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Preface

When I started this project, all that was well defined was the starting point
but the exact direction that should be taken from there was still unclear. After
familiarizing myself with an already existing method that can be used to speed
up leave-one-out cross-validation for a linear model, the first step was to add a
ridge penalty to this linear model and find out if the method would still work.
It turned out that the method still worked fine and resulted in exact answers in
the linear ridge model.

A rather natural way to proceed from here was to apply a slightly altered
version of the method to a different model, namely the logistic (ridge) model.
In this way an efficient procedure to approximate leave-one-out cross-validation
results was obtained. Although the same procedure was already suggested by
others, little attention had been paid to examining its usefulness in practical
situations.

After reaching this point, some choices had to be made. Since I wrote my
literature survey on survival analysis, an obvious choice would be to extend the
approximation method to work for survival models. However, there were other
possibilities. The first one was to change the penalty parameter from the ridge
into the lasso penalty and try to find out if the method could be adjusted in
order to work with this new penalty. The second option was to turn to k-fold
cross-validation instead of leave-one-out cross-validation and try to find out if
a similar approximation method would work there and would possibly even be
exact in the linear case.

Looking back, I can say that I in fact explored all paths mentioned. However,
not all my findings made it into the final article. Fortunately, this report consists
of two parts: a work document (the first part) and an article. In the final article,
the focus lies on an approximation method that works for survival models with
either a ridge or a lasso penalty. However, the chapter on k-fold cross-validation
that can be found in the work document is also worth reading. Additionally,
in the first few chapters of the work document I tried to find optimal values of
the penalty parameters by means of derivatives, so a more theoretical approach.
Since the methods failed to produce reliable answers (or did not produce answers
at all), I did not refer to them in the final article but the interested reader
might still want to look into them briefly. Furthermore, in the chapter on lasso
regression, one can find an extension of the method that is used in the article.
Since I am still doubting its usefulness, it is not included in the final article.

Although nothing is ever finished, this is as close as it gets (for now).
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1 Introduction

In many areas, statistical models are used. Regardless of the precise model,
the final step in the model building sequence will always be a model validation
procedure. In this validation step, one tries to find out whether the created
prediction model really predicts well, not only on the training data set, but also
on an independent test set. Using an independent test set is very important,
since the results obtained from training and validating the model on the same
data set will be too optimistic.

When independent validation data is absent (which is usually the case) and
an estimate of the predictive accuracy is needed, resampling the original data to
create an independent test set is a commonly used approach. There are many
ways in which this can be done, but one of the most frequently used methods
is called cross-validation. The most important cross-validation methods are
leave-one-out cross-validation and k-fold cross-valdiation.
In leave-one-out cross-validation (LOOCV), each observation is chosen once to
be the test set. The model is fitted n times and is validated every time on
one single test object. The results can then be averaged. An advantage of this
method is that the n training sets contain only 1 element less than the poten-
tial training set (i.e. the full data set) and therefore the obtained predictive
performance will closely resemble the real performance. A disadvantage of this
approach is that it can be very time-consuming.
A more general version of LOOCV is k-fold cross-validation. The data is
divided in k (nearly) equal parts. Subsequently the model is created by using
k − 1 parts and validated using the only part of the data that was not involved
in the model building. For small values of k, a lot of potential training data is
not used in the model building step and the obtained predictive performance
will for that reason probably be worse than the real performance. When k gets
larger, this problem diminishes.
Another problem of k-fold cross-validation is that its outcomes are not directly
reproducible. Where leave-one-out cross-validation is purely deterministic, k-
fold cross-validation depends on the actual partition. To reduce this problem,
multiple paritions can be used and the results can again be averaged, but in
this way the method gets more time-consuming and in order to average over all
possible partitions, one will need a tremendous amount of calculations.

Although leave-one-out cross-validation can be very time consuming, the method
usually works fine as long as all there is to estimate is a vector of regression co-
efficients. Unfortunatly, when the number of covariates comes close to or even
exceeds the number of samples, a different problem arises since the regression
model should be adapted to deal with this new situation. In regression meth-
ods suitable for high dimensional covariate spaces (ridge or lasso regression for
example), not only the regression coefficient has to be estimated, but also the
value of some tuning parameter. The optimal value of this penalty parameter
has to be established by cross-validation, which can take much time (many dif-
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ferent values of the tuning parameter has to be examined in order to find the
one most suitable for the final model) and in order to maintain an independent
test set even double LOOCV should be used.

The objective of this study is to come up with a method that produces sim-
ilar output to ordinary cross-validation, but is less time consuming. Estimating
the optimal values of penalty parameters in ridge and lasso regression will be-
come less time-consuming and carrying out (an approximated version of) double
LOOCV will become practically feasible in this way. We derive a method in
which approximations of the real maximum likelihood leave-one-out regression
coefficients are used to find optimal values of the tuning parameters in ridge
and lasso regression, without actually having to refit the model. In linear ridge
regression, our approximation is exact. In more complex models (generalized
linear models and Cox’ proportional hazards model) the approximations are
based on a first order Taylor approximation of the gradient of the log-likelihood
around the maximum penalized likelihood estimator of the full model. When
the number of observations increases, the real cross-validated estimates will be
closer to the estimate of the full model and the error term in the Taylor ap-
proximation will diminish. Therefore, the approximation method is especially
suitable for large datasets, for which ordinary cross-validation takes much time.

In the upcoming chapters the approximation method will be described in de-
tail. First it will be shown that the method gives exact answers in linear ridge
regression and then the method will be extended to generalized linear models
and Cox’ proportional hazards model. The ridge and lasso penalties will be
discussed seperately.

To compare the results of this method to the results that would have been
obtained by using ordinary LOOCV, both methods are applied to several mi-
croarray datasets. The usefulness of the method is based on two criteria:
- are the actual values of the approximated leave-one-out estimates on average
close to the real values, and
- can the optimal tuning parameter be estimated accurately based on the ap-
proximations?

In addiation to the leave-one-out cross-validation approximation procedure, a
k-fold cross-validation approximation procedure will be discussed in chapter 6.
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2 Linear regression

Since we will need the Sherman-Morrison-Woodbury theorem (as given in [9])
in almost all future derivations, let’s start this chapter with writing down this
theorem and its proof:

Theorem 2.0.1. Sherman-Morrison-Woodbury theorem
Let A be a nonsingular p× p matrix, and u and v be two p-dimensional column
vectors. Then (

A+ uvT
)−1

= A−1 − A
−1uvTA−1

1 + vTA−1u
.

To proof this theorem, one must show that
(
A+ uvT

)
Y = Y

(
A+ uvT

)
= I,

where Y equals the right-hand side of the Sherman-Morrison-Woodbury equa-
tion. In the proof, we use the fact that vTA−1u is just a scalar.

Proof.

(
A+ uvT

)(
A−1 − A

−1uvTA−1

1 + vTA−1u

)
= AA−1 + uvTA−1 − AA

−1uvTA−1 + uvTA−1uvTA−1

1 + vTA−1u

= I + uvTA−1 − uv
TA−1 + uvTA−1uvTA−1

1 + vTA−1u

= I + uvTA−1 −
(
1 + vTA−1u

)
uvTA−1

1 + vTA−1u

= I + uvTA−1 − uvTA−1

= I

and(
A−1 − A

−1uvTA−1

1 + vTA−1u

)(
A+ uvT

)
= A−1A+A−1uvT − A

−1uvTA−1A+A−1uvTA−1uvT

1 + vTA−1u

= I +A−1uvT − A
−1uvT +A−1uvTA−1uvT

1 + vTA−1u

= I +A−1uvT −
(
1 + vTA−1u

)
A−1uvT

1 + vTA−1u

= I +A−1uvT −A−1uvT

= I
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A general form of a linear model is:

y = Xβ + ε,

where y (the response variable) and ε are n-dimensional random vectors, X
is an n × p regression-matrix of known constants (often also called the design-
matrix) and β is a p-dimensional parameter vector.
The question is how to find a good estimate for β and after we found this esti-
mate, the next question is how good this estimate really is.

The optimal β should approximate the values of the response variable as good
as possible. In other words, the residuals

ei(β) = yi − (Xβ)i

should be as small as possible.
Therefore, we look for the β that minimizes the residual sum of squares (RSS ),
given by

RSS(β) =

n∑
i=1

ei(β) =

n∑
i=1

(yi − (Xβ)i)
2 = ||y −Xβ||2.

To minimize this equation, we differentiate RSS(β) with respect to β and find
the value of β for which this equation equals 0, which gives us

β̂ = (XTX)−1XTy. (1)

This β̂ is the so called ”least squares estimator”, but it can easily be shown
that this estimator equals the maximum likelihood estimator, when the errors
ε have a multivariate normal distribution with mean 0 and variance matrix σ2I.

The likelihood for the linear model will in this case be given by:

L(β, σ2;y) =
1

(2π)n/2
1

σn
exp

(
−1

2

(y −Xβ)T (y −Xβ)

σ2

)
.

Maximizing this equation will give the maximum likelihood estimator. Since
the log-likelihood is easier to maximize and will result in the same estimator,
we work with

l(β, σ2;y) = −n
2

ln(2π)− n ln(σ)− 1

2

(y −Xβ)T (y −Xβ)

σ2
.

Differentiating this expression with respect to β will give the maximum likeli-
hood estimator (MLE) for β:

∂l(β, σ2;y)

∂β
= −1

2

(
−2XTy + 2XTXβ

)
σ2

= 0 ⇒ β̂ = (XTX)−1XTy.
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It is clear that the MLE and the least squares estimator are completely identical.

One assumption still has to be made. In order to make sure that the inverse of
XTX exists, we assume that the columns of the design matrix X are linearly
independent and the number of covariates p is smaller or equal to the number
of individuals n, so X has rank p. We know that the following holds:

rank(XTX) = rank(X).

Proof. Since XTX is a p × p matrix and therefore has the same number of
columns as X, we know:

rank(X) + nullity(X) = p = rank(XTX) + nullity(XTX),

so it is enough to show that the null space of XTX equals the null space of X.
Let b be in the null space of X, so Xb = 0. Then we know that XTXb =
XT0 = 0, so b is in the null space of XTX. In addition, for all vectors b for
which XTXb=0, we also have bTXTXb = 0 = ||Xb||2, thus b is in the null
space of X.

Since rank(X) = p we know that rank(XTX) = p which implies that
(XTX)−1 exists. Note that as soon as p gets larger than n, this does no longer
hold. (That is the moment where ridge regression can become useful.)

When we found the value for β̂ based on the training data set, we would like
to test our model on an independent test set, but unfortunately, independent
test data is usually absent. To get an indication of the true performance, we
can use leave-one-out cross-validation and train the model n times, using only
n − 1 observations and testing this model on the one observation that was left
out. The corresponding cross-validated residual sum of squares is given by:

RSScv =

n∑
i=1

(yi − xTi β̂−i)2, (2)

where β̂−i is given by (1), only this time X is a (n− 1)× p matrix (from now
on denoted by X−i) and the ith element of y is left out (y−i).
To find the value of RSScv, n inverses have to be calculated, namely all
(XT
−iX−i)

−1’s, where i ranges from 1 to n. To save time, we can use the fact
that all those inverses are very similar, which can be seen from the Sherman-
Morrison-Woodbury theorem.
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Let A (in theorem 2.0.1) equal XTX, let uT be the ith row of the X-matrix
(denoted by xi) and take v = −u. The equation now becomes

(X ′−iX−i)
−1 = (X ′X − xix′i)−1 = (X ′X)−1 +

(X ′X)−1xix
′
i(X

′X)−1

1− x′i(X
′X)−1xi

, (3)

where X ′−iX−i is the X ′X matrix with the ith individual left out. To see
that (X ′X)(−i) is indeed given by (X ′X − xix′i) we should use the following
equality:

X ′X =

n∑
i=1

xix
′
i.

Multiplying equation (3) by X ′y − xiyi gives:

(X ′−iX−i)
−1(X ′y − xiyi) = (X ′X)−1(X ′y − xiyi) +

(X ′X)−1xix
′
i(X

′X)−1(X ′y − xiyi)
1− x′i(X ′X)−1xi

β̂−i = β̂ − (X ′X)−1xiyi +
(X ′X)−1xix

′
i(X

′X)−1(X ′y − xiyi)
1− x′i(X ′X)−1xi

β̂ − (X ′X)−1xiyi +
(X ′X)−1xix

′
i(X

′X)−1(X ′y − xiyi)
1− x′i(X ′X)−1xi

β̂ − (X ′X)−1xiyi(1− x′i(X ′X)−1xi)− (X ′X)−1xix
′
i(X

′X)−1(X ′y − xiyi)
1− x′i(X ′X)−1xi

β̂ − (X ′X)−1xiyi − (X ′X)−1xiyix
′
i(X

′X)−1xi − (X ′X)−1xix
′
i(X

′X)−1(X ′y − xiyi)
1− x′i(X ′X)−1xi

β̂ − (X ′X)−1xiyi − (X ′X)−1xix
′
i(X

′X)−1(xiyi +X ′y − xiyi)
1− x′i(X ′X)−1xi

β̂ − (X ′X)−1xiyi − (X ′X)−1xix
′
i(X

′X)−1(X ′y)

1− x′i(X ′X)−1xi

β̂ − (X ′X)−1xiyi − (X ′X)−1xix
′
iβ̂

1− x′i(X ′X)−1xi

β̂ − (X ′X)−1xi(yi − x′iβ̂)

1− x′i(X ′X)−1xi

β̂ − (X ′X)−1xiei
1− hii
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As a result, we have now:

β̂−i = β̂ − (X ′X)−1xiei
1− hii

, (4)

where ei = yi − x′iβ̂ and hii is the ith diagonal element of the hat-matrix H,
given by X(X ′X)−1X ′. This is an already know result and can be found for
example in [2].

This expression can now be substituted in the cross-validated residual sum of
squares, as given in equation (2):

n∑
i=1

(
yi − x′iβ̂−i

)2
=

n∑
i=1

(
yi − x′iβ̂ +

x′i(X
′X)−1xiei

1− hii

)2

=

n∑
i=1

(
ei +

hiiei
1− hii

)2

,

and eventually we get:

n∑
i=1

(
yi − x′iβ̂−i

)2
=

n∑
i=1

(
ei

1− hii

)2

. (5)

The next question is if there’s an easy way to compute this sum by means of
matrix multiplication.

Let’s denote the vector with predicted y-values, based on the cross-validated
β̂ by ŷcv. Then, by using equation (5), we can write

y − ŷcv = (diag(In −H))−1(y − ŷ).

If we use the fact that ŷ equals Hy, we get

y − ŷcv = (diag(In −H))−1(In −H)y.

Eventually, we want to have an equation for the residual sum of squares, which
means that we have to take the inner product of the just derived vector with
itself:

RSScv = ((diag(In −H))−1(In −H)y)′((diag(In −H))−1(In −H)y)

= y′(In −H)(diag(In −H))−2(In −H)y
(6)

The last equality hold because (diag(In − H))−1 and (In − H) are symmetric
matrices. (The first is a diagonal matrix and (In −H) is symmetric because H
is symmetric 1.)

Now we have one formula with which we can immediately find the cross-validated
residual sum of squares, once we have our data set (and thereby the hat-matrix),
without having to fit the model over and over again.

1(X(X′X)−1X′)′ = (X′)′((X′X)−1)′X′ = X((X′X)′)−1X′ = X(X′X)−1X′

9



A problem occurs when the denominator in equation (4) becomes 0, so when
(one of) the diagonal elements of the hat-matrix equal 1. One situation where
this occurs is when the design-matrix X is an invertible square matrix, so when
the number of covariates equals the number of individuals. In that case, the
hat-matrix X(X ′X)−1X ′ is exactly the identity matrix. This can be seen by
proving that (X ′X)−1X ′ equals X−1. Since X is invertible, so is X ′ and thus
(X ′X)−1X ′ = X−1(X ′)−1X ′ = X−1. The geometric interpretation is that
the predicted values for y are exactly equal to the real values. This makes sense
because the original equation y = Xβ can be solved exactly since X is invert-
ible.

It is important to note that the expression for β̂−i is based on the fact that

there exists a closed formula for β̂. In other models (for example logistic or

survival models), β̂ can only be found in an iterative way and the derivation of

an approximated version of β̂−i will be different from the one described in this
first section and will not result in an exact solution. The approximation will be
based on a taylor expansion (described in detail in section 5) and will look like

β̂(−i) = β̂ − (l′′(−i)(β̂))−1l′(−i)(β̂), (7)

with l(−i)(β) the log-likelihood based on n− 1 observations. The error we make
in this approximation is:

l′′′(−i)(β
∗)

2!
(β̂(−i) − β̂)2,

for some β∗ ∈ (β̂(−i), β̂).

It can easily be seen that this approximation method will in the linear model re-
sult in the same approximation for β̂(−i) as the direct formula and will again be
exact. The exactness results from the fact that the log-likelihood is a quadratic
function in β and therefore, its third derivative equals 0.
If we substitute the expressions for the first and second derivative of the log-
likelihood in equation (7), we get:

β̂(−i) = β̂ + (
1

σ2
X ′−iX−i)

−1X
′
−iy−i +X ′−iX−iβ̂

σ2

= β̂ + (X ′−iX−i)
−1X ′−iy−i − (X ′−iX−i)

−1X ′−iX−iβ̂

= β̂ + (X ′−iX−i)
−1X ′−iy−i − β̂

= (X ′−iX−i)
−1X ′−iy−i.

Applying the Sherman-Morrison-Woodbury theorem would again result in (4).
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3 Linear ridge regression

The important difference is that the hat-matrix is not longer X(X ′X)−1X ′ but
is now given by X(X ′X + λIp)X

′. Let’s denote this new hat-matrix by Hλ.

It’s important to note that the inverse of (X ′X + λIp) will always exist, also
when p is bigger than n and the matrix X ′X is for that reason not invertible
anymore.
The inverse always exists because X ′X is symmetric and is therefore orthog-
onally diagonalizable. This matrix can thus be written as V DV ′, where D is
the diagonal matrix with the eigenvalues of X ′X on the diagonal. Since X ′X
is positive semi definite2, we know that all diagonal-elements will be bigger or
equal to zero. If we now write X ′X + λIp as V DV ′ + V λIpV

′, we see that
X ′X + λIp is also orthogonally diagonalizable: X ′X + λIp = V (D + λIp)V

′

and that all eigenvalues of this matrix are bigger than zero (given that λ is big-
ger than zero). When all eigenvalues differ from zero, the corresponding matrix
is invertible.
Since X ′X is symmetric, (X ′X + λIp) is symmetric and therefore Hλ is a
symmetric matrix too.

Exactly by the same reasoning as in the previous chapter, the cross-validated
residual sum of squares can be defined in the following formula:

RSScv(λ) = y′(In −Hλ)(diag(In −Hλ))−2(In −Hλ)y (8)

One remark regarding the just introduced hat-matrix should be made. The extra
term given by λIp implies that all covariates are equally penalized. However,
one could think of situations where some covariates should not get an extra
penalty while others do. In that case, the matrix Ip could be replaced by a
matrix A, with zeros as well as ones on the diagonal. Of course, one should be
careful not to incorporate to many unpenalized covariates in the model since
the hat-matrix still has to be invertible.

3.1 finding the optimal λ

Since we want to minimize the RSScv, we would like to find the λ for which
dRSScv(λ)

dλ equals zero (or comes close to zero).

The first step is to compute this derivative. Since d(UV ) = (dU)V + U(dV )
for matrices U and V and this can be extended to d(UVW ) = (dU)VW +
U(dV )W + UV (dW ) and so on, the first step is to use this product rule.

2To proof that the matrix X′X is positive semi definite, we have to show that z′X′Xz
is bigger than or equal to zero for all vectors z. This can be easily shown by rewriting the
expression:

z′X′Xz = (Xz)′(Xz) = ||Xz||2 ≥ 0.

11



dRSScv(λ)

dλ
=
d(y′)

dλ
(In −Hλ)(diag(In −Hλ))−2(In −Hλ)y

+ y′
d(In −Hλ)

dλ
(diag(In −Hλ))−2(In −Hλ)y

+ y′(In −Hλ)
d((diag(In −Hλ))−2)

dλ
(In −Hλ)y

+ y′(In −Hλ)(diag(In −Hλ))−2
d(In −Hλ)

dλ
y

+ y′(In −Hλ)(diag(In −Hλ))−2(In −Hλ)
d(y)

dλ
.

(9)

Since y is just a vector of constants that do not depend on λ, d(y
′)

dλ and d(y)
dλ are

both zero. To find an expression for d(In−Hλ)
dλ we use the rule that d(F−1) =

−F−1(dF )F−1. From now on, I will usually write d(.) instead of d(.)
dλ .

d(In −Hλ) = d(In)− d(Hλ)

= −d(X(X ′X + λIp)
−1X ′)

= −Xd((X ′X + λIp)
−1)X ′

= −X · −(X ′X + λIp)
−1d(X ′X + λIp)(X

′X + λIp)
−1X ′

= X(X ′X + λIp)
−1Ip(X

′X + λIp)
−1X ′

= X(X ′X + λIp)
−2X ′

The last expression we look for is the one belonging to d((diag(In−Hλ))−2). To
derive this expression, we again use the rule for differentiating the inverse of a
matrix and furthermore we use the rule that says d(diag(X)) = diag(dX). We
start by finding d((diag(In−Hλ))−1) since d((diag(In−Hλ))−2) = d((diag(In−
Hλ))−1(diag(In −Hλ))−1)

d((diag(In −Hλ))−1) = −(diag(In −Hλ))−1d(diag(In −Hλ))(diag(In −Hλ))−1

= −(diag(In −Hλ))−1diag(d(In −Hλ))(diag(In −Hλ))−1

= −(diag(In −Hλ))−1diag(X(X ′X + λIp)
−2X ′)(diag(In −Hλ))−1

Using the product rule gives know:

d((diag(In −Hλ))−1(diag(In −Hλ))−1)

= −(diag(In −Hλ))−1diag(X(X ′X + λIp)
−2X ′)(diag(In −Hλ))−1 × (diag(In −Hλ))−1

+ (diag(In −Hλ))−1 ×−(diag(In −Hλ))−1diag(X(X ′X + λIp)
−2X ′)(diag(In −Hλ))−1

= −2(diag(In −Hλ))−3diag(X(X ′X + λIp)
−2X ′)

Since all matrices in the equation are diagonal matrices, it’s allowed to change
the specific order the matrices are in.
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It’s nice to note that using the chain rule would have given the same expression:

d((diag(In −Hλ))−2) = −2(diag(In −Hλ))−3d(diag(In −Hλ))

= −2(diag(In −Hλ))−3diag(X(X ′X + λIp)
−2X ′)

Now we have found these derivatives, we can plug them into equation (9):

dRSScv(λ)

dλ
= y′X(X ′X + λIp)

−2X ′(diag(In −Hλ))−2(In −Hλ)y

+ y′(In −Hλ) · −2(diag(In −Hλ))−3diag(X(X ′X + λIp)
−2X ′)(In −Hλ)y

+ y′(In −Hλ)(diag(In −Hλ))−2X(X ′X + λIp)
−2X ′y

(10)

The first and third term can be added, since y′X(X ′X + λIp)
−2X ′(diag(In −

Hλ))−2(In − Hλ)y is a scalar and is therefore equal to its transpose y′(In −
Hλ)(diag(In −Hλ))−2X(X ′X + λIp)

−2X ′y. This results in:

dRSScv(λ)

dλ
= y′(In −Hλ) · −2(diag(In −Hλ))−3diag(X(X ′X + λIp)

−2X ′)(In −Hλ)y

+ 2y′(In −Hλ)(diag(In −Hλ))−2X(X ′X + λIp)
−2X ′y

(11)

Which can also be written as:

dRSScv(λ)

dλ
= 2y′(In −Hλ)(diag(In −Hλ))−2(

−(diag(In −Hλ))−1diag(X(X ′X + λIp)
−2X ′)(In −Hλ) +X(X ′X + λIp)

−2X ′
)
y

(12)

Unfortunately, finding the root of this equation is far from trivial and therefore,
I did not make use of this derivative in the end. I did compute the second
derivative (although the derivation is not shown here) because I wanted to use
the Newton algorithm to find the root of the first derivative, but the expression
for the second derivative was, even after simplification, so difficult that I did
not implement the Newton algorithm.
Still, it would be nice to examine whether a root-finding algorithm (such as the
secant method) could be used in combination with the algebraic expression for
the first derivative.
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4 Binary logistic regression

In binary logistic regression, we assume that the binary response variables are
independent and Bernoulli distributed: yi ∼ Ber(pi). The aim is to find an
estimate for pi based on covariates xi1 · · ·xip. If we still want to use the linear

predictor ηi =
p∑
j=1

βjxij a link-function has to be chosen in order to map the

interval [0, 1] to the whole real line (since ηi can take on any value). In logistic
regression, this link function is the logit and the model becomes:

logit (pi(xi)) = log

(
pi(xi)

1− pi(xi)

)
=

p∑
j=1

βjxij ,

which is equivalent to

pi(xi) = exp

 p∑
j=1

βjxij

 /

1 + exp

 p∑
j=1

βjxij

 .

The likelihood function corresponding to this model is given by

L(β,y) =

n∏
i=1

pyii (1− pi)(1−yi)

from which the log-likelihood can be derived:

l(β,y) =

n∑
i=1

yi log(pi) + (1− yi) log(1− pi).

As always, we are looking for a vector β that predicts the values of the yi’s
as well as possible. Since yi can only have two values (0 and 1) and pi(xi)
gives the probability that yi = 1, given the value of xi = (xi1, · · · , xip)′, it is
not completely straightforward to define the prediction error. Three frequently
used measures (see also [1]) are the following:

(1) classification error

CE = 1 if ynew = 1 and p̂ <
1

2
or ynew = 0 and p̂ >

1

2

=
1

2
if p̂ =

1

2
= 0 otherwise

(2) squared error

SE = (ynew − p̂)2

(3) minus log-likelihood error

ML = − (ynew log(p̂) + (1− ynew) log(1− p̂))
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Normally, the optimal β is chosen to be the maximum likelihood estimator
(MLE), denoted by β̂. Since this estimator maximizes the log-likelihood, it
minimizes the minus log-likelihood error and is therefore especially useful in
combination with this measure.

The question becomes how to find this β̂, and since we usually don’t have
an independent validation set, the next question is if there is a way to find (an

approximation of) the cross-validated MLE’s β̂(−i), without having to fit the

model n times. To find β̂, corresponding to the whole dataset, the Newton-
Raphson maximization procedure can be used. For this, all we need is the first
and second derivative of l(β,y) and some initial point β0.
To find the derivatives, first the log-likelihood has to be rewritten:

l(β,y) =

n∑
i=1

yi log(pi) + (1− yi) log(1− pi)

=

n∑
i=1

yi log

(
exp(x′iβ)

1 + exp(x′iβ)

)
+ (1− yi) log

(
1− exp(x′iβ)

1 + exp(x′iβ)

)

=

n∑
i=1

yi(x
′
iβ)− yi log (1 + exp(x′iβ)) + (1− yi) log

(
1

1 + exp(x′iβ)

)

=

n∑
i=1

yi(x
′
iβ)− yi log (1 + exp(x′iβ))− (1− yi) log (1 + exp(x′iβ))

=

n∑
i=1

yi(x
′
iβ)− log (1 + exp(x′iβ))

The first derivative (the gradient) now becomes:

l′(β,y) =

n∑
i=1

xiyi −
xi exp(x′iβ)

1 + exp(x′iβ)

=

n∑
i=1

xi(yi − pi(xi))

= X ′(y − p).

The second derivative (the hessian) becomes:

l′′(β,y) =

n∑
i=1

−
(

(x′i)
2 exp(x′iβ)(1 + exp(x′iβ))

(1 + exp(x′iβ))2
− (x′i)

2 exp(x′iβ)2

(1 + exp(x′iβ))2

)

=

n∑
i=1

−((x′i)
2pi(xi)− (x′i)

2pi(xi)
2)

= −X ′WX,
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where W is a diagonal matrix with wkk = pk(1− pk).
The Newton-Raphson method will converge since the hessian matrix is negative
semi definite (X ′X is positive semi definite and the elements of W can only be
non-negative) and therefore the log-likelihood function is concave, but still, it

can take much time to find β̂. If we want to find all the β̂(−i)’s in this way, this
can be very time consuming.

A different idea is to start with β̂ and adjust this value a little bit. In [11],
this idea is discussed in more detail. First some notation has to be introduced.
The contribution of observation i to the log-likelihood is defined as

li(β) = l(β)− l(−i)(β),

where l(−i)(β) is the log-likelihood when observation i is left out. The value of

β that maximizes l(−i)(β) is the earlier introduced β̂(−i).

We can make a first order Taylor approximation of l′(−i)(β) at β = β̂ which
gives:

l′(−i)(β) = l′(−i)(β̂) + (β − β̂)l′′(−i)(β̂).

Now, we can use the fact that β̂(−i) maximizes l(−i)(β) and therefore l′(−i)(β̂(−i))
equals 0:

0 = l′(−i)(β̂) + (β̂(−i) − β̂)l′′(−i)(β̂),

from which
β̂(−i) = β̂ − (l′′(−i)(β̂))−1l′(−i)(β̂)

follows. (Which equals 1 Newton-Raphson step with β̂ as initial point.)

If we put in the formulas for the hessian and the gradient we get:

β̂(−i) = β̂ + (X ′(−i)Ŵ (−i)X(−i))
−1X ′(−i)(y(−i) − p̂(−i)),

where the values of the p̂i’s (and thus also the ŵii’s) are calculated based on the

value for β̂.

The only term in this formula that is difficult to calculate is the inverse of
the hessian-matrix. However, the Sherman-Morrison-Woodbury theorem as dis-
cussed in section 2 can be used to simplify this term. Because Ŵ is a diagonal
matrix

X ′ŴX =

n∑
i=1

ŵiixix
′
i.

and therefore we can rewrite (X ′(−i)Ŵ (−i)X(−i))
−1 in the desired form:

(X ′(−i)Ŵ (−i)X(−i))
−1 = (X ′ŴX − ŵiixix′i)−1.
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Using the Sherman-Morrison-Woodbury theorem this results in:

(X ′(−i)Ŵ (−i)X(−i))
−1 = (X ′ŴX)−1 +

(X ′ŴX)−1ŵiixix
′
i(X

′ŴX)−1

1− ŵiix′i(X
′ŴX)−1xi

which eventually gives

β̂(−i) = β̂+

(
(X ′ŴX)−1 +

(X ′ŴX)−1ŵiixix
′
i(X

′ŴX)−1

1− ŵiix′i(X
′ŴX)−1xi

)
X ′(−i)(y(−i)−p̂(−i)).

(13)

We can introduce new variables Z = Ŵ
1
2X and v = Ŵ

− 1
2 (y − p̂) and rewrite

(13) into

β̂(−i) = β̂ +

(
(Z ′Z)−1 +

(Z ′Z)−1ziz
′
i(Z
′Z)−1

1− z′i(Z
′Z)−1zi

)
(Z ′v − zivi). (14)

Now we want to simplify this expression. (In this simplification process we

can use the fact that the Newton-Raphson algorithm converged to β̂ so β̂ +
(Z ′Z)−1Z ′v equals β̂, which implies that (Z ′Z)−1Z ′v equals 0.)

β̂ + (Z ′Z)−1Z ′v − (Z ′Z)−1zivi +
(Z ′Z)−1ziz

′
i(Z
′Z)−1(Z ′v − zivi)

1− z′i(Z
′Z)−1zi

β̂ − (Z ′Z)−1zivi(1− z′i(Z
′Z)−1zi)− (Z ′Z)−1ziz

′
i(Z
′Z)−1(Z ′v − zivi)

1− z′i(Z
′Z)−1zi

β̂ − (Z ′Z)−1zivi − (Z ′Z)−1ziviz
′
i(Z
′Z)−1zi − (Z ′Z)−1ziz

′
i(Z
′Z)−1(Z ′v − zivi)

1− z′i(Z
′Z)−1zi

β̂ − (Z ′Z)−1zivi − (Z ′Z)−1ziz
′
i(Z
′Z)−1(vizi +Z ′v − zivi)

1− z′i(Z
′Z)−1zi

β̂ − (Z ′Z)−1zivi − (Z ′Z)−1ziz
′
i(Z
′Z)−1Z ′v

1− z′i(Z
′Z)−1zi

β̂ − (Z ′Z)−1zivi
1− z′i(Z

′Z)−1zi

So eventually, we get:

β̂(−i) = β̂ − (X ′ŴX)−1xi(yi − pi)
1− vii

, (15)

where vii is the ith diagonal element from the matrix which is given by Ŵ
1
2X(X ′ŴX)−1X ′Ŵ

1
2 .
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Now we want to use this approximated β̂(−i) in the cross-validated version of
the mean minus log-likelihood which is given by

MMLCV = −n−1
n∑
i=1

(
yi log(p̂(−i)(xi)) + (1− yi) log(1− p̂(−i)(xi))

)
, (16)

where p̂(−i)(xi) is just
exp(x′iβ̂(−i))

1 + exp(x′iβ̂(−i))
.

The first option would be to substitute the approximated β̂(−i)’s in the actual

formula for MMLCV . Because all approximated β̂(−i)’s only depend on one
inverse calculation (the inverse of the hessian matrix in the model where all
observations are still included) and some matrix multiplications, this will defi-
nitely be a faster approach than calculating MMLCV based on the real values
of the leave-one-out MLE’s. However, we wanted to see if we could make the
calculations even faster by not only using a Taylor approximation of the β̂(−i)’s
but also of the MMLCV -formula itself.

Let’s first denote
(
yi log(p̂(−i)(xi)) + (1− yi) log(1− p̂(−i)(xi))

)
by f(β̂(−i)).

A first order Taylor approximation around β̂ is now given by:

f(β̂(−i)) = f(β̂) + f ′(β̂)(β̂(−i) − β̂),

where the error term is given by O
(

(β̂(−i) − β̂)2
)

.

Note that a higher order Taylor approximation would not give more precise
results, since the expression β̂(−i) − β̂ (where we take the expression for β̂(−i)

as given in formula(12)) has itself an error term of O
(

(β̂(−i) − β̂)2
)

because it

is derived using again a first order Taylor approximation.

If we plug in the expressions for the first and second derivative (as derived
earlier) we get:

f(β̂(−i)) = (yi log(p̂(xi)) + (1− yi) log(1− p̂(xi))) +x′i(yi− p̂(xi))(β̂(−i)− β̂),

where p̂(xi) is given by
exp(x′iβ̂)

1 + exp(x′iβ̂)
.

When the expression from formula (12) is used, this can be rewritten as:

f(β̂(−i)) = (yi log(p̂(xi)) + (1− yi) log(1− p̂(xi)))−x′i(yi−p̂(xi))
(X ′ŴX)−1xi(yi − pi)

1− vii
(17)
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This equation can now be plugged in equation (16) to find an approximation of
the cross-validated mean minus log-likelihood:

MMLCV ≈

−n−1
n∑
i=1

(
(yi log(p̂(xi)) + (1− yi) log(1− p̂(xi)))− x′i(yi − p̂(xi))

(X ′ŴX)−1xi(yi − p̂i)
1− vii

)
.

The degree of the error term stays quadratic.

This formula can still be simplified a little, if we realize that x′i(X
′ŴX)−1xi

is just the ith diagonal element of the matrix X(X ′ŴX)−1X ′ which is almost
equal to the earlier defined matrix V . Actually x′i(X

′ŴX)−1xi is just vii di-
vided by wii. The formula now becomes:

MMLCV ≈

−n−1
n∑
i=1

(
(yi log(p̂(xi)) + (1− yi) log(1− p̂(xi)))− (yi − p̂(xi))

vii
wii

(yi − p̂i)
1− vii

)
.

In matrix notation, we get:

MMLCV ≈
−n−1

(
y′ log(p̂) + (1− y)′ log(1− p̂)− (y − p̂)′(diag(In − V ))−1(diag(V ))W−1(y − p̂)

)
Although this expression would be very convenient to work with, since there
is a direct matrix multiplication to calculate an approximated version of the
mean-minus log-likelihood, simulations showed that the approximation was a
little too inaccurate.
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5 Binary logistic ridge regression

5.1 Finding an expression for β̂(−i)

Just as in the case of linear regression, the standard logistic regression model is
not suited for data sets with a large number of covariates. That’s where logistic
ridge regression comes in.

The log-likelihood function looks almost the same as the log-likelihood func-
tion in standard ridge regression, only a quadratic penalty term is added:

l(β,y) =

n∑
i=1

(yi log(pi) + (1− yi) log(1− pi))− λβ′β.

The first and second derivative can be calculated in exactly the same way as
done in the previous section and become:

l′(β,y) = X ′(y − p)− 2λβ

and

l′′(β,y) = −X ′WX − 2λIp,

where W is still the diagonal matrix with wkk = pk(1− pk).

For a given λ, the way of finding β̂ is exactly the same as before: just apply the
Newton-Raphson algorithm.

To find approximations of the β̂(−i)’s a Taylor approximation of l′(−i)(β) around

β = β̂ can again be made and this time this results in

β̂(−i) = β̂ + (X ′(−i)Ŵ(−i)X(−i) + 2λIp)
−1
(
X ′(−i)(y(−i) − p̂(−i))− 2λβ̂

)
,

where the values of the p̂i’s (and thus also the ŵii’s) are calculated based on the

value for β̂.

Since calculating the inverse of a matrix is a time-consuming operation, we
would like to find a better expression for (X ′(−i)Ŵ(−i)X(−i) + 2λIp)

−1 and this
can be done by using the Sherman-Morrison-Woodbury theory:

(X ′(−i)Ŵ(−i)X(−i) + 2λIp)
−1 = (X ′ŴX + 2λIp − ŵiixix′i)−1

= (X ′ŴX + 2λIp)
−1 +

(X ′ŴX + 2λIp)
−1ŵiixix

′
i(X

′ŴX + 2λIp)
−1

1− ŵiix′i(X ′ŴX + 2λIp)−1xi
.
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So we get:

β̂(−i) = β̂ +

(
(X ′ŴX + 2λIp)

−1 +
(X ′ŴX + 2λIp)

−1ŵiixix
′
i(X

′ŴX + 2λIp)
−1

1− ŵiix′i(X ′ŴX + 2λIp)−1xi

)
(
X ′(−i)(y(−i) − p̂(−i))− 2λβ̂

)
We can introduce the same variables (Z = Ŵ

1
2X and v = Ŵ−

1
2 (y − p̂)) as in

the previous section to rewrite this equation in a simpler form:

β̂(−i) = β̂ +

(
(Z ′Z + 2λIp)

−1 +
(Z ′Z + 2λIp)

−1ziz
′
i(Z
′Z + 2λIp)

−1

1− z′i(Z ′Z + 2λIp)−1zi

)
(
Z ′v − zivi − 2λβ̂

)
In the simplification step, we again use the fact that the Newton Raphson algo-
rithm converged to β̂ and therefore (Z ′Z + 2λIp)

−1(Z ′v − 2λβ̂) equals 0.

β̂ +

(
(Z ′Z + 2λIp)

−1 +
(Z ′Z + 2λIp)

−1ziz
′
i(Z
′Z + 2λIp)

−1

1− z′i(Z ′Z + 2λIp)−1zi

)(
Z ′v − zivi − 2λβ̂

)
β̂ + (Z ′Z + 2λIp)

−1
(
Z ′v − 2λβ̂

)
− (Z ′Z + 2λIp)

−1zivi +
(Z ′Z + 2λIp)

−1ziz
′
i(Z
′Z + 2λIp)

−1
(
Z ′v − zivi − 2λβ̂

)
1− z′i(Z ′Z + 2λIp)−1zi

β̂ − (Z ′Z + 2λIp)
−1zivi +

(Z ′Z + 2λIp)
−1ziz

′
i(Z
′Z + 2λIp)

−1
(
Z ′v − zivi − 2λβ̂

)
1− z′i(Z ′Z + 2λIp)−1zi

β̂ −
(Z ′Z + 2λIp)

−1zivi − (Z ′Z + 2λIp)
−1ziz

′
i(Z
′Z + 2λIp)

−1
(
zivi + Z ′v − zivi − 2λβ̂

)
1− z′i(Z ′Z + 2λIp)−1zi

β̂ − (Z ′Z + 2λIp)
−1zivi

1− z′i(Z ′Z + 2λIp)−1zi

When we go back to the original notation we have now found:

β̂(−i) = β̂ − (X ′ŴX + 2λIp)
−1xi(yi − p̂i)

1− vii
, (18)

where vii = ŵiix
′
i(X

′ŴX + 2λIp)
−1xi, which is the ith diagonal element of the

matrix V given by Ŵ
1
2X(X ′ŴX + 2λIp)

−1X ′Ŵ
1
2 .
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As before, we want to have an expression for the cross-validated mean minus
log-likelihood, given by:

MMLCV (λ) = −n−1
n∑
i=1

(
yi log(p̂(−i)(xi)) + (1− yi) log(1− p̂(−i)(xi))

)
.

Note that the name is a bit misleading, since we first introduced a likelihood
with an extra penalty term and this term is left out in the previous expression.
However, the p̂(−i)’s are constructed with the penalized likelihood and now we
are only interested in the goodness of the prediction.

This formula depends on the value of λ (chosen beforehand), because the values

of the p̂(−i)’s depend on the values of the β̂(−i)’s which in turn depend on the

value of β̂ which of course depends on the chosen λ.

In an attempt to calculate the values of the MMLCV -formula faster than by
just plugging in the approximated values for the β̂(−i)’s, we use another Taylor
approximation as before. The only thing that changes, compared to the normal
logistic regression model, is the expression for β̂(−i)− β̂ and the cross-validated
minus log-likelihood is now approximately given by:

MMLCV (λ) ≈

−n−1
n∑
i=1

(
(yi log(p̂(xi)) + (1− yi) log(1− p̂(xi)))− x′i(yi − p̂(xi))

(X ′ŴX + 2λIp)
−1xi(yi − p̂i)

1− vii

)
.

Again, this expression can be simplified a little. The expression x′i(X
′ŴX +

2λIp)
−1xi equals

(
X(X ′ŴX + 2λIp)

−1X ′
)
ii

which equals vii/ŵii where V =

Ŵ
1
2X(X ′ŴX + 2λIp)

−1X ′Ŵ
1
2 .

This gives us:

MMLCV (λ) ≈

−n−1
n∑
i=1

(
(yi log(p̂(xi)) + (1− yi) log(1− p̂(xi)))− (yi − p̂(xi))

vii
ŵii

(yi − p̂i)
1− vii

)
.

In matrix notation, we get:

MMLCV (λ) ≈

−n−1
(
y′ log(p̂) + (1− y)′ log(1− p̂)− (y − p̂)′(diag(In − V ))−1(diag(V ))Ŵ−1(y − p̂)

)
It would be nice to find the value of λ that minimized the above expression and
to find this value of λ it would be very convenient to have an expression for the
derivative of MMLCV (λ) with respect to λ. However, later on we found out
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that using the formula of the MMLCV based on the approximated version of
the leave-one-out estimates did have advantages over using the Taylor version
of the MMLCV and we changed our focus to accurate predicting instead of
solving equations analytically.

5.2 Computational problems

When we have a data set with many covariates, it may be difficult to calculate
the matrix V because in this calculation the inverse of an p×p matrix has to be
found and this is not only a time-consuming operation, but it also takes much
computer memory. To avoid this problem, some reparametrization trick can be
used.

When the Newton-Raphson algorithm converges, the gradient of the penalized
likelihood will eventually become zero:

X ′(y − p)− 2λβ = 0.

From this we can conclude that β lies in the column space of X ′. Therefore, we
can write β = X ′γ. Here, γ is a n-dimensional vector and in the corresponding
model the former p× p matrices will now be replaced by n× n matrices, as will
be shown below.

This time we work with the formula:

γ̂(−i) = γ̂ − (l′′(−i)(γ̂))−1l′(−i)(γ̂),

where the gradient and the hessian are given by:

l′(γ,y) = X (X ′(y − p)− 2λX ′γ)

and

l′′(γ,y) = −X(X ′WX + 2λIp, )X
′

where W is still the diagonal matrix with wkk = pk(1− pk).

After substitution of these formulas, we get:

γ̂(−i) = γ̂+
(
X(X ′(−i)W(−i)X(−i) + 2λIp, )X

′
)−1

X
(
X ′(−i)(y(−i) − p(−i))− 2λX ′γ

)
.

As before, X ′(−i)W(−i)X(−i) equals (X ′WX−wiixix′i) and X ′(−i)(y(−i)−p(−i))
is just X ′(y − p)− xi(yi − pi).

23



If we rename XX ′ by A and Xxi by ai since this is just the ith row in A,
we get:

γ̂(−i) = γ̂ + (AWA+ 2λA− wiiaia′i)
−1

(A(y − p)− ai(yi − pi)− 2λAγ) .

The Sherman-Morrison-Woodbury theorem can again be applied and if we let
Z = W

1
2A and v = W−

1
2 (y − p), we get

γ̂(−i) = γ̂+

(
(Z ′Z + 2λA)−1 +

(Z ′Z + 2λA)−1ziz
′
i(Z
′Z + 2λA)−1

1− z′i(Z ′Z + 2λA)−1zi

)
(Z ′v − zivi − 2λAγ̂) .

If we use that (Z ′Z + 2λX)−1(Z ′v − 2λAγ) equals zero (due to convergence of
the NR algorithm), we eventually get:

γ̂(−i) = γ̂ − (A′ŴA+ 2λA)−1ai(yi − p̂i)
1− vii

, (19)

where vii is the ith diagonal element of the matrix V given by W
1
2A(A′ŴA +

2λA)−1A′W
1
2 .

Starting with γ̂ we have now a way to find γ̂(−i) and β̂(−i) can now be eas-

ily obtained since β̂(−i) = X ′γ̂(−i).

Sometimes, it is also useful to find γ̂ from a known β̂ (which is for example
found by the R package ”penalized”). This can be done in the following way:

γ̂ = (XX ′)−1Xβ̂.

The formula for the approximation of the mean minus log-likelihood can now
also be given in terms of γ:

MMLCV (λ) ≈

−n−1
n∑
i=1

(
(yi log(p̂(xi)) + (1− yi) log(1− p̂(xi)))− x′i(yi − p̂(xi))X ′

(A′ŴA+ 2λA)−1ai(yi − p̂i)
1− vii

)
,

where V is still given by W
1
2A(A′ŴA+ 2λA)−1A′W

1
2 .

This expression can still be simplified when we take the x′i and the X ′ together
(x′iX

′ = ai):

MMLCV (λ) ≈

−n−1
n∑
i=1

(
(yi log(p̂(xi)) + (1− yi) log(1− p̂(xi)))− (yi − p̂(xi))

vii
ŵii

(yi − p̂i)
1− vii

)
.
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5.3 Results

To test the usefulness of the approximations for the leave-one-out estimators
β̂(−i), we made several comparisons between the actual cross-validated mean

minus log-likelihood, the MMLcv based on the approximations of β̂(−i) and

the approximated MMLcv, where the β̂(−i)’s as well as the function itself were
the result of a Taylor approximation. We used mostly simulated data but we
also used one real data set, namely the well-known Golub data set ([5]). It
showed that the approximated leave-one-out estimates were really similar to
the real leave-one-out estimates (as found by the R-package ”penalized”) and
that the mean minus log-likelihood based on these approximations was almost
identical to the one based on the real values. Simulations also indicated that
the larger the number of observations, the better the approximations, as could
also be expected from the theory of the Taylor approximation. Unfortunately,
results generated from the Taylor approximation of the MMLCV could be quite
inaccurate.

Since the result are really similar to the ones that will later be discussed in the
survival context, graphs and tables will be omitted, except for the one below,
that shows that the MMLCV curve based on the approximated β̂(−i)’s (green
curve) is really similar to the one based on the real leave-one-out estimates (blue
curve). Furthermore, it is clear that the first order Taylor approximation of the
MMLCV does not give reliable answers (purple curve), but the second order
Taylor approximation (yellow curve) does. The derivation of this second order
Taylor approximation is not written down in this work document because it is
a straight-forward algebraic exercise and the actual formula will from this point
on not be used anymore.

Another remark is that, although the approximated β̂(−i)’s rely on the value

of β̂, the estimate based on the full model, the curve based on these approxi-
mations nicely follows the shape of the real cross-validated MML and not the
curve belonging to the apparent error.
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Figure 1: different approximations for the MMLCV , based on first 100 covari-
ates in the Golub data set.
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5.4 Mean squared error

Not only the MML is a commonly used error measure, but also the mean
squared error (MSE) is often used to measure predictive performance. The
cross-validated MSE is given by

MSEcv = n−1
n∑
i=1

(
yi − p̂(−i)

)2
,

where p̂(−i) is given by
exp(x′iβ̂(−i))

1 + exp(x′iβ̂(−i))
.

We could make a derivation that looks like the derivation of the cross-validated
residual sum of squares in the linear (ridge) regression model. The derivation in

the logistic model is however slightly more difficult, because the x′iβ̂(−i)-term

from the linear model is now replaced by the term
exp(x′iβ̂(−i))

1 + exp(x′iβ̂(−i)
.

One idea is to find an expression for p̂(−i) in terms of p̂i, which is just the

ith element of p̂. We can first define pi as a function of β

f(β) =
exp(x′iβ)

1 + exp(x′iβ)

and now we can approximate f(β̂(−i)) (which is just p̂(−i)) with a first order

Taylor expansion around β̂:

f(β̂(−i)) = f(β̂) +

(
∂f(β̂)

∂β

)T
(β̂(−i) − β̂).

We already found an expression for (β̂(−i) − β̂), so we only have to find an

expression for
∂f(β̂)

∂β
.

It turns out that the derivative, evaluated for β = β̂ is given by xip̂i(1 − p̂i),
and this can also be written as xiwii, where W is the same matrix as in the
previous sections.
If we fill in all known expressions in the Taylor expansion, we get

p̂(−i) = p̂i −
x′iwii(X

′ŴX + 2λIp)
−1xi(yi − p̂i)

1− vii
= p̂i −

vii(yi − p̂i)
1− vii

.

If we use this expression in the formula for MSEcv and denote yi − p̂i by ei
(comparable to the ei in the linear model wich was given by yi − x′iβ̂) we get:

MSEcv = n−1
n∑
i=1

(
ei +

viiei
1− vii

)2

= n−1
n∑
i=1

(
ei(1− vii) + viiei

1− vii

)2

= n−1
n∑
i=1

(
ei

1− vii

)2

.
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This expression is also given in [1].

A different idea is to make a Taylor series expansion directly of the formula(
yi − p̂(−i)

)2
. If we denote this formula by f(β), a second order Taylor expan-

sion would look like this:

f(β̂(−i)) = f(β̂) +
∂f(β̂)

∂β
(β̂(−i) − β̂) + 0.5(β̂(−i) − β̂)′

∂2f(β̂)

∂β2
(β̂(−i) − β̂).

Let’s start with ∂f(β̂)
∂β . We already know that ∂pi

∂β equals xip̂i(1 − p̂i) and by
using this, we get

∂f(β̂)

∂β
= −2(yi − p̂i)xip̂i(1− p̂i).

This expression can then be used to find the second order derivative:

∂2f(β̂)

∂β2
= 2xix

′
i (p̂i(1− p̂i))2 − 2(yi − p̂i)xix′i

(
p̂i(1− p̂i)− 2p̂2i (1− p̂i)

)
= 2xix

′
i (p̂i(1− p̂i))2 − 2(yi − p̂i)xix′ip̂i(1− p̂i)(1− 2p̂i)

= 2xix
′
ip̂i(1− p̂i) (p̂i(1− p̂i)− (yi − p̂i)(1− 2p̂i))

In the next 2 picture, the training MSE / apparent error (red), the real cross
validated MSE (blue), the MSE based on approximations (green), the MSE as
given in [1] (pink) and the MSE based on the just described Taylor approxima-
tion (yellow) are plotted.
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Figure 2: different approximations for the MSECV , based on first 100 covariates
in the Golub data set.

It is clear that the green line (the MSE based on the approximated leave-one-
out estimates) is preferable to the other ones. Note that the optimal λ found by
either using the MSECV as done here, or the MMLCV as done in the previous
section will be very similar.
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5.5 Finding the optimal λ

It is not completely straightforward to find the derivative of MMLCV (λ), since
it is no explicit formula of λ. We know that p̂ depends on λ, since β̂ does, but
this dependence is not explicitly defined because β̂ is found iteratively. There-
fore, before we can find an expression for the derivative, some simplifications
have to be made.
The (strong) assumption that will be made is that β̂ is only one Newton-
Raphson step away from the real β. Thus β̂ = β + (X ′WX + 2λIp)

−1(X ′(y −
p)−2λβ), where W and p are also based on the real β. Since β does not depend
on λ, we now have a created an explicit dependence between β̂ and λ. Now we
have defined β̂ in this way, we can do something similar for p̂.

We have:

p̂ =
exp(Xβ̂)

1 + exp(Xβ̂)
.

Let’s denote this function by f(β̂). Making a first order Taylor expansion around
the real β gives

f(β̂) = f(β) + f ′(β)(β̂ − β) +O((β̂ − β)2)

The only term that still has to be calculated is f ′(β). If we introduce η = Xβ,
we have

∂f

∂β
=
∂f

∂η

∂η

∂β
.

Of course, ∂η
∂β is just equal to X. The other derivative is given by:

∂f

∂η
=

exp (η)

(1 + exp (η))2
=

exp (η)

1 + exp (η)

1

1 + exp (η)
= p(1− p).

Now we can write p̂ in terms of the real p :

p̂ = p+WX(X ′WX + 2λIp)
−1(X ′(y − p)− 2λβ).

If we use this expression for p̂ in the earlier derived formula for MMLCV (λ)
(and replace all Ŵ ’s by W ) we get a formula that explicitly depends on λ.

The formula does now look like this:

MMLCV (λ) ≈
−n−1

(
y′ log(p̂) + (1− y)′ log(1− p̂)− (y − p̂)′(diag(In − V ))−1(diag(V ))W−1(y − p̂)

)
,

where all p̂’s are equal to p+WX(X ′WX + 2λIp)
−1(X ′(y − p)− 2λβ).

From this formula we can take the derivative.
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First I will derive the derivatives of the separate pieces.

Since y and W do not depend on λ, ∂y′

∂λ , ∂(1−y)′
∂λ and W−1

∂λ are all equal to
zero.
The derivative of p̂ is given by:

∂p̂

∂λ
= −2WX(X ′WX+ 2λIp)

−2(X ′(y−p)−2λβ)−2WX(X ′WX+ 2λIp)
−1β.

The derivative of log(p̂) becomes

∂ log(p̂)

∂λ
= (diag(p̂))−1

∂p̂

∂λ
.

The derivative of log(1− p̂) is almost the same:

∂ log(1− p̂)

∂λ
= −(diag(1− p̂))−1

∂p̂

∂λ
.

The derivative of (y − p̂) is given by:

∂(y − p̂)

∂λ
= −∂p̂

∂λ

and since the derivative of the transpose is just the transpose of the derivative
we have

∂(y − p̂)′

∂λ
= −

(
∂p̂

∂λ

)′
.

The remaining terms depend on the derivative of V , which is given by:

∂V

∂λ
= −2W

1
2X(X ′ŴX + 2λIp)

−2X ′W
1
2 .

Now the derivative of diag(V ) becomes

∂diag(V )

∂λ
= diag(

∂V

∂λ
)

and the derivative of (diag(In − V ))−1 is

∂(diag(In − V ))−1

∂λ
= −(diag(In − V ))−1diag(−∂V

∂λ
)(diag(In − V ))−1

The derivative as a whole looks like this:

31



∂MMLCV (λ)

∂λ
=

− n−1
(
y′(diag(p̂))−1

∂p̂

∂λ
+ (1− y)′ · −(diag(1− p̂))−1

∂p̂

∂λ

−
(
− (

∂p̂

∂λ
)′(diag(In − V ))−1(diag(V ))W−1(y − p̂)

+ (y − p̂)′ · −(diag(In − V ))−1diag(−∂V
∂λ

)(diag(In − V ))−1(diag(V ))W−1(y − p̂)

+ (y − p̂)′(diag(In − V ))−1diag(
∂V

∂λ
)W−1(y − p̂)

+ (y − p̂)′(diag(In − V ))−1(diag(V ))W−1 · −∂p̂
∂λ

))
.

Since we do not know the real β and p but we do know the values for β̂ and p̂, we
replace the real values by these estimates in order to get outcomes. (Note that
we then get an expression like this: β̂ = β̂+(X ′ŴX+2λIp)

−1(X ′(y−p̂)−2λβ̂)

which is again β̂ since the Newton-Raphson algorithm converged and therefore
(X ′ŴX + 2λIp)

−1(X ′(y − p̂)− 2λβ̂) equals zero.)

To check whether this formula looks like the real derivative of MMLCV I en-
tered the actual formula in R (as can be seen in the ”derivative”-function, given
on the next page) and compared the values with those found by a different
approximation formula, the ”approximated-derivative”-formula. This formula is
based on the values of MMLCV and calculates so called ”Newton’s difference
quotients”.
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derivative <- function(X,Y,lambda)

{

n <- nrow(X)

m <- ncol(X)

eye_n <- diag(rep(1,n))

eye_m <- diag(rep(1,m))

res <- VindBeta(X,Y,lambda)

beta <- res$beta

eta = as.vector(X %*% beta)

p <- exp(eta)/(1+exp(eta))

W <- diag(p*(1-p))

neghessiaan <- crossprod(X, W %*% X)+2*lambda*diag(rep(1,m))

V <- W^(1/2)%*%X%*%solve(neghessiaan)%*%t(X)%*%W^(1/2)

invneghessiaan <- solve(neghessiaan)

dpdl <- -2*W%*%X%*%invneghessiaan%*%invneghessiaan%*%(t(X)%*%(Y-p)

-2*lambda*beta)-2*W%*%X%*%invneghessiaan%*%beta

dvdl <- -2*W^(1/2)%*%X%*%invneghessiaan%*%invneghessiaan%*%t(X)%*%W^(1/2)

div <- diag(diag(eye_n-V))

invdiv <- solve(div)

A <- t(Y)%*%solve(diag(p))%*%dpdl + t(1-Y)%*%-solve(diag(1-p))%*%dpdl

B <- -t(dpdl)%*%invdiv%*%diag(diag(V))%*%solve(W)%*%(Y-p)

C <- t(Y-p)%*%-invdiv%*%diag(diag(-dvdl))%*%invdiv%*%diag(diag(V))%*%solve(W)%*%(Y-p)

D <- t(Y-p)%*%invdiv%*%diag(diag(dvdl))%*%solve(W)%*%(Y-p)

E <- t(Y-p)%*%invdiv%*%diag(diag(V))%*%solve(W)%*%-dpdl

result <- -1/n*(A-(B+C+D+E))

return(result)

}

real_derivative = function(X,Y,lowerbound,upperbound,stepsize)

{

lambda <- as.matrix(seq(from=lowerbound,to=upperbound,by=stepsize))

realvalue <- as.matrix(seq(from=lowerbound,to=upperbound,by=stepsize))

for(i in 1:nrow(lambda))

{

realvalue[i] <- derivative(X,Y,lambda[i])

}

return(list(realvalue=realvalue,lambda=lambda))

}
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approximated_derivative = function(X,Y,lowerbound,upperbound,stepsize)

{

lambda <- as.matrix(seq(from=lowerbound,to=upperbound,by=stepsize))

appr <- as.matrix(seq(from=lowerbound,to=upperbound,by=stepsize))

#for every interval, calculate the approximated derivative

for(i in 2:nrow(lambda))

{

MML1 <- MMLcvp(X,Y,lambda[i]) #real cross validated MMLcv

MML2 <- MMLcvp(X,Y,lambda[i-1])

appr[i] <- (MML1-MML2)/stepsize

}

return(list(appr=appr,lambda=lambda))

}

The graph shown here is based on a simulated data set:

X<-matrix(rnorm(1000,0,1),50,20)

eta <- X%*%c(1,1,3,0,0,2,0,0,0,0,0,5,7,1,1,0,0,0,0,1)

p <- exp(eta)/(1+exp(eta))

Y <- round(p)

res1 <- approximated_derivative(X,Y,0.5,5,0.05)

res2 <- real_derivative(X,Y,0.5,5,0.05)

allrange <- 1e-4 + range(res2$realvalue,res1$appr)

plot(res2$lambda, res2$realvalue, type="l", xlab = "lambda", ylab = "derivatives",

ylim=allrange, col="green")

lines(res1$lambda[-1],res1$appr[-1], type="l",col="blue")

legend("topright", legend=c("derivative formula", "appr derivative"),

col=c("green","blue"),lwd=5)

34



1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

lambda

de
riv

at
iv

es

derivative formula
appr derivative

Figure 3: comparison of Newton’s difference quotient and formula for the deriva-
tive

It is clear that the formula does not resemble the ”actual” derivative at all.
Again, this algebraic approach will not be continued.
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6 k-fold cross-validation

In the previous sections, we were only considering leave-one-out cross-validation.
Although the approximated version of leave-one-out cross-validation is much
faster than actual LOOCV and for that reason there may be less need to use
k-fold cross-validation, it is very likely that k-fold cross-validation will still be
preferred by some researchers to (an approximated version of) leave-one-out
cross-validation.

Despite the fact that k-fold cross-validation is less time-consuming than leave-
one-out cross-validation, finding a penalty parameter by means of double k-fold
cross-validation can be time consuming. (Especially when using complex sta-
tistical models in combination with large data sets.) A procedure to find an

efficient approximation of β̂−K (similar to β̂−i but now based on all data points
except for those in the kth group, the capital K thus refers to a set of observa-
tions) can therefore be very valuable.

In finding approximations for the β̂−i’s in previous sections, we always used
the Sherman-Morrison-Woodbury theorem to find the inverse of the Hessian
matrix belonging to the model with one observation left out, by using the Hes-
sian matrix of the full model. If we would use the same approach for k-fold
cross-validation as for leave-one-out cross-validation, we would either have to
use this Sherman-Morisson-Woodbury theorem multiple times in a row or we
could use the ”matrix inversion theorem” which is a more general form of the
Sherman-Morisson-Woodbury theorem. The matrix inversion theorem (as given
in [6]) says the following:

Theorem 6.0.1. Matrix Inversion theorem
If both A and I − V A−1U are invertible, then A−UV is invertible and

(A−UV )−1 = A−1 +A−1U(I − V A−1U)−1V A−1.

In the linear model, we know that β̂−K is given by (X ′−KX−K)−1X ′−Ky−K .

We would like to find an expression for β̂−K in terms of β̂.

Starting from the equality

X ′X =

n∑
i=1

xix
′
i,

we derive
X ′−KX−K = X ′X −X ′KXK

where the matrix XK is the matrix which has the covariate vectors xi from the
kth group as its rows. If we now substitute A = X ′X, V = XK and U = X ′K
in the matrix inversion theorem, we get

β̂−K =
(
(X ′X)−1 + (X ′X)−1X ′K(I −XK(X ′X)−1X ′K)−1XK(X ′X)−1

)
X ′−Ky−K
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which equals

β̂−(X ′X)−1X ′KyK+(X ′X)−1X ′K(I−XK(X ′X)−1X ′K)−1XK(X ′X)−1X ′−Ky−K .

If we put in an extra identity matrix of the following form:
(I−XK(X ′X)−1X ′K)−1(I−XK(X ′X)−1X ′K) and rewrite the above equation
we get:

β̂−(X ′X)−1X ′K(I−XK(X ′X)−1X ′K)−1
(
(I −XK(X ′X)−1X ′K)yK −XK(X ′X)−1X ′−Ky−K

)
,

which is just

β̂ − (X ′X)−1X ′K(I −XK(X ′X)−1X ′K)−1
(
yK −XK β̂

)
.

(Note that yK is a vector, containing the yi’s belonging to the kth group and

is not just the kth element of y.) So, just as we found an expression for β̂−i in

terms of β̂ we know found β̂−K in terms of β̂:

β̂−K = β̂ − (X ′X)−1X ′K(I −XK(X ′X)−1X ′K)−1
(
yK −XK β̂

)
. (20)

Usually, we have to calculate (X ′−KX−K)−1 k times, so the inverse of an p× p
matrix. With this new formula, the inverse that has to be calculated multiple
times is (I−XK(X ′X)−1X ′K)−1, which is an l×l matrix (with l the number of
individuals in the the kth group). This new method will therefore be especially
useful when l is a lot smaller than p.

Earlier, we found a simple expression for the leave-one-out cross-validated resid-
ual sum of squares. The question is if the same can be done for the k-fold
cross-validated RSS. This time the RSS looks like

RSSkfold =
∑
K

(yK −XK β̂−K)T (yK −XK β̂−K). (21)

When we substitute (20) into this formula and simplify the expression, we get

RSSkfold =
∑
K

||(I −XK(X ′X)−1X ′K)−1(yK −XKβ̂)||2. (22)
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To find an approximation for β̂−K in a logistic model, we will again use a Taylor
approximation.
In approximating the β̂−i’s, we made a first order Taylor approximation of the
derivative of the log-likelihood which resulted in:

β̂−i = β̂ − (l′′(−i)(β̂))−1l′(−i)(β̂).

By assuming that β̂−K is still quite similar to β̂, we could by the same reasoning
come to the following approximation:

β̂−K = β̂ − (l′′(−k)(β̂))−1l′(−k)(β̂),

where
l′′(−k)(β̂)−1 = X ′−KW−KX−K

and
l′(−k)(β̂) = X ′(−k)(y−K − p−K).

The values of W−K and p−K are based on β̂.

The hessian matrix based on all but the kth group can be rewritten into

X ′−KW−KX−K = X ′WX −X ′K(WX)K .

From this expression we see that the matrix inversion theorem can again be
used. This time we take A = X ′WX, V = (WX)K and U = X ′K .

After some simplifications, the final formula becomes:

β̂−K ≈ β̂− (X ′WX)−1X ′K(I− (WX)K(X ′WX)−1X ′K)−1(yK−pK). (23)

Extending this formula to logistic ridge regression and survival regression will
be straightforward.
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A different idea is to add multiple indicator variables to the model. In [11] the
suggestion is made to use one indicator variable in order to find an approxima-
tion for the leave-one-out regression coefficients, but this idea can be extended
to regression coefficients corresponding to k-fold cross-validation, by adding l
indicator variables, where l is the number of samples in a group (in case of an
equal distribution over the groups, l will be n/k).
For leave-one-out regression, the old modelXβ is replaced byXβ∗+ziγ, where
zi is an indicator variable for individual i. Because the dependent variable yi can
be estimated perfectly just based on the appropriate value of γ, the estimate for
β∗ will not depend on the ith observation and the maximum likelihood estimate
of β∗ will (at least in models with independent components) be β̂−i. To save

time, we will again only take one Newton-Raphson step, with β̂ and 0 as initial
values for β∗ and γ respectively. Extending this model to k-fold cross-validation
can be done by just adding more indicator variables. When there is an extra
penalty term in the model, it is important that the new regression coefficients
(the ones corresponding to the indicator variables) should be unpenalized.
In case of leave-one-out regression, this ”indicator-method” will result in exactly
the same approximations as we found by using a first order Taylor approxima-
tion in combination with the Sherman-Morrison-Woodbury theorem.
To proof this (in the logistic regression context), we use the following theorem
on partitioned matrices, as given in [8]:

Theorem 6.0.2. Let A be an m× n matrix of the following form:

A =

(
A11 A12

A21 A22

)
,

where A11 is m1 × n1, A12 is m1 × n2, A21 is m2 × n1, A22 is m2 × n2 and
m1 +m2 = m,n1 + n2 = n.

If A is non-singular and D = A22 −A21A
−1
11 A12 is also non-singular, then

A−1 =

(
A−111 +A−111 A12D

−1A21A
−1
11 −A−111 A12D

−1

−D−1A21A
−1
11 D−1

)
.

The new design matrix X∗ is just the old design matrix with an extra column
added:

X∗ =



x11 . . . x1p 0
...

...
...

...
xi1 . . . xip 1
...

...
...

...
xn1 . . . xnp 0


The approximation is now given by the first p components of:(

β̂
0

)
− (X∗TWX∗)−1X∗T (y − p),
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where p and W are based on β̂.
We know that

X∗T (y − p) =

(
XT (y − p)
yi − pi

)
and

(X∗TWX∗) =

(
XTWX wiixi
wiix

T
i wii

)
.

We can now use the above stated theorem to calculate the inverse of X∗TWX∗:

(X∗TWX∗)−1 =

(
(XTWX)−1 + (XTWX)−1wiixiD

−1wiix
T
i (XTWX)−1 −(XTWX)−1wiixiD

−1

−D−1wiixTi (XTWX)−1 D−1

)
,

with D = (wii − wiixTi (XTWX)−1wiixi). Since D is just a scalar, D−1 = 1
D .

Since we are only interested in the first p coefficients of the new parameter
vector, we can forget about the last row of this inverse and we find as an ap-
proximate for β̂−i:(

(XTWX)−1 + (XTWX)−1wiixiD
−1wiix

T
i (XTWX)−1

)
XT (y−p)−(XTWX)−1wiixiD

−1(yi−pi).

Since an earlier Newton-Raphson procedure converged to β̂ we now thatXT (y−
p) equals 0 and the above expression reduces to

(XTWX)−1wiixiD
−1(yi − pi)

So, we found:

β̂−i ≈
(XTWX)−1wiixi(yi − pi)

wii − wiixTi (XTWX)−1wiixi
,

which is equal to
(XTWX)−1xi(yi − pi)

1− wiixTi (XTWX)−1xi
,

which is exactly the approximation that we found earlier (equation (15)).

For k-fold cross-validation, it should be possible to prove in the same way that
adding l indicator variables and taking one Newton-Raphson step will result in
the same approximation as a first order Taylor expansion in combination with
the matrix inversion theorem.
I did not prove this equality formally, but by running simulations (with a logis-
tic ridge regression model) I could see that the answers were indeed exactly the
same.
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To test the usefulness of the derived approximation method, on several simu-
lated data sets the mean-minus log-likelihood is calculated based on either the
real values of the k-fold estimates or the approximated ones. The graph below
is based on the following dataset and 10-fold cross-validation is used.

X<-matrix(rnorm(15000,0,1),500,30)

eta <- X%*%c(1,1,3,0,0,2,0,0,0,0,0,5,7,1,1,0,0,0,0,1,5,6,1,0,0,0,2,4,5,1) + rnorm(500,3,2)

p <- exp(eta)/(1+exp(eta))

Y <- round(p)

The purple line represents the approximation based on the matrix inversion
theorem. The green line represented the approximation based on the indicator-
method but overlaps completely with the purple curve. The real optimum (so
the one of the blue curve) lies at λ = 0.76 and the optimum of the approximated
curve lies at λ = 0.68. Of course, the approximation is not perfect but it still
seems to do well.
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Figure 4: real 10-fold cross-validation vs. approximated 10-fold cross-validation
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Even for 5-fold cross-validation the graph still looks nice:
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Figure 5: real 5-fold cross-validation vs. approximated 5-fold cross-validation
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7 Survival analysis

After describing a method to find an approximation for β̂(−i) in linear and lo-
gistic (ridge) regression, it would be really useful to find a way to extend this
idea to Cox regression. Since fitting a Cox proportional hazards model is usu-
ally more difficult than fitting a logistic model, the amount of time that can be
saved in this way will probably even be more substantial.

In survival analysis, we have data of the following form: (ti, di, Xi). Here the
(censored) survival time is denoted by ti, the censoring indicator is given by di
(with di = 0 in case of censoring) and Xi is a p-dimensional vector of covariates
for the ith individual. In the Cox proportional hazards model ([3]), the hazard
function for individual i depends on a common baseline hazard, denoted by h0
and the covariates of this person in the following way:

hi(t) = h0(t) exp(β′Xi).

To find an estimate for the unknown vector of regression coefficients, two strate-
gies can be adopted. The first one uses the partial (log-)likelihood, the second
one the full (log-)likelihood. Maximizing the partial likelihood has the advan-
tage that we do not have to take the baseline hazard into account. However, the
information matrix (i.e. the negative of the matrix of second derivatives) that
comes with this partial likelihood is of the form X ′WX, where W is given by

diag(e1, ..., en)− PP ′,

where

ei =
∑
τj≤ti

exp(Xiβ)∑
k∈Rj exp(Xkβ)

and

pij = I[ti ≥ τj ]
exp(Xiβ)∑

k∈Rj exp(Xkβ)
,

as given in [13].
The W -matrix is, unlike the one in the logistic regression model, no longer a
diagonal matrix. In previous derivations, we used the following equality:

X ′WX =

n∑
i=1

wiiXiX
′
i,

which does not hold anymore. We used to write (X ′(−i)W(−i)X(−i))
−1 = (X ′WX−

wiiXiX
′
i)
−1 in order to apply the Sherman-Morrison-Woodbury theorem, but

now we have to find a different derivation. However, if we would use the full
likelihood instead of the partial likelihood, we would not run into this problem,
as will be shown next.
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The full log-likelihood of the proportional hazards model is given by:

l(β, h0) =

n∑
i=1

(− exp(X ′iβ)H0(ti) + di (ln(h0(ti)) +X ′iβ)) ,

with
H0(t) =

∑
s≤t

ho(s),

as can be found for example in [7].

A penalization term can be added to this likelihood. In ridge regression, we
get:

lpen(β, h0) = l(β, h0)− 0.5λβ′β.

The first and second derivative with respect to β are now given by:

∂lpen(β, h0)

∂β
= X ′∆− λβ,

with
∆i = di −H0(ti) exp(X ′iβ)

and
∂2lpen(β, h0)

∂β2
= −(X ′DX + λIp),

where
D = diag(exp(X ′iβ)H0(ti)).

The same notation is used as in [7].

We see that D (equivalent to W in the logistic regression model) is again a
diagonal matrix. Therefore, we can apply the same techniques as before.

We still denote the log-likelihood where the ith observation is left out by l(−i)(β)

and after constructing a first order Taylor approximation of l′(−i)(β) around β̂
we find:

β̂(−i) = β̂ − (l′′(−i)(β̂))−1l′(−i)(β̂).

If we put in the formulas for the gradient and the hessian we just found, we get:

β̂(−i) = β̂ + (X ′(−i)D(−i)X(−i) + λIp)
−1(X ′(−i)∆(−i) − λβ̂),

where the values of the ∆(−i) and D(−i) are calculated based on the value for

β̂. To estimate the values of H0(ti), we use the Breslow estimator:

ĥ0(ti) = 1/
∑
tj≥ti

exp(X ′jβ̂).

44



Note that it does not matter in what way the actual value of β̂ is computed,
since maximizing the partial or the full-likelihood will give the same results.
That we use the full log-likelihood in the derivation does not mean that this
same likelihood has to be used in the calculation of the maximum penalized
likelihood estimator β̂.

Now, the Sherman-Morrison-Woodbury theorem can be applied:

(X ′(−i)D(−i)X(−i) + λIp)
−1 = (X ′DX + λIp − diiXiX

′
i)
−1

= (X ′DX + λIp)
−1 +

(X ′DX + λIp)
−1diiXiX

′
i(X

′DX + λIp)
−1

1− diiX ′i(X ′DX + λIp)−1Xi
.

Furthermore, we rewrite (X ′(−i)∆(−i) as X∆−Xi∆i. We can introduce similar

variables as before: Z = D
1
2X and v = D−

1
2 ∆. This gives us:

β̂(−i) = β̂ +

(
(Z ′Z + λIp)

−1 +
(Z ′Z + λIp)

−1ziz
′
i(Z
′Z + λIp)

−1

1− z′i(Z ′Z + λIp)−1zi

)
(
Z ′v − zivi − λβ̂

)
.

Because the Newton Raphson algorithm converged to β̂, we know that (X ′DX+

λIp)
−1(X ′∆ − λβ̂) = (Z ′Z + λIp)

−1(Z ′v − λβ̂) equals 0, when D and ∆ are

calculated based on β̂. Now we have exactly the same situation as we had in
the case of logistic ridge regression. Therefore, we can directly jump to the
conclusions of the corresponding derivation, which gives us:

β̂(−i) = β̂ − (Z ′Z + λIp)
−1zivi

1− z′i(Z ′Z + λIp)−1zi
.

In the original notation, we get:

β̂(−i) = β̂ − (X ′DX + λIp)
−1Xi∆i

1− diiX ′i(X ′DX + λIp)−1Xi
. (24)

The term diiX
′
i(X

′DX + λIp)
−1Xi is the ith diagonal element of the matrix

D
1
2X(X ′DX + λIp)

−1X ′D
1
2 , which we will call V from now on.

A computational problem may arise when the number of covariates is really
large. The matrix (X ′DX + λIp) is a p × p matrix and finding its inverse will
take a lot of computations and computer memory when p is big. To overcome
this problem, we can rewrite the equations in terms of γ.
Because we know that (if the Newton Raphson algorithm converged)X ′∆−λβ =
0, we see that β lies in the column space of the design matrix X ′ (see also [7]).
For that reason, we can write β = X ′γ, for some γ. If we rewrite the likelihood
function in terms of γ, we get:

l(γ, h0) =

n∑
i=1

(− exp(X ′iX
′γ)H0(ti) + di (ln(h0(ti)) +X ′iX

′γ))− 0.5λγ′XX ′γ.
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If we rename the matrix XX ′ into A, we get:

l(γ, h0) =

n∑
i=1

(− exp(A′iγ)H0(ti) + di (ln(h0(ti)) +A′iγ))− 0.5λγ′Aγ,

for which the corresponding first and second derivative with respect to γ are
given by:

∂lpen(γ, h0)

∂γ
= A′∆− λAγ,

with
∆i = di −H0(ti) exp(A′iγ)

and
∂2lpen(γ, h0)

∂γ2
= −(A′DA+ λA),

where
D = diag(exp(A′iγ)H0(ti)).

Using these expressions, together with the Sherman-Morrison-Woodbury theo-
rem, gives as final result:

γ̂(−i) = γ̂ − (A′DA+ λA)−1ai∆i

1− vii
, (25)

where vii is the ith diagonal element of the matrix V given by D
1
2A(A′DA +

λA)−1A′D
1
2 .

(A more detailed explanation can be found in subsection 6.2: ”Computational
problems”, where the same strategy is already used in the logistic ridge regres-
sion case.)

Starting with γ̂ we have now a way to find γ̂(−i) and β̂(−i) can now be eas-

ily obtained since β̂(−i) = X ′γ̂(−i).

Sometimes, it is also useful to find γ̂ from a known β̂ (which is for example
found by the R package ”penalized”). This can be done in the following way:

γ̂ = (XX ′)−1Xβ̂.
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In linear regression we used the cross-validated sum of squares as a perfor-
mance measure and in logistic regression we used cross-validated mean minus
log-likelihood or the cross-validated mean squared error. The question is what
measure we can use in survival analysis.

Because of the censoring, it is impossible to define a measure which is com-
parable to the sum of squares, but we can use a cross-validated likelihood. In
the full likelihood we could simply fill in all the values of the β̂(−i)’s (for a given
value of λ), but the problem lies in the construction of the estimated baseline
hazard. The baseline hazard only differs from zero in observed event points and
therefore equals zero for all new observations. In this case, the ith observation
is treated as a new observation and for that reason, the cross-validated full (log-
)likelihood can not be used.
Since the partial likelihood does not depend on the baseline hazard, the cross-
validated partial likelihood can be used. The cross-validated partial log-likelihood,
as derived in [11] looks like this:

cvpl(λ) =

n∑
i=1

pli(β̂
λ

(−i)).

Since the partial likelihood is not defined for a single observation, the term

pli(β̂
λ

(−i)), which gives the contribution of individual i to the partial log-likelihood,
is a difference between the contribution of all n observations and the contribu-
tion of n− 1 observations:

pli(β̂
λ

(−i)) = pl(β̂
λ

(−i))− pl(−i)(β̂
λ

(−i)).

In [11] it is shown that the cross-validated partial log-likelihood can be written
as

cvpl(λ) =

n∑
i=1

∑
tj<ti

dj ln(1− pij) + di ln(pii)

 ,

with

pij =
exp(X ′iβ̂

λ

(−i))∑
tk≥tj

exp(X ′kβ̂
λ

(−i))

The just described cvpl is derived under the assumption that no ties are present
in the data set, so all time points are distinct. Unfortunately, when we use some
real data set it can of course happen that there are ties. I adjusted the cvpl in
order to work with ties, following the same reasoning from which the above cvpl
resulted.
The final formula only changed in one specific location, namely the index of the
inner summation, which changed from tj < ti to tj ≤ ti, i 6= j.
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To decide whether the approximations of the β̂
λ

(−i)’s are useful in practice, the
cvpl based on the real leave-one-out estimates (as calculated by the R-package
”penalized”) can now be compared to the cvpl based on the approximated leave-
one-out estimates.

7.1 Adjustments

In the actual simulations, as given in the article, we did change the approxi-
mation procedure a little. In the just described approximation procedure, the
approximation for β̂(−i) depends on the baseline hazard of the full model (this
baseline hazard is incorporated in the matrix D and the vector ∆). Of course
the actual baseline hazard in the model with one observation left out will differ
(a little) from the one belonging to the full model. Unfortunately, there is not
much that can be done about this, since all the information we have is based
on the full model, but in order to allow for multiplicative changes we can incor-
porate an extra intercept term in the model. Normally, a Cox regression model
is fitted without an intercept term since this term is ”absorbed” in the baseline
hazard, but this time the extra intercept term may result in a baseline hazard
that is closer to the real leave-one-out baseline hazard.
The approximation formula, as given in equation (24) can still be used, but a
few changes have to be made:
The matrix X has to be replaced by the new matrix Xint which has an extra
column:

Xint =

 1
... X
1

 ,

the identity matrix Ip is replaced by a new p+ 1× p+ 1 diagonal matrix which
has a 0 as its first element to make sure that the new intercept term is not
penalized

Iint =

 0 . . . 0
... Ip
0

 . and finally, the initial β, which used to be β̂ is now

given by

β̂
λ

int =

(
0

β̂
λ

)
.

The β̂(−i) we find in this way is still a vector of length p + 1, but we are
only interested in the last p regression coefficients.
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If we again want to reduce the dimension of the covariate space by the γ-method,
we have to be careful. Before, we used the fact that, if the Newton-Raphson
algorithm had converged, X ′∆ − λβ = 0. For the regression coefficients not
corresponding to the intercept term, this equation still holds, but for the added
coefficient, we can not formulate an expression like this, However, we can use
the reparametrization matrix G of the form:

G =

 1 . . . 0
... X
0

 ,

and now it is clear that β = GTγ.
As before, we want to find an expression for γ−i in terms of γ. The first remark
we should make is that we can use the same reparametrization matrix in case
of γ−i, because β−i lies in the column space of XT

−i and for that reason also in
the column space of XT .
In the first and second derivative, given by:

∂lλ(γ)

∂γ
= GXT

int∆− λAγ (26)

and
∂2lλ(γ)

∂γ∂γT
= −GXT

intDXintG
T − λA, (27)

where A = GIintG
T we thus only have to remove individual i from Xint, D and

∆ but not from G. Therefore, the leave-one-out hessian can be written as:

−(G(XT
intDXint−xidiixTi )GT+λA) = −(GXT

intDXintG
T−GxidiixTi GT+λA).

If we now introduce a new matrix B = XintG
T and notice that Gxi is just the

ith row of this matrix, above expression is just

−
(
BTDB − bidiibTi + λA

)
and to find the inverse of this matrix, we can again apply the Sherman-Morrison-
Woodbury theorem. The final formula can be found in the article.
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8 Lasso regression

Until now, the focus lay on models with a ridge penalty. In this section a differ-
ent penalty that is used often, the lasso penalty, will be discussed. This penalty
will be discussed in combination with a survival model, but the final formulas
can easily be adjusted to work with generalized linear models as well.

In lasso regression, the penalized likelihood looks like:

lpen(β, h0) = l(β, h0)− λ
p∑
i=1

|βi|.

To come up with the approximation formula for the leave-one-out estimate β̂
λ

−i,
we again use the earlier derived formula

β̂
λ

(−i) = β̂
λ
− (l′′(−i)(β̂)λ)−1l′(−i)(β̂

λ
).

As long as the all βi’s are unequal to zero, the first and second derivative do
exist and are given by

∂lpen(β, h0)

∂β
= X ′∆− λ

p∑
i=1

sign(βi),

with
∆i = di −H0(ti) exp(X ′iβ)

and
∂2lpen(β, h0)

∂β2
= −(X ′DX),

where
D = diag(exp(X ′iβ)H0(ti)).

The first approach is to look only at those coefficients of β̂
λ

that are unequal
to zero (the coefficients belonging to the active set A), to alter these values in

order to come up with an approximate for β̂−i and assume that the zeros in

β̂
λ

will still be zero in β̂
λ

−i. Although the active set might change a little after
eliminating one observation, the lasso is designed to be a stable (see [10]) and
therefore the changes will be small which justifies the assumption.

If we denote the design matrix corresponding to the active set by XA, we have
(for the nonzero elements):

β̂
λ

(−i) ≈ β̂
λ

+ ((X ′ADXA − xAidiix′Ai)
−1
(
X ′A∆− xAi∆i − λ

∑
i∈A

sign(βi)

)
.
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Using the Sherman-Morrison-Woodbury theorem and the fact that the Newton-

Raphson algorithm converged to β̂
λ

from which we know that the gradient,

calculated based on β̂
λ

will be zero, we get:

β̂
λ

(−i) ≈ β̂
λ
− (XT

ADXA)−1xAi∆i

1− vii
, (28)

with V = D
1
2XA(XT

ADXA)−1XT
AD

1
2 . The β̂

λ

(−i)’s outside the active set stay
0.

All graphs in the final paper are based on above formula and the assumption that
the active set stays the same. However, it is clearly visible that the curves based
on this method do have many local optima. Although this is an phenomenon
that we also see in the real leave-one-out cross-validated log-likelihood, the ap-
proximated curves definitely have more optima and this is a problem when the
global optimum has to be found.
Our first idea was that (part of) the spiky behavior may result from the as-
sumption that the active set stays the same when an observation is left out.

In trying to come up with better approximation, we decided to choose the
active set of the model with one observation less in a different way. The new
derivation is based on an article by Goeman ([4]). In this article it is shown that
the gradient g(β) = (g1(β), . . . , gp(β))′ of the Cox model with a lasso penalty
is given by

gi(β) =

 hi(β)− λ sign(βi) if βi 6= 0
hi(β)− λ sign(hi(β)) if βi = 0 and |hi(β)| > λ
0 otherwise,

where

sign(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

and h(β) = ∂l(β)/∂β = (h1(β), . . . , hp(β))′ is just the gradient of the unpenal-
ized log-likelihood.
This formula shows that a regression coefficient that equals zero once during
the optimization process does not necessarily have to stay at zero, because its

gradient can differ from zero. If we look at β̂
λ

as an intermediate point in the

optimization process in which we try to find β̂
λ

−i, we could look at h(−i)(β̂
λ
)

(which is just X ′−i∆−i, with ∆ based on β̂
λ
) to determine if a regression coef-

ficient belongs to the active set.
The new active sets consist of coefficients for which:

� β̂
λ

j 6= 0, or

� β̂
λ

j = 0 and |h(−i)j (β̂
λ
)| > λ.
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Equation (28) can again be used, but in the new situation more coefficients will
be changed.

A disadvantage of this new approach is that the active set can be different for
every observation that is left out and for that reason more than one matrix in-
verse has to be calculated to find one value of the cross-validated log-likelihood.
Since the matrices are really similar there will probably be clever ways to keep
the computational costs at a minimum but I have not looked into that.
Unfortunately, the first test results based on this new approach did not look too
promising. In the graph below, based on the Van de Vijver data set with only
the first 100 covariates, 4 curves are visible. The blue line still represents the
real curve, the green one represents the standard approach and the purple curve
belongs to the approach where the size of the active set can vary.
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Figure 6: real LOOCV vs. 2 approximation methods

An advantage of the purple curve is that it seems to be less ”spiky”than the green
curve and finding its global optimum will for that reason be easier. However,
it is clear that the new approximation procedure predicts the actual values less
accurate, at least for small values of λ. More experiments are needed in order
to find out if these findings can be generalized to other data sets.
One remark about the new method can already be made. Although one might
be tempted to assume that an extension can only lead to better results, in this
case the extension has a drawback. Simulations showed that the new method
overestimates the size of the real active set in many cases. It happens quite

often that an regression coefficient that equals 0 in β̂
λ

but is made part of the
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active set in approximating β̂
λ

−i should actually not be part of this set (but this
only shows after more Newton-Raphson steps).

9 Future Work

In this last section a few ideas for future work are discussed briefly.
Although an approximation method for k-fold cross-validation is discussed in
chapter 6, more research is needed to find out if the results of this approximation
procedure are really useful in practice. An important question is if the amount
of time that is saved outweighs the loss of accuracy. For different values of k,
the answer to this question may vary.
A different method which leaves room for improvement is the approximation
method for models with a lasso penalty. The method which allows for changes
in the size of the active set, as proposed in the previous section, should be
investigated in more detail.
A third remark is that we only looked at a limited amount of error measures. In
case of survival models, we only looked at the cross-validated likelihood and for
the logistic model, we just looked at the minus log-likelihood and mean squared
error. In those situations, the approximations work well, but for discontinuous
measures, like the classification error, the approximations might very well result
in quite different values of the tuning parameters than those found by real cross-
validation. More work is needed to find out which error measures can be used
safely in combination with the approximation method.
A final observation is that the new approximation method is only compared to
real cross-validation. Although this comparison is a very important one, more
comparisons should be made. Methods like AIC and generalized cross-validation
are also designed to approximate cross-validation results and our method should
for that reason be compared to those approximation methods in order to find
out which approximation method is most useful in terms of computational costs
and accuracy.
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E�cient approximate leave-one-out

cross-validation for ridge and lasso

Rosa Meijer and Jelle Goeman

Abstract

In evaluating statistical models, leave-one-out cross-validation (LOOCV)
is often used. In regression methods suitable for high dimensional covari-
ate spaces, not only the regression coe�cient β has to be estimated, but
also the value of some tuning parameter. The objective of this study is to
come up with a method that produces similar output to ordinary cross-
validation, but is less time consuming. Estimating the optimal values of
ridge and lasso parameters will take less time and carrying out (an ap-
proximated version of) double LOOCV will become practically feasible in
this way.

We derive a method in which approximations of the real maximum
likelihood leave-one-out regression coe�cients are used to �nd optimal
values of the tuning parameters in ridge and lasso regression, without ac-
tually having to re�t the model. The approximations are based on a �rst
order Taylor approximation of the gradient of the log-likelihood around
the maximum penalized likelihood estimator of the full model. When the
number of observations increases, the real cross-validated estimates will
be closer to the estimate of the full model and the error term in the Taylor
approximation will diminish. Therefore, this method is especially suitable
for large data sets, for which ordinary cross-validating takes much time.
The method can be used in generalized linear models as well as in Cox'
proportional hazards model. To compare the results of this method to the
results that would have been obtained by using ordinary LOOCV, both
methods are applied to several microarray data sets.

1 Introduction

As high dimensional data sets are nowadays frequently encountered in statis-
tical analysis, penalized likelihood functions (as used for example in ridge and
lasso regression) are more frequently used than ever before. These penalization
methods are widely applicable and are used in various settings ranging from
linear regression models to Cox' proportional hazards model. The e�ectiveness
of penalization methods depends strongly on the used value of the penalty (or
tuning) parameter, which controls the degree of penalization. Hence, selecting
this penalty parameter should be done carefully.

Unfortunately, determining the optimal value of this parameter can be trou-
blesome and computationally intensive. The more complex the model (where
complexity relates to the speci�c relation between the predictor and response
variables, ranging from a linear relation to for example Cox' proportional haz-
ards model), the more di�cult it becomes to �nd a reliable estimate of the
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optimal penalty parameter within a reasonable amount of time. Many di�erent
methods have been proposed to �nd the optimal value of the penalty parame-
ter, but the faster methods can result in crude approximations while the more
exact methods can be very time-consuming when there are many observations
in combination with a statistical model that is di�cult to �t.

The methods most commonly used in order to �nd a good approximation
of the penalty parameter are (variations on) the well known model selection
criteria AIC, BIC and the generalized information criterion (GIC) which is a
combination of the two [29], generalized cross-validation (GCV) and leave-one-
out or k-fold cross-validation methods. Although having a direct formula from
which the optimal penalty parameter could be derived immediately would by
far be the most appealing option, until now, there are no direct methods that
work in many situations. In a recent article by Ueki and Fueda a so called
"direct plug-in method" is proposed [20], but this method is de�nitely not yet
applicable in complex statistical models.

The method that is easiest adaptable to all possible models is the so called
leave-one-out cross-validated log-likelihood (cvl), as described in [22]. The op-
timal penalty parameter can be found by maximizing the value of the cvl. This
method is used for example in [28], [11], [8] and [12]. A major advantage of the
cvl is that the penalty parameter is estimated by maximizing the actual �t of
the model and for this reason can hardly be considered as an approximation.
Besides, it is applicable to every regression model. Unfortunately, the method
can be very time-consuming, especially when the number of observations and
covariates gets large and the used regression model is di�cult to �t.

One suggested solution in order to speed up the procedure is to turn to the
k-fold cross-validated log-likelihood (where k is usually chosen to be either 5 or
10), which is done by many researchers ([10], [1], [16]). Some authors argue that
this approach is not only faster, but might also give better results, because there
are studies conducted that show that k-fold cross-validation outperforms leave-
one-out cross-validation in speci�c situations, but which resampling method is
the best overall option is still a subject of ongoing debate. Furthermore, a huge
disadvantage concerning the use of k-fold cross-validation is that the division
into train and test groups is completely random and the outcome (the speci�c
value of the tuning parameter in this case) will vary according to this partition.
The only way to overcome this problem is to average over all possible partitions
(see [3]), which would take far more time than leave-one-out cross-validation
(LOOCV).
In an attempt to save computational time, one could also use more approx-
imative methods. The main advantage of AIC/BIC methods and generalized
cross-validation is that the computational costs involved with these methods are
relatively low. Much attention has been paid to the performance of AIC and
BIC in a linear regression framework and it has been shown that good approx-
imations of tunings parameter values can be found by applying these methods
([19], [25]). However, in more advanced models, like the Cox' proportional haz-
ards model, these criteria can fail spectacularly as is shown by Schumacher et al.
[16]. Therefore, extensive research is needed before methods derived from AIC
or BIC can be introduced to �nd penalty parameters in more complex models.

Generalized cross-validation is also mostly applied in linear regression set-
tings. In comparison with the methods derived from AIC and BIC, GCV seems
to result in over�tting ([19], [25]). Besides, generalized cross-validation is used

2



less frequently when the model complexity increases. In combination with Cox
regression for example, GCV is not often used (although there are exceptions
[18], [26]).

The solution we suggest in this article is to stick to LOOCV and use approx-
imations of the real cross-validated parameters that can be found in a relatively
easy way. In that case, the model has not to be re�tted n times (with n the
number of observations) to calculate one speci�c value of the cvl. In this arti-
cle, we will derive a approximated cvl-method in which approximations of the
real maximum likelihood leave-one-out regression coe�cients are used to �nd
optimal values of the tuning parameters in ridge and lasso regression, with-
out actually having to re�t the model. The approximations are based on the
maximum penalized likelihood estimator of the full model. In a linear (ridge)
regression model, the method will even result in exact results, whereas in other
generalized linear models and the Cox' model Taylor approximations will be
used. Some work on this subject has already be done ([5], [4], [22]), but despite
the fact that the possibility of using these approximative leave-one-out regres-
sion coe�cients is mentioned multiple times, these approximations have only
been used in logistic ridge regression [4] and in linear regression [2]. In this
article, we will extend its use to the Cox proportional hazards model en we will
also investigate its useability in combination with lasso regression.

The penalty parameter estimation method we will obtain in this way is far
less time-consuming than the original leave-one-out cross validation method and
is still less approximative than for example GCV or AIC. In addition, when the
number of observations grows, the approximations of the cross-validated param-
eters get closer to the actual values, while this is exactly the situation where
real LOOCV will take a considerable amount of time. With this method, even
an approximated version of double LOOCV will become practically feasible.

The approximation procedure will be derived in section 2 for generalized lin-
ear models and Cox' proportional hazards model with a ridge or lasso penalty.
In section 3, the method will be tested on four well-known survival data sets.
The actual results as well as the e�ciency of the approximation method will
be discussed in detail. In addition, the dependence of the performance of the
approximation method on the size as well as the e�ective dimension of the data
set is investigated.
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2 Approximation procedure

In building a regression model, the aim is to �nd the value of the regression
coe�cient β that best �ts the data. Since the model is supposed to be tested
on an independent test set, but independent test data is usually absent, some
resampling method should be used. In case of LOOCV, each observation is
chosen once to be the test set. The optimal value of β is calculated based on
the remaining n− 1 observations (where n is the total number of observations).

Let us denote this estimate by β̂−i. For every i (i = 1 . . . n) β̂−i has to be
calculated by re�tting the model.

If the model also depends on some tuning parameter λ, not only β but also
λ has to be estimated. To �nd the optimal value of λ, for di�erent values of λ
the above procedure should be carried out and the value of λ that leads to the
optimal value of some chosen measure of predictive performance should be used

in the �nal model. The β̂−i's now depend on λ and can be denoted by β̂
λ

−i. To

determine λ̂, we have to re�t the model many times.

Instead of using the real values of β̂
λ

−i's, approximations can be used that

are based on β̂
λ
, the optimal value of β based on all observations (and some

speci�c value of λ). In this way, the model does not have to be re�tted n times
per value of λ and �nding the optimal value of λ will be far less time consuming.

In this section, it will be shown that the exact value of β̂
λ

−i can be calculated

based on β̂
λ
in a linear ridge regression model and this method can be extended

to generalized linear models and Cox' proportional hazards model with a ridge
or lasso penalty, although the calculations are then based on Taylor expansions

and the values of the β̂
λ

−i's are no longer the exact values but approximations.
In all calculations, the Sherman-Morrison-Woodbury theorem is applied.

This theorem states (as given in [14])(
B + uvT

)−1
= B−1 − B

−1uvTB−1

1 + vTB−1u
, (1)

where B is a nonsingular p× p matrix, and u and v are p-dimensional column
vectors.

2.1 Linear Model

We start by deriving a closed formula for β̂−i in an ordinary linear ridge model.
Let (yi,xi) (i = 1 . . . n) be n independent and identically distributed observa-
tions, where yi is the response of interest and xi = (xi1, . . . , xip)

T is the asso-
ciated p-dimensional vector of regressors. We assume the data to be generated
according to the following model:

y = Xβ + ε (2)

where E[ε] = 0 and Var(ε) = σ2I. X is the n× p design matrix, with the xi's
as its rows and β is a p-dimensional vector of unknown parameters.
Just as in ordinary linear regression, we minimize the residual sum of squares
(RSS) in order to �nd the best approximation of β, but now with an extra
penalty term added:

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTAβ. (3)
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Here A is a diagonal matrix which can be the identity matrix if all covariates
should be penalized, or a diagonal matrix with zero's as well as ones on the
diagonal, in case there are any additional covariates that should remain unpe-
nalized. In our calculations, the only restriction we need to impose on A is that
it must be a symmetrical matrix and the inverse of (XTX + λA) must exist.
Minimizing (3) with respect to β, for a �xed value of λ gives us

β̂
λ

= (XTX + λA)−1XTy. (4)

To �nd the optimal value of λ by means of LOOCV the cross-validated sum of
squares should be minimized:

RSScv(λ) =

n∑
i=1

(yi − xTi β̂
λ

−i)
2, (5)

where β̂
λ

−i is given by (4), only this time X is a (n− 1)× p matrix (from now
on denoted by X−i) and the ith element of y is left out (y−i).

Instead of calculating all β̂
λ

−i's directly, which would involve n di�erent inverse

matrices, we can compute these β̂
λ

−i's in an easier way from β̂
λ
by making

convenient choices for the matrix B, and the vectors u and v as de�ned in
theorem 1.
Setting B = XTX + λA, u = xi and v = −xi, we get:

(XT
−iX−i + λA)−1 = (XTX + λA− xixTi )−1 (6)

= (XTX + λA)−1 +
(XTX + λA)−1xix

T
i (XTX + λA)−1

1− xTi (XTX + λA)−1xi
.

After multiplying (6) by (XTy − xiyi) we �nd, after some simpli�cations:

β̂
λ

−i = β̂
λ
− (XTX + λA)−1xie

λ
i

1− hλii
, (7)

where hλii is the i
th diagonal element of the hat-matrix Hλ given by

X(XTX+λA)−1XT and eλ is the vector of residuals given by eλ = y−Xβ̂
λ
.

From equation (7) we can conclude that only one inverse is needed in order to

compute all n β̂
λ

−i's.

To �nd the optimal value of the ridge parameter λ, equation (5) needed to
be minimized. By substituting (7) into (5), we get the following expression:

RSScv(λ) =

n∑
i=1

(
eλi

1− hλii

)2

. (8)

In order to make the calculation of this sum as fast as possible, we looked for a
way to express this sum as a matrix multiplication.
From (5) and (8) we can deduce

y − ŷcv = (diag(In −Hλ))−1(y − ŷ) = (diag(In −Hλ))−1(In −Hλ)y,
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where ŷcv is the vector with predicted y-values, based on the cross-validated

β̂'s. Taking the inner product of this vector and using that (diag(In −Hλ))−1

and (In −Hλ) are symmetric matrices, we get:

RSScv(λ) = yT (In −Hλ)(diag(In −Hλ))−2(In −Hλ)y. (9)

Using equation (9), for every value of λ the cross-validated sum of squares can
be directly calculated without having to �t the model multiple times. It is even
possible to �nd the derivative of equation (9) with respect to λ, which can be
used in minimizing RSScv(λ) in order to �nd the optimal value of λ.

In above derivations, we started from a linear ridge model. If one would want
to use a similar expression for the cross-validated residual sum of squares in an
unpenalized linear regression model, for instance to use as a measure of predic-
tive performance to compare several models, one could just use λ = 0 in above
formulas. However, in that case one should make sure that the matrix XTX is
invertible and therefore the number of covariates can not exceed the number of
observations.

A very important aspect of the derivation is that β̂
λ
(and therefore β̂

λ

−i) is

not found in an iterative way, but results from a closed formula. When β̂
λ
is

found by means of some numerical procedure, as will be the case in the mod-
els discussed in the upcoming sections, it will not be possible to �nd a direct

formula based on β̂
λ
that gives the exact value of β̂

λ

−i. Derivations analogous
to the one just described will result in approximative rather than exact values.
However, based on the results in the linear model, these approximations can be
expected to come close to the real values.

2.2 Generalized linear models

After some adjustments, the procedure as described in the previous subsection
can be applied to other generalized linear models as well. Our data still con-
sists of the pairs (yi,xi) (i = 1 . . . n) only this time y follows a distribution in
the exponential family with mean µ = E[y] and variance V = V ar(y). The
linear predictor is denoted by η and is given by Xβ. In the linear model, the
relationship between µ and η was just µ = η but now this relationship is given
by µ = g−1(η), where g(.) is said to be the link function.

The probability density function of y is given by

fy(y; θ, φ) = exp{(yθ − b(θ))/a(φ) + c(y, φ)} (10)

where a(.), b(.) and c(.) are functions that vary according to the speci�c dis-
tributions [13]. Let us denote the corresponding log-likelihood by l(β) and the
penalized log-likelihood by

lλ(β) = l(β)− 1

2
λβTAβ, (11)

with A a symmetric p× p matrix as de�ned earlier.
If we only consider the models with a canonical link function, we know that
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there exists a diagonal weightmatrixW (which equals V = V ar(y)), such that
the �rst and second derivative of the penalized log-likelihood with respect to β
are of the following form:

∂lλ(β)

∂β
= XT (y − µ)− λAβ (12)

and
∂2lλ(β)

∂β∂βT
= −XTWX − λA, (13)

As we already mentioned, usually there exists no closed formula for β̂
λ
and

its value may be obtained by some numeric maximization procedure such as the
Newton-Raphson algorithm.

To �nd an approximation of β̂
λ

−i based on β̂
λ
we make a �rst-order Taylor

approximation of the derivative of lλ(−i) at β = β̂
λ
as suggested in [22] where

lλ(−i) is given by

lλ(−i)(β) = lλ(β)− lλi (β) (14)

with lλi (β) the contribution of observation i to the likelihood. This gives us

∂lλ(−i)(β)

∂β
=
∂lλ(−i)(β̂

λ
)

∂β
+
∂2lλ(−i)(β̂

λ
)

∂β∂βT
(β − β̂

λ
) +O

(
(β − β̂

λ
)2
)
. (15)

If we replace β by β̂
λ

−i in (15) and use that β̂
λ

−i by de�nition maximizes lλ(−i)(β)

(and is therefore the root of its derivative), we �nd

β̂
λ

−i = β̂
λ
−

∂2lλ(−i)(β̂λ)

∂β∂βT

−1 ∂lλ(−i)(β̂λ)

∂β
+O

(
(β̂

λ

−i − β̂
λ
)2
)
. (16)

Note that this expression exactly equals one iteration of the Newton-Raphson
algorithm, starting form the maximum likelihood estimator (MLE) belonging
to the full model. From now on, for notational simplicity, we will leave the error
term out of the equations, and use the approximation sign (≈) instead of the
equality sign.

If we substitute the expression for the �rst and second derivative, as given
in (12) and (13), use the Sherman-Morrison-Woodbury theorem and introduce

the variables Z = Ŵ
1
2X and v = Ŵ

− 1
2 (y − µ̂) we can rewrite (16) into

β̂
λ

−i ≈ β̂
λ
+

(
(ZTZ + λA)−1 +

(ZTZ + λA)−1ziz
T
i (ZTZ + λA)−1

1− zTi (ZTZ + λA)−1zi

)
(ZTv−zivi−λAβ̂

λ
),

(17)

where the values of Ŵ and µ̂ are based on the value for β̂
λ
. Since the Newton-

Raphson algorithm has converged to β̂
λ
, we know that ZTv − λAβ̂

λ
equals 0

and our result simpli�es to:

β̂
λ

−i ≈ β̂
λ
− (XTŴX + λA)−1xi(yi − µ̂i)

1− vii
, (18)
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where vii is the i
th diagonal element of the matrix V given by

Ŵ
1
2X(XTŴX + λA)−1XTŴ

1
2 . Again, all n β̂

λ

−i's can be found by simple
matrix calculations and only one inverse calculation.

A problem can still occur if this inverse is computationally hard to calculate.
This may happen when the number of covariates (p) is extremely large, since
(XTŴX + λA) is a p × p matrix. To overcome this problem, we can repa-
rameterize the model in terms of γ instead of β, where β = GTγ in order to
reduce the dimension of the covariate space from p to n, as explained in [11]. In
[11] the simplifying assumption is made that the matrix A equals the identity
matrix Ip. Although this assumption is not strictly necessary, for now, we will
make this same assumption for simplicity reasons.
The �rst and second derivative, as given by equations (12) and (13), can now
be given in terms of γ and become

∂lλ(γ)

∂γ
= GXT (y − µ)− λÃγ (19)

and
∂2lλ(γ)

∂γ∂γT
= −GXTWXGT − λÃ, (20)

where Ã = GAGT .
To �nd γ̂λ−i in terms of γ̂λ, we can again use equation (16), this time

with γ instead of β. To make the formula's more speci�c, we will choose the
reparametrization matrix G to be equal to the design matrix X, as is done in
[11]. If we leave out one observation (which gives the design matrix X−i), we

can still use the same reparametrization matrix considering the fact that if β̂
λ

−i
lies in the column space of XT

−i, as proven in [11], it certainly lies in the column

space of XT as well. (β̂
λ

−i ∈ span{XT
−i} ⇒ β̂

λ

−i ∈ span{XT }.)
From the fact that we only have to remove observation i from the "inner" ma-
trix XWXT and the observation that the ith column of the matrix XXT is
just Xxi it follows that the Sherman-Morrison-Woodbury theorem can again
be applied and this will eventually lead to the following equation:

γ̂λ−i ≈ γ̂
λ − (BTŴB + λÃ)−1bi(yi − µ̂i)

1− vii
, (21)

with B = XXT , Ã = XAXT and V = Ŵ
1
2B(BTŴB + λÃ)−1BTŴ

1
2 .

The approximations of the β̂
λ

−i's (which are if necessary also easily obtainable

by multiplying γ̂λ−i with X
T ) can now be used in combination with some error

measure (like the residual sum of squares in the linear case). In the result sec-
tion we will use the cross-validated log-likelihood as an indicator for predictive
performance, but a di�erent continuous error measure (the squared error for
example) could also be used as a performance measure.

In the result section it will be shown that the cross-validated log-likelihood

based on the approximations for β̂
λ

−i resembles the real cross-validated log-
likelihood very well. Especially when n grows large, which is exactly the situa-
tion in which regular cross-validation can be very time consuming. This can also
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be concluded from equation (16), where we see that the error between the ap-

proximated an the real cross validated estimate of β is of the order (β̂
λ

−i− β̂
λ
)2.

The more observations, the smaller the e�ect of leaving out one of them will be
on the optimal value of the regression coe�cient and therefore, the di�erence

between β̂
λ

−i and β̂
λ
will be smaller, which results in a smaller error.

2.3 Cox' proportional hazards model

In the previous section, an approximation method to �nd β̂
λ

−i based on β̂
λ
was

derived for GLM's. In this section a similar method will be derived for Cox'
proportional hazards model.

Again, we have n samples, this time of the form (ti, di,xi) (i = 1 . . . n). Here
the (censored) survival time is denoted by ti, the censoring indicator is given
by di (with di = 0 in case of censoring) and xi is still a p-dimensional vector
of covariates. In Cox' proportional hazards model ([6]), the hazard function for
individual i is given by:

hi(t) = h0(t) exp(xTi β),

where h0(t) is the well-known baseline hazard.

Usually one �nds β̂ by maximizing the partial log-likelihood, given by

pl(β) =

n∑
i=1

di(x
T
i β)− ln

∑
tj≥ti

exp(xTi β)

 . (22)

However, we choose to work with the total log-likelihood instead, because the
second derivative of the partial log-likelihood has not the desired form. Although
the hessian matrix is given by −XTWX, this time the matrix W is not a
diagonal matrix. The hessian of total log-likelihood is similar to those described
in the previous section and is therefore more suitable if we want to apply (a
slightly altered version of) the already described approximation procedure.

The total log-likelihood (as used for example in [11]) is given by:

l(β, h0) =

n∑
i=1

[
− exp(xTi β)H0(ti) + di

(
ln(h0(ti)) + xTi β

)]
, (23)

with
H0(t) =

∑
s≤t

h0(s). (24)

As before, we add a ridge penalty to this likelihood, which results in:

lλ(β, h0) = l(β, h0)− 1

2
λβTAβ. (25)

The �rst and second derivative with respect to β are now given by:

∂lλ(β, h0)

∂β
= XT∆− λAβ, (26)
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with
∆i = di −H0(ti) exp(xTi β)

and
∂2lλ(β, h0)

∂β∂βT
= −XTDX − λA, (27)

where
D = diagonal(exp(xTi β)H0(ti)).

The only di�erence between equation (12) and (26) is that the vector y − µ is
replaced by the vector ∆. The formula for the hessian in the Cox model is also
similar to the one found in the previous section (equation (13)). The diagonal
weightmatrix W is replaced by D, which is again a diagonal matrix.

Since the expressions are very similar, we can use exactly the same procedure

as we used before to �nd an approximative value of β̂
λ

−i. This time, we �nd the
following formula:

β̂
λ

−i ≈ β̂
λ
− (XT D̂X + λA)−1xi∆̂i

1− vii
, (28)

with V = D̂
1
2X(XT D̂X + λA)−1XT D̂

1
2 .

The values of H0(ti) are calculated with the Breslow estimator:

ĥ0(ti) = 1/
∑
tj≥ti

exp(xTj β̂
λ
).

The approximations of the leave-one-out estimates are thus based on the base-
line hazard corresponding to the full model. Usually, the baseline hazard corre-
sponding to the model where one sample is left out, will be di�erent from the
one belonging to the full model. A little adjustment in the approximation proce-
dure can be made in order to allow for small changes in the baseline hazard. By
altering the design matrix X by adding an extra column of ones (or a di�erent
number, for computational reasons) and adding an extra zero to the matrix A
(to make sure that this new intercept term will not be penalized) we allow for
multiplicative changes in the baseline hazard. In the result section, it will be
shown that this small change will indeed result in better approximations.
The new approximations are thus given by equation (28), but this time with

Xint =

 1
... X
1

 , Aint =

 0 . . . 0
... A
0

 and β̂
λ

int =

(
0

β̂
λ

)
.

In this way, p + 1 regression coe�cients are calculated, but only the last p
of them are the approximations we are interested in. The �rst coe�cient is only
to �nd better approximations of the remaining p coe�cients.

As mentioned before, problems can occur when the inverse in equation (28)
is a very large matrix (this time a (p + 1) × (p + 1) matrix). In view of the
fact that Cox' proportional hazards model is very similar to generalized linear
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models, it is not surprising that the reparametrization procedure can again be
applied.

This time, we have an intercept term incorporated in the model and there-
fore we can not take the reparametrization G to be equal to X. However, the
following form su�ces:

G =

 1 . . . 0
... X
0

 ,

where X is the design matrix without the extra column for the intercept term.
(Note that this reparametrization matrix could also be used when we want to
add an intercept term to a generalized linear model.)

Applying the same procedure as in the previous section, we obtain the fol-
lowing formula:

γ̂λ−i ≈ γ̂
λ − (BT D̂B + λÃ)−1bi∆̂i

1− vii
, (29)

with B = XintG
T , Ã = GAintG

T and V = D̂
1
2B(BT D̂B + λÃ)−1BT D̂

1
2 .

In the results section, the real leave one out estimates will be compared to
the ones obtained by the formula above. It will be shown that the approxi-
mated estimates are close to the real estimates and can be found in far less time.

2.4 A di�erent penalty: the lasso

Up to this point, the approximation procedure has only been derived for a model
with a ridge penalty (or no penalty at all). In this section, the procedure will be
adjusted in order to be used in combination with lasso regression. The proce-
dure will be derived in a Cox regression model, but the derivation for generalized
linear models is completely analogous.

The log-likelihood is still denoted by l(β, h0) as given in equation(23), but this
time the penalized log-likelihood is given by:

lλ(β, h0) = l(β, h0)− λ
p∑
j=1

|βj |. (30)

Again, we want to use this approximation:

β̂
λ

−i ≈ β̂
λ
−

∂2lλ(−i)(β̂λ)

∂β∂βT

−1 ∂lλ(−i)(β̂λ)

∂β
. (31)

However, the penalty term in equation (30) is only di�erentiable at points where
all βj 's (j = 1 . . . p) are unequal to zero, since the function f(x) = |x| is not
di�erentiable in x = 0.

To make sure that the �rst and second derivative of the penalized log-

likelihood do exist, we only take those coe�cients of β̂
λ
that are not equal

to 0 (the so called �active set�, denoted by A) and alter these values to �nd the
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coe�cients of β̂
λ

−i. For all j for which β̂
λ
j = 0 holds, we will take the approxima-

tions of β̂λ(−i)j to be equal to 0 as well. Since the lasso is designed to be stable

([17]) it can be expected that the active set will not be in�uenced much by small
changes in the data (or leaving out one observation), especially for large data
sets.

If we assume that the elements of β are unequal to zero, the derivatives of
the penalized log-likelihood are now given by the following expressions:

∂lλ(β, h0)

∂β
= XT∆− sign(β), (32)

where sign(β) is de�ned to be a vector with sign(βj) as its j
th element and

∂2lλ(β, h0)

∂β∂βT
= −XTDX, (33)

where ∆ and D are de�ned in the same way as in the previous section.
After substituting these equations in equation (31) and applying the Sherman-

Morrison-Woodbury theorem to rewrite the leave-one-out hessian matrix, we
�nd again an approximation formula.
Since we only look at the non-zero regression coe�cients, we can eliminate the
covariates in the design matrix which correspond to the zero's in the parameter
vector. This smaller design matrix will be denoted by XA (the design matrix
of the active set).
The approximations (for the nonzero coe�cients) become:

β̂
λ

−i ≈ β̂
λ
− (XT

AD̂XA)−1xAi∆̂i

1− vii
, (34)

with V = D̂
1
2XA(XT

AD̂XA)−1XT
AD̂

1
2 .

This time it will not be necessary to use a reparametrization trick in order
to be able to calculate the inverse ofXT

AD̂XA. The matrix is not longer a p×p
matrix, but a k× k matrix, where k is the number of elements in the active set.
Usually, k will be much smaller than p and taking the inverse of a k× k matrix
will for this reason not be a problem.

To account for multiplicative changes in the baseline-hazard, the design ma-
trix XA can again be extended with an extra column of ones. In the result
section it will be shown that adding this intercept term will have a less bene�-
cial in�uence on the outcomes in a lasso model than in a ridge model.

3 Results

In this section we investigate the usefulness of the approximation method in
practice. The focus will be on two di�erent aspects of the approximated leave-
one-out maximum (penalized) likelihood estimates. First of all, we want to know
if the approximations are on average close to the real leave-one-out estimates, so
that they can be used in cross-validated measures of predictive performance, for
example to compare di�erent prediction models. Furthermore, we are interested
in the speci�c value of the penalty parameter we obtain by maximizing (or
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minimizing) some measure of predictive performance based on the approximated
values for the leave-one-out estimates. The speci�c values of the approximations
do not necessarily have to be close to the real values in order to be able to �nd
a reasonable estimate for the penalty parameter.

In the remainder of this section, we will compute the cross-validated log-
likelihood based on the real leave-one-out estimates as well as the approximated
leave-one-out estimates in four di�erent microarray data sets. The results will
be compared and discussed for ridge as well as lasso regression.

3.1 Measure of predictive performance: leave-one-out cross-

validated log-likelihood

In order to compare the approximated leave-one-out regression coe�cients to
the real ones in a meaningful way, we have to introduce a measure of predic-
tive performance. In principle, every measure that depends on the regression
parameter β could be used.

We choose to work with the cross-validated partial log-likelihood (cvpl), as
given in [22]. The cvpl is given by the following sum:

cvpl(λ) =

n∑
i=1

li(β̂
λ

−i) (35)

where li(β) is the contribution of the ith component to the likelihood and is
given by

li(β) =
∑

j:tj≤ti
j 6=i

dj ln(1− pij) + di ln(pii) (36)

with

pij =
exp

(
xTi β

)∑
k:tk≥tj

exp
(
xTk β

) . (37)

The original formula from [22] has already been modi�ed so it works also when
ties are present in the data.

In several datasets, for di�erent values of λ, we will calculate the cvpl, either
based on the real leave-one-out estimates (as found by the R package penalized)

or on the approximated version of the β̂
λ

−i's. We will compare the actual values
and the optimal value of λ, found in these two di�erent ways.

3.2 Several real-data examples

The approximation procedure will be tested on four gene expression data sets
with a survival response. They will be referred to as Van de Vijver ([24], 295
subjects, 79 events, 4919 covariates, time to event is the actual survival time),
Rosenwald ([15], 240 subjects, 138 events, 7399 covariates, time to event is
the actual survival time), Wang([27], 286 subjects, 107 events, 22283 covariates,
time to event is distant metastasis free survival) and Desmedt ([7], 198 subjects,
62 events, 22283 covariates, time to event is distant metastasis free survival).
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3.2.1 Ridge regression

First, a Cox model with a ridge penalty is �tted on all four data sets. All covari-
ates are penalized equally and since there is no intercept term in Cox regression
(this term is incorporated in the baseline hazard), we have the model as given
in equation (25) where A is just the identity matrix and can therefore be left
out.

To �nd the right amount of penalization in the �nal model, the model perfor-
mance (as given by the cvpl) is plotted for several values of λ and is maximized.
In �gure 1, four lines are plotted for every data set. The line corresponding to
"cvpl" is the cvpl based on the real leave-one-out estimates, the line denoted by

"appr cvpl" is the cvpl based on the approximated versions of the β̂
λ

−i's as given
in equation (28) and the line labeled "appr int cvpl" gives the cvpl based on
approximations with an extra intercept term incorporated. Since in every data
set the number of covariates is large compared to the number of individuals, all
approximations are calculated using the γ-reparametrization trick. The fourth
line, "train cvpl", is calculated using the cvpl as given above, but this time all

β̂
λ

−i's are replaced by β̂
λ
, the estimate based on the complete data set.

3.0 3.2 3.4 3.6 3.8 4.0

−8
00

−7
50

−7
00

log10(lambda)

cv
pl

cvpl
appr cvpl
appr int cvpl
train cvpl

Rosenwald

2.0 2.5 3.0 3.5 4.0

−4
80

−4
60

−4
40

−4
20

−4
00

log10(lambda)

cv
pl

cvpl
appr cvpl
appr int cvpl
train cvpl

van de Vijver

3.0 3.5 4.0 4.5

−8
00

−7
00

−6
00

−5
00

−4
00

log10(lambda)

cv
pl

cvpl
appr cvpl
appr int cvpl
train cvpl

Wang

4.0 4.2 4.4 4.6 4.8 5.0

−3
60

−3
40

−3
20

−3
00

log10(lambda)

cv
pl

cvpl
appr cvpl
appr int cvpl
train cvpl

Desmedt

Figure 1: cvpl based on real leave-one-out estimates or approximations

14



From this �gure it can be seen that the cvpl based on the approximations does
closely follow the shape of the real cvpl and although the approximations are

based on β̂
λ
, the cvpl based on these approximations will apparently not lead

to too small values of λ (which would result in an overtrained model).
Although the cvpl curves based on the approximations look very similar to

the real cvpl, still di�erences are to be expected and to gain better insight in
these di�erences the graphs are displayed in more detail in �gure 2. In table
1, the λ values corresponding to the maximum of the three cvpl-functions are
given.
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Figure 2: cvpl based on real leave-one-out estimates or approximations in more
detail

From �gure 2, we can conclude that for a certain λ, the function values of the ap-
proximated functions are very close to the real one. The approximation method
with the extra intercept term involved does consistently better than the one
without this term and is therefore the recommended approximation procedure.
Since its values are so close to the real cross-validated values, the method can
safely be used for comparison purposes.

From table 1 it can be seen that the optimal λ values found with the ap-
proximation method are also reasonably close to the values found by real leave-
one-out cross-validation. Although the approximated λ may not be close to
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Table 1: Optimal value for the penalty parameter in the ridge model

real cvpl λ appr cvpl λ appr int cvpl λ
Rosenwald 4706.7 4457.3 4561.6
van de Vijver 458.5 438.3 448.3
Wang 12386 11997 12040
Desmedt 22376 20104 20265

the real λ in absolute value, the �nal model based on the approximated value
of the penalty term will perform almost as good as the one based on the real
cross-validated λ, as can be seen from table 2, where for every data set the real
cvpl is calculated twice. Once based on the optimal λ value and once based
on the approximated value. The very small di�erences in function values for
λ's near the optima re�ect rather "�at" maxima and the small di�erences also
imply that the optimal λ found by our approximation method will result in a
nearly optimal model.

Table 2: Di�erence in model performance for di�erent values of λ

λ real cvpl(λ)

Rosenwald
4706.7 -812.7202
4561.6 -812.7246

van de Vijver
458.5 -476.2204
448.3 -476.2223

Wang
12386 -667.2978
12040 -667.3034

Desmedt
22376 -360.7596
20265 -360.7774

3.2.2 Lasso regression

For Cox regression with a lasso penalty, we made exactly the same �gures and
tables. From �gure 3 we can conclude that the curves based on the approximated
leave-one-out estimates again resemble the one based on the real estimates, but
the di�erences are more substantial than in the previous analysis, which is even
more visible in �gure 4.

Although the exact function values will not always be estimated properly
by the approximation methods, the curves do follow the shape of the real cvpl
and the optimal value of the penalty parameter found by the approximation
methods, are close to the real optimum, as can be seen from table 3. The
optimal λ values found by the two di�erent approximation procedures almost
completely coincide and this time the procedure with the extra intercept term
is not superior to the simpler procedure.

In table 4, two �nal models are again compared; the �rst one found by real
cross-validation, the second one by the approximation procedure. As before,
the two models are comparable (although to a lesser extent than in the model
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with a ridge penalty).

Table 3: Optimal value for the penalty parameter in the lasso model

real cvpl λ appr cvpl λ appr int cvpl λ
Rosenwald 33.37 32.57 32.57
van de Vijver 7.70 7.61 7.61
Wang 45.85 47.14 47.14
Desmedt 25.39 25.36 25.36
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Figure 3: cvpl based on real leave-one-out estimates or approximations
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Table 4: Di�erence in model performance for di�erent values of λ

λ real cvpl(λ)

Rosenwald
33.37 -816.188
32.57 -816.392

van de Vijver
7.70 -479.4856
7.61 -479.5521

Wang
45.85 -681.2446
47.14 -681.3321

Desmedt
25.39 -358.2709
25.36 -358.2719
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Figure 4: cvpl based on real leave-one-out estimates or approximations in more
detail

It can be seen from the graphs that the approximated curves are less smooth
than the curve corresponding to the real cvpl. For this reason, more local optima
are present and maximizing the approximated curve by a standard maximiza-
tion procedure can result in wrong answers. To check whether an optimum
found is really the global optimum, it is suggested to look at a rough plot of
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the curve itself. The same suggestion holds for maximizing the real cvpl since
this function is not unimodal either, but the chance of �nding a suboptimal λ
is higher if the approximated function is maximized.

3.3 Computation Time

The approximation method works well, but the e�ciency of the method is as
important as the outcomes. To get an indication of the amount of time that can
be saved by using this approximation procedure in table 5 several calculation
times are shown. For every data set the value of the cvpl for one speci�c value
of λ (the optimal cross-validated estimate) is calculated, either by using the
real leave-one-out regression coe�cients or the approximated estimates. The
corresponding computation times are displayed in this table.

Table 5: Computation time

ridge regression lasso regression
time (in seconds) needed to calculate:

cvpl(λ̂) appr int cvpl(λ̂) cvpl(λ̂) appr int cvpl(λ̂)
Rosenwald 322.85 10.00 38.95 3.68
van de Vijver 380.09 10.64 46.46 4.76
Wang 1490.33 38.78 281.27 10.63
Desmedt 565.88 19.81 180.93 8.00

The values clearly indicate that the approximation procedure takes much less
time than actual cross-validation. For ridge regression, the ratio between the
computation times can be expected to vary little over di�erent values of λ. For
lasso regression, the amount of time saved will be much bigger for smaller values
of λ. However, the approximation method will not give very reliable answers for
these values of λ. Nevertheless, in optimizing the approximated cvpl this does
not have to be a problem since the approximated cvpl is expected to have its
maximum in approximately the right place.

Furthermore, most time is saved in data sets with a high number of individ-
uals and covariates (like the Wang data set), especially for the lasso approxima-
tion procedure.

In the introduction, the claim was made that with this approximation pro-
cedure double leave-one-out cross-validation would become practically feasible.
To get an indication on how much time double LOOCV will take using the ap-
proximation procedure, we look at the most time-consuming analysis (perform-
ing ridge regression on the Wang data set, with 286 observations) and assume
that the procedure that maximizes the cvpl needs 20 steps to converge to the
optimum. Real double LOOCV will take 286 × 20 × 1490.33 seconds, which
equals 98.7 days. The approximation method on the other hand would take
286 × 20 × 38.78 seconds, the equivalent of 2.6 days. So where real leave-one-
out cross-validation will take more than 3 months, the approximated version
will give answers in less than 3 days. Of course, this is just an indication, but
it does show that performing an approximated version of double leave-one-out
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cross-validation could be worth considering.

3.4 In�uence of n, λ and amount of censoring on approx-

imations

In this last part of the result section, some remarks will be made on the appli-
cability of the approximation method under di�erent circumstances.

All four data sets used to demonstrate the usefulness of the approximation
method are large data sets, where the number of individuals is in between 200
and 300. The method is supposed to work well exactly in this situation, since

the leave-one-out estimates β̂
λ

−i's are closer to β̂
λ
when there are more obser-

vations and the error term in the Taylor approximation diminishes in that case.
Although it is di�cult to �nd out if the method will work even better for larger
data sets since we did not have access to much larger data sets and extending a
data set by for example bootstrapping will result in many ties and will probably
not be representative for large real data sets, examining the method on smaller
data sets was possible.

In order to create multiple smaller data sets, we took respectively the �rst
25, 50, 100, 150 and 200 observations of the Van de Vijver data set and used
these data sets to test whether our approximation procedure (in ridge as well
as lasso regression) gave less reliable answers in smaller data sets. The function
values of the approximated cvpl for ridge regression are already very close to
the real values in the data set with 50 individuals and the approximated op-
timal value of λ will also result in a model which comes close to the optimal
model (based on LOOCV) in terms of model performance. When the number
of individuals increases, the approximated λ values get even closer to the real
values. So we observe exactly the behavior we expected. In table 6 the real and
approximated values of the tuning parameters are given for every data set we
constructed.

Table 6: Values for the penalty parameter by varying values of n

size of ridge regression lasso regression

data set real λ̂ appr λ̂ real λ̂ appr λ̂
25 554.7 248.6 3.83 3.85
50 922.3 817.7 6.69 6.27
100 283.4 265.4 4.28 3.69
150 264.3 252.5 9.06 8.81
200 268.2 257.6 5.82 5.63
295 458.5 448.3 7.70 7.61

From the table it can be seen that for lasso regression approximately the
same conclusions can be drawn as for ridge regression, except for the smallest
values of n. By looking only at the approximated values of λ, the approxima-
tion method for lasso regression seems to perform very well for small data sets.
Unfortunately, these values are a little misleading, since for the data sets of size
n = 25 and n = 50 the null model was found to be the best model by real
LOOCV and if all coe�cients equal zero, the approximation method will be
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very accurate. Another remark that should be made is that the actual function
values of the approximated cvpl for lasso models can be rather inaccurate when
the function is calculated for small λ-values.

This last observation holds in general: the approximation procedure works
better for larger values of λ. The higher the value of λ, the more restricted
the possible values of the regression coe�cients and for that reason the leave-
one-out estimates will be closer to the penalized maximum-likelihood-estimate
and the approximations will be more accurate. In ridge regression, the accuracy
of the approximations is also dependent on the actual λ-value, but to a lesser
extent.

We also examined the in�uence of the amount of censoring on the approxima-
tion procedure. One may argue that more censoring leads to a smaller number
of in�uential observations (i.e. observations whose in- or exclusion result in
substantial changes in the regression parameter) and therefore leaving out one
of these will result in a bigger change in the regression coe�cients which could
result in worse approximations. To test this, we again used the Van de Vijver
dataset (295 observation, 79 events, maximum follow-up time 18.3 years). To
vary the amount of censoring, we altered the maximum follow-up time by taking
a new time tmax < 18.3 and rearranged the data in such a way that all tuples
(ti, di,xi) with ti > tmax were set to (tmax, 0,xi). Di�erent values of tmax were
chosen resulting in four new data sets with respectively 68, 46, 34 and 16 events.
No clear patterns were observed for the �rst three data sets, but the approxi-
mation method's accuracy seemed to decline a little in the data set with just 16
events, suggesting that too few events can lead to a worse approximation result.
The real and approximated values of λ can be found in table 7.

Table 7: Values for the penalty parameter by varying e�ective dimensions

e�ective ridge regression lasso regression

dimension real λ̂ appr λ̂ real λ̂ appr λ̂
16 80.4 68.7 6.22 6.16
34 242.6 234.7 4.71 4.81
46 359.6 353.0 4.96 4.92
68 344.9 339.6 6.65 6.75
79 458.5 448.3 7.70 7.61

4 Discussion

In this article a method has been described that approximates leave-one-out
cross-validation results. The method can be used in generalized linear models
as well as in Cox' proportional hazards model and works with ridge and lasso
penalty terms. It has been shown that the method performs well in �nding the
optimal penalty parameter and works e�ciently.

21



When the sample size increases, the accuracy of the approximation method im-
proves. So especially in situations where regular leave-one-out cross-validation
can be very time-consuming, this approximation method will perform well in
�nding the appropriate amount of penalization and can also be used for model
validation.

In this report, only leave-one-out cross-validation has been studied but a
similar method could also be used to approximate k-fold cross-validation. An-
other generalization of the method would be to extend the method to work
with di�erent penalty terms as well. One could for example think of using this
method in combination with elastic net models.
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