
MSc THESIS

Exploitation of cache based side channels on ARM

Parul Gupta

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

Android smartphones collect and compile a huge amount of sensitive
information which is secured using cryptography. There is an unin-
tended leakage of information during the physical implementation of
a cryptosystem on a device. Such a leakage is often termed as side
channel and is used to break the implementation of cryptographic
algorithms. In this work, we utilize cache memory based side chan-
nels on android smartphones to retrieve crypto-process information.
These side channels are based on the information leakage through the
operating system, micro-architecture of the processor and the state
of the processor's memory cache. We demonstrate the retrieval of
data dependent memory access patterns using a spy application run-
ning in the background to recover the full secret key of cryptographic
primitives such as AES T-table implementation in OpenSSL, all that
would be necessary is a rogue app downloaded from an app store that
is run under normal privileges. We show that a mathematical corre-
lation which depends on the guessed key, can be utilized to recover
the complete key in access-driven cache attacks (CAs). We show the
e�ectiveness of the proposed method using access time measured in
noisy environments. We analyze the changes in the correlation val-
ues with the number of plaintexts/ciphertexts for a successful attack

using key estimation. Furthermore, we discuss and demonstrate the applicability of cache memory based
side channel attacks on a white-box implementation of AES.

Exploitation of cache based side channels on

ARM
Correlation Analysis of Access-driven Cache Attacks on

Android Smartphones

THESIS

submitted in partial ful�llment of the
requirements for the degree of

MASTER OF SCIENCE

in

Embedded Systems

by

Parul Gupta

born in Jaipur, India

Cyber Security
Department of Intelligent Systems
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Exploitation of cache based side channels on

ARM

by Parul Gupta

A
ndroid smartphones collect and compile a huge amount of sensitive information which is
secured using cryptography. There is an unintended leakage of information during the
physical implementation of a cryptosystem on a device. Such a leakage is often termed as

side channel and is used to break the implementation of cryptographic algorithms. In this work,
we utilize cache memory based side channels on android smartphones to retrieve crypto-process
information. These side channels are based on the information leakage through the operating
system, micro-architecture of the processor and the state of the processor's memory cache. We
demonstrate the retrieval of data dependent memory access patterns using a spy application
running in the background to recover the full secret key of cryptographic primitives such as AES
T-table implementation in OpenSSL, all that would be necessary is a rogue app downloaded from
an app store that is run under normal privileges. We show that a mathematical correlation which
depends on the guessed key, can be utilized to recover the complete key in access-driven cache
attacks (CAs). We show the e�ectiveness of the proposed method using access time measured
in noisy environments. We analyze the changes in the correlation values with the number of
plaintexts/ciphertexts for a successful attack using key estimation. Furthermore, we discuss
and demonstrate the applicability of cache memory based side channel attacks on a white-box
implementation of AES.

Laboratory : Cyber Security
Committee Members :

Advisor: Dr. Christian Doerr, Cyber Security, TU Delft

Advisor: Ruben Muijrers, Security Analyst, Riscure B.V.

Chairperson: Dr. Jan van der Lubbe, Cyber Security, TU Delft

Member: Dr. Stephan Wong, Computer Engineering, TU Delft

i

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures viii

List of Tables ix

List of Acronyms xi

Acknowledgements xiii

1 Introduction 1

1.1 Related Work . 4
1.2 Motivation . 6
1.3 Challenges . 7
1.4 Research Goal . 8
1.5 Outline . 8
1.6 Test Devices . 9
1.7 About lib�ush . 10

2 Background 11

2.1 Memory Hierarchy . 11
2.2 About CPU Caches . 12

2.2.1 Summary . 19
2.3 ARM Caches . 20

2.3.1 ARM Cache Organization . 20
2.3.2 ARM Cache Coherency . 21
2.3.3 ARM Cache Policies . 21
2.3.4 Con�guring ARM Caches . 23
2.3.5 ARMv7 Cache Architecture . 24

2.4 Operating Systems Caveats . 24
2.4.1 Shared Memory . 24

3 Understanding Side Channels on Android 27

3.1 Microarchitectural Attacks . 28
3.1.1 Cache Attacks . 30

3.2 Exploitable ARM properties for Cache Attack 31
3.3 AES . 32

3.3.1 Description . 32
3.3.2 OpenSSL AES Implementation . 33

3.4 Correlation Analysis . 35
3.5 Key Rank Estimation . 36
3.6 An overview of White-Box . 37

v

3.6.1 White-Box on an Android Platform 37

4 Case Studies 39
4.1 Introduction . 39
4.2 Cache Attacks . 39

4.2.1 Adversary Model . 40
4.2.2 Modeling the Cache Timing Behavior 41

4.3 Notations . 44
4.3.1 EVICT + RELOAD Attack . 44
4.3.2 PRIME + PROBE Attack . 45

4.4 Attack Scenarios . 45
4.4.1 Cache Attack on a Shared Library 45
4.4.2 Cache Attack on AES Sbox . 47
4.4.3 Cache Attack on AES T-tables . 49

5 Results and Analysis 57
5.1 Cache Correlation Analysis (CCA) and Leakage Models 57
5.2 CCA on Di�erent Processor Architectures 59

5.2.1 EVICT+RELOAD . 59
5.2.2 EVICT+RELOAD on ARM . 60
5.2.3 PRIME + PROBE . 62
5.2.4 White-Box Cryptosystems . 65

5.3 Impact Analysis of Attack Assumptions 67

6 Conclusion 71
6.1 Conclusion . 71
6.2 Contributions . 71

Bibliography 78

A Appendix 79
A.1 Processor Cache E�ects . 79

A.1.1 Impact of Cache Lines . 79
A.1.2 Impact of L1-L2 Sizes . 80
A.1.3 Impact of Cache Associativity . 80
A.1.4 Memory Organization . 81
A.1.5 Impact of CPU A�nity . 82

A.2 Types of Cache Misses and their utility . 82
A.2.1 L1 and L2 cache misses . 83

A.3 Eviction Results: Nexus 5 . 83
A.4 White-Box Use cases . 84
A.5 First Order Analysis and Key Rank Estimation 85
A.6 Research Paper . 88

vi

List of Figures

1.1 Android Software Stack . 2
1.3 Applications on Android . 3
1.4 Side Channels Overview . 4

2.1 Memory Hierarchy . 11
2.2 Placement of Cache Memory . 12
2.3 Cache Memory and Main Memory Addresses 13
2.4 Core Bus Architecture . 14
2.5 Direct Mapped Cache . 15
2.6 Memory address for Fully Associative Cache 16
2.7 Fully Associative Cache . 16
2.8 Multiple Cache Organization . 19
2.9 ARM Cache Architecture . 20
2.10 ARM Cache Organization . 21
2.11 Cache Write-back . 22
2.12 Cache Write-through . 22
2.13 Shared Memory . 25
2.14 Shared library on an operating system 25

3.1 Experimental Set-up . 28
3.2 Arrows Depicting Keystrokes after and before RSA operation 29
3.3 Fuel Gauge and processor interaction . 29
3.4 AES Encryption . 33
3.5 S-box S . 34
3.6 S-box S' . 34
3.7 White-box attack . 37

4.2 EVICT+RELOAD cache attack . 44
4.3 PRIME+PROBE cache attack . 45
4.4 Cache Access Map of a process performing Table-lookups 46
4.5 AES sbox attack strategy . 48
4.6 Number of bytes vs Number of cache traces 49
4.7 Threat Model . 50
4.8 Attack Steps . 50
4.9 Nexus 5: AES pro�le trace for k0=0x00 52
4.10 Nexus 5: AES cache trace for k0 = 0x51 54
4.11 Cache Traces . 56

5.1 ID model for binary cache trace . 58
5.2 x86: Correlation results of Bit Leakage Model 60
5.3 x86: EVICT+RELOAD attack . 61
5.4 Subsets and the reduction of key entropy 61
5.5 MIN-AVG-MAX Key Rank Estimation on 1100 traces 62

vii

5.6 Nexus 5: EVICT+RELOAD results of key Estimation on varying number
of cache traces . 63

5.7 Nexus 5: MIN-AVG-MAX key rank estimation 64
5.8 Nexus 5: 256 addresses depicted in Cache traces 64
5.9 Nexus 5: Key Rank Estimation using 256 addresses 64
5.10 Samsung Galaxy S4: EVICT+RELOAD results 65
5.11 Nexus 5: Prime+Probe Results with other processes running 65
5.12 Nexus 5: Prime+Probe Results with only spy and victim process in

runnable mode . 66

A.1 Step-size(k) vs Access times(clock cycles) 79
A.2 Access Times vs Array Size . 80
A.3 Mapping from main memory to cache . 81
A.4 S-box elements mapped from main memory to cache 82
A.5 Content Protection using White-Box . 84
A.6 Digital Signature using White-Box . 84
A.7 Steps of Correlation Analysis of cache attack on last round of AES . . . 85
A.8 Key rank estimation of cache attack results on AES last round 85
A.9 Nexus 5: Key Rank Estimation on 8000 traces 86
A.10 Nexus 5: Correlation Analysis 320000 cache traces 86
A.11 Nexus 5: Key rank estimation of subsets (8000 cache traces each) 87
A.12 Nexus 5: Minimum-Average-Maximum of subsets (8000 cache traces each) 87

viii

List of Tables

1.1 Cache organization Krait 400 . 9
1.2 Cache organization Krait 300 . 10

2.1 Access Times . 11
2.2 ARM Cache Maintenance Instructions 23

3.1 Instantneous Current and Voltage Files in Android 27

4.1 Cache Memory Access table . 46
4.2 Cache attack enablers on X86 and ARM 49

5.1 Reduction of bit entropy with number of traces 60

A.1 Eviction Results: Nexus 5 . 84

ix

x

List of Acronyms

NUMA Non-Uniform Memory Access

ECC Elliptic Curve Cryptogrpahy

MMU Memory Management Unit

RSA Rivest Shamir Adleman

AES Advanced Encryption Standard

PSC Power Side Channels

ACCI Amba Cache Coherent Interconnect

DFA Di�erential Fault Analysis

DRAM Dynamic Random Access Memory

SCU Snooping Control Unit

MESI Modi�ed Exclusive Shared Invalid

MOESI Modi�ed Owned Exclusive Shared Invalid

ACP Accelerator Coherency Port

ACE Accelerator Coherency Extension

POU Point of Uni�cation

POC Point of Coherence

VIPT Virtually Indexed Physically Tagged

PIPT Physically Indexed Physically Tagged

WBC White-Box Cryptography

xi

xii

Acknowledgements

It has been a period of intense learning for me, not only in the scienti�c arena, but also
on a personal level. I would like to re�ect on the people who have supported and helped
me so much throughout this period.

I would �rst like to thank my thesis advisor Dr. Christian Doerr of the Depart-
ment of Cyber Security at the Delft University of Technology. Dr. Doerr supported me
greatly and was always willing to help me. I would then like to thank my colleagues
from my internship at Riscure B.V. for their wonderful collaboration. It was indeed a
pleasure to work with Mr. Ruben Kuipers from Riscure B.V. Ruben was always open
whenever I ran into a trouble spot or had a question about my research or writing. He
consistently allowed this paper to be my own work, but steered me in the right the
direction whenever he thought I needed it.

I would also like to thank the experts, Mr. Nikita Abdullin and Ms. Valentina
from Riscure B.V. who were involved in the brainstorm sessions for this research project.
Without their passionate participation and input, this research work could not have
been successfully conducted.

I would like to thank Dr. Jan van der Lubbe for his deep insights and construc-
tive feedback on our research. I would also like to acknowledge Dr. Stephan Wong of the
Department of Computer Engineering, and I am gratefully indebted to him for his very
valuable comments on this thesis.

Finally, I must express my very profound gratitude to my parents and to my hus-
band for providing me with unfailing support and continuous encouragement throughout
my years of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them. Thank you everyone.

Parul Gupta
Delft, The Netherlands
August 23, 2017

xiii

Introduction 1
With over 1 billion smartphones and 179 billion mobile applications downloaded per year
[27], mobile application development is an integral part of the digital ecosystem. Mobile
applications are not just rede�ning marketing strategies but are also revolutionizing
the future technologies such as IoT (Internet of Things). As per a report by Gartner
[68], there will be 21 billion connected devices by 2020 which includes smart objects like
LED light bulbs, toys, domestic appliances, sports equipment etc. As IoT will continue
to evolve at an ever-increasing pace, smartphones will function as the main interface
through which we will be able to interact with IoT enabled devices. Smartphones will
act as remote controls, displaying and analyzing information, interfacing with social
networks, paying for subscription services, updating object �rmware etc. With 87%
market share [15], android clearly dominates the smartphone market and it is predicted
that in 2017 around 1 billion android smartphones will be shipped. One of the reasons
behind such a huge success is that android is considered to be "open and free". Also
for developers, it allows them to incorporate already available third party code in their
applications which can be con�rmed by the heavy usage of native libraries among the
most popular applications. However, including third party code in an application can
have some severe consequences both on the user and the developer of the app.

Mostly, users download android applications from the Play Store and review the
permission requirements presented to them and then install the applications. In addition
to the Play Store, users can make use of other application stores and there exists
multiple ways to install new applications onto an android smartphone. However, post
manufacturer software downloads from 3rd party market places or application stores
provide opportunities for malicious mobile applications to gain access to the devices.
Such applications can have or request for an access to personal information (including
saved passwords, login information and email-access) with or without user's knowledge.
Hence, apart from empowering mobile devices these applications can reveal a great deal
of information about its users. Prior work has shown that many third-party applications
request more permissions than needed. Felt et al. [34] found out that one third of 940
apps on the android Play Store request access to the information without any legitimate
need. It makes smartphones attractive targets and represents a signi�cant risk to
information security and data security of the user.

Interestingly, android smartphones are susceptible to leakage of user's information in
unexpected ways as explained in [58][53][35][19][48][52]. Android(Figure: 1.1)[3] uses a
kind of Unix Sandboxing method to run the applications and android software stack is
shown in Figure: 1.1[3]. Usually mobile applications run with di�erent permissions and
privileges and low-level implementation of machine in collaboration with OS provides

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Android Software Stack

for desired access control. For example, each application that is installed on an android
device is assigned its own unique user identi�er (UID) and group identi�er (GID). This
behavior is di�erent than conventional Linux, where applications that are shared by a
user are run under user's context. It also relies on the fact that user is not installing
any malicious software on his/her computer because there is no protection mechanism
against accessing �les that are owned by the same user that you are running as. Amongst
various other strategies are kernel and userspace separation, �lesystem permissions etc.

(a) Android Sandboxing
(b) Android Permission Model for Sensitive In-
formation

As each application has its own user name and memory space, one application cannot
access the resources of other application until de�ned explicitely (Figure: 1.3). Each
application runs into separate VMs (Figure: 1.2a). It implies that vulnerability found
in one application will not a�ect remaining applications. There exists a permission
enforcement by Android in order to protect the following:

• Access to sensitive APIs

• Access to content providers

build

3

• Inter and Intra-application communication

The permission model (Figure: 1.2b)[5] is all-or-nothing; the user can install the app or
not, but cannot choose to install it with reduced permissions. This imparts a signi�cant
responsibility to both the developer (to accurately specify required permissions) and the
user (to understand the risk invloved and make an informed decision). Additionally,
it is a developer's duty to protect user's device from information security breaches by
following safe coding practices.

In practice, cryptographic primitives and cryptographic protocols are implemented
to protect user's information from malicious applications. Smartphones use cryp-
tographic keys to protect sensitive information such as health records and banking
passwords. Several techniques such as disk encryption and the encrypted communication
over the Internet are applied. These techniques intrinsically make use of standardized
cryptographic algorithms such as Advanced Encryption Standard (AES) etc. In
cryptographic implementations, the secret key directly a�ects the emitted side-channel
information for e.g. power usage patterns, observations made on this leaked data can
eventually lead to the revelation of the secret key. Hence, such malicious leakage to
untrusted third-party applications which exploit these side-channels is one of the key
challenges to the mobile data security and privacy.

Figure 1.3: Applications on Android

A potential leakage in the form of execution footprints [19] leaks timing information
such as, access time to perform a look-up in a table while performing a crypto operation.
Such a side-channel originally stems from the microarchitectural structure of the
underlying microprocessor. In the same direction, Osvik et.al [58] show how a low-level
implementation detail of modern CPUs, namely the structure of memory caches, leads
to cross-process information leakage between processes running on the same processor.
In essence, the cache forms a shared resource which all processes compete for, and it thus
a�ects and is a�ected by every process. While the data stored in the cache is protected
by virtual memory mechanisms, the metadata about the content of the cache, and
hence the memory access patterns of processes using that cache, is not fully protected
[58][19][53].

build

4 CHAPTER 1. INTRODUCTION

Figure 1.4: Side Channels Overview

Several solutions are used to protect the cryptographic keys which range from unpro-
tected software implementations to temper resistant hardware implementations. One
such implementation is a white-box implementation [74] which hides the cryptographic
key inside a software and turns a keyed cryptographic algorithm into an unintelligible
program with the same functionality. Thus, a white-box secure program can then be
executed in an untrusted environment without the fear of exposing the underlying keys.
The code itself is tamper-proof and robust, just as a secure element. White-box imple-
mentations [33][24] can be used to protect smartphones against malicious applications.
Other use-cases include the protection of digital assets (including media, software and
devices) in the setting of digital rights management, the protection of Host Card Em-
ulation (HCE) and the protection of credentials for authentication to the cloud. In a
typical white-box attack set-up, it is assumed that the adversary has full control over the
execution environment which is more realistic in comparison to black-box or gray-box
attack model. Additionally, if one has access to a ”perfect” white-box implementation
of a cryptographic algorithm, then this implies one should not be able to deduce any
information about the secret key material used by inspecting the internals of this imple-
mentation. Ideally, a white-box implementation [33] should resist all existing and future
side-channel attacks. However, in our research we demonstrate using side-channel attacks
that white-box implementations are vulnerable to cache attacks.

1.1 Related Work

In 1999, the concepts of Simple Power Analysis (SPA) and Di�erential Power Analysis
(DPA) were introduced by Kocher et al.[48][49], where an attacker can extract cryp-
tographic keys by studying the power consumption of a device. They explained that
there is a leakage of information from computers and chipsets about the operation they
execute. They utilized the power consumption measurements to �nd secret keys from
tamper resistant devices.

build

1.1. RELATED WORK 5

A di�erent side channel on modern computing architectures is introduced by the
memory hierarchy that stores subsets of the computer's memory in smaller but faster
memory units, so-called caches. Cache side-channel attacks exploit the di�erent access
times of memory addresses that are either held in the cache or the main memory. Kelsey
and Kocher et al. [46][48] were the �rst to discuss the theore tical cache attacks. Page
and Tsunnoo et al. [59][67] discussed the applicability of cache attacks on DES. Bernstein
[20] demonstrated complete AES key recovery from known-plaintext timings of a network
server. It has been one of the most extensively investigated attacks. Hund et al. [44]
demonstrated how an adversary can implement a generic side channel attack against the
memory management system to deduce information about the privileged address space
layout. Gullasch et al. [41] attacked the L1 cache and demonstrated the exploitation of
shared memory to mount cache attacks. The Evict+Time and Prime+Probe techniques
by Osvik et al. [58] explicitly targeted cryptographic algorithms. While Herath et al.
[13] discussed the CPU Hardware Performance Counters for Security, Chiappetta et
al. [28] demonstrated the real time detection of cache-based side channel attacks using
hardware performance counters. Yarom and Falkner introduced Flush+Reload attack
in 2014 where the target was L3 cache instead of L1 cache. It allows an attacker to
determine which speci�c parts of a shared library or a binary executable have been
accessed by the victim with an unprecedented high accuracy. Based on this work Gruss
et al. [53] demonstrated the possibility to exploit cache-based side channels via cache
template attacks in an automated way and showed that besides e�ciently attacking
cryptographic implementations, it can be used to infer keystroke information and even
log speci�c keys. Zhao et al. [76] presented an access-driven attack on the �rst and
second round of the AES encryption. Laradoux et al. [51] explained about the collision
attacks on processors with cache and countermeasures.

However, it is also possible to induce hardware faults by software, and thus from
a remote location, if the device could be brought outside of the speci�ed working condi-
tions. In 2014 Kim et al. [47] demonstrated that accessing speci�c memory locations at
a high repetition rate can cause random bit �ips in Dynamic Random-Access Memory
(DRAM) chips. Since DRAM technology scales down to smaller dimensions, it is much
more di�cult to prevent single cells from electrically interacting with each other. They
observe that activating the same row in the memory corrupts data in nearby rows. Gruss
et al. [53][39] showed that such bit �ips can also be triggered by JavaScript code loaded
on a website. However, this attack can only be demonstrated on Intel and AMD systems
using DDR3 and modern DDR4 modules. Brumley et al. [26][25] carried out the attack
on live cache-timing data and cache storage data. In 2015, Seaborn demonstrated that
cache side channel attack could be exploited for privilege escalation. Weiss et al. [71] and
Bogdanov et al. [22] attacked ARM7 microcontrollers and ARM Cortex-A8 processors.
Van der Veen et al. [36][69] investigated the rowhammer bug [47] on ARM-based devices
as well. Key rank estimation techniques came as a major breakthrough in the �eld of
estimation of security of a cryptographic implementation. Vincent et al. [61] explained
a simple key enumeration and rank estimation technique using Histograms.

build

6 CHAPTER 1. INTRODUCTION

1.2 Motivation

In the current scenario [8], most of the side-channel attacks on a smartphone require an
adversary to have physical access to it or at least have a cable or probe in close prox-
imity to the device while it is performing some cryptographic operation. Usually the
time to attack an application is dependent on the application speci�cation for e.g. time
to hack RSA [62] would be di�erent than that required for ECC [42]. Such impractical
requirements usually result into futile attempts while attacking a mobile device remotely.
However, such unintended information leakage poses greater threats than once perceived.
Unintended data leakage [14] occurs when a developer accidentally places sensitive infor-
mation or data in a location on the mobile device that is easily accessible by other apps
on the device. Such unintended data leakage or side-channel data leakage [9] from mobile
devices arises from the vulnerabilities in the following :

• Operating System

• Frameworks

• Compiler environment

• Hardware

• Microarchitecture of CPU

For instance, a developer's code processes sensitive information supplied by the user or
the backend. During that processing, a side-e�ect (that is unknown to the developer)
results in that information being placed into an insecure location such as cache etc.
on the mobile device that other apps on the device may have open access to. Under
these assumptions, we can safely assume that one malicious app can extract valuable
information about other apps running on the same device. Typically, cache side-e�ects
originate from the underlying mobile device's operating system (OS). It is fairly easy for
a rogue application to detect data leakage by inspecting all mobile device locations that
are accessible to victim app for the app's sensitive information. Several remote attack
vectors which can be potentially exploited on an Android OS for such attacks are :

• Browsers and Document Readers

• Custom Update Mechanisms

• Remote Loading of Code

• WebViews

• Listening Services

• Messaging Applications

Interestingly, if the appropriate security applications and procedures are not applied,
these rogue applications can utilize side-channel leakage to extract the secret key used
to encrypt user's private information. For example, a spy application may determine the
secret key information by using the memory access pattern of a cryptographic algorithm
running in the backend of a banking application.

build

1.3. CHALLENGES 7

1.3 Challenges and Results

The prime focus of our research is on the cache based side channels on android
smartphones. Cache memory is a smaller and faster storage area in comparison to the
main memory and therefore many di�erent addresses in main memory are mapped to
the same cache entry. The cache architectures are optimized to minimize the number
of cache misses for typical access patterns but can be easily manipulated. Depending
on the cache replacement policy, such property can be used to perform manual cache
eviction and monitor the cache behavior. Additionally, a data item residing in a cache
(cache hit) is retrieved much faster than a data item that is not in the cache (cache
miss) and the di�erence in accesses is measurable. Such properties of the cache can
be exploited to retrieve the memory access patterns during the encryption/decryption
process of a cryptosystem.

We studied the cache behaviour using the side-channel leakage on android smart-
phones. Existing cache-based side channel attacks have thrived on x86 architecture
which ful�lls almost all the necessary requirements. For instance, the x86 architecture
provides with cl�ush instruction to evict a cache line. An accurate timing mechanism
which employs rdtsc instruction is also available in unprivileged mode. However, android
smartphones use multi-core ARM CPUs which have di�erent architecture and di�erent
instruction set than Intel CPUs. In contrast to x86, there are several challenges on
ARMv7 CPUs which can be enumerated as follows :

1. Non-inclusive/exclusive cache

2. No unprivileged cache �ush instruction

3. Pseudo random cache replacement policy

4. Accurate unprivileged timing source

Gruss et.al [53] developed a library lib�ush in order to mount cache-based side channel
attacks on x86 and ARM processors. To our advantage, we have used lib�ush to perform
cache attacks on ARMv7 based processors such as Krait 400 (similar to Cortex A-15).
Using lib�ush [53], not only could we overcome all the above mentioned challenges but
could also attack white-box cryptosystems. We start with exploring how cache attacks
(using shared memory) can be used by a rogue application to spy on a victim application
performing look-ups. We refer to the work of Osvik et.al [58] in reducing the entropy
of OpenSSL AES implementation from 128 bits to 64 bits on Nexus 5 by attacking
�rst round of AES. We develop a novel strategy using techniques mentioned in [58]
and [39] and successfully recover the full key by incorporating correlation analysis of
cache traces on x-86 and ARM. We also discuss the applicability of key rank estimation
techniques on the generated cache traces. We analysed our results with resepct to various
attack parameters. Several statistical properties of cache traces have also been discussed.
Eventually, we explore the applicability of cache attacks on a white-box implementation
of AES on Nexus 5.

build

8 CHAPTER 1. INTRODUCTION

1.4 Research Goal

In the recent 10-15 years [79], there has been a shift in attackers' approach while
attacking a cryptosystem which was previously based on exploiting the mathematical
weakness of cryptographic algorithm itself. Now adversaries try to �nd a correlation
between the side channel information and the operation related to the secret key. Side
channel attacks focus on the way cryptographic algorithms are implemented rather than
the algorithm itself. These attacks work because there is a correlation between the
physical measurements (e.g., computation time, power consumption etc.) taken during
computations and the internal state of the processing device, which is itself related to
the secret key.

Our research agenda is to deploy cache based side channel attacks (later referred
as "cache attacks or CAs") on android based smartphones. We identify the leakage
associated with the hidden secret key in gray-box and white-box cryptosystems. With
this work, we aim to �nd answer to the following research question:

How to successfully recover the full key from crypto applications on android smartphones
using cache based side channels along with statistical analysis?

Eventually, we �nd answers to the following sub-questions with respect to our
test devices (1.6):

• How can we use cache attacks to perform cryptanalysis of a cryptosystem relying
on information related to cache hit or miss?

• How can we make use of correlation analysis on cache traces to extract a secret key
of a cryptographic algorithm?

• How statistical evaluation techniques like key rank estimation assist in reducing the
key entropy while extracting the secret key of a cryptographic algorithm ?

• Why does the initial cache state in�uences the performance of cache attack?

• How do di�erent attack scenarios and parameters create an impact on the overall
intensity of the attack?

• How can we use cache attacks to perform cryptanalysis of a white-box cryptosystem
implementation on an android smartphone?

1.5 Outline

In this research work, we discuss the cache attacks on the execution of arti�cal and
crypto applications on android smartphones. We demonstrate the cache attacks using
a spy process which monitors the execution of crypto process/victim process on an an-
droid smartphone. In Chapter 1, we brie�y discuss the issues associated with third party
native code on android and how android fails to safeguard user's sensitive information

build

1.6. TEST DEVICES 9

against cache based side-channels. We introduce our research goal alongwith the moti-
vation behind it. In Chapter 2, we describe the basic concepts about cache organisation,
functioning and maintainence. Also, we discuss the OS vulnerabilities and how they
were utilised in the past to attack applications on x86 architecture. In Chapter 3, we
introduce side channels on android smartphones. We categorically discuss cache attacks
on ARM. We discuss the portability of cache attacks mountable on x86 to ARM archi-
tecture. A brief introduction to the OpenSSL implementation of AES is complemented
with the discussion about Correlation Analysis. In Chapter 4, we describe the adver-
sary attack model, attack assumptions and attack strategy. Finally, we highlight attack
results (PRIME+PROBE and EVICT+RELOAD attack) and related conclusions. The
re�nement of our resusing Key estimation is also shown. Chapter 5 discusses the results
and in chapter 6, we highlight some of the major contributions to the �eld of cache at-
tacks which are also a major source of inspiration for our work. Chapter 7, concludes
our research and discusses contributions from our end to the �eld of cache attacks on
ARMv7 architecture.

1.6 Test Devices

We aim to perform side channel attacks on Nexus 5 (Android 5.0) which has QUAL-
COMM KRAIT 400 (approx 2.25 GHZ) processor with following properties of interest:

• Harvard Architecture: 32 bit

• Quad-core

• Local L1 caches (Instruction and Data) per core

• High performance and extremely e�cient

• Uses ARMv7-A ISA

• Snoop control unit for cache data coherence

Cache Organization (per core) of KRAIT 400 is as follows:

Level of cache Cache Size Associativity Cache Line Size Inclusiveness

L1 2x16KB (per core) 4-way 64 Bytes Non-inclusive and exclusive
L2 0.5MB (per core) 8-way 64 Bytes Shared & uni�ed

Table 1.1: Cache organization Krait 400

Another Test device is Samsung Galaxy S4 (Android 5.0) with following speci�cations:

• CPU Clock Speed: Up to 1.9 GHz

• Quad-core CPU: 4x Qualcomm Krait 300 CPU

• CPU Bit Architecture: 32-bit

build

10 CHAPTER 1. INTRODUCTION

• Snapdragon 600 SoC with Krait 300TM

• ARMv7-A ISA

Cache Organization of KRAIT 300 is as follows:

Level of cache Cache Size Associativity Cache Line Size Inclusiveness

L1 2x16KB (per core) 4-way 64 Bytes Non-inclusive
L2 0.5MB (per core) 8-way 128 Bytes Shared & uni�ed

Table 1.2: Cache organization Krait 300

1.7 About lib�ush

Gruss et.al [53] developed lib�ush to deploy cache attacks on x86 as well as ARMv7 and
ARMv8 architectures. It allows us to easily implement attacks based on Prime+Probe,
Flush+Reload (another variant is Evict+Reload), Flush+Flush and Prefetch attack tech-
niques. We utilize this library to perform cache attacks on the cryptographic primitives
like AES in native code. Also, we use it to determine the leakage from shared libraries
used in Android Applications. As an extension to our work, by using lib�ush we aim to
mount cache attack on a white-box implementation of AES.

build

Background 2
2.1 Memory Hierarchy

Memory organization of a processor separates each memory level on the basis of its re-
sponse time, location, capacity, units of transfer, performance and physical characteristics
such as decay, volatility, power consumption. As shown in (Table: 2.1), when performance
is a major concern, then cache memories are undoubtedly the most important part of the
memory organization.
A cache memory is a small, volatile and fast array of memory placed between the proces-

Figure 2.1: Memory Hierarchy

sor and main memory. It is the fastest memory in a computer, and is typically integrated
onto the motherboard and directly embedded in the processor or main random access
memory (RAM). It is equipped with additional features to cater to high throughput
requirements of a processor. It is a holding bu�er that stores portions of recently refer-
enced system memory. The processor uses cache memory in preference to system memory
whenever possible to increase average system performance. A write bu�er is a very small

Memory Type Access Times (in ns)
Registers 1-2
L1 Cache 3-10
L2 Cache 25-50
Memory 30-90

Table 2.1: Access Times

11

12 CHAPTER 2. BACKGROUND

FIFO memory placed between the processor core and main memory which helps free the
processor core and cache memory from the slow write time associated with the writing
to main memory. The principle of locality of reference states that computer software
programs frequently run small loops of code that repeatedly operate on local sections of
data memory and explains why the average system performance increases signi�cantly
when using a cached processor core. However, the disadvantage of cache memories is
that they lead to side-channel information leakage leading to attacks on ciphers. Data
cache memory can be a source of leakage for any cipher implementation that uses look-up
tables which are accessed at key dependent locations.

2.2 About CPU Caches

As discussed previously, cache [73] provides faster data storage and access by storing
instances of programs and data routinely accessed by the processor. Thus, when a
processor requests data that already has an instance in the cache memory, it does not
need to go to the main memory or the hard disk to fetch the data. When a byte of data
must be paged in during the computation, the processor �rst looks for it in the cache.
If present in the cache, this results in a cache hit. The data is brought to the registers
within a single clock cycle without stalling the pipeline. If not present in the cache, this
results in the cache miss, and the desired data is fetched from Non-Volatile Memory
(NVM), and the entire line containing the desired data is loaded into the cache. In the
case of a cache miss, the data has to be brought from the memory and it is an expensive
operation as shown in Table:2.1.

All the cache design attributes aim towards maximizing the cache hits and im-
proving the overall system performance. Various attributes of cache design which decide
the overall access time, transfer rate and performance are as follows:

• Physical and Logical Caches: The placement of a cache before or after the
Memory Management Unit (MMU) is either physical or logical. A logical cache
(Figure: 2.2a) is placed between the processor core and MMU references code and
data in a virtual address space. A physical cache (Figure: 2.2b)is placed between
MMU and main memory. The references to code and data memory are done using
physical addresses.

(a) Logical cache (b) Physical cache

Figure 2.2: Placement of Cache Memory

build

2.2. ABOUT CPU CACHES 13

• Cache Address Translation: On the basis of physical and virtual addresses being
represented by tag or index (Figure: 2.3), caches can be divided into the following
classes :

Figure 2.3: Cache Memory and Main Memory Addresses

� Physically indexed, physically tagged (PIPT): These caches [73] use the
physical address for both index and tag.

� Physically indexed, virtually tagged (PIVT): Not many architectures
implement this cache design [73].

� Virtually indexed, physically tagged (VIPT): These caches [73] use the
virtual address for the index and the physical address in the tag Krait 400
CPU, on our test device (Nexus 5) uses VIPT caches.

build

14 CHAPTER 2. BACKGROUND

� Virtually indexed, virtually tagged (VIVT): These caches [73] use vir-
tual address for both tag and index.

• Cache Size: Cache size [73] is an important attribute as it a�ects the performance.
The increase in the size of the cache would result in faster data accesses (upto a
certain point) but would cost more as well. It should be noted that checking for
data in large caches takes more time.

• Core bus architecture: The core bus architecture [73] helps determine the design
of a cached system. A Von Neumann (uni�ed) architecture (Figure: 2.4b and 2.4a)
uses a uni�ed cache to store instructions and data. Harvard architecture, on the
other hand uses a split cache: one cache for instructions named as Instruction Cache
and another cache for data named as Data Cache. ARM makes use of (modi�ed)
Harvard architecture, it has one L1 instruction cache and one L1 data cache.

(a) Harvard Architecture (b) Von Neumann(Uni�ed) Architecture

Figure 2.4: Core Bus Architecture

• Mapping Function: One key decision in cache design is that how the main mem-
ory blocks should be mapped to the cache slots (Figure: 2.3). There are three
possible approaches to map memory blocks to cache slots (we will use slots or lines
interchangeably throughout this document):

� Direct mapped cache: In a direct mapped cache [73] each memory block
is mapped to one speci�c slot in the cache. Hence, it is not possible to store
two memory blocks which map to the same cache set simultaneously. In the
following steps, we will discuss how address mapping is done.

Block Identi�cation: Let us assume that the main memory contains
n blocks (which requires log2(n)) and cache contains m slots, so n/m di�erent
blocks of memory can be mapped (at di�erent times) to a cache slot. Each
cache slot has a tag saying which block of memory is currently present in it,
each cache slot also contains a valid bit to ensure whether a memory block
is in the cache slot currently. Figure: 2.5 demonstrates direct mapped cache
functionality. It can be further simpli�ed as follows:
Number of bits in the tag: log2(n/m)
Number of sets in the Cache: m
Number of bits to identify the correct slot: log2(m)

build

2.2. ABOUT CPU CACHES 15

TAG INDEX BLOCK OFFSET

Log2(n/m) Log2m Log2(blocksize)

Figure 2.5: Direct Mapped Cache

This mapping strategy (Figure: 2.5) su�ers from poor cache utilization and
cache thrashing.

� Fully associative cache: Instead of mapping memory blocks to speci�c
cache slots or cache lines, they can be mapped to any cache slot using fully
associative caches. Each memory block can be stored in any slot in the cache,
e�ectively like a hash table. Fully Associative cache(Figure: 2.6 and 2.7) has
high e�ciency as the data can be stored in any entry, but it is expensive
in terms of circuit complexity. It requires independent simultaneous ways of
access and a comparator for each cache entry. Therefore, the size of this type
of cache is very small and used only for speci�c cases (e.g. TLB). Let the
main memory address be divided into two groups which are tags and word
bits. Words are low-order bits and identi�es the location of a word within a
block and tags are high-order bits which identi�es the block.

� N-way set associative cache: A combination of functionality of associative
and direct mapped caches is used in N-way set associative caches [73]. In an

build

16 CHAPTER 2. BACKGROUND

Figure 2.6: Memory address for Fully Associative Cache

Figure 2.7: Fully Associative Cache

N-way associative cache [73], each memory block can be stored in any one of
the N particular slots in the cache. Modern processors use one or more levels
of set-associative memory cache.

Such a cache consists of storage cells called cache lines, each consisting
of B bytes. The cache is organized into S cache sets, each containingW cache
lines, so the cache size is B.S.W bytes. The mapping of memory addresses
into the cache is limited as follows. First, the cache holds copies of aligned
blocks of B bytes in main memory (i.e. blocks whose starting address is 0
modulo B), which we will term as memory blocks. When a cache miss occurs,
a full memory block is copied into one of the cache lines, replacing (evicting)
its previous contents. Second, each memory block may be cached only in a
speci�c cache set; speci�cally, the memory block starting at address a can
be cached only in the W cache lines belonging to cache set [a/B mod S]. For
example, in a 8-way 64 KB (2b = 64kB) cache with a cache line size 64 bytes
2δ = 64, number of cache sets would be (2b/2δ). Each memory block can be
stored in 8 di�erent cache slots in a cache set. Commonly, blocks with indices
with the same lowest order bits will all compete for 8 slots. Mapping scheme
will be based on below mentioned equations in an n-way set-associative cache.

build

2.2. ABOUT CPU CACHES 17

Aword = Amod 2δ

Aset = bA/2δcmod2s

Atag = bbA/2δc /2sc

• Cache Replacement Algorithm: These optimizing algorithms [73] decide how
to make room for the new entries in the cache. It involves operations like cache
clean, cache �ush or cache eviction. They are described as follows :

� Cache Clean: A cache clean [73] operation causes the data present in the
cache line to be written back to the next level of cache or to the the memory if
the cache line is tagged as "dirty". In such a case, cache line holds the latest
copy of the data.

� Cache Invalidate: This function invalidates a cache line so that future reads
go the main memory instead of that cache line. The invalidated lines don't
get written back to the memory. Hence, there is a chance that we may loose
data. It is suggested to perform a clean operation in prior to invalidation.

� Cache Evict: In the case of eviction [73], a cache line is written back to the
memory when the cache is full. Cache eviction can be accidental or forced and
the consequences of eviction depend on our cache con�guration. This would
be further explained in the later sections.

� Cache Flush: It is similar to cache eviction as a cache line or the entire cache
is �ushed to the main memory. However, the purpose di�ers, for e.g. when
a device reads memory contents, cpu �ushes the cache lines to the memory
before the read happens so that the device, reading memory contents, gets the
most updated data.

Various types of cache replacement strategies are described as follows:

� Least Recently Used (LRU): It replaces least recently used cache slots. It
is used in set associative caches.

� Least Frequently Used (LFU): It replaces cache slots with minimum num-
ber of cache hits. It is most e�cient algorithm but highly expensive and hence
commonly not used.

� First-In First-Out (FIFO): It replaces slots which have been longest in the
cache. It is used in set associative caches.

� Round Robin: It is used in full associative caches.

� Random Replacement (RR): It does not make use of access history and
randomly selects a candidate for replacement. It is used in full associative
caches

� Pseudo-Random LRU (PLRU): It almost always discards some of the
least recently used items in the cache. It is used in set associative caches. In
the later sections we will discuss how it is used in ARM architectures.

• Write Policy: The cache write policy determines how it handles writes
to memory locations that are currently being held in cache. It means that the

build

18 CHAPTER 2. BACKGROUND

cache blocks should not be overwritten until and unless main memory is up to date.

Most common write policies are :

� Write-through: Under this policy, data is concurrently written both to cache
and to main memory, or �rst to cache and then to memory. In such a case
multiple CPUs can monitor main memory tra�c to keep local (to CPU) cache
up to date. It generates lots of tra�c and slows down writes.

� Write-back: Write-back policy updates data only in the cache. The updated
data is "written back" to the main memory when needed, for instance on cache
line replacement (overwrite) or when required by other caches. This reduces
bus and memory tra�c because the next cache line update is taken only in
the cache without involving the memory.

• Block Size: Cache memory retrieves [73] not only the desired word but also the
adjacent words, hence on increasing the cache line size we will experience an increase
in cache hits up to a certain extent. This results in performance enhancement based
on the principal of locality. However increasing block size beyond a certain point
can also cost performance penalty because it will reduce the number of blocks which
can �t in the cache. Also, the data will be overwritten at a much faster pace after
being fetched. Not only this, each additional word will be less local and hence will
be less used. Cumulatively, the probability of using newly fetched information will
become less than the probability of reusing replaced.

• Cache Coherency: In systems such as Symmetric Multiprocessor System [72][73],
multi-core systems etc. where a dedicated cache for each processor, core or node is
used, a consistency problem may occur when the same data is stored in more than
one cache. This problem arises when a data is modi�ed in one cache. This problem
can be solved in two ways:

1. Invalidate all the copies on other caches (broadcast-invalidate)

2. Update all the copies on other caches (write-broadcasting), while the memory
may be updated (write through) or not updated (write-back).

Usually coherency is more of an issue for data cache then instruction cache. Three
approaches are adopted to maintain the coherency of data.

1. Bus watching or Snooping: It is generally used for bus-based Symmet-
ric Multiprocessor System (SMP), multi-core, Non-Uniform Memory Access
(NUMA) systems. In ARM bus snooping is used to maintain cache coherence.

2. Directory-based Message-passing: It may be used in all systems but typ-
ically in NUMA system and in large multi-core systems. In this approach the
sharing status of a particular cache line is kept in one location called directory.

3. Shared cache: It is generally used in multi-core systems.

• Number of Caches: Multi-level cache [73] is a trade-o� between price and
performance of modern CPUs. It provides an e�cient way to coordinate multi-core

build

2.2. ABOUT CPU CACHES 19

processors. Cache memory is made up of SRAMs which will retain its value
inde�nitely as long as it has operating power, making it much faster. SRAMs come
at multiple speeds and have price-band depending on their operating speeds. Hence
in the cache hierarchy, each cache has a di�erent size, speed and corresponding
cost. In a multi-core processor architecture, each core has its own L1 cache, writing
to and reading from L1 cache does not su�er interference from other cores.

Usually L1 cache is faster and smaller than L2 or L3 and hence, it is more
expensive. Therefore, the processor will put the values it needs the most in the
faster cache (L1) and the information that it needs less in a slower cache (L2 or
higher). In multi-level cache organization caches can be exclusive, inclusive and
non-inclusive on the basis of the manufacturer's choice. In exclusive caches, last
level cache (LLC) does not hold the copies of data present in lower-level caches.
In inclusive cache design, the LLC holds the copy of data present in lower-level
caches. But, a non-inclusive cache is neither inclusive nor exclusive. The cacheable
properties 2.8 of normal memory are speci�ed separately as inner and outer
attributes. Typically, inner attributes are used by the integrated caches, and outer
attributes are made available on the processor memory bus for use by external
caches.

Figure 2.8: Multiple Cache Organization

2.2.1 Summary

There are several important aspects of memory hierarchy which are worthmentioning and
can be summarized as follows:

1. Memory accesses are not performed in constant time.

2. Cache memory is fastest amongst all (except registers) in the memory hierarchy
and is an integral part of modern processor architecture.

build

20 CHAPTER 2. BACKGROUND

3. A CPU cache hides the latency of main memory by keeping copies of frequently
used data

4. Cache hits and misses are distinguishable even on noisy systems on the basis of
clock cycles they consume.

5. Last Level Cache (LLC) is usually a shared resource. It can be inclusive, exclusive
or non-inclusive based on the implementation of processor architecture.

6. Cache coherency is important in order to maintain uniformity in shared data re-
source in multi-core processors or multi-processing systems.

7. The cache coherence on multi-processor systems ensures that the data is found
independently of where in the cache it is stored.

8. Data cached anywhere in the on a multiprocessor system has lower access times
than the memory accesses facilitated by fast interconnects.

2.3 ARM Caches

2.3.1 Cache Organization

Figure 2.9: ARM Cache Architecture

ARM architectures [17] use set-associative cache design (Figure: 2.10) and (Figure:
2.9)[43] where the degree of associativity and the line size varies. It also makes use
of First-In-First-Out(FIFO) write bu�er to enhance memory write performance. The
write bu�er is interposed between the cache and the main memory and consists of a set
of addresses and a set of data words.

build

2.3. ARM CACHES 21

Figure 2.10: ARM Cache Organization

2.3.2 Cache Coherency

The Snooping control unit (SCU) [6] uses hybrid Modi�ed Exclusive Shared Invalid
(MESI) and Modi�ed Owned Exclusive Shared Invalid (MOESI) protocols to maintain
coherency between the individual L1 data caches and the L2 cache. The L1 data caches
support the MESI protocol. The L2 memory system contains a snoop tag array that is
a duplicate copy of each of the L1 data cache directories. The snoop tag array reduces
the amount of snoop tra�c between the L2 memory system and the L1 memory system.
Any line that resides in the snoop tag array in the Modi�ed/Exclusive state belongs
to the L1 memory system. Any access that hits a line in this state must be serviced
by the L1 memory system and passed to the L2 memory system. If the line is in-
valid or in the shared state in the snoop tag array, then the L2 cache can supply the data.

The SCU contains bu�ers that can handle direct cache-to-cache transfers between
cores without reading or writing any data on the ACE. Lines can migrate back and forth
without any change to the MOESI state of the line in the L2 cache.

Shareable transactions on the ACP are also coherent, so the snoop tag arrays are
queried as a result of ACP transactions. For reads where the shareable line resides in
one of the L1 data caches in the Modi�ed/Exclusive state, the line is transferred from
the L1 memory system to the L2 memory system and passed back on the ACP.

2.3.3 Cache Policies

The cache policies [7] enable the user to describe when a line should be allocated to the
data cache and what should happen when a store instruction is executed that hits in the
data cache.

build

22 CHAPTER 2. BACKGROUND

The cache allocation policies are as follows:

• Write allocation(WA): On ARM, a cache line is allocated in case of a write miss.
A store instruction triggers a burst read to occur. There is a line �ll to obtain the
data for the cache line, before the write is performed.

• Read allocation(RA): A cache line is allocated on a read miss.

The cache update policies are:

• Write-back(WB): A write updates the cache only and marks the cache line as
dirty. External memory is updated only when the line is evicted or explicitly cleaned
[4].

Figure 2.11: Cache Write-back

• Write-through(WT): A write updates both the cache and the external memory
system [4]. This does not mark the cache line as dirty. Data reads which hit in the

Figure 2.12: Cache Write-through

cache behave the same in both WT and WB cache modes.

Normal memory can be speculatively accessed by the processor and this
means that it can potentially automatically load data into the cache without a
programmer having explicitly requested a speci�c address. However, it is also
possible for the programmer to give an indication to the core about which data
is used in the future. The ARMv8-A provides preload hint instructions. It is
implementation de�ned whether the caches support speculation and preload.

build

2.3. ARM CACHES 23

2.3.4 Con�guring ARM Caches

ARM architectures [63] use the term �ush and clean to depict the cache maintenance
operations. They are described as follows:

Cache Flush: To ”�ush a cahche” is to clear it of any stored data. Flushing
[63] simply clears the valid bit in the a�ected cache line. All or just portions of a cache
may need �ushing to support changes in memory con�guration. The term invalidate
is sometimes used in place of the term �ush. However, if some portion of D-cache is
con�gured to use a writeback policy, the data cache may also need cleaning.

Cache Clean: To ”clean a cache” is to force a write of dirty cache lines from
the cache out of main memory and clear the dirty bits in the cache line. Cleaning a
cache [63] reestablishes coherence between cached memory and main memory, and only
applied to D-caches using writeback policy.

2.3.4.1 Using Coprocessor 15 for cache maintenance

There are several coprocessor 15 registers [63] used to speci�cally con�gure and control
ARM cached cores. Primary C15 registers: c7 and c9 control the setup and operation of
the cache. Secondary CP15: c7 registers are write only. They clean and �ush cache. The
CP15: c9 register de�nes the victim pointer base address which determines the number
of lines of code or data that are locked in the cache.

2.3.4.2 ARM Cache Maintenance Instructions

The ARM architecture o�ers following privileged operations to interact with caches and
they can be executed using operations mentioned in Table: 2.2

• Invalidate (I & D-cache)

• Clean (D-cache)

• Clean + Invalidate (D-cache)

• Cache maintenance by Virtual Address

• Cache maintenance by Set/Way

Table 2.2: ARM Cache Maintenance Instructions

DCCMVAC Clean data cache line by MVA to PoC
DCCSW Clean data cache line by MVA to PoC

DCCMVAU Clean data cache line by MVA to PoU
DCCIMVAC Clean data cache line by MVA to PoU
DCCISW Clean and invalidate data cache line by set/way

build

24 CHAPTER 2. BACKGROUND

2.3.5 ARMv7 Cache Architecture

Our test device Nexus 5 has KRAIT 400 CPU which is based on Armv7 architecture.
Some of the worth mentioning features of Armv7 cache architecture are as follows:

• (Modi�ed) Harvard architecture

� Multiple levels of caching (with snooping)

� Separate Instruction (I) cache and Data (D) cache (no snooping between I
cache and D cache)

� Either PIPT or non-aliasing VIPT for D-cache

� Meeting at the Point of Uni�cation (PoU)

• Controlled by attributes in the page tables

� Memory type (normal, device)

2.4 Operating Systems Caveats

2.4.1 Shared memory

Operating systems [77][11] use shared memory [55] (Figure: 2.13) to reduce memory
utilization and for speed enhancement. For example, there could be several processes
in the system running the bash command shell. It is not a good practice to have
several copies of bash, one in each process 's virtual address space. It is better to
have only one copy in physical memory and all of the processes running bash share
it. Dynamic libraries are another common example of executing code shared between
several processes. For instance, libraries used by several programs are shared among all
processes using them. The operating system loads the libraries into physical memory
only once and maps the same physical memory into the address space of each process. It
enhances the execution speed as the code is kept only once in the memory, CPU caches
and address translation units.

The operating system employs shared memory in several more cases. First, when
forking a process, the memory is shared between the two processes. Only when the data
is modi�ed, the corresponding memory regions are copied. Second, a similar mechanism
is used when starting another instance of an already running program. Third, it is also
possible for user programs to request shared memory using system calls like mmap().
The operating system tries to unify these three categories. On Linux, mapping a
program �le or a shared library (Figure: 2.14) �le as a read-only memory with mmap()
results in sharing the memory with all these programs, respectively programs using the
same shared library or program binary.

Sharing memory pages [77] [78][54] between non-trusting processes is a common method
of reducing the memory footprint of mutli-tenated systems and can also be used in inter-
process communication mechanisms in two co-operating processes. As pages can also

build

2.4. OPERATING SYSTEMS CAVEATS 25

Figure 2.13: Shared Memory

be shared between non-coperating processes, the system must protect the content of the
pages to prevent malicious processes from modifying the shared contents.

Figure 2.14: Shared library on an operating system

In order to protect the information, the operating system maps shared memory pages as
copy-on write [77][78]. In case of a read operation on a shared page(copy−on−write), a
CPU trap is raised. The system software which gains control of the CPU during the trap
copies the contents of the shared page, maps the copied page into the address space of the
writing process and resumes the process. The idea behind copy− on−write mechanism
is to protect shared pages from modi�cations. However, the delay introduced while mod-
ifying a shared page can be detected by processes, leading to a potential information leak.

As Android is based on Linux, the concepts of shared memory remain the same.

build

26 CHAPTER 2. BACKGROUND

However, Android applications are mostly written in JAVA and sharing memory in
between spy process and victim process can be a bit di�cult. Hence, we aim to target
the shared libraries and binaries on Android. We will illustrate in the next chapter that
shared memory [78] exposes processes to information leaks via cache access timings.
Processes can retrieve information on virtual and physical address mappings using
operating systems service like (/proc/ < pid > /pagemap) or (/proc/ < pid > /maps).
Additionally, we can identify congruent addresses for eviction by using pagemap utility
provided by Linux. An EVICT+RELOAD technique which is a cache-based side channel
attack exploits all these weaknesses to monitor access to memory lines in the shared
memory.

build

Understanding Side Channels

on Android 3
Side channels [1] are quite a recent category of vulnerabilities in android smartphones.
As described in Section: 1 information may unintentionally leak through radio signals,
sensors, power consumption or through the state of a processor's memory cache. Thereby,
it empowers a malicious application to spy on a victim application by observing these
channels of information on a smartphone.
Let us take an example of Battery Manager class in android. Battery Manager is mostly
used to keep a check on the battery consumption of an android smartphone. Interestingly,
it can be exploited as a potential side channel. For instance, battery level information
can be used to identify the following:

• Loading time of an application

• Run time of the application on the processor etc.

In addition to battery levels, android devices can also report their instantaneous current
and voltage readings to the users through Battery Manager Class. However, the frequency
at which these readings are communicated to the user is limited by the hardware. Also,
the scenario varies from device to device as fuel gauges present in certain devices (e.g.
Samsung Galaxy S4) do not provide instantaneous current readings owing to security
measures. But on the other hand, fuel gauge MAX17048 present on Nexus 5 reports
instantaneous current and voltage readings (written by I2C) through current_now and
voltage_now �les respectively:

Battery parameters File Location

Instantaneous Current /sys/class/power_supply/battery/current_now
Instantaneous Voltage /sys/class/power_supply/battery/voltage_now

Table 3.1: Instantneous Current and Voltage Files in Android

These two �les can be accessed on our test device Nexus 5 without any root privileges.
In our following experiment, we aim to exploit this potential source of leakage on Nexus
5 via a spy application (rogue app) running in parallel to a crypto application (victim
app). Our two applications will carry out the demonstration of Power Side Channel(PSC)
attack on Nexus 5. The victim application performs RSA on a user input for around 10000
iterations. Victim app is triggered by our rogue app which accepts the input from the user
and raises an intent for victim app to perform RSA operation on the user input. During
this time, the rogue app monitors the battery status and logs the instantaneous current
and voltage values by polling current_now and voltage_now �les. The idea is to collect
traces where we can identify square and multiply operation in RSA implementation and

27

28 CHAPTER 3. UNDERSTANDING SIDE CHANNELS ON ANDROID

Figure 3.1: Experimental Set-up

then recover the secret key. One pre-selected secret key is used to perform RSA on
di�erent user inputs.
Before and after consumption of battery levels does not give su�cient meaningful infor-
mation as it lacks precision. Hence, it can be safely concluded that without any hardware
assistance it is not a signi�cant exploit. However, instantaneous voltage is reported in
milli volts(mV) and instantaneous current is reported in milli amperes(mA). Through the
graphical representation of (as shown in Figure: 3.2) the instantaneous current readings
of our rogue app w.r.t time, we can identify the time duration for which our app was
scheduled on cpu, in addition to the peaks which can reveal the keystrokes. Since the
processor operates at 2.24GHZ and the fuel gauge operates at 400khz, there is a limit
(as shown in Figure: 3.3) to the number of readings which we can get from the device
(approximately 25 readings per 10−7 sec).
Hardware-based identi�cation and exploitation of this side channel can still be taken into
consideration as they will not be limited by the speed of the I2C bus.

3.1 Microarchitectural Attacks

In addition to PSC attacks, there exist microarchitectural attacks [16] which exploit mi-
croarchitectural functionalities of processor implementations. They can compromise the
security of computational environments even in the presence of sophisticated protection
mechanisms like virtualization and sandboxing. There lies an inherent gap in between
the current processor architectures and the ideal secure computing environment. This is
further accentuated by the loopholes in the operating system managing various processor
resources. These attacks exploit the microarchitectural components and functionalities of
a processor to reveal cryptographic keys. The functionality of some processor components
generates data dependent variations in execution time and power consumption during the

build

3.1. MICROARCHITECTURAL ATTACKS 29

Figure 3.2: Arrows Depicting Keystrokes after and before RSA operation

Figure 3.3: Fuel Gauge and processor interaction

execution of cryptosystems. These variations either directly give the key value out during
a single cipher execution or leak information which can be gathered during many exe-
cutions and analyzed to compromise the system. Microarchitectural covert channels can
be based on L1 cache, Branch Predictor Unit, Last Level Cache and Memory

build

30 CHAPTER 3. UNDERSTANDING SIDE CHANNELS ON ANDROID

Bus. According to the literature, there are two types of Microarchitectural attacks [16]:

• Cache Analysis

• Branch Predictor Analysis

3.1.1 Cache Attacks

We have chronologically discussed the cache attacks in the Section: 1.1. In this section
we aim to discuss cache attacks with respect to their applicability and exploitation on
di�erent architectures (especially ARM). A cache attack exploits the cache behavior of
a cryptosystem by obtaining the execution time and/or power consumption variations
generated via cache hits and misses. Cache analysis techniques enable an unprivileged
process to attack another process, e.g., a cipher process, running in parallel on the same
processor as done in past research work(Section: 1.1). Furthermore, some of the cache
attacks can even be carried out remotely, e.g., over a local network. The previous cache
attacks are data-path attacks, i.e., exploit the data access patterns of a cipher. The
memory accesses of software cryptosystems, especially S-box based ciphers like DES
and AES, employ key-dependent table lookups, indices of which are simple functions of
the key and the plaintext. Revealing these memory access patterns, i.e. lookup indices
via cache statistics and the knowledge of the processed message, e.g. in a known-text
attack, makes it relatively easy to break these ciphers.

In this work of research, we discuss the access driven cache timing attacks. As
the name of cache timing attacks suggests, they utilize the particularities of mi-
crocontrollers and microprocessors with the cache memory which frequently exhibit
key-dependent timing. Cache timing attacks on many block ciphers with S-boxes become
possible since S-box invocations in software are often implemented as indexed table
look-up operations that can require di�erent execution times for di�erent inputs due to
RAM cache hits and misses. When the inputs to S-boxes are key-dependent, this timing
information frequently turns out su�cient to recover the entire key. Timings attacks
are further classi�ed into time driven, trace driven and access driven attacks which are
discussed as follows:

• Trace-driven attacks: For these attacks a detailed cache pro�le based on the
information of every single memory access is necessary, i.e. for every look-up op-
eration an attacker knows whether it resulted in a cache hit or a cache miss. The
performance counters of modern CPUs might be used to establish such a memory-
access pro�le. Bertoni et al. [21] work is a nice contribution to this category of
attacks.

• Access-driven attacks: The purpose of these attacks is to determine which cache
lines or cache sets have been accessed during the encryption. Hence, knowledge of
the location of the precomputed S-boxes or T-tables within the memory as well as
information about the cache architecture is necessary. However, fewer measurement
samples are necessary than in the case of time-driven attacks. Historically [58][59],
these attacks can be further divided into following categories:

build

3.2. EXPLOITABLE ARM PROPERTIES FOR CACHE ATTACK 31

� EVICT + TIME: The attacker measures the time it takes to execute a piece
of victim code. Then attacker �ushes part of the cache, executes and times
the victim code again. The di�erence in timing tells whether the victim uses
that part of the cache.

� PRIME + PROBE: The attacker accesses memory to �ll part of the cache
with his own memory and waits for the victim code to execute. This is called
the Prime Step. Then the attacker measures the time it takes to access the
memory that he carefully placed in the cache before. This is called the Probe
Step. If the access time is higher than a certain threshold for certain cache
line, then we know that the victim process evicted those cache lines from the
cache. If the access time is less than a certain threshold, then it becomes clear
that victim did not access those lines or evict those cache lines.

� FLUSH + RELOAD: The �ush and reload attack utilizes the fact that
processes often share memory. By �ushing a shared address, then wait for
the victim and �nally measuring the time it takes to access the address an
attacker can tell if the victim placed the address in question in the cache by
accessing it.

1

• Time-driven attacks: These attacks require only minor knowledge of the
implementation and the hardware architecture under attack [23]. Depending on
the provided input the implementation might leak di�erent timings [57]. Thus,
the basic idea of time-driven attacks is to gather timing information of many
encryptions and to perform statistical correlations in order to recover the used
secret key. Attacks in this category typically require far more measurement
samples than attacks within the previously mentioned two categories. One of the
landmarks in this category of attack is Bernstein's cache timing attack on AES [20].

The rising popularity of smartphones in our everyday life clearly states the
need for the investigation of such cache attacks on modern smartphones in a
realistic scenario. It also becomes important to study the assisting techniques
which make these attacks more viable in realistic scenarios. In the next chapter
we will discuss the implementation steps of an access-driven cache timing attack
on OpenSSL AES implementation.

3.2 Exploitable ARM properties for Cache Attack

ARM devices implement a technique called Amba Cache Coherent Interconnect(ACCI)
that facilitates fast interprocessor connections very similar to HyperTransport protocol
in AMD processors or Intel QuickPath Interconnect Technology. This technology helps
to maintain cache coherency across ARM CPUs using snoop �lter protocol supported
by cache directory architecture. Thus upon a shared memory read miss, the snoop

1There are some other variants as well like FLUSH+FLUSH and EVICT+RELOAD. They are dis-

cussed in the next chapter

build

32 CHAPTER 3. UNDERSTANDING SIDE CHANNELS ON ANDROID

�lter checks whether the same memory block is cached in an adjacent processor. If
succesful, a direct cache-to-cache link will be established thereby eliminating the need
for a slow DRAM access. We exploit this functionality by using lib�ush to attack AES
implementations on ARM. We will implement the EVICT+RELOAD attack on AES
implementation of OpenSSL 0.9.7a and OpenSSL 1.0.1g to extract the full key.

3.3 AES

The Advanced Encryption Standard (AES) [30] was introduced in 2001 by the National
Institute of Standards and Technology (NIST). In the year 1997, it was announced that
Data Encryption Standard (DES) has become vulnerable to brute force attacks and
there is a need for much more advanced symmetric key algorithm. AES is a result of a
competition which started in 1997 and ended in 2000, where it was selected from various
candidates. AES is a subset of Rijndael Cipher proposed by J. Daemen adn V. Tijmen.
AES is today's most commonly used block cipher in the Internet and software Market:
applications include disk and �le encryptions, wireless LAN security, IPSec (standard for
securing Internet protocol at the network layer), Transport Layer Security (successor of
SSl), VoIP security, smart cards, microprocessors and many others.

3.3.1 Description

AES is a block cipher with 128 bit (16 bytes) input represented as follows:

p = (p0.......p15)

The key size can be of 128, 192 or 256 bits.

k = (k0.......kn−1)

Here n can be 16, 24 or 32 depending on the size of the key. For our discussion we will
use n=16, however the explanation can be extended to longer keys as well. AES is a
key-iterated block cipher: where it is composed of a key schedule and repeated round
transformations as described in Figure:3.4. An encryption of plaintext pis with key k
results into a ciphertext c which can be denoted as follows:

c = EAES(p, k)

In the key scheduling process, a 16-byte key k is expanded into 11 round keys K(r)

where each round is denoted by r=〈0,, 10〉. Round keys are calculated as follows :

k = (k0,, k15)→ K(r) = (K
(r)
0 ,,K

(r)
15)

In the �rst round the complete key k is used as round key which is K0. An important
point here is that Key expansion is irreversible and if one of the round keys is known
then any other round key can be computed. After �rst AddRoundKeyoperation, AES
performs 10 rounds of SubBytes,ShiftRows, MixColumns and AddRoundKey on a state.
There is no MixColoumn operation in the last round.

build

3.3. AES 33

Figure 3.4: AES Encryption

3.3.2 OpenSSL AES Implementation

OpenSSL AES implementation makes use of pre-computed T-tables which is susceptible
to cryptanalysis. These large look-up tables are susceptible to cache timing attacks,
cache probing attacks and cache collision attacks [50][58]. The cipher can be directly
computed using simple lookups and bitwise XOR operations. Several such tables are
precomputed once by the programmer or during system initialization. In OpenSSL
0.9.7a AES, there are 10 such tables T0, T1,T2, T3, T4(only used in last round), T (0)

d ,

T
(1)
d , T (2)

d , T (3)
d ,T (4)

d each containing 256 4-byte words. On the other hand OpenSSL

1.0.1g AES, there exists 9 such tables T0, T1,T2, T3,T
(0)
d , T (1)

d , T (2)
d , T (3)

d ,T (4)
d . In this

AES implementation T0,T1,T2,T3 are used in the last round. The contents of the tables
are not signi�cant for purpose of attack.

During key-set-up, a given 16-byte secret key k = (k0.....k15) is expanded into 10
round keys Kr = (K

(r)
0 ,K

(r)
1 ,K

(r)
2 ,K

(r)
3). The 0th round key is just the original key

K
(0)
j = (k4j , k4j+1, k4j+2, k4j+3)for j = 0, 1, 2, 3. The details of the rest of the key

expansion can be omitted for this document.

build

34 CHAPTER 3. UNDERSTANDING SIDE CHANNELS ON ANDROID

Given 16-byte plaintext p = (p0, p1,, p15) , encryption proceeds by comput-
ing a 16-byte intermediate state xr = x

(r)
0 ,, x

(r)
15 at each round r. The initial state x0

is computed by x0i = pi ⊕ ki and then, the �rst 9 rounds are computed by updating
intermediate state as follows, for r = 0,......,8:

x
(r)
0 = T0[x

(r−1)
0]⊕ T1[x(r−1)

5]⊕ T2[x(r−1)
10]⊕ T3[x(r−1)

15]⊕K(r)
0

x
(r)
1 = T0[x

(r−1)
4]⊕ T1[x(r−1)

9]⊕ T2[x(r−1)
14]⊕ T3[x(r−1)

3]⊕K(r)
1

x
(r)
2 = T0[x

(r−1)
5]⊕ T1[x(r−1)

13]⊕ T2[x(r−1)
2]⊕ T3[x(r−1)

7]⊕K(r)
2

x
(r)
3 = T0[x

(r−1)
12]⊕ T1[x(r−1)

9]⊕ T2[x(r−1)
6]⊕ T3[x(r−1)

11]⊕K(r)
3

Thus, for each one byte input, T tables will provide with a 4-byte output. The S-box
Tables Ti are generated from two constant 256 byte-tables, designated as S and S' as
can be seen in Figure:(3.5) and (3.6)

Figure 3.5: S-box S

Figure 3.6: S-box S'

The S-box tables are computed as follows :

T0 = (S
′
, S, S, S ⊕ S′

),
T1 = (S ⊕ S′

, S
′
, S, S),

build

3.4. CORRELATION ANALYSIS 35

T2 = (S, S ⊕ S′
, S

′
, S),

T3 = (S, S, S ⊕ S′
, S

′
)

These pre-computed tables provide for a signi�cant increase in performance as each round
is replaced by table lookups and bitwise xor operations. However, memory consumption
increases as these tables consume equal to or more than 8KB of memory.

3.4 Correlation Analysis

Correlation Analysis [65] is a statistical technique which is very popular in the case of
Di�erential Power Analysis (DPA). The reason behind its popularity can be attributed
to the ability of this attack to extract the secret key even from the noisy measurements.
The idea is to reveal the secret key using a large number of traces that have been recorded
while the devices encrypt or decrypt di�erent data blocks. It exploits the data dependency
of the traces (for e.g power consumption traces) on the devices. The general strategy of
correlation analysis can be enumerated as follows:

1. Choose an appropriate Intermediate Value for an encryption algorithm:
The intermediate value (y) should be a function of a data set (D = d1..dD) con-
taining random values which can be either plaintext or ciphertext and a part of key
value(k). Such intermediate values can be used to reveal k.

y = f(d, k)

2. Measurements during encryption/decryption of data blocks: The next
step to measure the power consumption or some other form of leakage with respect
to the encryption/decryption of data set (D). In the case of power consumption, we
can measure the power for a certain amount of time T, and a power trace represents
the power consumptions of operations on data block D for trace length T which is
(ti′ = (ti,1..ti,T). It is worth mentioning that in the case of power traces, alignment
of traces is a substantial issue. Usually a better triggering mechanism can resolve
such an issue or techniques like Dynamic Time wrapping etc can also be used.

3. Calculate Hypothetical Intermediate Values: This step requires to calculate
a hypothetical intermediate value for every possible choice of k. For e.g if k is one
byte in size, there will be 256 possibilities or key hypothesis to it. A vector k can
be descibed as follows:

k = 〈k1..k256〉.

Hypothetical intermediate values are calculated as described in the �rst step for all
D data values and all k Key Hypothesis. A new vector V is generated which is as
follows:

vi,j = f(di, kj) for i=1,..,D and j=1,..,K

build

36 CHAPTER 3. UNDERSTANDING SIDE CHANNELS ON ANDROID

The goal of our analysis is to �nd which column of V is processed during D encryp-
tion/decryption runs using kj key hypothesis.

4. Map Intermediate Values to Actual Measurements: The next step is to use
simulation techniques to map the hypothetical intermediate values to our measured
values. For each hypothetical intermediate value a hypothetical measurement value
is generated. Several leakage models can be used for this purpose. In case of DPA
, Hamming Weight and Hamming Distance are the most common leakage models.
There are other leakage models in existence as well such as Bit Model, ID Model
and Zero-Value Model. We are performing cache attacks where we can no longer use
Hamming Weight or Hamming Distance model. We will make use of Bit Model
(testing against every single bit in the key), ID model/Zero-Value model.
The quality of simulation is also based on the amount of knowledge an attacker has
about the device under attack.

5. Compare the Actual traces with the Hypothetical Traces: In this step the
adversary compares the hypothetical measured values of each key hypothesis with
the recorded traces at every position.

All these steps are core to our attack implementation as they exploit even the smallest
dependancy in between hypothetical traces and the recorded traces.

3.5 Key Rank Estimation

Side-channel attacks are a vital aspect of a security evaluation framework. Interpreting
the results to give a security level is however not always so easy. Rank estimation
algorithms give a method to compute an interval for the rank of a key and this can be
used to estimate the security level of an implementation.

Suppose we have an implementation that uses a key k∗. Given side-channel at-
tack results on this implementation, the rank of k∗ is de�ned as the number of keys k
that have a higher probability of being the one used in the implementation according to
the side-channel results. A higher rank therefore means less information leakage and a
more secure key.

Key enumeration [70] and rank estimation [61] algorithms have recently emerged as an
important part of the security evaluation of cryptographic implementations, which allows
post-processing the side-channel attack outcomes and determine the computational
security of an implementation after some leakage has been observed. In this respect, key
enumeration can be seen as an adversarial tool, since it allows testing key candidates
without knowledge of the master key. By contrast, rank estimation as an evaluation
tool since it requires the knowledge of the master key. Its main advantage is that it
allows e�ciently gauging the security level of implementations for which enumeration is
beyond reach (and therefore are not trivially insecure).

build

3.6. AN OVERVIEW OF WHITE-BOX 37

Concretely, state-of-the-art solutions for key rank estimation are essentially su�-
cient to analyze any (symmetric) cryptographic primitive. These Algorithms typically
allow estimating the rank of a 128- or 256-bit key with an accuracy of less than one
bit, within seconds of computation. By contrast, e�ciency remained a concern for key
enumeration algorithms for some time.

3.6 An overview of White-Box

In black box cryptosystems, the speci�cation is not generally available to the user and is
generally not appreciated. It is because when these cryptosystems were reverse engineered
and analysed, it was shown that they were weak and easy to break. Hardware Security
Modules (HSMs) such as Trusted Platform Modules (TPMs) or smart cards are some of
the common approaches to protect the secret key. However HSMs can be considered as
grey boxes as they may leak information in the form of side-channels. They are also far
less �exible than software implementations. Cryptography implementations in softwares
which guarantee the security of secret key while being run in an environment controlled
completely by an attacker are called white box implementations. Several academic papers
[75][24][31] have described inner workings of white-boxes. In 2015 Bos et.al [24] showed
that publicly available white-box implementations are highly vulnerable to an attack
called Di�erential Computation Analysis. This attack was against memory access traces
captured from executions of a white-box. On Black Hat Europe 2015, Sane�ix et al.
showed another attack based on Di�erential Fault Analysis. Our work is in�uenced
by Di�erential Computation Analysis (DCA) of cache traces instead of memory traces
and deploying it on android is one of the goals of this research. DCA requires less
number of traces in comparison to Di�erential Power Analysis (DPA) techniques and
requires less time in running the attack. The reason could be attributed to the fact
that DCA traces do not contain signal noise, so values can always be observed precisely.
Chapter 4 gives further information about side-channel attacks against a custom white-
box implementation on an android smartphone.

Figure 3.7: White-box attack

3.6.1 White-Box on an Android Platform

White box cryptography [12] is becoming very popular for both mobile payments and
digital media as it achieves the necessary security goals like keeping money and payment
information of the involved parties secure and protecting intellectual property rights at

build

38 CHAPTER 3. UNDERSTANDING SIDE CHANNELS ON ANDROID

the same time. It is cheaper and viable alternative to HSMs. Since HSMs are very
expensive and harder to deploy than white boxes, their technical and user acceptance is
also relatively low. Figure: 3.7 describes a White-Box threat model which has following
attributes :

• The attacker can observe the encryption process from within the system

• The attacker can modify anything at will, including the cryptographic algorithm

build

Case Studies 4
4.1 Introduction

In the past few decades, we have seen a huge leap in the circuit fabrication techniques.
Such an advancement has led to the addition of caches to �ll the gap processor-memory
performance gap as discussed in Section:2 and have mitigated the e�ects of memory
latency to a huge extent. However, it comes with its own set of disadvantages as
the improvement in average performance due to caches comes at the expense of a
vastly increased variability in performance. This has been known for many years to
cause problems in the design of safety-critical real time systems where it is imperative
that a series of deadlines be satis�ed even as the presence of caches makes it very
di�cult to determine the worst-case performance time [60]. In the recent years, it
has been shown that the presence of caches and the resulting timing variability makes
possible a number of cryptanalytic side channel attacks [25][46][44][39] [71][38][64].
In this chapter, we will describe various cache attack scenarios ranging from an
attack on an arti�cial application to the attack on a crypto application. Such attacks
enable a third-party process/application to exploit CPU data cache, which in turn, can
be used to infer details about the data that was being processed or application being run.

Most of the research conducted on cache attacks in the past dealt heavily with
Intel x86 architectures. Nowadays, ARM is one of the most popular choices because
smartphones, tablets, and many IoT devices are built on ARM. Given this widespread
application of ARM processors, researchers [53] [64][38][37] have started exploring the
feasibility of cache attacks on ARM.

4.2 Cache Attacks

Broadly cache attacks are either based on the cache storage attacks or cache timing
attacks. Cache timing attacks make use of a simple model to correlate the execution
time of an algorithm with the state of the cache used by the CPU in charge. It is
assumed that the execution time is lower if the data needed by the algorithm is already
stored in a cache line (cache-hit). On the other hand, if the required data is not present
in the cache and hence has to be loaded from the main memory (cache-miss), this will
result in a longer execution time. This model is simple, but reasonable and only relies
on the cache architecture of the CPU. Weiss et al. [71] provide a suitable attack scenario
where they consider Multi-Core Aspects in Virtualized Embedded Systems. Time-driven
attacks require a large number of plain-texts and cipher-texts to perform statistical
analysis while might be a hurdle in a realistic scenario. Hence, our focus is on the
access-driven attack as they provide with promising results even in noisy enviornments.

39

40 CHAPTER 4. CASE STUDIES

Also, the number of encryptions required to perform access-driven cache attack is way
lower than time-driven cache attack.

As a part of our case studies, we perform access driven cache attack on quad-core
Krait processors (Krait 300 and Krait 400). We infer the information about the memory
accesses being performed during an encryption. We introduce a novel strategy which
is a combination of strategies proposed by Osvik et al. [58],and Spreitzer et al. [64] to
know about the cache sets accessed before/during/after encryption. Eventually, we aim
to recover the entire secret key used for encryption. Further, we extend the application
of our attack to white-box cryptosystems. We demonstrate a cache attack on a custom
white-box implementation of AES by Chow et al.[29]

4.2.1 Adversary Model

As discussed in 4.2 our focus is on access-driven cache attack. These attacks operate on
cache memory that is shared between processor cores on an Android smartphone. We
assume that the adversary is a legitimate user of the android smartphone and is able to
install and launch the applications or facilitate native code execution. The attacker is
assumed to be able to observe the cipher-text and plain-text (not necessarily required)
and has the ability to interact with the system performing the crypto operation. We will
also exploit hardware performance counters to achieve an accurate timing measurement.
The adversary should have root access only once to install the kernel module. We are
considering PRIME+ PROBE and EVICT+RELOAD cache attacks on a full blown
operating system-Android 5.0.1 running on our test devices (1.6). It is also assumed that
while attacking a crypto application, an attacker is able to observe the time required to
access a cache set before and after eviction used in encryption.

4.2.1.1 Additional Criteria to take into consideration

In addition to the high-level view of the attacker 's model, we would like to mention some
criteria which are equally important for successful deployment of our attacks.

1. Curious Case of Processor optimizations: Our motive is to be able to iden-
tify the cache sets being accessed by the victim process during execution. How-
ever, several processor optimizations may result in false positives due to speculative
memory accesses issued by the victim's processor. These optimisations include data
prefetching to exploit spatial locality and speculative execution. Therefore, while
analyzing the attack results the attacker must be aware of these optimisations and
develop strategies to �lter them (discussed in Chapter-A). Also. the prefetching
mechanism is poorly documented which further adds to the attacker 's grievances.
In our case, most of the times the tables are present in the cache memory and hence
the probability of prefetcher getting triggered gets reasonably reduced.

2. Synchronization of victim and spy process: As victim access is independent
of the execution of the spy process code, increasing the wait period reduces the
probability of missing the access due to an overlap. On the other hand increasing the

build

4.2. CACHE ATTACKS 41

waiting period reduces the granularity of the attack. Our attack is a cache timing
attack where we are monitoring the e�ects on the cache state corresponding to our
attacker process and victim process, both. Hence we should see that the attacker
process does not get scheduled for most of the processor time and the victim process
doesn't get scheduled at all or most of the time is out of the running queue. To
avoid such a scenario proper synchronization between victim and attacking process
should be established. In our scenario we have made use of �le locks and
sleep() system call. It has made our implementation a bit slower (in the kernel
source of Android 5.0, Semaphores and Mutexes are not implemented).

3. Resolution of the attack: One of the ways to improve the resolution of attack
without increasing the error rate is to target memory accesses that occur frequently
such as a loop body. But in such a case the attack will not be able to di�erentiate
between the separate accesses.

4. Address Layout Randomization: When a page is shared, all the page entries
in the virtual address spaces of the sharing processes map to the same physical
page. As the LLC is physically tagged, entries in the cache depend only on the
physical address of the shared page with no dependency on the virtual addresses
in which the page is mapped. Consequently, we do not need to take care of the
virtual to physical address mapping and the attack is oblivious to Address Space
Layout Randomization (ASLR).

5. Statistical Analysis: An access-driven cache-timing trace, as described in the
later sections is interpreted as a sequence of cache hits and misses on a per cache
set or line basis. We have to take into consideration that these hits and misses
are based on the memory access timings being above or below a certain threshold.
Such calculations are quite sensitive to a particular processor, cache organization,
type of operating system and load on the system. Hence, these readings are not
normally error free. It is therefore necessary to perform some statistical analysis
on our trace sets and take as many readings as possible.

4.2.2 Modeling the Cache Timing Behavior

The �rst step towards identifying cache hit/miss ratio is to model the cache timing
behavior. It is a necessary step in order to �nd a correlation between the memory
addresses being accessed and the ideal data. As cache eviction is another key aspect of
a cache attack, we can identify a suitable eviction strategy provided an accurate timer
is at our disposal. Therefore, in order to identify which is the most suitable eviction
strategy for the device(1.6) under consideration, we require access to a very accurate
timing mechanism which precisely measures the cache hits and misses.

Firstly, we allocate a large data structure (equal to or more than the size of L1
cache) of our target device. The next step is to access a particular address or set of
addresses from the allocated ones in the cache and calculate the timing. Later, we will
evict that address or addresses from cache and then will try to access them again (either

build

42 CHAPTER 4. CASE STUDIES

it will be a remote core fetch or a memory access). The timing di�erence between
a cache-hit or a miss can be calculated using various available timing interfaces or
instructions.

Unfortunately, ARMv7 instruction set does not provide with an instruction like
rtdsc unlike x86 which can be used to calculate the CPU cycles for a cache miss or a
cache hit. The user mode access to performance counters like (PMUSERNR) and cycle
count register (PMCCNTR) is not possible by default. In order to calculate the number
of CPU cycles passed during a memory access, we need to install a kernel module. The
accuracy of these timing interfaces may have a huge impact on our results. In our case,
we have installed a kernel module which allows access to PMCCNTR register. It is worth
mentioning that we are using a custom kernel. The reason behind a custom kernel is the
absence of loadable module functionality in the stock kernel. We also have root access
so that we can load or unload our kernel module. One can access the timing interface
using perf or monotonic clock which may or may not provide cycle accurate timings.
Eventually, with a suitable threshold, we can identify the cache hits/ cache misses clearly.

Figure: 4.1a and Figure: 4.1b demonstrate the suitable thresholds to identify a
cache hit or a cache miss. X-axis de�nes the number of accesses to an address and Y axis
de�nes the number of CPU cycles required to access an address. We have two peaks,
where one signi�es the maximum number of hits and the other signi�es the number of
cache misses once the corresponding cache line is evicted. The cache hits and cache
misses are calculated on the basis of CPU cycles consumed by them. A suitable threshold
can be calculated using this information which helps in a clear cut di�erentiation of hits
and misses. Once a suitable threshold is calculated, we need to come up with a suitable
eviction strategy to get a 100% eviction rate for a cache set/cache line in unprivileged
mode.

Depending on the source of timing, the results may vary and sometimes they can be
incorrect too. In the �rst place, we started our timing measurement of cache eviction using
perf interface but the results were incorrect as all the cache hits and misses were at the
same address or for the same bin value. We switched from perf to themonotonic_clock to
see whether our eviction works or not and to our expectations it worked. Still, monotonic
clock is not the best source to get accurate CPU cycles as it too gets a�ected by time
slewing.
ARMv7 instruction set does not provide with unprivileged cache �ush instructions (2).
Hence, in order to perform fast and e�cient eviction following points are to be taken into
consideration:

1. We need to �nd physically congruent addresses (addresses mapping to the same
cache set) so that we can evict the desired cache lines.

2. We should be able to counteract pseudo-random replacement policies for L1 and L2
by running various access patterns and evaluate corresponding eviction strategies.

0Clock Cycles* = X-axis value *5

build

4.2. CACHE ATTACKS 43

(a) Threshold calculation on NEXUS 5 using cycle counter

(b) Threshold calculation on Samsung Galaxy 4 using cycle counter

3. We should be able to distinguish between cross-core fetches and memory accesses
based on CPU cycles

Fortunately, lib�ush [53] provides with a Cache Eviction Strategy Calculator which can
resolve all the above mentioned issues. Cache Eviction Strategy Calculator tool helps
us to calculate how many addresses are to be evicted (N), what should be the loop size
(A), what should be the step size for the loop (D) etc, to reach a perfect eviction rate.
The calculated eviction strategy is used while building the spy application. The cache
eviction strategy is based on the eviction algorithm in [39] :

build

44 CHAPTER 4. CASE STUDIES

4.3 Notations

Let the size of cache line on our test devices [1.6]be represented by δ which is 64 bytes.
Let the number of elements in each cache line be, σ, which is as follows:

σ =
Total number of elements ∗ size of elements

δ
(4.1)

for e.g there are 256 4-Bytes elements in a table than the number of elements in each
cach-line would be 16

4.3.1 EVICT + RELOAD Attack

EVICT+RELOAD is a variant of FLUSH+RELOAD as instead of �ushing a cache line,
we perform eviction. Once a suitable threshold and appropriate eviction strategy is
calculated using an accurate timing mechanism, the next step is to decide the other attack
parameters. We demonstrate the implementation of Evict+Reload attack on Nexus 5 and
Samsung Galaxy S4. in the next chapter. It is one of the most powerful cache attacks and
exploits one of the operating systems functionalities like usage of shared libraries. Below
mentioned is the algorithm for EVICT+ RELOAD technique. Figure: 4.2 describes the
attack strategy.

Algorithm 1: Algorithm for EVICT + RELOAD cache attack

1 Map a shared library or binary as a shared object into attacker's address space
2 Evict a cache line (instruction or data) from the shared memory
3 Schedule victim process to check if it loads or not the evicted cache line
4 The attacker process checks if evicted cache lines are loaded by victim program

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

Eviction /Test of a
Shared Cache Entry by

Spy Process B

Reload of a Shared Cache
Entry by Victim Process A

1

2

3

4

slow fast

Figure 4.2: EVICT+RELOAD cache attack

build

4.4. ATTACK SCENARIOS 45

4.3.2 PRIME + PROBE Attack

We also demonstrate the implementation of the PRIME+PROBE attack on Nexus 5 and
Samsung Galaxy S4. It does not involve the usage of shared libraries. Below mentioned is
the algorithm for PRIME + PROBE technique. Figure: 4.3 describes the attack strategy.

Algorithm 2: Algorithm for PRIME + PROBE cache attack

1 Attacker primes the cache lines
2 Victim process evicts the cache lines during encryption
3 The attacker process checks data to determine if the primed sets were accessed or
not

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

Eviction of a Cache
Entry by Victim Process A

2Prime of a Cache Entry
by Spy Process B

1 3Probe of a Cache Entry
by Spy Process B

slow

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

fastslow

Figure 4.3: PRIME+PROBE cache attack

4.4 Attack Scenarios

4.4.1 Cache Attack on a Shared Library

In the wake of understanding the scope of cache attacks, we begin with an elementary
attack on an application using shared library. We aim to spy on the application by
mounting EVICT+RELOAD attack using lib�ush on our test devices(Section: 1.6). Us-
ing this attack, we can identify the version of the shared library in use by the victim
process. We can also identify which function is used by the victim process. In our sample
victim application, a look-up function is performed in a look-up table using a shared
library. Our attacker's threat model is based on the attack pre-conditions as mentioned
in (Section- 4.2.1). As one can see from the results (Table: 4.1) that it is very easy to
identify which address is being used in order to perform a lookup. Not only this, one can
identify the location of the table within the shared library using this attack. This is an
important result as various system applications like Keyboard etc perform a lookup in a
large table. Important steps invloved in the attack are as follows :

• Identify the mapping of the shared library in the victim process's address space.
This can be done by using /proc/pid/maps. We can identify which all shared

build

46 CHAPTER 4. CASE STUDIES

libraries are used by the victim process using ldd <name-of-the-executable>

• Synchronize the spy process with respect to the victim process using proper mech-
anisms (�le-locks, semaphores, signals etc).

• Calculate the cache-hits or cache-misses as per a suitable threshold.

• Run the EVICT+RELOAD attack using a spy application in parallel(on the same
core or on the separate core) to the victim application to identify the addresses
which have the largest number of cache hits (this will be the look-up index in the
table)

Figure 4.4: Cache Access Map of a process performing Table-lookups

Note: *Input is XORed with a key 245 and then used to perform a lookup and is
shown in Table: 4.1

Lookup-index Input*
0x4080 246,254
0x40c0 230,238
0x4100 214 ,222
0x4140 198 ,206
0x4180 182, 190
0x41c0 166 ,174
0x4200 128 ,134 ,142, 150 ,158
0x4240 128 ,134 ,142
0x4300 89
0x43c0 34
0x4440 1 ,13

Table 4.1: Cache Memory Access table

build

4.4. ATTACK SCENARIOS 47

4.4.2 Cache Attack on AES Sbox

The very fast execution of AES seems to require hardware assistance in order to switch in
between spy process and crypto/victim process. This heavily depends on underlying OS,
CPU type and frequency. The main objective is to ensure that the victim process runs
only for a small amount of time between any two runs of the spy thread. As suggested by
Neve et.al [56], using sleep one may accomplish such a scenario. It is based on the fact
that OS allows a process to control when it yields the CPU to another process without
waiting until the end of the quantum. Thus, OS will reschedule the remaining quantum
part to the victim process which will be able to execute some instructions and after which
the OS will quickly resume the execution of the spy process. As per Neve et al. [56] the
�nal strategy could be broken into following steps:

Spy : Continuously monitors the cache utilization of the parallel victim

thread may or may not be on the same core

Victim : Runs for very small time in between two runs of crypto

4.4.2.1 Cache Attack on AES: Pre-Conditions

For AES access-driven cache timing attack, in order to simplify descriptions and analysis
of attack we will start with the following assumptions 1 based on the work of Zhao et.al
[76] :

• The attacker uses uniformly distributed plaintexts.

• The attacker has access to an accurate and high performance timing mechanism
for example cycle counter on ARM, perf or monotonic clock.

• The attacker should be able to operate synchronously with the victim process.

• Only once device needs to be rooted to upload kernel module to access performance
counters (if they are used).

• The attacker knows the cipher text.

• The time to access data in the cache (a cache hit) and time to access data not
present in the cache (a cache miss) always di�ers by ∆, where (∆ > 0).

4.4.2.2 Exploitation of Vulnerable Sbox Implementation of AES

As we are aware of the fact that �rst round of AES [30] uses the full key to perform a XOR
operation between the input and the original key. The output of this XOR operation is
used to perform look-up in the sbox table.

si = sbox[ki ⊕ pi]
1For the sake of reproducibility, we have explained the most generic attack steps and assumptions in

the current and the following sections

build

48 CHAPTER 4. CASE STUDIES

Sbox consists of only 256 elements (one byte each) which will �t into 4 cache lines on
both our x-86 and our test devices (Section: 1.6). In each round, for 16 times this look
up operation is performed. Hence 160 times sbox is accessed in one AES encryption but
we will be able to see the e�ect on only 4 cache lines instead of 160 addresses (not all
are di�erent). It is because the cache operates on cache line level, not on the individual
address level [57]. Hence, the probability of not accessing a cache line for b accesses in
the �rst round of AES would be p(b):

p(b) = (1− 1
4)b

Since 16 accesses are performed in each round, then the probability would be as follows:

p(16) = (3/4)16 = .0100

As discussed before, our resolution is limited to one cache line, we cannot detect these
160 accesses independently. Cumulatively, our attack granularity is signi�cantly reduced.
In our vulnerable implementation, we have used these sbox lookups to perform a further
look-up in a larger dummy table which is 4KB in size with each element of size 4 bytes.
In this case, there will be 16 cache lines put to use [57], instead of 4 in our previous case
and attack granularity enhances as shown below.

p(16) = (15/16)16 = .3560

Using EVICT+RELOAD attack on this vulnerable AES implementation as shown in
Figure: 4.5, we are able to extract the full key.

Figure 4.5: AES sbox attack strategy

However, the number of cache traces required increased signi�cantly as the number of
recovered key bytes was increased (shown in Figure:4.6). The possible reason for such an

build

4.4. ATTACK SCENARIOS 49

increase in the amount of cache traces (Figure: 4.11) could be attributed to the resolution
of attack which reduced the amount of useful information. Also, there is a noise in our
measurements as we are operating in an environment where several other processes are
executing simultaneously and might have an impact on the cache state.

Figure 4.6: Number of bytes vs Number of cache traces

4.4.3 Cache Attack on AES T-tables

Our access-driven cache attack on AES is inspired by the works of Osvik et al. [58],
Neve et al. [57], Spreitzer et al. [64] and Bonneau et al. [23]. In order to perform
the attack on both x86 and ARM-v7 architectures we use the same attack strategy but
di�erent instructions for timing and eviction as mentioned in the Table: 4.2. In this

Architecture Timing Mechanism Eviction/Flush
x86 rtdsc cl�ush

arm-v7 lib�ush_reload_and_evict lib�ush_evict

Table 4.2: Cache attack enablers on X86 and ARM

attack neither do we have any information regarding when a T-table is accessed during
an AES round nor do we get any information about the order of accesses within one
measurement. We cannot identify any distinction between AES rounds. The perquisite
is to map the shared library (libcrypto.so) used by victim crypto process into attacker's
address space. We implemented cache attacks on both x-86 and our ARM based test
devices (Section: 1.6). The threat model is shown in Figure: 4.7. We have worked

build

50 CHAPTER 4. CASE STUDIES

on two di�erent attack scenarios while attacking OpenSSL T-table AES implementation
(versions are 0.9.7a and 1.0.1g) and they are as follows:

• Cache template attack on the �rst round of AES

• Cache attack (EVICT+RELOAD) and (PRIME+PROBE) on the last round of
AES

Figure 4.7: Threat Model

Address
Selection

Access
Timing

Map to Cache
Hit/Miss

Trace Acquisition

Intermediate Leakage
Models

Key
Recovery

Target
Selection

Differential Computational Analysis

Figure 4.8: Attack Steps

4.4.3.1 Cache Template Attack on AES �rst-round

The �rst round attack is performed on sbox out of 1st round of AES(on both versions
0.9.7a and 1.0.1g) and below-mentioned strategy is followed. In the �rst round of AES
following operation takes place for i=1,..,16:

xi = pi ⊕ ki (4.2)

build

4.4. ATTACK SCENARIOS 51

Here xi is the state byte which is used to perform T-table lookup for the next-round and
pi is a plaintext byte and ki is a key byte. Hence, if we know the plaintext, then we can
guess the upper 4 bits of the address being accessed (explained in Pro�ling Phase). The
result would then be:

ki = pi ⊕ xi (4.3)

The template attack consists of the following phases:

• Pro�ling phase: We generate a cache pro�le w.r.t a known key and a known plain-
text. We perform this attack on one known key byte and one plain-text byte at a
time. Also, p0 is kept �xed and the rest of the 15 bytes are su�ciently randomized
for n number of encryptions and then p0 is incremented to another value from the
set 〈16, 32, .., 255〉. This process is repeated for all the 16 bytes of the plaintexts if
we want to recover 4 MSBs of the remaining key bytes as well. In total, there are
16*256 combinations for each plain-text bytes. The pro�ling phase consists of the
following steps:

� In the �rst step, we run AES encryption in order to load the T-tables in
the cache. This step can be skipped if we want to start with an empty or
uninitialized cache. The result of the attack remains unchanged.

� In the next step, we perform eviction of a cache line followed by AES encryp-
tion. AES encryptions are performed on randomized plaintexts with p0 being
�xed in the �rst step of the attack.

� In the �nal step, we access the evicted address (cache line) again and measure
the time taken to access that address. If the time taken is above a certain
threshold then there was a cache miss otherwise a cache hit. Step (2) and
Step (3) are repeated for n(>300) number of encryptions. On the basis of
such information a cache pro�le of cache hits and cache misses with respect to
each cache line is generated. Such pro�le can be used to identify the 4 most
signi�cant bits of the key byte being used. For example, if the key byte, k0 is
0x5f which will be a part of (0x50,...,ox5f) set and plain text p0 is 0, then a
lookup will be performed on the cache line containing all these 16 addresses
of T0. The vertical columns in the Figure: 4.9 in the cache trace de�ne the
cache lines occupied by T-tables.

Figure- 4.9 depicts the image of pro�ling phase against k0 = 0x00 and plain-
text, p0 = (0, 240). This process can be repeated to recover all the key bytes.

• Attack Phase: In this phase, we perform encryption of known/chosen plaintext
with an unknown key using the steps mentioned in the pro�le phase. Since the
key is unknown, we can compare the newly generated cache pro�le with the pro�le
phase template. In the current scenario k0 is 0x52 and p0 = 0. An XOR operation
would result in a lookup index in T0 which is:

look_up_index = 0x52⊕ 0x00→ 0x52

build

52 CHAPTER 4. CASE STUDIES

Figure 4.9: Nexus 5: AES pro�le trace for k0=0x00

build

4.4. ATTACK SCENARIOS 53

and hence there is a cache hit (brighter region) in the �fth cache line. Only 4 most
signi�cant bits can be identi�ed accurately which result in 5 as we are operating
at cache line level where 16 di�erent lookups in the same cache line would result
in a similar pattern. Hence for all key candidates k0 = (0x50, ..0x5F), there would
be similar cache patterns. The �nal outcome of this attack on (OpenSSL 1.0.1g)
Nexus 5 is that the key entropy is reduced from 128 bits to 64 bits. Similar results
are achieved on Samsung Galaxy S4.

4.4.3.2 Cache attack on AES last-round

Most of the attacks on AES are based on �rst and second rounds of AES encryption
[58][57][64][23]. Since �rst round is disturbed by the access of other rounds, hence
we chose to attack the last round. Neve et al. [56] has proposed elimination and
non-elimination methods to use ciphertext in order to recover the entire key while
attacking last round of AES. Our attack is di�erent than the strategy proposed by Neve
et al. [56] as we use Correlation Analysis on our cache traces, however, we do share
some nuances of their work.

We have already discussed that in OpenSSL 0.9.7a AES implementation, T4 is
used only in the last round and depicts the end of encryption. T4 is accessed 16 times
during the last round, hence the probability that a cache line in T4 is not accessed in m
encryptions is p(m) denoted by:

p(m) = (1516)16 → .356

Our EVICT+RELOAD attack works on both T-table AES implementations (OpenSSL
0.9.7a and OpenSSL 1.0.1g). We start with mapping the shared library under attack
(libcrypto.so) in attacker's address space. In this instance of the attack, the encryp-
tion and spying execute as two forked processes. This scenario is less realistic than the
context where victim and spy are di�erent processes. However, we discuss the results of
PRIME+PROBE which works on two di�erent processes (steps are the same as discussed
in Section- 4.3.2). Our EVICT+RELOAD attack consists of three phases :

• Pro�ling Phase: In this phase, we attempt to �nd out the location of T-tables in
libcrypto.so using any linux utility like objdump,gdb etc. This is done to reduce the
number of addresses used for probing in the actual attack. In this attack scenario
we may also disable the ASLR to �nd the exact location of T-tables. However,
we noticed that even if we do not disable ASLR (explained in Section- (4.4.2.1)),
tables are slightly misaligned and that does not really a�ect our attack intensity.
The pro�ling phase provides with the information about the location of T-tables in
the cache memory i.e. which cache sets are occupied by the T-table elements.

• Exploitation Phase: Once the location of t-tables is identi�ed, we perform a
warm up encryption on plaintext to load the T-tables in memory (this step may
be skipped). We will perform n > 8000 number of encryption for each cache set

build

54 CHAPTER 4. CASE STUDIES

Figure 4.10: Nexus 5: AES cache trace for k0 = 0x51

build

4.4. ATTACK SCENARIOS 55

occupied by the T-tables. For demonstration, we use OpenSSL 1.0.1g (32 byte
version) on Android (attack should be scalable to other versions as well), the total
space occupied by T1−T4 tables is 4KB. Hence, the number of cache sets occupied
by T-tables is 64. Then, we evict a speci�c cache set from the T-tables and perform
encryption again. If the evicted cache set is used by the encryption, then it will
be fetched again from the memory otherwise not. In the last and �nal step we
access the evicted address again to check if it is loaded by the encryption step. We
will store the the plaintext (not necessarily required as we are attacking sbox-in
of 10th round), ciphertext and corresponding CPU cycles w.r.t each cache set in a
structure called cache_trace 4.11.

Attack steps

1 start_addr = s t a r t address of T−t ab l e s
2 end_addr = end address of T−t ab l e s
3 s t r u c t cache_trace
4 for i =start_addr ; i <end_addr ; i+=64
5 aes_encryption ()
6 for j =0; j< NUMBER_OF_ENCRYPTIONS ; j++
7 e v i c t i o n of i t h set
8 aes_encryption ()
9 c a l c u l a t e time to ac c e s s ev i c t ed i t h set
10 cache_trace . p l a i n t e x t = p l a i n t e x t
11 cache_trace . c i ph e r t e x t = c i phe r t e x t
12 cache_trace . t imings = t imings
13 end for
14 end for

• Correlation Phase: In the correlation phase, we perform the correlation between
the intermediate value and every bit of the cache address being accessed or not.
In order to perform correlation, we convert our cache traces in binary traces by
using a suitable threshold. We use di�erent leakage models like Bit, ID, and Zero
Value models to hypothetically determine the intermediate value. Another most
important technique which is utilized to identify how many traces are su�cient in
order to recover the full key is Key Rank Estimation.

build

56 CHAPTER 4. CASE STUDIES

Figure 4.11: Cache Traces

build

Results and Analysis 5
In this chapter, we discuss and analyze the results of various cache attack strategies on
di�erent architectures, namely: ARM and x86. The focus of our results and analysis
is on our test devices (Section: 1.6). We run a pilot attack on x86 �rst, to reckon the
feasibility of our attack and then we escalate it to our test devices 1.6.

5.1 Cache Correlation Analysis (CCA) and Leakage Models

Correlation coe�cient provides an extremely e�cient way to determine linear relation-
ships between data. In our case, we aim to �nd correlation between the hypothetical
intermediate values for every possible key guess to binary cache trace (which contains
1 for a cache miss and 0 for a cache hit on a bunch of addresses) based on certain
leakage models. It is to be mentioned that only 4 MSBs of the 16 attacked addresses
are important as cache traces operate on cache line level (containing 16 elements each)
not on individual address level. We attacked sbox-out of 1st round of AES encryption
on Nexus 5 to demonstrate the applicability of cache template attacks. We use our
attack strategy along with various leakage models [65] (they are used for power-side
channel analysis) to attack AES last round on our test devices(1.6). In this section we
will discuss these leakage models and their usability w.r.t our attacks scenarios. We
use Inspector (an advanced tool for side-channel analysis) [10] to perform correlation
analysis which we term as Cache Correlation Analysis (CCA). Any other script or
tool which is capable of performing CA can be used, hence using INSPECTOR is not
part of the requirements. Thus this attack can be completely performed in an online
mode, there is no requirement to analyse the cache traces separately on another platform.

The non-linear behavior of sbox [65] is key to this analysis. A one bit di�erence
at an sbox input leads to a di�erence of several bits at the output. Hence, even if a key
hypothesis is only wrong in one bit, the output in sbox will be di�erent in several bits.
Therfore, while attacking the output of sbox the correlation for all wrong key hypothesis
is signi�cantly smaller than the correlation for the correct one. Hence, we mount our
correlation analysis on the intermediate results that occur after the sboxes (sbox out) in
the �rst round and before the sboxes in (sbox in) last round.

• Using ID Leakage Model

ID + 0--------------------N

ID leakage model operates on byte level and is suitable for addresses which are close
to the either extremes (beginning(0) and ending(N)) of the table. So an address

57

58 CHAPTER 5. RESULTS AND ANALYSIS

(an index used for lookup) which is either close to 0 or close to N, there will always
be a very high correlation. For e.g in the case of address 0 there will be a high
correlation when the intermediate value is 0 and if it's higher, the result would be
opposite. This is a linear dependency (0: yes, >0: No). The inverse holds true for
address N. For all addresses in between, this dependency slowly decreases towards
the middle and goes to the negative extreme for N. The reason can be attributed to
the fact that the impact of entire byte address correlating with intermediate value is
taken into consideration instead of the 4MSBs. Additionally, in such a case neither
low values nor high values increase the chance of a hit �> no linear relationship �>
no peak. The e�ect is plotted in �gure:5.1:

Figure 5.1: ID model for binary cache trace

• Using Bit Leakage Model

BitX + 0--------------------N

This model depicts a linear dependency in between the model and the addresses
being used during encryption (as shown in sample cache traces) and therefore it is
detectable with correlation. It is nice for White Box Cryptosystems since we can
circumvent several encoding schemes. This model gives rise to interesting patterns
as we take into consideration only a part of the index (address) in the correlation
trace.

In order to simplify the assumption lets take into account how 16 cache line
addresses would be represented in binary Address0: 0000
Address1: 0001
Address2: 0010
Address3: 0011
Address4: 0100
Address5: 0101
Address6: 0110
Address7: 0111
Address8: 1000
Address9: 1001
Address10: 1010
Address11: 1011
Address12: 1100

build

5.2. CCA ON DIFFERENT PROCESSOR ARCHITECTURES 59

Address13: 1101
Address14: 1110
Address15: 1111

Now if we correlate the MSB of our intermediate (which is the index for
this table of addresses) we get some interesting results. For example: having the
MSB at 1 means that addresses 0-1 and addresses 4-5 and so-on so-forth cannot
be used and having the MSB at 0 means that there is a 50% chance that addresses
from 0 to 16 are alternatively used and one can spot a negative correlation at an
odd number of addresses.
This e�ect is shown in (Figure:5.2b) for the 4 most signi�cant bits (MSBs) of a
8 bit lookup table (sbox) on x86 architecture (Intel i5) based DELL machine .
(Figure:5.2c) also, demonstrates the e�ect of 7th MSB of the index value. This
information about the correlation in between the MSB of the address
and the bits of intermediate value is of signi�cant importance. As now,
we know for sure that which leakage model depicts our cache trace characteristics
in the most accurate way. As bit model gives the bit level granularity (shown in
Figure:5.2a) and depicts the correlation of each bit with the intermediate value, it
is a suitable choice for cache correlation analysis in the later experiments.

5.2 CCA on Di�erent Processor Architectures

5.2.1 EVICT+RELOAD

EVICT+RELOAD cache attacks are succesful in full key recovery on x86 architecture
as expected and we are able to recover the full secret key from OpenSSL 0.9.7a AES
implementation. Owing to the availability of accurate timer and unprivileged cache �ush
instruction, our task is much simpli�ed. Figure:5.3b demonstrates the minimum-average-
maximum number of cache traces required to recover the full key from a crypto process
running on x86 (Dell Inspirion 15-5000 series). If we do not use any other statistical
tool to our advantage, then the minimum number of encryptions performed are ≈ 1000
(Figure: 5.3a). We would like to mention here that we are making use of sum of peaks
property of correlation analysis. This helps us increase the overall impact of the cache
traces on the �nal results and thereby reduces the number of required traces for full key
recovery. In the following results, we are taking into consideration only the information
related to the 4MSBs of the addresses, as cache operates at line level and each line
contains 16 elements. Therefore, only 4 signi�cant bits of the addresses contain the
useful information and the rest contain redundant information. However, for comparison
purposes, we also investigate how results vary when information related to every single
address is taken into consideration.
While analyzing di�erent trace-sets (Figure:5.4 and Figure:5.5), we �gured out that de-
spite noise on the system and other environmental factors, we could recover the full key
with only ≈ 900 traces. Before using Key Estimation Algorithm, we were making use
of almost 9500 encryptions to recover the full key as we were unaware of the bounds.
Figure:5.5 demonstrates the bounds using various trace-sets.

build

60 CHAPTER 5. RESULTS AND ANALYSIS

(a) x86: Bit Model for all bits of address

(b) x86: Bit Model for 4th MSB of address

(c) x86: Bit Model for 7th MSB of address

Figure 5.2: x86: Correlation results of Bit Leakage Model

Number of Traces Remaining Bit Entropy(with peaks)
900 0

1100-1500 9
1700 15

Table 5.1: Reduction of bit entropy with number of traces

5.2.2 EVICT+RELOAD on ARM

The results of EVICT+RELOAD attack, on OpenSSL 1.0.1g AES implementation, on
ARM architecture vary quite signi�cantly w.r.t no. of traces. The Binary Threshold
applied to our cache traces is:180.. Figure:5.6b demonstrates that even 10000 traces
are not su�cient to recover the full key from a crypto process running on Nexus 5 (using

build

5.2. CCA ON DIFFERENT PROCESSOR ARCHITECTURES 61

(a) Key Rank Estimation Using 9500 encryptions

(b) MIN-AVG-MAX Key Rank Estimation Using Sum of the Peaks

Figure 5.3: x86: EVICT+RELOAD attack

Figure 5.4: Subsets and the reduction of key entropy

Key Estimation Module of Inspector). However, the bit entropy is reduced signi�cantly
and remaining bits can be recovered using brute force. We compare the results on the
basis of number of traces in the following 4 �gures (5.6a,5.6b,5.7,5.6d). As one can clearly

build

62 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.5: MIN-AVG-MAX Key Rank Estimation on 1100 traces

observe, more the number of traces, more the number of recovered bits.

Number_of_traces αNumber_of_recovered_bits (5.1)

There is an interesting e�ect which can be highlighted by using cache hit/miss ratio of
every individual address instead of cache line addresses and then try to recover the full
key. As one can see from Figure:5.8, that tables are a little misaligned and not every 16
address present in a cache line depict the same behavior of the line (due to misalignment).
Figure: 5.8 and �gure: 5.9 demonstrate the e�ect of key rank estimation and correlation
analysis on our cache traces (post Binary Threshold Filtering).
Next, we demonstrate the results related to Samsung Galaxy S4. In the case of Samsung
Galaxy S4, the minimum number of traces required to recover the full key is more than
8000 as can be seen from Figure:5.10a and Figure:5.10b. They collectively show the
di�erence in results with or without sum of peaks while estimating the number of traces
required to recover the full key. It is shown that the key bit entropy gets reduced to
48 bits, if we take into account individual peaks in correlation analysis while using only
8000 cache traces. On the other hand, using the sum of the peaks property, the key bit
entropy gets reduced to 14.5 bits.

5.2.3 PRIME + PROBE

5.2.3.1 ARM

The key estimation results associated with the PRIME+PROBE technique di�er from
the EVICT+RELOAD because of the following reasons:

• Since there is no concept of dedicated shared memory involved in between two
processes in PRIME+PROBE, there are more chances of false positives. Filtering
of results on the basis of additional parameters is required.

• Noise is added as some other processes can cause evictions and may hamper the
results in the cache trace sets.

build

5.2. CCA ON DIFFERENT PROCESSOR ARCHITECTURES 63

(a) Key estimation w.r.t 8000 cache traces

(b) Key estimation w.r.t 10000 cache traces

(c) Key estimation w.r.t 16000 cache traces

(d) Key estimation w.r.t 32000 cache traces

Figure 5.6: Nexus 5: EVICT+RELOAD results of key Estimation on varying number of
cache traces build

64 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.7: Nexus 5: MIN-AVG-MAX key rank estimation

Figure 5.8: Nexus 5: 256 addresses depicted in Cache traces

Figure 5.9: Nexus 5: Key Rank Estimation using 256 addresses

• Also, it requires more addresses to be monitored in comparison to
EVICT+RELOAD. Hence, it is slightly more time-consuming.

We adopt the same number of traces as used for EVICT+RELOAD technique as a
benchmark for PRIME+PROBE technique. We observe that initially we are not able to
recover the full key on Nexus 5 or Samsung Galaxy S4 with 8000 traces as other processes
were running on the smartphones, however, key entropy reduces to a certain extent as
shown in Figure:5.11. Later, we run only our crypto and victim applications on our test
devices (Section: 1.6) and the results are shown in Figure: 5.12.

build

5.2. CCA ON DIFFERENT PROCESSOR ARCHITECTURES 65

(a) AES sbox leakage using sum of peaks of 8000 traces

(b) AES sbox leakage using individual peaks of 8000 traces

Figure 5.10: Samsung Galaxy S4: EVICT+RELOAD results

Figure 5.11: Nexus 5: Prime+Probe Results with other processes running

5.2.4 White-Box Cryptosystems

The most important goal of attacking a white-box [12] is to extract the key of the crypto-
graphic algorithm. The �rst and most important step of attacking a white-box is to �nd
an attackable white-box [12]. It may look like a trivial step but it is a necessary and im-
portant step. Real-world white-boxes [12] are usually integrated into bigger applications
and attacking those would be a challenge as they must be well protected against Dynamic
Binary Execution (DBI). While analyzing the white-box with one trace we may identify
which encryption is used. Once we are able to identify where the white-box is, then we

build

66 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.12: Nexus 5: Prime+Probe Results with only spy and victim process in runnable
mode

may �nally limit the memory addresses to the minimum which is required to recover
the key. The next step is to create cache traces which focuses on the white-box execution.

We follow all the above mentioned steps and then aim to mount a side-channel
attack on the crafted traces. Finally, we want to �nd co-relation between the known
memory traces and the ideal data. It should be noted that whether a side-channel attack
would work or not is very di�cult before trying to attack it. For public white-boxes,
it possible to recover keys without any reverse-engineering or further knowledge of
white-box [33][12][24]. We tried our attack on a custom white-box implementation
(proposed by Chow et al). However, we could not reduce the entropy beyond 120 bits
while using only 2000 traces as shown in Figure:(5.13a),(5.13b and (5.13c). Our results
also suggest that there is linear relationship between the number of traces and the key
entropy. If we increase the number of traces then we should be able to recover the
complete secret key. In our work, we con�ned ourselves to 2000 traces as the trace
acquisition alone took more than 30 minutes.
It can be attributed to the following reasons:

• The tables used in this white-box implementation are large in number and are very
small. They could �t into one cache line. This hampers our attack results as our
granularity of monitoring is limited to one cache line.

• Secondly, we cannot perform a pro�le phase as these tables are randomly created
at every execution.

• During the generation of the tables in this white-box, it has been ensured that
they perfectly align to a cache-line. Hence, as one can easily understand that this
white-box was particularly created while keeping cache-attacks in mind.

We tried to attack several academic white-boxes but they were immune to our attack
owing to one or another above mentioned reasons. It should be noted that input/output
encodings do not have any impact on our results. This �nding could assist while attacking
future white-box implementations where encodings do annoy the attackers a lot.

build

5.3. IMPACT ANALYSIS OF ATTACK ASSUMPTIONS 67

(a) Cache trace-set for access time w.r.t addresses used by white-box

(b) Binary Threshold applied to cache trace-set

(c) Key Rank Estimation on the newly generated trace-set

5.3 Impact Analysis of Attack Assumptions

We aim to analyze the impact of various attack assumptions on our results.The assump-
tions would be analyzed with respect to the success rate (success rate refers to the per-
centage of successful recovery the secret key during an attack) Following are the results
w.r.t various attack parameters:

• Impact of prefetcher: While attacking an arti�cial application when we used de
Bruijn cycle, we could avoid the e�ects of hardware prefetching. On the other hand,
when we accessed the array elements in a progression, it triggered the hardware
prefetcher as expected.

• Impact of ASLR: In case, we do not disable ASLR then the AES t-tables are

build

68 CHAPTER 5. RESULTS AND ANALYSIS

slightly misaligned. It does not completely a�ect our results although adds a bit of
noise. On the contrary, in some cases it can also be bene�cial as one can directly
get the key byte as shown by Spreitzer et al. [64].

• Impact of operating System: The Linux o�erings like shared memory, mmap
and pagemap are exploited in our cache attack. Android is based on Linux and as
discussed in Chapter-1, Android follows principles of sand-boxing etc to protect its
application but the mysterious area of shared hardware is not paid attention to.
Privileged access to cycle counter and cache �ush instructions do make our task
a little bit di�cult but cache coherency came to our rescue. We could deploy the
cross core cache attacks on our test devices 1.6 using cache coherency o�ered by
AMBA ACCI.

• Impact of cache state before the attack: Our attack does not work on the
cache misses but on the cache hits unlike previous works [58][26][77][40]. There can
be three di�erent scenarios in which our cache attacks would perform di�erently as
stated below :

� Empty initial state: This is the most favored state [18] for cache attacks as
it provides with cold cache misses which were generally the basis for previous
attacks on x86. We used this cache state to test our attacks. However, our
attack works even without an empty initial state.

� Forged initial state: In this sceanrio [18], the attacker should be able to
control the initial state of cache as per his/her requirement. This is suggested
to manipulate the number of cold start misses. It is equivalent to empty
initial state in a way as it also involves �ushing of cache followed by some fake
encryptions. However, there is a di�erence as it uses con�ict misses instead of
cold misses to gain information about the signi�cant key bytes.

� Loaded initial state: As the name suggests [18], if the tables are already
loaded in the memory then that state is called loaded initial state. We utilized
this state as well for our attacks and it reduced the number of traces required
to recover the complete key.

• Number of cache traces/encryptions: The relationship between the number
of traces or encryptions required and the success rate of our attack are linearly de-
pendant. If we have more traces, that amounts to more information and eventually,
the chances to recover the complete key increases as well.

• Impact of the privileged and unprivileged mode: Industry has always argued
that if an attacker has an access into victim's execution space then there is no point
in carrying out a more complicated low level microarchitectural attack. To answer
this, we made our attack work in both privileged and unprivileged modes. However,
in a privileged mode we have access to cycle counter, consequently, the success rate
increases and the number of encryptions required decreases. In unprivileged mode,
we made use of timing mechanisms like perf and monotonic clock. The results were
still promising, however number of required traces increased with the change in the
choice of the timing mechanism.

build

5.3. IMPACT ANALYSIS OF ATTACK ASSUMPTIONS 69

• Impact of eviction strategy: It is the most crucial aspect of the attack as an
eviction strategy with 100% eviction rate and lower execution time is essential.
Using Cache Eviction Strategy Evaluator [53] our task became fairly easy and we
could come up with an e�cient strategy. In this study, we did not try the eviction
strategies suggested by [58][79] as they were time-consuming.

• Impact of the type of attack: Prime+Probe is a much realistic attack
but we could not completely recover the key using Correlation Analysis, given
the same number of traces used for EVICT+RELOAD. On the other hand,
EVICT+RELOAD in various attack scenarios results in a successful key recovery
as discussed in previous sections.

build

70 CHAPTER 5. RESULTS AND ANALYSIS

build

Conclusion 6
6.1 Conclusion

We present a novel evaluation strategy for cache side channel attacks on Android smart-
phones(1.6). Our study discusses the applicability of cache attacks (PRIME+PROBE,
EVICT+RELOAD) on a victim application making use of native code on our test
devices (1.6). It emphasizes the e�ect of the cache intial state, timing probe, compiler,
access settings, operating system etc on the generated cache traces. Further, we discuss
the number of key bytes recovered by analyzing the cache behavior. Our experiments
are not entirely dependant on the above-mentioned speci�cations and hence can be
reproduced with much ease. We perform cache attacks on OpenSSL 1.0.1g and OpenSSL
0.9.7a AES implementation on our test devices 1.6 using a state-of-the-art attack
strategy based on the works of Spreitzer et al. [64] and Tromer et al. [58]. In the
previous works [58][20][38] picture analysis was fundamentally used to identify the key
candidates. Correlation Analysis was used in timing attacks but not in access driven
cache attacks on ARM. Our results ful�ll the main objective of our research
which is the successful recovery of the complete secret key of AES (a crypto
algorithm) on ARM devices with the assistance of statistical techniques like
Correlation Analysis and Key Rank Estimation . Using the proposed method,
we quantitatively evaluate the transition with the increase of the number of plaintexts.
We also discuss the performance of our attack in varying attack scenarios and the e�ect
of the cache state on our attack performance is also analyzed. Finally, we demonstrate
the cache attack on a vulnerable implementation of AES (resembling a white-box imple-
mentation) and then test its applicability on a custom white box implementation of AES.

Future work related to the investigation of cache attacks on white-box cryptosys-
tems seems promising. We believe that incorporation of statistical analysis with
access-driven cache attack opens door to a major research in the �eld of white-box
cryptosystems. Furthermore, launching these cache attacks without any privilege
escalation or assistance from performance counters will ease the implementation. The
possibilities of new cache attacks and new attack vectors are also a part of future work.
Di�erent countermeasures to such statistical analysis could be researched. For instances,
techniques like code obfuscation can be implemented but the level to which it should be
done remains questionable.

6.2 Contributions

Attacks presented in this research are cache attacks on android smartphones namely,
Nexus 5 and Samsung Galaxy S4. The contributions of this work are as follows:

71

72 CHAPTER 6. CONCLUSION

• We demonstrate the applicability of cache attacks (PRIME+PROBE,
EVICT+RELOAD) on a victim application making use of native code on
Nexus 5. We reproduce the cache attacks on OpenSSL AES implementation
by Gruss et.al [53] using lib�ush. We demonstrate EVICT+RELOAD and
PRIME+PROBE cache attack on OpenSSL 1.0.1g and OpenSSL 0.9.7a imple-
mentations of AES, on Nexus 5 and Samsung Galaxy S4. We successfully reduce
the secret key space of from 128 bits to 64 bits using Cache Template Attacks
suggested by Spreitzer et al. [64].

• We are the �rst to demonstrate the usage of Cache Correlation Analysis and Key
Rank Estimation techniques to extract key-related information from the cache-
traces on Nexus 5 and Samsung Galaxy S4. Finally, we extract the secret key using
≈ 8000 cache traces on Nexus 5 and ≈ 700 cache traces on x-86 architecture.

• We are the �rst to demonstrate a cache attack implementation on a vulnerable AES
implementation on an x-86 machine and then test its applicability on a custom white
box implementation of AES.

build

Bibliography

[1] https://www.blackhat.com/docs/us-16/materials/
us-16-Hornby-Side-Channel-Attacks-On-Everyday-Applications-wp.pdf.

[2] http://igoro.com/archive/gallery-of-processor-cache-effects.

[3] Android software stack, http://linux.softpedia.com/get/Programming/

Interpreters/Android-SDK-32340.shtml.

[4] Arm cache policies, http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.den0024a/ch11s03.html.

[5] Arm security part 1, http://hiqes.com/android-security-part-1/.

[6] Cache coherency, http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.ddi0434c/CJHBABIC.html.

[7] Cache policies, http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.den0024a/ch11s03.html.

[8] Exploiting side channels in android, http://cryptostackexchange.com/.

[9] Exploiting unintended data leakage (side channel data leakage), http://resources.
infosecinstitute.com/.

[10] Inspector sca, https://www.riscure.com/security-tools/inspector-sca/.

[11] Memory management, http://www.tldp.org/LDP/tlk/tlk.html.

[12] Side channel attack against white-box cryptography on android, https:

//github.com/edermi/papers/blob/master/Side-channel%20attacks%

20against%20whitebox%20cryptography%20on%20Android/thesis.pdf.

[13] These are not your grand daddy's cpu performance counters- cpu hardware perfor-
mance counters for security, https://www.blackhat.com/docs/us-15/materials/
us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.

pdf.

[14] Unintended data leakage,mobile top 10 2014-m4, https://www.owasp.org/index.
php/Mobile_Top_10_2014-M4.

[15] Smartphone os market share, 2016 q3, http://www.idc.com/promo/

smartphone-market-share/os, 2016.

[16] Onur Aciiçmez, Yet another microarchitectural attack:: Exploiting i-cache, Proceed-
ings of the 2007 ACM Workshop on Computer Security Architecture (New York,
NY, USA), CSAW '07, ACM, 2007, pp. 11�18.

73

https://www.blackhat.com/docs/us-16/materials/us-16-Hornby-Side-Channel-Attacks-On-Everyday-Applications-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Hornby-Side-Channel-Attacks-On-Everyday-Applications-wp.pdf
http://igoro.com/archive/gallery-of-processor-cache-effects
http://linux.softpedia.com/get/Programming/Interpreters/Android-SDK-32340.shtml
http://linux.softpedia.com/get/Programming/Interpreters/Android-SDK-32340.shtml
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch11s03.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch11s03.html
http://hiqes.com/android-security-part-1/
http://infocenter.arm.com/help/index.jsp? topic=/com.arm.doc.ddi0434c/CJHBABIC.html
http://infocenter.arm.com/help/index.jsp? topic=/com.arm.doc.ddi0434c/CJHBABIC.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch11s03.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch11s03.html
http://cryptostackexchange.com/
http://resources.infosecinstitute.com/
http://resources.infosecinstitute.com/
https://www.riscure.com/security-tools/inspector-sca/
http://www.tldp.org/LDP/tlk/tlk.html
https://github.com/edermi/papers/blob/master/Side-channel%20attacks%20against%20whitebox%20cryptography%20on%20Android/thesis.pdf
https://github.com/edermi/papers/blob/master/Side-channel%20attacks%20against%20whitebox%20cryptography%20on%20Android/thesis.pdf
https://github.com/edermi/papers/blob/master/Side-channel%20attacks%20against%20whitebox%20cryptography%20on%20Android/thesis.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os

74 BIBLIOGRAPHY

[17] Chris Wright Andrew Sloss, Dominic Symes, Arm system developer's guide: Design-
ing and optimizing system software.

[18] AndrÃ© Seznec Anne Canteaut, CÃ©dric Lauradoux, Understanding cache attacks.

[19] Ali Can Atici, Cemal Yilmaz, and Erkay Savas, Remote cache-timing attack without
learning phase., IACR Cryptology ePrint Archive 2016 (2016), 2.

[20] Daniel J Bernstein, Cache-timing attacks on aes.

[21] Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and Gian-
luca Palermo, Aes power attack based on induced cache miss and countermeasure,
Proceedings of the International Conference on Information Technology: Coding and
Computing (ITCC'05) - Volume I - Volume 01 (Washington, DC, USA), ITCC '05,
IEEE Computer Society, 2005, pp. 586�591.

[22] Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and Malte Wienecke, Dif-
ferential cache-collision timing attacks on aes with applications to embedded cpus.,
Springer.

[23] Joseph Bonneau and Ilya Mironov, Cache-collision timing attacks against aes,
pp. 201�215, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[24] Joppe W Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen, Di�erential
computation analysis: Hiding your white-box designs is not enough, International
Conference on Cryptographic Hardware and Embedded Systems, Springer, 2016,
pp. 215�236.

[25] Billy Bob Brumley, Cache storage attacks, pp. 22�34, Springer International Pub-
lishing, Cham, 2015.

[26] Billy Bob Brumley and Risto M. Hakala, Cache-timing template attacks, ASI-
ACRYPT, 2009.

[27] Ketan Chavda, Role of mobile apps in revolutionizing the world of iot, (2016).

[28] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz, Real time detection of cache-
based side-channel attacks using hardware performance counters, Applied Soft Com-
puting 49 (2016), 1162�1174.

[29] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot, White-box
cryptography and an aes implementation, Springer.

[30] Joan Daemen and Vincent Rijmen, The design of rijndael:aes the advanced, Journal
of Cryptology 4 (1991), no. 1, 3�72.

[31] Yoni De Mulder, Peter Roelse, and Bart Preneel, Cryptanalysis of the xiao�lai white-
box aes implementation, International Conference on Selected Areas in Cryptogra-
phy, Springer, 2012, pp. 34�49.

build

BIBLIOGRAPHY 75

[32] Eli Dow, Take charge of processor a�nity, https://www.ibm.com/developerworks/
linux/library/l-affinity/l-affinity-pdf.pdf, 29/9/2005.

[33] Job de Haas Eloi Sanfelix, Cristofaro Mune, Unboxing the white-box(practical attacks
against obfuscated ciphers).

[34] Adrienne Porter Felt, Kate Greenwood, and David Wagner, The e�ectiveness of
application permissions, Proceedings of the 2Nd USENIX Conference on Web Ap-
plication Development (Berkeley, CA, USA), WebApps'11, USENIX Association,
2011, pp. 7�7.

[35] Catherine H. Gebotys and Brian A. White, A sliding window phase-only correlation
method for side-channel alignment in a smartphone, ACM Trans. Embed. Comput.
Syst. 14 (2015), no. 4, 80:1�80:22.

[36] Ben Gras and Kaveh Razavi, Aslr on the line: Practical cache attacks on the mmu,
(2017).

[37] Marc Green, Leandro Rodrigues Lima, Andreas Zankl, Gorka Irazoqui, Johann
Heyszl, and Thomas Eisenbarth, Autolock: Why cache attacks on ARM are harder
than you think, CoRR abs/1703.09763 (2017).

[38] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard,
Prefetch side-channel attacks: Bypassing smap and kernel aslr, Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, ACM,
2016, pp. 368�379.

[39] Daniel Gruss, Clémentine Maurice, and Stefan Mangard, Rowhammer. js: A remote
software-induced fault attack in javascript, Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, 2016, pp. 300�321.

[40] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard, Cache template attacks: Au-
tomating attacks on inclusive last-level caches, Proceedings of the 24th USENIX
Conference on Security Symposium (Berkeley, CA, USA), SEC'15, USENIX Asso-
ciation, 2015, pp. 897�912.

[41] David Gullasch, Endre Bangerter, and Stephan Krenn, Cache games � bringing
access-based cache attacks on aes to practice, Proceedings of the 2011 IEEE Sym-
posium on Security and Privacy (Washington, DC, USA), SP '11, IEEE Computer
Society, 2011, pp. 490�505.

[42] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone, Guide to elliptic curve
cryptography, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[43] Gernot Heiser, Arm cache organization, https://microkerneldude.wordpress.

com/.

[44] Ralf Hund, Carsten Willems, and Thorsten Holz, Practical timing side channel at-
tacks against kernel space aslr, Security and Privacy (SP), 2013 IEEE Symposium
on, IEEE, 2013, pp. 191�205.

build

https://www.ibm.com/developerworks/linux/library/l-affinity/l-affinity-pdf.pdf
https://www.ibm.com/developerworks/linux/library/l-affinity/l-affinity-pdf.pdf
https://microkerneldude.wordpress.com/
https://microkerneldude.wordpress.com/

76 BIBLIOGRAPHY

[45] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar, Cross processor cache attacks,
Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security, ACM, 2016, pp. 353�364.

[46] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall, Side channel crypt-
analysis of product ciphers, Computer Securityâ��ESORICS 98 (1998), 97�110.

[47] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz, Stealthmem: System-level
protection against cache-based side channel attacks in the cloud.

[48] Paul Kocher, Joshua Ja�e, and Benjamin Jun, Di�erential power analysis, Advances
in cryptologyâ��CRYPTOâ��99, Springer, 1999, pp. 789�789.

[49] Paul Kocher, Joshua Ja�e, Benjamin Jun, and Pankaj Rohatgi, Introduction to
di�erential power analysis, Journal of Cryptographic Engineering 1 (2011), no. 1,
5�27.

[50] Robert KÃ¶nighofer, A fast and cache timing resistant implementation of the aes.

[51] Cédric Lauradoux, Collision attacks on processors with cache and countermeasures.

[52] Ste�en Liebergeld and Matthias Lange, Android security, pitfalls and lessons learned,
Information Sciences and Systems 2013, Springer, 2013, pp. 409�417.

[53] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Man-
gard, Armageddon: Cache attacks on mobile devices, 25th USENIX Security Sympo-
sium (USENIX Security 16) (Austin, TX), USENIX Association, 2016, pp. 549�564.

[54] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee, Last-level
cache side-channel attacks are practical, IEEE Symposium on Security and Privacy
(S&P), 2015.

[55] Dave Marshall, Shared memory, https://users.cs.cf.ac.uk/Dave.Marshall/C/
node27.html.

[56] Michael Neve and Jean-Pierre Seifert, Advances on access-driven cache attacks on
aes, International Workshop on Selected Areas in Cryptography, Springer, 2006,
pp. 147�162.

[57] Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang, A re�ned look at bernstein's
aes side-channel analysis, Proceedings of the 2006 ACM Symposium on Information,
Computer and Communications Security (New York, NY, USA), ASIACCS '06,
ACM, 2006, pp. 369�369.

[58] Dag Arne Osvik, Adi Shamir, and Eran Tromer, Cache attacks and countermeasures:
The case of aes, Proceedings of the 2006 The Cryptographers' Track at the RSA
Conference on Topics in Cryptology (Berlin, Heidelberg), CT-RSA'06, Springer-
Verlag, 2006, pp. 1�20.

[59] Dan Page, Theoretical use of cache memory as a cryptanalytic side-channel.

build

https://users.cs.cf.ac.uk/Dave.Marshall/C/node27.html
https://users.cs.cf.ac.uk/Dave.Marshall/C/node27.html

BIBLIOGRAPHY 77

[60] Colin Percival, Cache missing for fun and pro�t.

[61] Romain Poussier, FranÃ§ois-Xavier Standaert, and Vincent Grosso, Simple key enu-
meration (and rank estimation) using histograms: An integrated approach, CHES,
Springer, 2016, pp. 61�81.

[62] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Commun. ACM 21 (1978), no. 2, 120�126.

[63] Andrew Sloss, Dominic Symes, and Chris Wright, Arm system developer's guide:
designing and optimizing system software, Morgan Kaufmann, 2004.

[64] Raphael Spreitzer and Thomas Plos, Cache-access pattern attack on disaligned aes
t-tables, pp. 200�214, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[65] Thomas Popp Stefan Mangard, Elisabeth Oswald, Power analysis attacks: Revealing
the secrets of smart cards (advances in information security), 1 ed., 2007.

[66] Junko Takahashi, Toshinori Fukunaga, Kazumaro Aoki, and Hitoshi Fuji, Highly
accurate key extraction method for access-driven cache attacks using correlation co-
e�cient, Australasian Conference on Information Security and Privacy, Springer,
2013, pp. 286�301.

[67] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi, Cryptanalysis of des implemented on computers with cache, Springer.

[68] Rob van der Meulen, Gartner says 8.4 billion connected "things" will be in use in
2017, up 31 percent from 2016, (2017).

[69] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémen-
tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giu�rida,
Drammer: Deterministic rowhammer attacks on mobile platforms, Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
ACM, 2016, pp. 1675�1689.

[70] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-Xavier
Standaert, An optimal key enumeration algorithm and its application to side-channel
attacks, International Conference on Selected Areas in Cryptography, Springer, 2012,
pp. 390�406.

[71] Michael Weiÿ, Benedikt Heinz, and Frederic Stumpf, A cache timing attack on aes
in virtualization environments, International Conference on Financial Cryptography
and Data Security, Springer, 2012, pp. 314�328.

[72] Wikipedia, Cache coherence � wikipedia, the free encyclopedia, 2017.

[73] , Cpu cache � wikipedia, the free encyclopedia, 2017.

[74] Brecht Wyseur, White-box cryptography: hiding keys in software.

build

78 BIBLIOGRAPHY

[75] Yaying Xiao and Xuejia Lai, A secure implementation of white-box aes, Computer
Science and its Applications, 2009. CSA'09. 2nd International Conference on, IEEE,
2009, pp. 1�6.

[76] Zhao Xinjie, Wang Tao, Mi Dong, Zheng Yuanyuan, and Lun Zhaoyang, Robust �rst
two rounds access driven cache timing attack on aes, Computer Science and Software
Engineering, 2008 International Conference on, vol. 3, IEEE, 2008, pp. 785�788.

[77] Yuval Yarom and Katrina E Falkner, Flush+ reload: a high resolution, low noise, l3
cache side-channel attack., USENIX Security Symposium, vol. 2014, 2014, pp. 719�
732.

[78] Yuval Yarom, Daniel Genkin, and Nadia Heninger, Cachebleed: A timing attack on
openssl constant time rsa, Journal of Cryptographic Engineering 7 (2017), no. 2,
99�112.

[79] YongBin Zhou and DengGuo Feng, Side-channel attacks: Ten years after its publi-
cation and the impacts on cryptographic module security testing.

build

Appendix A
A.1 Processor Cache E�ects

It is important to understand that how interaction [2] between processor and cache
memory in�uences the performance of a program or of an algorithm.

A.1.1 Impact of Cache Lines

Figure A.1: Step-size(k) vs Access times(clock cycles)

Understanding of cache lines can be important for certain types of program optimizations.
For example, the alignment of data may determine whether an operation touches one or
two cache lines. As can be seen in the Figure: A.1, till the time step-size(k) was within one
cache-line size i.e, 16 (as 16 ints take up 64 bytes), there was no signi�cant performance
change. The reason behind such behavior is that today's CPUs do not access memory
byte by byte. Instead, they fetch memory in chunks of (typically) 64 bytes, called cache
lines. When a particular memory location is read, the entire cache line is fetched from
the main memory into the cache. And, accessing other values from the same cache line is
cheap. Since 16 ints take up 64 bytes (one cache line), for-loops with a step-size between
1 and 16 will touch all of the cache lines in the array. But once the step-size is 32, we'll
touch roughly every other cache line, and once it is 64, only every fourth.

79

80 APPENDIX A. APPENDIX

Figure A.2: Access Times vs Array Size

A.1.2 Impact of L1-L2 Sizes

Figure: A.2 re�ects at what size of an array the overall access time increases with a
sudden spike. The horizontal axis shows the size of the array (2n) where n is 1, 2,, 20
and the vertical axis shows the cpu cycles consumed to access array elements. Following
can be inferred from Figure: A.2:

• L1 cache is somewhere around 32 KB

• L2 cache is 256 KB

• L3 cache is 4MB

The jumps in the access times of the array help us understand how access time of each
element increases with the increase in the size of the array. The reason behind is that,
beyond the size of the cache, the cache cannot keep the entries of an array and hence it
will have to fetch them from memory when requested. The above-mentioned behavior is
the behavior of an x86 architecture based machine. For our device Nexus 5, the results
are pretty much the same with spikes on 16 KB and 2 MB positions as L1 is 16 KB and
L2 is 2MB on Krait 400.

A.1.3 Impact of Cache Associativity

Direct mapped caches can su�er from con�icts, for e.g. when multiple values compete for
the same slot in the cache, they keep evicting each other out, and the hit rate plummets.
On the other hand, fully associative caches are complicated and costly to implement in
the hardware. N-way set associative caches are the typical solution for processor caches,

build

A.1. PROCESSOR CACHE EFFECTS 81

as they make a good trade o� between implementation simplicity and good hit rate.

For example, the 2MB L2 cache on Nexus 5 is 8-way associative. Each of the
4096 sets will have 8 ways/lines in the cache. So, the lowest 12 bits of the memory block
index will determine which set the block belongs to (212 = 4,096). As a result, cache
lines at addresses that di�er by a multiple of 262,144 bytes (4096 * 64) will compete for
the same slot in the cache. The cache on Nexus5 can hold at most 8 such cache lines.
For the e�ects of cache associativity to become apparent, we need to repeatedly access
more than 8 elements from the same set as this will result in the eviction of the desired
set. On the basis of this property, we will understand how cache eviction is performed
without any dedicated instruction and will try to achieve the maximum possible eviction
rate.

A.1.4 Memory Organization

In Figure: A.3 a set associative cache memory and the memory organization are shown.
As shown in the Figure: A.3, the cache memory is divided into ways/lines (W) and
sets(S) and its size is decided by the processor and the cache design. Each memory block
is mapped to a speci�c cache set , for e.g, when an S-box element is allocated in the
memory (Figure: A.4), each element of S-box table is cached in corresponding cache set
when a cache miss occurs [66].

Figure A.3: Mapping from main memory to cache

build

82 APPENDIX A. APPENDIX

Figure A.4: S-box elements mapped from main memory to cache

A.1.5 Impact of CPU A�nity

If we are running time-sensitive or deterministic processes, there is a reason to be in-
terested in CPU a�nity [32]. For example, hard a�nity can be used to specify one
processor on an eight-way machine, while allowing the other seven processors to handle
all the normal scheduling needs of the system. This action ensures that our long-running,
time-sensitive application gets to run, and also allows other application(s) to monopolize
the remaining computing resources.

A.2 Types of Cache Misses and their utility

Cache eviction is performed to create some space for new entries in the cache when the
cache is full. It can also be triggered manually by exploiting a speci�c category of cache
misses which is called Con�ict Misses. Cache misses [18] can occur because of following
three reasons:

• Whenever a data is referenced for the �rst time, it has to be fetched from the
memory and hence there is a cache miss. This is termed as Compulsory Misses

• For a given size of a cache, any data which is more than the limited size of the
cache would result in a cache miss. This is termed as Capacity Misses

build

A.3. EVICTION RESULTS: NEXUS 5 83

• If one or more memory access references a particular address then there arises
a con�ict and data present in the cache earlier would be evicted. This is called
Con�ict Misses

The 3rd category of cache misses can be e�ectively used to perform cache eviction. The
data from the cache can be evicted using several approaches which are only applicable
to Least Recently Used (LRU) replacement policies [41] and thus, are not suited for
ARM CPUs. However, Spreitzer and Plos [64] proposed an eviction strategy for ARMv7-
A devices that tries to overcome the pseudo-random replacement policy by accessing
more addresses than there are ways per cache set. Gruss et al.[53][40] demonstrated an
automated way to �nd fast eviction strategies on ARM.

A.2.1 L1 and L2 cache misses

L1 cache is local to the processor's cores and hence in order to perform cache attacks
both spy and victim applications have to run on the same core. The size of L1 cache also
plays a major role in terms of eviction and cache misses. If the size of L1 is small then
it will result in more cold start misses (2). On the other hand, in the case of L2 cache,
since it is used for both data and code, there will be some inevitable cache collisions
(and line evictions) caused by the instruction fetching activity. However, since L2 cache
is bigger in size, the possibility of false positives during eviction gets reduced. Attacks
exploiting the L2 or LLC cache in android smartphones have demonstrated the recovery
of sensitive information like cryptographic keys [45][77].

Another problem arises from the processor's capability for hardware prefetching:
If a series of cache misses occur, in an arithmetic progression, within a single page, then
the cache will recognize this as a data stream and prefetch two additional cache lines.
The solution is to access the cache lines in an irregular manner (i.e., to follow a de
Bruijn cycle instead of accessing the lines in an arithmetic progression). Thus, hardware
prefetcher will not get activated as well. In most of the past attacks [60][25][22], the
initial state of cache (empty, loaded or initialised) is not clearly stated and hence, the
di�erent type of cache misses (cold, con�ict and capacity) arises [60]. However, it should
be mentioned that most of the cache attacks make use of cold or con�ict misses. This is
due to the fact that symmetric encryption techniques are designed to have a relatively
high speed. Hence, all the operations must be implemented by lookup tables whose total
size do not exceed the cache capacity.

A.3 Eviction Results: Nexus 5

Table:A.1 summarizes di�erent eviction strategies for Krait 400 (Nexus 5). Column 1
de�nes the number of addresses being accessed using Rowhammer Eviction Strategy
[39]. Column 3 signi�es the eviction rate. As can be seen from the table that row 1
and row 3, despite almost the same number of di�erent addresses being accesses in a
loop, there exisits a signi�cant di�erence in the eviction rate. The reason behind is the
number of accesses performed to those di�erent addresses which facilitate the eviction
and successfully tricks the PLRU policy.

build

84 APPENDIX A. APPENDIX

Table A.1: Eviction Results: Nexus 5

Number of Addresses (N) Number of Accesses (A) Eviction Rate (in %)
13 1 79.97
12 3 100
10 2 100

A.4 White-Box Use cases

Example 1: Digital Signature (Figure: A.6) and Example 2: Content Protection (Figure:
A.5) describe the utility of WBC in their functionality. WBC is an integral part of these
services o�ering Content Rights Management on mobile devices such as smartphones.

Figure A.5: Content Protection using White-Box

Figure A.6: Digital Signature using White-Box

build

A.5. FIRST ORDER ANALYSIS AND KEY RANK ESTIMATION 85

A.5 First Order Analysis and Key Rank Estimation

Figure:A.7 shows �rst-order analysis (Correlation Analysis) of cache traces from an attack
on AES last round. All three steps namely: Trace acqusition, Binary Threshold Filtering,
and Correlation Analysis are shown. Figure: A.8 demonstrates the usage of key rank
estimation on the correlation analysis. Figure: A.9 demonstrates how key entropy reduces
with every 100 cache traces. Figure:A.10 shows how correlation analysis helps in full
recovery of key. Additionally, �gure: A.11 explains how subsets of 8000 cache traces
each, respond to the key extimation technique. Finally, in order to �nd the bounds on
the number of cache traces required, we show the e�ect of Minimum-Maximum-Average
module in Figure: A.12.

Figure A.7: Steps of Correlation Analysis of cache attack on last round of AES

Figure A.8: Key rank estimation of cache attack results on AES last round

build

86 APPENDIX A. APPENDIX

Figure A.9: Nexus 5: Key Rank Estimation on 8000 traces

Figure A.10: Nexus 5: Correlation Analysis 320000 cache traces

build

A.5. FIRST ORDER ANALYSIS AND KEY RANK ESTIMATION 87

Figure A.11: Nexus 5: Key rank estimation of subsets (8000 cache traces each)

Figure A.12: Nexus 5: Minimum-Average-Maximum of subsets (8000 cache traces each)

build

Cache Correlation Analysis and Key Rank
Estimation on Android Smartphones

Parul Gupta, Christian Doerr, and Ruben Muijrers

Cyber Security Group, Delft University of Technology
Delft, The Netherlands

{p.gupta-3}@student.tudelft.nl

{c.doerr}@tudelft.nl

muijrers}@riscure.com

Abstract. Android smartphones collect and compile a huge amount of
sensitive information which is secured using cryptography. There is an
unintended leakage of information during the physical implementation
of a cryptosystem on a device. Such a leakage is often termed as side
channel and is used to break the implementation of cryptographic algo-
rithms. In this work, we utilize cache memory based side channels on
android smartphones to retrieve crypto-process information. These side
channels are based on the information leakage through the operating sys-
tem, micro-architecture of the processor and the state of the processor’s
memory cache. We demonstrate the retrieval of data dependent memory
access patterns using a spy application running in the background to re-
cover the full secret key of cryptographic primitives such as AES T-table
implementation in OpenSSL, all that would be necessary is a rogue app
downloaded from an app store that is run under normal privileges. We
show that a mathematical correlation which depends on the guessed key,
can be utilized to recover the complete key in access-driven cache attacks
(CAs). We show the effectiveness of the proposed method using access
time measured in noisy environments. We analyze the changes in the cor-
relation values with the number of plaintexts/ciphertexts for a successful
attack using key estimation. Furthermore, we discuss and demonstrate
the applicability of cache memory based side channel attacks on a white-
box implementation of AES.

Keywords: Cache Attacks, Android, OpenSSL AES, Key estimation,
Correlation Analysis

1 Introduction

With ≈ 87% market share [4], Android clearly dominates the smartphone mar-
ket. One of the reasons behind such a huge success is that android is considered
to be ”open and free”. Also for developers, it allows them to incorporate al-
ready available third party code in their applications which can be confirmed
by the heavy usage of native libraries among the most popular applications.
However, including third party code in an application can have some severe

2 Parul Gupta, Christian Doerr, and Ruben Muijrers

consequences both on the user and the developer of the app. In practice, crypto-
graphic primitives and cryptographic protocols are implemented to protect user’s
information from malicious applications and 3rd party native code. Smartphones
use cryptographic keys to protect sensitive information such as health records
and banking passwords. These techniques intrinsically make use of standard-
ized cryptographic algorithms such as Advanced Encryption Standard (AES)
etc. In cryptographic implementations, the secret key directly affects the emit-
ted side-channel information for e.g. power usage patterns or memory access
patterns. Hence, observations made on this leaked data can eventually lead to
the revelation of the secret key. Such malicious leakage to untrusted third-party
applications which can exploit these side-channels is one of the key challenges
to the smartphone data security and privacy.

Typically, Android uses a kind of Unix Sandboxing method to run the applica-
tions. Usually, mobile applications run with different permissions and privileges
and the low-level implementation of machine in collaboration with OS provides
for desired access control. For example, each application that is installed on
an Android device is assigned its own unique user identifier (UID) and group
identifier (GID). This behavior is different than conventional Linux, where ap-
plications that are shared by a user are run under user’s context. Specifically, it
means that the processes running as separate users cannot interfere with each
other such as sending signals or accessing one another’s memory space. Android
applications execute within a register-based VM, DalvikVM which relies on func-
tionality provided by a number of supporting native code libraries. Similar to
Java VM, the DalvikVM interfaces with low-level native code using Java Native
Interface (JNI). Once a process or an application starts when an Android device
boots is the Zygote process. It is responsible for loading libraries used by the An-
droid Framework. It also acts a loader for each Dalvik process and prevents the
repetitive loading of the Android framework and its dependencies when start-
ing applications. As a result, core libraries, core classes and their corresponding
heap structures are shared across instances of the DalvikVM. For e.g., a device
running Android 4.3 contains more than 200 shared libraries. Much of the low-
level functionality is implemented in these shared libraries which are developed
in native code (are a part of well-known open source projects). The usage of na-
tive code makes them prone to memory corruption vulnerabilities, side-channel
leakage etc.

A potential leakage in the form of execution footprints [29] leaks timing in-
formation such as, access time to perform a look-up in a table while performing
a crypto operation. Such a side-channel originally stems from the microarchi-
tectural structure of the underlying microprocessor. In 2006, Osvik et.al [29]
showed how a low-level implementation detail of modern CPUs, namely the
structure of memory caches, leads to cross-process information leakage between
processes running on the same processor. In essence, the cache forms a shared
resource which all processes compete for, and it thus affects and is affected by

Access-driven Cache Attacks on ARM 3

every process. While the data stored in the cache is protected by virtual mem-
ory mechanisms, the metadata about the content of the cache, and hence the
memory access patterns of processes using that cache, are not fully protected
[23][30][37][24]

From the perspective of side-channel attacks, most of the attacks on a smart-
phone require an adversary to have physical access to it or at least have a cable
or probe in close proximity to the device while it is performing some crypto-
graphic operation. Usually the time to attack an application is dependent on the
application specification for e.g. time to hack RSA [33] would be different than
that required for ECC [34] occurs when a developer accidentally places sensitive
information or data in a location on the mobile device that is easily accessible
by other apps on the device. For instance, a developer’s code processes sensi-
tive information supplied by the user or the backend. During that processing, a
side-effect (that is unknown to the developer) results in that information being
placed into an insecure location such as cache etc. on the mobile device that
other apps on the device may have open access to. Under these assumptions,
we can safely assume that one malicious app can extract valuable information
about other apps running on the same device.

The paper is organized as follows. In Section 2 we provide the technical back-
ground related to cache attacks and challenges faced on ARM. After that we
introduce our threat model in Section 3. In Section 4 we give our formal outline
of a cache attack. We cover the cache attacks on the first round [12] and on
the last round of AES. In Section 5, we discuss about leakage models and cache
correlation analysis. We show the application of key estimation techniques on
the generated cache traces in Section 6. In Section 7, we discuss the impact of
various attack parameters on the intensity of the attack. Then, we present and
discuss our results and provide with subsequent application of our technique on
white-box cryptosystems. We finish with remarks about future research.

2 Related Work

In 1999, Simple Power Analysis (SPA) and Differential Power Analysis (DPA)
was introduced by Kocher et al. [24]. According to them, an attacker can ex-
tract cryptographic keys by studying the power consumption of a device. They
[23] further explained that there is a leakage of information from computers and
chipsets about the operation they execute. They utilized the power consumption
measurements to find secret keys from tamper resistant devices.

A different side channel on modern computing architectures is introduced by
the memory hierarchy that stores subsets of the computer’s memory in smaller
but faster memory units, so-called caches. Cache side-channel attacks exploit the
different access times of memory addresses that are either held in the cache or the
main memory. Kelsey and Kocher et al. [21][23] were the first to discuss the theo-

4 Parul Gupta, Christian Doerr, and Ruben Muijrers

retical cache attacks. Page and Tsunnoo et al. [30][37] discussed the applicability
of cache attacks on DES. Based on his work, Bernstein [6] demonstrated com-
plete AES key recovery from known-plaintext timings of a network server. Hund
et al. [20] demonstrated how an adversary can implement a generic side channel
attack against the memory management system to deduce information about the
privileged address space layout. Gullasch et al. [19] attacked the L1 cache and
demonstrated the exploitation of shared memory to mount cache attacks. The
Evict+Time and Prime+Probe techniques by Osvik et al. [29] explicitly targeted
cryptographic algorithms. While Herath et al. [3] discussed the CPU Hardware
Performance Counters for Security, Chiappetta et al. [11] demonstrated the real
time detection of cache-based side channel attacks using hardware performance
counters. Yarom and Falkner introduced Flush+Reload attack in 2014 where
the target was L3 cache instead of L1 cache. It allows an attacker to determine
which specific parts of a shared library or a binary executable have been accessed
by the victim with an unprecedented high accuracy. Based on this work Gruss
et al. [26] demonstrated the possibility to exploit cache-based side channels via
cache template attacks in an automated way and showed that besides efficiently
attacking cryptographic implementations, it can be used to infer keystroke in-
formation and even log specific keys. Zhao et al. [42] presented an access-driven
attack on the first and second round of the AES encryption. Laradoux et al. [25]
explained about the collision attacks on processors with cache and countermea-
sures.

However, it is also possible to induce hardware faults by software, and thus
from a remote location, if the device could be brought outside of the specified
working conditions. In 2014, Kim et al. [22] demonstrated that accessing specific
memory locations at a high repetition rate can cause random bit flips in Dy-
namic Random-Access Memory (DRAM) chips. Since DRAM technology scales
down to smaller dimensions, it is much more difficult to prevent single cells from
electrically interacting with each other. They observe that activating the same
row in the memory corrupts data in nearby rows. Gruss et al. [26][17] showed
that such bit flips can also be triggered by JavaScript code loaded on a website.
However, this attack can only be demonstrated on Intel and AMD systems using
DDR3 and modern DDR4 modules. Brumley et al. [10][9] carried out the attack
on live cache-timing data and cache storage data. In 2015, Seaborn demonstrated
that cache side channel attack could be exploited for privilege escalation. Weiss
et al. [39] and Bogdanov et al. [7] attacked ARM7 microcontrollers and ARM
Cortex-A8 processors. Van der Veen et al. [15][38] investigated the rowhammer
bug [22] on ARM-based devices as well. They successfully triggered the bug on
multiple mobile devices and built a root exploit for Android. Key rank estimation
techniques came as a major breakthrough in the field of estimation of security
of a cryptographic implementation. Vincent et al. [14] [32] explained a simple
key enumeration and rank estimation technique using Histograms.

Access-driven Cache Attacks on ARM 5

3 Technical Preliminaries

In this section, we provide a brief description about processor cache memory and
cache attacks.

3.1 Cache Memory

A cache memory [41][40] is a small, volatile and fast array of memory placed
between the processor and main memory. It is equipped with additional features
to cater to high throughput requirements of a processor. Thus, when a processor
requests data that already present in the cache memory, it is brought to the
registers within a single clock cycle without stalling the pipeline and results
in a cache hit. If not present in the cache, this results in the cache miss, and
the desired data is fetched from Non-Volatile Memory (NVM), and the entire
line containing the desired data is loaded into the cache. Cache memory is a
smaller and faster storage area in comparison to the main memory and therefore
many different addresses in the main memory are mapped to the same cache
entry (associative caches). Associative caches in modern processors consist of
cache sets (S) which contains cache lines (B) with (W) bytes each. Hence the
size of cache is (S.B.W). The cache architectures are optimized to minimize the
number of cache misses for typical access patterns but can be easily manipulated.
Depending on the cache replacement policy, such property can be used to perform
manual cache eviction and monitor the cache behavior. Additionally, a data item
residing in the cache (cache hit) is retrieved much faster than a data item that
is not in the cache (cache miss) and the difference in access times is measurable.
Thus, cache hit/miss ratio can also be exploited to retrieve the memory access
patterns during the execution of a process (in our case a crypto process).

3.2 Cache Attacks on ARM

In this section we discuss cache attacks [13][19][35][16][17][5][29] and their appli-
cability on ARM. A cache attack exploits the cache behavior of a cryptosystem
by obtaining the execution time and/or power consumption variations gener-
ated via cache hits and misses. Cache analysis techniques enable an unprivileged
process to attack another process, e.g., a cipher process, running in parallel on
the same processor as done in past research work (Section: 2). The memory ac-
cesses of software cryptosystems, especially S-box based ciphers like DES and
AES, employ key-dependent table lookups, indices of which are simple func-
tions of the key and the plaintext. Revealing these memory access patterns, i.e.
lookup indices via cache statistics and the knowledge of the processed message
makes it relatively easy to break these ciphers. Such attacks are known as access
driven cache timing attacks [29] [30]. They utilize the particularities of micro-
controllers and microprocessors with the cache memory which frequently exhibit
data-dependent timing. As discussed before, it is a result of one of the processor
optimizations where variable speed-up is required. Different execution times for
different inputs amounts to cache hits and misses in specific cache sets depending

6 Parul Gupta, Christian Doerr, and Ruben Muijrers

upon the implementation of the crypto algorithm involving S-box invocations in
software. When the inputs to S-boxes are key-dependent, this timing informa-
tion frequently turns out to be sufficient to recover the entire key. If the access
is performed to cached data (S-box entries), then it requires less time than the
data which is not present in the cache. The penultimate purpose of these attacks
is to determine which cache lines or cache sets have been accessed during the
encryption. Hence, knowledge of the location of the pre-computed S-boxes or
T-tables within the memory as well as information about the cache architecture
is necessary. However, fewer measurement samples are required in comparison
to the time-driven attacks in order to recover the secret key [29].

Historically, these attacks [30][29] can be further divided into following 3 cate-
gories:

– EVICT + TIME: The attacker measures the time it takes to execute a
piece of victim code. Then attacker flushes part of the cache, executes and
times the victim code again. The difference in timing tells whether the vic-
tim uses that part of the cache.

– PRIME + PROBE: The attacker accesses memory to fill part of the cache
with his own memory and waits for the victim code to execute. This is called
the Prime Step. Then the attacker measures the time it takes to access the
memory that he carefully placed in the cache before. This is called the Probe
Step. If the access time is higher than a certain threshold for certain cache
line, then we know that the victim process evicted those cache lines from
the cache. If the access time is less than a certain threshold, then it becomes
clear that victim did not access those lines or evict those cache lines.

– FLUSH + RELOAD: The flush and reload attack utilizes the fact that
processes often share memory. By flushing a shared address, then wait for
the victim and finally measuring the time it takes to access the address an
attacker can tell if the victim placed the address in question in the cache by
accessing it.

The rising popularity and usage of smartphones in our everyday life clearly states
the need for the investigation of such cache attacks on modern smartphones. It
also becomes important to study the assisting techniques which make these at-
tacks more viable. To this aim, we discuss the applicability of FLUSH+RELOAD
and PRIME+PROBE attacks on ARM-v7 based smartphones. However, it is
important to mention that ARM-v7 does not provide for unprivileged flush in-
structions unlike x86. Therefore, in place of cache flush, we perform manual
cache eviction as suggested in [18] [26]. Hence, instead of FLUSH+RELOAD,
the connotation becomes EVICT+RELOAD. We can perform these attacks on
an unrooted Android smartphone or without any privileged access as well with
the help of libflush [27]. In contrast to x86, there are several challenges on ARM-
v7 CPUs which can be enumerated as follows :

Access-driven Cache Attacks on ARM 7

1. Non-inclusive/exclusive cache
2. No unprivileged cache flush instruction
3. Pseudo random cache replacement policy
4. No unprivileged access to cycle accurate counter

Using libflush [27], not only could we overcome all the above mentioned chal-
lenges on ARM but could also attack white-box cryptosystems. In the next
section, we will describe our threat model which implements EVICT+RELOAD
and PRIME+PROBE attacks on OpenSSL 1.0.1g AES implementation on ARM
(Section: 5.1).

4 Threat Model

Fig. 1: Threat Model

Our access-driven cache attack on software implemenation of AES is inspired by
the works of Osvik et al. [29], Neve et al. [28], Spreitzer et al. [35] and Bonneau
et al. [8]. The threat model 1 comprises of two processes running on the same or
different processors. The CPU affinity is important from the aspect that there
should be no context switching while are processes are running on their respective
CPUs. In this attack neither do we have any information regarding when a T-
table is accessed during an AES round nor do we get any information about the
order of accesses within one measurement. We cannot identify any distinction
between AES rounds. For EVICT+RELOAD attack, the prerequisite is to map
a shared library (libcrypto.so) used by the victim crypto process into attacker’s
address space. We assume the knowledge of position of T-tables in the memory,

8 Parul Gupta, Christian Doerr, and Ruben Muijrers

some preprocessing steps are required as mentioned in [35] and [29]. The access
times are calculated using any of the following timing mechanism: cycle counter
(PMCCNTR), perf or monotnonic clock. After the collection of access-times
corresponding to the cache sets, we can map them to cache hit or miss on the
basis of a pre-calculated threshold. In the previous cache attack implementations
[35] [26] [10], it was a mandatory step, however, in our implementation this step
can be omitted as it does not effect the ultimate aim of full key recovery. It does
affect the number of traces required for the key recovery as the useful information
about access times gets affected by noise a lot. There is no such perquisite for
shared memory in PRIME+PROBE and the remaining steps are explained in
Section: 4.3. We implemented cache attacks on our x-86 and ARM based test
devices (Section: 5.1) using the generic attack strategy mentioned in Figure: 2.
The threat model used to perform the following two attacks on OpenSSL T-table
AES implementation (1.0.1g) is shown in Figure: 1.

Address
Selection

Access
Timing

Map to Cache
Hit/Miss

Trace Acquisition

Intermediate Leakage
Models

Key
Recovery

Target
Selection

Differential Computational Analysis

Fig. 2: Attack steps

4.1 Attack Assumptions

In order to simplify the descriptions and analysis of our access-driven cache
attacks [18][29][10][29] on ARM, we will start with the following assumptions
based on the work of Zhao et al. [42] :

– The attacker uses uniformly distributed plaintexts.

– The attacker has access to an accurate and high performance timing mech-
anism for example cycle counter on ARM, perf or monotonic clock.

– The attacker operates synchronously with the victim process.

– The attacker knows the cipher text.

4.2 EVICT + RELOAD Attack

EVICT+RELOAD (Figure: 3) is a variant of FLUSH+RELOAD as instead of
flushing the cache line, we perform eviction. In the first step, spy process maps
a shared library or binary into its own address space. The second step is to evict
a cache entry from the shared memory. Then the victim is scheduled again on
the processor. In the final step, the spy process checks whether the evicted line
is loaded or not again.

Access-driven Cache Attacks on ARM 9

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

Eviction /Test of a
Shared Cache Entry by

Spy Process B

Reload of a Shared Cache
Entry by Victim Process A

1

2

3

4

slow fast

Fig. 3: EVICT+RELOAD cache attack

4.3 PRIME + PROBE Attack
As mentioned before, PRIME+PROBE (Figure: 4) does not involve the usage
of shared libraries. The first attack step is that a spy process primes the cache
memory with its own data. In the following step, the victim is scheduled and it
evicts certain cache lines during execution. The attacker process checks data to
determine if the primed sets were accessed or not.

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

Eviction of a Cache
Entry by Victim Process A

2Prime of a Cache Entry
by Spy Process B

1 3Probe of a Cache Entry
by Spy Process B

slow

A0
A1
A2
A3
A4
A5
A6

B0
B1
B2
B3
B4
B5
B6

C0 C1 C2 C3

fastslow

Fig. 4: PRIME+PROBE attack

5 Experiments

5.1 Target Devices

We aim to perform cache based side channel attacks on Nexus 5 (quad-core
KRAIT 400) and Samssung Galaxy S4 (quad-core KRAIT 300) with the follow-
ing (Table: 1) cache configurations.

10 Parul Gupta, Christian Doerr, and Ruben Muijrers

Level of
cache

Cache Size Associativity
Cache Line

Size
Inclusiveness Device

L1
2x16KB

(per core)
4-way 64 Bytes

Non-
inclusive,
exclusive

Nexus 5

L2
0.5MB

(per core)
8-way 64 Bytes

Shared, uni-
fied

L1
2x16KB

(per core)
4-way 64 Bytes

Non-
inclusive

Samsung
Galaxy S4

L2
0.5MB

(per core)
8-way 128 Bytes

Shared, uni-
fied

Table 1: Cache organization

5.2 Preliminary Analysis and Notations

Cache Attack (EVICT+RELOAD) on AES 1st round: The first round
attack is performed on sbox out of 1st round of AES (on both versions 0.9.7a and
1.0.1g) using strategy explained in [35]. In the first round of AES, the following
operations takes place for i=1,..,16:

xi = pi ⊕ ki (1)

Here, xi is the state byte which is used to perform T-table lookup for the next-
round and pi is a plaintext byte and ki is a key byte. Hence, if we know the
plaintext, then we can guess the upper 4 bits of the address being accessed, as
explained in [29][8][31][35].

Cache Attacks on AES last-round: Our implemantation works on T-table
AES implementation (OpenSSL 1.0.1g). In OpenSSL 1.0.1g, all four tables namely;
T0,T1,T2,T3 are used in the 10th round. We perform n > 8000 number of en-
cryption for each cache set occupied by the T-tables. For demonstration, we use
OpenSSL 1.0.1g (32 bit version) on Android , however the attack should be scal-
able to other versions as well. The total space occupied by T0−T3, tables is 4KB.
Hence, the number of cache sets occupied by T-tables is 64, as the size of each
cache line is 64 bytes and each set contains 8 cache lines (8-way associativity).
For EVICT+RELOAD, we evict a specific cache set and perform encryption.
If the evicted cache set is used by the encryption, then it will be fetched again
from the memory, otherwise not. In the last and final step we access the evicted
address again to check if it is loaded during the encryption step. We store the
ciphertext and corresponding CPU cycles w.r.t each cache set in a structure
called cache trace. Similarly in PRIME+PROBE attack, In order to recover the
secret key, we perform the correlation between the intermediate value of the
guessed key and every bit of the cache addresses acquired by T-tables. In order

Access-driven Cache Attacks on ARM 11

to perform correlation, we may convert our cache traces in binary traces by us-
ing a suitable threshold (this is more of an optimization step). We use different
leakage models like Bit, ID, and Zero Value models to hypothetically determine
the intermediate value. Another most important technique which is utilized to
identify how many traces are sufficient in order to recover the full key is Key
Rank Estimation.

6 Results and Analysis

In this chapter, we discuss and analyze the results of cache attacks strategies on
ARM. The focus of our results and analysis is on our test devices (Section: 5.1).
We run a pilot attack on x86 first, to reckon the feasibility of our attack and
then we escalate it to our test devices (Section: 5.1).

7 Differential Cache Correlation Analysis (CCA) and
Leakage Models

Correlation coefficient provides an extremely efficient way to determine linear
relationships between data. In our case, we aim to find correlation between the
hypothetical intermediate values for every possible key guess to binary cache
trace (which contains 1 for a cache miss and 0 for a cache hit on a bunch of
addresses) based on certain leakage models. It is to be mentioned that only
4 MSBs of the 16 attacked addresses are important as cache traces operate on
cache line level (containing 16 elements each) not on individual address level. We
attacked sbox-out of 1st round of AES encryption on Nexus 5 to demonstrate
the applicability of cache template attacks. We use our attack strategy along
with various leakage models [36] (they are used for power-side channel analysis)
to attack AES last round on our test devices(5.1). In this section we will discuss
these leakage models and their usability w.r.t our attacks scenarios. We use
Inspector (an advanced tool for side-channel analysis) [1] to perform correlation
analysis which we term as Cache Correlation Analysis (CCA). The non-linear
behavior of sbox [36] is key to this analysis. A one bit difference at an sbox
input leads to a difference of several bits at the output. Hence, even if a key
hypothesis is only wrong in one bit, the output in sbox will be different in
several bits. Therefore, while attacking the output of sbox the correlation for all
wrong key hypothesis is significantly smaller than the correlation for the correct
one. Hence, we mount our correlation analysis on the intermediate results that
occur after the sboxes (sbox out) in the first round and before the sboxes in
(sbox in) last round.

– Using ID Leakage Model

ID + 0--------------------N

12 Parul Gupta, Christian Doerr, and Ruben Muijrers

ID leakage model operates on byte level and is suitable for addresses which
are close to the either extremes (beginning(0) and ending(N)) of the table.
So an address (an index used for lookup) which is either close to 0 or close
to N, there will always be a very high correlation. For e.g in the case of
address 0 there will be a high correlation when the intermediate value is 0
and if it’s higher, the result would be opposite. This is a linear dependency
(0 : yes, > 0 : No). The inverse holds true for address N. For all addresses
in between, this dependency slowly decreases towards the middle and goes
to the negative extreme for N. The reason can be attributed to the fact that
the impact of entire byte address correlating with intermediate value is taken
into consideration instead of the 4MSBs. Additionally, in such a case neither
low values nor high values increase the chance of a hit which subsequently
means no linear relationship and no peak. The effect is plotted in figure::

– Using Bit Leakage Model

BitX + 0--------------------N

This model depicts a linear dependency in between the model and the ad-
dresses being used during encryption (as shown in sample cache traces) and
therefore it is detectable with correlation. It is nice for White Box Cryp-
tosystems since we can circumvent several encoding schemes. This model
gives rise to interesting patterns as we take into consideration only a part of
the index (address) in the correlation trace.

In order to simplify the assumption lets take into account how 16 cache
line addresses would be represented in binary Address0: 0000
Address1: 0001
Address2: 0010
Address3: 0011
Address4: 0100
Address5: 0101
Address6: 0110
Address7: 0111
Address8: 1000
Address9: 1001
Address10: 1010
Address11: 1011
Address12: 1100
Address13: 1101
Address14: 1110
Address15: 1111

Now if we correlate the MSB of our intermediate (which is the index for
this table of addresses) we get some interesting results. For example: having
the MSB at 1 means that addresses 0-1 and addresses 4-5 and so-on so-forth
cannot be used and having the MSB at 0 means that there is a 50% chance

Access-driven Cache Attacks on ARM 13

that addresses from 0 to 16 are alternatively used and one can spot a nega-
tive correlation at an odd number of addresses.
This effect is shown in (Figure:??) for the 4 most significant bits (MSBs) of a
8 bit lookup table (sbox) on x86 architecture (Intel i5) based DELL machine
. (Figure:??) also, demonstrates the effect of 7th MSB of the index value.
This information about the correlation in between the MSB of the
address and the bits of intermediate value is of significant impor-
tance. As now, we know for sure that which leakage model depicts our cache
trace characteristics in the most accurate way. As bit model gives the bit
level granularity (shown in Figure:??) and depicts the correlation of each
bit with the intermediate value, it is a suitable choice for cache correlation
analysis in the later experiments.

8 DCA on ARM

8.1 EVICT+RELOAD

EVICT+RELOAD cache attack is successful in full key recovery on x86 architec-
ture using only 1100 traces as shown in Figure:5. In the following results, we take
into consideration only the information related to the 4MSBs of the addresses,
as cache operates at cache line level and each line contains only 16 elements of T-
tables depicted by 4MSBs of the addresses which contain the useful information.
However, for comparison purposes, we also investigate the variation in results
when information related to every single address is taken into consideration.

Fig. 5: X86: key rank estimation Using 1100 encryptions

The results of EVICT+RELOAD attack, on OpenSSL 1.0.1g AES implementa-
tion vary quite significantly on our target devices. Figure:6 demonstrates that
8000 traces are not sufficient to recover the full key from a crypto process run-
ning on Nexus 5 using key estimation technique [32]. However, the bit entropy
is reduced significantly to 14.5 bits. In the case of Samsung Galaxy S4, the min-
imum number of traces required to recover the full key is more than 8000 as
can be seen from Figure: 7. It is shown that the key bit entropy gets reduced to

14 Parul Gupta, Christian Doerr, and Ruben Muijrers

Fig. 6: Nexus 5: key rank estimation using 8000 traces

Fig. 7: Samsung Galaxy S4: key rank estimation using 8000 traces

only 48 bits. There is an interesting effect which can be highlighted by using
cache hit/miss ratio of every individual address instead of cache line addresses
to recover the full key.

(a) Nexus 5: all 256 addresses depicted in cache traces

(b) Nexus 5: key rank estimation using 256 addresses

Access-driven Cache Attacks on ARM 15

As, can be observed from Figure:8a, that tables are a little misaligned and
not each one of the 16 addresses is present in a cache line, depict the same
behavior of the line (due to misalignment). Figure: 8b demonstrates the effect
of key rank estimation and correlation analysis on 9000 cache traces.

8.2 PRIME + PROBE

The key estimation results associated with the PRIME+PROBE technique differ
from the EVICT+RELOAD because of the following reasons:

– There is no concept of dedicated shared memory involved in between two
processes in PRIME+PROBE. Filtering of results on the basis of additional
parameters is required.

– Noise is added as some other processes can cause evictions and context-
switches and may hamper the results in the cache trace sets.

– It requires more addresses to be monitored in comparison to EVICT+RELOAD
and is more time-consuming.

We utilize the same number of traces as used for EVICT+RELOAD technique
as a benchmark for PRIME+PROBE technique. Initially, we observed that we
are not able to recover the full key on Nexus 5 or Samsung Galaxy S4 with 8000
traces as other processes were running on the smartphones, however, the key
entropy reduces to a certain extent. Later, we run only our crypto and victim
applications on Nexus 5 and the results are shown in Figure:9.

Fig. 9: Nexus 5: Prime+Probe results with only spy and victim process in
runnable mode

8.3 White-Box Cryptosystems

The most important goal of attacking a white-box [2] is to extract the key of the
cryptographic algorithm. We implemented an EVICT +RELOAD attack on the
crafted traces (Figure: 10). Finally, we find co-relation between the known cache
traces and the ideal data. It should be noted that whether a side-channel attack
would work or not is very difficult before trying to attack it. We tried our attack
on a custom white-box implementation (proposed by Chow et al). Our results

16 Parul Gupta, Christian Doerr, and Ruben Muijrers

(a) Cache trace-set for access time w.r.t. addresses used by white-box

(b) Binary Threshold applied to cache trace-set

(c) Key Rank Estimation on the newly generated trace-set

Fig. 10: EVICT+RELOAD Cache Attack on a White-Box Cryptosystem

Access-driven Cache Attacks on ARM 17

also suggest that there is linear relationship between the number of traces and
the key entropy. However,we could not reduce the entropy beyond 120 bits while
using only 2000 traces as shown in Figures:(10a),(10b) and (10c). If we increase
the number of traces then we should be able to recover the complete secret key.
In our work, we confined ourselves to 2000 traces as the trace acquisition alone
took more than 30 minutes which is more than the stipulated time for a realistic
attack. It can be attributed to the following reasons:

– The tables used in this white-box implementation are large in number and
are very small. They could fit into one cache line. This hampers our attack
results as our granularity of monitoring is limited to one cache line.

– Secondly, we cannot perform a profile phase as these tables are randomly
created at every execution.

– During the generation of the tables in this white-box, it has been ensured
that they perfectly align to a cache-line. Hence, as one can easily understand
that this white-box was particularly created while keeping cache-attacks in
mind.

We tried to attack several academic white-boxes but they were immune to our
attack owing to one or another above mentioned reasons. It should be noted that
input/output encodings do not have any impact on our results. This finding could
assist future attacks on white-box implementations where encodings do annoy
the attackers a lot.

9 Impact Analysis of Attack Assumptions

We aim to analyze the impact of various attack assumptions on our results.The
assumptions would be analyzed with respect to the success rate (success rate
refers to the percentage of successful recovery the secret key during an attack)
Following are the results w.r.t various attack parameters:

– Impact of prefetcher: While attacking an artificial application when we
used de Bruijn cycle, we could avoid the effects of hardware prefetching. On
the other hand, when we accessed the array elements in a progression, it
triggered the hardware prefetcher as expected.

– Impact of ASLR: In case, we do not disable ASLR then the AES t-tables
are slightly misaligned. It does not completely affect our results although
adds a bit of noise. On the contrary, in some cases it can also be beneficial
as one can directly get the key byte as shown by Spreitzer et al. [35].

– Impact of operating System: The Linux offerings like shared memory,
mmap and pagemap are exploited in our cache attack. Android is based on
Linux and as discussed in Chapter-1, Android follows principles of sand-
boxing etc to protect its application but the mysterious area of shared hard-
ware is not paid attention to. Privileged access to cycle counter and cache
flush instructions do make our task a little bit difficult but cache coherency
came to our rescue. We could deploy the cross core cache attacks on our test
devices 5.1 using cache coherency offered by AMBA ACCI.

18 Parul Gupta, Christian Doerr, and Ruben Muijrers

– Impact of cache state before the attack: Our attack does not work on
the cache misses or cache hits unlike previous works [29][10][43] [18]. There
can be three different scenarios in which our cache attacks would perform
differently as stated below :

• Empty initial state: This is the most favored state for cache attacks
as it provides with cold cache misses which were generally the basis for
previous attacks on x86. We used this cache state to test our attacks.
However, our attack works even without an empty initial state.

• Forged initial state: In these attacks, the attacker should be able
to control the initial state of cache as per his/her requirement. This is
suggested to manipulate the number of cold start misses. It is equivalent
to empty initial state in a way as it also involves flushing of cache followed
by some fake encryptions. However, there is a difference as it uses conflict
misses instead of cold misses to gain information about the significant
key bytes.

• Loaded initial state: As the name suggests, if the tables are already
loaded in the memory then that state is called loaded initial state. We
utilized this state as well for our attacks and it reduced the number of
traces required to recover the complete key.

– Number of cache traces/encryptions: The relationship between the
number of traces or encryptions required and the success rate of our at-
tack are linearly dependant. If we have more traces, that amounts to more
information and eventually, the chances to recover the complete key increases
as well.

– Impact of the privileged and unprivileged mode: Industry has always
argued that if an attacker has an access into victim’s execution space then
there is no point in carrying out a more complicated low level microarchi-
tectural attack. To answer this, we made our attack work in both privileged
and unprivileged modes. However, in a privileged mode we have access to
cycle counter, consequently, the success rate increases and the number of en-
cryptions required decreases. In unprivileged mode, we made use of timing
mechanisms like perf and monotonic clock. The results were still promising,
however number of required traces increased with the change in the choice
of the timing mechanism.

– Impact of eviction strategy: It is the most crucial aspect of the attack
as an eviction strategy with 100% eviction rate and lower execution time
is essential. Using Cache Eviction Strategy Evaluator [26] our task became
fairly easy and we could come up with an efficient strategy. In this study,
we did not try the eviction strategies suggested by [29][44] as they were
time-consuming.

– Impact of the type of attack: Prime+Probe is a much more realistic at-
tack but we could not completely recover the key using Correlation Analysis,
given the same number of traces used for EVICT+RELOAD. On the other
hand, Evict+Reload in various attack scenarios results in a successful key
recovery as discussed in previous sections.

Access-driven Cache Attacks on ARM 19

10 Conclusion

We present a novel evaluation strategy for cache side channel attacks on An-
droid smartphones(Section: 5.1). Our study discusses the applicability of cache
attacks (PRIME+PROBE, EVICT+RELOAD) on a victim application making
use of native code on our test devices (5.1). It emphasizes the effect of the cache
intial state, timing probe, compiler, access settings, operating system etc on the
generated cache traces. Further, we discuss the number of key bytes recovered
by analyzing the cache behavior. Our experiments are not entirely dependant
on the above-mentioned specifications and hence can be reproduced with much
ease. We perform cache attacks on OpenSSL 1.0.1g and OpenSSL 0.9.7a AES
implementation on our test devices 5.1 using a state-of-the-art attack strategy
based on the works of Spreitzer et al. [35] and Tromer et al. [29]. In the previ-
ous works [29][6][16] picture analysis was fundamentally used to identify the key
candidates. Correlation Analysis was used in timing attacks but not in access
driven cache attacks on ARM. Our results establish the successful implementa-
tion of statistical techniques like Correlation Analysis and Key Rank Estimation
on cache trace-sets for recovery of the complete secret key of AES. Using the
proposed method, we quantitatively evaluate the transition with the increase of
the number of plaintexts. We also discuss the performance of our attack in vary-
ing attack scenarios. Finally, we demonstrate the cache attack on a vulnerable
implementation of AES resembling a white-box implementation and then test
its applicability on a custom white box implementation of AES.

Future work related to the investigation of cache attacks on white-box cryp-
tosystems seems promising. We believe that incorporation of statistical analysis
with access-driven cache attack opens door to a major research in the field of
white-box cryptosystems. Furthermore, launching these cache attacks without
any privilege escalation or assistance from performance counters will ease the
implementation. The possibilities of new cache attacks and new attack vectors
are also a part of future work. Different countermeasures to such statistical anal-
ysis could be researched. For instances, techniques like code obfuscation can be
implemented but the level to which it should be done remains questionable.

References

1. Inspector sca. https://www.riscure.com/security-tools/inspector-sca/.
2. Side channel attack against white-box cryptography on android. https:

//github.com/edermi/papers/blob/master/Side-channel%20attacks%

20against%20whitebox%20cryptography%20on%20Android/thesis.pdf.
3. These are not your grand daddy’s cpu performance counters- cpu hardware perfor-

mance counters for security. https://www.blackhat.com/docs/us-15/materials/
us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters.

4. Smartphone os market share, 2016 q3. http://www.idc.com/promo/

smartphone-market-share/os, 2016.
5. Ali Can Atici, Cemal Yilmaz, and Erkay Savas. Remote cache-timing attack with-

out learning phase. IACR Cryptology ePrint Archive, 2016:2, 2016.

20 Parul Gupta, Christian Doerr, and Ruben Muijrers

6. Daniel J Bernstein. Cache-timing attacks on aes.
7. Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and Malte Wienecke. Dif-

ferential cache-collision timing attacks on aes with applications to embedded cpus.
Springer.

8. Joseph Bonneau and Ilya Mironov. Cache-Collision Timing Attacks Against AES,
pages 201–215. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

9. Billy Bob Brumley. Cache Storage Attacks, pages 22–34. Springer International
Publishing, Cham, 2015.

10. Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In
ASIACRYPT, 2009.

11. Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of cache-
based side-channel attacks using hardware performance counters. Applied Soft
Computing, 49:1162–1174, 2016.

12. Joan Daemen and Vincent Rijmen. The design of rijndael:aes the advanced. Jour-
nal of Cryptology, 4(1):3–72, 1991.

13. Catherine H. Gebotys and Brian A. White. A sliding window phase-only correlation
method for side-channel alignment in a smartphone. ACM Trans. Embed. Comput.
Syst., 14(4):80:1–80:22, September 2015.

14. Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schueth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for side-
channel security assessment. In International Workshop on Fast Software Encryp-
tion, pages 117–129. Springer, 2015.

15. Ben Gras and Kaveh Razavi. Aslr on the line: Practical cache attacks on the mmu.
2017.

16. Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. Prefetch side-channel attacks: Bypassing smap and kernel aslr. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 368–379. ACM, 2016.

17. Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer. js: A remote
software-induced fault attack in javascript. In Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 300–321. Springer, 2016.

18. Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks: Au-
tomating attacks on inclusive last-level caches. In Proceedings of the 24th USENIX
Conference on Security Symposium, SEC’15, pages 897–912, Berkeley, CA, USA,
2015. USENIX Association.

19. David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games – bringing
access-based cache attacks on aes to practice. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP ’11, pages 490–505, Washington, DC,
USA, 2011. IEEE Computer Society.

20. Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel
attacks against kernel space aslr. In Security and Privacy (SP), 2013 IEEE Sym-
posium on, pages 191–205. IEEE, 2013.

21. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel crypt-
analysis of product ciphers. Computer SecurityESORICS 98, pages 97–110, 1998.

22. Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. Stealthmem: System-level
protection against cache-based side channel attacks in the cloud.

23. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in cryptologyCRYPTO99, pages 789–789. Springer, 1999.

24. Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to
differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

Access-driven Cache Attacks on ARM 21

25. Cédric Lauradoux. Collision attacks on processors with cache and countermeasures.
26. Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan

Mangard. Armageddon: Cache attacks on mobile devices. In 25th USENIX Security
Symposium (USENIX Security 16), pages 549–564, Austin, TX, 2016. USENIX
Association.

27. Daneil Gruss Moritz Lipp. https://github.com/IAIK/armageddon/tree/master/
libflush.

28. Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang. A refined look at bern-
stein’s aes side-channel analysis. In Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’06, pages 369–
369, New York, NY, USA, 2006. ACM.

29. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of aes. In Proceedings of the 2006 The Cryptographers’ Track
at the RSA Conference on Topics in Cryptology, CT-RSA’06, pages 1–20, Berlin,
Heidelberg, 2006. Springer-Verlag.

30. Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel.
31. Colin Percival. Cache missing for fun and profit.
32. Romain Poussier, Franois-Xavier Standaert, and Vincent Grosso. Simple key enu-

meration (and rank estimation) using histograms: An integrated approach. In
CHES, pages 61–81. Springer, 2016.

33. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978.

34. J. M. Smith and A. B. Jones. Ecdsa key extraction from mobile devices via non-
intrusive physical side channels. 2016.

35. Raphael Spreitzer and Thomas Plos. Cache-Access Pattern Attack on Disaligned
AES T-Tables, pages 200–214. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

36. Thomas Popp Stefan Mangard, Elisabeth Oswald. Power Analysis Attacks: Re-
vealing the Secrets of Smart Cards (Advances in Information Security). 1 edition,
2007.

37. Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of des implemented on computers with cache. Springer.

38. Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano
Giuffrida. Drammer: Deterministic rowhammer attacks on mobile platforms. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1675–1689. ACM, 2016.

39. Michael Weiß, Benedikt Heinz, and Frederic Stumpf. A cache timing attack on aes
in virtualization environments. In International Conference on Financial Cryptog-
raphy and Data Security, pages 314–328. Springer, 2012.

40. Wikipedia. Cache coherence — wikipedia, the free encyclopedia, 2017.
41. Wikipedia. Cpu cache — wikipedia, the free encyclopedia, 2017.
42. Zhao Xinjie, Wang Tao, Mi Dong, Zheng Yuanyuan, and Lun Zhaoyang. Robust

first two rounds access driven cache timing attack on aes. In Computer Science and
Software Engineering, 2008 International Conference on, volume 3, pages 785–788.
IEEE, 2008.

43. Yuval Yarom and Katrina E Falkner. Flush+ reload: a high resolution, low noise,
l3 cache side-channel attack. In USENIX Security Symposium, volume 2014, pages
719–732, 2014.

44. YongBin Zhou and DengGuo Feng. Side-channel attacks: Ten years after its pub-
lication and the impacts on cryptographic module security testing.

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Related Work
	Motivation
	Challenges
	Research Goal
	Outline
	Test Devices
	About libflush

	Background
	Memory Hierarchy
	About CPU Caches
	Summary

	ARM Caches
	ARM Cache Organization
	ARM Cache Coherency
	ARM Cache Policies
	Configuring ARM Caches
	ARMv7 Cache Architecture

	Operating Systems Caveats
	Shared Memory

	Understanding Side Channels on Android
	Microarchitectural Attacks
	Cache Attacks

	Exploitable ARM properties for Cache Attack
	AES
	Description
	OpenSSL AES Implementation

	Correlation Analysis
	Key Rank Estimation
	An overview of White-Box
	White-Box on an Android Platform

	Case Studies
	Introduction
	Cache Attacks
	Adversary Model
	Modeling the Cache Timing Behavior

	Notations
	EVICT + RELOAD Attack
	PRIME + PROBE Attack

	Attack Scenarios
	Cache Attack on a Shared Library
	Cache Attack on AES Sbox
	Cache Attack on AES T-tables

	Results and Analysis
	Cache Correlation Analysis (CCA) and Leakage Models
	CCA on Different Processor Architectures
	EVICT+RELOAD
	EVICT+RELOAD on ARM
	PRIME + PROBE
	White-Box Cryptosystems

	Impact Analysis of Attack Assumptions

	Conclusion
	Conclusion
	Contributions

	Bibliography
	Appendix
	Processor Cache Effects
	Impact of Cache Lines
	Impact of L1-L2 Sizes
	Impact of Cache Associativity
	Memory Organization
	Impact of CPU Affinity

	Types of Cache Misses and their utility
	L1 and L2 cache misses

	Eviction Results: Nexus 5
	White-Box Use cases
	First Order Analysis and Key Rank Estimation
	Research Paper

