is shown in
Table 1.

The state vector is given by

xt = [Vclt ,Mclt ,Cclt ,vbulkt ,mbulkt ,cbulkt ,vcellit ,mcellit
,ccellit ]

T (11)

where i represents ith cell state. The concentration defined as c = m/v applies to all elements in the conceptual
model. Also, Vwbt = vbulkt + ∑

P− 1
i=0 vcellit and Mwbt = mbulkt + ∑

P− 1
i=0mcellit

are used in the following parts to
represent the entire storage states in the waste body. Cwb indicates the average concentration in the waste body.
We use capital letters to represent the overall state variables of each layer, and we use lowercase letters to
represent all internal variables. A detailed explanation of the variables in the model is presented in the nomen-
clature list.

Table 1
Parameters Values and Description in the Coupled TTD Model

Parameter Values Description

c f 9.759 × 10− 1 An empirical crop‐factor to compensate for different types of crops in order to close the
water balance [− ]

θwcl ,max 3.437 × 10− 1 Porosity of the cover layer [− ]

fwcl ,min 2.472 × 10− 2 Fraction of the maximum volumetric water content in the cover layer used to describe
the minimum water storage in cover layer [− ]

Kcl − 1.960 × 10− 1 The saturated hydraulic conductivity of the cover layer [md− 1] , 10log

bcl 5.427 An empirical shape factor for the non‐linear flow term of the cover layer [− ]

τfast 3.813 × 101 Expected value of the fast travel time in the log‐normal infiltration travel time
distribution [d]

σfast 2.660 × 10− 1 Standard deviation of the travel time in the fast lognormal infiltration travel time
distribution [d], 10log

Δτslow 7.934 × 102 Difference between τfast and τslow. τslow = τfast + Δτslow

σslow 2.993 Standard deviation of the travel time in the slow lognormal infiltration travel time
distribution [d], 10log

β f 6.281 × 10− 1 The fraction of fast flow in the waste body [− ]

bF0 − 3.368 Maximum value for the baseflow from the bulk storage into the mobile cells. [m], 10log

σbF − 0.294 × 10− 1 Shape factor for the log‐normal baseflow function [m], 10log.

μbF − 0.321 Scale parameter of the log‐normal baseflow function [m], 10log.

κbF − 8.341 Shape parameter of the baseflow travel time distribution (Gamma distribution) [m].
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2.3. Specific Model Characteristics

2.3.1. One Way Coupled Model

The TTD model we use is based on a one‐way coupling between water volume and chloride concentration. The
leachate production rates only contain information on water volume states, while the concentration states depend
both on water volume and solute mass. However, it is unknown how much information concentration mea-
surements contain about water volume states. Is it possible to only assimilate concentration measurements, or do
we need both the leachate outflow and concentration measurements? El Gharamti et al. (2013) always use the
concentration measurements to update the water head states, while the research does not investigate the benefits of
assimilating both measurements compared with assimilating only one. Assimilating both measurements could get
the best overall estimation for the model states, but it is not necessarily true for specific model parts. For example,
when assimilating both types of measurements, the estimation results for volume states may be poorer compared
with using only leachate production rate measurements. In order to explore this issue, we have designed different
scenarios to investigate the optimal assimilation strategy.

2.3.2. Time Lags in TTD Model

In particle filtering approaches, we can estimate hidden states in the model using measurements of observable
states because the measurements contain some information about hidden states. Assuming the model is imperfect,
errors will be added to both hidden states and observable states during the state propagation process. One
beneficial side effect of introducing model error is that it “rejuvenates” the ensemble of a particle filter. This
means that adding model errors to hidden states enables the exploration of the hidden state space more thoroughly.
The hidden states with model error will be assessed in the following time steps because they influence the
measurable states. However, if this influence is weak or does not exist, the hidden states will be updated
randomly, and the estimation will be poor (Plaza Guingla et al., 2013).

In the forward TTD model we use, we have explicit time lags between many model states and measurements
because the travel time distribution considers the time information explicitly. At each time step, the model state
vector includes thousands of individual cell states as well as a bulk state, which summarizes the entire system. The
time lag between the oldest and youngest cell states is determined by the infiltration travel time distribution, with a
maximum lag of 5 years, as illustrated in Figure 2. The infiltration water with a travel time larger than 5 years is
added to the bulk.

Figure 2. Cumulative distribution of infiltration TTD.
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It's important to distinguish between two types of time discretization here: one that tracks the evolution of model
states over time and another representing the distribution of travel times for infiltration from a cover layer or
baseflow from bulk to exit the system. In this context, a time lag represents the difference in these travel times. As
shown in Figure 1, the cells mean the water parcels with different travel times rather than real physical water cells.
For instance, the leachate in the oldest cell at time step t will take P − 1 days to move to the youngest cell at time
step t + P − 1. This means the oldest cell will only be reflected in the measurements after P days. This time lag
complicates the estimation of multiple hidden states using current measurements.

Several studies are trying to solve these challenges with time‐lagged measurements in data assimilation (Li
et al., 2013; McMillan et al., 2013; Noh et al., 2013, 2014). McMillan et al. (2013) used the current measurements
to update states at previous time steps within the time lag. Noh et al. (2013, 2014) used the measurements after an
extended time to estimate current model states to consider the time lag effect. These methods use the forward
models as measurement operators to link the model states to corresponding lagged measurements. In these ap-
proaches, the assumption is that the forward models are accurate for this extended prediction; otherwise, the
representation error (Janjić et al., 2018) in the measurement operator should be considered. The maximum time
lag in the landfill TTD model is around 5 years. This is much longer than those previously used in distributed
catchment models. Consequently, model error accumulation is expected to be severe during the extended pre-
diction process (Noh et al., 2013, 2014), so it is unreasonable to assume a correct model for such a long prediction
period. Additionally, the TTD model has thousands of states that are lagged in time due to the discretization of
TTD, whereas the published applications usually have time lag issues for between two states. To overcome these
issues, we have developed a specific strategy for the TTD model.

In the TTD landfill model, the cell states are propagated with time. After P (the number of cells) days, there will
be a connection among all cells and bulk states. We call this implicit relationship “history.” We can estimate
hidden states by current measurements if this “history” is maintained. Hence, the initialization of particles and the
model errors should guarantee this “history.” The implementation strategy is further explained in Section 2.7.

2.4. Site and Data Description

The model parameter calibration is based on actual measurements from the Braambergen landfill in the
Netherlands (Duurzaam stortbeheer, 2023). Daily meteorological forcing data (same as model resolution) are
obtained from the nearest weather station affiliated with Royal Dutch Meteorological Institute (KNMI) (2023).
The leachate is pumped out from the drainage system, and the daily production volume is acquired. The chloride
concentration is measured by sampling from the drainage layer generally with a bi‐weekly frequency (with some
larger intervals up to 28 days). In practical cases, there are many irregular values in daily production rate mea-
surements because of the management of the leachate pump system by the landfill operator. When the pump
system is broken, the outflow remains in the drainage layer, resulting in an observed leachate production volume
of zero. Afterward, the water is pumped out, a large leachate volume is measured. In order to limit the effect of
these operational irregularities, 7 days' average leachate production rates were calculated from the cumulative
leachate measurements and used as measurements. The measurement equations for leachate production rate and
chloride concentration are:

LPRt =
∑t

i=t− 6vcell0i
7

+ εLPRmea (12)

Ct = ccell0t + εCmea (13)

2.5. Synthetic Truth Generation

Synthetic experiments are often designed to evaluate the performance of data assimilation techniques. Artificial
truth states are generated by running a known forward model. If the DA algorithm is effective, estimated states or
parameters are expected to converge to the synthetic truth by assimilating the simulated measurements obtained
from the forward model. The method of creating artificial truth is highly dependent on the aim of the applied DA
technique and the assumption of existing underlying uncertainties. The primary sources of uncertainty for a
deterministic model are errors in forcing data, initial states, model parameters, and model concepts. The most
simple scenario assumes that the model is correct and only adds white noise to simulated measurements as

Water Resources Research 10.1029/2023WR036549

WANG AND HEIMOVAARA 8 of 20

 19447973, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036549 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [11/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



measurement error. Weerts and El Serafy (2006) perturbed forcing data to
consider the forcing data uncertainties in a state estimation problem. Plaza
Guingla et al. (2013) further added Gaussian noise to model parameters,
although only model states are updated in that research. Li et al. (2013) chose
to perturb the state variables in a probability‐distributed hydrological model.
All the uncertainties above are considered to be included in state variables.
Gelsinari et al. (2020) used the “truth” generated from the unperturbed model,
while the model used in assimilation is with a perturbed parameter set. Since

we aim to assess the feasibility of estimating emission potential in the TTD model by coupled particle filter, we
assume the forward model parameters to be correct in order to simplify the problem. The initial states and input
data were perturbed in order to simulate a scenario where we have a poor understanding of initial states and the
input measurements are inaccurate.

The initial states in 2003 were obtained from model calibration in order to generate a synthetic truth. Zero mean
Gaussian error with a standard deviation of 10% × cini and 10% × vini were added to perturb the initial states.

Zero‐mean Gaussian errors were added to daily rainfall and potential evapotranspiration during the simulation
period from 2003 to 2021. The uncertainty range of rainfall is often chosen as (0 − 15%) × Rt (Weerts & El
Serafy, 2006). Here the standard deviation of random rainfall error was set as 15% × Rt. The perturbation of
evapotranspiration followed Plaza Guingla et al. (2013) where a 30% × Pevt standard deviation was used.

Although this study primarily focuses on synthetic experiments, we aim to adapt the framework to accommodate
the assimilation of real‐world data for further research. Hence, the data assimilation frequency was set to be
identical to the frequency of the real concentration measurements.

Once the simulation results are obtained as synthetic truth, the measurement errors should be added to observable
states to simulate measurements as shown in Equations 12 and 13. The standard deviations of Gaussian mea-
surement error are selected as 10% of LPRt and Ct, respectively.

All the errors are presented in Table 2. It is worth emphasizing that although we try to simulate the actual case in
the synthetic experiment, the artificial truth is only trying to approach the natural world in the context of a proof‐
of‐concept study (Matgen et al., 2010).

2.6. Ensemble Generation Performance Control

The performance of DA relies on the appropriate representation of uncertainties in the prediction. More spe-
cifically, the model error in Equation 1 should make the spread of generated ensembles realistic compared to real
measurements. Following the method proposed by De Lannoy et al. (2006), the ensemble spread( enspt) , the mean
square error(mset) , and the ensemble skill(enskt) are calculated as:

enspt =
1
N
∑
N

i=1
( yit − yt)

2
(14)

mset =
1
N
∑
N

i=1
( yit − ymeat)

2
(15)

enskt = ( yt − ymeat )
2

(16)

N, i, t, y, ymea represent ensemble size, ith ensemble number, assimilation time step, simulated observable states,
and assimilated measurements, respectively. According to De Lannoy et al. (2006), to ensure the generated
ensembles' statistical accuracy, the following requirements should be considered:

<ensk>
<ensp>

≈ 1 (17)

Table 2
Standard Deviation of Gaussian Random Errors for Truth Generation

Variables R Pev vini cini

Standard deviation 0.15 × Rt 0.3 × Pevt 0.1 × vini 0.1 × cini

Note. vini and cini represent all the initial volume and concentration states in
the model.

Water Resources Research 10.1029/2023WR036549

WANG AND HEIMOVAARA 9 of 20

 19447973, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036549 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [11/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



<> means the average over the simulation time range. More specifically, a value larger than one indicates
insufficient ensemble spread, while a value smaller than one indicates excessive spread. If the truth is indistin-
guishable from a member of the ensemble, the following equation should be true (De Lannoy et al., 2006):

<
̅̅̅̅̅̅̅̅̅
ensk

√
>

<
̅̅̅̅̅̅̅̅
mse

√
>

≈
̅̅̅̅̅̅̅̅̅̅̅̅̅
N + 1

2N

√

(18)

When both leachate production rate and concentration measurements are assimilated, we need a sufficiently large
ensemble spread in the simulated output. This is achieved by manually optimizing the standard deviations of
model error. First we obtained the model error for the cover layer water storage using an interval search to get an
appropriate spread in leachate production rate simulations. If the spread for concentration states is not sufficient or
excessive with the chosen model error, we adjust the initial uncertainty range for the bulk concentration states.
Using this approach allows us to obtain a good ensemble spread for concentration states while not making the
spread in leachate production excessive.

2.7. Implementation Procedure

Based on the theory and model characteristics, the implementation of sequential importance resampling in this
coupled TTD model is as follows:

1. Initialization: from the model calibration results, we take one parameter set and initial states in 2003. The
initial samples are sampled from Gaussian distributions where the means are the optimized initial values.
Initially, the corresponding percentiles of standard deviations in Gaussian distributions are set to be the same
as the ones used in the generation of synthetic initial states (see Table 2). Subsequently, the standard deviations
undergo adjustment to meet the ensemble spread criteria, as is discussed in Section 3.1. With a warm‐up
simulation, the samples are propagated to the starting date of data assimilation on the 19 June 2012, a time
step 7 days earlier than the first measurement date. The reason to perform this warm‐up propagation is that we
need to build connections among waste body states. Otherwise, the time lag between bulk states and mea-
surements will make the estimation unreliable.

2. Update step: all the particles are propagated to the next assimilation step with Equation 1, whereM(⋅) indicates
the coupled TTD model. The forward model is discretized with a daily time step, and the assimilation fre-
quency is the same as the real concentration measurement frequency, which is generally 2 weeks. The choice
of model error is crucial for representing uncertainties and ensuring a good data assimilation technique per-
formance. Most studies applying particle filter or ensemble Kalman filter choose to add a Gaussian random
error to perturb forcing data, model states, and/or parameters (Mattern et al., 2013; Tran et al., 2020; Vrugt
et al., 2013; Weerts & El Serafy, 2006). Considering the time lag issue, if we add independent model error to
each state directly, the accumulation of errors of states like vbulk will be huge after several years' lag. Therefore,
we choose to add daily error to Vcl. The daily errors added on day t will be propagated to waste body states
since day t + 1 according to the infiltration TTD curve with time until the next assimilation step. Therefore,
we are actually adding correlated model errors to waste body states. Since the influence of error in Vcl on fast
flow cells (cells with small travel time) can be estimated by current measurements, we can avoid adding too
many unreasonable errors to old states like vbulk. Additionally, this error choice maintains the total mass
balance in waste body water storage(Vwbt+1

= Vwbt + inf iltration − outf low) . No model error is introduced
to the concentration states directly. Once the initial concentration values are determined, the concentration
variation is assumed to be determined by volume states only.

3. Analysis step: The particle weights are calculated by Equation 7. Based on different assimilation strategies, we
weigh the states differently. In a coupled assimilation scenario, the weights for volume wv and concentration
states wc are calculated separately using their corresponding measurements. Both concentration and leachate
volume are used to calculate wm: wm = wc ∗wv. Then wm is normalized before estimating the mass states. If
only concentration measurements are assimilated, all the model states are weighted based on the concentration
measurements. When only LPR measurements are assimilated, the weights are used to estimate all states
except concentration states.

4. Resampling step: this step is similar to the analysis step, effective ensemble size Neff
v , Neff

c is computed ac-
cording to Equation 10. Then the volume states will be resampled when Neff

v is smaller than N/2. The con-
centration states will be resampled if Neff

c is smaller than N/2. These two resampling steps are totally
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separated, which means the resampling of volume states will not change
the concentration states and their weights wc, and vice versa. If volume or
concentration states are resampled, the mass states will be recalculated
based on the current volume and concentration states, and the weights wm
are also updated with new wv and wc. The resampled volume and con-
centration states are then used in the coupled forward model to make a
prediction until the next assimilation step.

5. Iteration: all former steps after initialization are repeated until the last
assimilation step.

2.8. Performance Estimation

Besides the evolution of hidden states, the accuracy of state estimation results
is evaluated with the temporal mean root‐mean‐square error, which is
described in Equation 19. The L indicates the number of assimilation time
steps.

MRMSE =
∑L

t=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1wit( xit − xtrutht )

2
√

L
(19)

The prediction accuracy is also evaluated using a logarithmic form(η) proposed by Ercolani and Castelli (2017):

η = − ln(1 − NSE) (20)

Where NSE is the Nash‐Sutcliffe efficiency calculated as:

NSE = 1 −
∑T

t=1 (yt − ymeat )
2

∑T
t=1 ( ymeat − ymea)

2 (21)

where ymeat are the measurements at time step t, yt represents the model prediction, and the over bar means the
average over time. The logarithmic scale allows dealing with high NSE values (close to 1). It tends to plus infinity
when the observations and predictions achieve a perfect match. The reliability of ensemble prediction is not
considered here because the model error is optimized to get reliable predictions.

2.9. Synthetic Scenarios

Different synthetic scenarios are designed to test the application's feasibility. As shown in Table 3, in total six
scenarios are used to test the assimilation performance and get optimal assimilation strategy. Scenarios A,D
follow the proposed coupled assimilation procedure described above. In other scenarios, only LPR or concen-
tration measurements are assimilated. The concentration observations are used to estimate all states when
assimilated solely, while the LPR observations are used to update volume states solely. This is because con-
centration measurements contain information on both volume and concentration states, while the LPR obser-
vations only contain information on volume states. Scenarios D to F are similar to A to C but with the difference
that we initialize the simulation with much smaller initial bulk volume values. These scenarios are used to test the
influence of the baseflow function, which will be discussed in the following part. Two open‐loop simulations are
also performed to get reference results for scenarios A − C andD − E. The open loop simulations have the same
initial sample distributions and model errors as corresponding scenarios, but no measurements are assimilated to
update model states.

3. Results and Discussion
The results of the experiment will be presented as follows. First, we present the performance of ensemble gen-
eration. Next, we discuss the hidden state estimations, including cover layer water storage, total water storage,
average concentration, and total chloride mass in the waste body. Finally, we show the prediction performance
results across all scenarios. Based on our experimental scenario settings, we will primarily make two types of

Table 3
Synthetic Scenarios

Scenario Assimilate LPR Assimilate C Small initial Vbulk

A Yes Yes No

B Yes No No

C No Yes No

D Yes Yes Yes

E Yes No Yes

F No Yes Yes

OLA‐C No No No

OLD‐F No No Yes

Water Resources Research 10.1029/2023WR036549
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comparisons: one between scenarios with different initial bulk storage states, and another between scenarios with
the same initial bulk storage but different measurements assimilated.

3.1. Ensemble Generation

The appropriateness of ensemble generation and the generated initial particles on the starting date of data
assimilation, which is the 19th of June, is verified using Equations 17 and 18. Based on the results of a preliminary
sensitivity analysis of ensemble size, all experiments use 10,240 particles to ensure stable performance. The final
choice of initialization, model errors and the corresponding ensemble generation skills are presented in Table 4.

3.2. Assimilation Performance

3.2.1. Estimation of Hidden States

The hidden state estimation performance of the method is evaluated using the proposed performance matrices
(Equations 19–21). The results of total water storage in the cover layer, chloride mass, and water storage in the
waste body are presented in Figure 3. In addition, the results of average chloride concentration are presented to
understand the state update process better. Although there is a small amount of chloride in the cover layer, it can
be ignored compared with the amount in the waste body.

Table 4
Ensemble Generation Performance

Scenario Mvbulk σvbulk σcbulk ϵVcl
<ensk>
<ensp>LPR

<
̅̅̅̅̅̅̅
ensk

√
>

<
̅̅̅̅̅̅
mse

√
>LPR

<ensk>
<ensp>C

<
̅̅̅̅̅̅̅
ensk

√
>

<
̅̅̅̅̅̅
mse

√
>C

A‐C 4.067 0.100 0.130 0.0145 1.002 0.651 1.082 0.587

D‐E 2.000 0.100 0.100 0.0135 0.998 0.624 1.013 0.583

Note. All the initial states in 2003 are sampled from Gaussian distributions N(M,σ × M). The distribution parameters are the same as truth generation if not explicitly
defined in the table. Mvbulk represents the initial mean of bulk water storage. σvbulk and σcbulk refer to the standard deviation percentile of bulk water storage and chloride
concentration, respectively. ϵVcl shows the standard deviation percentile for Gaussian model error (N(0,ϵVcl × Vcl)) added to cover layer water storage. If the newly
generated cover layer water storage with model error is negative, we manually set it to a small value of 0.001.

Figure 3. MRMSE of hidden states in different scenarios.
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3.2.1.1. Total Water Storage in Cover Layer

As shown in Figure 3, the four MRMSE values for the storage in the cover layer (Vcl) in A‐C and OLA− C sce-
narios are similar. This observation is supported by the standard deviations of MRMSE, which are within a
magnitude of 4 × 10− 3m. Similar estimation performance is observed in scenarios D‐F and OLD− F, where the
standard deviations of MRMSE are within a magnitude of 3 × 10− 3m. The values of the standard deviations of
RMSE are in the uploaded output file. The similar behavior of cover layer water storage is mainly caused by the
buffering effect of the unsaturated soil model used to simulate Vcl. When saturation is high, infiltration to the
waste body will be high as well. If no model error or forcing data errors were added, the Vcl starting with different
values would converge to a same value after a period of time. The random model error added during data
assimilation is the main source of the uncertainty in Vcl.

3.2.1.2. Total Water Storage in Waste Body

Scenarios A–C are initialized with high values for initial bulk water storage. As shown in Figure 3, scenario B has
similar waste body water storage (Vwb) estimation results as scenario A because of the same assimilation pro-
cedure for volume states.

As shown in Figure 4, the mean estimation shows no noticeable improvement throughout the entire period in
scenario A. However, when the model is initialized with a lower value for the initial bulk water storage in scenario
D, the behavior differs significantly. The assimilation of new measurements corrects the biases in total water
storage compared to the scenarios with large bulk water storage. Scenarios D and E also exhibit better estimation
performance than open‐loop simulations, unlike scenarios B and C, where only slight improvement is observed,
as illustrated in Figure 3.

Figure 4. Water storage in the waste body in scenarios A and D. The red line represents the mean estimation of the particle filter. The green and yellow lines represent the
open loop results and synthetic truth, respectively. The individual particles are shown as gray points. The two black arrows point to the wet and dry period during the
assimilation process, with corresponding probabilities plotted. The black vertical lines in the probability histograms are the truth at specific time steps.
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The difference in assimilation performance between the two initial values in water storage is due to the baseflow
function. As discussed regarding the time lag issue, we can only estimate hidden states if the measurements are
sensitive to their variations. Figure 5 shows the baseflow function, which links bulk water storage to the generated
baseflow volume. Bulk water storage constitutes a significant portion of the total water storage in the waste body,
making its estimation crucial for accurate Vwb estimation. As shown, baseflow is sensitive to variations in bulk
water storage only when it ranges between 0 and 2 m. Additionally, Figure 6 illustrates the travel time distribution
of baseflow, indicating that almost all generated baseflow is allocated to the oldest cell. This means any changes
in bulk storage take 5 years to be reflected in simulated leachate production rates.

Figure 6. Baseflow travel time distribution.

Figure 5. Baseflow change with bulk water storage variation.
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According to the synthetic truth, the bulk water storage 5 years before the last measurement in scenarios A‐C is
around 2.18 m. Obviously, the information in the measurements to quantify bulk water storage is limited. Lower
values of the bulk water storage allow the baseflow to reduce during the simulation time span. As a consequence,
measured leachate production rates contain information on this reduced water storage because of lower baseflow
values. This improves the estimate of bulk water storage and Vwb, leading to lower uncertainty. It's worth noting
that selecting different baseflow functions or baseflow distribution functions from the MCMC results can lead to
varying state estimation outcomes. This paper aims to investigate the feasibility of using the coupled particle filter
method in a synthetic experiment, assuming our model parameters are accurate. Additionally, we will explore the
influence of parameter uncertainty in subsequent research.

Another influencing factor of the uncertainty quantification capacity is the measurement error. While the mea-
surement errors are small, it can detect smaller baseflow changes. For example, the bulk water content will still
influence the baseflow when it varies between 2 and 3 m. When the measurement error is relatively large
compared to the corresponding baseflow variation, most of the particle sets in this range will have close weights as
they all give similar baseflow output. As shown in scenario A in Figure 4, only large and small particle sets are
discarded with assimilation.

In scenario A, the posterior distribution in wet periods is close to the ones obtained during dry periods. This means
that the estimation results of Vwb are stable during the last wet‐dry cycle. However, in scenario D, the posterior
distributions in dry periods still change compared with wet periods. This indicates that the measurements in the
last cycle still contain new information content which are being assimilated to reduce the uncertainty. To further
quantify the uncertainty and correct the bias in mean estimation, the time series of measured leachate production
rates should be long enough to capture the effect of reducing bulk water storage values in the sensitive range.

Comparing scenarios assimilating different measurements, Figure 3 shows that when the information content of
the measurements is high, the concentration measurements can be used to estimate Vwb in scenario F. Compared
with scenario D, the MRMSE in scenario F is higher. It is because the weights in scenario F are calculated using
concentration measurements, which are also influenced by mass states. The particles with the wrong volume and
mass values but correct concentration values are also considered with high probability.

3.2.1.3. Average Chloride Concentration in Waste Body

Estimation of the average chloride concentration in the waste body is another case where the “history” is required.
All available measurements are linked to the first cell only. Nevertheless, the estimation of the average con-
centration becomes possible because of the “history” connection between cells and bulk.

As shown in Figure 3, the MRMSE values in average concentration are lower when concentration measurements
are assimilated, compared with the open‐loop results. As shown in Figure 7, in both scenarios A and D, the
uncertainties are significantly reduced, and the synthetic truth is covered by the particles. Regardless of the
sensitivity of baseflow to variations in bulk water storage, the chloride in the waste body bulk serves as the source
for chloride in the mobile cells, enabling us to use concentration measurements to estimate the average con-
centration effectively.

It is worth noting that when only concentration states are assimilated in scenarios B and F, Figure 3 shows slightly
higher MRMSE values compared with scenarios A and D, where both concentration and LPR measurements are
assimilated. Similarly, the MRMSE of average concentration in scenario E is slightly better than the open‐loop
group. This indicates that the assimilation of LPR measurements helps improve the estimation of concentration
states. Although concentration states are updated solely by concentration measurements, the updated volume
states influence the prediction of concentration states at the next time step. This illustrates how weakly coupled
data assimilation integrates information from both domains. We did not observe this behavior in waste body water
storage estimation because our model is one‐way coupled. This effect is likely not very strong, probably because
our initial particles for volume states can generate good volume predictions due to optimization by MCMC.
Overall, the assimilation of concentration states helps quantify the uncertainty in concentration states.

3.2.1.4. Total Chloride Mass in Waste Body

The total chloride mass in the waste body is calculated from the estimated water volume and concentration states.
The uncertainty reduction in either volume states or concentration states reduces the uncertainty of mass states.
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On the other hand, bias in the estimation of volume or concentration states can result in bias in mass estimation,
even if the other estimation is perfect.

As shown in Figure 3, when initial bulk water storage is small, all the synthetic experiments have better MRMSE
results than open‐loop simulations. Assimilating both measurements achieves the best estimation results. In
contrast, when the initial bulk storage is high, the MRMSE decrease is relatively small after assimilation. This is
because the uncertainty in Vwb is not sufficiently reduced in scenarios A, B, and C. Scenario B's MRMSE result is
unusually small because it yields a higher estimation of water storage and a lower estimation of average con-
centration states, leading to a better mean estimation of mass states.

Following the conclusion from volume and concentration estimations, solely assimilating LPR measurements is
insufficient for emission potential estimation. When the sensitivity of baseflow to bulk storage is high, we can use
concentration measurements solely to estimate the Mwb. Assimilating both measurements achieves the best
performance in the sense of both mean estimation and uncertainty reduction.

3.2.2. Prediction Performance

3.2.2.1. Leachate Production Rates

Figure 8 shows the metrics we use to quantify the quality of the predicted states. All six scenarios have smaller
MRMSE values and greater η values compared with the corresponding open‐loop simulations. This indicates
reduced prediction uncertainty and improved accuracy. However, the η and NSE values of three scenarios with the
same initial bulk storage are very close.

As discussed in Section 3.2.1.1, the estimation of cover layer water storage has a relatively good consistency with
the truth because of the buffering effect, which guarantees the accuracy of LPR prediction, especially in wet
periods where infiltration from the cover layer takes up most of the outflow. Additionally, when the bulk storage

Figure 7. Average concentration in the waste body in scenarios A and D. Colors of lines as in Figure 3.
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in the waste body, vbulk, reduces below 1 m (see Figure 5), the baseflow magnitude will reduce significantly.
Under such conditions, baseflow will show a large sensitivity to infiltration from the cover layer reaching the bulk
storage.

Although scenario D, as shown in Figure 3, provides a better estimation of waste body water storage than scenario
F, scenario F has a higher η value compared to scenario D. This is likely because more uncertainty remained in the
posterior distribution of scenario F, which is crucial for capturing the effect of changes in bulk storage on the
baseflow. Additionally, η is calculated using synthetic measurements that include measurement errors. During the
dry period, some values are smaller than the true values, which can only be accounted for by small vbulk values.

3.2.2.2. Chloride Concentrations

As shown in Figure 9, when concentration measurements are assimilated in scenarios A, C, D, and F, the values of
prediction accuracy η improve significantly compared with open‐loop realizations. When only LPR measure-
ments are assimilated, we also observe the reduction of MRMSE and improvement of η. Although the
improvement is very small compared with the scenarios assimilating concentrations, it shows the improvement in
flow estimation can help improve the concentration prediction.

Figure 8. LPR prediction performance in different scenarios.

Figure 9. Concentration prediction performance in different scenarios.
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4. Summary and Conclusions
This work presents a weakly coupled particle filter framework to assimilate leachate production rates and chloride
concentrations with the aim of estimating the emission potential of landfill waste bodies. The emission potential
in this paper is defined as the mass of leachable chloride present in the waste body. A concentration‐coupled travel
time distribution model was used as a forward model for data assimilation. Synthetic experiments were performed
to investigate the feasibility of state estimation and improving prediction. Six scenarios were developed to
investigate the best assimilation strategy. Two synthetic measurement data sets were generated with the same
forward model using different initial bulk water content values under identical meteorological forcing conditions.
On each synthetic data set, three types of Data Assimilation were carried out: DA using both Leachate Production
Rate (LPR) and concentration measurements and DA using only LPR or concentration measurements.

The results from the different scenarios show that the sensitivity of baseflow to bulk water storage volume plays a
vital role in controlling the assimilation performance. When the bulk water storage is within the range where its
change has limited influence on baseflow, assimilating measurements cannot reduce the uncertainties in waste
body water storage. This indicates that we need to record measurements over a long enough period to capture the
sensitive range. Additionally, proactive measures should be implemented to stimulate the emission of bulk water
storage, allowing us to reach the sensitive range more quickly.

The results also indicate that the improvement in the estimation of cover layer water storage is limited as the open‐
loop realizations already have good consistency with synthetic truth. Assimilating concentration measurements
improves the estimation of average concentration states in the waste body. It also benefits the estimation of water
storage states as the concentration states are coupled to the water balance model. However, assimilation with
concentration measurements alone behaves worse in water storage estimation in comparison with assimilating
both LPR and concentration measurements under the assumed measurement errors in this research. In contrast,
assimilating LPR helps quantify the uncertainty in water storage states in the waste body, while it doesn't reduce
the uncertainties in concentration states. The proposed coupled assimilation method leads to good estimation
results in both water storage and concentration states. More specifically, better concentration estimation per-
formance is observed in coupled assimilation compared with assimilating concentration solely, which indicates
the benefit of information exchange in forecast steps.

The estimation of emission potential heavily relies on accurate estimation of the total water storage and con-
centration states within the waste body. Reducing uncertainties in volume or concentration states leads to a
corresponding reduction in uncertainties associated with emission potential. Therefore, improving the estimation
of volume and concentration states directly contributes to minimizing uncertainties in emission potential. The
results show the uncertainty is reduced in all the tested scenarios where the baseflow is sensitive to bulk storage
change. The LPR prediction improvement after assimilation is insignificant, as the open‐loop realizations also
have good predictions. In contrast, the concentration predictions improved considerably when the chloride
concentration measurements were assimilated.

Overall, the results of this study indicate that the proposed coupled assimilation procedure can be used to estimate
total water storage and chloride mass in the waste body. As such, Data Assimilation is demonstrated to be a viable
approach for quantifying the emission potential of landfill waste bodies. The assimilation of LPR rates helped
improve the accuracy of the estimation of total water storage, Vwb, compared to assimilating concentrations alone.
The gap between volume states and mass states is filled by concentration assimilation. Although the coupled
assimilation was performed at the same time steps, this method can easily be expanded to assimilate different
types of measurements at different time steps. This synthetic experiment assumes a perfect model so that the time
lag issue can be solved by adding daily model errors to cover layer states. In a real case study, we must combine
the state and parameter estimation to account for the parameter uncertainty. We may also need to independently
add model errors to all states if we consider the model conceptual error. Extra measurements, such as hydro-
geophysical observations for the whole waste body, may be required to further quantify the uncertainty without
suffering the time lag problem. Future studies will focus on quantifying the uncertainty caused by model pa-
rameters, which, for example, determine the sensitivity of baseflow to bulk water storage volume.

Water Resources Research 10.1029/2023WR036549

WANG AND HEIMOVAARA 18 of 20

 19447973, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036549 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [11/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Data Availability Statement
All data and scripts used in this paper are available at (Wang & Heimovaara, 2024).
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