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SUMMARY
If secondary hydrocarbon recovery methods fail because of the occurrence of gravity override or viscous
fingering one can turn to an enhanced oil recovery method like the injection of foam. The generation of
foam can be described by a set of partial differential equations with strongly nonlinear functions, which
impose challenges for the numerical modeling.

To analyze the effect of foam on viscous fingering, we study the dynamics of a simple foam model based
on the Buckley-Leverett equation. Whereas the Buckley-Leverett flux is a smooth function of water
saturation, the foam will cause a rapid increase of the flux function over a very small saturation scale.
Consequently its derivatives can become extremely large and impose a severe constraint on the time step
due to the CFL condition.

Until now, the methods applied to foam EOR processes are only first-order accurate and do not incorporate
stabilization near the foam front as far as we know. In order to improve the accuracy near the foam front
we make use of total variation diminishing schemes that preserve the numerical stability of the solution.
Two dimensional simulations, including gravity, will shed light on the conditions under which foam might
exhibit viscous fingering behavior.
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 Introduction

Foam was first applied in the oil industry in the late 1950s to decrease gas mobility and hence reduce

the undesirable effect of viscous fingering and gravity override (Fried, 1961). To generate foam in an

oil reservoir, usually a mixture of chemicals and water is injected into the reservoir, which together with

the injected gas forms a foam. These chemicals make a large contribution to the production costs and

therefore the goal is to minimize their amount. To determine the required amount of chemicals for an

economically profitable production level, reliable simulations are needed.

There are several models describing foam flow in porous media in use to answer this need. We can

roughly distinguish between two classes of foam models: dynamic population balance models, which

take into account the strength (bubble density) of the foam, and local equilibrium methods, which in-

corporate the effect of the foam through a limit function (Ashoori, 2012). The first class of models

tries to capture the real dynamics of the process, while the second class assumes that there is only one

equilibrium in foam strength. Because of the complex nature of the foam the first class has a higher

number of degrees of freedom than the second. So from a computational point of view the second class

of models is more suitable for performing large-scale reservoir simulations and therefore most useful for

our purpose.

Local equilibrium methods are based on conservation laws, conserving the phases present (usually gas,

water and oil), while it is assumed that the surfactant is dissolved in either the gas or the water phase. As

soon as the gas comes in contact with a sufficient amount of water and surfactant a foam is generated.

The foam will cause a rapid decrease of the gas mobility, because it captures the gas in bubbles that are

separated by liquid films (lamellae) between the pore walls (Rossen, 2013). The water mobility is not

influenced by foam in these models. Hence the mobility ratio between gas and water is reduced, which

will increase the time that the injected gas needs to reach the production well (breakthrough time).

We describe the foam process by an immiscible two-phase flow model where gas is injected in a porous

medium filled with a mixture of water and surfactants. The change from pure gas into foam is incor-

porated in the model through a reduction in the gas mobility. Hence the two-phase flow description of

the flow stays intact. Since the total pressure drop in the reservoir is small both fluids can be considered

incompressible (Leeftink et al., 2013). As an example we use a two-dimensional quarter five-spot setup,

where gas is injected at a constant injection rate via a well at the bottom-left corner and water and gas

are produced at the same injection rate via the production well at the right-top corner.

The generation of foam will cause a rapid increase of the flux function over a very small saturation scale.

Consequently the derivatives of the flux function can become extremely large and impose a severe sta-

bility constraint on the numerical scheme (Rossen, 2013). A first-order upwind scheme might be stable

but introduces a lot of numerical diffusion around the shock front. In order to improve the accuracy near

the foam front we make use of a higher-order total variation diminishing (TVD) scheme that preserves

the numerical stability of the solution. Two-dimensional simulations are then performed to examine the

conditions under which foam exhibits viscous fingering behavior and gravity override.

Mathematical model

State variables and parameters

The variables involved are the Darcy velocity u, the pressure p, the density ρ and the viscosity μ of

the fluids present. Because we deal with a porous medium we express the amount of fluid in terms of

the porosity φ of the medium, defined by the ratio of the pore volume to the total volume, which is

assumed constant. The phase saturation S, is defined as the volume fraction of the pore space occupied

by a fluid phase, so that both phases make up for the total volume. The relative permeability kr depends

on specific properties of the fluid and the rock and is defined as a function of saturation. The absolute

permeability k depends solely on the properties of the rock and is a function of the spatial variables

only. Furthermore z is the depth, γ the gravitational acceleration and ∇ denotes the gradient operator. To

denote the partial derivative of a variable q in time we write ∂q
∂ t . The divergence of a vector v is denoted
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 by ∇ ·v = (∂x,∂y) ·v.

Conservation law

Starting from mass conservation, we can define a basic model for the gas saturation Sg,

φ
∂Sg

∂ t
=−∇ · ( fgu+λw fgΔργ∇z)+qg, (1)

where fg is the gas fractional flow function, qg the gas flow rate, Δρ the density difference between

water and gas, and u the total Darcy velocity that follows from Darcy’s law for the fluid phase velocity,

u =−k(λ∇p+ργ∇z), (2)

with the total mobility λ = λ (S) given by the sum of the phase mobilities

λα = k
krα(Sα)

μα
. (3)

The fractional flow function is defined as the fraction of the phase mobility and the total mobility. Since

the fluids are considered incompressible it follows that

∇ ·u = q, (4)

where q is the total flow rate of water and gas.

Foam model

If gas comes into contact with a sufficient amount of water and surfactants, foam will form. This will

cause a rapid decrease in the gas mobility, which can be modeled by decreasing the relative gas perme-

ability function by a mobility reduction factor fmr,

k f
rg :=

k0
rg

fmr
, fmr = 1+R ·Fw ·Fs, (5)

where k0
rg is the relative gas permeability of the gas in its original state, R is a constant that accounts for

the maximum flow resistance of the foam, and Fw and Fs are functions that describe the sensitivity of the

foam to water saturation and surfactant concentration, respectively (Zanganeh et al., 2011). We assume

that the surfactant concentration is the same everywhere so that Fs = 1. For Fw we use the STARS foam

model used in (Leeftink et al., 2013),

Fw = 0.5+
arctan(κ(Sw −S∗w))

π
, (6)

where S∗w is the least amount of water that is needed to form a foam. Since a sudden jump in the mobility

of the gas at S∗w will cause numerical problems (Rossen, 2013), this jump in mobility is approximated

by a continuous arctangent function, so that it is smeared over a width that scales with 1/κ . In Figure 1

the relative permeability function described here is shown. The flux function and its derivative for the

scaled parameters are shown in Figure 2.

Scaling the model

To reduce the number of parameters we scale the model given by equations (1) and (2) in a similar way

as done by Riaz and Tchelepi (2007). If we let W be a characteristic length scale of the model, and U a
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(a) κ = ∞ (b) κ = 40

Figure 1 Relative permeability function for a model with and without foam for S∗w = 0.3. The sudden
transition due to foam for R = 10 is approximated by a continuous line at the right with κ = 40.

characteristic velocity scale we can scale the variables as follows

z = Wz∗, (7)

∇ =
∇∗

W
, (8)

u = Uu∗, (9)

t =
W
U

t∗, (10)

p =
μUW

k
p∗, (11)

q =
U
W

q∗, (12)

where the superscript ∗ denotes a non-dimensional variable. The relative permeability functions are

scaled by their endpoint relative permeabilities, i.e. the value of the relative permeability for the residual

water and gas saturation, Swc and Sgr, respectively. Substituting all of these variables into the dimensional

model leads to a non-dimensionalised system of the form,

φ
∂S∗g
∂ t∗

= −∇∗ ·
(

k∗rgM
λ ∗ u∗+

k∗rwk∗rg
λ ∗ G∇∗z∗

)
+q∗g, (13)

u∗ = (−λ ∗∇∗ p̄+Gkrg∇∗z∗) , (14)

∇∗ ·u∗ = q∗, (15)

where

∇∗ p̄ = ∇∗p∗w +
ρwgk
μwU

∇∗z∗, (16)

and λ ∗ = Mkrg + krw is the dimensionless mobility function. The variables M and G denote the dimen-

sionless mobility ratio and gravity number respectively, which are given by

M =
μw

μg

k∗rg(1−Swc)

k∗rw(Sgr)
, (17)

G =
kΔρg
μgU

. (18)

(19)
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Figure 2 Flux function and derivative for the foam model compared with the Buckley-Leverett flux for
S∗w = 0.13, κ = 100, R = 1000, M = 10 and G = 2.

These two variables together with the dimensionless foam parameters R, κ and S∗w, dimensionless injec-

tion rate I∗ and porosity φ , now determine the entire behavior of the fluids for a certain initial boundary

value problem. In the rest of the article we will drop the star superscript for readability and define S to

be Sg.

Numerical methods

The two-phase foam model described in the last section consists of a hyperbolic equation for the satu-

ration (13) and an elliptic equation for the pressure (15). We solve this system by the implicit pressure

explicit saturation (IMPES) method, which is designed for this kind of hyperbolic-elliptic problems be-

cause it takes into account the different nature of the equations.

We use a structured staggered grid representation of the problem with no-flow boundary conditions ev-

erywhere, as shown in Figure 3. The pressure is defined up to an additive constant, so to make sure

the system is well-posed the pressure is prescribed in one of the grid cells. The no-flow boundaries are

implemented by introducing additional layers of ghost cells around the boundaries. These ghost cells

take the same value as the cells inside the boundary so that the net flux across the boundary is zero,

i.e. the state variables saturation and pressure defined in the center of a grid cell are equal to the state

variables in their corresponding ghost cells. Since we use a staggered grid for the state variables, the

Cartesian components of the velocity, u and v, are not defined in the cell centers, but at the vertical and

horizontal interfaces respectively. To ensure no flow through the boundaries these values are reflected

through the boundary. The wells are modeled in the center of each grid cell so that the velocities at the

well do not affect the boundary conditions. We represent the wells either as point-sources or as circular

wells that are extended over more grid cells.

By using operator splitting, as described in Karlsen et al. (2001), we can split the saturation equation into

a hyperbolic conservation law and an ordinary differential equation (ODE) for the mass flow rate. They

are solved sequentially using a second-order Strang splitting scheme, which preserves the symmetry of

the operator.

Hyperbolic equation

The hyperbolic equation

φ
∂S
∂ t

=−∇ ·
(

krgM
λ

u+
krwkrg

λ
G∇z

)
(20)
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(a) NxN staggered grid (b) detailed view

Figure 3 Staggered grid with two layers of ghost cells. The red dotted layers represent no-flow bound-
aries and the black squares and arrows the velocities in the x and y direction, respectively.

is solved with a second order MUSCL scheme, which is a total variation diminishing finite volume

method reconstructed from the first order Godunov’s method (Toro, 2009). The TVD property prevents

instabilities to occur that are due to the numerical method. In other words a TVD scheme is mono-

tonicity preserving if the Courant-Friedrichs-Levy (CFL) condition on the timestep is satisfied (Toro,

2009). Because of the sharp transition in the flux function when foam is generated this condition is very

restrictive for the foam model, especially for large values of κ .

Source term

The ODE is given by

φ
∂S
∂ t

=

{
qSin j, if q > 0,

qSg, if q < 0.
(21)

In both wells we prescribe the volume flow rate, so that q = I/Vwell , where I is a constant injection rate

and Vwell is the volume of the well. The injected fluid saturation Sin j is constant and the produced fluid

saturation depends on the saturation present at the production well. The ODE is solved by the second

order trapezoidal rule, which is A-stable and therefore suitable for stiff ODEs (Dahlquist, 1963). The

size of the timestep of an A-stable method does not suffer from stringent restrictions and the choice only

depends on the desired accuracy , but is limited because we cannot exceed the saturation range 0≤ S≤ 1.

Consequently an additional restriction on the timestep has to be made on top op the CFL condition. We

incorporate this by restricting the total variation of the saturation in time for equation (13), so that

Δt ≤ ΔSmaxh(
∂Sn+1

∂ t

)
max

≈ ΔSmaxh
λmaxΔSmax + |q|maxh/φ

, (22)

where ΔSmax is the maximum variation allowed in the saturation per timestep, λmax is the maximum

wavespeed and h is the grid size. Consequently, if the source term is zero everywhere, the maximum

timestep boils down to the CFL condition with a CFL number CCFL = 1. To prevent unstable solutions

the maximum variation in the saturation ΔSmax should be of the order 10−3 according to Chen et al.

(2006). The restriction caused by the source term can therefore cause the timestep to decrease by an

significant amount in a foam free setup with |q|maxh > λmaxΔSmax. However, if foam is added, this will

cause a strong restriction on the timestep for large κ due to the CFL condition, and hence the restriction

caused by the source term will be of minor importance.
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 Elliptic equation

For the elliptic equation (15) we use a multigrid linear solver that combines a five-point stencil with a

nine-point stencil that is rotated by 45 degrees in order to reduce the grid orientation effect (Wirnsberger,

2012). The five-point stencil accounts for the unrotated coefficients and is combined with a nine-point

stencil that accounts for the rotated coefficients and is projected back onto the original grid. The domain

is parallelized by MPI using the HYPRE library (Falgout and Meier Yang, 2002) in order to speed up the

computations, since roughly 73% of the simulation time is spent on the pressure solver for this model

(Yahya Afiff, 2014).

Results

We will study the constant injection of pure gas in a water-surfactant filled reservoir for two test cases.

In the first case the reservoir is vertical, which causes the gas to flow upwards due to a gravity force

and in the second case the reservoir is horizontal and gravity does not play a role. We will take a close

look at the behavior of the numerical solutions around the foam front, and compare them to simulation

results for the same model without foam (gas-flooding). We use the Brooks-Corey relative permeability

functions for gas and water, given by

k0
wr = krwe

(
Sw −Swc

1−Swc −Sgr

)nw

,k0
rg = krge

(
Sg −Sgr

1−Swc −Sgr

)ng

, (23)

where krwe and krge are the maximum relative permeabilities, Swc and Sgr the residual water and gas

saturation and nw and ng power coefficients that depend on the rock type. The foam parameters we use

are similar to those in the paper of Leeftink et al. (2013) and are listed in Table 1. The dimensionless

mobility ratio and gravity number are varied for the different simulations, as well as the grid resolution,

error tolerance, end time and the absolute permeability. The other parameters are taken constant (see

Table 1).

Case 1: gravity override

Gravity override occurs when the lighter fluid (in this case gas) separates from the heavier fluid due

to gravitational forces. This undesirable event diminishes the sweep area of the reservoir and should

therefore be avoided. As shown in Figure 4, the model with foam is less inclined to gravity override

than the gas-flooding model. This is caused by the sharp decrease in mobility, so that gravity has a

smaller effect on the flux, which follows from the convex-hull construction of the flux as shown in

Figure 2(a).

Case 2: viscous fingering

In order to see viscous fingering a high spatial resolution is needed. We opt for a resolution of 800 grid

cells in both directions. Because of the severe CFL constraint on the timestep for the foam model this

means we need a timestep that is several orders of magnitude smaller than the timestep for the same

simulation without foam. Upon that it takes much longer for the foam front to reach the production

well as for the gas front because the front is moving much slower through the reservoir due to the

decreased gas mobility. Furthermore we introduce a random heterogeneity in the reservoir to trigger

the instabilities so that they show up at an earlier stage of the simulation, to save simulation time. The

absolute permeability is generated from a normal distribution with mean 10−9 and a standard deviation

of ten percent. In Figure 5 and Figure 6 the results for these simulations are shown. There is no viscous

fingering visible for the foam model, while small fingers appear for the gas-flooding simulation. The

hypothesis is that these fingers are suppressed by the sharp transition between foam and water.

In Figure 7 the effect of the foam on the production of water is shown. Since the breakthrough time

of the gas front is increased due to foam, the cumulative water production grows over a longer time



 

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery  
Catania, Sicily, Italy, 8-11 September 2014  

 

parameter value dimension explanation

α π/2 radians tilting angle

ε - - error tolerance for the linear solver

G - - gravity number

k 10−9 m2 absolute permeability (mean value)

κ 3.4 ·104 - steepness parameter foam transition

I 1.840 ·10−4 m3/s injection relative permeability gas

krge 0.8649 - endpoint relative permeability gas

krwe 0.6822 - endpoint relative permeability water

L 103 m length of reservoir

M - - dimensionless mobility ratio

μg 2 ·10−5 Pa ·g · s gas viscosity

μw 10−3 Pa ·g · s water viscosity

N - - resolution of reservoir

ng 2 - power coefficient of gas

nw 3.5 - power coefficient of water

φ 0.3 - porosity

R 105 - maximum resistance foam to flow

ρg 1 kg/m3 gas density

ρw 103 kg/m3 water density

Sg,r 0.0 - residual gas saturation

Sg,in j 1.0 - injected gas saturation

Sw,c 0.0 - critical water saturation

S∗w 0.13 - critical water saturation

U 1 m/s characteristic velocity

Table 1 Simulation parameters, a value of − means that the parameter is not constant.
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Figure 4 Gas saturation contour plots for a vertical reservoir with t = 100, N = 200, M = 100, G = 2,
k = 10−9 and ε = 10−6.
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Figure 5 Gas saturation contour plots for a horizontal reservoir with t = 150, N = 800, M = 50, G = 0,
kmean = 10−9 and ε = 10−10.
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Figure 6 Gas saturation contour plots for a horizontal reservoir with t = 280, N = 400, M = 50, G = 0,
kmean = 10−9 and ε = 10−10.
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Figure 7 Water production for a horizontal reservoir with N = 30, M = 50, G = 0, kmean = 10−9 and
ε = 10−6.

range and so the total production is much larger for the foam model. The gas-flooding model is mainly

producing gas after the breakthrough time is reached. We note that our model does not contain oil, and

that the increased water production is therefore merely an illustration of the positive effect of foam on

the gas breakthrough time.

Conclusions

The results show that foam has an effect on the shock saturation. In comparison with gas-flooding the

foam solution has a much lower shock saturation for the water phase and therefore a sharper shock front.

By closer examination the shock saturation is almost equal to the critical saturation. This also follows

from the convex-hull construction of the flux function with foam.

It turns out that foam has a significant effect on the behavior of the gas front. As expected the simulations

with foam suffer less from gravity override and viscous fingering than the simulations without foam.

This leads to a better sweep of the reservoir and a much lower breakthrough time. Although these

advantages of foam are already well-known in the reservoir engineering community, to our knowledge

these phenomena have not yet been studied using higher-order schemes.

Ongoing work includes a quantitative analysis of the instabilities at the gas front with and without foam.

In order to do this we need to increase the grid resolution, as well as the order of the numerical methods.

To verify our results we plan to compare them with real-world reservoir data.

Acknowledgements

The first author would like to thank Dr. Nikiforakis for providing the opportunity to visit the Centre

for Scientific Computing (Cavendish Laboratory, University of Cambridge) and to the other staff and

students at the Centre for Scientific Computing for their help and hospitality. Futhermore we thank Bill

Rossen of Delft University of Technology for useful discussions.

References

Ashoori, E. [2012] Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions. Ph.D. thesis, Delft
University of Technology.

Chen, Z., Huan, G. and Ma, Y. [2006] Computational methods for multiphase flows in porous media. SIAM, 1st
edn.

Dahlquist, G.G. [1963] A special stability problem for linear multistep methods. BIT Numerical Mathematics, 3
(1), 27–43.

Falgout, R.D. and Meier Yang, U. [2002] hypre: a Library of High Performance Preconditioners. In: Precondi-



 

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery  
Catania, Sicily, Italy, 8-11 September 2014  

 tioners, Lecture Notes in Computer Science. 632—-641.
Fried, A.N. [1961] United States Bureau of Mines Bulletin 5866. Tech. rep., Bureau of Mines.
Karlsen, K., Lie, K.A., Natvig, J., Nordhaug, H. and Dahle, H. [2001] Operator Splitting Methods for Systems of

Convection-Diffusion Equations: Nonlinear Error Mechanisms and Correction Strategies. Journal of Compu-
tational Physics, 173(2), 636–663, ISSN 00219991, doi:10.1006/jcph.2001.6901.

Leeftink, T.N., Latooij, C.A. and Rossen, W.R. [2013] Injectivity Errors in Simulation of Foam EOR. IOR 2013 -
From Fundamental Science to Deployment, April 2013, EAGE, St. Petersburg, 16–18.

Riaz, A. and Tchelepi, H. [2007] Stability of two-phase vertical flow in homogeneous porous media. Physics of
Fluids, 19(7), 072103, ISSN 10706631, doi:10.1063/1.2742975.

Rossen, W.R. [2013] SPE 16624432 Numerical Challenges in Foam Simulation: A Review. SPE Annual Technical
Conference and Exhibition held in New Orleans, October, SPE International, New Orleans.

Toro, E.F. [2009] Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer New York, Inc., 3rd
edn.

Wirnsberger, P. [2012] The grid orientation effect in miscible displacement. Mphil dissertation, University of
Cambridge.

Yahya Afiff, I. [2014] Reservoir simulation of foam flow using Kepler GPU. Msc. thesis, Delft University of
Technology.

Zanganeh, M.N., Kam, S.I., LaForce, T.C. and Rossen, W.R. [2011] The Method of Characteristics Applied to Oil
Displacement by Foam. SPE journal, (March), 8–23.


