

Delft University of Technology

Graph-based algorithms and data-driven documents for formulation and visualization of
large MDO systems

Aigner, Benedikt; van Gent, Imco; La Rocca, Gianfranco; Stumpf, Eike; Veldhuis, Leo L.M.

DOI
10.1007/s13272-018-0312-5
Publication date
2018
Document Version
Final published version
Published in
CEAS Aeronautical Journal

Citation (APA)
Aigner, B., van Gent, I., La Rocca, G., Stumpf, E., & Veldhuis, L. L. M. (2018). Graph-based algorithms and
data-driven documents for formulation and visualization of large MDO systems. CEAS Aeronautical Journal,
9(4), 695-709. https://doi.org/10.1007/s13272-018-0312-5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13272-018-0312-5
https://doi.org/10.1007/s13272-018-0312-5

Vol.:(0123456789)1 3

CEAS Aeronautical Journal (2018) 9:695–709
https://doi.org/10.1007/s13272-018-0312-5

ORIGINAL PAPER

Graph‑based algorithms and data‑driven documents for formulation
and visualization of large MDO systems

Benedikt Aigner1 · Imco van Gent2 · Gianfranco La Rocca2 · Eike Stumpf1 · Leo L. M. Veldhuis2

Received: 11 January 2018 / Revised: 14 May 2018 / Accepted: 25 May 2018 / Published online: 20 June 2018
© The Author(s) 2018

Abstract
A new system is presented that enables the visualization of large multidisciplinary design optimization (MDO) problems
and their solution strategy. It was developed within the scope of the European project AGILE. In AGILE, collaborative
MDO is performed in large, heterogeneous teams of experts by solving MDO problems using a collection of design and
analysis tools. This paper focuses on the visualizations required to support the formulation phase of an MDO project. The
Knowledge and graph-based AGILE Design for Multidisciplinary Optimization System (KADMOS), an open-source MDO
support system developed by Delft University of Technology, uses graph-based analysis to formulate an MDO problem
and its solution strategy, based on the disciplinary analyses available in a repository. The results of KADMOS are stored
in the standardized format CMDOWS (Common MDO Workflow Schema), which comprises the entire information on an
MDO system. Although, based on Extensible Markup Language, the readability of the CMDOWS file is quite poor also for
MDO experts, especially for large MDO systems involving thousands of variables. Providing visualization capabilities to
thoroughly inspect the outcome of the different MDO formulation steps becomes a key factor to enable the specification of
large MDO systems in a heterogeneous team. Therefore, VISTOMS (VISualization TOol for MDO Systems), a dynamic
visualization package, was developed by RWTH Aachen University to enable the visualization and inspection of the differ-
ent MDO system specification steps, thereby removing one of the main hurdles for using MDO as a development process.
The developed visualization capabilities are demonstrated by means of an aerostructural wing design optimization project.

Keywords MDO · Visualization · KADMOS · CMDOWS · VISTOMS

Abbreviations
AGILE Aircraft Third-Generation MDO for Innova-

tive Collaboration of Heterogeneous Teams
of Experts

MDAO Multidisciplinary design analysis and
optimization

CPACS Common parametric aircraft configuration
schema

MDG MDAO data graph
CMDOWS Common MDO workflow schema
MPG MDAO process graph
CSS Cascading style sheets

RCE Remote component environment
CSV Comma-separated values
RCG Repository connectivity graph
DOE Design of experiments
REMS Reconfigurability in MDO problem synthesis
FDT Functional dependency table
SVG Scalable vector graphics
FPG Fundamental problem graph
VISTOMS VISualization TOol for MDO Systems
HTML Hypertext markup language
XDSM Extended design structure matrix
JSON JavaScript object notation
XML Extensible markup language
KADMOS Knowledge and graph-based AGILE design

for multidisciplinary optimization system * Benedikt Aigner
 aigner@ilr.rwth-aachen.de

1 Institute of Aerospace Systems (ILR), RWTH Aachen
University, Wuellnerstr. 7, 52062 Aachen, Germany

2 Faculty of Aerospace Engineering, Delft University
of Technology, Kluyverweg 1 2629 HS Delft,
The Netherlands

http://orcid.org/0000-0003-4528-648X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-018-0312-5&domain=pdf

696 B. Aigner et al.

1 3

1 Introduction

Past research indicates that MDO can offer huge benefits
in complex product design. Boeing Phantom Works’ scien-
tists [6, 30] estimate that MDO can offer 8–10% gains for
innovative aircraft design and even 40–50% gains for design-
ing radically new and undeveloped concepts [17]. Despite
the high potential gains, MDO is not as widely used as one
would expect. Both technical [1] and non-technical barriers
are hampering its full exploitation, as discussed below in
this section [4, 27, 28].

To get a better understanding of the scope of the work
presented here, it is convenient to refer to Fig. 1, where the
different parts of the MDO development process are illus-
trated. The MDO development process in this figure can be
roughly cut in half, with the formulation phase on the left
side and the execution phase on the right. In the formulation
phase, the tool repository is defined (or provided), the MDO
problem to be solved is formulated, and a formal specifica-
tion of the MDO solution strategy used to solve the problem
is defined. This inexecutable MDO solution strategy is the
blueprint of the executable workflow. The actual, executable
MDO workflow is created in a simulation workflow platform
of choice (e.g., RCE,1 Optimus2) and run to find the optimal
design. In a realistic design situation, the optimization is not
performed just once; rather, the analysis of the design that
is found after a certain run will provide new insights. These
insights will be translated to an adjustment of the MDO
problem formulation (e.g., change of objective, addition
of constraints, etc.) and a reconfiguration of the associated
MDO solution strategy (e.g., addition, removal, and replace-
ment of analysis tools). This process of problem adjustment
and process reconfiguration is iterated until a satisfactory
design is found, or the project deadline has been reached.
The focus of the system development described in this paper
is on the visualization of the blocks in the formulation phase:
tool repository, MDO problem, and MDO solution strategy.

One of the most critical technical barriers for MDO
comes from the large (and continuously increasing) size
of typical MDO problems. In the words of Pate et al. [23],
the formulation of these problems has become increasingly
complex as the number of analysis tools and design variables
included in typical studies has grown. In this context, the
problem of determining a feasible data flow between tools
to produce a specified set of system-level outputs is combi-
natorially challenging. Especially, when complex and high-
fidelity tools need to be included, the cost and time require-
ments to integrate the MDO system can easily approach the
cost and time requirements of creating any of the discipline
analyses themselves.

These cost and time requirements for the integration
of the MDO system have also been identified in several
research projects that have attempted to perform MDO
by automating a full chain of design tools. In the previ-
ous projects of the DLR, it was found that the majority
of the project time (60–80%) [7] would be used to create
such an automated chain for aircraft design tools. Similar
conclusions were drawn by Flager and Haymaker [8] who
performed research into the design process metrics of both
a legacy (current) design method and an MDO development
process for the design of a hypersonic vehicle by Boeing [6,
30], see Fig. 2. In this figure, it is clear that the set-up time
of the MDO workflow exceeds the 6 week set-up time of

Fig. 1 Overview of the MDO
development process and its two
phases

Tool
repository

MDO
problem

MDO solution
strategy

Simulation MDOptimized
design

triggers
iteration

Formulation phase Execution phase

Application area KADMOS and VISTOMS

CMDOWS CMDOWS CMDOWS

Fig. 2 Comparison of legacy design and MDO development process
metrics for the design of a hypersonic vehicle [8]

1 http://rcenv ironm ent.de/.
2 https ://www.noesi ssolu tions .com/our-produ cts/optim us.

http://rcenvironment.de/
https://www.noesissolutions.com/our-products/optimus

697Graph‑based algorithms and data‑driven documents for formulation and visualization of large…

1 3

the legacy method by 133%. This figure also shows that
with the MDO design method, one needs to spend more
resources in the ‘Specification’ phase category. This is to be
expected, since, during the set-up of a fully automated chain
of design tools, one needs to know down to the smallest
detail what information is used and produced by each tool
and which data are fed back and forward within a certain
tool execution sequence. If the specification of the indi-
vidual design tools and the overall MDO system could be
improved, then the set-up time of the MDO process can
be drastically reduced as well, thereby making the MDO
approach even more convenient with respect to the conven-
tional approach.

It is our conviction that the cost and time requirements
for the integration of tools in a large and complex MDO
system could be reduced by enabling the designer to analyze,
visualize, and inspect the MDO system down to the smallest
detail during the integration effort. Any system integrator is
aware of the value of such analysis and visualization, but,
in practice, the manual generation and update of this sort
of documentation is too cumbersome. For example, if visu-
alizations of the tool repository or MDO solution strategy
are created, they are usually a collection of spreadsheets
and text documents, which have to be updated manually
and are hard to keep consistent. On top of that, such manu-
ally created overviews are not (fully) machine-readable and
thereby cannot be used for any further automated analysis,
integration, or manipulation of the MDO system. Therefore,
the analysis, visualization, and inspection of MDO systems
should be automated and based on machine-readable files
or documents.

This is one of the main goals of the EU project AGILE,3
where the developments described in this paper are tak-
ing place. The process for the generation of the necessary
visualizations to support the MDO formulation phase is
based on the outcome of KADMOS, the Knowledge- and
graph-based AGILE Design for Multidisciplinary Opti-
mization System developed at DUT.4 KADMOS takes

care of the automatic integration of the various design
and analysis tools in the MDO system and supports the
formulation of the MDO problem at hand and its solution
strategy. KADMOS’ functionalities are briefly explained
in Sect. 2.2, while detailed information can be found in
another publication [12]. As illustrated in Fig. 1, KAD-
MOS stores the output of the MDO formulation process by
means of a standardized XML format, called CMDOWS
(Common MDO Workflow Schema), which is discussed
in Sect. 2.1. The creation of the visualizations is done by
coupling the CMDOWS files to a custom-built visuali-
zation package developed at RWTH Aachen University.
This system, called VISTOMS (Visualization Tool for
MDO Systems), is the main subject of this paper and its
functionalities are described in detail in Sect. 2.3. The
produced visualizations are presented in Sect. 3, based on
a real MDO system for wing optimization, created within
the AGILE project.

2 Methodology

As mentioned, the developments presented in this paper
are based on two software packages: the MDO system
formulation tool KADMOS and the visualization pack-
age VISTOMS. A top-level overview of the collaboration
between KADMOS and VISTOMS is shown in Fig. 3.
The approach is referred to as the ‘dynamic visualization
approach’, where dynamic refers to the ability of interac-
tive visualization objects to change appearance under mouse
‘hovering’ and clicking (more in Sect. 2.3). The set-up has
been done, such that the graph information for any of the first
three blocks in Fig 1 (which is usually stored in CMDOWS
files) is translated by KADMOS into the JSON (JavaScript
Object Notation) representation required by VISTOMS. This
collection of JSON data is then visualized with VISTOMS
through an HTML (Hypertext Markup Language) page that
can be opened in any web browser and includes the interac-
tive visualization objects. It should be noted that the use of
KADMOS shown in Fig. 3 only represents a small part of
the package. The majority of KADMOS is actually geared
towards producing and editing the CMDOWS files (more
in Sect. 2.2), not at the postprocessing for which it is used

Fig. 3 Top-level overview
of the dynamic visualization
approach

KADMOS graph VISTOMS

CMDOWS

imported
as

exported
as

provides
data for

3 Aircraft Third-Generation MDO for Innovative Collaboration of
Heterogeneous Teams of Experts, see: http://www.agile -proje ct.eu.
4 See: https ://bitbu cket.org/imcov angen t/kadmo s.

http://www.agile-project.eu
https://bitbucket.org/imcovangent/kadmos

698 B. Aigner et al.

1 3

in the dynamic visualization approach. All elements of the
top-level overview in Fig. 3 are discussed in the upcoming
section.

2.1 CMDOWS

CMDOWS is an open-source,5 XML-based workflow
schema that was developed at DUT to enable the exchange
of the formulated MDO system between MDO framework
applications, as visualized in Fig. 4. Other publications have
already addressed the deployment of a formalized schema
as an exchange format for MDO applications [14–16]. How-
ever, for the purpose of the AGILE project, it was necessary
to use something that is feasible for collaborative MDO pro-
jects and connecting a wider range of MDO applications.
Therefore, CMDOWS was created within the project as
a new schema, as described in a publication by Van Gent
et al. [11]. The different stages of the MDO system in the
formulation phase can all be stored in the CMDOWS for-
mat. Each stage in Fig. 1 (from left to right) enriches the
CMDOWS file to go from a repository of design tools to
a full description of the optimization strategy. KADMOS
is able to provide the graph-based representation for each
stage (see next section) and can store these in a CMDOWS
file; however, visualizing the outcome of these stages is not
properly handled by KADMOS. In addition, the CMDOWS
files, although based on XML, do not offer a practical means
to the user for inspecting the generated MDO system formu-
lation. Therefore, the work presented here was focused on
the link between the visualization package VISTOMS and
CMDOWS. Within that link, the efficient graph-based algo-
rithms of KADMOS were used for data processing purposes.

2.2 KADMOS

As mentioned in the previous section, the use of KADMOS
is twofold in this work:

• Creation of the CMDOWS files to be used as input for
the approach in Fig. 3

• Graph-based data processing of the CMDOWS files to
convert the XML representation into the JSON format
required for VISTOMS

Both applications of KADMOS are only discussed briefly
here.

2.2.1 KADMOS as MDO system formulator

The ability of KADMOS to support the specification of the
MDO system is discussed in detail in earlier work [12]. A
mapping between the three stages of the formulation phase
in Fig. 1 and the associated KADMOS graphs is shown in
Fig. 5. Four different graph types are associated with the
three formulation phases.

The repository connectivity graph (RCG) is an object
that represents the design and analysis tool repository as a
web of data containing function and variable nodes and their
connections. This graph is established easily for large tool
databases by exploiting the central data schema approach,
such as CPACS [22]. The example in Fig. 5 (left) concerns a
very small repository with only eight function nodes (design
competences) and ten variables. Larger tool repositories,
such as the one used in the results section of this paper, are
still stored as a graph structure, but their visualizations, as
expected, have severe readability limitations.

The MDO problem is represented in KADMOS with the
fundamental problem graph (FPG), see Fig. 5 (middle). The
FPG is a subset of the RCG in terms of nodes and edges. In
addition, its nodes are also enriched with attributes required
to specify the MDO problem at hand, such as design vari-
ables, objective, and constraints.

Finally, the neutral representation of the MDO solu-
tion strategy is stored in two separate graph constructs: the
MDAO process graph (MPG) and the MDAO data graph
(MDG), where the first contains the process execution flow
of the various MDO system components, and the second
specifies the specific data exchanged between those compo-
nents. These graphs are created automatically by KADMOS
based on the FPG and stored in the same CMDOWS file,
thereby using all the elements of the schema.

2.2.2 KADMOS as data processor

The system formulation capabilities of KADMOS cover all
stages of the formulation phase given in Fig. 1, and can store

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations
library

Fig. 4 Concept of exchangeability between different MDO frame-
work applications through a workflow schema [11]

5 Available at: http://cmdow s-repo.agile -proje ct.eu.

http://cmdows-repo.agile-project.eu

699Graph‑based algorithms and data‑driven documents for formulation and visualization of large…

1 3

the CMDOWS file for each stage, although these capabilities
could be taken over by other platforms, as well. Especially,
the creation of the tool repository is a relatively easy task
that can be performed with other applications. For example,
in AGILE, the business process platform KE Chain6 [10]
also contains a module to create a tool repository and export
it as a CMDOWS file. However, even if other platforms cre-
ate the CMDOWS file, KADMOS is still required as a data
processor to provide the right data format for VISTOMS.

This data processing is required to provide VISTOMS
with files that are directly interpretable; hence, no cumber-
some analysis of the data is required before visualizing it. In
other words, the KADMOS graphs do contain all the infor-
mation that is required to visualize it, but some of the infor-
mation is stored implicitly. To improve responsiveness of the
visualization package, this information is transferred explic-
itly to the JSON files read by VISTOMS. An example of
this would be the input and output variables of a single tool.
This information is stored in the graph, but, to determine
this information for a single tool, one has to loop over all the
incoming and outgoing connections of the tool. Instead, the

input and output variables per tool are stored explicitly in
the JSON files, so that VISTOMS does not have to perform
the loop when the information is requested. Similarly, if the
variables follow a central data schema, then the hierarchy
of the variables (which is lost in the graph representation)
is reestablished based on the variable names and stored in a
nested dictionary in the JSON files.

The KADMOS data processing step provides VISTOMS
with easily accessible information about the MDO system
to be visualized. The processing, which takes in the order
of seconds (depending on the size of the system), prevents a
lot of waiting time when using the dynamic visualizations.
Downside of the JSON files with directly useable informa-
tion is that some information is stored multiple times in
slightly different ways, thereby increasing the size of the col-
lection of JSON files with respect to the original CMDOWS
file. However, this decrease in storage efficiency is well
worth the associated performance increase when using the
dynamic visualizations.

2.3 VISTOMS

The combination of KADMOS itself and the visualizations
developed in the course of this research provide the MDO

D1

G1

G2

D2

F1

A
COOR

OPT
CONV

2

3

4

5
6

7

8

8

8

9

1

D1

x1

z1
z2

y1y2

c

f

G1

G2

D2

F1

g1
g2

AaCOOR

OPT
CONV

z1 z2

z1*

z2*

y2c0

y2*

y2c

g1*

g2*

f*

D1x1

z1

z2

y1

y2 c

f

G1

G2

D2

F1

F2

D3

g1
g2

Aa

= design variable

Tool
repository

MDO
problem

MDO solution
strategy

Repository connectivity graph Fundamental problem graph

MDAO data graph

MDAO
process graph

= system input/output

= coupling variable

= design competence

= objective

= constraints

= disciplinary analysis

= preprocessing function

= functions (objective, etc.)

D1x1

z1

z2

y1

y2 c

f

G1

G2

D2

F1

g1
g2

Aa

Fig. 5 Top-level overview of KADMOS and its relation to the formulation phase of the MDO development process in Fig. 1 (all visualizations
are based on the Sellar problem [26])

6 See: https ://www.ke-chain .com.

https://www.ke-chain.com

700 B. Aigner et al.

1 3

integrator with a powerful set of tools to support creation,
inspection, debugging, and modification of large and com-
plex MDO problem formulations. The presented visualiza-
tions are obtained using the open-source library D3.js [5]. In
the following sections, D3.js as well as significant state-of-
the-art visualization techniques are currently used in MDO
will be introduced. Subsequently, the newly developed visu-
alization techniques embedded in VISTOMS will be pre-
sented. Their ultimate goal is to enhance the understanding
of complex MDO systems, which is necessary for effective
MDO problem formulation, documentation, and knowledge
sharing.

2.3.1 D3.js library

D3.js is an open-source JavaScript library, developed and
released by Bostock under the BSD license, for creating
and modifying documents based on data [5]. D3.js sup-
ports the user in visualizing any data by combining the
standards HTML, SVG (Scalable Vector Graphics), and
CSS (Cascading Style Sheets). It is, therefore, an easy to
use and powerful tool for visualization that can be opened
with any standard web browser. The coding can be directly
performed within an HTML file, which can then be opened
in the web browser showing the embedded visualizations.
The library comes with a predefined set of standard visu-
alization techniques that can be easily accessed, modified,
and extended. Any visualizations, also those that are not
predefined in D3.js, can be obtained and modified using
standard SVG commands. The data behind the visualiza-
tions can be stored in JSON (JavaScript Object Notation)
or CSV (Comma-Separated Values) files, and are accessible
via JavaScript code.

2.3.2 State‑of‑the‑art visualization techniques in MDO

In the field of MDO, the visualization of MDO systems is
widely recognized as a valuable tool to enhance knowledge
about the problem formulation at hand. Therefore, over the
years, various visualization techniques have been developed.

The N2 chart, introduced by Lano in 1977 [20], is, for
instance, a well-known method for visualizing system cou-
plings. The Design Structure Matrix (DSM), which is simi-
lar to the N2 chart, was developed by Steward in 1981 [29]
and shows inter-dependencies between competences in a
square adjacency matrix (see Fig. 6).

In Fig. 6, each of the non-blank off-diagonal elements
(x’s and numbers) represents a data dependence between
the competences, which are arranged on the diagonal. Both
DSM and N2 chart thereby enable the representation of the
data exchanged among the various competences by showing
the data dependence in a system (see bottom right graph in
Fig. 5). However, these visualizations are not effective in
formalizing the execution order of the tools and the trigger-
ing of the various loops including any required iterations by
convergers or optimizers. However, with increasing number
and complexity of analysis tools, the choice of competence
execution order becomes more important and more com-
plex, as well. Wagner and Palambros developed the so-called
functional dependence table (FDT) to account for constraints
and objectives in an MDO problem formulation [31]. The
drawback of the FDT is that information about inter-depend-
encies between competences and functions is partially lost,
and therefore, a competence execution order cannot be
indicated. A combination between DSM and FDT called
Reconfigurability in MDO Problem Synthesis (REMS) was
introduced by Alexandrov and Lewis enabling indication of
couplings between competences as well as constraints and
objectives [2]. Nevertheless, the execution order of the com-
petences is not available within the representation of REMS.

This capability is enabled by the extended DSM (XDSM)
introduced by Lambe and Martins in 2012 (see Fig. 7) [19].

The XDSM provides a visualization that captures
the full description of an MDO problem, combining the
advantages of DSM and FDT. In general, an XDSM can
be read as a square adjacency matrix, where the compe-
tences are arranged on the diagonal and the columns and
lines indicate competence inputs and outputs, respectively.
The competences are connected via data pipelines (gray
lines) indicating data transfer. Feed-forward connections

Fig. 6 Design structure matrix (DSM) [29] Fig. 7 XDSM for an individual discipline feasible (IDF) architec-
ture [19]

701Graph‑based algorithms and data‑driven documents for formulation and visualization of large…

1 3

are shown on the right and feedback connections on the
left side of the diagonal. The so-called edges (rhomboids
on the off-diagonal) indicate a connection between two
competences (also referred to as couplings), i.e., the infor-
mation that is processed from one competence to the other.
The so-called process lines (thin black lines) in combina-
tion with the numbers in the diagonal blocks indicate the
order of the workflow execution (MDAO process graph,
c.f., Fig. 5).

Although the XDSM offers the means for a detailed and
comprehensive description of an MDO system, its readabil-
ity quickly degrades when the number of competences and
their coupling increases, at least in its static document-based
version.

The HTML-based rendering approach of the presented
visualization package enables the use of effective stand-
ard representations, such as the XDSM, while offering the
dynamic scaling and displaying options necessary to guar-
antee readability and inspectability also for MDO systems
of extremely large size. Examples are discussed in the next
section.

2.3.3 Visualization techniques for CMDOWS files

For the CMDOWS files, three main visualization types have
been selected and further developed:

• XDSM;
• Egde Bundling View;
• Sankey Diagram.

The visualization package is accessible via web browser.
Figure 8 shows the starting page of VISTOMS.

Note that VISTOMS provides solely a visual representa-
tion of an MDO system, in which no actual competences can
be executed. Rather, the automated creation of executable
workflows from the MDO architecture is a task, which is
performed in simulation workflow platforms by parsing a
CMDOWS file [13].

In the following sections, the three above-mentioned
visualizations will be described in detail with respect to
their capability to enhance the insight into MDO systems.
The interested reader can directly access and experience
a number of example visualizations via the open-access
CMDOWS browser interface.7 On the browser interface, a
number of pre-generated CMDOWS files are available for
demo purposes. Note that the VISTOMS visualizations can
also be created for any MDO system using the open-source
KADMOS package.

XDSM The enhanced XDSM visualization developed
in this research is based on the open-source XDSMjs pack-
age, which was released by Lafage in 2016 [9, 18]. The
main structure is the same as the conventional XDSM
(see Fig. 7), while the major difference between the two
is that, using the D3.js library, the XDSM can be accessed
dynamically and interactively via a web browser. However,
for large and complex MDO systems, not all the embed-
ded information can be clearly visualized at once with the
XDSMjs package. Therefore, within the scope of the pre-
sented research, the XDSMjs package was further enhanced
to give the user the possibility to access the full informa-
tion embedded into an MDO system in a human intelligible
way. While the basic layout was kept simple, more detailed
information can be inspected interactively on demand. The
main features of the XDSM view in VISTOMS are given in
Fig. 9 showing an MDO system architecture for the Sellar
problem,8 which was already presented in Sect. 2.2 (see
also Fig. 5 for the KADMOS graph representations of this
MDO problem).

Note that the overlay frames in Fig. 9 are not visible
in the actual visualization package and have only been
included for this paper to explain the visualization capa-
bilities. For this purpose, the focus of Fig. 9 is set on the
connection between the competences DOE and D1. For
detailed inspection of the XDSM, the user has several
options. Hovering over an edge with the mouse displays
the names of the underlying data that are processed here.
Right clicking on an edge gives the user two options.
First, it is possible to examine basic information about
the edge such as the total number of connections and
their dimension. Second, the user can further examine the

Fig. 8 Main page of VISTOMS. The different graphs of the MDO
system (RCG, FPG, etc.) can be selected via drop-down menu using
any of the three visualization techniques (XDSM, Edge Bundles, and
Sankey Diagram)

7 Available at: http://cmdow s.agile -proje ct.eu.
8 VISTOMS for Sellar problem available at: https ://www.agile -proje
ct.eu/files /VISTO MS_Sella rProb lem.

http://cmdows.agile-project.eu
https://www.agile-project.eu/files/VISTOMS_SellarProblem
https://www.agile-project.eu/files/VISTOMS_SellarProblem

702 B. Aigner et al.

1 3

underlying data of the selected edge. The data are shown
as a hierarchical tree [5] containing a subset of the under-
lying data model (e.g. CPACS schema as an XML-based
parameterization of an aircraft) where the categories and
subcategories are represented by the branches and leafs
(see Fig. 9, overlay frame 1). The tree view is expandable
and collapsible via mouse click according to the user’s
requirements. The layout can be organized according to
different categorizations. These include the basic hierar-
chical data schema (e.g. CPACS), but also, for instance,
a categorization according to the node types in the MDO
system (see Fig. 10).

The latter can, for instance, be helpful, when multiple
competences modify the same variable. This so-called col-
lision can potentially cause problems such as inconsisten-
cies in the MDO system and, therefore, needs to be at least
recognized by an MDO integrator. Note that the tree layout
shown in Fig. 10 is not fully expanded to the last leaf nodes,
the node sharedCoupling is collapsed, while it is indicated

in the brackets that there are six leaf nodes contained here.
This feature gives the user an idea on how many variables
are contained in the layout, even when the tree is not fully
expanded, and, therefore, keeps the layout clear, which is
especially required for large data sets.

Each of the nodes in the tree layout can be further exam-
ined via right click. In the example given in Fig. 9, the
selected node of interest is variable z2. Several options for
examination exist, such as indication of general information
about a node (name, type, dimension, or its current value), as
can be seen in Fig. 9, overlay frame 2. Another option is to
display the occurrence/usage of a node in the MDO system.
This means that it can be highlighted, wherein the MDO
system a node is processed from one competence to another
by highlighting the respective edges (see Fig. 9, overlay
frame 3). This option provides valuable information when
setting up a problem solution, because the MDO integrator
can easily examine how the competences are connected to
each other and which of the processed variables are of most
interest due to their occurrence in the system. Thus, an over-
view on whether the competences are connected correctly, or
at least as expected, is given. Furthermore, it is possible to
download the tree layout as an XML file (including current
values of leaf nodes) to, for example, manually adjust the
data set or to simply extract the data from the visualization.
These dynamic, interactive inspection possibilities are the
major advantage of the presented visualization package and

0, 9: Coordinator

1: A

2, 8-3: DOE

3, 6-4: Converger

4: D1

5: D2

7: F1

7: G1

7: G2

1 inp. 1 inp.

1 conn.

1 conn.

1 conn.

1 conn.

1 conn.

1 inp.

1 conn.

2 inp.

1 conn.

1 conn.

1 conn.

3 outp.

1 conn.

1 conn.

2 conn.

1 conn.

1 inp.

1 conn.

2 conn.

right click

right click

1
2

3

Fig. 9 VISTOMS XDSM for the Sellar problem with a converged Gauss–Seidel design of experiments (DOE)

Fig. 10 Tree layout according to node levels, Sellar problem DOE

703Graph‑based algorithms and data‑driven documents for formulation and visualization of large…

1 3

make it a convenient debugging tool for MDO systems of
arbitrary size and complexity.

The above described techniques, developed in the course
of this research, are quite similar for all three of the visu-
alizations (XDSM, Edge Bundling View, and Sankey Dia-
gram). Thereby, recurring visualization elements are estab-
lished, which facilitates the usability of the functions.

Edge Bundling View The so-called Edge Bundling view is
a circular layout of interconnected elements and is adapted
from an example by Bostock [5]. The basic idea of this visu-
alization is given in Fig. 11 with the example of the Sellar
problem RCG.

Each of the blue lines indicates a general dependence
between two elements. The focus can be set on any ele-
ment by hovering over it with the cursor (c.f. element D1
in Fig. 11). The red lines indicate input flow to the element
and the green lines indicate output flow from the element.
Further detailed inspections can be carried out via right
click on the connecting lines or on the elements, similar

to what has been described for the XDSM in the previous
section.

In contrast to the XDSM view, the Edge Bundling view
only provides data information, i.e., the interconnections
of the competences and the data processed between them,
whereas the workflow process information cannot be dis-
played. On the other hand, it visualizes the connections
among the competences more intuitively.

Sankey Diagram The Sankey Diagram was first intro-
duced by Henry Riall Sankey in 1896 for the visualization
of energy flows in steam engines [24, 25]. A variation of the
conventional layout is the bi-directional Sankey Diagram,
which was used in a D3.js-based package by Atkinson in
2015 [3]. While the conventional layout only considers one
flow direction, the bi-directional layout is able to account
for feed-forward and feedback information flow between
the elements at the same time. The Sankey Diagram used
in the presented research is based on the developments by

Fig. 11 VISTOMS Edge Bundling view for the Sellar problem RCG

704 B. Aigner et al.

1 3

Atkinson. An example of the visualization for the Sellar
problem RCG is shown in Fig. 12.

Again, for any competence in the system, input informa-
tion flow is displayed in red and output information flow
is displayed in green. The width of the connecting arrows
refers to the amount of information transferred between two
elements. A connection with 100 variables transferred from
one element to another will appear wider than one with only
ten variables. As with the two other visualizations, it is pos-
sible to further analyze the graph with help of the previously
described dynamic inspection capabilities.

3 Results

Within the scope of the AGILE project, the visualization
package presented in Sect. 2.3 has already been inten-
sively used and tested by multiple AGILE project partners
for various MDO problems. The developed capabilities
have proven to effectively assist the MDO integrator in
the problem formulation process [21]. In this section, the
results of the visualization enhancements will be presented
with regard to a tool repository containing a collection
of DUT aircraft design tools.9 This use case concerns
the aerostructural optimization of an aircraft wing. The

starting point of this case is a tool repository containing
over 28,000 variables and over 37,000 data connections
based on 29 function nodes. More details on this case
study can be found in [13].

XDSM Fig. 13 shows an extraction of the XDSM for
the DUT wing design MDO system. Using the dynamic
visualizations described in Sect. 2.3, the MDO system can
be examined in detail. The focus of Fig. 13 is set on the
two input edges of the competence EMWET, a tool that
estimates the wing mass. A right click on the input edge
coming from the competence HANGAR[AGILE_DC1_
L0_MDA], which provides an initial parameterized data
set of the aircraft, leads to a hierarchical tree layout con-
taining 167 pipeline variables as a subset of the CPACS
data schema (Fig. 13, overlay frame 1). The expanded
tree layout indicates that, for instance, the geometry of
the main wing (wing[mainWing_wingID] is passed from
HANGAR[AGILE_DC1_L0_MDA] to EMWET, which
seems plausible, as the wing mass is strongly affected by
its geometry. A right click on the wing geometry node ena-
bles a detailed examination of the node characteristics as
displayed in overlay frame 2. Displaying the usage of the
node, it can also be seen that the wing geometry is trans-
ferred at five other edges in this particular extraction of the
XDSM (red-highlighted edges).

The other input edge (12 inp.) in the top of EMWET is
provided by the so-called Coordinator, which represents
the outer world and operates as the main control function
of the MDO system (see Fig. 13, overlay frame 3). This

Fig. 12 VISTOMS Sankey
diagram for the Sellar problem
RCG

9 VISTOMS for DUT wing design available at: https ://www.agile
-proje ct.eu/files /VISTO MS_TUDWi ngDes ign.

https://www.agile-project.eu/files/VISTOMS_TUDWingDesign
https://www.agile-project.eu/files/VISTOMS_TUDWingDesign

705Graph‑based algorithms and data‑driven documents for formulation and visualization of large…

1 3

means that every variable passed from the Coordinator to
a competence is not provided by any other competence in
the MDO system. For aircraft-specific information, such
as the geometry or mass data, this should normally be
avoided, because, in that case, the user would have to spec-
ify the values manually. In the presented MDO system,
however, it can be seen that only tool-specific informa-
tion, i.e. the tool settings of EMWET, are processed here.

For an MDO integrator, this leads to the conclusion that
EMWET receives all the required input data by the com-
petences available in the tool repository. If this was not
the case, the integrator would have to provide the missing
information himself, or include an additional competence
that can provide it.

As mentioned in Sect. 2.2, in the course of the MDO
development process, the MDO system at hand becomes

Coordinator

CNSTRNT[fuelTankVolume]

CNSTRNT[wingLoading]

EMWET

GACA[mainWingFuelTankVol]

GACA[mainWingRefArea]

HANGAR[AGILE_DC1_L0_MDA]

1 conn.

1 conn.

5 inp.

134 conn.

8 inp.4 inp.

2 conn.

1 conn.

2 inp.

1 outp.

2 outp.

1105 outp.

2 outp.

1 outp.

167 conn.

12 inp.

118 conn.

2 inp.

2

right click

right click

1

3

Fig. 13 VISTOMS XDSM for the DUT wing design RCG

MDG1

0, 10: Coordinator

1: HANGAR[AGILE_DC1_WP6_wing_startingpoint]

2, 9-3: DOE

3: SCAM-merged[5modes]

4: GACA-merged[2modes]

5, 7-6: Converger

6: Q3D[FLC]-EMWET-seq

6: Q3D[VDE]-SMFA-seq

6: MTOW

8: OBJ

8: CNSTRNT-merged[2modes]

20 inp.

161 conn.

2 conn.

15 conn.

1 conn.

14 inp.

107 conn.

1 conn.

15 conn.

3 outp.

3 inp.

1 conn.

1 conn.

4 inp.

1 conn.

2 conn.

21 inp.

103 conn.

7 conn.

9 inp.

119 conn.

15 conn.

3 inp.

2 conn.

2 conn.

7 inp.

1 conn.

2 conn.

2 inp.

2 conn.

8 inp.

1 conn.

1 conn.

right click

Fig. 14 XDSM of a DOE with Jacobi converger for the DUT wing design

706 B. Aigner et al.

1 3

more and more specified moving from a tool repository to an
MDO problem and, finally, towards one or more MDO solu-
tion strategies (see Figs. 1, 5). Within the scope of AGILE,
the XDSM view has proven to be a valuable visualization
technique to grasp the full description of an MDO system.
Especially, in the later phases of the MDO development pro-
cess, it effectively combines the information of MDAO data
and process graph (cf. Fig. 5) in one single view.

Figure 14 shows the XDSM view of an MDO solution
strategy for the DUT wing design. The presented MDO
architecture is a DOE with an internal Jacobi converger
for the wing design use case. Compared with the XDSM
for the RCG from Fig. 13, it can be seen that the amount of
competences and data connections is narrowed down sig-
nificantly for the specific use case. The coloring of the com-
petences indicates their role in the MDO architecture (c.f.
Fig. 5). The additional competences DOE and Converger
have been integrated automatically by KADMOS. They are
characteristic functions of this particular MDO architecture.
Furthermore, in addition to the gray data pipelines connect-
ing the competences (MDAO data graph), the process lines
are now visible, which indicate the order of the workflow
execution (MDAO process graph). These have also been
included within the step of defining the MDO solution strat-
egy by KADMOS. To give an example, the process lines
going from the Converger to the competences Q3D[FLC]-
EMWET-seq, Q3D[VDE]-SMFA-seq, and MTOW indicate
that these three competences are executed in parallel, which
is a specific characteristic of the Jacobi converger used in
this MDO problem solution. As in any standard XDSM,
this process information is also provided by means of the
sequence number assigned to each diagonal block. In this
case, the three aforementioned competences have all the
same sequence number 6. The competence Q3D[FLC]-
EMWET-seq is a combination of the sequentially running
competences Q3D and EMWET, which have been merged
into one competence block. Q3D performs an inviscid aero-
dynamic analysis to evaluate the aerodynamic loads on the
wing, which are then used for the wing mass estimation by
EMWET.

A right click on a competence gives the user the option to
show the previously described hierarchical tree layout (see
Fig. 13) of either all input or all output data for the respec-
tive competence. In addition, the user can be provided with
competence information, including, e.g., its description,
its role in the problem definition, or its role in the MDO
architecture.

Within the process of re-configuring and adding new
MDO problem solutions to an MDO case with KADMOS,
the number of different MDO architectures for the same
design problem can become quite large. One of the advan-
tages of the presented visualization package is the fact that
all of the graphs produced are eventually combined into one

single package and can be selected via a drop-down list in
the main menu of VISTOMS.

Edge bundling view In Fig. 15, the Edge Bundling view
for the DUT wing design problem with a DOE Jacobi archi-
tecture is shown. As can be seen from the figure, the number
and type of connections between the competences can be
grasped very quickly in this view.

Therefore, within the scope of VISTOMS, the Edge
Bundling view is very convenient to provide a general over-
view on interconnections between competences in an MDO
system. It is noticeable that, for the tree view of an edge
between two competences, one can see the connections in
both directions at the same time (if applicable). Input nodes
are marked as red circles, output nodes are marked as green
circles, while the direction of the connection is given in the
headline of the tree view (see overlay frame in the bottom
of Fig. 15).

Sankey diagram An example of the Sankey diagram for
the DUT wing design with DOE Jacobi architecture is shown
in Fig. 16. As with the Edge Bundling view, the information
of the MDO process graph is not provided in this visualiza-
tion. Instead, the Sankey Diagram is a very convenient way
to illustrate the magnitude of competence interconnections.
To give an example, it becomes clear from Fig. 16 that the
competence Q3D[FLC]-EMWET-seq is strongly coupled to
the HANGAR tool, whereas the connection to the Converger
is rather loose. This is plausible, because the HANGAR tool
provides the full geometry description of the aircraft, while
the convergence criteria of the Converger competence are
only a small number of mass positions. Of course, to grasp
the actual properties of the connections, these have to be
examined in detail, which can be accomplished by the vari-
ous inspection options of VISTOMS.

4 Conclusions

A new approach for the manipulation and visualization of
MDO systems has been presented, which combines three
major developments from the AGILE project:

• the standardized MDO workflow storage format
CMDOWS

• the MDO problem formulation system KADMOS for
automated machine-readable graph data

• the D3.js-based visualization package VISTOMS

The visualization capabilities have been demonstrated on
an MDO system based on a realistic aerostructural wing
design case to explain its set-up and show the ability to
support an increased understanding of large MDO systems
down to the smallest detail. The package reduces both tech-
nical and non-technical barriers of performing MDO. The

707Graph‑based algorithms and data‑driven documents for formulation and visualization of large…

1 3

technical barrier concerns the fully automated formaliza-
tion and integration of large MDO problems with KAD-
MOS. The non-technical barrier is tackled by the automatic,
dynamic visualizations described in this paper that provide
the opportunity to inspect, share, and document large MDO
systems within heterogeneous design teams. Furthermore,
the developments presented in this paper were embedded
into the larger software architecture developed within the

AGILE project called the AGILE framework, which is dis-
cussed in [10].

All developments presented in this paper are open source
and form a fundamental output of the AGILE project. Future
work for the open-source platforms will focus on extending
their capabilities to handle a larger variety of MDO systems, as
they will be put to the test in future AGILE design campaigns
and other MDO projects.

Fig. 15 Edge bundling view for the DOE Jacobi for the DUT wing design

708 B. Aigner et al.

1 3

Acknowledgements The research presented in this paper has been
performed within the framework of the AGILE project (Aircraft
Third-Generation MDO for Innovative Collaboration of Heterogene-
ous Teams of Experts) and has received funding from the European
Union Horizon 2020 Programme (H2020-MG-2014-2015) under grant
agreement n ◦ 636202. The authors are grateful to the partners of the
AGILE consortium for their contribution and feedback.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Open‑source references

CMDOWS repository http://cmdow s-repo.agile -proje
ct.eu

CMDOWS visualization
interface http://cmdow s.agile -proje

ct.eu
KADMOS https ://bitbu cket.org/imcov

angen t/kadmo s
VISTOMS file for
Sellar problem https ://www.agile -proje ct.eu/

files /VISTO MS_Sella rProb
lem

VISTOMS file for
DUT wing design https ://www.agile -proje ct.eu/

files /VISTO MS_TUDWi
ngDes ign

References

 1. Agte, J., De Weck, O., Sobieszczanski-Sobieski, J., Arendsen,
P., Morris, A., Spieck, M.: MDO: assessment and direction for
advancement—an opinion of one international group. Struct.
Multidiscip. Optim. 40(1–6), 17–33 (2010)

 2. Alexandrov, N.M., Lewis, R.M.: Reconfigurability in mdo prob-
lem synthesis, part 1. In: Proceedings of the 10th AIAA/ISSMO
multidisciplinary analysis and optimization conference, AIAA
paper, vol. 4307 (2004)

 3. Atkinson, N.: bihisankey.js package—bidirectional hierarchical
sankey diagram. https ://githu b.com/Neilo s/bihis ankey (2015)

 4. Belie, R.: Non-technical barriers to multidisciplinary optimisation
in the aerospace industry. In: 9th AIAA/ISSMO Symposium of
Multidisciplinary Analysis and Optimisation, pp 4–6 (2002)

 5. Bostock, M.: D3.js website. (2015). https ://d3js.org/
 6. Bowcutt, K.: A perspective on the future of aerospace vehicle

design. In: 12th AIAA International Space Planes and Hypersonic
Systems and Technologies, Norfolk, VA, AIAA Paper, 2003-6957
(2003)

 7. Ciampa, P.D., Nagel, B.: Towards the 3rd generation MDO col-
laboration environment. In: 30th Congress of the International
Council of the Aeronautical Sciences (2016)

 8. Flager, F., Haymaker, J.: A comparison of multidisciplinary
design, analysis and optimization processes in the building con-
struction and aerospace industries. In: 24th international con-
ference on information technology in construction, pp 625–630
(2007)

 9. Gazaix, A., Gallard, F., Gachelin, V., Druot, T., Grihon, S.,
Ambert, V., Guénot, D., Lafage, R., Vanaret, C., Pauwels, B.,
et al.: Towards the industrialization of new mdo methodologies
and tools for aircraft design. In: 18th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, p. 3149 (2017)

 10. van Gent, I., Ciampa, P.D., Aigner, B., Jepsen, J., La Rocca, G.,
Schut, E.J.: Knowledge architecture supporting collaborative
MDO in the AGILE paradigm. In: 18th AIAA/ISSMO Multidis-
ciplinary Analysis and Optimization Conference (2017)

Fig. 16 Sankey diagram the for DOE Jacobi for the DUT wing design

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://cmdows-repo.agile-project.eu
http://cmdows-repo.agile-project.eu
http://cmdows.agile-project.eu
http://cmdows.agile-project.eu
https://bitbucket.org/imcovangent/kadmos
https://bitbucket.org/imcovangent/kadmos
https://www.agile-project.eu/files/VISTOMS_SellarProblem
https://www.agile-project.eu/files/VISTOMS_SellarProblem
https://www.agile-project.eu/files/VISTOMS_SellarProblem
https://www.agile-project.eu/files/VISTOMS_TUDWingDesign
https://www.agile-project.eu/files/VISTOMS_TUDWingDesign
https://www.agile-project.eu/files/VISTOMS_TUDWingDesign
https://github.com/Neilos/bihisankey
https://d3js.org/

709Graph‑based algorithms and data‑driven documents for formulation and visualization of large…

1 3

 11. van Gent, I., La Rocca, G., Hoogreef, M.F.M.: CMDOWS: a pro-
posed new standard to store and exchange MDO systems. CEAS
Aeronaut J (2017)

 12. van Gent, I., La Rocca, G., Veldhuis, L.L.M.: Composing MDAO
symphonies: graph-based generation and manipulation of large
multidisciplinary systems. In: 18th AIAA/ISSMO Multidiscipli-
nary Analysis and Optimization Conference (2017)

 13. van Gent, I., Lombardi, R., La Rocca, G., d’Ippolito, R.: A fully
automated chain from mdao problem formulation to workflow
execution. In: EUROGEN 2017 (2017)

 14. Gondhalekar, A.C., Guenov, M.D., Wenzel, H., Balachandran,
L.K., Nunez, M.: Neutral description and exchange of design
computational workflows. In: 18th International Conference on
Engineering Design (2011)

 15. Grosskopf, A., Weske, M., Decker, G.: the process: business pro-
cess modeling—using Bpmn. Meghan Kiffer Press (2005)

 16. Hoogreef, M.: Advise, formalize and integrate mdo architec-
tures—a methodology and implementation. Ph.D. thesis, TU
Delft, Delft University of Technology (2017)

 17. La Rocca, G.: Knowledge based engineering techniques to support
aircraft design and optimization. Delft University of Technology,
TU Delft (2011)

 18. Lafage, R.: Xdsmjs package—xdsm diagram generator written in
javascript (2016). https ://githu b.com/Onera Hub/XDSMj s

 19. Lambe, A.B., Martins, J.R.: Extensions to the design structure
matrix for the description of multidisciplinary design, analysis,
and optimization processes. Struct. Multidiscip. Optim. 46(2),
273–284 (2012)

 20. Lano, R.J.: The n2 chart. TRW Software Series (1977)
 21. Lefebvre, T., Bartoli, N., Dubreuil, S., Panzeri, M., Lombardi, R.,

Della Vecchia, P., Nicolosi, F., Ciampa, P.D., Anisimov, K., Save-
lyev, A.: Methodological enhancements in MDO process inves-
tigated in the AGILE European project. In: 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference (2017)

 22. Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A.,
La Rocca, G., Alonso, J.J.: Communication in aircraft design: can
we establish a common language? In: 28th International Congress
Of The Aeronautical Sciences, Brisbane (2012)

 23. Pate, D., Gray, J., German, B.: A graph theoretic approach to
problem formulation for multidisciplinary design analysis and
optimization. Struct. Multidiscip. Optim. 49(5), 743–760 (2014)

 24. Sankey, H.R.: The thermal efficiency of steam engines. Minutes of
the Proceedings of the Institution of Civil Engineers pp. 182–212
(1896). https ://doi.org/10.1680/imotp .1896.19564

 25. Schmidt, M.: Der Einsatz von Sankey-Diagrammen im Stoffstrom-
management. Beiträge der Hochschule Pforzheim. Hochsch. Pfor-
zheim (2006). https ://books .googl e.de/books ?id=zhBbM gAACA
AJ

 26. Sellar, R., Batill, S., Renaud, J.: Response surface based, concur-
rent subspace optimization for multidisciplinary system design.
AIAA paper 714, 1996 (1996)

 27. Shahpar, S.: Challenges to overcome for routine usage of auto-
matic optimisation in the propulsion industry. Aeronaut. J.
115(1172), 615 (2011)

 28. Simpson, T.W., Martins, J.R.: Multidisciplinary design optimi-
zation for complex engineered systems: report from a national
science foundation workshop. J. Mech. Des. 133(10), 101,002
(2011)

 29. Steward, D.V.: The design structure system: a method for manag-
ing the design of complex systems. IEEE Trans. Eng. Manag., 3,
71–74. IEEE (1981)

 30. Vandenbrande, J., Grandine, T., Hogan, T.: The search for the
perfect body: Shape control for multidisciplinary design optimi-
zation. In: 44th AIAA Aerospace Science Meeting and Exhibit,
Reno, NV, 2006-928 (2006)

 31. Wagner, T.C., Papalambros, P.Y.: General framework for decom-
position analysis in optimal design. ASME Adv. Des. Autom. New
York 65, 315–325 (1993)

https://github.com/OneraHub/XDSMjs
https://doi.org/10.1680/imotp.1896.19564
https://books.google.de/books?id=zhBbMgAACAAJ
https://books.google.de/books?id=zhBbMgAACAAJ

	Graph-based algorithms and data-driven documents for formulation and visualization of large MDO systems
	Abstract
	1 Introduction
	2 Methodology
	2.1 CMDOWS
	2.2 KADMOS
	2.2.1 KADMOS as MDO system formulator
	2.2.2 KADMOS as data processor

	2.3 VISTOMS
	2.3.1 D3.js library
	2.3.2 State-of-the-art visualization techniques in MDO
	2.3.3 Visualization techniques for CMDOWS files

	3 Results
	4 Conclusions
	Acknowledgements
	References

