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ABSTRACT

An ever-increasing number of rainfall estimates is available. They are used in many important applications
such as flood/drought monitoring, water management, or climate monitoring. Such data are especially
valuable in sub-Saharan Africa, where rainfall has considerable socioeconomic impacts and the gauge and
radar networks are sparse. The choice of a rainfall product can significantly influence the performance of
such applications. This study reviews previous works, evaluating or comparing rainfall products over different
parts of sub-Saharan Africa. Three types of rainfall products are considered: the gauge-only, the satellite-based,
and the reanalysis ones. In addition to the global rainfall products, we included three regional ones specifically
developed for Africa: the African Rainfall Climatology version 2 (ARC2), the Rainfall Estimate version 2
(RFE2), and the Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations
(TAMSAT) African Rainfall Climatology and Time Series (TARCAT). The gauge density, the orography, and
the rainfall regime, which vary with the climate and the season, influence the performance of the rainfall
products. This review does not focus on comparing results, as many other publications doing so are already
available. Instead, we propose this review as a guide through the different rainfall products available over
Africa, and the factors influencing their performances. With this review, the reader can make informed
decisions about which products serve their specific purpose best.
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1. Introduction

Knowledge about precipitation is very important in
sub-Saharan Africa, since 95% of the agriculture there
is rain-fed (FAO 2016), making farmers vulnerable to
climate change and extreme weather. Rainfall is a diffi-
cult variable to estimate accurately due to its large spatial
variability, and even more so in Africa, since rainfall
there is mainly generated by convective rainstorms,
which can be very localized in time and space.

There are different types of precipitation data avail-
able in Africa. In situ measurements from gauges can be
accurate, but reporting weather stations are especially
sparse over Africa. Their number is often under the
minimum recommended by World Meteorological
Organization (WMO) and has been decreasing. The na-
tional meteorological agencies are often underfunded,
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and so cannot maintain or upgrade their station network;
for example, some manual stations might still work but
are not reporting to the global systems such as the
Global Telecommunication System (GTS). Another
possible source of data is satellite estimates, which
cover a large area, but are more indirect. They derive
precipitation rates from other measurements such as
cloud properties (e.g., cloud-top temperature and ra-
diation scattering by ice particles). There also have
been efforts to use lightning observations (Xu et al.
2013, 2014) or satellite soil moisture data (Brocca
et al. 2013, 2014). A third possibility is precipitation
fields from numerical weather models. They can be
used to estimate both past (reanalysis) and future
(forecast) precipitation, or to better understand the
mechanism of the monsoon. They can cover the entire
globe for long periods or focus on a region with high
temporal and spatial resolution. These three different

This article is licensed under a Creative Commons
Attribution 4.0 license (http:/creativecommons.org/
licenses/by/4.0/).
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South America, and the United States) against ground-
based radar and gauge networks. So far, they have not
yet conducted any validation/comparison project over
sub-Saharan Africa. The IPWG only takes into account
the satellite and gauge products; they do not compare
them with precipitation estimates derived from numer-
ical weather prediction models or reanalysis. Several
model intercomparison projects with focus on Africa
(or West Africa) as well as a (global) reanalysis inter-
comparison project exist (see section 2). They take into
account not only precipitation but also other atmo-
spheric variables.

Many intercomparisons and validation studies of rain-
fall estimates have been done at a global and regional
scale, as implied by the number of articles cited in the
remainder of the article. One of the most comprehensive
evaluations has been done by Beck et al. (2017b), who
compared 22 rainfall products at a global scale. However,
regional studies, even when using fewer products, are also
very relevant. Global studies have access to fewer in situ
measurements in sub-Saharan Africa than in other re-
gions such as Europe or America, while regional ones
often used additional gauge data from national meteo-
rological agencies or other organizations [see, e.g., the
reference data used in the global study of Beck et al.
(2017b) and the reference data used in the regional
comparison of Dinku et al. (2007)]. Moreover, regional
rainfall products (such as TARCAT or RFE2) are not
included in global intercomparisons. A literature review
of intercomparison and validation works has already
been done by Maggioni et al. (2016). They focused on
seven global satellite-based products. In this paper,
we focus on performance of rainfall products in sub-
Saharan Africa and include more products, especially
regional ones. In addition, we include rainfall estimates
obtained from numerical models and from gauge-only
products. The main target audiences are scientists and
decision-makers who need rainfall products for a spe-
cific application and do not necessarily want to acquire
in-depth knowledge of all products available.

In this paper, we review rainfall products and their
performance over sub-Saharan Africa in existing liter-
ature. We first look at three types of precipitation es-
timates: those from models and reanalysis (section 2),
satellite-based ones (section 3), and those based on
gauge data only (section 4). The factors influencing the
performance of these products are then discussed in
section 5a. Finally, section 5b focuses on seven use cases
and their requirements in terms of rainfall data. Some
recommendations are given with respect to these ap-
plications. The algorithm of a rainfall product is also
important in order to understand what to expect from
the product; its performance is linked to its algorithm.

REVIEW
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The main addition of the present review to the extensive
literature is that we guide the reader to the best prod-
uct for a specific application and that we do this by ex-
plaining the underlying algorithm with their specific
strengths and weaknesses. In appendix B, the algorithms
of the most used products are shown using a uniform
structure, making them easy to compare.

2. Reanalysis and models

The uncertainties of a reanalysis depend on the un-
certainties of the numerical model and the uncertainties
of the observations it uses. However, rainfall is diffi-
cult to simulate accurately with numerical models, since
it results from a complex interaction of the different
model physics. Thus, we will first look at precipitation
estimates in global models before moving to reanalyses
and then to dynamical downscaling. Another possible
way of downscaling global reanalysis to smaller scales is
to use a statistical model instead of a numerical one. This
method is called statistical downscaling, and it has been
applied to African rainfall as well (Nikulin et al. 2018;
Gebrechorkos et al. 2019). However, in contrast to dy-
namic downscaling, it has not been the object of an ex-
tensive validation or intercomparison project. The reason
why statistically downscaled datasets are less evaluated is
that they are downscaled using the very observations
needed for such evaluation. One would expect that, in
general, statistically downscaled datasets already out-
perform dynamically downscaled datasets regarding sta-
tistics, although Nikulin et al. (2018) did not see this in
their comparison between four dynamically and two
statistically downscaled datasets. Statistical downscaling
falls outside the scope of this review, and thus will not be
addressed in the remainder of the article.

a. Global circulation models (GCMs)

Xue et al. (2010) and Hourdin et al. (2010) evaluated
the ability of several GCMs (along regional models and
other datasets) to represent the West African monsoon.
They showed that GCMs, when they used specified sea
surface temperature (SST), reproduce reasonably the
main features of the West African monsoon, such as the
migration of the intertropical convergence zone (ITCZ).
However, large discrepancies remained between the
GCMs and the other datasets. A possible reason of the
GCMs’ limitations could be their coarse resolution.
However, Crétat et al. (2014) showed that a model with
higher resolution is not necessarily better at represent-
ing daily intense events. Both Hourdin et al. (2010) and
Crétat et al. (2014) pointed out the model’s physics, and
more specifically the convection parameterization, as an
important factor influencing the GCM’s performance.
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TABLE 2. (Continued)

Temporal
resolution

Half-hourly

Spatial
coverage
60°S-60°N

Reference
Huffman et al. (2018)

Latency

Spatial resolution

Temporal coverage

Data input

IR, PMW, sat-radar,

Name
IMERG-final

~2.5 months

0.1° x 0.1°

June 2014-present

gauges
IR, TMPA 3B42,

3 weeks after end of Funk et al. (2014, 2015b)

month (rapid version

Daily, pentad

0.05° X 0.05°,
0.25° X 0.25°

January 1981-present

50°S-50°N

CHIRPS

gauges, CFSv2,

CHPclim

2 days after end of

pentad)

~1h
~2 days after end of Maidment et al. (2014);

Hong et al. (2004)

Hourly

0.04° X 0.04°

January 2003—present

60°S-60°N
Africa (land) January 1983—present

PERSIANN-CCS IR (PMW)

Daily, pentad

0.0375° X
0.0375°, ~4km

IR (gauges)

TARCAT

Tarnavsky et al. (2014);
Maidment et al. (2017)

pentad

2 Ends in December 2017.
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Intercomparison studies (Haiden et al. 2012; Ebert
et al. 2007) at a global scale have shown that GCMs have
poorer forecast skill in the tropics than in the extra-
tropics. They explained that lower performance in the
tropics by the difficulty of GCMs to predict convective
precipitation. In general, the skill of models decreases
when rainfall tends toward a convective regime.

b. Reanalyses

There is no regional reanalysis for Africa, however
several global reanalyses are produced. A list of such
reanalyses is given in Table 1 (see articles in reference
column for detailed descriptions). An overview of the
different reanalyses, including the observations used in
the analysis, can be found in Fujiwara et al. (2017).

Global reanalyses are based on global models and
thus suffer the same shortcomings as GCMs, despite
improvements due to assimilation of observations.
Like GCMs, reanalyses have lower performance in the
tropics. Bosilovich et al. (2008) showed that the per-
formance in reproducing precipitation of four well-
known reanalyses (viz., R1, R2, ERA-40, and JRA-25)
was lower over South America and Africa compared to
other regions, especially during the boreal summer,
corresponding to the monsoon season. They gave two
reasons for the poorer performance over the tropics:
the difficulty to parameterize the land-atmosphere in-
teraction and the difficult retrieval of satellite observation
due to the cloudy conditions. Since conventional obser-
vations (ground stations, radiosonde, aircraft, etc.) were
sparse over South America and Africa, the effects were
more visible over these regions.

As for the GCMs, reanalyses are generally outperformed
by satellite-based rainfall estimates (Maidment et al. 2013;
Funk and Verdin 2003; Koutsouris et al. 2016), with
some exceptions in sparsely gauged areas (Thiemig et al.
2012; Worgqlul et al. 2014). The main results of these
studies, with respect to reanalyses, are summarized in
Table 4. Funk and Verdin (2003) explained the lower
skill of reanalyses by the limitation of GCMs, such as the
coarse grid and the physics, and by the few moisture-
related observations used in the data assimilation. It has
to be noted that, since this study, new reanalyses have
been created and they incorporate more moisture-
related observations. For example, ERA-Interim as-
similates rain-affected satellite radiance, which was
not used in ERA-40 (Dee et al. 2011). Most reanalyses
do not assimilate precipitation observations directly.
However, MERRA assimilates satellite rain rates over
the oceans, but with a low weight, so they have a weak
impact on the analysis (Rienecker et al. (2011)). The very
recent reanalysis ERA-5 uses precipitation data from
satellite and ground-based radar (Hennermann 2019).
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TABLE 3. Nonexhaustive list of gauge-only rainfall products available over Africa or African regions, ordered by increasing spatial resolution then by temporal resolution.

Temporal
resolution

Daily

Spatial

Reference

Schneider et al. (2014)

Latency

Spatial resolution

Temporal coverage

Data input coverage
Land (global)  January 2009 (August 2004)—present

Name
GPCCirst guess

5 days

1.0° X 1.0°

Gauges

(monthly)

Monthly

Schneider et al. (2014)

2 months

1.0° X 1.0°,2.5° X 2.5°
0.25° X 0.25°,0.5° X 0.5°,

Gauges Land (global) January 1982—present

GPCC-monitoring
GPCC-FDR

Schneider et al. (2014)

Irregular

Monthly

Land (global) January 1891-December 2016

Gauges

1.0° X 1.0°, 2.5° X 2.5°

Schneider et al. (2014)
Harris et al. (2014)

Daily Irregular

1.0° X 1.0°
0.5° X 0.5°

Land (global) January 1982-December 2016
Land (global

Gauges

GPCC-FDD
CRUTS

Irregular

Monthly

January 1901-December 2018

Gauges

JOURNAL OF HYDROMETEOROLOGY

excluding

Antarctica)
Land (global) January 1900-December 2017

Matsuura and Willmott (2015)

Irregular

Monthly

0.5° X 0.5°

Gauges

University of

Delaware
PREC/L

Monthly 1 week (except Chen et al. (2002)

0.5° X 0.5° 1.0° X 1.0°,

January 1948-present

Land (global)

Gauges

0.5° data)
1-2 day(s)

2.5° X 2.5°
0.5° X 0.5°

Xie et al. (2007);

Daily

Land (global) January 1979—present

Gauges

CPC Unified

Chen et al. (2008)

VOLUME 21

MERRA-2 and CFSR also use precipitation data for the
forcing of the land surface model (Bosilovich et al. 2015;
Saha et al. 2010).

The most recent reanalyses generally perform better
than the older ones, due to improvements in both the
model and the assimilation system (Kim and Alexander
2013; Bosilovich et al. 2008), but this not always the case
(Bosilovich et al. 2008; Nkiaka et al. 2017; Koutsouris
et al. 2016). Even more recent reanalyses are available,
such as MERRA-2, JRA-55, and CFSv2. However,
no comparison of their performance for precipitation
has been found in literature yet. The Stratosphere—
Troposphere Processes and Their Role in Climate
(SPARC) Reanalysis Intercomparison Project (S-RIP)
is comparing reanalyses, including the most recent ones,
and will publish a report (planned for November 2020).
This intercomparison project is described in Fujiwara
et al. (2017), and more information is available on the
S-RIP website (http://S-RIP.ees.hokudai.ac.jp).

¢. Dynamic downscaling

Continuously running a GCM at a fine resolution
would be too computationally expensive; thus, a possi-
ble solution is to dynamically downscale with a regional
climate model (RCM). A lot of attention has been given
to regional downscaling in recent decades and several
projects have applied RCMs to obtain an ensemble of
multimodel climate projections. Over West Africa, such
projects include the Ensembles-Based Predictions of
Climate Changes and Their Impacts (ENSEMBLES),
African Monsoon Multidisciplinary Analyses (AMMA),
the West African Monsoon Modeling and Evaluation
project (WAMME) model intercomparison study (Xue
et al. 2010; Druyan et al. 2010), and, more recently, the
Coordinated Regional Climate Downscaling Experiment
(CORDEX) that has a study region over all of Africa.
The AMMA-Model Intercomparison Project (AMMA-
MIP; Hourdin et al. (2010)) has compared the ability of
different models (both GCMs and RCMs) to reproduce
the West African monsoon (WAM). Other studies com-
paring RCMs over Africa or West Africa include Sylla
etal. (2013) and Crétat et al. (2014). They all agree on the
added value of RCMs compared to GCMs.

The RCMs are able to reproduce more realistically
the features of the monsoon (such as the interannual
variability, the annual cycle, or the spatial patterns) than
the GCMs and reanalyses. This shows the importance
of regional forcing. The higher resolution of RCMs im-
proves the simulation in several ways. It allows a better
representation of the orography, an important regional
forcing, which improves the simulation of orographic
rainfall (Druyan et al. 2010). It also improves the repre-
sentation of land surface properties (such as land cover)
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that play an important role in the WAM (Paeth et al.
2011; Sylla et al. 2013). However, RCMs, with horizontal
resolution around 50km, still have difficulties in re-
producing both the phase and the intensity of the diurnal
cycle (Nikulin et al. 2012). An explanation could be the
choice of the convection scheme to which the diurnal
cycle is sensitive.

The outputs of the RCMs are influenced by the data
(usually a reanalysis or a GCM) used for the initial
and boundary forcing (Druyan et al. 2010; Druyan and
Fulakeza 2013). However, RCMs driven by the same
reanalysis can have very different accuracies, with bias
varying considerably in space and time (Druyan et al.
2010; Paeth et al. 2011; Nikulin et al. 2012; Sylla et al.
2013). These differences highlight the importance of the
dynamics and physics of each model. An advantage of
RCMs compared to GCMs is that they give the possi-
bility to choose physics more adapted to the region, and
not to the entire globe. GCMs cover the entire globe
and so have to represent a large variety of climates.
On the contrary, RCMs focus on a smaller region, and so
can choose physics parameterizations better suited for
the particular climate of this region.

A review of RCM applications in West Africa can be
found in Sylla et al. (2013), and a review of regional
downscaling is given in Paeth et al. (2011).

3. Satellite-based products
a. Satellite-based rainfall estimates

The satellite-based products are based on data from
different sensors and satellites. They can also include
other data sources, such as ground radar, gauge net-
works, or forecasts from model or reanalysis. A list of
satellite-based rainfall products, including the type of
input they are using, is given in Table 2.

Satellites retrieve different types of observations
from various sensors such as visible, infrared (IR),
passive microwave (PMW), and radar measurements.
IR measurements are used in many rainfall products.
They have the advantage of being frequent and of
covering large areas. However, precipitation is esti-
mated through its relationship to cloud-top tempera-
ture (CTT) derived from thermal IR. This relationship
is indirect and varies within and between rain events
(Kidd and Levizzani 2011; Kidd and Huffman 2011).
On the other hand, PMW measurements are less frequent
[PMW sensors are only present on low-Earth-orbiting
(LEO) satellites], but the relation to precipitation
is more direct. PMW-based precipitation estimates
are generally more accurate than IR-based ones, but
have difficulties over snow-covered and desert areas
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(Kidd and Levizzani 2011; Kidd and Huffman 2011).
Satellite-radar measurements for precipitation retrieval
are limited: only the Tropical Rainfall Measuring Mission
(TRMM), the Global Precipitation Measurement (GPM),
and the CloudSat missions have radars specifically de-
signed to retrieve precipitation (Kidd and Levizzani 2011,
Kidd and Huffman 2011). A rainfall product can combine
different types of measurement to take advantage of their
strengths and overcome their weaknesses. For example,
many products combine IR measurements with the more
accurate but less frequent PMW observations. TMPA and
IMERG are the products using the most different types of
measurements as input data: IR, PMW, satellite radar,
and gauges. They are the only ones using satellite radar as
input (CMORPH uses ground radar over the United
States for adjustment), while CMAP and CHIRPS are the
only ones using data from numerical models.

Other products with a very different approach (and
not shown in the appendix figures) include SM2RAIN
and MSWEP. SM2RAIN is based on soil moisture ob-
servations from satellites and ground measurements.
It inverses the soil water balance equation to obtain
precipitation estimates. MSWEP does not use satellite
measurements directly; instead, it is based on other
rainfall datasets (e.g., CMORPH, ERA-Interim, GPCC-
FDR). A long-term mean precipitation (from CHPclim;
Funk et al. 2015a) is downscaled using precipitation
anomalies obtained by a weighted average of different
reanalyses and gauge and satellite products. Its goal is
to take advantage of the strengths of different types of
rainfall products.

Satellite-based products differ by the data (differ-
ent types of measurement coming from different
satellites/sensors) used as input and by their algorithms
deriving the final precipitation estimates. As a conse-
quence, the error of a satellite-based product is partially
due to the error in the retrieval algorithm (i.e., esti-
mating precipitation from the sensors measurements)
and partially due to the merging algorithm (i.e., com-
bining the different estimates in the final precipitation
estimate).

b. Regional versus global

There exist several regional rainfall products devel-
oped especially for and only covering Africa. They have
been compared to global products in various studies for
different regions of Africa. Their results are summarized
in Table 5.

The performance of the regional products and their
advantages with respect to the global products vary
from region to region. Over the Sahel, both RFE2 and
TARCAT perform well in rainfall detection and in es-
timating rainfall amounts, at least as well as the global
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products (Jobard et al. 2011; Pierre et al. 2011; Novella
and Thiaw 2010; Dinku et al. 2015). However, over
Burkina Faso, which is part of the Sahel, TARCAT has
been shown to have very poor performance by Dembélé
and Zwart (2016), while RFE2 and ARC2 outperformed
TMPA. Gosset et al. (2013) showed that regional prod-
ucts (RFE2, EPSAT) tend to underestimate rainfall
amounts while global and especially near-real-time ones
overestimate it over the south of West Africa. Over East
Africa, regional products do not perform as well, and
TMPA and CMORPH tend to show the best perfor-
mances. RFE2 has particularly poor performance over
Ethiopia despite some skill for rainfall detection. It
is outperformed by most of the global products over
this region (Dinku et al. 2007, 2008a, 2011a). Over
Ethiopia, TARCAT still shows some agreement with
gauge data despite underestimating (Dinku et al.
2007). Over Uganda, TARCAT has a similar perfor-
mance as CMORPH and TMPA, while ARC2 out-
performs RFE2 (Asadullah et al. 2008; Diem et al.
2014). In general, over a large part of East Africa,
TARCAT and RFE2 have relatively similar and rea-
sonable performances. They outperform some global
products (e.g., PERSIANN and GSMaP) while they are
outperformed by others such as TMPA 3B42 (Cattani
et al. 2016).

Regional products show very good results and per-
form as well as or better than the most-used global
products. However, it cannot be concluded that the re-
gional products outperform global ones as a general
rule. For example, the algorithm of RFE2 is not suit-
able for regions with complicated orography such as
Ethiopia. More information about the algorithms and
the performance of the regional products is given in
section h (for RFE2), section i (for ARC2), and section 1
(for TARCAT) of appendix B.

c¢. Gauge data in satellite-based products

Satellite-based rainfall products can also use data
other than satellite data in their algorithms. For in-
stance CMORPH uses ground-radar data to adjust
the cloud motion vectors derived from IR data. Other
products, such as GPCP-1DD or PERSIANN-CDR,
use other rainfall products, namely, GPCP-SG. Many
satellite-based products, which are listed in Table 6, use
gauge data. Gauge data can be used in different ways.

The bias of a product varies depending on the region
of interest, and is different from one product to another.
For example, CMORPH tends to overestimate while
GSMaP tends to underestimate over the Sahel (Jobard
et al. 2011), and PERSIANN overestimates almost ev-
erywhere over Africa except over mountainous areas,
over which it underestimates. Bias correction using gauge
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TABLE 6. List of satellite-derived rainfall products using gauge
data and how they are used in their algorithms.

Calibration  Bias adjustment Merged

ARC2

CAMS-OPI

CHIRPS X
CMAP
CMORPHvV1.0 CRT
CMORPHvV1.0 BLD
GPCP-SG

GPM
GSMaP_gauge
RFE2 X
TARCAT X

TMPA X X

LT I ]

LT B ]
MM

data can reduce the bias significantly. It has been shown
by Jobard et al. (2011) that near-real-time products that
do not include bias adjustment have worse performance
than the other global products over the Sahel; they es-
pecially have large bias. There are several methods to
remove the bias using gauge data, such as scaling by the
ratio of the gauge/satellite rainfall estimates (GPCP-SG
and TMPA) or matching the probability density func-
tion of the satellite estimates with the one from the gauge
data [CMORPH-Corrected (CRT)]. PERSIANN-CDR
is also bias adjusted, using a monthly ratio method, but
based on another satellite-based product.

Some products merged satellite estimates, after bias
adjustment or not, with gauge estimates. There are
several ways of doing so. Some use inverse error vari-
ance weighting (TMPA, IMERG, GPCP-SG) or other
weighted average (CHIRPS), while other products use
directly the gauge-only estimate when reliable, and
a blended satellite-gauge estimate elsewhere (ARC2,
RFE2, CMAP, CAMS-OPI).

Another way of using gauge data is for calibration, as
in TARCAT. Indeed, the TARCAT algorithm is cali-
brated locally to historical gauge data and is then ap-
plied to recent IR data. TARCAT does not use gauge
data for bias adjustment or merging, but has been shown
to perform well over different parts of Africa despite a
dry bias for the high-intensity rain rates. Over Ethiopia,
Dinku et al. (2007) found that TARCAT performed
better than some gauge-adjusted products such as
TMPA 3B42, RFE2, and GPCP-1DD (except with
respect to the bias). Jobard et al. (2011) showed that
the regional products, including TARCAT, performed
better than global bias-adjusted ones over the Sahel. A
benefit of using historical data, as TARCAT does, is
that it takes advantage of data from gauges that no
longer exist. Similarly, CMORPH-CRT uses a two-
step approach for the bias adjustment over land. It first
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removes the climatic bias using historical data and then
adjusts to real-time data (Xie et al. 2017). This ap-
proach is particularly beneficial for areas with very
sparse gauge coverage.

4. Gauge-only products

There exist various gridded gauge-only products (see
Table 3). Some are updated regularly, from a few days to a
few months latency, such as Climate Prediction Center
(CPC) Unified, Precipitation Reconstruction over Land
(PREC/L), Global Precipitation Climatology Centre
(GPCC)-first guess, and GPCC-monitoring. Others are
updated irregularly, such as GPCC-Full Data Reanalysis
(GPCC-FDR), GPCC-Full Data Daily (GPCC-FDD),
University of Delaware dataset (UDEL), and Climatic
Research Unit Time series (CRU-TS), for which a new
version is available every few years with reprocessed data
for the entire period. They are produced at relatively
coarse spatial and temporal resolutions compared to
satellite-based rainfall products. Their spatial resolution
ranges from 0.5° X 0.5° to 2.5° X 2.5° and they are
available as monthly estimates except for CPC Unified,
GPCC-first guess, and GPCC-FDD, which are available
for daily totals.

a. Factors influencing the performance of gauge-only
products

The gauge coverage in Africa, with the exception of
a few regions such as South Africa, is sparse. Moreover,
the number of recording stations (available for these
products) varies over space and time, and has signifi-
cantly decreased during the last decades. This decrease
of available gauge records is shown in Lorenz and
Kunstmann (2012, Figs. 3 and 4) for GPCC and CPC
Unified datasets for the period 1989-2006, in Cattani
et al. (2016, Fig. 8) for GPCC-FDR over East Africa
between 2001 and 2009, in Maidment et al. (2014,
Fig. 3d) for GPCC-FDR over Africa for the period
1983-2010 (a clear drop in gauges coverage is visible
around 2009), and in Dinku et al. (2008b, Fig. 3) for
three GPCC products, PREC/L, and CRU-TS over
Ethiopia for the period 1981-2000, over which the
number of gauges decreases sharply around 1985. The
decreasing number of recording stations in Africa is a
known issue (van de Giesen et al. 2014) and is mainly
due to a lack of funding for the maintenance and up-
grading of the gauge network. With GPCC-FDR prod-
uct being a reanalysis, the decrease of records used for
the last years is also due to the time delay in obtaining
data from national agencies.

The relation between the gauge coverage and the
accuracy of gridded products has been observed by

JOURNAL OF HYDROMETEOROLOGY

VOLUME 21

Maidment et al. (2014). They compared TARCAT with
various rainfall products over Africa for the period
1983-2010 and found less agreement between the three
gauge-only products (CRU, GPCC-FDR, and PREC/L)
during 2000-10, this period corresponding to a sharp
decrease of recording gauges. Similar results were found
by Dinku et al. (2008b) when comparing PREC/L,
CRU-TS, GPCC-FDR, and GPCC-clim over Ethiopia
for two different periods: 1981-85 and 1996-2000. Far
fewer gauge records were available for the products
during the second period, and this decrease had an
impact on the products’ accuracy. Indeed, more dis-
crepancies in time series were observed during the
second period than during the first one. Moreover, the
correlation and Nash-Sutcliffe (NS) efficiency coeffi-
cients decreased between the first and the second pe-
riod, while the mean average error increased for the
four products.

Dinku et al. (2008b) studied the impact of the number
as well as the quality of gauge records on product per-
formance by comparing three GPCC monthly products
(GPCC-monitoring, GPCC-FDR, and GPCC-clim) over
the complex topography of Ethiopia at 2.5° X 2.5° and
1.0° X 1.0° resolution. These three products use the same
interpolation method but a different number of gauges
and different quality requirements. GPCC-monitoring
uses reports received through GTS within a month after
the observation month, while GPCC-FDR is produced
irregularly and thus can also use non-real-time data and
apply a higher quality check, so it includes more stations
and those stations are of better quality than those in
GPCC-monitoring. GPCC-clim uses fewer stations but of
higher quality since it requires the stations to have a
time series that is at least 90% complete. They all
had similar performances, with GPCC-monitoring
having a larger bias, GPCC-clim having higher ran-
dom error, and GPCC-FDR having a relative better
performance. The performances of gridded products
vary in time and space depending on the gauge’s
coverage. It is recommended to interpret the gauge
estimate with respect to the gauge’s density informa-
tion supplied with it.

The gauge coverage has an impact on the accuracy
of the products; however the number of gauge records
alone does not determine the performance of the
products. When comparing four gauge-only products
to the reference at three different spatial resolutions,
Dinku et al. (2008b) showed that they all have good
performance, with high correlation and NS efficiency
and very low bias. However, despite using the largest
number of stations and high quality check among the
products, CRU-TS had overall the worst statistics,
behind GPCC-clim using the least number of stations.
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So, its limitation comes from its interpolation method.
A better gauge coverage does not always mean better
accuracy; the interpolation method also has an impact
on a product’s performance.

To summarize, the accuracy of the estimates do not
depend on the gauge coverage alone, but also on the
quality check and the interpolation method used by the
gauge-only product.

b. Gauge-only versus satellite-based products

The gauge-only products have been evaluated over
Ethiopia by Dinku et al. (2008b), but not over other
parts of Africa. However, gauge-only products have
been compared to satellite-based product over different
African regions. These studies are summarized in
Table 7, and their main results with respect to the gauge-
only products are described below.

Ali et al. (2005) compared the gauge-only GPCC
product and three satellite-based ones (CM AP, GPCP,
and GPI) at monthly scale and 2.5° over the Sahel.
They concluded that CM AP had the best performance
with, among others, the smallest root-mean-square
error (RMSE) and bias and the highest coefficient of
determination, followed closely by GPCC and GPCP,
with GPI far behind.

Over Ethiopia, Dinku et al. (2011b) evaluated the
performance of two gauge-only products (CRU-TS
and GPCC-FDR) and two satellite-based products
(GPCPv2 and CMAP), also monthly, at 2.5° resolu-
tion. All products gave good results, with low bias
and mean average error and high correlation and
NS efficiency. The gauge-only products had no or
lower bias but CRU-TS had a slightly larger random
error. GPCC-FDR seemed to perform slightly better
than the other ones. However, when GPCPv2 and
GPCC-FDR are compared to GPCPv2.1, which in-
cludes GPCC-FDR in the algorithm, the latter out-
performed them, except for the bias that remains
lower for GPCC.

CPC Unified was evaluated over the Sahel at higher
resolution, which is for dekadal estimates on a 0.5° grid,
along six satellite-based estimates by Novella and
Thiaw (2010). In terms of rainfall detection, RFE and
CMORPH outperformed the other products, including
CPC Unified. In term of statistics, CPC Unified, RFE,
ARC, and TARCAT had a low bias and RMSE, but
RFE and ARC also had a higher correlation. They
concluded that RFE and ARC had the overall best
performances.

Gauge-only products have in general good perfor-
mance with no or very low bias, but they do not sig-
nificantly outperform satellite-based products over
Africa.

REVIEW
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5. Discussion

a. Factors influencing the performance

1) TEMPORAL AND SPATIAL SCALE

Performance of rainfall products is influenced by the
temporal and spatial resolution at which they are eval-
uated. Performance improves for decreasing resolution,
that is, for coarser grids. One should pay attention to the
temporal and spatial resolution when looking at vali-
dation or intercomparison study of rainfall products.

Dembélé and Zwart (2016) compared seven satellite-
based rainfall products over Burkina Faso at different
temporal resolutions, namely, daily, dekadal, monthly,
and annual scale (see Table 5 for more details on the
comparison method). They showed that both the con-
tinuous and categorical statistics improved when the
temporal resolution decreased. At monthly and an-
nual scale, all the products, except TARCAT, have very
good performance in terms of continuous and categor-
ical statistics. At dekadal scale the products are in good
agreement with the gauges (e.g., correlation coefficients
equal or larger than 0.80), while at daily scale the per-
formance of the products was very low (with, e.g., cor-
relation coefficients smaller than 0.50). Similarly, Dinku
et al. (2011b) compared several satellite-based and
gauge-only products over Ethiopia at different temporal
and spatial scales (see Table 7 for more details on the
comparison method). On a 1.0° X 1.0° grid, RFE2,
TMPA 3B42, and CMORPH had reasonable perfor-
mances in estimating rainfall amount at dekadal scale,
but poor ones at daily scale despite still good detec-
tion skill. They also compared these three products at
daily scale on three grids with different resolution and
showed that both continuous and categorical statistics
were getting better when the spatial resolution de-
creased. In Dinku et al. (2007), six satellite-based rain-
fall products were compared at dekadal scale over
Ethiopia using three different grid sizes (see Table 5). A
decrease in the product’s performance was observed
when the spatial resolution was increased. Similar re-
sults were found for the gauge-only products by Dinku
et al. (2008b) (see Table 7). They evaluated five products
over Ethiopia at three different spatial resolutions for
monthly amount. Their performance decreased with
increasing resolution, but still remained good.

2) GAUGES

The gauge density varies in space and time, and
so influences the performance of the gauge-only and
satellite-based products. The reanalyses use ground-
station measurements but no rain gauge data in their data
assimilation process, so they are not directly impacted by
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the gauge density. The exceptions are MERRA2, CFSR,
and CFSv2. They use precipitation data (such as CMAP
and CPC Unified) as part of their land surface forcing.
However, MERRA2 uses CMAP and GPCPv2.1 over
Africa (Bosilovich et al. 2015, Table 7.1), and CFSR
favored CMAP over CPC Unified in the tropics (Saha
et al. 2010). Thus, gauge data have a very limited influ-
ence on the reanalyses’ precipitation.

The accuracy of gauge-only products depends strongly
on the number of gauges available, which is why the
gauge density is given along the rainfall estimates for
these products. However, as seen in section 4a, the ac-
curacy does not depend solely on gauge density. The
quality of the data and the interpolation method also play
an important role.

Many satellite-based products use gauge data (see
section 3c). Thus, their performances are impacted by the
availability of gauge data. For instance, the poor perfor-
mance of TMPA 3B42 over Lake Tana has been attrib-
uted to the orography and the lack of available gauge data
by Worglul et al. (2014). Moreover, the gauge data used
in satellite-based products are in general a small fraction
of the gauge records available (e.g., gauge-only products
use a much larger number of gauge records than satellite-
based products). An exception is GPCP-SGv2.1 which
uses GPCC, a gauge-only product, for bias adjustment
and merging. Dinku et al. (2011b) showed the benefit
of adding more gauge data by comparing GPCP-
SGv2.1 with its previous version GPCP-SGv2, which
incorporated a smaller amount of gauge data, over the
Ethiopian highlands. They found that the correlation
improved from 0.96 to 0.99, the NS efficiency from
0.92 t0 0.99, and that the random error became lower
than the ones of both GPCP-SGv2 and GPCC.

Dinku et al. (2011b)
GPCPv2 and GPCC
Daily:
underestimation)

Satellite-based products
underestimate

GPCP2.1 better than

Good detection skill

CMORPH best, RFE2
worst (severe

All poor for amount
Dekad/daily:

low and high amount,
while CRU overesti-
mate moderate

amount
Effect of gauge number

Dinku et al. (2008a)
GPCC-clim and GPCC-
FDR overestimate
and quality on

performance

Maidment et al. (2014)

TABLE 7. (Continued)

Okoro et al. (2014)

3) OROGRAPHY

The orography has an impact on the atmospheric
circulation, and so on the precipitation field. It is thus an
important regional forcing in numerical weather model.
The coarse resolution of reanalysis and GCMs does not
allow them to represent accurately complex orography,
limiting their performance in simulating orographic
rainfall. A possibility to improve the representation
of orography and orographic rainfall is to dynami-
cally downscale the reanalysis using an RCM (Druyan
et al. 2010).

Complex orography, and more generally warm-cloud
processes, is a well-known challenge for satellite-based
rainfall products (Serrat-Capdevila et al. 2014). IR-based
estimates have difficulties in capturing warm-cloud pre-
cipitation over coastal and orographic regions. This is
mainly due to the threshold they use to discriminate
between raining and nonraining clouds, which is too cold

Novella and Thiaw (2010)

rainfall values
(TMPA less)
Overall: RFE2 and

All underestimate high
ARC best

Ali et al. (2005)
All underestimate
frequency of low
values, and
overestimate
frequency of medium
values
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for such processes (Dinku et al. 2007, 2008a, 2011a).
Products including PMW data seem to perform better
than the ones mainly based on IR (Dinku et al. 2007,
2011a). However, PMW-based precipitation estimates
also have some limitations with respect to orographic
rain. Indeed, PMW algorithms are mainly based on
scattering by ice aloft, but orographic rainfall is a
warm-cloud process that does not necessarily pro-
duce much ice, which can lead to underestimation.
Moreover, ice on the mountains can be mistakenly
considered as rainfall by such algorithms (Dinku et al.
2007, 2008a, 2011a).

Mountainous areas raise several difficulties for the
gauge-only products too. There are few gauges at high
elevations; most of the gauges are located at lower alti-
tudes. The difficult access and remoteness of such loca-
tions make the installation and maintenance of weather
stations complicated. At the same time, the variability of
rainfall over mountainous regions is high. For example,
Hirpa et al. (2010) showed the existence of an elevation
dependence trend, that is the rainfall amounts increase
with elevation. Hence, the gauge measurements at the
bottom of a mountain are not representative of the
rainfall at higher altitudes. Moreover, the high spatial
variability is making the interpolation more difficult.

4) RAINFALL REGIME

The characteristics of the seasonal distribution of
rainfall at a particular place are termed the rainfall re-
gime (American Meteorological Society 2019). Rainfall
regimes are influenced by large-scale climatic features,
such as the ITCZ, and also by regional ones such as
mountains and lakes. They vary in space and time de-
pending on the climatic region and on the season. The
rainfall regimes influence the performance of the rainfall
products. Hence, their performance can differ over two
regions adjacent to each other but with different rainfall
regimes.

Some comparison studies took the different rainfall
regimes into account. For instance, to compare six
satellite-based products over East Africa, Cattani et al.
(2016) divided this large area in eight smaller areas, each
characterized by a specific precipitation seasonality.
Areas with higher precipitation intensity showed a big-
ger standard deviation and mean average errors. The
standard deviation also depends on the season since
precipitation patterns change over the year. Some areas
had an overall better correlation and NS efficiency for
the different products than others. These differences
between the areas show the influence of rainfall re-
gimes on the performance of the products; a product
can perform differently over two geographically close
areas but having different rainfall regimes. Similarly,
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Romilly and Gebremichael (2011) compared the bias of
three satellite-based products over six river basins in
Ethiopia that were divided in four regions based on
similar rainfall annual cycles and topography. They
showed that the bias of these three products depended
on the rainfall regime, that is, the bias was different
from one region to another but could also vary ac-
cording to the season.

The variation in time of the rainfall products’ per-
formance was also shown by Ali et al. (2005), who
compared three satellite-based products and one gauge-
only product over the Sahel. The monthly mean statis-
tics were better in the core of the rainy season for CMAP
while GPCP and GPCC had better statistics in its mar-
gins. Dinku et al. (2008b) evaluated five gauge-only
products over Ethiopia and found that they performed
better (i.e., higher correlation and NS efficiency) during
the wettest season (June—August) and worse during the
dry season (December—February). They showed that
these seasonal differences were more important when
the comparison was done at higher spatial resolution.
The poor performance during the dry season was at-
tributed to the fact that rainfall during this season is local
in both time and space, and thus a denser network of
gauges would be needed to reproduce the rainfall pat-
terns. On the contrary, reanalyses perform more poorly
during the monsoon season due to the convective na-
ture of the rainfall. In general, the satellite-based es-
timates are expected to perform better in summers and
in the tropics while models are expected to be better
in winters and high latitudes because the satellite es-
timates tend to reproduce convective rainfall more
accurately (Ebert et al. 2007). The reanalyses and
global models, in general, have been shown to perform
more poorly over the tropics and to fail to reproduce
some regional-scale features. Thus, it is not surprising
that the reanalyses are outperformed by satellite-
based products over Africa and especially during the
monsoon season.

Some climates are more difficult than others to rep-
resent, which is the case for arid areas by satellite-based
products, for example. Jobard et al. (2011) compared 10
satellite-based products over the Sahel and showed that
they all had higher RMSE ratios in the northern part
where rainfalls had low intensities. On the contrary,
in Cattani et al. (2016), the six rainfall products had
low RMSE and mean average error over arid areas.
However, it has to be taken relatively since the monthly
rainfall amount was also very low over these areas.
Dinku et al. (2010) and Dinku et al. (2011a) had spe-
cifically studied the limitations of satellite-based pre-
cipitation estimates over arid areas. Dinku et al. (2011a)
evaluated the skills of four rainfall products over an arid
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region in Ethiopia while Dinku et al. (2010) compared
seven products over different arid and semiarid regions.
They both concurred on the poor performance of the
different satellite products over such regions, espe-
cially the drier ones. The products overestimated the
frequency of rainfall despite a low probability of detec-
tion (POD). The low detection skill and the high over-
estimation were attributed to several possible reasons.
First, the subcloud evaporation can play an important
role in this overestimation. These regions have a dry at-
mosphere so the rainfall detected aloft by the satellite
might evaporate before reaching the ground. Second, a
limitation specific to PMW algorithms is that they can
mistakenly identify desert surfaces as raining, because
desert and snow cover have spectral characteristic close
to rainfall (Wang et al. 2009). Finally, the coarse resolu-
tion of the rainfall products can also be an explanation
factor for the low POD, especially since they are com-
pared to point data. Indeed, a pixel might cover both
rain and nonrainy (warm) surface, but the pixel rep-
resents the averaged values that may not be identified
as rain. As mentioned above, gauge-only products can
also have difficulties over dry areas, when the rainfall is
localized.

b. Use cases

The “‘best” rainfall products depend on the in-
tended use cases. Sometimes, requirements on the spa-
tial and/or temporal resolution can limit the possible
choices (see Tables 1-3 for the resolution of the dif-
ferent products). Depending on the application, some
characteristics are more important than others. The
important characteristics of seven use cases are dis-
cussed below. Recommendations about the rainfall
products for these cases are given in Table 8.

1) DROUGHT MONITORING

Droughts have a high economic cost, because of
their possible large spatial and temporal scale. With
the agriculture in sub-Saharan Africa being mainly
rain-fed, the population is vulnerable to such a natural
disaster. It can also impact the food and water secu-
rity; for example, the drought of the Horn of Africa in
2011 caused famine in several regions, and large
population movement (Sheffield et al. 2014). Hence,
drought monitoring and early warning systems are
important in this region. These applications need
precipitation data, in general 1-10-day accumulations.
One should avoid rainfall products that overesti-
mate the occurrence or the amount of rainfall events.
The good representation of the low-intensity rainfall
events is more important than the high ones. In terms
of criteria, this translates to
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o low false alarm rate (FAR; no overestimation of
occurrence),

e low or dry frequency bias (no overestimation of
occurrence),

e dry bias preferred (no overestimation of amount),

« low or negative ME (no overestimation of amount), and

o distribution representing well the low precipitation
values (representation of low rainfall events).

2) AGRICULTURE/CROP MODELING

In sub-Saharan Africa, agriculture is mainly rain-fed,
making the population highly vulnerable to rainfall
variability. Rainfall information is therefore valuable
for farmers, and an important input for crop model-
ing. Rainfall data are also used to derive rainfall in-
dices for crop insurance. Such insurance helps the
smallholder farmer to be more climate resilient. For
these types of application, the chosen rainfall product
should correctly represent the precipitation distribu-
tion over time and estimate accurately the amount per
events. The good representation of dry spells is also
important since they are influencing the vegetation
growth. The most important criteria for these types of
application are

e low RMSE and MAE (accurate amount at pentadal
and dekadal scales),

e high coefficient of determination R* or correlation
coefficient, and

e good representation of dry spell occurrence.

This application is probably the most demanding in
terms of accuracy and rainfall distribution.

3) FLOOD MONITORING/EXTREME EVENTS

Sub-Saharan Africais also vulnerable to floods. The
number of deaths and the economic loss due to floods
have increased in the last decades (Thiemig et al.
2011). The fast urbanization has increased the pop-
ulation vulnerability to such natural disasters. In this
context, flood monitoring and early warning system
are needed to reduce the human and economic losses
(Thiemig et al. 2011). Good estimation of flood events
relies on precipitation data representing well the
high-intensity rainfalls. For such applications, rain-
fall products underestimating the occurrence and
amount should be avoided. In terms of criteria, this
translates to

 high POD (no underestimation of occurrence),

e low or wet frequency bias (no underestimation of
occurrence),

o wet bias preferred (no underestimation of amount),

e low or positive ME (no underestimation of amount), and
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TABLE 8. Recommendations depending on the use cases (based on literature, see Table 5).

Use cases

Recommendations

Drought monitoring

TARCAT, RFE2, ARC2 recommended

Avoid RFE2 and ARC2 over mountainous areas

Avoid RT products which have a large wet bias

CHIRPS developed for drought monitoring, but advised for flood monitoring by Dembélé and
Zwart (2016) and Toté et al. (2015)

Agriculture/crop modeling
Depends on the region

Not many comparison studies [only Pierre et al. (2011) looks at vegetation modeling]

RFE2 over the Sahel (both good for occurrence and amount)
CMORPH has good rain-no-rain discrimination, but need bias correction (large wet bias)

Flood monitoring

Avoid TARCAT, RFE2, and ARC2

CHIRPS: developed for drought, but recommended for flood over Burkina Faso and Mozambique
by Dembélé and Zwart (2016) and Toté et al. (2015)

CMORPH: good detection skill, and (large) wet bias (except over Zimbabwe)

PERSIANN: high POD and positive bias, but very large bias and do not represent well distribution
of high precipitation values (over the Sahel). To be used with caution.

Other possibilities: GPCC-1DD, TMPA 3B42, GSMaP (but can have dry bias for some

years/locations)
Hydrological modeling/reservoir

Need to account for the bias of rainfall products (especially RT, which have large bias)

management Possible improvement by calibrating the model
(Gosset et al. 2013; Thiemig et al. 2013)
Climatology/general Depends on the regions

General good agreement at monthly scale®

PERSIANN-CDR, ARC2 (and CHIRPS) developed for climatology

Gauge-only products: long time period, but accuracy varies in time

Over the Sahel: regional products (except TARCAT over Burkina Faso), and CMAP at monthly

scale (Ali et al. 2005)

CHIRPS: good results, but only two studies (Dembélé and Zwart 2016; Toté et al. 2015)
CMORPH: the algorithm has been modified during production of version v0.x, prefer v1.0 for

climatology® (for more consistency in time). Be aware of its relatively large wet bias.
TMPA: in general reasonable performance

Mountainous areas

CMORPH and TARCAT recommended

Avoid RFE2, ARC2, and PERSIANN

Diurnal cycle

Only few studies at subdaily scale

Only studied over Niamey, Ouémé, and Dakar
(Pfeifroth et al. 2016; Roca et al. 2010)

# Performance of rainfall product increases for coarser resolution.

" Version 1.0 has been reprocessed with consistent input/algorithm.

o distribution representing well the high precipitation
values (representation of intense rainfall events).

4) HYDROLOGICAL MODELING/RESERVOIR
MANAGEMENT

Hydrological modeling is used for many applications
linked to water management, such as reservoir man-
agement. Decisions made based on the results of such
models can have an impact on the population, the
economy, or the environment (Thiemig et al. 2013).
Precipitation data are one of the main inputs, and so
influence the accuracy of the output. The temporal res-
olution needed depends on the exact application; it can
range from subdaily to monthly. In general, a good es-
timation of both the occurrence and the amount of
rainfall is needed. Bias correction as a preprocessing
step can improve the model results. This is especially

true when using real-time products that have in general
large bias. The results are also influenced by the model
parameters. These parameters can be specifically cali-
brated for the chosen rainfall product, in order to im-
prove the result’s accuracy.

5) GENERAL/CLIMATOLOGY

Climatological applications need long data records in
order to study trends and variations. Most of the studies
are focused on a small number of years. Studies over
longer time periods would be interesting. For these
types of applications, rainfall products need consistent
performance in time. This can be an issue. Gauge-only
products have long time coverage, but their perfor-
mance varies with the gauge density. Similarly, more
observations are available for reanalysis in more recent
years, improving their performance. The sensors and
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sometimes the algorithms used for satellite-based prod-
ucts change in time, making them less consistent. The
rainfall products should cover a long time period and be
able to represent the yearly and seasonal variability.
Thus, the important criteria to look at are

« high correlation or coefficient of determination (good
representation of the trend, little dispersion),

 high NS efficiency (good fit, low relative residual
variance), and

e low RMSE (good fit, general low misfit).

6) MOUNTAINOUS AREAS

Complex orography is a well-known difficulty for
rainfall products (see section 5a). Their accuracy is
lower than over flatter areas, and they tend to un-
derestimate rainfall. However, some products have
been shown to perform relatively better, while some
others are more inadequate for mountainous areas.

7) DIURNAL CYCLE

Most of the well-known rainfall products are avail-
able at subdaily scale. However, very few comparison
and validation studies considered this scale. The diurnal
cycle represents a large precipitation variation within a
day, and has been specifically studied by Pfeifroth et al.
(2016) over the two sites of Niamey (Niger) and Ouémé
(Benin). The diurnal cycle varies within the rainy season,
but also from year to year. It can be characterized by the
number of rainy peaks, their timing, and their size.

The recommendations given in Table 8 focused on the
satellite-based products because more literature was
available for them. The most used of them are described
in more detail in appendix B. The reanalyses and gauge-
only products also have some strengths.

The main advantage of the gauge-only products is
their long record period that goes back to 1901 (while
the satellite-based products do not start before 1979).
However, the quality of the products varies in time with
the gauge network density, which is particularly sparse
in some African regions. The product using the highest
number of records is GPCC-FDR, and it has to be noted,
however, that this number varies a lot in time (Becker
et al. 2013). A drawback of some gauge-only products
(GPCC-FDR, CRU-TS, and UDEL) is their irregular
updates, making them unavailable for recent years’
studies. CRU-TS and UDEL also include other vari-
ables, such as the temperature, in a consistent format.
Having a consistent dataset for both precipitation and
temperature can be an advantage for some applications
that need these two measurements.

The reanalysis have a higher temporal resolution than
the gauge-only products, but also cover a shorter time
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period. They include many atmospheric variables. This
can be useful for climatological applications that do not
focus exclusively on precipitation, for example. They
can also be used to understand better the mechanisms
producing rainfall.

6. Conclusions

In this paper, we have reviewed the most-used rain-
fall products and their relative performances. The
choice of products will depend on the intended appli-
cation. However, different use cases have different
requirements that can guide us toward the best choice.
Users also have to consider some factors influencing the
accuracy of the products and thus the results of their
applications. These factors include the gauge density, the
orography, and the rainfall regime.

Various methods have been developed to derive rain-
fall from different types of data. Some of the most re-
cent products build upon older ones. The algorithm of
NASA'’s newest rainfall product, IMERG, is based on the
methods of previously existing products: (i) TMPA for
the intercalibration and merging of the PMW estimates
and for the bias adjustment, (ii) PERSIANN-CCS for
the PMW-calibrated IR estimates, and (iii) CMORPH-
Kalman filter for the merging of PMW and IR esti-
mates. Similarly, the recent MSWEP product (first
release in 2016 and version 2 in 2017) is not using a
new algorithm to derive rainfall estimates from mea-
surements. Instead, it uses already existing gauge-only
(non-gauge-adjusted), satellite-based rainfall products
and reanalyses to derive anomalies while a corrected
version of CHPclim is used for the long-term mean
precipitation.

It is important to understand the method behind a
rainfall product in order to understand its strengths and
its limitations, or, in other words, to know how robust it
is and to which extent one can trust it. The diagrams in
appendix B are meant to facilitate such understand-
ing across products. When choosing one rainfall prod-
uct among all the existing ones, one should not only
look at validation studies but at the description of the
algorithm (C. Kummerow 2017, meeting presentation).
Comparing fairly different products is difficult, and the
results depend on the reference dataset, on the method,
and on resolution. Moreover, the conclusion of a study
might not hold for another region or rainfall regime. The
algorithm’s description will give an idea of the robust-
ness of a product and of its limits. Finally, we agree with
Kummerow’s plea to only build new rainfall products
with a clear use case in mind, one that has not yet been
catered to by existing products (C. Kummerow 2017,
meeting presentation).
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List of Acronyms

African Monsoon Multidisciplinary
Analyses

AMMA-Model Intercomparison Project

Africa Rainfall Climatology version 2

Blended

Climate Anomaly Monitoring System—
Outgoing Longwave Radiation Pre-
cipitation Index

Cumulative density function

Climate Forecast System Reanalysis

Climate Forecast System version 2

Climate Hazards Group Infrared Precip-
itation with Station Data

Climate Hazards Group’s Precipitation
Climatology

CPC Merged Analysis of Precipitation

CPC morphing technique

Coordinated Regional Climate Down-
scaling Experiment

Climate Prediction Center

Corrected

Climatic Research Unit-Time Series

Critical success index

Ensembles-Based Predictions of Climate
Changes and Their Impacts

Estimation of Precipitation by Satellites

European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-
analysis

Equitable threat score

False alarm ratio

Frequency bias

Global circulation model

Global Precipitation Climatology Centre

GPCC Climatology

GPCC-Full Data Daily

GPCC-Full Data Reanalysis

Global Precipitation Climatology Project

GPCP-SG
GPI

GPM
GSMaP
GTS

HK

HSS
IMERG

IPWG
IR
ITCZ
JRA

MAE
ME
MERRA

MSWEP

NS
OR
PERSIANN

PERSIANN-
CCS

PERSIANN-
CDR

PMW

POD

POFD

PR

PREC/L

R1

R2

RCM

RFE2

RMSE

SD

SM2RAIN

S-RIP

SPARC

TAMSAT

TARCAT

TMPA

TRMM
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GPCP-Satellite and Gauge

GOES precipitation index

Global Precipitation Measurement

Global Satellite Mapping of Precipitation

Global Telecommunication System

Hanssen and Kuiper discriminant

Heidke skill score

Integrated Multisatellite Retrievals
for GPM

International Precipitation Working Group

Infrared

Intertropical convergence zone

Japanese Meteorological Agency
(JMA) Reanalysis

Mean average error

Mean error

Modern-Era Retrospective Analysis
for Research and Applications

Multi-Source Weighted-Ensemble
Precipitation

Nash-Sutcliffe

Odds ratio

Precipitation Estimation from Remotely
Sensed Information using Artificial
Neural Networks

PERSIANN-Cloud
Classification System

PERSIANN-Climate Data Record

Passive microwave

Probability of detection

Probability of false detection

Precipitation radar

Precipitation Reconstruction over Land

NCEP-NCAR Reanalysis

NCEP-DOE Reanalysis

Regional circulation model

Rainfall Estimate version 2

Root-mean-square error

Standard deviation

Soil Moisture to Rainfall

SARC Reanalysis Intercomparison
Project

Stratosphere-Troposphere Processes
and Their Role in Climate

Tropical Applications of Meteorology
Using Satellite Data and Ground-
Based Observations

TAMSAT African Rainfall Climatology
and Time Series

TRMM Multisatellite Precipitation
Analysis

Tropical Rainfall Measuring Mission
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UDEL University of Delaware dataset
WAM West African monsoon

WAMME West African Monsoon Modeling and

Evaluation project

APPENDIX B

Satellite-Based Products: Description and
Performance

a. Climate Anomaly Monitoring System—outgoing
longwave radiation precipitation index
(CAMS-OPI)

The CAMS-OPI product provides monthly mean and
anomaly precipitation on a 2.5° X 2.5° grid resolution
from 1979 up to present. This product has two types of
inputs: 1) monthly rain gauge totals from the Climate
Anomaly Data Base (CADB) (initially rain gauges from
CAMS were used), and 2) satellite-based estimates de-
rived from outgoing longwave radiation (OLR) obser-
vations from NOA A polar-orbiting satellites. These two
inputs are merged, such that over the oceans the final
estimates are the same as the satellite-based estimates
and that over the land the final estimates take the
values of the gauge-based estimates where available;
everywhere else the gauge and the satellite estimates are
blended. Figure B1 represents a flowchart of CAMS-
OPI’s algorithm. A more detailed description of the
CAMS-OPI product and a comparison with GPCP and
CMAP is given in Janowiak and Xie (1999).

CAMS-OPI has the advantage of being a near-real-
time product, so it is useful for real-time precipitation
monitoring. However, for other purposes, it is advised to
use other monthly global precipitation products such as
GPCP or CMAP. They are not real-time products, but
they include more observations and use better quality
controls for the rain gauge data.

b. Global Precipitation Climatology Project
(GPCP)-Satellite and Gauge (SG)

GPCP-SG gives global monthly precipitation es-
timates, and associated error estimates, on a 2.5° X
2.5° lat/lon grid from 1979 to a delayed present.
Precipitation estimates from different sources of ob-
servations are merged to create the GPCP-SG final es-
timates. GPCP-SG is based on 1) PMW information
from SSMI and SSMIS, 2) IR data from geostationary
and polar-orbiting satellites, 3) rain gauges data from
GPCC, 4) sounding data from the Television and Infrared
Observation Satellite Program (TIROS) Operational
Vertical Sounder (TOVS) and the Atmospheric Infrared
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Sounder (AIRS), and 5) OLR precipitation index (OPI)
from NOAA. Some of these input data are not available
for the entire period: there are no geo-IR estimates before
December 1987 and no PMW estimates from SSMI before
December 1985. The algorithm is different before and
after these dates, in order to adapt to the data availability.
This product is thus not consistent in time. The algorithm
is shown in Fig. B2 for the period from 1987 to present,
in Fig. B3 for 1986-87, and in Fig. B4 for 1979-85.

The merging method as well as more details about
the dataset is given in Adler et al. (2003) for version 2,
Huffman et al. (2009) for version 2.1, and Huffman and
Bolvin (2013) for version 2.2. A newer version (2.3) re-
cently became available, and its differences with the pre-
vious version 2.2 are described in Adler et al. (2018). The
intermediate estimates and their associate errors are also
available; there is a total of 27 datasets associated to this
product (e.g., long term monthly means from 1981 to 2010).

c. CPC Merged Analysis of Precipitation (CMAP)
1) DESCRIPTION

The CMAP product gives pentadal (5 days) and
monthly global precipitation estimates from 1979 to
near present on a 2.5° X 2.5° lat/lon grid. The estimates
are obtained by merging observations from rain gauges
with five different satellite-derived precipitation esti-
mates. The “enhanced” version of CMAP uses the pre-
cipitation estimate from NCEP-NCAR reanalysis (R1) as
an additional input data. Its resolution and coverage (both
spatial and temporal) are otherwise the same as for the
original CMAP dataset. The satellite and reanalysis esti-
mates are compared to the gauge analysis and weighted
accordingly. In this way, the reanalysis is filling the gaps in
the satellite coverage. The amount and the type of data
used for the estimation vary in space and time which can
be an inconvenient since the quality of the estimates de-
pends on them. A flowchart describing CMAP’s algo-
rithm is given in Fig. B5. The CMAP product is described
in Xie and Arkin (1997) and Xie and Arkin (1996).

2) PERFORMANCE

CMAP’s performance seems consistent across differ-
ent regions. It showed similar good results (i.e., low bias
and RMSE and high NS efficiency and correlation co-
efficient) in estimating rainfall amount at monthly time
scale over Ethiopia (Dinku et al. 2007, 2011b) and over
the Sahel (Ali et al. 2005). Its bias remained low despite
its tendency to underestimate high rainfall values (the
same was observed for the other monthly products
compared in these studies). Over the Sahel, Ali et al.
(2005) noticed an overestimation of low rainfall which
led to an underestimation of the low rainfall frequency
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blended gauge+OPI estimates (Reynolds, 1988)

final product
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Notes

LGridding method: modified spherical version of Shepard (1968)

20PI algorithm: Xie and Arkin (1998)

FiG. B1. CAMS-OPI algorithm.

and an overestimation of the medium events frequency.
According to Okoro et al. (2014), CMAP represented
well the interannual and spatial variability over the
Niger Delta. This result was confirmed over the Sahelian
region by Ali et al. (2005), who also showed that CMAP
had better performance in the core of the rainy season
than at its edges.

d. Global Precipitation Climatology Project
(GPCP)-1DD

1) DESCRIPTION

GPCP produces a global daily product on a 1.0° X 1.0°
lat/lon grid (GPCP-1DD) that covers the period from
October 1996 to a delayed present. The GPCP-1DD
product is consistent with GPCP-SG in the way that it
approximately sums to the monthly estimates of GPCP-
SG. GPCP-1DD is mainly based on IR data, but it also
used PMW data, sounding data from TOVS and AIRS,
and GPCP-SG. The 3-hourly infrared brightness tem-
peratures from geosynchronous Earth-orbiting (GEO)
satellites are compared to a threshold defined from SSMI-
based precipitation frequency, and then the “cold” pixels
are given a precipitation rate (the conditional rain
rates are set locally by month from the GPCP-SG
monthly product). LEO satellite GPI estimates are
adjusted to GPCP-SG and used to fill the gap when
and where the abovementioned geo-IR estimates are
missing. The resulting estimates [threshold-match pre-
cipitation index (TMPI)] are used between 40°N and 40°S.
Outside these latitudes, daily TOVS and AIRS precipi-
tation estimates are used. The rainfall occurrence and
amount of the TOVS/AIRS-based estimates are rescaled
such that the occurrence matches the occurrence of TMPI

at the boundaries and that the amounts sum locally to the
monthly value of GPCP-SG. The flowchart in Fig. B6
represents the algorithm of GPCP-1DD. The method
and the data used to derive GPCP-1DD product are de-
scribed in Huffman et al. (2001) and Adler et al. (2017).

2) PERFORMANCE

Over the Sahel, GPCP-1DD performed relatively
well, despite a small overestimation almost everywhere.
It performed better than TMPA 3B42 over Burkina
Faso and the West coast, but worse than regional
products like EPSAT-SG, RFE2, or TARCAT. It ten-
ded to underestimate weaker rainfall events and over-
estimate large one (Jobard et al. 2011). Gosset et al.
(2013) evaluated GPCP-1DD along seven other rainfall
products over the two sites of Niamey (Niger) and
Ouémé (Benin). They showed that GPCP-1DD had a
very low bias over both sites (especially in Benin), but
different behaviors. Its performance was better over
Benin where it represented well the intensity distribu-
tion despite a relatively high FAR. Over Niger, its be-
havior was closer to its behavior over the Sahel, with an
underestimation of low rainfall values and an overes-
timation of high rainfall values. Its tendency to under-
estimate rainfall frequency and overestimate rainfall
amounts (similar to TMPA 3B43v6) could be due to the
adjustment of daily estimates to the monthly GPCP-SG
product. This adjustment method only modifies the pre-
cipitation amounts: rainfall amounts are increased during
the rainy days to compensate the underestimation of
rainy days occurrence (Gosset et al. 2013). Over West
Africa, the performance of GPCP-1DD seemed to be
different over the coastal regions (like Benin) and the
ones more north (the Sahel, Niger).
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In East Africa, GPCP-1DD has been evaluated over
Ethiopia by Dinku et al. (2007) and over Uganda by
Maidment et al. (2013). Over Ethiopia, GPCP-1DD
had a limited performance and was outperformed by
TMPA 3B42 and CMORPH. It overestimated rainfall at
all range. However, it performed better over Uganda
with a low bias and good correlation to the gauge data.
GPCP-1DD has been known to miss warm orographic
rain [for instance, over India in Joshi et al. (2012)],
this could explain the difference of performance since
Ethiopia has a complex topography compared to
Uganda. The underestimation of orographic precipi-
tation could be due to the fact that GPCP-1DD is
mainly based on IR data (PMW and gauge data are
not used directly).

e. CPC morphing technique (CMORPH)
1) DESCRIPTION

CMORPH is a high-resolution global precipitation
product. It takes advantages of the higher temporal
resolution of the IR data and the higher accuracy
of the PMW precipitation estimates. LEO satellite
PMW observations are used to estimate the precipi-
tation fields, which are then propagated by motion
vectors derived from geostationary satellite IR data.
Half-hourly global precipitation estimates are computed
on a 0.07277°(~8km) lat/lon grid and are also available as
3-hourly or as daily estimates on a 0.25° lat/lon grid about
18 h after real time. The (half-hourly) 8-km estimates are
obtained by interpolation since the satellite-derived es-
timates have a coarser resolution (around 12 or 15 km).

CMORPH exists in two versions. The original one,
CMORPHYVO0.x, covers the period from December 2002
to present. However, the algorithm and the version
of the inputs have evolved in time. That is why the
CMORPH product has been reprocessed and extended
to January 1998, using a fixed algorithm and the same
versions for the input data. The reprocessed CMORPH
is called CMORPHv1.0. CMORPHvV1.0 includes a
satellite-only product (CMORPH-RAW, similar to
CMORPHV0.x), a bias-corrected product (CMORPH-
CRT), and a gauge-satellite blended product (CMORPH-
BLD). Flowcharts representing the algorithms of
CMORPH-RAW and CMORPH-CRT are shown in
Figs. B7 and BS . For more information about the CMORPH
products, see Joyce et al. (2004) for version v0.x and Xie
et al. (2017) for version 1.0. Among the articles cited
below only Cattani et al. (2016) and Pfeifroth et al.
(2016) used CMORPHV1.0 (CRT and RAW, respectively).

2) PERFORMANCE

CMORPH had poor performance over the Sahel
despite a good discrimination of the rain and no-rain
events (Novella and Thiaw 2010; Pierre et al. 2011). It
strongly overestimated rainfall amounts, especially the
high rainfall values (Pierre et al. 2011; Jobard et al. 2011;
Dinku et al. 2015). Over the two sites of Niamey (Niger)
and Ouémé (Benin), CMORPH also overestimated, but
showed a good correlation with the gauges data (Gosset
etal. 2013) and represented well the diurnal cycle (Pfeifroth
et al. 2016). Thus, CMORPH seemed to have different
performances over different parts of West Africa, but
overestimated rainfall amount on the whole region.
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On the other hand, CMORPH performed very
well over Ethiopia (Dinku et al. 2007; Romilly and
Gebremichael 2011). It tended to underestimate rain-
fall amount but had a good detection of rainfall oc-
currence (Dinku et al. 2008a, 2011b, 2015; Bitew and
Gebremichael 2010). The performance of CMORPH
over East Africa varied depending of the regions
(Cattani et al. 2016). It has been shown to have good
performance over Ethiopia and Zimbabwe by Dinku
et al. (2008a) and over Uganda by Asadullah et al.
(2008). CMORPH tended to underestimate orographic
rain (Cattani et al. 2016; Haile et al. 2013; Thiemig et al.
2012; Dinku et al. 2011a); however, its performance
remained good over mountainous areas, especially
compared to other products.

f- Tropical Rainfall Measuring Mission (TRMM)
Multisatellite Precipitation Analysis (TMPA)

1) DESCRIPTION

TRMM is a joint mission between the National
Aeronautics and Space Administration (NASA) and
the Japan Aerospace Exploration Agency (JAXA) to
study rainfall for weather and climate research. The

TRMM satellite, launched in November 1997, is equip-
ped with different types of instruments: Precipitation
Radar (PR), TRMM Microwave Imager (TMI), Visible
and Infrared Scanner (VIRS), Clouds and Earth Radiant
Energy System (CERES), and Lightning Imaging Sensor
(LSI). Several products are derived from the TRMM
data including quasi-global (50°N-50°S) precipitation es-
timates: the TRMM Multisatellite Precipitation Analysis
(TMPA) products. They cover the period from 1998 to
near present on a 0.25° X 0.25° lat/lon grid at 3-hourly
(TMPA 3B42), daily (TMPA 3B42 derived), and monthly
(TMPA3B43) temporal resolution.

The inputs use to derive these products are 1) PMW
data from different LEO satellites (including TMI on
TRMM), 2) IR data from the international constellation
of GEO satellites, 3) TRMM Combined Instrument
(TCI, TRMM2B31) based on TMI and TRMM PR
(for calibration), and 4) GPCC monthly rainfall esti-
mates. The algorithm for TMPA 3B42 (and TMPA3B43)
is shown in Fig. B9. More details about the input datasets
and the algorithm can be found in Huffman et al. (2007)
for version 6 and in Huffman and Bolvin (2018) for ver-
sion 7. A real-time version of TMPA 3B42 (TMPA 3B42-
RT) is also available; it is based on calibration by the TMI
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F1G. B6. GPCP-1DD algorithm.

precipitation product instead of TCI and does not incor-
porate gauge data.

2) PERFORMANCE

Overall, the TMPA 3B42 product performed well
over different parts of Africa (Sahel, Benin, Niger,
Ethiopia, Uganda, Zimbabwe). Over the Sahel, version
6 underestimated the number of rainy days and the high
rainfall values (Pierre et al. 2011; Jobard et al. 2011). Its
performance was lower over the west coast and Burkina
Faso (Jobard et al. 2011). This lower performance over
Burkina Faso has also been noticed for version 7 by
Dembélé and Zwart (2016). These two studies showed
that both version of TMPA underestimated high rainfall
value, while Dinku et al. (2015) found that version 7

overestimated high rainfall rates over the Sahel. Over
Benin and Niger, the version 6 underestimated the
number of rainy days as over the Sahel but overestimated
the high rain rates (Roca et al. 2010; Gosset et al. 2013).
Pfeifroth et al. (2016) showed that TMPA version 7 was
able to reproduce the diurnal cycle and its variability, for
two sites in Benin and Niger. However, if the size of the
peaks were very close to the gauge data, they were de-
layed up to two hours. The two versions were quickly
compared in Gosset et al. (2013), and version 7 showed a
general improvement (depending on the statistics).
Over Ethiopia, TMPA had more difficulties and was
often outperformed by CMORPH (Dinku et al. 2007,
2008a, 2011b, 2015), particularly over Lake Tana. This
can be due to the fact that no gauges were available near
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Fi1G. B7. CMORPH-RAW algorithm.

this lake for the bias adjustment (Worqlul et al. 2014;
Haile et al. 2013). However, both versions showed satis-
factory results over other regions of East Africa such as
Uganda (Asadullah et al. 2008; Diem et al. 2014), Lake
Victoria (Haile et al. 2013), or Zimbabwe (Dinku et al.
2008a). Cattani et al. (2016) compared TMPA with other
rainfall products over the entire East Africa. TMPA had
overall the best performance over the entire region (but
it was not independent from the reference data in this
study). The performance of TMPA was lower over
complex orography where it tended to underestimate

rainfall amount (Thiemig et al. 2012; Dinku et al. 2011a;
Diem et al. 2014). This could explain why it performed
less well over Ethiopia, which has a complex orography.

3) INTEGRATED MULTISATELLITE RETRIEVALS
FOR GPM (IMERG)

The TRMM satellite stopped collecting data in 2015.
The TMPA products will continue until 2018, with some
modification in the algorithm due to the data no longer
being available. The Global Precipitation Measurement
(GPM) mission is built upon and will replace the TRMM
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F1G. BS8. CMORPH-CRT algorithm.

mission. The GPM Core Observatory satellite was launched
in February 2017 and a new product, the Integrated
Multisatellite Retrievals for GPM (IMERG), will su-
persede TMPA (the transition is planned through 2019).

The IMERG product gives half-hourly quasi-global
(60°N-60°S) precipitation estimates on a 0.1° X 0.1° lat/lon

grid. It covers the period from March 204 to present
with a latency of respectively 4, 12 h and 2.5 months after
the end of the month for the Early, Late and Final runs.
The inputs are similar to the ones use for TMPA:
1) PMW data from different LEO satellites (including
TMI and GMI on TRMM and GPM), 2) IR data from the
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international constellation of GEO satellites, 3) GPM
Combined Instrument (GCI, 2B-CMB) based on GMI
and GPM Dual Precipitation Radar (DPR) (for cali-
bration), and 4) GPCC monthly product. In addition,
IMERG uses the monthly GPCP-SG product to cali-
brate the PMW-based rainfall estimates. IMERG’s al-
gorithm (shown in Fig. B10) differs from TMPA’s
algorithm. It uses a similar intercalibration and merging
method for the PMW estimates, and the same bias ad-
justment and satellite—gauge combination as TMPA.
But, the MW-calibrated IR estimates are derived by the
PERSIANN-CCS algorithm, and they are combined to
the merge-MW estimates using the CMORPH-Kalman
Filter (CMORPH-KF) method. More details about the
input datasets and a description of the algorithm can be
found in Huffman et al. (2018).

With IMERG being a recent product, only few studies
have evaluated its performance over Africa. It has been
compared to its predecessor TMPA by Dezfuli et al.
(2017a) over two regions having different rainy season
characteristics, one in West Africa and one in East
Africa. They showed that IMERG was closer to the gauge
data than TMPA, especially for the extreme events.
In a follow-up article, Dezfuli et al. (2017b) compared
IMERG and TMPA with three rain gauges at three lo-
cations having different rainfall’s characteristics. They
showed that the performance of both products depended
of the season, the region and the evaluation statistics.
Both TMPA and IMERG performed better in East
Africa and southern West African than in the southern
Sahel. This can be expected since the latter has a more
arid climate and arid areas are known to be challenging
for satellite-based rainfall products. The diurnal cycle was
better represented by IMERG, probably because of its
higher resolution. However, TMPA represented better
the annual cycle for two out of the three rain gauges.

g. Precipitation Estimation from Remote Sensing
Information Using Artificial Neural Network
(PERSIANN)

1) DESCRIPTION

The PERSIANN product was developed in 1997 at
the University of Arizona. Quasi-global (60°N-60°S)
up to hourly precipitation estimates at 0.25° lat/lon
resolution are available from 2000 to present with
2 days latency.

PERSIANN is based on an artificial neural network
that is applied to IR data from geostationary satellites
(CPC/NCEP Merged 4-km IR dataset; Janowiak et al.
2001) to obtain an intermediate precipitation product at
4-km resolution every 30 min. The intermediate product
is then aggregated to form the final precipitation product.

REVIEW
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The neural network can be trained with different types of
data, such as satellite measurements, gauges, ground-
based radar data, and ground-surface topographic infor-
mation. For the operational product, the neural network
is trained and updated with PMW data only. The algo-
rithm for the operational product is shown in Fig. B11.

PERSIANN-Cloud Classification System (PERSIANN-
CCS), another PERSIANN product with higher spatial
and temporal resolution, was developed at the Center for
Hydrometeorology and Remote Sensing (CHRS) at the
University of California, Irvine. The method is similar to
the one of PERSIANN, the main difference being the in-
troduction of a Cloud Classification System (CCS). In
PERSIANN, the fitting of infrared cloud images to rain
rate is done pixel-to-pixel while PERSIANN-CCS uses
cloud-patch regions. The cloud-patch features are catego-
rized and the fitting of infrared images to rain rate is unique
for each cloud-patch group. The parameters defining the
fitting are calibrated through a neural network (Hong
et al. 2004). Contrary to PERSIANN, the neural net-
work is not updated but was initially trained with PMW
data. The resulting quasi-global (60°N-60°S) rain esti-
mates are given on a 0.04° lat/lon grid every hour and
cover the period from January 2003 to present.

The PERSIANN-Climate Data Record (PERSIANN-
CDR) product has been developed for climate and vari-
ability studies. It covers a longer period, from 1983 to a
delayed present (2015), and is available as daily estimates
at 0.25° resolution. PERSIANN-CDR is based on the
same algorithm as PERSIANN. The two main differ-
ences are that 1) the neural network in PERSIANN-CDR
is not updated, and 2) PERSIANN-CDR uses a different
IR dataset, namely, GridSat-B1. Moreover, PERSIANN-
CDR is bias adjusted with the monthly GPCP.v2.2
product. More detailed descriptions of this product can
be found in Ashouri et al. (2015) and Hsu et al. (2014).

The evolution of PERSIANN products from 2000 to
2009 is described in Hsu and Sorooshian (2008).

2) PERFORMANCE

PERSIANN tended to overestimate rainfall, espe-
cially high rainfall values, except over mountainous areas
where it tended to underestimate.

Over the Sahel, PERSIANN performed well in
detecting rainfall occurrence (i.e., high POD), but
also tended to estimate rain when there was no rain
event (i.e., high FAR) (Jobard et al. (2011), and
Dembélé and Zwart (2016) over Burkina Faso). It had
a strong wet bias and showed overall poor performance
over the region (Jobard et al. 2011; Novella and Thiaw
2010; Dembélé and Zwart 2016). This high bias was also
observed in Niger and to a lesser extent in Benin; how-
ever, PERSIANN had a better correlation over Niger



584 JOURNAL OF HYDROMETEOROLOGY VOLUME 21
777777777 R S i R T Y1 S S T S
{ SSMI i SSMIS || AMSUR-E || AMSR2 || AMSU-B || MHS || ATMS || SAPHIR |1 o o I, 11111:.1::1 N eqmﬁgceqz ‘
|_estimates! | | estimates' || estimates' ] | estimates' ) | estimates' || estimates' || estimates' || estimates' ]| pyiiaaie) ! (2AGPROFGMI) | (3B.OMB) |

" GPCP-SG
. (monthly)

Calibration

| leo-PMW precip-
|

itation samples
,,,,,,,, e
'
\
\

geo-IR? brightness ]
temperature ° 1

MW estimates merging
e GMI, TMI, SSMI, SSMIS, AMSR-E or AMSR2, if available
e AMSU-B, MHS, ATMS or SAPHIR, otherwise

(if several available, the closest to the period’s center chosen)

! MW-calibrated !
| IR estimate )

CMORPH-KF”

I MultiSatellite
I (1/2h) estimate

Bias adjustment

| monthly SG estimate !
I

| Combined :
|

MW estimate )

Satellite-Gauge
(SG) combination®

3IMERGM )

| 1/2h SG estimate ‘:
B 3IMERGHH i

Notes

Lcomputed using the Goddard Profiling Algorithm 2017 (GPROF2017)
2combined DPR-GMI retrieval algorithm

31) Intercalibration to the "best” estimate (currently GCI) using probability matching, and 2) Climatological calibration to GPCP-SG using a simple ration

4from GOES, GMS, MTSat and MeteoSat

Sfrom the CPC Merged 4km IR Tb dataset (Janowiak et al., 2001) starting from February 2000, and from the GridSat-B1 IR Tb dataset before this date

Ssee Hong et al. (2004)

7see Joyce and Xie (2011)

8GPCC-FDR for the period 1908-2013, and GPCC-monitoring Product after

9using inverse error variance weighting

10the 30min Multi-Satellite estimates are scaled to sum the the monthly SG estimates

Fi1G. B10. IMERG algorithm.

than Benin (Gosset et al. 2013). PERSIANN was able to
reproduce the diurnal cycle with reasonable timing (e.g.,
the peak in Ouémé, Benin, was delayed by around 2 h)
according to Pfeifroth et al. (2016).

Dinku et al. (2008a) found that PERSIANN had a
large overestimation and generally poor performance
over Ethiopia. However, Hirpa et al. (2010) and Romilly
and Gebremichael (2011) studied the performance of
PERSIANN at the scale of river basins (located in
Ethiopia) and found that PERSIANN substantially

underestimated rainfall at high elevation while it per-
formed reasonably well at low elevation. PERSIANN,
unlike TMPA 3B42RT and CMORPH, did not show an
elevation-dependent trend, which led to this severe un-
derestimation at high elevation (Hirpa et al. 2010).
These results were consistent with other studies over
other mountainous area such as the Tibetan Plateau
(Gao and Liu 2013) or Chile (Zambrano-Bigiarini et al.
2017). This trend was also present over Uganda where
PERSIANN overestimated at low elevation and
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Fi1G. B11. PERSIANN algorithm.

underestimated at high one according to Asadullah et al.
(2008). The poor performance of PERSIANN and its
underestimation at high elevation were also confirmed
over East Africa by Cattani et al. (2016) and over four
African river basins by Thiemig et al. (2012). This under-
estimation at high elevation could be explained by the fact
that PERSTIANN is based on IR data and that orographic
precipitation is a warm-cloud process. It has been sug-
gested by Hirpa et al. (2010) and Thiemig et al. (2012) that
the underestimation could come from the poor detection
of light rain or underestimation of total precipitation at
high elevation linked to the thermal IR threshold used to
discriminate between raining and nonraining clouds.
PERSIANN-CCS showed a similar trend in under-
estimating light and moderate rainfall at high elevation
and overestimating rainfall, especially heavy events, at

low latitude (Hong et al. 2007; Bitew and Gebremichael
2010).

h. Rainfall Estimate version 2 (RFE2)
1) DESCRIPTION

RFE?2 is the second version of the Rainfall Estimate
(RFE) product. It was implemented in 2001 based on the
method of Xie and Arkin (1996), and replaced the pre-
vious version (RFE 1.0, Herman et al. 1997) operational
from 1995 to 2000. RFE2 produces daily rainfall esti-
mates on a 0.1° X 0.1° lat/lon grid for Africa (20°W-55°E
and 40°S—40°N) from January 2001 to present. RFE2
computes rainfall estimates based on four operational
sources of data: 1) daily GTS rain gauge data, 2) the
Geostationary Operational Environmental Satellite
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F1G. B12. RFE2 algorithm.

(GOES) precipitation index (GPI) calculated from cloud-
top IR temperatures on a half-hourly basis, 3) Special
Sensor Microwave Imager (SSM/I)-based rainfall esti-
mates, and 4) Advanced Microwave Sounding Unit
(AMSU)-based rainfall estimates. The last two inputs
are new in RFE2. The thermal IR (input 2) and the
passive microwaves (inputs 3 and 4) are compared to the
gauge data (input 1), then linearly combined through
the maximum likelihood method and finally merged
with gauge data (input 1). This process is illustrated in
Fig. B12, representing the RFE2 algorithm. More in-
formation is given in NOAA/CPC (2001).

2) PERFORMANCE

The performance of RFE2 varied from region to
region, but it overall tended to underestimate (i.e.,
dry bias).

Opver the Sahel, RFE2 had good skill at separating rain
and no-rain events and showed good performance at
estimating dekadal rainfall amount, despite its tendency
to underestimate (Novella and Thiaw 2010; Pierre et al.

2011; Jobard et al. 2011; Dembélé and Zwart 2016).
Gosset et al. (2013) showed that RFE2 also under-
estimated rainfall amount over Benin and Niger by
overestimating occurrence of low rainfall events and
underestimating the high ones. Thiemig et al. (2012)
found that, despite a small underestimation, RFE2
performed well over the Volta basin in Ghana. Thus,
RFE2 appeared to perform well over West Africa but
presented a dry bias.

Over Ethiopia, RFE2 has been reported as having
poor performance, at both daily and dekadal time scale,
with severe underestimation (Dinku et al. 2007, 2008a,
2011b, 2015). However, RFE2 still performed reason-
ably well at detecting rainfall occurrence (Dinku et al.
2008a, 2011b). Its performance over Uganda seemed
also limited (including a dry bias), especially during
boreal summer rainfall, even if it showed some skill in
reproducing spatial patterns (Asadullah et al. 2008;
Diem et al. 2014; Maidment et al. 2013). Over East
Africa, RFE2 was outperformed by CMORPH and
TMPA 3B42, but outperformed GSMaP and PERSTANN
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(Cattani et al. 2016). RFE2 showed good performance
with a good detection of rainfall occurrence over
Zimbabwe (Dinku et al. 2008a), and very poor one
over the desert locust recession region, especially over
the Sahara (as the other products studied over this
region by Dinku et al. (2010)).

A problem of RFE2 product is its underestimation of
orographic precipitation (which explains its poor perfor-
mance over Ethiopian highland) noticed by Cattani et al.
(2016), Thiemig et al. (2012), Dinku et al. (2011a), Dinku
etal. (2011b), and Diem et al. (2014). This version of RFE
(2.0), unlike the first version (RFE 1.0), does not include
orographic effects. The algorithm uses a fixed tempera-
ture threshold, and thus has difficulty to capture warm-
cloud precipitation, due to orographic effect for instance.

i. Africa Rainfall Climatology version 2 (ARC2)
1) DESCRIPTION

RFE2 temporal coverage is too short for climate studies.
Thus, another rainfall product based on the same algo-
rithm was developed for climatology in 2004: the Africa
Rainfall Climatology (ARC) product. ARC uses only two
of the four inputs of RFE2: the gauges and the IR data
because of their availability and consistency over time.
However, large biases are present in ARC (due to incon-
sistencies in the original reprocessing) and a longer tem-
poral coverage was needed for climatology. In 2012, the
version 2 of ARC (ARC2) has been developed, and the
production of ARC stopped. The main differences with
ARC are the time period extended back to 1983, and
the recalibration of the IR data between 1983 and 2005.

The inputs used in ARC2 are the quality-controlled
GTS gauge observations and the 3-hourly geostationary
IR data (instead of half-hourly for RFE2). The algo-
rithm is the same as for RFE2. ARC2 estimates rainfall
daily (from 0600 to 0600 UTC) on the same grid as RFE2,
that is, 0.1° X 0.1° lat/lon grid from 20°W to 55°E and from
40°S to 40°N. It covers the time period from 1983 to present
and is updated on a daily basis. ARC2 shows an im-
provement compare to ARC and is consistent with RFE2,
GPCP, and CMAP (Novella and Thiaw 2013). The ARC2
product is described in Novella and Thiaw (2013), and a
flowchart representing its algorithm is given in Fig. B13.

2) PERFORMANCE

ARC2 has been created to fix some of the problems in
the first version of ARC, such as the large dry bias from
1998 to 2000 (that does not appear anymore in ARC2).
ARC2 was an improvement compared to ARC but still
has some systematic errors such as a dry bias during
Northern Hemisphere summer as noticed in Novella
and Thiaw (2013) and Maidment et al. (2014).
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F1G. B13. ARC2 algorithm.

According to Novella and Thiaw (2013), ARC2 had
an overall good performance over Africa, but with some
variations depending on the regions. They found that
ARC2 outperformed TMPA 3B42 and CMORPH at
daily scale over the Sahel, but performed poorly over
Ethiopia and the Gulf of Guinea. Over Burkina Faso
(which is part of the Sahel), ARC2 was found to have
only weak correlation with gauge data at daily scale, but to
perform well at dekadal time scale, by Dembélé and Zwart
(2016). Diem et al. (2014) showed that ARC2 overestimated
the number of rainy day for six stations in west Uganda. It
could estimate well seasonal totals in the northern part, but
had difficulties over the more mountainous South.

ARC presented the same region dependency: good
performance over the Sahel (Novella and Thiaw 2010),
and poor one over Ethiopia (Dinku et al. 2007). It was
also noticed that ARC2 was performing worse over
mountainous terrain such as the Ethiopian highlands
(Novella and Thiaw 2013) or southwest Uganda (Diem
et al. 2014). This poor result can be explained by the low
amount of available gauge records (GTS data) in the
Ethiopian highlands and the Gulf of Guinea and the
inability of IR-based estimates to capture warm-cloud
precipitation over coastal and orographic regions
(Dinku et al. 2011a; Novella and Thiaw 2013; Maidment
et al. 2014; Dinku et al. 2007).

ARC2 and RFE2 use similar algorithms; the main
difference is that ARC2 uses less input data. Thus, some
similarities in their performances are visible, such as the
regions over which they perform well or poorly, or their
difficulties over mountainous areas, for example.

j. Global Satellite Mapping of Precipitation (GSMaP)
1) DESCRIPTION

The GSMaP project produces several hourly quasi-
global (60°S-60°N) precipitation products with different
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latencies going from Oh for the real-time product to
3 days for the standard version. All these precipitation
estimates are given hourly on a 0.1° X 0.1° lat/lon grid.
The near-real-time version has a latency of 4 h and goes
from 2008 to present while the standard version (with or
without gauge calibration) goes from 2000 to present.
These products are based on PMW data from TMI,
AMSR(-E), and SSM/I, and on IR data from several geo-
stationary satellites provided by CPC [GOES-8/GOES-10,
Meteosat-7/Meteosat-5, and Geostationary Meteorological
Satellite (GMS)].

The method developed by the GSMaP project has
three main steps: 1) retrieval of the rainfall measurements
(from microwave imagers and microwave sounders);
2) combination of microwave and infrared data (GSMaP-
MKYV); and, if wanted, 3) the gauge calibration (GSMaP-
Gauge). The merging method is similar to the one of
CMORPH described in Joyce et al. (2004): the PMW
estimates are propagated using IR-based advection vec-
tors. Then, the estimates are refined to obtain the final es-
timate (GSMaP-MKYV) using the correlation between
geo-IR measurements (cloud-top height) and surface rainfall
rate via a Kalman filter. A detailed description of the method
can be found in Ushio et al. (2009) and Aonashi et al. (2009).

A gauge-calibrated version (GSMaP-Gauge) of GSMaP
exists. It is based on GSMaP-MKYV, and has the same
temporal and spatial resolution. The GSMaP-MKV
estimates are adjusted, over land, with the global gauge
analysis from CPC Unified. The gauge-adjustment
method is described in Mega et al. (2014). The algo-
rithm used for both GSMaP-Gauge and GSMaP-MKV
is shown in Fig. B14.

2) PERFORMANCE

Over the Sahel, GSMaP has a dry bias, and it espe-
cially underestimates high precipitation values (Jobard
etal.2011; Roca et al. 2010). Both Roca et al. (2010) and
Gosset et al. (2013) evaluated this product over Niamey
(Niger) and Ouémé (Benin). According to Roca et al.
(2010), GSMaP underestimated high rainfall values,
while Gosset et al. (2013) noticed an overestimation of
the high rates and an underestimation of the lower ones.
This could be due to the fact that they considered dif-
ferent time scales, and that the second study took a
longer period into account while the first only consid-
ered the rainy season 2006. Moreover, Thiemig et al.
(2012) also noticed the same behavior over the Volta
basin, that is, underestimation of low rain rates and ex-
treme overestimation of high ones. Over the south of
West Africa, TMPA seemed to perform better than
GSMaP according to these three studies. Gosset et al.
(2013) found that, in general, regional products perform
better than global ones for this region.
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Cattani et al. (2016) evaluated six rainfall products,
including GSMaP, over East Africa. They showed that
GSMaP was able to reproduce the annual rainfall pat-
terns of the different climates. They found that CMORPHv1
performs slightly better than GSMaP, while they both use a
similar morphing approach. This result can be partially
explained by the bias correction used in CMORPH and
not in GSMaP. GSMaP also underestimates orographic
precipitation, more than CMORPH and RFE2.

As the other rainfall products tested over the desert
locust recession regions by Dinku et al. (2010), GSMaP
had poor performance over these regions.

k. Climate Hazards Group Infrared Precipitation
(CHIRP) with Station Data (CHIRPS)

CHIRPS (version 2, since 2015) gives daily, pentadal,
and monthly quasi-global (50°S-50°N) precipitation es-
timates from 1981 to near present. The estimates are
available on a high resolution 0.05° X 0.05° lat/lon grid,
or on a coarser 0.25° X 0.25° lat/lon grid. It was created
by the U.S. Geological Survey (USGS) Earth Resources
Observation and Science (EROS) Center and collabo-
rators at the University of California, Santa Barbara,
Climate Hazards Group. It was developed for drought
early warning and environmental monitoring to support the
Famine Early Warning Systems Network (FEWS-NET).

Different types of inputs are used in CHIRPS:
1) global 0.05° X 0.05° precipitation climatologies from
the Climate Hazards group Precipitation climatology,
referred to as CHPclim; 2) satellite-based precipitation
estimates from the TMPA 3B42 product; 3) thermal
infrared observations from geostationary satellites; 4) gauge
observations from public dataset [GHCN monthly, GHCN
daily, Global Summary of the Day (GSOD), GTS, and
Southern African Science Service Centre for Climate
Change and Adaptive Land Management (SASSCAL)]
and several private archives (from national meteorolog-
ical agencies, for example); and 5) the atmospheric model
rainfall fields from the NOAA Climate Forecast System,
version 2 (CFSv2), which is used to fill the gap in satellite
coverage. Cold cloud duration (CCD) derived from the
IR data (input 3) is calibrated against the TMPA 3B42
product (input 2) to obtain precipitation estimates. These
estimates are converted to fraction of normal precip-
itation, and multiplied to the precipitation climatol-
ogy from CHPclim (input 1). The model CFSv2 (input
5) is used when and where IR data are missing. The
new estimates are then bias adjusted to gauges data
(input 4).

The description of the method can be found in Funk
et al. (2014, 2015b). The latter also validated and com-
pared CHIRPS with other gridded products, namely,
GPCC, TMPA 3B42 v7 real-time, CFSv2, ECMWF
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reanalysis, and CPC Unified). The method is also de-
scribed by a flowchart in Fig. B15.

. Tropical Applications of Meteorology Using
Satellite Data and Ground Based Observations
(TAMSAT) African Rainfall Climatology and
Time Series (TARCAT)

1) DESCRIPTION

The TAMSAT Research Group, based at the Meteorol-
ogy Department of the University of Reading (United
Kingdom), started in the mid-1980s. They produce
different rainfall products updated in near-real time as
part of the TARCAT dataset. TARCAT was developed

for drought monitoring. Rainfall estimates, climatologies,
and anomalies are available at pentadal, dekadal, monthly,
and seasonal time resolution on a 0.0375° X 0.0375° lat/lon
grid (=4km) for Africa. In January 2014, a daily rainfall
estimate product was released for the same time period.
The particularity of TARCAT is that it is only based on IR
data. It does not use any bias adjustment from gauge data,
but this is compensated by regional and monthly cali-
bration parameters (derived from historical IR and
gauges data).

The TARCAT product is based on Meteosat ther-
mal infrared imagery provided by EUMETSAT, and on
historical gauges observations (from African National
Meteorological and Hydrological Centers, for the majority
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of them). CCD is derived from the IR data and is then
used to estimate dekadal precipitation through linear
regression. The temperature threshold used to compute
the CCD and the regression parameters are calibrated
locally (Africa is divided in several smaller regions) us-
ing historical IR and gauge data. The gauge data covers
the period from 1983 to 2010 and are only used for cal-
ibration. Thus, TARCAT product is not influenced by
current changes in gauge coverage. The daily rainfall
is derived from the dekadal estimates and daily CCD.
The TARCAT algorithm is described in Tarnavsky et al.
(2014) and Maidment et al. (2014). A flowchart repre-
senting this algorithm is shown in Fig. B16.

A version 3 of TARCAT was released in January
2017 and is described in Maidment et al. (2017) and
TAMSAT Group (2016). The algorithm is similar but

the calibration differs from version 2. Indeed, the cal-
ibration is not done on rectangular areas anymore but
on 1.0° grid boxes where the gauge density is sufficient,
and then interpolated. The temperature threshold is
derived at daily scale and the calibration parameters at
pentadal scale, instead of dekadal scale in version 2. In
version 3, a bias adjustment based on CHPclim is ap-
plied on the calibration parameters. With version 3 being
recent, no studies evaluating it against other rainfall
products have been found. Thus, below, we are only
looking at the performance of the previous version.

2) PERFORMANCE

TARCAT showed good performance over Sahel
(Novella and Thiaw 2010; Jobard et al. 2011; Dinku et al.
2015), Ethiopia (Dinku et al. 2007, 2015), Uganda
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(Asadullah et al. 2008; Maidment et al. 2013), and East
Africa (Cattani et al. 2016). TARCAT tended to un-
derestimate precipitation amount. This dry bias was
large over Ethiopia, and relatively low over Sahel.
Dembélé and Zwart (2016) found contradictory results
over Burkina Faso (part of the Sahel). In their study,
TARCAT showed low performance. The main problem
of TARCAT, mentioned in most of the studies above,
was that it missed high rainfall values.

Dinku et al. (2007) showed that RFE2 also under-
estimated rainfall over Ethiopia. They attributed the un-
derestimation of these two products to the information
content of IR data in general, and to the warm orographic
process in their case. However, this dry bias was recog-
nized later by Maidment et al. (2014) when evaluating the
performance of TARCAT over Africa, and was attributed
to the calibration approach optimized for drought moni-
toring. Low-intensity rainfall events are more important
than the high-intensity ones for drought monitoring.
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