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List of symbols

The list of symbols gives an explanation of symbols which are uséd in different places in this
thesis. The Ïist is not exhaustive and we only present the ones occurring the most frequently
or which meaning is not evident. Symbols only used once are explained close to the equation
where they are used in and all symbols having a different meaning depending on the chapter
where they are used in are also included in this list.

chapter 1 & 2

VII

P pressure applied on the plat-
form

D platform flexu rai rigidity
D platform reduced flexural

rigidity
m platform mass per unit area
IL platform reduced mass per

unit area
F Drift force
g Green's function
L platform's length
B platform's width

wavelength in the platform
'i Poisson 's ratio
H water depth
C(k) wave celerity ïn the platform
Cmin minimum of the wave celerity

fi angle of incident wave
f small parameter

surface elevation
p platform area
F free surface surrounding the

platform
h platform's draft
D- fluid region beneath the plat-

form
fluid region towards infinity

av interface between D and

w time dependent platform el-
evation

w complex platform elevation
Ps platform density
p water density



VIII List of symbol

C'piate wave celerityfor a plate with-
out Water

G!9 water wave celerity in shal-
low water

U plane speed
w deflection under the wheel

chapter 3

E platform boundary
E wetted part of the platform
E2 air-water interface of the air

chamber
C platform center of volume
S surface area of E2
Sh S, projection of E2 on the

plane z O

ha distance of E2 form the sea
level

S, intersetion of the platform
with the plane z = O

s surface area of S
V0 water displacement
V5 volume of the air chamber

when the platform is at rest

chapter 4

u normal shell deflection
V tangential shell deflection
w vertical shell deflection
h water depth
d shell thickness

wo deflection under the wheel at
rest

b(x) width of the ship at abscissa
X

K: restoring moment for a ship
slice

Ptam atmospheric pressure.
VC instantäneöus volume of the

air chamber
PC8 pressure in the air chamber

when the platform is at rest
Pc instantaneous pressure in the

air chamber
as gas compression ratio
-Y thermodynamic ratio
'i incoming wave number

diffraction potential
't,2 radiatiofl potential
M restoring moment
C sound celerity

source strength



General introduction

This thesis has the peculiarfty of presenting not one single main subject but four different
studiès. This introduction explains what is the aim of such a work and the reasons which
motivate it The four studied subjects are presented as well as the method we chose for their
resolution.

Background

Hydrodynamics and the study of water waves propagation are not new sub-
jects They have furnished, since the nineteenth century, numerous study op-
portumties to both pure and applied mathematicians Due to the simplicity
of the equations fòrmulations (contrary to electrodynamics, the equations are
scalar), the treaties in mathematical physics still constantly refer to hydrody-
nanuc phenomena for the presentation of the boundary value problem theory
In a sense, hydrodynamics is an 'old science and the main governing equa-
tions have for a long time been subject to extensive studies and are now well
known.
lt is the oil-industry which mainly, for it s ocean engineering needs, main-
tained, and still nowadays maintains, a constant interest in this field In order
to predict the behavior of floating platforms or tankers for oil exploitation, a
large effort has been put by mathematicians and engineers in the derivation
of appropriate models. The complexity of the mathematical models followed
the need of the description of new phenomena Taking in account forward
speed for the sailing tankers required new additional terms in the free surface.
equation and the computing of the drift forces led to more accurate free sur-
face condition treatment and the development of the so-called "second order
potential".
Up till now, whatever was the subject, efforts of modeling were then mainly
focused on the free surface conditiOn treatment. The floating bodies had the
common characteristic of being solid and rigid, leading to mathematical sim-

i



plifications for the boundaries equations treatment on their hull.

There is nowadays a growing interest for constructions in off-shore engineering
which do not satisfy these last criterion. Either the body can not be considered
as rigid, but is flexible -that's the case for floating platforms of very large di-

mensions and small draft which are candidates for floating airports concepts- or
the body can not be considered as whole as solid - that's the case for platforms
which possesses an air cnshion ensuring their floatability-.
The objective of this thesis is the study of the behavior in waves of four of such
constructions.

The first two chapters are devoted to the study of the deflections of a floating
flexible platform subject to the forcing of incoming waves or the one of a moving
plane on it's surface. The third chapter, is independent of the first two ones
and we study the motion of a floating platform with air cushion in waves. The
fourth and final chapter is devoted to the study of influence of periodic waves
on the deflections of a flexible shell, mounted at the sea bottom.
Mathematically, we make use of the well known linearized potential theory
to describe the physical phenomena involved. The originality of these ana-
lyzes originates in the new arising types of boundary conditions applied on the
hull of the bodies. Indeed, the boundary condition on the flexible platform
involves a fourth order partial differential equation for the normal derivative
of the potential and the one applied on the water-air cushion interface is de-
scribed by an integrodifferential operator.. In the fourth chapter, we derive
the hydrodynamic problem for the fluid and the mechanical one for the shell.
The kinematic relation between the fluid partide motion on the hull and the
shell deflection couples the two problems.

General introduction

Figure 1.1: 1000 m Mega-Float floating airport model in Tokyo



General introduction

Problems description

Floating flexible plafforin

There exists today several projects, in the United States (San Diego), and in
Japan (Osaka and Tokyo, see figure (1.1) 1 ) of floating platform construction for
the purpose of airports. Their dimensions are about several kilometers by sev-
eral hundred meters while their thickness is several meters These structures
have a mat-like dynamic behavior which can be described by a plate equation.
Due to their small draft, it is reasonable to model them geometrically as a thin
layer of zero thickness laying at z = O. Therefore, it is possible to consider the
platform as a free surface, as it is done for water waves equation derivation.
The classical Neumann boundary condition is modified in order to take in ac-
count the mass per unit area and rigidity of the plate, leading to a fourth order
partial differential equation.
The solution for the plate deflection is derived with a Green function method
and is found to fulfill an integro-differential equation. Contrary to classical
floating bodies with a draft, both influencing and influenced points lay at.z = O.
A special attention is therefor paid to the establishment of this last equation
The numerical problem is solved via a finite difference scheme in two and three
dimensions and numerical results presented We also show that the drift force,
as expected small, can be obtained without difficulty as a simple post-calculus
once the deflection is obtained.
In a last section, it is shown how the method used for a mat-like structure can,
with small changes, be extended to the deflection determination of a thin and
elongated ship, with a three dimensional geometry.

Moving pressure pont

Using the same platform model as in the first chapter but considering for sim-
plification the plate infimte, we follow our analyze by computing the deflection
caused by a moving plane on the platform in absence of incoming wave. The
problem has great resemblance with the one of a moving pressure point trans-
lating on an ice sheet and reference is made to the previous works done in this
case. Our equation describing the deflection is derived in a slightly different
way with the help of Laplace and Fourier transform. In the particular case of
a plane moving with constant speed, our solution is drastically simplified and
contrary to what has been done up to now, is accurate in the wheel vicinity
as well as far away. Existence of critical speeds, earlier mentioned by other
authors, is showed and analytic solution presented in some cases. An analogy
with the Cherenkov electromagnetic radiation is also presented. The numerical
determination of the platform deflection in the case of a plane with a transla-
tion motion with time varying speed, written in the form of a double integral,

1photo found on internet on the site www.srcj.or.jp



4 Generai introduction

in time and in the wave number, presents some difficulties and is time con-
suming. A contour deformation is the complex plane is used to speed up and
niake more accurate the involved numerical integration.

Platform with air cushion

In the third chapter,. we analyze the behavior of a floating platform with air
cushion in waves. A well known mechanical problem met ïn off-shore engi-
neering is that very large bodies experience large moments and stresses in the
structure. An air cushion device can remedy these problems because the pres-
sure of the gas trapped in the chamber is almost uniform in space and tends to
average the constrains acting on the hull.
The air chamber behaves like a spring. The incoming waves generate water
elevation in the cushion and the gas compression, increasing the pressure, will
force the body to move.
We model the gas compression in the air chamber with an adiabatic gas law.
The interaction between the water flow and the gas at the interface in the air
chamber leads to a new kind of free boundary condition. It,is in a sense an ex-
tension of the classical Neumann condition on the linearized water free surface
at z = O but is described by an integro-differential equation. Once the bound-
ary equation have been established, as well on the air cushion interface, on
the wetted part of the hull and on the ocean surfàce, we use a Green function
method to derive the integral equations of which the potentials of diffraction
and radiation are solution. As for classical rigid platforms, added masses and
damping coefficients are computed. In order to evaluate the motions experi-
enced by the platform in waves, we compute the restoring forces and moments
acting on the body. The air cushion presence change drastically the restoring
coefficients and special attention is paid to the derivation of these expressions.
The air cushion is shown to confer a particularly bad stability to the platform.
Analytical results are derived for bodies with very simple geometries in order
to understand the underlying phenomena involved. Comparison is also carried
out with acoustic models derived by other authors.
Finally, we test our numerical model on a real barge tested in model test basin
by Pinkster. Our computed results agree well for the experiments.

Deformation of an elastic cylinder m waves

In the fourth and last chapter, we investigate the deflection of a thin shell
cylinder, mounted at the sea bottom, by periodic waves. Contrary to the first
three chapters, it will not be possible to establish an unique boundary equation
on the hull. The mechanical shell equation and the hydrodynamic equations
are given and the kinematic relation on the shell hull couples them. The har-
monic water waves diffracted by the cylinder are described by means of the
eigenmode expansion. Although these functions are not eigenfünctions for the
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mechanical shell equation, we expand the highest derivatives involved in me-
chanical équations using the same set of orthogonal functions. Once we have
shown with a simple example that our method converges when we increase the
number of modes, we apply it for a real shell and present numerical results.



Chapter i
The behavior of large flexible
platforms in waves

In this chapter, we present a method to study the behavior of large floating flexiblé bodies
excited by waves Our analysis is restricted to structures which dynamic behavior can be
described by a rode (or a beam in 3D) model We are mainly interested in the applica
tions for large flexible artifiólal islands for the purpose of floating airports and ships ôf large
dimensions.

1.1 Introduction
Very large floating structures (VLFS) are being considered as an airport in many
projects around the world These platforms are several kilometers long and a
couple of hundreds meters large. In comparison their thickness, usually less
than 10 m, is negligible.
Due to their important sizes the structures, subjected to an external load,
wave forcing or the load exerted by the plane, can no longer be considered
as rigid The goal of this study is then to determine the deflections of the
platform and their associated stresses in the structure. Usually, structural and
hydrodynamic analyzes are performed separately The load is evaluated in a
first stage, assuming that the body is rigid and the deflection is then computed
For those very long and thin structures, where the platform and fluid interact
on each other, the elevation is mainly due to the elastic deformation and can
be of large importance It is expected to be much higher than the one that
would be generated on a similar rigid body.
In this study, we do not consider the fluid elevation under the platform and
the elastic deflection separately and their coupling gives rise to a new boundary
condition at the plate-water interfáce.

7



8 1 The behavior of large flexible platforms in waves

We model the platform dynamically as a two-dimensional thin plate governed
by the Euler beam theory. The free edge boundary condition will furmsh the
boundary equation for the plate. The choice of those boundary conditions
has as consequence that continuity of the elevation between the plate and the
water is not assured. The liquid is assumed ideal, incompressible, it's motion
is irrotational and we will make use of the dassical linearized potential theory
for the description of the fluid motion.
In the first section, we present an approach to describe the behavior of a plat-
form of general shape influenced by long crested harmonic waves. Many au-
thors presented some methods of resolution. OrIginally, Stoker [28] solved
the two-dimensional problem (for a one-dimensional platform) using linear
shallow water theory and obtained closed forms solutions for the beam el-
evation and stresses. Recently, other authors provided solutions for two-
dimensional platfOrms. Some of them are based on the "generalized mode"
decomposition where the motion of the structure is described in rigid and flex-
ible modes, with associated potentials (Lee and Newman) [11]. Others use
for the velocity-potential, an eigenfunction-expansion in vertical modes which
satisfy the govermng Laplace equation and the free surface condition (Kim and
Cengjz Ertekin) [29].
Our method is based on a boundary element method. We use a free surface
Green function and develop a integro-differential equation for the determina-
tion of the deflection. A detailed treatment of the resolution in the case of
a two-dimensional platform and a rectangular three-dimensional platform is
given and numerical results presented.

In the second part, we show how the integro-differential equation developed
for a platform analysis, can be easily modified in order to study hydroelastic
behavior of a ship in waves. The problem of deformations of a ship in calm
water is, for a long time, a well known problem for ship builders. Bishop and
Price [16] initiated, in the last seventies, the study of flexible shops submitted
to waves. They use, nevertheless, simplified hydrodynamic models for this
purpose. Our model presents the advantage of a full coupling between the
waves forcing and the elastic distortion. Numerical results are given for the
idealized case of a parallelepiped barge in waves.

1.2 Mathematical formulation

In this section we give the mathematical equations which describe the physical
problem. We consider a platform of general shape, in open sea, submitted
to regular incoming waves. The draft h is small compared to the horizontal
dimensions so that we can consider it as a thin layer laying at z = O, where z
is assumed to point vertically upward.
The area occupied by the platform (at z=O) is denoted 7 and the free surface
surrounding the platform .F. The fluid domain is split up in two regions. The
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Figure 1.1:, platform geometry

region underneath the platform is defined as V and the region towards infinity
V While the interface is denoted as DV.
The fluid is assumed incompressible and inviscid. We introduce the velocity
potential so that V = Vc(x, t) Under those assumptions we have the fol-
lowing equations for the potential

V=O forz<O
for z =-oc

8 IP forz=O, (x,y)EPpgWp-=10 forz=O,(x,y)e

where W is the free surface elevation, P the pressure applying on the plate
and p the water density.
The displacement of the free surface is related to the velocity potential by the
kinematic condition

(1.2)

(1.3)

In addition, suitable radiation condition must hold at infinity.
The platform is assumed to be an elastic plate of thickness h where bending
moments and transverse shears are active We invoke the basic hypothesis of
the Bernoulli-Euler theory to describe its dynamic behavior. This carries the
assumptions that slopes and transverse deflections W are small and that the
rotatory-inertia effects are neglected Complete requirements for this theory
can be found in Graff [19].
The dynamic equation for the plate rèads then

Ai
DV

- 8W
(1.4)
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DVW+p5h=P (1.5)

where D = EI/(1 u2) is the fiexural rigidity (E is the YOung's modulus, I the
moment of inertia of the plate) The Laplacian of the Laplacian is designated
as the biharmomc operator V4 and Ps is the mass density per unit area.
We assume that the plate is a thin layer at the free surface z = O and we denote
m = p8h its mass per unit area of the plate.
The free edge boundary conditions can be found to be

a2w a2W 03w 83w -

and
O

+(2_v)8020 onDP (1.6)

where OP is the platform boundary, u the Poisson's ratió ,n is in the normal
direction, in the horizontal plane, and s denotes the arc of length along the
edge.
Combining (1.3) and (1.5) we obtain

ID a2 02 2

The waves are monochromatic with frequency w and Wave number k0 = w2/g.
The pressure P the potential and the vertical elevation W have an harmonic
time dependence and we Write W(x,y,t) R(w(x,y)e_u1t), 4(x,y,z,t) =

y, z) _iWt) and P(x, y, t) = .IR(p(x, y) e_it)
The undistùrb incident potential equals

çt,inc(x) exp{iko(x cosß + ysinß) + koz}

The potential function inD+ ¡s written as a superposition of the incident wave
potentiai and a diffracted potential, as fóllows

(x) ,iflC(x) + (x)

while the total potential is denoted as r in D.
must satISf,' the Sommerfeld radiation condition as r - , given by

lirnv(------ik) .....o
Or

on P (1.7)
pg at j Oz gOt

(1.9)

(1.10)
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and forx E V

4q5+_..ff
OVu.F

L

Figure 1.2: Contour of integration

Doing some contour of integration, it is possible to derive the asymptotic form
for Ç when R -+ oc

Ç iirk0e (koR) (1.12)

1.2.1 Formulàtion of integral equation

Using Green's theorem för çr and +, for E D we have

47r5.=ff(f__ dS
aDu'

(1.13)

We introduce the'Green's fuñction Ç(x,C), (where xis the source point and
the field point) that fulfills Ç = 4irS(x - C) the free surface condition and
the radiation condition. Its expression cari b found in Wéha usen and Laitone.
[241.

= r + r + f k _kOe()J0(dk (1.11)

where the contour L is in the complex k-plane form k = O to k = oc that passes,
due to the radiation condition, the pole of the integrand k = k0 underneath
(fig:1.2),R2=(x)2+(yri)2,r2=R2+(z)2andr=R2+(z+)'2.

k0

dS o=ff
OVuP

(1.14)

ôn On
dS
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Due to the free surface condition fòr Ç and the integral over J vanishes
nd adding üp the two expressions in (1.13) leads to

OÇ i i i--_vÇ(+) +i'(---)
On r1

)ds+ff(

mw2 D 02 82 2ff(_ __(+) )cs

where the notation {. ...] has been used for the jump of the function concerned.
At the dividing surface 8V we require continuity of the total potential and its
derivative and we have [] = = Injecting (1.7) in (1.15) leads
forEV,z<O to

4
= ff

(inc 8G g
c95flC)

dS-

(1.16)

Ç has a weak singularity so that we may take the limit when z * O in the
integral over P. for z <z O, We write

ffoc OÇ OçbiflC(inc
On ) dS + ff (çc g

O ) dS
P

(1.17)

The integral over P, where ( = O, equals O for z <z O. We have to show that
this still holds for z O.

Following Noblesse, we can write for z < O

(1.18)

Injecting this relation and equation (1.7) in (1.17) and taking the limit for z -+
O, the first integral over 0V in (1.16) is found to be 44,2nC. We alsO notice that
the integral over ¿1V in (1 16) is independent of the parameters of the platform
If no platform is present m and D are set to zero and hence the integral equals
4lrc.
We end up with an integral equation valid fOr z = O and únknown value qÇ.

grn (115)



1.2 Mathematical formulation 13

(v(f$)
kaff (v(

with parameters

Once the integral equation is solved, adding the two expresSiOns in (1.14) and
following the same analysis as for ç-, we can express as follow

a2 a2 2

ff (v(2 + -

We notice that thê equations do not provide an equality betweeñ the platform
deflection and the water wave height at the edges. Using (1.20) and (1.19),
it is possible to show that at the edge, the difference between the platform
elevation w and the water Wave elevation w+ read

- = (DV4 - p)w (1.21)

We can compute the asymptotic field fOr at infinity.

4+ =
.F(0) = iff (VV4 -

(_.ffP(t)ÔW(t) dS±f

a22
)

_)gds+4rnc

D m

pg pg

+ - W)2dl X n)

ikçjpcos(7O) dS

(L19)

(120)

(1.22)

In the following, we dénote for simplicity , q.

1.2.2 Drift force

The drift force P is obtained by integrating the the dynamic pressure P over
the platform hull and averaging it in time This force can be split in two com-
ponents. The.first one is due to the pressure acting on the platform with slope
fi = The second one originates in the difference between the plat-
form elevätion,and the wave height at the edges of the structure (although the.
platform has no draft, it is supposed to have vettical wäll at it's edges).

(1.23)
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where W+ and W are the real wave elevation and the platform elevation
on the platform edge a and n the component of the normal vector in the x
direction, (see Pinkster [5] for the derivation of the second integral in equation
(1.23)).
The unsteady potential can be decomposed into a first- and second-order part
as (1) + 2(2) ± Q(3). From Bernoulli's equation, we get for the

pressure P _f1ï) + + 22) + Q(3). Usually, the drift
force calculus ïnvolves the computing of the second order potential (2) But
in the special case of an island with zero draft, only the first order terms in c,
involved in ç5 and P, influence the result.
Using the expression for the pressure given in equation (1 5) and after averaging
in time, one can obtain for the expression of the drift force

= _ ff {°")(Dv4(w) - mw21R(w))-

_Dv) (DV4(w) - mw2(w))} dS + pg f IV4
ap

pwI2dle

(1.24)

1.3 One-dimensional platform
One-dimensional model will be useful for the understanding of the difficulties
which can arise in solving such a integro-differential equation and for pro-
viding computational validations involved fòr two-dimensional platforms. We
consIder a thin elastic beam of infinite extend m the y direction and width L.
With a similar analysis in 1D, equatións (1.19) and (1.6) transform into

Çv(x) - (íz - 1) (x)) =

kof (V() _/.L() Ç(x,)d+2ir fôrO <xL (1.25)

forx=O and x=L (1.26)

The one-dimensional Greèn's function, at z = O, ( O reads

2f kk0 cosk(xe)dk
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Using coñtöur deformation, the Green's function is split in residue issue from
the pole and an integration along the imaginary axis.

Ç(x,e) = 2 f k2 k2
e2 dk - 2iexpikoI -

0
+0

To solve numerically equation (1.25), we use a finite difference method. The
unknown value q is assumed to be constant on each equidistant panel. The
integration of the Green's function Ç is first carried out analytically with re-
spect to and then numerically with respect to k. The fourth derivative is
written as a five points central difference scheme and we introduce two extra
grid points outside the platform. The two boundary equations (1.26) furnish
the four missing extra equations.

In figure (1.3) we plot the deflection w, function of the platform abscissa x,
for a wavelength of 150m. The parameters chosen are: D = 1011Nm2, m
250Kg/rn, L = 300m In figure (1 4), the rigidity and mass per unit area
are unchanged but the platform is now 1500m long with an incoming wave
with wavelength À = 100m. The wavelength of the platform deflection, À, is
approximately 300m. It is given by the dispersion equation

(Dk4p±1)kko =0 (1.27)

In all cases, the displacement of the platf orm is found to be larger at the edges.
In figure (1 6) we plot the reflection (R) and transmission (T) coefficients against
the ratio AIL (wavelength/platform length) The energy conservation relation
is found to be fulfilled for all values of À.

In figure (1.5) we plot the drift fôrce P for a 200m long platform, with rigidity
D = 2 1O8Nm2 and mass per unit length m = 250Kg/rn. Due to the small
slope of the platform (the slope behaves like 1/Ai when L» À, F2 is mainly
due to the pressure integration on the vertical end walls of the platform The
force due to pressure acting on the platform slòpe is found to be very small,
less than 70 N in the present computed case. We compare our result with
Maruo's formula [8] : F = pgR2. For very short wavelengths, our results
differ This is due to the fact that the computed elevation difference, involving a
fôurth order derivative at the edges of the platform, equation (1.21), is difficult
to handle numerically.

1.4 Twodimensional platform
This section presents the results obtained from computations for a two-dimensional
rectangular barge.
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X

Figure 1.3: platform elevation, L=300m, À=
150m, D = 1O"Nm2, m = 250Kg/rn
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Figure 1.4: platform elevation, L= 1500m, À
100m, D = 1O'1Nm2, rn = 250Kg/rn

We employ as in the one-dimensional case a finite difference approach. In order
to write the biharmomc operator and the boundary conditions, we introduce
extra fictive points outside the platform see figure (1.7). This leads to m x
collocation points inside the platform and 4(n + m) +12 fictive points outside
the physical plane.

The integral equation and the boundary equations give n x m + 4(n + n)
equations. We add 3 equations for the fictive points 4 placed on each corner

250 500 300

200 400 600 800 1200 1

X

oa

C
0.0

04

C) 02



1.4 Two-dimensional platform 17

1500

4000

¶0*0-

1000 -

of the platform ,see figure (1.7)

2) 2)
VI'Z -o

ôx

and (2) 1((1) + 3))

P16fl1d&Mo

Figure 1.5: Drift force per unit width,
L=200rn, D = 21O8Ni-n21m = 250Kg/rn.
Comparison between the present model and
Maruo's formula
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Figure 1.7: mesh of the plate

These arbitrary supplementary equations only influence the solution locally
and their influence tends tO zero when n and n, are big enough.
Our numerical method presents some limitations when the parameter D is very
large, so that the platform is very stiff, almost rigid A very small error in the
numerical evaluatiOn of ff Ç dS on a panel will be strongly amplified by the

Pi
factor D and produces erroneous results in every practical cases of platforms
we encounter, the rigidity stayed in the range of validity of our model In
the one-dimensional case, the integration in is carried out analytically and
the only error, due to the numerical integration, in k is much smaller. Those
limitations then never occur.
We present here some numerical results In figures (1 8), (1 9) and (1 10) we
plot the real part, imaginary part and module of the platform deflection with
main dimensions and material property are given as L = 800m, B = 300m,
D = 1011N.m2 , m = l000Kg/m2 , y = 0.3. The incoming wavelength equals
200m and the incident angle fi = 0. In figures (1.1i),(1.12) and (1.13) we
consider the deflection for the same platform with a plane wave incident under
an angle fi ir/4 with respect to the x-axis.

ny
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Figure 1.8: platform elevation, real part
L = 800m B = 300m D = 10'1N.m2,
j3=0

Figure 1.9: platform elevation, imaginary
part L = 800m B = 300m D = 10"N.m2,
13=0
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Figure 1.10: platform elevation, module
L = 800m B = 300m D = 10'1N.m2,
/3=0

Figure 1.11: platform elevation, real part
L = 800m B = 300m D = 1011N.m2, /3 =
ir/4
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Figure 1.12: platform elevation, imaginary
part L = 800m B = 300m D = 1011N.m2,
fi = ir/4
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Figure 1.13: platform elevation, module
L = 800m B = 300m D 1011N.m2,
/9= ir/4
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1.5 Behavior of a ship with elastic distortions in peri-
odic waves

lt has been shown that it is possible to derive a formulation to describe the
rigid body motión and the elastic behavior of a flexible platform by means
of one differential-integral equation. This equation for the elevation can be
solved numerically, without splitting the problem in the various rigid motion
and eigenmode components, as is standard in the field of linear ship motions.
In this section, we show that is easy to apply similar ideas to an elastic ship.
For simplicity, we consider that the ship is mooring and then has no forward
speed. The ship is not anymore considered as a rigid structure and we focus
on the shears, bending moments and distortions due to the waves excitation.
It is usually custom to distinguish between the motion responses and the dis-
tortion of a ship. Motion responses are obtained via the theory of sea-keeping
that would be set for a rigid body, providing the pressure distribution on the
hull. Stressing is then computed as a post calculus. But for very long and slen-
der ship in severe sea conditions, deflection can be quite important and it is
not possible to decouple the two phenomena.
Practical methods of estimating hydrodynamic actions on a hull depend on the
assumption that the mechanical behavior of the hull is 'beamlike'. Strange as it
may seem, large tankers are very well represented for the purpose of dynamic
analysis as a thin beam (see Bishop and Price [16]. But for the hydrodynamic
point of view, the ship is considered as a three dimensional body. We apply
the boundary conditions for the velocity potential on the real hull and the
summation of the pressure over the hull at a given abscissa is used for the one
dimensional dynamic beam model.
We introduce some restrictions t our analyze. We only consider the time
dependent distortions in the hull. It means that we don't take in account the
strains due to gravity and buoyancy forces in still water. In this presentation
we finally limit ourselves to the influence of head-seas on the heaving and
pitching rigid-body motions. We also leave aside the slamming and restrict
our analyze to harmonic waves.
We first derive a general formulation for a three dimensional ship, and then
give some results for a ship in head waves for heave and pitch motion, and
associated elastic distortion of the hull. In principle we can extend the formu-
lation for the effect of waves on a ship traveling with steady forward speed.

1.5.1 Mathematical model

We derive a formulation for a ship without forward speed. We denote l the
water region and c%l the ship wetted hull. We have at the linearized free surface
z = O, the linearized kinematic conditiofl = ij, and the dynamic condition

= gij where (x, t) denotes the wave elevation. On the hull, we have the
following kinematic and dynamic conditions:
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(1.29)

= t g (iî(s,t) +O(x,t)y) (1.30)

where v is the normal velocity of a point at the hull of the ship, iZ' (s, t) the
deflection and O (z, t) the angular rotation due to torsion respectively
The ship is assumed to behave like a beam with no thickness. We use the linear
beam theory to describe its deflection zZ' (s, t) and its angular rotation O (s, t).
The dynamic equations for the vertical force and moment read

a2 / a2il(s,t)\D(z)
as2 )

=Z(x,t)

(c(95t)) = F(x,t)

where D is the flexural rigidity, i the mass per length, I the rotational inertia,
Z and r the vertical force and the moment per length acting on the ship The
shear and bending moment vanish at the ends of the beam. Thus, it follows
that the boundary conditions at the beam ends read

a2th (s, t)
at2

±

a20(s,t) a
at as

D=Oax2

ao
8x

a ( a2u
as'as2 (1.33)

(1.34)

We consider a harmonic wave propagating in the direction fi with respect with
the main axis of the ship. The harmonic wave potential, deflectión and angular
rotation can be Written as
4 (x, t) = (x) e' ti' (s, t) = w(x)è_t and Ö (s, t) = O(x)e_iwt. The inci-
dent plane wave potential equals:

nc = exp{iko (xcosß + ysinß) + koz} (1.35)

The potential function is split in a incident wave potential and a diffracted wave
potential.

(x) inc (x) + (x) (1.36)

We notice that in most theories the diffracted potential is defined for the fixed
ship, while here it also contains the effect of the rigid- and elastic-body mo-
tions.

(1.31)

(1.32)
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We will make use of the Green's function Ç, introduced in the previous chap-
ters, that fulfills Ç (x,) 4ir (x - ), the free surface condition and the
radiation c5ndition.

FOr x E a-;

f(D dS (1.37)

Equations (1.29),(1.30),(1.31), (1.32) and the general integral equatiOn (1.37)
lead to a System of the three integral equations

(rÇ) _iwf f c7Dffd1J .e±pgb(x)'ib=
C(x)

{f
iflCdl} e (1.38)

Ç(x)

2Isw O - - i ç-ax \. 3x

ipw {f
O A Thcndl} . e; (139)

C(x)

2ir f+iwÇ (wê ii+ Oye; fiOze
0l

JÇ_' dS (1.40)
., On

where b (z) is the width of the shij at abscissa x, C(x) the restoring moment
for a slice at abscissa x and C the line integral over the wetted hull at abscissa
X.

1.5.2 Numthal method
The dynamic differential equations are discretized by means of a difference
scheme, while the integral equation (1.5.1) is discretized by means of a piecer
wise constant panel distribution. The final set of equations. is a matrix equation

_iw{f
ÛAdl} +()O

C(x)



for the coupled unknowns.. For the purpose of calculation, the hull is.divided
into N slices Each slice is supposed to have a constant deplacement (w2, 9)
The slices are denoted by i = 1, 2, ..., N starting form thé bow.

As we are using a finite, difference approach to solve the dynamic equations
for the beam, we introduce 4 supplementary points for the mesh describing
the beam in order to represent the fourth order derivative for the beam equa-
tion. We denote the diffracted potential on each of the M panels of the mesh
describing the ship's hull by .

Equations (1 5 1), (1 5 1), (1 33), (1 34) and (1 40), lead to a linear system for
the discretized problem. The solution vector is written in the form

X = .çbf,w_1,wo,w1,w2,..!wNwN+1,wN±2,
OO,O1,O2, ,ON,ON+1} (1.41)

Figure 1.14: ship geometry and discretization

1.5.3 Numerical restilts for a parallelepiped barge
We present some numerical results for a thin barge of dimensions lx = 200m,
ly = 5m, lz = 4m The ship is cut in 40 slices and has a constant flexural
rigidity of 0 641012 Nm2 The computations are carried out for a wave direction
parallel to the ship direction, hence, O (z) O and the incoming wave has a
wavelength of À = 80m and .a unit amplitude. We are so here only interested
in the motion associated with the heave and pitch motion and confined in a
vertical plane. The graphs (1.15) and (1.16) represent the real part and the
imaginary part of the total vertical deflection, representing the deflection at t =
O and t = T/4, induding the heave, pitch motion and the bending distortion
due to the flexibility of the ship.
Figures (1.19) and (1.20) represent the flexural distortion (the rigid motion of
the ship is subtràcted) at t = O and t ='T/4.

00
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We can clearly see the first prïïìdpa bending modes of an elastic vibrating
ûmform beam.
Figures (1.19) and (1.20) represent the. amplitude of the bending moment for
two different wavelengths, ) = 80m and À 100m. In this last case, the
bending moment vanishes at mid-pbint of the ship.
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Figure 1.15: Real part of the total deflection,
À=80m
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Figure 1.16: Imaginary part of the totai deflec-
tion, À = 80m
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Figure 1.17: Real part of the flexural deflection,
A=80m

Figure 1.18: Imaginary part of the flexural de-
flection, A = 80m
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Chapter

Moving aircraft on a flexible
platform

After having studied, the deflection of a flex ble platform by wives, we now compute the
deflection created bya moving plane on asimilar platform, With similar mechanical properties
but of infinite extend.

.2.1 Introduction

In this section we investigate the response of a transient dynamic load on a
flexible. platform in order to provide a model for landing and taking off air-
planes. We focus our attention on the wave pattern produced by the moving
load.
A time-domain analysis method is applied to the hydro-elasticity problem for
this purpose. The dynamic load is modeled as-a moving source point translating
on a plate of infimte extent and we develop the mathematical solution of the
deflection induced by this load
Various authors tackled the related problem of a 'moving source with con-
stant speed on a floating ice sheet using asymptotic Fourier analysis. (Dayys,
Hoskrnd and Sneyd [17], Mthnaz.zo, Shin brot and Evans [22], Schulkes, Hos-
kind and Sneyd [23]). Although this method. is well suited to predict the wave
elevation far from the source, the computations in the vicinity of the load lack
of accuracy.
More recently, Yeung& Kim (1998) applied the method to airplanes moving on
floating airports. They were mainly interested in the evaluation of the drag.
Our solution for a general course of the moving load is derived in a different
way, similar to the classical one presented by Weha usen [24] for a moving

29
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source in water (no platform is present in this case). The general solution can
easily be found with help of a Fourier and Laplace transform but it's numerical
evaluatioñ presents difficulties and is time consuming,
However, in the restricted case of a steady pattein, our analytical solution
admits great simplifications and the fast decay of the wave amplitude with re-
spect to the wave-number k enables us to use Neumann's addition theorem for
decomposition of the involved Bessel function. A simple expression can then
be obtained for the deflection w in term of a Fourier series expansion in the
cylindrical coordinates attached to the moving source point. The coefficients of
this series, expressed in a single integral over the k wave-number, are easily
evaluated.
Our solution gives then an accurate description of the deflection over the en-
tire field for all speeds. Three classes of platform responses depending on the
source velocity, may be distinguished (supercritical, subcritical and critical) and
an analytical solution is obtained for the critical speed and it's physical exis-
tence discussed.

2.2 Mathematical model

Since the dimensions of such floating airports are several kilometers both in
length and width, we make the assumption that the platform is of infinite ex-
tend in the z and y direction- We consider a finite sea bottom at height H and
we will investigate the influence of this parameter on the deflection.
The plane load is idealized as a moving point source translating along the x-axis
at the position z = a(i). The platform is in calm water and the only defiec-
tions are those due to the plane load. The only force exerted by the plane on
the platform is the one due to its weight. lt is assumed to be constañt in time
which means that the interactions between the plane and the flexible runway
are discarded. The horizontal forces due to the possible acceleration or friction
of the plane on the platform are also not taken in account.
The equations describing the physical problem are equation (1.1) to (1.4) ex-
posed for the finite platform excited by wave except that equation (1.2) has to
be replaced by a new equation expressing that no fluid particle can cross the
sea bottom. We assume that the platform is initially at rest, providing two
initial conditions for the potential.
The problem being linear, the calculations are hold for a plane weight of i N.
Equations are solved via Fourier and Laplace transform for the moving pres-
sure point following an arbitrary path a(i). The numerical evaluation of the
resulting integral solution is a fairly complicated process. However, in the
case of moving pressure point with constant speed U, initiating it's course at
i = oc, the deflection pattern in the coordinate system moving with the point.
is steady and it's evaluatión can be drastically simplified. The originality of our
approach is to compute, without approximation, the deflection on the whole
physical plane as a single integral over the w ye-number. This provides a fast
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method for a numerical evalUation of the wave pattern. Asymptotic solutioñs
when the speed U approaches the critical speeds can also be derived from those
expressions.

2.2.1 mathematical formulation
We shall now give the mathematical statement of the pro blem The governing
equations are

with the homogeneous initial conditions w (z, y, O) O, tb (z, y, O) = O being
assumed and Ç5z Wt.
C(t) = H(t) where H(t) is the Heaviside function, for a landing plane and i if
the plane is taking off.
We apply Fourier transform with respect to x and cosine transform with respect
to y

(D m82
lpg pgôt2 j ôz gEtt2

= --- [C(t) 6(z - a(i)) t(y)]

= O

9z

çb(cx,ß,z,t) =

and find

{-(a2+ß2)2+ +i}(aß7t)+

0000

f f
-00 0

We apply the Laplace transform: /3, z, s) =

for z=O

for z < O

for z = H

e_St (a, /3, z, t) dt

+ (a,ß,t) __C(t)eãt) for z=O

- (a2+ß2)
az2 -

for z <O

ôz
for z = H
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( 2 -

For a landing plane y = 0, if the plane is taking offv = 1. This córçesponds to
the solution

wjj(x,y,t)
27P / (1

cos(Kt) Jo(kv'2 2) dk (2.5)

letting W = £(iiY), a kcosO and ß = k sinO and solving (2.3) and (2.4),
leads to

sW = k tanh(kH)X
i ni5

w- " th K2- i-'i, +pg 26- s2 + K2 [mk ± pcothkH]
W! mk + pcothkH

Applying the inverse Laplace transform and noting that

L-' ( 8+K) = sin(Kt)

we obtain
t

=
[mk±pcothkHj

X j _k_srnK(t_r)dr
-k Çf(T)

where f(t) ei(t). We apply inverse Fourier transform

i f ( ke0 eikY1

J_ [mk+pcothkH]

Ieika(T)

cosO tk;
r)

dr dO dk (2.8)

2 22 ms(a +ß) ++1
Log pg

+ -X(a,ß,$) = ----

(2 +ß2)(a,/3,z,$)

ax0
±

--(cx,ß,$)+
UZ

[sc[ei(t)j -

-(a,ß,z,$)

for z 0

= O for z <0

for z = -H

(2.2)

(2.3)

(2.4)
ôz
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Using J0 (z) = f e CS °dG

we obtain

w =
----

f H(k) x f siñK(t - T) Jo[k/(x - a(r))2 + y2]dTdk (2.10)
o

k2 i
with H(k)

= (mk+pcthkIt)V2
X

(Dk5 +pgk)'/2

2.2.2 steady pattern in the moving frame with constant speed

Due to the fast oscillating character of the integrand, it is not au' easy matter
to carry out a numerical integration for w We shall return to this problem
later. We confine here our attention to the evaluation of this integral in a
special case We consider in this section the steady response of an infinite
platform to the uniform motion of the load translating with constant speed
U along the z axis. The platform deflection is expressed in the moving frame
at coordinates translating at constant speed U with the load. Using
Neumann s addition theorem for Bessel functions, the solution is expanded in
Fourier series in the polar coordinates whose coefficients are easily computed
as single integrals in the wave number k variable involving the radial coordinate
r The analysis will be held for both finite and infinite depth lt is shown that
the water depth can have a significant influence on the result
The behavior of the wave pattern is classified in three mains categories, sub-
critical, critical and supercritical depending on the moving point speed U.
To obtain the deflection due to a steadily moving pressure point source, we set

= y, z = Ut + , a(T) = Ur. and let t tend to infinity.

P(, )

Ut ut+
Figure 2.1: coordinate system

We introduce the angle.9 so that
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=rcos(ir-9) =rsin(irO)
R2 = U2(t - r)2 ± r2 - 2U(t r)rcosO

Using Neumann's addition theorem for Bessel's function, we have

Jo(kR) (2.11)

where denotes Neumann's factor and is defined as

Ji ifn=O
12 ifn>O

Injecting (2.11) into (2.10) and letting t * 00, it then possible to carry out
analytically the integration in r. We denote

= tlirnfinK(t - r) J(kU(t - T))dT = finKJ(kUr)dr

(sin[narcsin i
¿ k(U2_C2)h/2

cos(n7r/2)
t k(Ö2_t72)1/2[+(()2_1)1/2

where C(k) =.
The deflection w is then found to be

if U> C(k)

if U < C(k)
(2.12)

w(r,O) cos(nO)gn(r) (2.13)

with g(r)
= fH(k) G(k, U) J(kr) dk (2.14)

o

In figure (2.3) and (2.5) we show C(k) as function of k for various values of
the parameters. We notice that due to the term cos(nir/2), for U < Cmin, the
wave pattern is symmetrical about the axis = O The energy transmitted
by the wheel to the platform reads P = PU(r =0), where P is the plane
weight. This shows that the speed of the mo\ Ing load must be larger than
the phase velocity C(k) in order to have radiated waves at the correspond-
ing Wave-number k. Radiation is emitted ma band of fre4uencies for which
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U> C(k).

Under the wheel, at r = O, the deflection vip equals

=-{+j} [k(C22)l/2] dk
O k2

where k1 and k2 are solutions of the equation C(k) = U.
When the speed U tends to 0, the deflection under the wheel at r = O equals:

00 00
i [H(k) i Ç k i iwo=1imw=-- I dk=-- i

u-yo 2ir J K(k) 2ir J Dk4 + pg 8 ./TJ
O O

(2.16)

This corresponds to the static deflCction of the beam, independent of water
height.H, the fluid at rest exerting a upward supplementary restoring pressure
of pgw.
In figure (2.2) we plot the deflection under the wheel Wp against the moving
point speed U for a platform of flexural rigidity D = 1O11Nm2 for two different
water depths H = 40m and H = oc. Results fOr the deflections have been
divided by the static deflection value wo. The deflections present a peak for
speed of 20m/s for the finite depth and 35m/s for the infinite depth. These
speeds correspond to the mimma of the function C(k), representing the phase
velocity of the wave, plotted against wave number k in figure (2.3).
For the infinite depth case, the minimum of the function C(k) is found to be
close to Cmin, 2h/8 occurring at k k0 (f)1I4. At this speed,
waves with wave number close to k = k0, propagating with a speed close to

stay confined beneath the moving load vicinity. For k large, the phase
velocity C(k) tends to Cpiate = k, the phase velocity given by the classical
plate theory. Due to the fast growth of the function C(k), the functions of k
involved in integral (2.14) are rapidly decreasing (H(k) decays in i/k) and only
the wave numbers in the range [0... 10k0] contribute to the integrals gn.
For the finite depth case, the function C tends to Cg /H , the wave ve-
locities in shallow water in absence of platform, when k - O. In this wave
number range, for large rigidity D (the literature gives values for D between
iO9 and 1012 for typical platforms) the factor pcoth(kH) involved in K and H
is predominant compared to mk. The influence of the mass per surface unit m
is then negligible. We note that the graphs of the function C for H = 40m and
H = oc only differ for a narrow range of wavelength (approximately between
k = O and k 2k0) This means that the presence of the sea bottom at a finite
depth increases the influence of the very long waves (À> 500m).

(2.15)



In figures (2.4) and (2.5) the deflection w and function C(k) are plotted for a
softer platform with a rigidity D = 108Nm2. The peaks fôr the deflection as
well as their amplitude now hardly differ. The influence of sea bottom appears
to be sensitive only for very rigid platform.

In figure (2.6) we plot the computed values of vip, corresponding to equation
(2.13), on the entire plane. The water depth is H = 40m, the mass per unit
surface m = 250Kg/rn2 and the flexural rigidity D = 10"Nm2. The speed
of the moving point is U = 40m/s. The results w are divided by the static
deflection wo. In the next graphs, the solution being symmetrical about the
x-axis , we will only plot the deflection for y > 0. We note the presence of
waves in front of the moving load, even for large values of U. This is due
to the fact that infinite wave velocity was predicted by the Euler theory for
plate. Equation (2.13) also induces instantaneous far-field response for the
same reason. The introduction of the shear and rotatory inertia would have as
effect to bound the function C(k) and remedy those problems.

Figures (2.8) and (2.7) show vip for a water height of respectively H = 40m
and H = oc for the following parameters: U = 25m/s, m = 250Kg/rn2,
D = 10"Nm2. The two waves patterns present major differences. In the
infinite water depth case U < Cmin for all values of k (Cmjn 31.15m/s).
This correspond to the subcritical speed case. As we mentioned before, the
deflection is symmetric about the z axis. The energy transmitted by the wheel
to the platform is then equal to zero There is no radiated wave and all the
energy stays confined in the vicinity of the moving load. The waves decay very
rapidly in amplitude with distance r to the load. This effect is analogous to
field pattern emitted by a charged particle, moving in a medium with a wave
celerity greater than the particle speed. We find the maximal deflection under
the wheel at r = 0, equaling 1.4 times the st tic deflection.

In the finite water case, U> Cmin C9. This corresponds to the supercritical
speed case. The symmetry about the z = O axis is broken and the maximum
deflection is found to be close behind the wheel. We now note the presence of

propagating waves.

We now investigate the wave pattern for a speed U slightly higher than the
critical speed Cmin, (U Cmjn + dU). Let w be the contribution on the
deflection of the wavelength for which C(k) > Cmjn and w the contribution
on the deflection of the wavelength for which C(k) < Cmin.

W = W ± W (2.17)

We confine our attention on the value of w when Cmin * U, U - CminSt3Y
ing positive

36 2 Moving aircraft on a flexible platform
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Figure 2.2: comparison of platform deflection
under the wheel w, for H = 40m and H =
oc, D = 10"Nm21m = 250Kg/rn2
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Figure 2.3: K(k)/k for H = 40m and H =
oo,D = 10'1Nm2,rn = 250Kg/rn2

We set

k2 k2
r H(k)sin(narcsin)

J20(kr) dkg f nH(k)Gn(k1U)Jn(kr)dkJ
k (U2C2)1/2

k1 k1

(2.18)

Up to the first order in k

100
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Figure 2.4: comparison bf platform deflection
under the wheel w, för H = 40m and H
oo,D = 108Nm2,m = 250Kg/rn2

Figure 2.5: K(k)/k for H = 40m and H =
oo,D 1O8Nm2, m = 250Kg/rn2

(kkc)2
C(k) = Cmjn+ dU with IÇ1 k 5k, k2= k+5k
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Figure 2.6: deflectIon w, H 40m,D =
1O11Nm2, m = 250Kg/rn2, U = 40m/s

u2- C2 = 2UdU(1
(k

5kg)
k+5k

H(k) sin(mir/2) J(kr) f
ko-6k

k+ök

and

r_rI1_ 'I

= - (-1)1J2n_1(kcr)LArbc) 'Ç

dk
Ü2_ Ö2)1/2

f dk îr
C"k 2dU

J (U2C2)'/2yuC" (e)-
kôk

finite depht

(2.19)

(2.20)

(2.21)

where C"(k) is the second derivative of Ç with respect to k. Then w+ equals

cos(2n - 1)0 (2.22)k/Ud
2H(k)

=
srn(kx) (2.23)

The last equality comes form the Jacobi-Anger formula [21].
In the case where rn = O, w+ can be split in the sum of an even plus an odd
function w = wt ± w.

2.2 Mathematical model 39
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L

and the odd term for w s given by

k2

- i f sin[kr sin(ß - O)] + sin[kr sin(/3 ± O)]
dk- 8irpU2 J cos ß sin fi

k1

After some manipulations, w can be expressed by the formula

Figure 2.7: platform deflection Wp H =
oo,D = 1O"Nm2,m 2500Kg/m2,U =
25m/s

11(k) and introducing x = arcsin , we have

k2

+ f sinnß cosmO T (1.w -- 2rp
k1

cosßsin/3

Using the Jacobi-Anger formula, we can evaluate the sum Under the integral

sin nß cos nO J(kr) = sin[kr sin(ß - 8)] + sin[kr sin(ß + O)]+

sin2n(ß + 8) J2(kr) + sin2n(ß 8) .J2(kr)

(2.24)

(2.25)
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Figure 28: platform deflection w7, H =
40m, D = 10'1Nm2, m = 2500Kg/rn2, U =
25m/s
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(2.26)

If U approaches Cmin, is then a two-dimensional monochromatic wave
propagating With the moving pressure point at speed U = cmin = C (fig
2.10). Indeed, for k1 < k < k2, O and the associated wave umber
celerities are approximately constant. The plate can then be seen as a non dis-
persive medium and the case is analogous to the Cherenkov radiation problem
in electrodynamics The deflections are confined inside a cone of semi-vertical
angle x = arcsin = ir/2 The waves are then two-dimensional
The finite water depth case is slightly different because of the existence of two
critical speeds corresponding to Cmon and C9 The prove given ahead is only
valid for U " Cmjn. The numerical results show that in the general case,
when U - C9 we. wave pattern has not a two-dimensiOnal aspect. However,
when C9 Cmzn which seems to be the case for realistic parameters (m =
250Kg/rn2, D = 1011Nm2, H = 40m), the curve C(k) presents a horizontal
asymptote for a larger range of wave numbers when k - 0. We then still
have a two-dimensional wave pattern but the. waves are not monochromatic
anymore. (see fig (2.9) where the waves in front and behind the load point
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have different wavelengths).
The physical existence of a two-dimensional wave pattern is questionable. We
note than this pattern results of emitted waves with a small range of values and
a celerity slightly smaller than the source speed. Hence, no wave can propagate
forward of the source point. The solution is then a purely mathematical one.
But one can expect in reality a deflection extending on long distances in the
direction perpendicular to the direction of motion.
We have w = w+ + w. But w is even in z. lt's first derivative with respect
to z is then null at r = O under the wheel. Conversely, w+ is odd with it's
derivative 2. The minimum value of the deflection is then behind
the wheel and not under as it can sometimes be found in the literature.

fi,Wdolt

B
= f H(k) sin (K(t - T)) Jo(kR) dk

Figure 2.9: deflection wi,, H = 40m,D =
1O'1Nm2,m = 2500Kg/rn2, U =19.75 rn/s

2.3 Pattern for an arbitrary path of the source

We now come back to the time dependent deflection of the platform for an
arbitrary function a(t) and note

R = J(x - a(T))2 + y2

Here, we focus our attention on the term

(2.28)
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B is then found to be
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Figure 2.11: contour deformation

1500e

Figure 2.10: deflection wi,, H = 40m,D =
1O11Nm2,m = 2500Kg/rn2, U =30.80 rn/s

This integral, evaluated as a contour integral, can be reduced to a form conve-
nient for numerical analysis. Writing the sinus as a sum of complex exponen-
tials, we making the change of variable k = u exp (iir/4) for the upper contour
and k = uexp (iir/4) for the lower contour.

i
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ç f u312 eV7T/S r ,- iir/8 pg - DU4\1
i Xexpvue l

p

Jo[kei*/4/(x - (T))2 + y2] du}

This function of u under the integral has the advantage of decreasing exponen-
tially when it starts oscillating rapidly and is easier to tackle out numerically
Once B is evaluated, we integrate it with respect to the variable r, refimng the
time integration step when r * t
In figure (2 12) and (2 13) we plot the platform deflection for two different
loading point courses The flexural rigidity equals D = 1O"Nm2 and the mass
per umt area 250Kg/rn2 In figure (2 12), the plane is landing with constant
speed U = 25m/s and we plot the deflection at time t = 5s This speed
corresponded to the subcritical case for the steady deflection The wave pattern
is now wavelike but is found to be almost symmetric about the axs z = O.
In figure (2 13) the plane is taking off, following the course a(t) = 6t2 The
graph corresponds to the time t = 5s. We can notice a strong slope of the
deflection near the wheel corresponding to an important drag force acting on
the plane.

(2.29)
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Figure 2.12: plate deflection fora plane landing
with constant speed U = 25m/s, t = 5s, D =
1O"Nm2, m = 250Kg/rn2

Figure 2.13: plate deflection for a plane taking
off. a(t) 6t2, t = 5s, D = 1O"Nm2, m =
250Kg/rn2
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Chapter 3
Platform with air cushion

The previous chapters were concerned with large elastic floating platforms as a technical
solution for floating airports Indeed the large scale of such construction induce large me-
chanical stresses and then, deflections in the structure. An engineering alternative should
be the use of air cushion under the platforms in order to average the pressure applied on
the body. This device can also be applied to platforms of smaller size for other purpose in
oil-engineering This chapter present a analysis of the phenomenon involved in such con
striJctions in Waves.

3.1 Introduction

Although the use. of air cushions js not a new technique in offshore enneering,
some new projects have recently renewed the interest in this field. Amongst
them, we can mention the projects under consideration to built large floating
barges for airports near the shore in Japan and USA or new types of FPSO
Actually, this kind of barges requires very long dimensions and the effect of
the waves on a conventional rigid body would induce huge mechanical loads
One possible solution to remedy this problem is the use of air cushions. It
provides several advantages:
1f the size of these air chamber is reasonable, the pressure of the trapped
air contained in the cavity can be considered as uniform in space. This con-
tributes to average the pressure on the body and reduce the mechanical mo-
mentsand stresses in the structure. Contrary to dassical semisubmersible plat-
forms which encounter structural difficulties as their size is increased, the per-
formance of platforms with air cushion improve as their size increase There is
virtually no limit to their dimensions. A smaller value of the pitch and heave
motions is as well expected, especially for frequencies of resonance the com-
pressibthty of the gas playing the same roll as a spring, amortizing the platform

47



48 3 Platform with air cushion

One other main advantage of this device is the possibility to control the mean
gas pressure, injecting some air in the cushion. DynamicaJly, this will change
the frequencies of resonance for pitch and heave of such platform and provides
the opportunity to adapt the platform to several given sea conditions that they
may meet.
The study of the interaction of waves with this kind of platfòrms was first ong-
mated by Pinkster [6] who gave a mathematical description, developed a nu-
merical code and carried out towing tank tests. Cheung and al [26] modeled
the dynamic of a pneumatic platform composed of an array Of open-bottom
vertical cylinders. The air and the water mass inside each cylinder is modeled
as a spring-mass system, the bottom of the platform is treated as continuous
and they use a source method to solve numerically the problem. We notice
that, contrary to other authors, they used an isotherm gas law for the gas
compression description.

The platform consists of a rigid body and an air cavity beneath it, see figures
(3.1) and (3.2). Most conventional floating platforms acquire their buoyancy
forces by directly displacing the water with their hulls. A floating platform
with air cushion utilizes indirect displacement, in which the platform rests on
trapped air that displaces the water. The primary buoyancy force is provided
by air pressure acting on the underside of the deck. We assume that there is no
air leakage. The incoming water waves compress the air in the cushion and the
resulting supplementary pressure forces the bodyto move. There is no energy
exchange between the trapped air and the water. The gas compression is then
supposed to follow an adiabatic law. lt is possible to extend the method to
several air cushions, connected or not.

In this chapter, we present a new integral equation to describe the motion of
an air cushion supported platform, exited by waves. We assume that there
is no current and tackle the problem with the linearized potential theory. A
general mathematical model is developed as well as simplified cases suitable
for the understanding of the phenomenon and comparison with other authors.
We finally apply our model to a barge tested in a towing tank to compare with
Pinkster's model tests.
For very large floating bodies (several hundreds of meters), the assumption of
uniformity of pressure may not be valid anymore and there can be existence
of acoustic waves traveling in the cushion and possible resonant modes. This
requires a platform length L of same order of magnitude as irc/w where c is
the sound celerity. (Thin floating barges with length exceeding 500m fall in this
category) Lee and Newman [10] took interest in this problem and developed
a suitable mathematical model to that effect. Their results for a barge are
very similar to ours for the RAO analyze although, the non-uniformity of the
pressure can lead to different results concerning the pitch motion. The choice of
an acoustic model for the gas law description has also important consequences.
The force computations on the body are in fàct erroneous for low incoming
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wave frequencies and high compression of the gas. We analyze in a simplified
one dimensional model, how the model differ to the one we developed and in
which frequency and compressibility range they concur.
An air cushion device presents nevertheless several disadvantages. First at
all, it deteriorates the static stability. Particular attention will be paid to the
calculus of the restoring forces and moments which drastically differ from those
computed in a rigid platform caSe.
The air cushion chamber also generates resonant waves which are reflected be-
tween the side walls. This affects the calculus of the hydrodynamic coefficients
can lead to numerical difficulties in our model. The behavior of such a platform
excited by waves is then considerably different from the one of a conventional
rigid platform. There is then need of a predictive tool to compute the behavior
of such a system. This is the goal of this chapter.

3.2 Physical problem

in this section, we present the mathematical equations which describe the
physical problem. The fluid is assumed to be ideal (no viscosity), incompress-
ible and the flow irrotational. Under these assumptions, we can describe the
fluid velocity as the gradient of a potential satisfying the Laplace equation

= O. We consider the body as the rigid platform plus its air cushion. It
oscillates sinusoidally about a state of rest, in response to long crested regular
waves in a sea of infinite depth. The body is allowed to move in all directions
and we assume the amplitudes of this motions to be small. We restrict then
our analysis, in terms of the so called "linear harmomc theory" formulation
This theory, being well known, will be summarized briefly.
The problem being linear, we consider an incoming wave of unit height. At
great distance from the body, the complex harmonic potential is defined by

= with u = w2/g (3.1)

We define a system of axes with origin in the free surface. The incoming waves
are propagating in the z direction, the vertical axis beingthe z axis, see figures
(3.1) and (3.2).
The platform's boundary E is split into the boundary E1 for the wetted part
of the platform, and E2 that marks the air-water interface underneath the
platform and submitted to air cushion pressure. The normal i on the hull
surface is directed into the body. We denote S the surface of E2 and V the
volume of the platform (air cushion included) under the free surface. G is the
center of gravity of the platform and P his vertical projection ôn E2. We define
ij to be the surface elevation under the cavity or outside the platform, on SF
thesea free surface depending on the context. S, is defined as the intersection
of the platform with the plane z O and its area is denoted s.
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Figure 3.1: The sx degrees of freedom

The interface of the cavity is at a distance of ha meters from the free surface of
the open sea V and P are the volume and pressure in the cavity when the
platform is at rest and the instantaneous pressure Pc is supposed to be uniform
inspacë in the cavity.

av
D

Figure 3.2: Definition of the geometry

3.3 Mathematical description

3.3.1 BoUndary cOnditions

At the ititerface.E2, the Bernoulli's equation and the kinematic condition (a
particle can not leave the free surface) lead to the equations,
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Pc = pgh,

The change of pressure Lp can be determined by the change of the volume of
cavity zV. The air compression obeys the adiabatic law and we can write

Lp = 'y--
Pcs VCS

= ff(3+5(.
E2

a2 a pav0
at -

ia2 a
or --±-±ajj---dS-c

gOt2 ôz
E2

7PCSwith o=
pgV8

4(YYp) -7))dS=SS+5aS

(3.2)

4aS - ff dS

with a= a = (3.5)

where 43, 4, , are the heave, roll and pitch motions of the platform and
-y = 1.4. If the platform admits symmetry abbut the z and y axis, we have
a = = O This is the case for a rectangular barge, as the one we compare
our numerical results with, in an ulterior part. For simplicity, we restrict our
analysis to this situation and report in appendix the changes in the equations
when this conditions are not fulfilled anymore
Then

v=ff(e3_)ds (3.6)

E2

Combining relations (32), (3.3) and (3.6) leads to the boundary condition on
E2,

(3.3)

(3.4)
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aS is a non-dimensional number. It represents the ratiO of the force, due to
air compression, exerted on the air cushion cavity as we push in the body in the
vertical direction, tö the force which would occur if the free surface was replaced
by a solid surface. At rest, taking into account the atmospheric pressure has
no influence on the equilibrium position - the atmospheric pressure applied on
the platform above water is in equilibrium with the added pressure in water
applied on the wetted hull-. However, adding this extra pressure will modify
the value aS, leading to a stiffer system. In the case of a platform with a
parallelepiped air chamber, as drawn in figure (3.2),

as ' (Pjm + pgha) (3.10)
pgh

where Pa is the atmospheric pressure and h the height of the parallelepiped
air chamber. lt is then clear, as mentioned Cheung and al, that scaling the
model will modify the air stiffness of the system.
We assume the potential t) to be oscillatory and write t) = (x) e_2t
We have then the boundary conditions:

{_v++affds+iwas3 =o}
(3.11)

where is the platform's velocity. j, j = i . . . 6 now denotes the complex
values of the j.
At z O, on SF, we have the usual free surface condition, - vØ = O.

3.3.2 Boundary value problem

in this section, the expansion of the integral equation solution of the poten
tial function Is derived with help of the Green's function for a general body.
However, for clarity, our analysis is restricted to the case where a and a =0
The general expressIons are postponed iñ the annex.

The fluid domam is split in two regions, separated arbitrary by an interfäce
D. The platforms stays in the region D and the region towards infinity is

defined as Dt The potential function in D+ is written as the superposition of
the incident wave potential and a diffracted wave potential as follows

(x) = çiflC(x) + (x)

where satisfies the radiation condition

=.ill
Lan JE1



a+.11m r"2( - ive) = 0 (3.12)
r-+oc 3r

In D-, the total potential is denoted äs qY (x). At the dividing surface 3D we
require continuity of the total potential and its normal derivative
We recall that the Green's function Ç(x-), already introduced in chapter (1)
fulfills = 4irô(x - ), the free surface and the radiatioñ conditioñ.

= - ± + f k
ek(z+c)Jo(kR) 4k (3.13)

C

Applying Green's theorem for and r lèads to the föllowing formula:

fòrxE D

o=fl 3A+.) dSan

6

(3.16)
j=1

SF00 UOD

4irq ff (Ø ç) dS (3 14)

SFUEU8D

The integrals over SF00 and Sp become zero,. due to the free surface condition
for Ç, + and b Adding up the two expressions in (3 14), leads for z E D
to:

4irr =ff gi) dS±jf ([] dS

or 47rq5
= ff ( g_) dS + 4irq

When x tends to E, we have then

4inc
+ ff (q5 - Ç_)dS (3.15)

E1UE2

We decompose the potential into a pOtential of diffraction and six potentials
of radiation due to the motions of the body

najçi description 53
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diffraction

From (3.16), we Write the boundary conditions for

1 0m JE,1

let rD=ff---c1s

(3 .17)

E2

Integrating (3.17) oñ E2 and re injecting the result in the equation, We Obtain:

[[DdS1±aSJJ
E2

va [[ìdS
- 1+cESJJ

E2

Following Noblesse [9], we can write:

=

and:,

1 1 1 1
?-t(r,ri) = -(- + ) + v( - )r rl r r1

The poteñtial i then found to be solution of the integ1a1 equation:

2ir - ff D dS - Jf 9t D dS

1 : ¿;
dS x dS 4iflC (3.18)

radiaton
We apply the same procedure for the radiated potential. The boundary equa-
tiöns read:
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f
i n }

E1

where (ni, fl2, n3) is the unit normal vector pointing into the body, and
(n4,n5,n6)=xiL
We introduce

Ti = ffi_dS for j=.1 . . .6 (3.22)

E2

We then find:

i+las{vffds+s2a},

cES

On
-

1+ cES f! + 1± aS
E2

and forj 3:

Tj = ±aS ff q5 dS, = v ff dS

E2 E2

We obtain the integral equation for :

(3.21)

(3.23)

(3.24)

{_+Ì+affdS_Sa=O forj=3 (3.19)

{
_vqi+-i+aff_ä---dS=O} förj3 (3.20)
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2_ffdS_f»LdS 1'ffOdS x ffQdS

= i aS ff Ç dS - ff Çn3 dS for j = 3

=

- U
Çn dS forj 3

(3.25)

We mention here that our formulation introduce the potential 4 as unknown
function although it is generally customary in sea keeping analysis, to intro-
duce source distributionss.

3.li Wave forces on the body and hydrodynamic coef-
ficieiits

Once the velocity potential has been computed, it is possible to determine
the forces and moments acting on the body with pressure integration The
fundamental theorem of dynamics will then be applied in order to compute
the platform motion.
The pressure integration can be split in two parts. On the wetted part and
on the interface E2 We recall that the body is defined as the rigid platform
itself plus the captive air in the cushion.
The pressure is given by the linearized theory,

(3.26)

z being the vertical abscissa of the moving platform and z its vertjcal abscissa
at rest.
If the results for a rigid body are well known, a supplementary difficulty arises
due to the air cushion deformation, the interface staying horizontal

3.4.1 Restoring coefficients

Our goal in this paragraph is to compute the restoring moment for a body
with an air cushion By defimtion, this is the ratio of the moment and the
angle of rotation of the body that produces it. In the hydrostatic case, forces
and moments are computed in still water lt is convement to compute these
moments with respect to the point O, lying on the free surface at z = O and
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barycenter of intersectïon of the body with the plane z = O. We study here a
restricted situation where the body is symmetric with respect to the z and y
axis, crossing each other at the point O. This implies that the rotation of the
body will have no effect, up to the first order, on the change of volume of the
air cavity. In annex we give the generalized equations.
The assumption of small angle of rotation is then used and we will only take
into account the first order terms in O. We split the above described problem
(fi) in three simpler small problems The moment exerted in (fi) with respect
to the point O equals the sum of the moments exerted on the three following
fictive bodies in situations (f2) (fe) and (f). (see figure (3.3))

(fi)

-J- o

o

(f4)

Figure 3.3 decomposition ofthe moment

(12) moment exerted on a totally submerged rigid body.
M = pg VoO C O where Vo is the volume of the platform with its air cushion
and C the center of volume when the platform is at rest.

(fe) We subtract the moment exerted by a hydrostatic pressure on the surface
represented by a solid line in (fa).
Up to the first oder term in theta, we have: M = í ffs X2 dS O
S is the surface intersection between the platform at rest and the surface
z=O
(fa) We add the moment exerted by a hydrostatic pressure n the twO sur-
faces. represented by a solid line in (f).
Let O' be the projection of O on E2 Up to the first oder term in O, the
moment with respect to O' equals: M = pg ff z2 dS O.
where Sh is the projection of the interface E2 on the plane z = O. The total
horizontal force on the inclined surface equals pgH S2. Due to the rotation
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of the body, the two surfaces are not centered anymore With respect to the
point. lt will induce in O a supplementary moment of magnitude pgH2S2.

We also take into account the moment exerted by the gravity forces
M pgV0G O
Adding these contributions, we find

M = {pg ffx2 dS - pgVo(OC 0G) + pgH2 s2} O R. 0 (3.27)

S is the intersçctión of the platform with the plane defined by the equation
z = O For a flat platform (barge type), the dominant term in this formula is
pg ffs x2 dS.. Compared with the expression for a rigid platform, the integra
tion only holds on Sp. This leads to a much smaller restoring coefficient and a
deteriorate the stábility of the body.

3.4.2 Added masses and damping

Due to continuity, the pressure is constant on the intetfàce 2 and can be
computed via equation (3.3)

3

Denoting X = ( e") and integrating the pressure over the wetted bod'
and the air cushion walls, the vertical force on the platform can be written as
follow

F(t) = pg1 - JJ(QD)dSCOSWt + w JffD)dSsiflwt

wff(c)dS _9sx3}

+{ _wff4')ndscoswt+wff'3ndssinwt

(3.29)

aS Iizíl ÇI qdS-3 (3.28)

E2
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The pressure integration on E2 has no contribition on F and F.
An analogous equation could be derived identically for the moment This gives
an easy expression for the value of the added masses and dampin, the valùes
of these terms being weighted with the non dimensional factor when the
integrals apply on E2.

Collecting the terms in factor of gives the added-masses (with a prelimi-
nary change of sign).
Collecting the terms in factor of L gives the damping terms (with a prelimi-
nary change of sign).
Collecting the terms in factor of X3 gives the restoring coefficient in heave (with
a preliminary change Of sign).
Collecting the terms in factor of cos(wt) and sin(wt) gives the forcing terms.
(with a preliminary change of sign).
However, if the expressions can be expressed in a similar way than in a rigid
body case, we keep in mind that the potentials involved in these expressiöñs
are solution of a different problem (equation (3.11)).

3.4.3 Equations of motion

We introdùce the vectors UD, WD, UJ, I'J for 1= 1..6 as follow

ffDffds+ i :sffDds
E1 E2

ffqdS + s ffctdS for j=3 (3.31)

= ff fndS forj

E2

WD

=

ff GM A D dS
+ ff GM A ridS (3.32)

=
ff GM A ç i4S + ff GM A « 4S forj = 1 . .6

(3.33)

In the case where the air cushion s symmetriçal with respect to the z and y
axis, the integrals on E2 involved in WD and vanish.

(3.30)
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För simplicity, we restrict our resúltsto a platform submitted to a front incom-
ing wave We are then interested in the surge, heave and pitch motion, ,

The equation of motion can then be written under the following vectorial
system of equation

(mw2i ± pw2Úfltl + (mw2ê3 - pg[Si + :S2S21e3 ± pw2Ú3
(3.34)

= iPWÚD

pw?TPi + [R. w2I,,] ê25 + = IPWWD (3.35)

Multiplying the first equation by e and e3 provides two scalar equations and
the second one by 2 gives the third scalar equation.
I is the moment of inertia f the platform around the yy axis.
1f the z and y axes are axes of symmetry for the air cushion, the dynamic
pressure p does not contribute to the pitch and roll moment up to the first
order of linearization with respect to ?14 and i The pressure integration for
the moment ori the internal walls of the air cushion cavity and its free surface
is then zero.
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3.5 Two dimensional test problem

lñ this sectioñ, we study the simple idealized 2D problem of the wave diffrac-
tion by an air-supported barge in order to test our algorithm, The air chamber,
of length L and height h, is fixed and contains gas at the pressure equaling the
atmospheric pressure Patm. This means that there is no height level difference
between the free surface mean level elevation, under and outside the platform
The platform is maintained in such way that its base does not extend below
the free surface at rest. The waves are propagating along the x-axis and the
first vertical wall encountered is located at x = O, figure (3 4)
The general theory set up for a three-dimensional body still holds for a two-
dimensional case. However, the integral equation has to be slightly modified in
order to take in account that the water-gas interface E2, below the air chamber,
lies at z=O Indeed, in the Green s function formulation (3 13), both points x
and: are located at z O and a correct treatment of the specific singularity is
requlred.
Simple quasi-analytical solutions for the vertical force, exerted on the body by
the incoming waves, are derived and compared with results of Newman [12].
The differences between our and his results are discussed.

Patm
z

L

Figure 3.4: air chamber and incident wave

3.5.1 Present model
Denoting the diffracted potential , we recall the boundary condition for
the free sürface under the platform:

_v+.+aJ(x)dx=o or fdx=lLfcdx
(3.36)

Following the same analysis that for the flexible platform in chapter (1), the
integral equation for the potential reads
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2(x) x = 2

(if the free-surfàce would be located below z = O, the first term in the right
hand sight of equation (3 37) would be ir(x) instead of 2irq(x) )
The Green's function Ç(x,), for z = O obeying the radiation condition has the
simplified form

Ç(x,) _2f dk

£

and the incom ng potential iThC for an unit wave height

inc(x) exp (ivx)

We denote I(vL) such that

ÌÌ' ddx = 4L21(vL), with I(vL)
= f du

(3.39)

The pressure reads P(x) = ipwq(x) - pgii(x) with iwij

Denoting A = f (x) dx and integrating (3 37) from O to L, we find
o

A X [1+ )(l/L)]
JL

iflC(x) dx

The normalized vertical force becomes

ipwA

IFzI exp(ivL)-1I aL
- vL [i + aL ± avL2/iri(vL)]

(3.38)

(3.40)

4iflC (z) (3.37)
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Figure 3.5: Path of integration in the complex plane

Splittingin (3.39) 1cos u = (1 _c)+(1_e_iu) and denotingu0 = vL, we
deform the contours so that, in the neighborhood of u=x, they make a small
semicircular detours into the lower half plane and and quarter circular detour
around u=(O,O) in the upper and lower half plane as shown in (3.5). Using
residue theorem, we can then write

I Î i - e J i - e . - ' ir 2iir(1 - e0)
hrn I du + I idu + - = 2-o ij u2 (uuo) j u2(uu0) J 2uo u0

00

00
I f i eu f i - eu ' ir

hrn ç i du +. I -. idu + = O
-o '..j u2(uuo) j u2(zuuo) J 2u

And finally,
00

I(uo) = eiuO) - + T(uo), T(uo) =
'u0 U0

00

usingf e du = e°Ei(iuo) Ei(z) L)
u+zuo -- nn!

O
n=1

We find
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T(uo) =
i e0 e_2U0

hm _-{E1(e) - --Ei(iuo)
- 2

Ei(_iuo)}_
o

A
i rl ui( 2)du
u0j u u2+u0

= -{y(cos(uo) 1) +ln(uo)(cos(uo) 1) !.sin(uo)

O 2m 2n+1

+cos(u0)
(2n)(2n)!

+S1fl(U0)
(2n±1)(2n±i)!}

Recognizing in the sums the series expansions of the Sine and Cosine, S(uo)
and C(uo), I(u) become

I(UO) = - cos(uo)) + -
+cos(uo)Ci(uo) + sin(uo)S(uo)}

where 'y = 0.57721 ... is Eúler's constant.
It is easy to show that uo I(uo) - O when uo -+ 0. Then, the ratio F/pg.i
tends to rL when the incoming wave frequency tends to zero This limit
value for F is the force exerted by the gas if we push in the platform of 1m in
still water with an adiabatic compression In figure (3 6) the vertical force has
been plotted for aL = oc against the parameter uL/ir. Due to the interaction
between the air cushion gas and the water, the maximum value for F is ob-
tained for ¡iL 1.5ir and not for ¡iL = ir. For ¡iL = 2nir with n integer, the
mean value of the free surface elevation in the air cushion is null, the added
pressure then cancels as well as F In figure (3 7), we plot the non dimensional
force function of aL and vL/ir.

3.5.2 Newman's acoustic model

Similar calculations havè been achieved by Newman, using a description of the
acoustic disturbances and taking into account the coupling between acoustic
waves (in the air chamber) and water waves. The platform has a length of 2a
and a height b. We present briefly his method of resolution.
The velocities of the air and water are equal to the gradients of the complex
potential (x,z) and (x,z).
For the water domain the assumptions rmain unchanged to our own model.
The governing e uation in the air chamber is the Helmholtz equation

ln(uo) + (sin(u
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Figure 3.6: F2/pgL for aL = oc

m=O

fm() = COS um(x - a) Um =
mr

0.8
0.7

0.8
0$
0.4

0.3
02
0.1

00

= ¿mrn(X,y) m(Z,y) = fm(X)C0ShVm_ y)
Vm SiflhVmb

Figure 3.7: F2/pgL function of aL and
vL

2a

The coefficients Vm follow from the Helmholtz's equation v = - K2.

(3.43)

V2+K2=O (3.41)

where K = w/c is the acoustic wave number and c the sound velocity. Ne-
glecting the aerostatic pressure, the pressures in the air chamber and in water
read

P(x, z) = ipaw'Z(X, z), p(x, z) = ipwçb(z, z) - PwYZ

Equalizing the pressures at the interface on the water-gas interface will furnish
the dynamic condition. Combining this last relation with the usual kinematic
one leads to the linearized free surface condition.

Pw(W2 - 9) = PaW2 (3.42)

Zero normal velocity is prescribed on the ends and lid of the air chamber. The
potential in the air chamber is expanded in the form

653.5 Two dimensional test probiem
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With the solution for an oscillatory pressurê imposed on the free surfàce (We
hausen & Laitone, equatiön 21.17) we can write

and

m=O

ffm()defcosk(x_)
dk

irpwvmtanhvmb kva O

f fm(,)4 i:cos k(x - )_cdk1 dx

f k 2i'va nir=_Jfn(x)ezrdx= (u_v2)a?S1fl(hI0+T)
a

it is possible to compute analyticlly this last integral and we find

(3.46)

After imposing the kinematic boundary conditióñ = iw'r/ , multiplying, by
fn(x)/a, and integrating over (-a,a), a linear system of equations is derived for
the unknown coefficients m in the form

mG'mn = D where
m=O

Cmn

=
f(x) [frn()

ïrpwvmtaJihvmb
X

(3 47)

kpa

lrPwVma tanh Vmb

7 .[.T(-1)cos(2ka)J k3 dk 3 48
J (kum)(k+um)(kun)(k+un)(kv)
O

An elementary analysIs shóWs that the only singularity of the integrand is for
Ic = V.

-a O

lt is then possible to write

= çbu7 + rnt'rn where (345)

(3.44)
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Neglecting the contribution to the pitch moment from the ends, the vertical
force and the moment are given by

(j:) =1
(')P(x0)dx.

Normalizing by the !ong-wavelengh limits of the forces and moment for a flat
rigid plate of the same width, we can write

PaQ l2Pa Ç
2pgi - PwVO sinh v0b' pgva3 - lr2Pw n2v sinhvb

(nodd)

In figures (3.8) and (3.9) we show the vertical force and the moment acting on
the air chamber fOr a value of aL 0.1. The chamber is 300m long and 3m
height In figure (3 9) the peaks correspond to resonant modes for the acoustic
waves.

0-1

0m

0m

co
0.04

0m

0m

0.01

iíL/2fr

Figure 3.8: vertical force aL 0.1 Figure 3.9: moment aL = 0.1

3.5.3 Numerical results and comparison

In this section, we compare our results with those of Newman.
The ratio jFI/pgL, functions of the parameter ¡'L, are show for aL= 0 1, 0 5,
1. and 2. and compared with the acoustic model in figures (3.10), (3.11),(3.12)
and (3.13). Agreement is good for small values of aL, but differences start to
be sïgmficant beyond aL > 0.8
In both models, the same physicalassumptions have been used for-the gas. In
particular, the gas compression obeys the adiabatic law also in the acoustic the-
ory where the celerity of sound is related to the pressure and density by the law

(3.49)

(3.50)
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Pa2 = yp (see [11). But in the acoustic theory, the disturbances are supposed
weak enough so that nonlinear terms in the restoring forces associated with
compressibility are neglected. Then the equation ap/at + uVp + pV.0 = O
is linearized in 5p/Dt = pV.u. As it can be shown, this assumption fails to
predict the correct value of vertical force at very low frequencies.

lt is possible to compute the long-wavelength limit of the vertical force in Lee
and Newman's model. When u - 0, then + i and m O for m > 0.
Then, using our notation, (L=2a), and the relation PaC2 = -yp, we find

X3
lun = aL
k-+0 2pga

We recall that in our model, this value equals which is the right value for
the hydrostatic case. The two models give then similar results when aL « 1.
This is confirmed by the numerical results. In the case of a platform with cav-
ity height h2, this implies h2» In practical cases, the pressure is always

bigger than the atmospheric pressure Patm lO5Pa and then we must have
h2 » 20m, a value out of the range of practical applications. However, we
notice that the discrepancy between our resùlts ïs only sensitive for the very
low frequencies. For aS = 0.5 and vL/2ir > 0.5, the agreement is in fact still
quite good.

In our model, the pressure being uniform in space, the theory predicts no mo-
ment acting on the platform. On the opposite, in Newman's model, the pres-
sure is not uniform anymore and there are propagating gas waves in the air
chamber, governed by the Helmholtz equation and leading to non null mo-
ment.

The calculatiön of this moment does not depend on the mean pressure value
but on the spatial pressure variations. If the theory fails in predicting the first
one for low frequencies, it should provide correct results for a much larger
range of value for aL and w for the second one.

We mention that if we can compute an equivalent compressibility ratio aL for
the acoustic model, the vertical force F depends also of the length L, the two
variables rertiaining independent (we can always choose the air chamber height
h in this way). In the present case, we choose L = 400m.

We finally notice a phase difference in the force between Newman's results
and ours, the vertical fOrce canceling for smaller value of w in the acoustic
model. Indeed, a wave elevation will create a localized pressure excess above it,
tending to level down the wave height. Similarly, a wave trough wifi generate
a pressure depression leveling up the wave height. As a result, the canceling
of F will always occur for wavelength slightly longer than the barge length.



5,1.0111.0.1 -
Newifon. IlI -

2 !iL/2ir

2 iL/2i

Figure 3.12: !FI/pgL cL = 1.

2 iìL/2ir °

Figure 3.10: FI/pgL cL=O.1 Figure 3.11: FI/pgL aL=O.5

N.flfl111 ......
02- - 1.6

2 ìL/2ir
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3.6 Radiation problem for a cylindrical platform

In this section, we study the 3D radiation problem in heave (the platform is
forced to oscillate harmonically in a vertical motion with an amplitude of one
meter in the absence of incoming waves) in the case where the body has a very
simplified geometry. The platform is cylindrical of radius R and has no vertical
wall extending in the water.
The interface water-gas is denoted S. The problem has a radial symmetry and
all functions depend only on the distance p from the vertical axis. As in the two
dimensional test problem, the pressure of the gas contained in the air cushion
equals the atmospheric pressure when the platform is at rest. We assume
that there is no air leakage. The mathematical solution for the expression of
the potential function is derived in a semi-analytical form and we compute
the corresponding free surface elevation in the air cushion and outside the
platform. The wave elevation is shown to present discontinuity at p = R as
expected. Expressions of the added mass in heave and damping coefficients are

os

02 0.6

02 04

01 02

3.6 Radiation problem for a cylindrical platform 69
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++cff4S=a7rR2 OpR

The function is sought under the form

= fkA(k)e'Jo(kp) dk

Figure 3.14: Definition of the geometry

also given.

This simplified model, lthough physically unreaIitic, will be useful for the
understanding of the mechanisms of the phenomenon and similar results will
be foúnd later in the case of more complex platform geometry.

We recall the mathethatical prOblem. The potential function fulfills the Laplace
equatiOn plus the following boundary cötiditions at z =

z =; O, water level rest

(3.51)

(3.53)

so that, it sat fies Laplace equatiOn, with A(k) an unknown function to be
determined. This leads IO the dual integral equation

+= p>R (3.52)
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+ a f A(k) x 2 f PJ0(kp) dpdk aR2, O p R (3.54)

Using thefactthat f pJo(kp)dp J1(kR)

and denoting B(k) A(k)(k - zì)k1, we have

fF(k)Jo(kp)dk + 27 aRf JJ1(kR)dk =

B(k)=

OpR
(3.56)

(3.57)

We introduce the source density ú

00

a(p) = f B(k)Jo(kp) dk, O p R (3.58)

Using this expression and the fact that, due to equation (3.57), a(p) = O if
p> R, we find from the Hankel inversion theorem that

fP(P)Jo(kP) dp = R(R)Ji(kR) f p0'(p)Ji(kp) dp (3.5 9)

Equation (3.57) is then automatically fulfilled. lnjectiñg (3.59) in (3.56), we
obtain

T - v)k'A(k)Jo(kp) dk+

f(k u)k'A(k)Jo(kp)dk = O, p> R (3.55)

fB(k)Jo(kp) dk = O p>R



Ra(R) f Ji(kR)Jo(kp) dk - ff ua'(u)Ji(ku)Jo(kp) u dk

+2Rf4d() fJo(ku

Using the relation

i.Ji (kR) dk du ciirR2

00

fJo(ka)Ji(kb)dk = {/b
o
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b<a
b>a

OpR
(3!60)

(3.61)

(3.66)

(3.67)

(3.60) transforms into

a(R) - f a'(u) du = o.(p) = c OpR (3.62)

C = - 2aEfud(u) f Jo(ku) k
k

1 (kR) dk du (3.63)

C Is a constant independent on p and the source strength a is constant over
the whole surface with a solution of the form

û 2 [i + 2iraR2 f
k

J(kR) dk]
-1

(3.64)

Using (3.59) we obtain

B(k) = crRJ(kR) (3.65)

We can now compute thé deflection 77

i47R7 .Ji(kR)Jo(kp)dk

i +vRf--jJi(kR)Jo(kp)dk OpR
W vR f .1Ji(kR)Jo(kp) dk p> R

o
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In all integrals involving the factor the contour integration has to pass
under the pole k = y in order to assure the radiation conditiön at infinity.

Using (3.29), the added mass Ma and the damping coefficient D read

Ma = pg1 ff IR(4) dS, D = wpg1 Z.s ff £(q5) dS (3.68)

with ffc5dS = 2lrR2af k(kJ)J'(k
o

(3.69)

In figures (3.15) and (3.16), we plot the added mass and damping coefficients
divided by the factor pg1- for aS = 0.15. The added mass has negatives
values fòr some range of frequencies. This phenomenon, unusual for classical
platforms will be found again later when the method will be applied to a barge
The damping which represents the lose of energy due to outgoing waves, can
vanish for some values of vR. Indeed, due to the idealized geometry and the
absence of walls extending into water, the outgoing waves are only generated
by the uniform pressüre in the air chamber. For some frequencies, the mean
value of the wave elevation in the air chamber is zero and there is then no
pressure change. The power transmitted to the fluid is zero and there can be
no outgoing wave lt can be shown that those frequencies correspond to the
solution of the equation Ji(vR) = O In integrals (3 64) and (3 69) the pole
at k = y vanishes and the free surface elevation is in phase with the platform
motion everywhere.
The wave elevation admits a discontinuity at p = R and it s amplitude reaches
its maximum value at p = 0. We can notice that the ratio between the waves
elevation for r = R± and r = R is independent of the value a which only
determine the global wave elevation amplitude. However, due the presence
of the exponential term in (3 53) the potential function is continuous every-
where for z negative
In figure (3.17), we plot theabsolute value of îj for two different wave numbers
vR 5. and vR = 3.831706 which is the first root of Ji(vR) = 0. In the first
case, the pattern is wave like implying the presence of outgoing wave. In the
second case which corresponds to a null damping, the wave amplitude decays
exponentially for p> R.
The integrals involved in the expressions of the wave elevation, added mass
and damping can be rewritten in appendix (B) in a simpler form using contour
deformation. The calculus of principal value integrals is then avoided.
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3.7 Three-dimensional test problem, results for a barge

in the previous sections, we derived a general mathematical model to compute
the forces acting on a body with an air cushion and the corresponding hydro-
dynamic coefficients (added mass and damping). This model has been tested
against platforms with very simplified and unrealistic geometry for the Under-
standing of the phenomenon. in this section, we now apply our model to a real
parallelepiped barge. The numerical method used is described and we compute
the hydrodynamic coefficieflts, forces due to harmonic incoming waves and re-
sponse amplitude operators (RAO). The RAO represent the heave, surge and
pitch motion of the platform when submitted to an incoming harmonic wave
of one meter amplitude.
Pinkster [61 carried out a series of model experiments in the DeIft Ships model
basin and also modified his preexisting diffraction-radiation code to include the
aIr cushion effects. After presenting briefly his mathematical model, the barge
geometry and the basin test facility he used, we compare our numerical results
with his both numerical and experimental ones he obtained. The agreement
between our and his results is good.
Lee and Newman [loi developed an air cushion model for a general three
dimensional body which is in a sense, the extension of the acoustical model
of Newman presented in a previous section (3.5.2). They tested their numer-
ical results against the experimental ones of Pinkster. We describe shortly
their method of resolution and explain why the mathematical model differences
highlighted in section (3.5.2), inherent in the choice of the gas law description
in the air-chamber, do not lead to fundamental differences in our respective
results.
A last comparison is finally done with the numerical results obtained by
Malenica [3] with his code for a barge of similar shape but with different di-
mensions. Good similarity between our respective results is found.

The equations describing the barge motion are those presented in section 33.
However, additional physical phenomena and numerical difficulties arise in the
case of a real three dimensional barge.
First, the presence of a free surface under the platform, bounded by the ver-
ticals walls extending in water, will create a situation similar to the one of a
water filled tank submitted to forced motion. In the basin test model and in
our calculations, the incoming waves are front waves, propagating in a direc-
tion parallel to the axis in which is oriented the largest dimension axis of the
barge,
At certain waves frequencies, so that vL nir or vi nir, where L and i
are the cavity length and cavity width respectively and n an integer, resonance
modes will be generated, with sloshing waves of large amplitude propagating
back and forth in between the side walls. If n is odd, the wave elevation in-
tegrated over E2 will be small, a wave elevation compensating a wave trough
and the pressure change will remain also small. But with n even, the waves
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elevation and troughs do not cancel anymore. Important pressure change con-
sequently occurs and strong variations for the hydrodynamic coefficients are
expected.
A second difficulty originates from the peculiar geometry of the studied barge.
The side walls are thin (see the mesh (3.20)) and have sharp angles. This gen-
erates singularities in the flow potential at the corners and numerical difficul-
ties to obtain good numerical accuracy. Heave motion and the corresponding
added mass and damping are not very affected by those problems because the
vertical force on the body is due to the pressure in the gas chamber. However,
as consequence of the uniform pressure in the chamber, the moment acting on
the body are only due to the water pressure on the wetted part of the body.
Especially, as result of the small ratio draft/length, on the horizontal inferior
basis of the side walls, were the potential determination is numerically subject
to errors.

3.7.1 Numerical aspects
We use a three dimensional panel technique method tO s lye the Integral equa-
tion for çbD and , j = i . . . 6. The barge boundaries, induding the air cush-
ion cavity, are discretized by means of flat perpendicular panels on which the
potential is assumed to be constant. The boundary conditions are applied in
one control point, centered on the middle on each element. For this purpose,
we use an existing Fortran subroutine, written by Noblesse [9] to evaluate
numerically the Green's function Ç. A linear system of equations, with the
discretized potential values on the hull and water-gas interface as unknown,
is obtained and solved. Once the çb are computed, the hydrodynamics coeffi-
cients and excitations forces determination is straight forward. Due to the size
of the barge, the range of frequencies which are of practical Interest, is confined
to O <w < 1.2 for the full scale model.

3.7.2 Pinkster's model and results
Pinkster solved an identical problem and furnishes numerical calculations as
well as model test results fòr a prototype barge. His approach is slightly dif-
ferent. He splits the gas-water interface of the air cavity in a given number of
independent air cushions and associates to each one a potential induced by a
vertical displacement. This leads to a multi-degrees of freedom problem, the
equality of the pressures In each air cushion and the fulfillment of the bound-
ary conditions for each sub interface, furnishing the supplementary equations.
However, the global added masses and restoring coefficients can not be ob-
tained directly. The comparison is then limited to the physical values (pitch,
heave, surge) of the model.
The tests were carried out wïth a 1:100 scaled model of the platform described
below. The full scale model is a 250m long and 78m wide rectangular platform
with a parallelepiped cavity symmetrically centered with respect to its borders.
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(see mesh (3.20)). The draft to the bottom of the wall is 15m and the water
free surface in the air cushion is at distance of 5m from the mean sea level. The
vertical walls thickness, surrounding the air cavity, is 6m fòr the 250m long Side
walls, and 6m for the 78m long end walls. The air cushion height between the
free surface and the horizontal deck amounts 18m. The air chamber has an
area of 242 x 66 = 15.97103m2 Some gas was introduced in the air cushion
to obtain a mean water level in the cavity which was 5m below the still water
level in the basin. Taking into account the atmospheric pressure influence, we
find Pc8 1.49 atm, a = 7.28 i0 and aS = 1.16. Masses are placed on the
barge lid in order to increase the metacentric height and the center of gravity
is situated at z = O.
The total number of rectangular panels for the computations amounts 872. The
particulars of the platförm are displayed in table (3.7.3) The tests are carried
out with a head incoming wave. Due to the linearity of the problem, we as-
sume it's amplitude of one meter.

3.7.3 Comparison with Pinkster and Newman's results

In this section, the numerical results of our model are presented and compared
with Pinkster's toWing tank test results as well as with Lee and Newman's
numerical results.
The added masses and damping coefficients issued from our calculations are
presented in the figures (3.21) through (3.26).
Discontinuities are clearly noticeable. These phenomenon occur for frequen-
cies for which there is wave sloshing due to the resonant modes in the cham-
ber bounded by the verticalsides. Physically, the flow should not be potential
anymore, the waves of large amplitude breaking and the variations of these
different coefficients should be smother. Unfortunately, we do not have ex-
perimental test results för these data. Numerical problems should also occur
for these resonant frequencies. At this point, it is not clear in which extend
these numerical problems play a role.
An interesting feature isthe occurrence for certain frequencies of negative value
for the added mass in heave. This phenomenon, already experienced in the one
dimensional model, rarely occurs with classical rigid platform but can be ex-
plained by the air cushion presence. 1f in unbounded fluid the added mass
represents a mass of the liquid entrained by the fluid, in presence of an air
cushion and a free surface, this is just the in phase component of the fluid
reactive force. The air compression generated by the water waves reacts like
a spring which motion can be out of phase with the barge heave. This term
could also be included in the restoring coefficient term and called "hydrody-
namic spring coefficient". Oortmerssen [15] experIenced similar behavior for
the case of a tanker vertically oscillating near a quay. The presence of the ver-
tical side walls can also accentuate the phenomenon by "guiding the liquid in
a vertical motion and preventing it to "escape" laterally.
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Force in the incoming wave x direction and vertical force in figures (3.27) and
(3.28) and added mass and damping in surge in figures (3.23) and (3.24). For
frequencies so that ii = 2(n + 1)7r/L we have as expected important peaks for
the force F. this corresponds to sloshing modesfor which the waves elevatiOn
at the two sides of the barge are in opposition of phase.

A interesting result is that the horizontal forceF as well as the added mass
in surge A11 (and more generally UD.X and Uf.ê) are independent of the
parämeter a although the diffracted and radiated potentials are modified. In
figures (3.18) and (3.19), forces F and F are plotted for different values of a.
Indeed, a local wave elevation under the barge generates a extra pressure ap-
plying uniformly on the surface 2 and the side walls. Due to linearity, mod-
ifying the value a is equivalent to applying an oscillating pressure in the air
chamber. Due to the unifòrmity in space of the pressure, it's surface integra-
tion on the vertical side walls is then zero.
The potential induced by the imposed pressure having the same plans of sym-
metry as the barge, the resulting added mass and force for surge are then null.

10.07

o., o.. i I:

In figure (3.30) we compare our numerical model for heave with Pink.ster's
towing tank result In figure (3 31) the comparison is made with Lee and New-
man's acoustic model. In both cases, the agreement is good. For this last
comparison, we notice that a small shift in frequency as in one dimension.
On the other hand the comparison for the pitch motion lacks of preciSion. Ac
tually, in our model, the pressure in the cavity does not contrIbute to the mo-
ment exerted on the body Considering the small values of the draft compared
to the length and width of the barge, this means that the moment on the body
is mainly due to the pressure acting on the bases of the platform, the hori-
zontal side walls, at z = 1z2 Unfortunately, as it was already mentioned, the

02a., oso.'

w

Figure 3.19: F

w

Figure 3.18: F
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computed values for lack of precisión on those boundaries. The prediçted
pitch values plotted in figure (3 32) are far too small and unrealistic
The lack of numerical precision can also be noticed in figure (3.29) where the
limit value of the surge, when w -* O is approximately 1.1 (it should be 1, the
platform following the circular fluid particle motion). Increasing the number
of panel elements remedy this problem although the convergence is slow.

16
14
12
10

8
6
4
2
o

o

Figure 3.20: Panel description of the barge

We mention here the work of Lee and Newman who also developed a three
dimensional code based on their acoustic model. As in i D, the acoustic distur-
bances will give a non null value for the moment exerted by the gas trapped
in the air cushion, on the body Their model can tackle any motion of the plat-
form and gives added masses and different RAO coefficients The method of
resolution is very similar to the one presented for the one-dimensional case.
The motion in the air chamber is represented by an eigenfunction expansion
with à set of Fóúrier generalized modes. This reduces drastically the numbers
of unknown values, especially in the case of a barge.
They tested their numerical results against Pinkster s towing tank test and nu-
merical ones. The agreement is very good. Considering the mathématical dif-
férences in the two models, one based on an adiabatic gas law and the other
on the acoustic theory, noticed in section 3 5 3, one could be surprised with a
so good agreement between the results for the computed RAO. First, we no-

So
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Table 3.1: Particulars of the platform

1ó+09

Quantity Symbol Uñj Mñithde
Lith L m 250
Breadth 1 rn 78
Draft 1z2 m 15
Depth D m 30

Displacement V0 m3 0.130 106
Center of gravity above keel KG m 30
Long. metacentric height m 75.1
Longitudinal side wall d m 6
Frontside Wall d m 2

- - 1.4
natural heave frequency
natural pitch frequency

w,
WH

rad/s
rad/s

4.97
. 4.97

a - 7.29 i0

10
0 0.2 0.4 0.6 0.8 12

w

Figure 3.21: Added inertia in heave for
Pinkster's model test barge

ticed that the calculus of the moment acting on the platform should be well
predicted, and the agreement on the pitch motion could be expected. On the
contrary we showed that the acoustic theory fails in predicting the forces at low
frequencies But for higher frequencies, a good agreement was also expected
In fact, when the incoming wave-lengths are very long, the heave motion of
the body only depends on the restoring coefficient in heave and is always one,
the barge following" the waves, and this, whatever the value of the dynamic
forces.
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Figure 3.22: Damping in heave for
Pinkstêr's 'model test barge

0.4 0.6 0.8 12
w

Figure 3.23: Added inertia in surge for
Pinkster's model test barge

3.7.L Comparison with Malemca's results

Malenica presented numerical results obtained his method which is Similar
to ours. lt as been designed to be implemented in an existing diffraction-
radiation code with a slightly different formulation He tested his method on
a barge similar to the one of Pjnkster but with different dimensions. The barge
is 150m long, 20m large and the draft amounts 10m. The side walls are 4m
wide and the water-gas interface in the air chamber is laying 5m below the sea
level at rest. He presented results for the added mass and damping in heave
which provide a good way to compare with our own computings.
Added masses and damping in heave for a = oo and a = O are plotted in

26.09
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e' 10+09 -
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02 120.6

w
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Figure 3.24: Damping in
Pinicster's model test barge
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12
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Figure 3.25: Added inertia in pitch for
Pinkster's model test barge

figures (3.34), (3.35) , (3.36) and (3.37).
The agreement between our results is good A noticeable fact is that discon-
tinuities are not present for the case a = 00 Numerical tests show that this
is due to the low value of the ratio width/length although it is still not clear
why For a = O, our results slightly differ for the prediction of the resonant
modes corresponding to high variation in the plots This can be explained by
the lack of accuracy of our code which is not optimized for industrial purposes
We finally mention the occurrence of negative values for the added mass as it
was found for the previotis analyUcal models and numerical results.



3.7 Three-dimensioñal test proern, resuftsfoabarge 83

50*10

40*10

38+10

50*10

10+10

.10+10

20.07

1.50.07

10+07

0.4

Figure 3.27: horizontal fôrce F for
Pinkster's model test barge
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Figure 3.26 Damping in pitch for
Pinksters model test barge
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Figure 3.28: vertical force F for Pinkster's
model test barge
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Figure 3.29:. surge. response for PinkSter'
model test barge

3 Platform with air cushion

0.8 06
w

08 12



3.7 Three-dimensional test problem, results for a barge 85

0.0

0.4

0.3

02

0.1

w

Figure 3.30: heave response, comparison
with Pink.ster's model test
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Figure 3.31: heave response, comparison
with Lee and Newman's numerical model
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Figure 3.33: Moment ¡y for Pinkster's model test barge
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Figure 3.32: pitch response for Pinkster's model test barge
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Figure 3.34: added mass in heave a
Comparison with Malenicas result

Figure 3.35: Damping in heave a = oo,
Comparison with Malenica's result
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Figure 3.36: áddd mass in heave a Q,
Comparison with Malenica's iesult



Chapter

Deformation of an elastic
cylinder in waves

In this chapter, we investigate the deflection of a thin shell cylinder, mounted at the sea
bottom by periodic waves The motion of the shell is descnbed by the well known thin shell
theory. The harmonic water waves diffracted by the cylinder are described by means of
the eigenmode expansioh. We then solve the coupled equations for the cylinder using the
same set of orthogonal functions. By developing the highest derivatives in series of these
eigenmodes we assure then convergence of our solutions

4.1 introduction

In this chapter we investigate the influence of periodic water waves on the de-
flection of a thin flexible shell, with large radiüs, mounted at the sea bottom
at depth h and piercing through the free surface The fluid is assumed to be
inviscid and rotationless, hence the velocity potential obeys the Laplace equa-
tion. The motion of the shell is described by the classical theory of thins shells.
The equations are then reduced to simplified "two dimensional" equations in-
volving the normal, tangential and longitudinal motion u, y, w of the middle
surface This theory requires that the shell thickness d is small in comparison
with shell radius R , and the water depth h. The other classical assumptions
can be found in Markus [27] We will focus on the periodic deflections only
and we pay no attention to the statiç deflection due to hydrOstatic pressure.
By linearity, this effect can be added..

The harmonic water waves diffracted by a rigid cylinder will be described by
means of the well known eigenmode expansion These modes are solutions of

89



90 4 Deformation of an elastic cylinder in waves

the Laplace equation and fit the boundary conditions at the free surface and
the sea bottom. To solve the coupled equations for the refracted potential and
the mOtion of the shell we use the same set of orthogonal functions. Due to
the boundary cOnditions of the variables of motion of the shell this can not
lead to a converging series. To assure convergence we expand these highest
derivatives, as they occur in the equations of motions, in series of these eigen-
modes. he lower order derivatives and the functions themselves follow from
these expansions. This gives rise to a set of polynomials with unknown coef-
ficients. Making use of the orthogonality relations of the eigenmodes and the
expansion of the polynomials in these modes leads to a set of equations with
a sparse block, structured by the orthogonality relation, combined with full
rows chie to the expansions of the polynomials. The boundary conditions of
the variables describing the motion of the shell give an extra set of equations.
The final 'square' matrix equation can be solved by a standard method.

In section 4.6, an application of this mathematical approach is treated for the
case of a flexible beam loaded by a distribution described by the first eigen-
mode of the water-wave problem. Convergence of the deflection and its deriva-
tives is shown. We then apply the mathematical model fôr the real shell and
present results of our computations for several values of the flexural rigidity.
The method is shown to be valid for a large range of shell rigidity.

Li.2 Derivation of the main equations

We study the behavior of the thin cylindrical shell in periodic waves in a sea of
constant depth h The shell, emerging from the sea surface is fixed on the sea
bottom (flgure(4.1)). We denote u , y and wthe normal, tangential and vertical
shell deflections.

We assume the fluid to be potential and introduce the velocity potential V =
V (z, t) where V is the fluid velocity vector. We get for the potential (z, t)
the Laplace equation = O in the fluid domain.

At the linearized free surface z = O, the linearized free surface condition
g + = O holds. At the bottom, z = h, we have O and we add the
linearized body boundary condition = u on the shell, at r = R.

Following Love's theory, we derive the equations of motion of the shell.



4.2 Derivation of the main.equations 91

u

O R

w

aw (1v2)R2
= Ed

P(r, z, O, t)

with = () and P the dynamic pressure dUe to water waves. From
Bernoulli's theOrem we can write

Pfr,z,O,t) = p(r,O,z,t)
By differentiating equation (4.2), one can obtain..

ô2u R 03vvR--- + -(1 + ii)
az2ao

+

(4.5)

The differentiation will allow us to expand later this equation in the same
elgenfunctions than the two others shell equatiOns. 1f we choose equation
(4.2) to be zero at z = h ft is automatically fulfilled everywhere.

Figure 4.1: Cylinder geometry
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We split the potential and the pressure into two parts.
The first ones (d and d) are due to the diffraction when the shell is rigid
The second ones (q5 and p) are due to the fiexural deflections and the radiated
water waves that the shell motion generates

P(r,O,z,t) = (p4(r,9,z) ±p(r,9,z))e_1t (4.5)

(r,O,z,t) (qd+q)e_iWt (4.7)

The expression fàrp'(r= R) is well known and can be found in the literature.

d pg fh+cr4Siflh2(kh)\h12
.p (r = R) csh(kh) 2 ) fo(<

00 2f(z)7
irkRk(k) cos(nO) = A cos(nO) x fo(z) (4.8)

fo(z) is given in the next section.

4.3 Expansion of the solutions in eigeflfunctiøfls

We first expand the potential in the usual eigenfunctions fm.

çb(r, O, Z, t) XmnK,(kmr) cos(nO) .frn(z)
iwt (49)

n=O m=1

± Xo,H(kr) cos(nO) fo(z) e_&t

n=O

Instead of following the standard approach for Sturm-Liouvilie boundary value
problems where expansions in the eigenfunction space of the operator is sought,
we assume that the fourth derivative of u, the second derivative of y and third
derivative of w can be expanded in the same class of eigenfunctions Then, if
we integrate those functions and fiñd for u, y and w

n=O
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with

'/coshk(z±h)fo(z)-
(h + a- sinh2(kh))hí2

u(z,O,t) =
{

fm(Z) + cin(Z + h)3 + C2n(z + h)2
n=O m=O

+c3(z + h) + c4} cos(nO) e_C7t (4.10)

v(z,O,t) = {jío(z) - + c&(z ± h)
n=1 m=1 m

+C9n} sin(nO) e_t (4.11)

w(z,9,t) = {go(z) _gm(Z) ± c5(z±h)2

±C6( + h) + c7} cos(nO) -iwt (4.12)

( )- v'sinhk(z±h)
90 z

(h+_1sinh2(kh))h/2

with k given by the usual dispersion relation a k tanh(kh)

f ( )
v'cosk(z+h)

( )
i/sink(z+h) (414)n Z

(h_a_1sin2(knh))'"2
g Z

(h_a_1 sin2(kh))2

k given by a = k tan(knh)
The f functions are orthonormal and form a complete set of eigenfunctions
for the solution q5.
in order to guarantee the convergence of the termwize integrated series to the
integral of the expanded function, we have to assume that the series of the
successive derivatives converge uniformly. This requirement can be too strong
and is not necessary as can be showfl by a slightly different approach. However,
numerical results confirmthe convergence of the fourth derivative of u although
slowly. The convergence of the series for u is then guaranteed and fast. The
eigenfunctions f, for are not eigenfunctions of the mechanical equations lt
turns out that the polynomials are convenient to be added, the found solution
lies in the proper function space. It fulfills the boundary conditions and in a
weak sense the equations. lt is reasonable to expect some lòcal convergence
problems for the series of the highest derivatives.

(4.13)
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4.4 Boundary conditions
The boundary conditibn on the cylinder for the potential in frequéncy domain
is as follow:

1(jJU
On

The boundary condition at the bottom of the fluid domain also represents that
the boundary is a rigid wall, therefore

at z=h (4.16)

The mechanical boundary conditions at the ends of the shell are then derived

4.5 Numerical method

For the numerical resolution of the problem, we truncate the sums to N for n,
and to M for m. After multiplying each equation by fm(Z), we integrate the
euatiÖns (4.2), (4.3), (4.2) and (4.15) from z = h to z = O using the or-
thonormality of these functions For each equation, we also expand the poly-
riomials in the f series.

(4.15)

We have then to force equation (4.2) to be zero. Until now, only its derivative
with respect to z equals zero This gives an extra condition for the coefficients
C8 and C5:

by considering that the shell is fixed at z = h but free at z = O Following
Markus, the eight extra equations, for r R, read

u=
9w

Ou
= w = -'- = O

Oz
ii 0v

forz h (4.17)

(4.18)

8u 1 82u (4.19)

10w 0v (4.20)

O 0w 1 0v u (1 - u) 0 1 0w 0v fI?u =O (4.21)- 2R 09[R00 iOz8O]

(1+i,)C8±R2C5 =0 (4.22)
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fo
5Öi j f2(z)dz

J-h

82i J (z+h)2f(z)dz
J-h

a Eh
+ = q(z) with q(z) = kfo(z)

We assumethat we have the following boundary conditions

r0
81i = J

(z + h)f(z) dz
-h

çO

3= j (z+h)3fj(z)dz
J-h

fm(Z)+Ci(Z+h)3+C2(Z+h)2+C3(Z+h)+C4
m=Om

(4.28)

Choosing k = 1, D lNm2, h = 50 and 102Ñm, we give the nu-
merical solutions for u, and obtained for different values of
M(5, 10,20,50, 150).
The convergence of u appears very fast and we only need a couple of terms
to have a very good approximation of our solution The series of the fourth
derivative seems to have a slow converge Especially to obtain a right value at
the point z 0. This is due to the fact that the fm functions do not obey the
boundary equations of the mechanical problem

This yields, for each n [0v . . N], to a linear system of 4M + 13 equations,
with unknown values Umn, Vmn, Wmn, Xmn and the C coefficients. The force
term of the system is logically found to be the pressure due to the diffracted
problem for a rigid shell.

4.6 Numerical results and test of convergence

To make our method clearly understandable, let us first solve, for illustration a
simplified case Let describe the axisymmetric, radial vibration of a cylindrical
shell under the symmetric load q(z) The former system of equations can be
redúced to the differential equation

(4.25)

u=0 u'=O at z=-h (4.26)

(4.23)

(4.24)

u" = O u" =0 at z=O (4.27)

the function u writes
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Figure 4.2: convergence for u
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Figure 4.3: convergence for ('

For the complete model it turms out that the convergence of the series for the
deflection shows similar behaviour. Depending on the physical parameters we
choose the upper bounds of the series. In general the choice M 50 is rea-
sonable. We present here some numerical results for a cylindrical shell with
a diameter of 6 m, in a 25m depth sea. The thickness of the shell is 1cm and
its density is 2500Kg/rn3. The rigidity equals E = 109Nm2 and the incoming
wave frequency w = 0.3 radIs. The chosen value for the rigidity is rather low,
so the thin structure is very flexible

Examples of the computation of the amplitude of the deflection for u and w
against z, for O = O are shown in figure (4.7). and (4.8). As we suggested we
have chosen 50 terms for the series although, more terms are needed to obtain
a good convergence of the highest derivatives.
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Figure 4.5: convergence for

In figure (4.9) and (4.10), we show the cylinder deplacement at two different
depths (z=-15m and z=-5m) and in five different time moments. The main
contribution to the deplacement is due to the bending of the cylinder.
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Figure 4.6: convergence for

Figure 4.7: shell deflection u function of z
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Figure 4.8: shell deflection u function of z

Figure 4.g: shell deflection
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Figure 4.10: shell deflection



Appendix

Integral equations

In this appendix, we give the integral equations that must fuliIl the potentials of radiation
when the body does not posses axis of symmetry, as it Wasthe case in chapter(3).

A.1 General case for integral equations

This appendix contains the general case for equations when a and a are non
null, this means, when the air cushion does not posses xx and yy as plans of
symmetry We indicate the changes with have to be made

The boundary condition for the total potential (3.11) becomes

{ - + + aff dS + iwcrS3 + iwaaZS5 - iwaaS4 =

101

i : j=3
with

ai,,a
O

:

:

:

j=4
j=5
j1,2,6

the equations (3.19) and (3.20) for the potential of radiation R become

{
v+ -2_+aff-2_ds_asx=o} (A.2)
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the integral. equation (325) becomes

2îrØ ff dS - ff - vt4) dS

(A.3)



Appendix B
Integral evaluation

In this appendix, we rewrfte the integrals given in chapter (3), section 6) under a more conve-
nient form to evaluate numerically by extending the path of integration to the complex plane

B.1 Sorne integral calculus

in the problem of the radiation of a cylindrical platform in chapter (3), we
encouñter the three following integrals.

ii=f (k' V))dk I2fk(k)Ji(kR)dk

and 13
= fk Ji(kR)Jo(kp)djc

The calculus of these integrals is performed by splitting the integrated func-
tions in two separate parts and extending the path of integration in the su-
perior quadrant for the first resulting integral and in the inferior quadrant for
the second. Applying the residu theorem, we obtain a new expression for the
integrals, making rid of the. singularity at k = ii.
lt is recalled that the integration path in the upper plane embrasses the pole
at k = ii.
The contribution of the path integration along the superior vertical axis is de-
noted 5, respectivelly 132 for the inferior vertical axis for each integral.
For I, we have

103



104 B IntegÊal evaluation

j11(kR)K1(kR)
dk,

- y)
- o

and then

fk -f- 2
Ii(kR)Ki (kR) dk + iirJ1 (vR)H (vR)

The integral 12 can be obtained noticing that k(k) = _____ -

00 00

12 fkkJ?(kdk J?)
The last integral has a well known value [[14]]

i r dk =
o

?52

Figure B.1: path of integration

=
/ (k )

J1 (kR) [H') (kR) + H2 (kR)] dk,

f 11(kR)K1(kR)132=1 dkj ir(zk+v)
o

so that Bi + B - f
k

211(kR)K1(kR)dk

(B .3)

(B. 6)
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And then, taking in account the residu we obtain

00

12 = fk2 ' 211(kR)K1(kR)dk I+iJl(vR)H1)(vR) (B.9)+v 2i' u
o

To compute 13, we write

Ji(kR)Jo(kp) = Ji(kR)(H'(kp) + H2(kp)) forp> R (B.10)

Ji(kR)Jo(kp) = (H1)(kR) + H2(kR))Ji(kp) for p <R (B.11)

so that, the integrals along the quarter circle in the complex plane vanish and
we find after calculation

{

k2+2 Ii(kR)Ko(kp) dk + un1 (uR)H' (up)2

13= 00

k2+2 Ki(kR)Io(kp) dk ± i7nH1'(uR)Jo(vp)

forp > R

for p < R

(B .12)
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Conclusions and
recommendations

This thesis contains four different studies that are, apart form the first two
chapters. independent from each other.
in the first chapter, we investigate the response of a platform of large dimen-
sions arid shallow draft exited by waves. Due to these peculiar geometrical
properties, it is possible to describe the dynamical behavior of the structure
with a beam model. Combining the kinematic condition with the plate model
leads to an integro-differential eqúation válid at z = O. The initial three-
dimensional problem is then reduced to a two-dimensional one, the platform
presence modifying the free surface condition. We use the simplest beam
model (BernoUlli-Euler) which is well suited for low frequencies but the method
can be extended to more elaborated models including damping for example. A
direct application is floating airports which are moored near the shore in shal-
low water. To take into account the finite water depth (it is supposed to be
infinite in the presentation of our results) can be done without any problem by
simply replacing the Green's fUnction by a new one, fulfilling the slip condition
on the ocean bottom. It seems that in real cases, the use of pillars for pre-
venting the platform to drift is considered. The inclusion of this constraint in
our model can be achieved by adding new boundary conditions (w = O at each
pillar location). This does not represent a great interest mathematically and it
has not then be done it this thesis. We mention that, due to the simplicity of
our model, our numerical program is very fast less than a few minutes on a
PC for 2000 panels- and can the be used for industrial purposes.
We show that our method can also be applied to ships, talung in account their
three-dimensional geometry, as long as they can dynamically be described with
a rod model We nevertheless limit our investigations to deflections caused by
harmonic waves when there is no forward speed. Varióus other hydrodynamic
phenomena, such as slamming, are responsible of ship deflections but a com-
plete survey of these aspects would furnish an entire new thesis subject by
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itself, far form our original objective.

To complete our stUdy on floating airports, we analyze the wave pattern that
a moving plane (landing or taking off) generates in the beam structure when
translating on the platform. With the model previously developed in the first
chapter and the use of integral transforms (Laplace and Föurier), the expres-
sion of the deflection is carried out in the most general case. In the case of
a translation with constant speed, the expression admits greats simplificatións
and it is possible to extract characteristics values, such as critical speeds., which
allows us to understand the physical phenomena involved. Our derivation of
the solution is very simple and can be computed with high accuracy within a
minute on the far field as well as in the vicinity of the wheel.
Returning to the initial problem of a plane motion with acceleration of de-
celeration, we show how deforming in the complex plane one of the integrals
involved in w can reduce the computing time necessary to determine the de-
flection.

The third chapter deals with an other subject which also could furnish techno-
logical solutions for engineering problem: the behavior of floating platforms
with an air cushion device. We first recall the advantages that such platforms
would give. The pressure in the air chamber being uniform, the pressure is
averaged on the body hull and the stresses in the material are then reduced.
It is also possible to change the static and dynamic properties of the body,
injecting some air in the chamber and modifying therefore the mean pressure
value. To describe the air pocket dynamics, we assume that the compression
is adiabatic, the pressure change in the air cushion being linearly dependent
of it's instantaneous volume change. After deriving the main equations gov-
erning the platform behavior and reducing the problem to the resolution of
an integro-differential equation on the hull of the platform (and the interface
water-gas in the air chamber), we derive simplified models in two and three
dimensions to understand the nature of the involved phenomena. Then, we
apply our model on a real barge and made some comparisons obtained with
Pinkster's test model and numerical results. The agreement is good even if the
pitch moment is underestimated. Our code has not been optimized for indus-
triàl purpose and more accurate results could be obtained by more elaborated
numerical panel method. lt is nevertheless questionable if this represents a
great interest.

Finally, in the fourth chapter, we study the deformations of a cylindrical shell,
with its inferior base on the sea bottom, by harmonic waves. We use an eigen-
function expansion for the water domain and show that jt is possible to use
the same set of functions to describe the shell deflections. Particular attention
has been paid to the cOnvergence of stich mathematical series and the method
proved to furnish correct results.
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Samenvatting

Wisseiwerking tussen watergolven en elastische plat-
forms en platforms met luchtkussen

Het probleem van de hydrodynamische krachten die op een drijvend platform
werken is allang bekend. Theorieën zijn gewoonlijk geschikt voor rnassieve,
zware en stijve offshore constructies die de olie-industrie met succes gebruikt.
Kort geleden zijn meuwe platform prototypen voor verschillende toepassingen
verschenen In het bijzonder is er veel belangstelling voor drijvende luchthavens
in Japan en in de V S Deze constructies hebben bijzondere vormen - ze zijn veel
langer, breder en hebben een kleine diepgang - en kunnen onderworpen zijn
aan de krachten yan opstijgende en landende vilegtuigen. Nieuwe ontwer-
pen roepen om nieuwe wiskundige modellen en nieuwe wiskundige modellen
roepen orn nieuwe AlOEs met nieuwe proefschriften.
In dit proefschrift is speciale aandacht besteed aan twee mogelijke oplossingen
die voor dit probleem waren voorgesteld kunstmatige eilanden en platforms
met een zogenaarnd "luchtkussen".
In het eerste hoofdstuk bestuderen wij de invloed van golven op de beweg-
ingen van drijvende en buigzame eilanden. Aangenomen wordt dat het ei-
land geen diepgang heeft en dat het rnogelijk is zijn dynamische gedrag met
een plaatmodel te beschrijven De plaatvergehjking is met de waterdeflec-
tie vergelijking gekoppeld orn een nieuwe vrije opperviakte conditie voor de
plaat af te leiden Met behuip van een rand-mtegraalmethode is een integro-
differentialvergelijking verkregen orn de plaatdeflectie te beschrijven en we
lossen het probleem numeriek met een panelen methode op. In tegenstelling
tot kiassieke methoden wordt er geen hydrodynamische coefficient (toegevo-
erde massa en demping) berekend. De potentiaalfunctie wordt niet in compo-
nenten opgesplitst maar het volledige probleem wordt in een keer opgelost.
De verticale plaatverhoging is op elk panee! constant genomen en die waarden
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vormen de oplossing van het probleem. De verre veld golfhoogte is afgeleid
en de uitgestraalde energie wordt bepaald. We testen de methode op een
tweedimensionaal platform want het probleem is klein en snel uit te rekenen,
en tonen de limieten van het algoritme voor erg stijve eilanden. Uiteindelijk
is de methode op rechthoekige platformen toegepast.
De methode is uitgebreid voor een buigzaam driedimensionaal schip . Daar-
voor nemen we aan dat het schip zich dynamisch als een balk gedraagt. Haar
romp wordt gediscretiseerd in een verzameling doorsneden met constante mas-
sa en stijfheid. ten rand-integraalmethode is gebruikt orn de hydrodynamische
vergelijkingen te beschrijven en de vergelijkingen zijn door m.iddel van de re-
latie tussen de balkdeflectie en de water beweging op de romp gekoppeld.

In het tweede hoofdstuk, bepalen we de deflectie die door een landend of
opstijgend vliegtuig op een platform wordt veroorzaakt. Aangenomen wordt
dat het eiland oneindig uitgestrekt is en dat de enige kracht op het platform
uitgeoefend, het constante gewicht van het toestel is. Voor de beschrijving
van het dynamische gedrag van het platform wordt het plaatmodel van het
vorige hoofdstuk gebruikt. Met behuip van Laplace en Fourier transformatie,
bepalen we de oplossing van de verhoging over de hele platform voor een
translatie, met variabele sneiheid, van het vliegtuig. In het geval van een con-
stante snelheid wordt de oplossing vereengevoudigd. De plaatgolven, door het
toestel uitgestraald, zijn in drie klassen- subkritisch, kritisch en superkritish-
afhankelijk van de sneiheid, te verdelen. Aangetoond wordt dat voor alle sne1
heden, de verhoging naast het vliegtuigwiel, een begrensde waarde heeft. Wij
schenken bijzondere aandacht aan het golfpatroon voor het geval waarin de
vliegtuigsnelheid gelijk is aan de kritische sneiheid.

In het derde hoofdstuk worden de krachten op een platform met luchtkussen
berekend, welke door inkomende regelmatige watergolven worden uitgeoe-
fend. Een adiabatisch model is voor het gas in de luchtkamer onder het plat-
form gekozen. Dit leidt tot een constante druk in de kamer. De vrije opper-
viakteconditie voor het interface tussen het gas en het water in de luchtkamer
is afgeleid en door middel van een rand-integraalmethode, voigt een inte-
graalvergelij king voor de snelheidspotentiaal. De uitdrukkingen voor toegevoe-
gde massa en demping worden berekend.
Er wordt bijzondere aañdacht aan de stabiiteit van het platform besteed want
de aanwezigheid van het luchtkussen verandert de opdrijvende kracht en statis-
che momenten van stabffiteit drastisch. Het evenwicht van dit soort platforms
is inderdaad siecht.
0m de fysische verschijnselen die door de aanwezigheid van het luchtkussen
veroorzaakt Worden te analyseren, gebruiken we eerst platforms met vereen-
voudige vormen. Analytische resultaten zijn gepresenteerd in het geval van de
verstrooiing van inkomende golven op een een-dimensionaal platform en uit-
straling bij een dilindrisch platform. Onze resultaten zijn met een akoestisch
model van andere auteurs vergeleken.
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Uiteindelijk wordt de algemene methode op een echt platform toegepast. De
resultaten zijn vergeleken met resultaten van Pinkster uit modelproeven verkre-
gen De stampbeweging van het platform is in overeenstemming met de metin-
gen maar er zijn verschillen voor het dompen.

In het vierde hoofdstuk wordt de vervorming van een slanke verticale din-
der door inkomende golven bepaald De cilinder staat op de zeebodem en de
bovenkant ervan is gelijk met de zeespiegel De verstrooie golven zijn door
middel van een reeks van harmonische eigenfuncties beschreven en we ont-
wikkelen de cilindervervorming in hetzelfde reeks van eigenfunctie De dy-
namische vergelijkingen voor de cilinder en het hydrodynamische probleem
zijn uiteindelijk gekoppeld waarby bijzondere aandacht aan de convergentie
van de oplossing wordt besteed.
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