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Abstract
A new system is presented that enables the visualization of large multidisciplinary design optimization (MDO) problems 
and their solution strategy. It was developed within the scope of the European project AGILE. In AGILE, collaborative 
MDO is performed in large, heterogeneous teams of experts by solving MDO problems using a collection of design and 
analysis tools. This paper focuses on the visualizations required to support the formulation phase of an MDO project. The 
Knowledge and graph-based AGILE Design for Multidisciplinary Optimization System (KADMOS), an open-source MDO 
support system developed by Delft University of Technology, uses graph-based analysis to formulate an MDO problem 
and its solution strategy, based on the disciplinary analyses available in a repository. The results of KADMOS are stored 
in the standardized format CMDOWS (Common MDO Workflow Schema), which comprises the entire information on an 
MDO system. Although, based on Extensible Markup Language, the readability of the CMDOWS file is quite poor also for 
MDO experts, especially for large MDO systems involving thousands of variables. Providing visualization capabilities to 
thoroughly inspect the outcome of the different MDO formulation steps becomes a key factor to enable the specification of 
large MDO systems in a heterogeneous team. Therefore, VISTOMS (VISualization TOol for MDO Systems), a dynamic 
visualization package, was developed by RWTH Aachen University to enable the visualization and inspection of the differ-
ent MDO system specification steps, thereby removing one of the main hurdles for using MDO as a development process. 
The developed visualization capabilities are demonstrated by means of an aerostructural wing design optimization project.
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1 Introduction

Past research indicates that MDO can offer huge benefits 
in complex product design. Boeing Phantom Works’ scien-
tists [6, 30] estimate that MDO can offer 8–10% gains for 
innovative aircraft design and even 40–50% gains for design-
ing radically new and undeveloped concepts [17]. Despite 
the high potential gains, MDO is not as widely used as one 
would expect. Both technical [1] and non-technical barriers 
are hampering its full exploitation, as discussed below in 
this section [4, 27, 28].

To get a better understanding of the scope of the work 
presented here, it is convenient to refer to Fig. 1, where the 
different parts of the MDO development process are illus-
trated. The MDO development process in this figure can be 
roughly cut in half, with the formulation phase on the left 
side and the execution phase on the right. In the formulation 
phase, the tool repository is defined (or provided), the MDO 
problem to be solved is formulated, and a formal specifica-
tion of the MDO solution strategy used to solve the problem 
is defined. This inexecutable MDO solution strategy is the 
blueprint of the executable workflow. The actual, executable 
MDO workflow is created in a simulation workflow platform 
of choice (e.g., RCE,1 Optimus2) and run to find the optimal 
design. In a realistic design situation, the optimization is not 
performed just once; rather, the analysis of the design that 
is found after a certain run will provide new insights. These 
insights will be translated to an adjustment of the MDO 
problem formulation (e.g., change of objective, addition 
of constraints, etc.) and a reconfiguration of the associated 
MDO solution strategy (e.g., addition, removal, and replace-
ment of analysis tools). This process of problem adjustment 
and process reconfiguration is iterated until a satisfactory 
design is found, or the project deadline has been reached. 
The focus of the system development described in this paper 
is on the visualization of the blocks in the formulation phase: 
tool repository, MDO problem, and MDO solution strategy.

One of the most critical technical barriers for MDO 
comes from the large (and continuously increasing) size 
of typical MDO problems. In the words of Pate et al. [23], 
the formulation of these problems has become increasingly 
complex as the number of analysis tools and design variables 
included in typical studies has grown. In this context, the 
problem of determining a feasible data flow between tools 
to produce a specified set of system-level outputs is combi-
natorially challenging. Especially, when complex and high-
fidelity tools need to be included, the cost and time require-
ments to integrate the MDO system can easily approach the 
cost and time requirements of creating any of the discipline 
analyses themselves.

These cost and time requirements for the integration 
of the MDO system have also been identified in several 
research projects that have attempted to perform MDO 
by automating a full chain of design tools. In the previ-
ous projects of the DLR, it was found that the majority 
of the project time (60–80%) [7] would be used to create 
such an automated chain for aircraft design tools. Similar 
conclusions were drawn by Flager and Haymaker [8] who 
performed research into the design process metrics of both 
a legacy (current) design method and an MDO development 
process for the design of a hypersonic vehicle by Boeing [6, 
30], see Fig. 2. In this figure, it is clear that the set-up time 
of the MDO workflow exceeds the 6 week set-up time of 

Fig. 1  Overview of the MDO 
development process and its two 
phases
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Fig. 2  Comparison of legacy design and MDO development process 
metrics for the design of a hypersonic vehicle [8]

1 http://rcenv ironm ent.de/.
2 https ://www.noesi ssolu tions .com/our-produ cts/optim us.

http://rcenvironment.de/
https://www.noesissolutions.com/our-products/optimus
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the legacy method by 133%. This figure also shows that 
with the MDO design method, one needs to spend more 
resources in the ‘Specification’ phase category. This is to be 
expected, since, during the set-up of a fully automated chain 
of design tools, one needs to know down to the smallest 
detail what information is used and produced by each tool 
and which data are fed back and forward within a certain 
tool execution sequence. If the specification of the indi-
vidual design tools and the overall MDO system could be 
improved, then the set-up time of the MDO process can 
be drastically reduced as well, thereby making the MDO 
approach even more convenient with respect to the conven-
tional approach.

It is our conviction that the cost and time requirements 
for the integration of tools in a large and complex MDO 
system could be reduced by enabling the designer to analyze, 
visualize, and inspect the MDO system down to the smallest 
detail during the integration effort. Any system integrator is 
aware of the value of such analysis and visualization, but, 
in practice, the manual generation and update of this sort 
of documentation is too cumbersome. For example, if visu-
alizations of the tool repository or MDO solution strategy 
are created, they are usually a collection of spreadsheets 
and text documents, which have to be updated manually 
and are hard to keep consistent. On top of that, such manu-
ally created overviews are not (fully) machine-readable and 
thereby cannot be used for any further automated analysis, 
integration, or manipulation of the MDO system. Therefore, 
the analysis, visualization, and inspection of MDO systems 
should be automated and based on machine-readable files 
or documents.

This is one of the main goals of the EU project AGILE,3 
where the developments described in this paper are tak-
ing place. The process for the generation of the necessary 
visualizations to support the MDO formulation phase is 
based on the outcome of KADMOS, the Knowledge- and 
graph-based AGILE Design for Multidisciplinary Opti-
mization System developed at DUT.4 KADMOS takes 

care of the automatic integration of the various design 
and analysis tools in the MDO system and supports the 
formulation of the MDO problem at hand and its solution 
strategy. KADMOS’ functionalities are briefly explained 
in Sect. 2.2, while detailed information can be found in 
another publication [12]. As illustrated in Fig. 1, KAD-
MOS stores the output of the MDO formulation process by 
means of a standardized XML format, called CMDOWS 
(Common MDO Workflow Schema), which is discussed 
in Sect. 2.1. The creation of the visualizations is done by 
coupling the CMDOWS files to a custom-built visuali-
zation package developed at RWTH Aachen University. 
This system, called VISTOMS (Visualization Tool for 
MDO Systems), is the main subject of this paper and its 
functionalities are described in detail in Sect. 2.3. The 
produced visualizations are presented in Sect. 3, based on 
a real MDO system for wing optimization, created within 
the AGILE project.

2  Methodology

As mentioned, the developments presented in this paper 
are based on two software packages: the MDO system 
formulation tool KADMOS and the visualization pack-
age VISTOMS. A top-level overview of the collaboration 
between KADMOS and VISTOMS is shown in Fig.  3. 
The approach is referred to as the ‘dynamic visualization 
approach’, where dynamic refers to the ability of interac-
tive visualization objects to change appearance under mouse 
‘hovering’ and clicking (more in Sect. 2.3). The set-up has 
been done, such that the graph information for any of the first 
three blocks in Fig 1 (which is usually stored in CMDOWS 
files) is translated by KADMOS into the JSON (JavaScript 
Object Notation) representation required by VISTOMS. This 
collection of JSON data is then visualized with VISTOMS 
through an HTML (Hypertext Markup Language) page that 
can be opened in any web browser and includes the interac-
tive visualization objects. It should be noted that the use of 
KADMOS shown in Fig. 3 only represents a small part of 
the package. The majority of KADMOS is actually geared 
towards producing and editing the CMDOWS files (more 
in Sect. 2.2), not at the postprocessing for which it is used 

Fig. 3  Top-level overview 
of the dynamic visualization 
approach
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3 Aircraft Third-Generation MDO for Innovative Collaboration of 
Heterogeneous Teams of Experts, see: http://www.agile -proje ct.eu.
4 See: https ://bitbu cket.org/imcov angen t/kadmo s.

http://www.agile-project.eu
https://bitbucket.org/imcovangent/kadmos
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in the dynamic visualization approach. All elements of the 
top-level overview in Fig. 3 are discussed in the upcoming 
section.

2.1  CMDOWS

CMDOWS is an open-source,5 XML-based workflow 
schema that was developed at DUT to enable the exchange 
of the formulated MDO system between MDO framework 
applications, as visualized in Fig. 4. Other publications have 
already addressed the deployment of a formalized schema 
as an exchange format for MDO applications [14–16]. How-
ever, for the purpose of the AGILE project, it was necessary 
to use something that is feasible for collaborative MDO pro-
jects and connecting a wider range of MDO applications. 
Therefore, CMDOWS was created within the project as 
a new schema, as described in a publication by Van Gent 
et al. [11]. The different stages of the MDO system in the 
formulation phase can all be stored in the CMDOWS for-
mat. Each stage in Fig. 1 (from left to right) enriches the 
CMDOWS file to go from a repository of design tools to 
a full description of the optimization strategy. KADMOS 
is able to provide the graph-based representation for each 
stage (see next section) and can store these in a CMDOWS 
file; however, visualizing the outcome of these stages is not 
properly handled by KADMOS. In addition, the CMDOWS 
files, although based on XML, do not offer a practical means 
to the user for inspecting the generated MDO system formu-
lation. Therefore, the work presented here was focused on 
the link between the visualization package VISTOMS and 
CMDOWS. Within that link, the efficient graph-based algo-
rithms of KADMOS were used for data processing purposes.

2.2  KADMOS

As mentioned in the previous section, the use of KADMOS 
is twofold in this work:

• Creation of the CMDOWS files to be used as input for 
the approach in Fig. 3

• Graph-based data processing of the CMDOWS files to 
convert the XML representation into the JSON format 
required for VISTOMS

Both applications of KADMOS are only discussed briefly 
here.

2.2.1  KADMOS as MDO system formulator

The ability of KADMOS to support the specification of the 
MDO system is discussed in detail in earlier work [12]. A 
mapping between the three stages of the formulation phase 
in Fig. 1 and the associated KADMOS graphs is shown in 
Fig. 5. Four different graph types are associated with the 
three formulation phases.

The repository connectivity graph (RCG) is an object 
that represents the design and analysis tool repository as a 
web of data containing function and variable nodes and their 
connections. This graph is established easily for large tool 
databases by exploiting the central data schema approach, 
such as CPACS [22]. The example in Fig. 5 (left) concerns a 
very small repository with only eight function nodes (design 
competences) and ten variables. Larger tool repositories, 
such as the one used in the results section of this paper, are 
still stored as a graph structure, but their visualizations, as 
expected, have severe readability limitations.

The MDO problem is represented in KADMOS with the 
fundamental problem graph (FPG), see Fig. 5 (middle). The 
FPG is a subset of the RCG in terms of nodes and edges. In 
addition, its nodes are also enriched with attributes required 
to specify the MDO problem at hand, such as design vari-
ables, objective, and constraints.

Finally, the neutral representation of the MDO solu-
tion strategy is stored in two separate graph constructs: the 
MDAO process graph (MPG) and the MDAO data graph 
(MDG), where the first contains the process execution flow 
of the various MDO system components, and the second 
specifies the specific data exchanged between those compo-
nents. These graphs are created automatically by KADMOS 
based on the FPG and stored in the same CMDOWS file, 
thereby using all the elements of the schema.

2.2.2  KADMOS as data processor

The system formulation capabilities of KADMOS cover all 
stages of the formulation phase given in Fig. 1, and can store 

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations
library

Fig. 4  Concept of exchangeability between different MDO frame-
work applications through a workflow schema [11]

5 Available at: http://cmdow s-repo.agile -proje ct.eu.

http://cmdows-repo.agile-project.eu
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the CMDOWS file for each stage, although these capabilities 
could be taken over by other platforms, as well. Especially, 
the creation of the tool repository is a relatively easy task 
that can be performed with other applications. For example, 
in AGILE, the business process platform KE Chain6 [10] 
also contains a module to create a tool repository and export 
it as a CMDOWS file. However, even if other platforms cre-
ate the CMDOWS file, KADMOS is still required as a data 
processor to provide the right data format for VISTOMS.

This data processing is required to provide VISTOMS 
with files that are directly interpretable; hence, no cumber-
some analysis of the data is required before visualizing it. In 
other words, the KADMOS graphs do contain all the infor-
mation that is required to visualize it, but some of the infor-
mation is stored implicitly. To improve responsiveness of the 
visualization package, this information is transferred explic-
itly to the JSON files read by VISTOMS. An example of 
this would be the input and output variables of a single tool. 
This information is stored in the graph, but, to determine 
this information for a single tool, one has to loop over all the 
incoming and outgoing connections of the tool. Instead, the 

input and output variables per tool are stored explicitly in 
the JSON files, so that VISTOMS does not have to perform 
the loop when the information is requested. Similarly, if the 
variables follow a central data schema, then the hierarchy 
of the variables (which is lost in the graph representation) 
is reestablished based on the variable names and stored in a 
nested dictionary in the JSON files.

The KADMOS data processing step provides VISTOMS 
with easily accessible information about the MDO system 
to be visualized. The processing, which takes in the order 
of seconds (depending on the size of the system), prevents a 
lot of waiting time when using the dynamic visualizations. 
Downside of the JSON files with directly useable informa-
tion is that some information is stored multiple times in 
slightly different ways, thereby increasing the size of the col-
lection of JSON files with respect to the original CMDOWS 
file. However, this decrease in storage efficiency is well 
worth the associated performance increase when using the 
dynamic visualizations.

2.3  VISTOMS

The combination of KADMOS itself and the visualizations 
developed in the course of this research provide the MDO 
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Fig. 5  Top-level overview of KADMOS and its relation to the formulation phase of the MDO development process in Fig. 1 (all visualizations 
are based on the Sellar problem [26])

6 See: https ://www.ke-chain .com.
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integrator with a powerful set of tools to support creation, 
inspection, debugging, and modification of large and com-
plex MDO problem formulations. The presented visualiza-
tions are obtained using the open-source library D3.js [5]. In 
the following sections, D3.js as well as significant state-of-
the-art visualization techniques are currently used in MDO 
will be introduced. Subsequently, the newly developed visu-
alization techniques embedded in VISTOMS will be pre-
sented. Their ultimate goal is to enhance the understanding 
of complex MDO systems, which is necessary for effective 
MDO problem formulation, documentation, and knowledge 
sharing.

2.3.1  D3.js library

D3.js is an open-source JavaScript library, developed and 
released by Bostock under the BSD license, for creating 
and modifying documents based on data [5]. D3.js sup-
ports the user in visualizing any data by combining the 
standards HTML, SVG (Scalable Vector Graphics), and 
CSS (Cascading Style Sheets). It is, therefore, an easy to 
use and powerful tool for visualization that can be opened 
with any standard web browser. The coding can be directly 
performed within an HTML file, which can then be opened 
in the web browser showing the embedded visualizations. 
The library comes with a predefined set of standard visu-
alization techniques that can be easily accessed, modified, 
and extended. Any visualizations, also those that are not 
predefined in D3.js, can be obtained and modified using 
standard SVG commands. The data behind the visualiza-
tions can be stored in JSON (JavaScript Object Notation) 
or CSV (Comma-Separated Values) files, and are accessible 
via JavaScript code.

2.3.2  State‑of‑the‑art visualization techniques in MDO

In the field of MDO, the visualization of MDO systems is 
widely recognized as a valuable tool to enhance knowledge 
about the problem formulation at hand. Therefore, over the 
years, various visualization techniques have been developed. 

The N2 chart, introduced by Lano in 1977  [20], is, for 
instance, a well-known method for visualizing system cou-
plings. The Design Structure Matrix (DSM), which is simi-
lar to the N2 chart, was developed by Steward in 1981 [29] 
and shows inter-dependencies between competences in a 
square adjacency matrix (see Fig. 6).

In Fig. 6, each of the non-blank off-diagonal elements 
(x’s and numbers) represents a data dependence between 
the competences, which are arranged on the diagonal. Both 
DSM and N2 chart thereby enable the representation of the 
data exchanged among the various competences by showing 
the data dependence in a system (see bottom right graph in 
Fig. 5). However, these visualizations are not effective in 
formalizing the execution order of the tools and the trigger-
ing of the various loops including any required iterations by 
convergers or optimizers. However, with increasing number 
and complexity of analysis tools, the choice of competence 
execution order becomes more important and more com-
plex, as well. Wagner and Palambros developed the so-called 
functional dependence table (FDT) to account for constraints 
and objectives in an MDO problem formulation [31]. The 
drawback of the FDT is that information about inter-depend-
encies between competences and functions is partially lost, 
and therefore, a competence execution order cannot be 
indicated. A combination between DSM and FDT called 
Reconfigurability in MDO Problem Synthesis (REMS) was 
introduced by Alexandrov and Lewis enabling indication of 
couplings between competences as well as constraints and 
objectives [2]. Nevertheless, the execution order of the com-
petences is not available within the representation of REMS.

This capability is enabled by the extended DSM (XDSM) 
introduced by Lambe and Martins in 2012 (see Fig. 7) [19].

The XDSM provides a visualization that captures 
the full description of an MDO problem, combining the 
advantages of DSM and FDT. In general, an XDSM can 
be read as a square adjacency matrix, where the compe-
tences are arranged on the diagonal and the columns and 
lines indicate competence inputs and outputs, respectively. 
The competences are connected via data pipelines (gray 
lines) indicating data transfer. Feed-forward connections 

Fig. 6  Design structure matrix (DSM) [29] Fig. 7  XDSM for an individual discipline feasible (IDF) architec-
ture [19]
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are shown on the right and feedback connections on the 
left side of the diagonal. The so-called edges (rhomboids 
on the off-diagonal) indicate a connection between two 
competences (also referred to as couplings), i.e., the infor-
mation that is processed from one competence to the other. 
The so-called process lines (thin black lines) in combina-
tion with the numbers in the diagonal blocks indicate the 
order of the workflow execution (MDAO process graph, 
c.f., Fig. 5).

Although the XDSM offers the means for a detailed and 
comprehensive description of an MDO system, its readabil-
ity quickly degrades when the number of competences and 
their coupling increases, at least in its static document-based 
version.

The HTML-based rendering approach of the presented 
visualization package enables the use of effective stand-
ard representations, such as the XDSM, while offering the 
dynamic scaling and displaying options necessary to guar-
antee readability and inspectability also for MDO systems 
of extremely large size. Examples are discussed in the next 
section.

2.3.3  Visualization techniques for CMDOWS files

For the CMDOWS files, three main visualization types have 
been selected and further developed:

• XDSM;
• Egde Bundling View;
• Sankey Diagram.

The visualization package is accessible via web browser. 
Figure 8 shows the starting page of VISTOMS.

Note that VISTOMS provides solely a visual representa-
tion of an MDO system, in which no actual competences can 
be executed. Rather, the automated creation of executable 
workflows from the MDO architecture is a task, which is 
performed in simulation workflow platforms by parsing a 
CMDOWS file [13].

In the following sections, the three above-mentioned 
visualizations will be described in detail with respect to 
their capability to enhance the insight into MDO systems. 
The interested reader can directly access and experience 
a number of example visualizations via the open-access 
CMDOWS browser interface.7 On the browser interface, a 
number of pre-generated CMDOWS files are available for 
demo purposes. Note that the VISTOMS visualizations can 
also be created for any MDO system using the open-source 
KADMOS package.

XDSM The enhanced XDSM visualization developed 
in this research is based on the open-source XDSMjs pack-
age, which was released by Lafage in 2016 [9, 18]. The 
main structure is the same as the conventional XDSM 
(see Fig. 7), while the major difference between the two 
is that, using the D3.js library, the XDSM can be accessed 
dynamically and interactively via a web browser. However, 
for large and complex MDO systems, not all the embed-
ded information can be clearly visualized at once with the 
XDSMjs package. Therefore, within the scope of the pre-
sented research, the XDSMjs package was further enhanced 
to give the user the possibility to access the full informa-
tion embedded into an MDO system in a human intelligible 
way. While the basic layout was kept simple, more detailed 
information can be inspected interactively on demand. The 
main features of the XDSM view in VISTOMS are given in 
Fig. 9 showing an MDO system architecture for the Sellar 
problem,8 which was already presented in Sect. 2.2 (see 
also Fig. 5 for the KADMOS graph representations of this 
MDO problem).

Note that the overlay frames in Fig. 9 are not visible 
in the actual visualization package and have only been 
included for this paper to explain the visualization capa-
bilities. For this purpose, the focus of Fig. 9 is set on the 
connection between the competences DOE and D1. For 
detailed inspection of the XDSM, the user has several 
options. Hovering over an edge with the mouse displays 
the names of the underlying data that are processed here. 
Right clicking on an edge gives the user two options. 
First, it is possible to examine basic information about 
the edge such as the total number of connections and 
their dimension. Second, the user can further examine the 

Fig. 8  Main page of VISTOMS. The different graphs of the MDO 
system (RCG, FPG, etc.) can be selected via drop-down menu using 
any of the three visualization techniques (XDSM, Edge Bundles, and 
Sankey Diagram)

7 Available at: http://cmdow s.agile -proje ct.eu.
8 VISTOMS for Sellar problem available at: https ://www.agile -proje 
ct.eu/files /VISTO MS_Sella rProb lem.

http://cmdows.agile-project.eu
https://www.agile-project.eu/files/VISTOMS_SellarProblem
https://www.agile-project.eu/files/VISTOMS_SellarProblem
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underlying data of the selected edge. The data are shown 
as a hierarchical tree [5] containing a subset of the under-
lying data model (e.g. CPACS schema as an XML-based 
parameterization of an aircraft) where the categories and 
subcategories are represented by the branches and leafs 
(see Fig. 9, overlay frame 1). The tree view is expandable 
and collapsible via mouse click according to the user’s 
requirements. The layout can be organized according to 
different categorizations. These include the basic hierar-
chical data schema (e.g. CPACS), but also, for instance, 
a categorization according to the node types in the MDO 
system (see Fig. 10).

The latter can, for instance, be helpful, when multiple 
competences modify the same variable. This so-called col-
lision can potentially cause problems such as inconsisten-
cies in the MDO system and, therefore, needs to be at least 
recognized by an MDO integrator. Note that the tree layout 
shown in Fig. 10 is not fully expanded to the last leaf nodes, 
the node sharedCoupling is collapsed, while it is indicated 

in the brackets that there are six leaf nodes contained here. 
This feature gives the user an idea on how many variables 
are contained in the layout, even when the tree is not fully 
expanded, and, therefore, keeps the layout clear, which is 
especially required for large data sets.

Each of the nodes in the tree layout can be further exam-
ined via right click. In the example given in Fig. 9, the 
selected node of interest is variable z2. Several options for 
examination exist, such as indication of general information 
about a node (name, type, dimension, or its current value), as 
can be seen in Fig. 9, overlay frame 2. Another option is to 
display the occurrence/usage of a node in the MDO system. 
This means that it can be highlighted, wherein the MDO 
system a node is processed from one competence to another 
by highlighting the respective edges (see Fig. 9, overlay 
frame 3). This option provides valuable information when 
setting up a problem solution, because the MDO integrator 
can easily examine how the competences are connected to 
each other and which of the processed variables are of most 
interest due to their occurrence in the system. Thus, an over-
view on whether the competences are connected correctly, or 
at least as expected, is given. Furthermore, it is possible to 
download the tree layout as an XML file (including current 
values of leaf nodes) to, for example, manually adjust the 
data set or to simply extract the data from the visualization. 
These dynamic, interactive inspection possibilities are the 
major advantage of the presented visualization package and 

0, 9: Coordinator

1: A

2, 8-3: DOE

3, 6-4: Converger

4: D1

5: D2

7: F1

7: G1

7: G2

1 inp. 1 inp.

1 conn.

1 conn.

1 conn.

1 conn.

1 conn.

1 inp.

1 conn.

2 inp.

1 conn.

1 conn.

1 conn.

3 outp.

1 conn.

1 conn.

2 conn.

1 conn.

1 inp.

1 conn.

2 conn.

right click

right click

1
2

3

Fig. 9  VISTOMS XDSM for the Sellar problem with a converged Gauss–Seidel design of experiments (DOE)

Fig. 10  Tree layout according to node levels, Sellar problem DOE
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make it a convenient debugging tool for MDO systems of 
arbitrary size and complexity.

The above described techniques, developed in the course 
of this research, are quite similar for all three of the visu-
alizations (XDSM, Edge Bundling View, and Sankey Dia-
gram). Thereby, recurring visualization elements are estab-
lished, which facilitates the usability of the functions.

Edge Bundling View The so-called Edge Bundling view is 
a circular layout of interconnected elements and is adapted 
from an example by Bostock [5]. The basic idea of this visu-
alization is given in Fig. 11 with the example of the Sellar 
problem RCG.

Each of the blue lines indicates a general dependence 
between two elements. The focus can be set on any ele-
ment by hovering over it with the cursor (c.f. element D1 
in Fig. 11). The red lines indicate input flow to the element 
and the green lines indicate output flow from the element. 
Further detailed inspections can be carried out via right 
click on the connecting lines or on the elements, similar 

to what has been described for the XDSM in the previous 
section.

In contrast to the XDSM view, the Edge Bundling view 
only provides data information, i.e., the interconnections 
of the competences and the data processed between them, 
whereas the workflow process information cannot be dis-
played. On the other hand, it visualizes the connections 
among the competences more intuitively.

Sankey Diagram The Sankey Diagram was first intro-
duced by Henry Riall Sankey in 1896 for the visualization 
of energy flows in steam engines [24, 25]. A variation of the 
conventional layout is the bi-directional Sankey Diagram, 
which was used in a D3.js-based package by Atkinson in 
2015 [3]. While the conventional layout only considers one 
flow direction, the bi-directional layout is able to account 
for feed-forward and feedback information flow between 
the elements at the same time. The Sankey Diagram used 
in the presented research is based on the developments by 

Fig. 11  VISTOMS Edge Bundling view for the Sellar problem RCG 



704 B. Aigner et al.

1 3

Atkinson. An example of the visualization for the Sellar 
problem RCG is shown in Fig. 12.

Again, for any competence in the system, input informa-
tion flow is displayed in red and output information flow 
is displayed in green. The width of the connecting arrows 
refers to the amount of information transferred between two 
elements. A connection with 100 variables transferred from 
one element to another will appear wider than one with only 
ten variables. As with the two other visualizations, it is pos-
sible to further analyze the graph with help of the previously 
described dynamic inspection capabilities.

3  Results

Within the scope of the AGILE project, the visualization 
package presented in Sect. 2.3 has already been inten-
sively used and tested by multiple AGILE project partners 
for various MDO problems. The developed capabilities 
have proven to effectively assist the MDO integrator in 
the problem formulation process [21]. In this section, the 
results of the visualization enhancements will be presented 
with regard to a tool repository containing a collection 
of DUT aircraft design tools.9 This use case concerns 
the aerostructural optimization of an aircraft wing. The 

starting point of this case is a tool repository containing 
over 28,000 variables and over 37,000 data connections 
based on 29 function nodes. More details on this case 
study can be found in [13].

XDSM Fig. 13 shows an extraction of the XDSM for 
the DUT wing design MDO system. Using the dynamic 
visualizations described in Sect. 2.3, the MDO system can 
be examined in detail. The focus of Fig. 13 is set on the 
two input edges of the competence EMWET, a tool that 
estimates the wing mass. A right click on the input edge 
coming from the competence HANGAR[AGILE_DC1_
L0_MDA], which provides an initial parameterized data 
set of the aircraft, leads to a hierarchical tree layout con-
taining 167 pipeline variables as a subset of the CPACS 
data schema (Fig. 13, overlay frame 1). The expanded 
tree layout indicates that, for instance, the geometry of 
the main wing (wing[mainWing_wingID] is passed from 
HANGAR[AGILE_DC1_L0_MDA] to EMWET, which 
seems plausible, as the wing mass is strongly affected by 
its geometry. A right click on the wing geometry node ena-
bles a detailed examination of the node characteristics as 
displayed in overlay frame 2. Displaying the usage of the 
node, it can also be seen that the wing geometry is trans-
ferred at five other edges in this particular extraction of the 
XDSM (red-highlighted edges).

The other input edge (12 inp.) in the top of EMWET is 
provided by the so-called Coordinator, which represents 
the outer world and operates as the main control function 
of the MDO system (see Fig. 13, overlay frame 3). This 

Fig. 12  VISTOMS Sankey 
diagram for the Sellar problem 
RCG 

9 VISTOMS for DUT wing design available at: https ://www.agile 
-proje ct.eu/files /VISTO MS_TUDWi ngDes ign.

https://www.agile-project.eu/files/VISTOMS_TUDWingDesign
https://www.agile-project.eu/files/VISTOMS_TUDWingDesign
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means that every variable passed from the Coordinator to 
a competence is not provided by any other competence in 
the MDO system. For aircraft-specific information, such 
as the geometry or mass data, this should normally be 
avoided, because, in that case, the user would have to spec-
ify the values manually. In the presented MDO system, 
however, it can be seen that only tool-specific informa-
tion, i.e. the tool settings of EMWET, are processed here. 

For an MDO integrator, this leads to the conclusion that 
EMWET receives all the required input data by the com-
petences available in the tool repository. If this was not 
the case, the integrator would have to provide the missing 
information himself, or include an additional competence 
that can provide it.

As mentioned in Sect. 2.2, in the course of the MDO 
development process, the MDO system at hand becomes 

Coordinator

CNSTRNT[fuelTankVolume]

CNSTRNT[wingLoading]

EMWET

GACA[mainWingFuelTankVol]

GACA[mainWingRefArea]

HANGAR[AGILE_DC1_L0_MDA]

1 conn.

1 conn.

5 inp.

134 conn.

8 inp.4 inp.

2 conn.

1 conn.

2 inp.

1 outp.

2 outp.

1105 outp.

2 outp.

1 outp.

167 conn.

12 inp.

118 conn.

2 inp.

2

right click

right click

1

3

Fig. 13  VISTOMS XDSM for the DUT wing design RCG 
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Fig. 14  XDSM of a DOE with Jacobi converger for the DUT wing design
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more and more specified moving from a tool repository to an 
MDO problem and, finally, towards one or more MDO solu-
tion strategies (see Figs. 1, 5). Within the scope of AGILE, 
the XDSM view has proven to be a valuable visualization 
technique to grasp the full description of an MDO system. 
Especially, in the later phases of the MDO development pro-
cess, it effectively combines the information of MDAO data 
and process graph (cf. Fig. 5) in one single view.

Figure 14 shows the XDSM view of an MDO solution 
strategy for the DUT wing design. The presented MDO 
architecture is a DOE with an internal Jacobi converger 
for the wing design use case. Compared with the XDSM 
for the RCG from Fig. 13, it can be seen that the amount of 
competences and data connections is narrowed down sig-
nificantly for the specific use case. The coloring of the com-
petences indicates their role in the MDO architecture (c.f. 
Fig. 5). The additional competences DOE and Converger 
have been integrated automatically by KADMOS. They are 
characteristic functions of this particular MDO architecture. 
Furthermore, in addition to the gray data pipelines connect-
ing the competences (MDAO data graph), the process lines 
are now visible, which indicate the order of the workflow 
execution (MDAO process graph). These have also been 
included within the step of defining the MDO solution strat-
egy by KADMOS. To give an example, the process lines 
going from the Converger to the competences Q3D[FLC]-
EMWET-seq, Q3D[VDE]-SMFA-seq, and MTOW indicate 
that these three competences are executed in parallel, which 
is a specific characteristic of the Jacobi converger used in 
this MDO problem solution. As in any standard XDSM, 
this process information is also provided by means of the 
sequence number assigned to each diagonal block. In this 
case, the three aforementioned competences have all the 
same sequence number 6. The competence Q3D[FLC]-
EMWET-seq is a combination of the sequentially running 
competences Q3D and EMWET, which have been merged 
into one competence block. Q3D performs an inviscid aero-
dynamic analysis to evaluate the aerodynamic loads on the 
wing, which are then used for the wing mass estimation by 
EMWET.

A right click on a competence gives the user the option to 
show the previously described hierarchical tree layout (see 
Fig. 13) of either all input or all output data for the respec-
tive competence. In addition, the user can be provided with 
competence information, including, e.g., its description, 
its role in the problem definition, or its role in the MDO 
architecture.

Within the process of re-configuring and adding new 
MDO problem solutions to an MDO case with KADMOS, 
the number of different MDO architectures for the same 
design problem can become quite large. One of the advan-
tages of the presented visualization package is the fact that 
all of the graphs produced are eventually combined into one 

single package and can be selected via a drop-down list in 
the main menu of VISTOMS.

Edge bundling view In Fig. 15, the Edge Bundling view 
for the DUT wing design problem with a DOE Jacobi archi-
tecture is shown. As can be seen from the figure, the number 
and type of connections between the competences can be 
grasped very quickly in this view.

Therefore, within the scope of VISTOMS, the Edge 
Bundling view is very convenient to provide a general over-
view on interconnections between competences in an MDO 
system. It is noticeable that, for the tree view of an edge 
between two competences, one can see the connections in 
both directions at the same time (if applicable). Input nodes 
are marked as red circles, output nodes are marked as green 
circles, while the direction of the connection is given in the 
headline of the tree view (see overlay frame in the bottom 
of Fig. 15).

Sankey diagram An example of the Sankey diagram for 
the DUT wing design with DOE Jacobi architecture is shown 
in Fig. 16. As with the Edge Bundling view, the information 
of the MDO process graph is not provided in this visualiza-
tion. Instead, the Sankey Diagram is a very convenient way 
to illustrate the magnitude of competence interconnections. 
To give an example, it becomes clear from Fig. 16 that the 
competence Q3D[FLC]-EMWET-seq is strongly coupled to 
the HANGAR  tool, whereas the connection to the Converger 
is rather loose. This is plausible, because the HANGAR  tool 
provides the full geometry description of the aircraft, while 
the convergence criteria of the Converger competence are 
only a small number of mass positions. Of course, to grasp 
the actual properties of the connections, these have to be 
examined in detail, which can be accomplished by the vari-
ous inspection options of VISTOMS.

4  Conclusions

A new approach for the manipulation and visualization of 
MDO systems has been presented, which combines three 
major developments from the AGILE project:

• the standardized MDO workflow storage format 
CMDOWS

• the MDO problem formulation system KADMOS for 
automated machine-readable graph data

• the D3.js-based visualization package VISTOMS

The visualization capabilities have been demonstrated on 
an MDO system based on a realistic aerostructural wing 
design case to explain its set-up and show the ability to 
support an increased understanding of large MDO systems 
down to the smallest detail. The package reduces both tech-
nical and non-technical barriers of performing MDO. The 
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technical barrier concerns the fully automated formaliza-
tion and integration of large MDO problems with KAD-
MOS. The non-technical barrier is tackled by the automatic, 
dynamic visualizations described in this paper that provide 
the opportunity to inspect, share, and document large MDO 
systems within heterogeneous design teams. Furthermore, 
the developments presented in this paper were embedded 
into the larger software architecture developed within the 

AGILE project called the AGILE framework, which is dis-
cussed in [10].

All developments presented in this paper are open source 
and form a fundamental output of the AGILE project. Future 
work for the open-source platforms will focus on extending 
their capabilities to handle a larger variety of MDO systems, as 
they will be put to the test in future AGILE design campaigns 
and other MDO projects.

Fig. 15  Edge bundling view for the DOE Jacobi for the DUT wing design
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