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We extend the Barles-Perthame procedure [4] (see also [22]) of 
semi-relaxed limits of viscosity solutions of Hamilton-Jacobi 
equations of the type f − λHf = h to the context of non-
compact spaces.
The convergence result allows for equations on a ‘converging 
sequence of spaces’ as well as Hamilton-equations written in 
terms of two equations in terms of operators H† and H‡ that 
serve as natural upper and lower bounds for the ‘true’ operator 
H.
In the process, we establish a strong relation between non-
linear pseudo-resolvents and viscosity solutions of Hamilton-
Jacobi equations. As a consequence we derive a convergence 
result for non-linear semigroups.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we will study the relation between three of the major objects in the 
field of semigroup theory: the semigroup, the resolvent and the generator.
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Consider the following problem posed by [6]. Find all maps f : R+ → C satisfying{
φ(t + s) = φ(t)φ(s) for all s, t ≥ 0,
φ(0) = 1.

Assuming that φ is continuous (the conclusion holds under much weaker assumptions), it 
can be shown that all maps of this type are of the form φa(t) := eta = limk→∞

(
1 − t

ka
)−k

with a ∈ C.
The factor a, which can be found by a = ∂tφa(t)|t=0, captures all essential information 

of the semigroup φa. In addition, the dependence of φa on a is robust under convergence: 
for a sequence of an ∈ C with an → a, it holds that φan

→ φa uniformly on compacts.
Semigroup theory generalizes these three concepts to the level of semigroups on Ba-

nach and locally convex spaces. We will focus here on non-linear semigroups on the space 
of bounded measurable functions Mb(X) on a completely regular space X. The three 
objects of interest are

((Sa)) A generator H ⊆ Mb(X) ×Mb(X);
((Sb)) A resolvent R(λ) = (1 − λH)−1, λ > 0;
((Sc)) A semigroup V (t) = limk→∞ R

(
t
k

)k, t ≥ 0.

In addition, one wants to establish relations between Hn → H, Rn(λ) → R(λ) and 
Vn(t) → V (t).

In the context of linear semigroups on some Banach space Y , these results are all 
well known, cf. [17,46]. Two main results in this context are the Hille-Yosida generation 
theorem [27] relating (Sa), (Sb) and (Sc), whereas the Trotter-Kato-Kurtz approximation 
theorem [45,28,49] establishes various implications between convergence of these three 
objects. For the more complex non-linear context, see [9,38].

Both the generation and approximation type results, however, assume that the 
Hamilton-Jacobi equation f − λHf = h can be solved in the classical sense. While 
in the linear context this is often possible, in the non-linear context this is difficult 
or even impossible. In the context of operators satisfying the maximum principle on 
Cb(X), this issue can be resolved by working with viscosity solutions. These solutions 
were introduced by [10] and they showed that viscosity solutions can be used to define an 
extension Ĥ of H that also satisfies the maximum principle and for which f − λĤf = h

can be solved classically. These properties single out viscosity solutions as the correct 
weak solution concept for the study of semigroup theory on Cb(X).

A second key feature of viscosity solutions is the possibility to pass to limits in a 
straightforward fashion. The first stability result was already obtained in [10]. However, it 
was the procedure of semi-relaxed limits of Barles and Perthame [4] that allows to pass to 
the limit with viscosity sub- or super solutions without a-priori estimates. A comparison 
principle for the limiting equation then establishes local uniform convergence of viscosity 
solutions.
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In non-locally compact, or infinite dimensional spaces, the situation is more difficult. 
A first result in the context of Hilbert spaces appeared in [36], but the result is not correct 
as the example of [41] or [21, Example 3.43] shows. Key problem is that the equation 
does not satisfy appropriate continuity properties. In the context of infinite dimensional 
spaces various generalizations of the method of semi-relaxed limits were developed that 
takes into account the difficulties arising from equations with bad continuity properties. 
See [34] and [21, Section 3.9] for a variant working with B-continuity, see also [11,12,42]. 
See [21, Section 3.4] for a discussion on more classical approximation results requiring 
appropriate uniform continuity estimates.

A third line of thinking was developed in a different direction in the context of large 
deviations of Markov processes by Feng and Kurtz [22,19, Chapters 6 and 7], who return 
to the point of view of using test-functions instead of semi-jets. Indeed, they find that 
in the infinite dimensional context, it pays of to work with two types of test functions, 
following earlier works for first-order equations by [13,43,44] that are suited for either 
sub- or supersolutions. To be precise [22] introduce three important improvements over 
the classical Barles-Perthame procedure:

(1) Instead of working on a single Polish space X (not necessarily finite dimensional 
nor Hilbertian), a sequence of spaces Xn that are mapped into X are considered. 
Conditions are given that imply the convergence of viscosity solutions of f−λHnf =
hn on a space Xn to a viscosity solution of f − λHf = h on X. For this result, Feng 
and Kurtz work with a generalized notion of buc (bounded and uniform on compacts) 
convergence that applies to functions on different spaces.

(2) Instead of working with a limiting operator H, [22,19] follow initial papers for 
Hamilton-Jacobi equations on infinite dimensional spaces, see [13,43,44], allowing for 
the possibility for a relaxed upper bound H† and a relaxed lower bound H‡. Thus, 
in the limit a subsolution to f − λH†f = h and a supersolution to f − λH‡f = h is 
obtained.

(3) The operators H† and H‡ can take their images in the space of measurable functions 
M(Y ) on a space Y instead of X, where Y is a space containing more information 
than X, allowing for the use of the approximation theory in the setting of e.g. 
homogenization and multi-scale systems.

Various applications of these extended methods are given in Chapters 11, 12 and 13 of 
[22] and [19] and have recently been applied in large deviation theory in various settings 
[15,39,20,8,33].

The methods of [22], however, have two major drawbacks and lack one desirable 
property.

• The extension of [22] in their Chapter 7, which includes the generalizations (1), (2) 
and (3), is based on the property that the Hamiltonians Hn are given in terms of an 
exponential tilt of an operator An which is the generator of a Markov process. [22]
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then approximate An by its bounded Yosida approximant Aε
n = An(1 −εAn)−1. This 

leads to a continuous operator Hε
n that is easier to treat. In general, the replacement of 

Hn by a continuous approximation Hε
n is not possible, therefore making it impossible 

to widely use the Feng-Kurtz stability result in a general setting, excluding e.g. an 
application in the context of Gamma convergence [26,47].

• A second major drawback arises from the realization that in general, and in particular 
in infinite dimensions cf. [43,44,13,19,23,1,24], it is advantageous to work with an 
upper and lower bound H† and H‡ instead of a single Hamiltonian H. Therefore, 
instead of working with operators Hn to obtain a limiting upper and lower bounds 
H†, H‡, one would like to work with pairs Hn,†, Hn,‡ instead.

• Finally, a lacking desirable property is that the result in [22] is based on the assump-
tion that Xn are mapped into X. This leads to problems for example in the setting 
of hydrodynamic limits, see e.g. [29]. In this context a Markov process is considered 
in which particles move around on a discrete lattice, e.g. Zd. A typical state-space 
would be Xn := {0, 1}Zd . After rescaling the lattice and speeding up time appro-
priately, the empirical measure associated to the particle locations converges to the 
solution of a diffusion equation, say in X := L1(dx). The convergence of measures to 
a profile in L1(Rd, dx), however, is considered with respect to the vague topology on 
X := M(Rd).

Thus, instead of considering spaces Xn that get mapped into X one wants to 
consider an auxiliary space X , in which both Xn and X get mapped. The convergence 
of elements is then considered as elements in X .

Our Theorem 5.7 extends the Feng-Kurtz version of the Barles-Perthame procedure 
to remedy these three issues. As a consequence, we show that the Kurtz [49] convergence 
result yields the convergence of semigroups, see Theorem 6.1.

To illustrate the use of the methods introduced above, we consider two examples in 
which we can establish convergence of semigroups, one in the context of the homogenisa-
tion of a one-dimensional Hamilton-Jacobi equation, where the corrector can be explicitly 
produced, see e.g. [37], and one example where we consider Hamilton-Jacobi equations 
arising in the theory of large deviations on discrete spaces. Applications to infinite di-
mensional settings where the results of this paper can replace the semigroup convergence 
results by [22] can be found in [22,19,18], further applications are work in progress.

Two more theoretical applications are considered in [32,31]. In [32] the extended pro-
cedure is used for a new proof of path-space large deviations for Markov processes. In 
[31] we give a framework to establish Gamma convergence of functionals on path-space.

We proceed with an overview of the paper. As all the generalizations are quite tech-
nical, we start out in Section 2 with stating (without giving definitions of the required 
notions) a basic version of the convergence of viscosity solutions and the convergence of 
semigroups. This allows to quickly grasp the kind of results possible by using the theory 
of the paper.
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To set the stage for the more general results, we start in Section 3 with some prelim-
inaries that include a treatment of basic properties of our notion of convergence taking 
place on spaces Xn, X, X . All these results can be skipped on first reading assuming that 
Xn = X = X and coincide with the ones of [22] in the context that the Xn are mapped 
into X (in this case X = X ).

We proceed in Section 4 on a basic study of viscosity solutions for the Hamilton-Jacobi 
equation f − λHf = h, as well as a study of pseudo-resolvents. To some extent these 
results are known in the literature, but as the results and proofs will be used as input 
for our main results later on, we collect these results for completeness. First we show 
that pseudo-resolvents can be used to construct viscosity solutions. Second, given well-
posedness of the Hamilton-Jacobi equation, viscosity solutions can be used to construct 
a pseudo-resolvent. Finally, in this context, the pseudo-resolvent can be used to define 
a new Hamiltonian that satisfies the conditions for the semi-group generation result by 
[9].

In Sections 5 and 6 we proceed with our convergence statements, containing the 
two main Theorems 5.7 and 6.1. In Section 7 we discuss how to use the comparison 
principle for Hamilton-Jacobi equations to establish density of the domain of an operator 
constructed out of viscosity solutions.

Finally, we end in Section 8 with two short examples, one involving the homogenization 
of a first-order Hamilton-Jacobi equation, and one where a discrete system approximates 
a continuous one, in which we show the applicability of our results.

Acknowledgment
The author thanks an anonymous referee suggestions regarding the historical context of 
semi-relaxed limits.

2. Two basic convergence results

To anticipate the general version of our two main results, we state in this section two 
simplified versions of these results. We will not give definitions of the required notions, as 
these will follow in more general context in Section 3. The notion of a pseudo-resolvent 
can be found as Definition 4.1.

We start with the convergence of viscosity solutions of Hamilton-Jacobi equations. 
A more general version is given as Theorem 5.7 below.

Theorem 2.1. Let X be completely regular. Suppose there are contractive pseudo-
resolvents Rn(λ) : Cb(X) → Cb(X), λ > 0 and operators H, Hn ⊆ Cb(X) × Cb(X), 
n ≥ 1. Suppose in addition that

(a) For each n ≥ 1, λ > 0 and h ∈ Cb(X) the function Rn(λ)h is a viscosity solution to 
f − λHnf = h.
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(b) We have local strict equi-continuity on bounded sets: for all compact sets K ⊆ X, 
δ > 0 and λ0 > 0, there is a compact set K̂ = K̂(K, δ, λ0) such that for all n and 
h1, h2 ∈ Cb(X) and 0 < λ ≤ λ0 we have

sup
y∈K

{Rn(λ)h1(y) −Rn(λ)h2(y)}

≤ δ sup
x∈X

{h1(x) − h2(x)} + sup
y∈K̂

{h1(y) − h2(y)} .

(c) For each (f, g) ∈ H there are (fn, gn) ∈ Hn such that buc − lim fn = f and buc −
lim gn = g.

(d) There is a buc-dense set D ⊆ Cb(X) such that the comparison principle holds for 
the Hamilton-Jacobi equation f − λHf = h for all h ∈ D and λ > 0.

Then there are operators R(λ) : Cb(X) → Cb(X) for λ > 0 that are locally strictly equi-
continuous on bounded sets: for all compact sets K ⊆ X, δ > 0 and λ0 > 0, there is a 
compact set K̂ = K̂(K, δ, λ0) such that for all h1, h2 ∈ Cb(X) and 0 < λ ≤ λ0 we have

sup
y∈K

{R(λ)h1(y) −R(λ)h2(y)} ≤ δ sup
x∈X

{h1(x) − h2(x)} + sup
y∈K̂

{h1(y) − h2(y)} .

For each λ > 0 and h ∈ D the function R(λ)h is the unique viscosity solution to f −
λHf = h. In addition if h ∈ Cb(X) and hn ∈ Cb(Xn) are such that buc − lim hn = h

then buc − limRn(λ)hn = R(λ)h.

The next result uses the convergence of the pseudo-resolvents to obtain the conver-
gence of semigroups. The key ingredient in this context are the semigroup generation 
and convergence results of [9,49]. A more general version follows from Theorems 6.1 and 
Proposition 7.1.

Theorem 2.2. Suppose we are in the setting of Theorem 2.1. In addition suppose that 
there are operators Vn(t) : Cb(X) → Cb(X), t ≥ 0 that form a semigroup. Suppose that

(a) there is a buc-dense subset Dn such that for every n ≥ 1, f ∈ Dn and x ∈ X:

lim
m→∞

Rn

(
t

m

)m

f(x) = Vn(t)f(x).

(b) We have local strict equi-continuity on bounded sets for the semigroups: for all com-
pact sets K ⊆ X, δ > 0 and t0 > 0, there is a compact set K̂ = K̂(K, δ, λ0) such 
that for all n and h1, h2 ∈ Cb(X) and 0 ≤ t ≤ t0 that

sup {Vn(t)h1(y) − Vn(t)h2(y)}

y∈K
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≤ δ sup
x∈X

{h1(x) − h2(x)} + sup
y∈K̂

{h1(y) − h2(y)} .

(c) We have buc − limλ↓0 R(λ)h = h and for each n we have buc − limλ↓0 Rn(λ)h = h.

Then there are operators V (t) : Cb(X) → Cb(X) for t ≥ 0 that are locally strictly equi-
continuous on bounded sets: for all compact sets K ⊆ X, δ > 0 and t0 > 0, there is a 
compact set K̂ = K̂(K, δ, t0) such that for all h1, h2 ∈ Cb(X) and 0 ≤ t ≤ t0 we have

sup
y∈K

{V (t)h1(y) − V (t)h2(y)} ≤ δ sup
x∈X

{h1(x) − h2(x)} + sup
y∈K̂

{h1(y) − h2(y)} .

In addition there is a buc-dense subset D ⊆ Cb(X) such that for all x ∈ X

lim
m→∞

R

(
t

m

)m

f(x) = V (t)f(x)

Finally, if f ∈ Cb(X) and fn ∈ Cb(Xn) such that buc − lim fn = f and tn → t, then 
buc − limVn(tn)fn = V (t)f .

Both results will follow as special cases of much more general result that we will prove 
in the following sections.

3. Preliminaries

3.1. Basic definitions

All spaces in this paper are assumed to be completely regular spaces. Let X be a 
space then we denote by Cb(X) the set of continuous and bounded functions into R. We 
denote by Ba(X) the space of Baire measurable sets (the σ-algebra generated by Cb(X)). 
By M(X), we denote by set of Baire measurable functions from X into R := [−∞, ∞]. 
Mb(X) denotes the set of bounded Baire measurable functions. Denote

USCu(X) :=
{
f ∈ M(X)

∣∣∣∣ f upper semi-continuous, sup
x

f(x) < ∞
}
,

LSCl(X) :=
{
f ∈ M(X)

∣∣∣ f lower semi-continuous, inf
x

f(x) > ∞
}
.

For g ∈ M(X) denote by g∗, g∗ ∈ M(X) the upper and lower semi-continuous regular-
izations of g.

3.2. Viscosity solutions

Let X and Y be two spaces. Let γ : Y → X be continuous and surjective.
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We consider operators A ⊆ M(X) × C(Y ). If A is single valued and (f, g) ∈ A, we 
write Af := g. We denote D(A) for the domain of A and R(A) for the range of A.

Definition 3.1. Let A† ⊆ LSCl(X) × USCu(Y ) and A‡ ⊆ USCu(X) × LSCl(Y ). Fix 
h1, h2 ∈ M(X). Consider the equations

f −A†f = h1, (3.1)

f −A‡f = h2. (3.2)

Classical solutions We say that u is a classical subsolution of equation (3.1) if there is a 
g such that (u, g) ∈ A† and u − g ≤ h. We say that v is a classical supersolution of 
equation (3.2) if there is g such that (v, g) ∈ A‡ and v − g ≥ h. We say that u is a 
classical solution if it is both a sub- and a supersolution.

Viscosity subsolutions We say that u : X → R is a subsolution of equation (3.1) if 
u ∈ USCu(X) and if, for all (f, g) ∈ A† such that supx u(x) − f(x) < ∞ there is a 
sequence yn ∈ Y such that

lim
n→∞

u(γ(yn)) − f(γ(yn)) = sup
x

u(x) − f(x), (3.3)

and

lim sup
n→∞

u(γ(yn)) − g(yn) − h1(γ(yn)) ≤ 0. (3.4)

Viscosity supersolution We say that v : X → R is a supersolution of equation (3.2) if 
v ∈ LSCl(X) and if, for all (f, g) ∈ A‡ such that infx v(x) − f(x) > −∞ there is a 
sequence yn ∈ Y such that

lim
n→∞

v(γ(yn)) − f(γ(yn)) = inf
x

v(x) − f(x), (3.5)

and

lim inf
n→∞

v(γ(yn)) − g(yn) − h2(γ(yn)) ≥ 0. (3.6)

Viscosity solution We say that u is a solution of the pair of equations (3.1) and (3.2) if 
it is both a subsolution for A† and a supersolution for A‡.

Comparison principle We say that (3.1) and (3.2) satisfy the comparison principle if for 
every subsolution u to (3.1) and supersolution v to (3.2), we have

sup
x

u(x) − v(x) ≤ sup
x

h1(x) − h2(x). (3.7)

If H = A† = A‡, we will say that the comparison principle holds for f − λAf = h, 
if for any subsolution u for f − λAf = h1 and supersolution v of f − λAf = h2 the 
estimate in (3.7) holds.
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Often, as in Section 4 below, Y = X and γ(x) = x simplifying the definitions above.

3.3. Operators

For an operator A ⊆ M(X) ×M(Y ) and c ≥ 0 we write cA ⊆ M(X) ×M(Y ) for the 
operator

c ·A := {(f, c · g) | (f, g) ∈ A} .

Here we write c · g for the function

c · g(x) :=

⎧⎪⎪⎨⎪⎪⎩
cg(x) if g(x) ∈ R,

∞ if g(x) = ∞,

−∞ if g(x) = −∞.

The next set of properties is mainly relevant in the setting that Y = X.

Definition 3.2.

Contractivity We say that T ⊆ M(X) ×M(X) is contractive if for all f1, f2 ∈ D(T ):

sup
x

Tf1(x) − Tf2(x) ≤ sup
x

f1(x) − f2(x),

inf
x

Tf1(x) − Tf2(x) ≥ inf
x

f1(x) − f2(x).

If in addition T0 = 0, contractivity implies that supx Tf(x) ≤ supx f(x) and 
infx Tf(x) ≥ infx f(x).

Dissipativity We say A ⊆ M(X) ×M(X) is dissipative if for all (f1, g1), (f2, g2) ∈ A and 
λ > 0 we have

||f1 − λg1 − (f2 − λg2)|| ≥ ||f1 − f2|| ;

The range condition We say A ⊆ M(X) ×M(X) satisfies the range condition if for all 
λ > 0 we have: the uniform closure of D(A) is a subset of R(1 − λA).

The following theorem was proven for accretive operators but can be easily translated 
into dissipative operators by changing A by −A.

Theorem 3.3 (Crandall-Liggett [9]). Let A be an operator on a Banach space E. Suppose 
that

(a) A is dissipative,
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(b) A satisfies the range condition.

Denote by R(λ, A) = (1− λA)−1. Then there is a strongly continuous (for the norm) 
contraction semigroup S(t) defined on the uniform closure of D(A) and for all t ≥ 0 and 
f in the uniform closure of D(A)

lim
n

∣∣∣∣R ( t
n , A

)n
f − S(t)f

∣∣∣∣ = 0.

3.4. Operators and the strict and buc topology

In addition to normed spaces, we consider bounded and uniform convergence on com-
pacts (buc-convergence). This notion of convergence for functions on Cb(X) is more 
natural from an applications point of view. This is due to the fact that it is the restric-
tion of the locally convex strict topology restricted to sequences, see e.g. [5,40]. Indeed, 
it is the strict topology for which most well known results generalize (under appropri-
ate conditions on the topology, e.g. X Polish): Stone-Weierstrass, Arzelà-Ascoli and the 
Riesz representation theorem. We define both notions.

Definition 3.4 (buc convergence). Let fn ∈ Cb(X) and f ∈ Cb(X). We say that fn
converges bounded and uniformly on compacts (buc) if supn ||fn|| < ∞ and if for all 
compact K ⊆ X:

lim
n

sup
x∈K

|fn(x) − f(x)| = 0. (3.8)

Note (3.8) can be replaced by fn(xn) → f(x) for all sequences xn ∈ K that converge 
to x ∈ K.

Definition 3.5. The (sub) strict topology β on the space Cb(X) for a completely regular 
space X is generated by the collection of semi-norms

p(f) := sup
n

an sup
x∈Kn

|f(x)|

where Kn are compact sets in X and where an ≥ 0 and an → 0.

Remark 3.6. The (sub)strict topology is the finest locally convex topology that coincides 
with the compact open topology on bounded sets. Thus, a sequence converges strictly if 
and only if it converges buc.

In the literature on locally convex spaces, the strict topology is usually referred to as 
the substrict topology, but on Polish spaces, among others, these topologies coincide, see 
[40].
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Definition 3.7.

(a) Denote Br := {f ∈ Cb(X) | ||f || ≤ r}. We say that a set D is quasi-closed if for all 
r ≥ 0 the set D∩Br is closed for the strict topology (or equivalently for the compact 
open or buc topologies).

(b) We say that D̂ is the quasi-closure of D if D̂ =
⋃

r>0 D̂r, where D̂r is the strict 
closure of D ∩Br.

(c) We say that D1 is quasi-dense in D2 if D1 ∩ Br is strictly dense in D2 ∩ Br for all 
r ≥ 0.

Next, we consider operators with respect to a hierarchy of statements regarding con-
tinuity involving the strict topology. The proof can be found in Appendix A.

Proposition 3.8. Let T : Cb(X) → Cb(X). Consider

(a) T is strictly continuous.
(b) For all δ > 0, r > 0, and compact sets K there are C0(r), C1(δ, r) and a compact 

set K̂(K, δ, r) such that

sup
x∈K

|Tf(x) − Tg(x)| ≤ δC0(r) + C1(δ, r) sup
x∈K̂(K,δ,r)

|f(x) − g(x)|

for all f, g ∈ Cb(X) such that ||f || ∨ ||g|| ≤ r.
(c) T is strictly continuous on bounded sets.

Then (a) implies (b) and (b) implies (c).

Remark 3.9. There is not much room between properties (a) and (c). In the case that X
is Polish space, and T is linear then (a) and (c) are equivalent, see e.g. [40, Corollary 3.2 
and Theorem 9.1]. It is unclear to the author whether (b) and (c) are equivalent in 
general.

At various points in the paper, we will work with operators that are constructed by 
taking closures on dense sets. To do so, we need continuity properties. Even though 
working with (a) of 3.8 would be the desirable from a functional analytic point of view, 
(b) is much more explicit, and also suffices for our analysis.

The following result is proven in [22, Lemma A.11].

Lemma 3.10. Suppose that an operator T : D ⊆ Cb(X) → Cb(X) satisfies (b) of Proposi-
tion 3.8. Then T has an extension to the quasi-closure D̂ of D that also satisfies property 
(b) of Proposition 3.8 (with the same choice of K̂).
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3.5. A general setting of convergence of spaces

In previous section, we have studied buc convergence and the strict topology. This 
suffices for convergence problems in the context where all Hamilton-Jacobi equations 
f − λHnf = h and f − λHf = h are based on the same space X. In practice, however, 
one runs into situations where this is not natural. In the context of simple slow-fast 
systems for example, one typically works with Xn = E×F and X = E. That is, we have 
a slow system on E that depends on a fast system taking values on F . Taking limits, we 
end up with a slow system on E with coefficients that are suitable averages over F . Thus, 
we need to connect Xn to X via a mapping ηn (e.g. a projection on the first coordinate) 
and extend the notion of buc convergence to allow for functions fn on Xn to converge 
to X.

To extend the notion of buc convergence, we need to decide what ‘uniform convergence’ 
on compacts means. Following Definition 3.4, we saw that fn converges to f buc if 
supn ||fn|| < ∞ and if for all compact sets K we have fn(xn) → f(x) for all sequences 
xn ∈ K converging to x ∈ K.

In the context of distinct Xn and X, there is no natural analogue of the compact set 
K. Instead, we will work a sequence of compact sets. Namely, we will choose compact 
sets Kn ⊆ Xn that ‘converge’ to a compact set K ⊆ X. Then fn converges to f if 
supn ||fn|| < ∞ and if for each of these sequences of compact sets and xn ∈ Kn converging 
to x ∈ K, we have fn(xn) → f(x).

We turn to the rigorous definition. We will slightly extend our discussion above by 
allowing spaces Xn and X such that the Xn are not naturally embedded in X. Instead, 
we will map all spaces to a common space X in which ‘Xn converges to X’.

Assumption 3.11. Consider spaces Xn and X, some space X , Baire measurable maps 
ηn : Xn → X and a Baire measurable injective map η : X → X .

Definition 3.12 (Kuratowski convergence). Let {On}n≥1 be a sequence of subsets in a 
space X . We define the limit superior and limit inferior of the sequence as

lim sup
n→∞

On := {x ∈ X | ∀U ∈ Ux ∀N ≥ 1 ∃n ≥ N : On ∩ U �= ∅} ,

lim inf
n→∞

On := {x ∈ X | ∀U ∈ Ux ∃N ≥ 1 ∀n ≥ N : On ∩ U �= ∅} ,

where Ux is the collection of open neighborhoods of x in X . If O := lim supn On =
lim infn On, we write O = limn On and say that O is the Kuratowski limit of the sequence 
{On}n≥1.

Assumption 3.13. There is a directed set Q (partially ordered set such that every two 
elements have an upper bound). For each q ∈ Q, we have compact sets Kq

n ⊆ Xn a 
compact set Kq ⊆ X such that
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(a) If q1 ≤ q2, we have Kq1 ⊆ Kq2 and for all n we have Kq1
n ⊆ Kq2

n .
(b) For all q ∈ Q and each sequence xn ∈ Kq

n, every subsequence of xn has a further 
subsequence that is converging to a limit x ∈ Kq (that is: ηn(xn) → η(x) in X ).

(c) For each compact set K ⊆ X, there is a q ∈ Q such that

η(K) ⊆ lim inf
n

ηn(Kq
n).

Remark 3.14. Note that (b) implies that lim supn ηn(Kq
n) ⊆ η(Kq). Note that (b) follows 

if 
⋃

n ηn(Kq
n) is a subset of η(Kq) and the topology on Kq is metrizable.

Conditions (b) should be interpreted in the sense that Kq is larger than the ‘limit’ of 
the sequence Kn, whereas (c) should be interpreted in the sense that each compact K
in X is contained in a limit of that type.

We will say that a sequence xn ∈ Xn converges to x ∈ X in the sense that ηn(xn) →
η(x) in X . Dual to the notion of convergence in a topological space, there is the notion 
of convergence of functions.

Definition 3.15. Let Assumptions 3.11 and 3.13 be satisfied. For each n let fn ∈ Mb(Xn)
and f ∈ Mb(X). We say that LIM fn = f if

• supn ||fn|| < ∞,
• if for all q ∈ Q and xn ∈ Kq

n converging to x ∈ Kq we have

lim
n→∞

|fn(xn) − f(x)| = 0.

The notion of bounded and uniform on compacts (buc) is the prime example of a 
notion of LIM. For a second example see Example 2.7 in [22].

Example 3.16 (buc convergence). Consider some space X in which all compact sets are 
metrizable, and suppose that Xn = X and that ηn is the identity map for all n. In this 
context, we can choose X = X and η the identity map. Q is the set of compact subsets. 
For K ∈ Q, we take KK

n = KK = K.
Note that we need metrizable compact sets to extract converging subsequences for 

Assumption 3.13 (b).
We have LIM fn = f if and only if supn ||fn|| < ∞ and if for all K and all sequences 

xn ∈ K converging to x ∈ K, we have limn fn(xn) = f(x).

Remark 3.17. In the setting that X = X whose topologies coincide, we can compare the 
notion of LIM we introduced to that which is used in [22]. Indeed, it is straightforward to 
show that both notions of LIM fn = f for a sequence of functions coincide if the limiting 
function f is continuous.
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Remark 3.18. The notion of LIM is subtle. It does not require fn(xn) → f(x) for all 
sequences xn such that ηn(xn) → η(x) in X .

For example, let Xn = R ×R, X = X = R, ηn(x, y) = x and η(x) = x. We could work 
with an index set Q consisting of all compact sets [a, b] × [c, d] in R2. Then K [a,b]×[c,d]

n =
[a, b] × [c, d] and K [a,b]×[c,d] = [a, b]. Clearly the sequence xn := (x, n) satisfies ηn(x, n) =
x which converges to x. There is however, no compact set [a, b] × [c, d] such that (x, n)
lies in this set for all n. Thus, we do not need to check convergence along this sequence 
in Definition 3.15.

Remark 3.19. Proceeding with last remark. Note that we could have chosen different 
compact sets with the same index set. E.g., we could have chosen K [a,b]×[c,d]

n = [a, b] ×
[nc, nd] and K [a,b]×[c,d] = [a, b]. This leads to a larger collection of sequences for which 
we have to verify convergence for LIM.

In Section 3.6 below, we will see that we can define a notion of equi-continuity of 
operators on the spaces Xn based on the set Q and compacts Kq

n.
Indeed, in Condition 5.5, key for our main results, we will assume that we have 

converge of Hamiltonians in the sense of LIM, and have equi-continuity for the resolvents 
in terms of Kq

n. This leads to a careful balance: choose small sets Kq
n, then verifying 

convergence with LIM is easy whereas verifying equi-continuity becomes hard and vice 
versa. Thus, the choice of Kq

n is context dependent and requires insight into the problem 
at hand.

The characterization of f = LIM fn allows for generalization of the lim sup and lim inf
as well.

Definition 3.20. Let Assumptions 3.11 and 3.13 be satisfied. Let fn ∈ M(Xn).

(a) Let f ∈ USCu(X). We say that LIM SUP fn = f if

• supn supx∈Xn
fn(x) < ∞,

• if

f(x) = sup
q∈Q

sup
{

lim sup
n→∞

fn(xn)
∣∣∣∣xn ∈ Kq

n, ηn(xn) → η(x)
}
.

(b) Let f ∈ LSCl(X). We say that LIM INFn fn = f if

• infn infx∈Xn
fn(x) > −∞,

• if

f(x) := inf
q∈Q

inf
{

lim inf
n→∞

fn(xn)
∣∣∣xn ∈ Kq

n, ηn(xn) → η(x)
}
.

The following is immediate.
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Lemma 3.21. Let Assumptions 3.11 and 3.13 be satisfied. Suppose that LIM SUPn fn ≤
f ≤ LIM INF fn, then LIM fn = f .

3.6. Joint equicontinuity of operators and LIM

It is a general fact from topology that if Tn are equi-continuous functions on some 
space and if f1,n → f and f2,n → f are elements in this space, then Tnf1,n −Tf2,n → 0.

We now show that equi-continuity in the sense of (b) of Proposition 3.8 combines with 
the notion of LIM in a similar way. Afterwards, we will show that we can use LIM and 
a collection of equi-continuous operators to define a limiting operator.

Definition 3.22. Let Assumptions 3.11 and 3.13 be satisfied. Let Tn : Bn ⊆ Mb(Xn) → Bn

be operators.
We say that the collection {Tn}n≥1 is strictly equi-continuous on bounded sets if the 

following holds. For all q ∈ Q, r > 0 and δ > 0, there is a q̂ ∈ Q and constants 
C0(r), C1(δ, r) such that for all n and h1, h2 ∈ Bn with ||h1|| ∨ ||h2|| ≤ r we have

sup
y∈Kq

n

{Tnh1(y) − Tnh2(y)} ≤ δC0(r) + C1(δ, r) sup
y∈Kq̂

n

{h1(y) − h2(y)} .

Lemma 3.23. Let Assumptions 3.11 and 3.13 be satisfied. Let Tn : Bn ⊆ Mb(Xn) → Bn

be a collection of operators that is strictly equi-continuous on bounded sets.
Suppose that h1,n, h2,n ∈ Bn and that LIMh1,n = LIMh2,n. Then it holds that 

LIMTnh1,n − Tnh2,n = 0. In particular, if LIMTnh1,n exists, then LIMTnh2,n exists 
also and is the same.

Proof. Pick h1,n, h2,n ∈ Bn and that LIMh1,n = LIMh2,n. We establish that 
LIM SUPTnh1,n − Tnh2,n ≤ 0. By interchanging the roles of h1,n and h2,n this yields 
the statement for LIM INF which establishes the claim.

To do so, it suffices for any q ∈ Q and xn ∈ Kq
n and x such that ηn(xn) → η(x) to 

establish that

lim sup
n

Tnh1,n(xn) − Tnh2,n(xn) ≤ 0.

As LIMh1,n, LIMh2,n exists, there is some r > 0 such that supn ||h1,n||∨||h2,n|| ≤ r. Thus, 
by joint strict local equi-continuity of the operators {Tn} we can find for any δ > 0 a q̂
and constants C0(δ), C1(δ, r) such that

lim sup
n

Tnh1,n(xn) − Tnh2,n(xn)

≤ δC0(r) + C1(r, δ) lim sup
n

sup
y∈Kq̂

n

h1,n(y) − h2,n(y).
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As LIMh1,n = LIMh2,n the lim supn on the right equals 0. Sending δ → 0, the first 
claim follows. The final claim is a direct consequence of the triangle inequality. �

In next proposition, we show how to use the result of previous lemma to construct 
a limiting operator our of a sequence of operators that are strictly equi-continuous on 
bounded sets.

Proposition 3.24. Let Assumptions 3.11 and 3.13 be satisfied. Let Tn : Bn ⊆ Mb(Xn) →
Bn be a strictly equi-continuous on bounded sets. Suppose the spaces Bn are such that 
there is a M > 0 such that for all h ∈ Cb(X) there are hn ∈ Bn such that LIMhn = h

and supn ||hn|| ≤ M ||h||.
Set

D(T ) := {h ∈ Cb(X) | ∃hn ∈ Bn : h = LIMhn,LIMTnhnexists and is continuous}

and Th = LIMTnhn. Note that T is well defined because of Lemma 3.23
Then:

(a) T is strictly continuous on bounded sets in the sense of (b) of Proposition 3.8.
(b) The set D(T ) is quasi-closed in Cb(X).
(c) If h ∈ D(T ) and hn ∈ Bn such that LIMhn = h, then LIMTnhn = Th.

Remark 3.25. In Lemma 6.4 below, we will see that in the context that if the maps ηn
are continuous and η is a homeomorphism onto its image, we can indeed always find hn

such that LIMhn = h and supn ||hn|| ≤ ||h||.

The proof is inspired by Lemma 7.16 (b) and (c) in [22].

Proof of Proposition 3.24. We start by proving (a). Fix r > 0, a compact set K ⊆ X

and δ > 0. We prove that there are constants Ĉ0(r), Ĉ1(δ, r) and a compact set K̂ =
K̂(K, δ, r) such that

sup
x∈K

|Tf(x) − Tg(x)| ≤ δĈ0(r) + Ĉ1(δ, r) sup
x∈K̂

|f(x) − g(x)|

for all f, g ∈ D(T ) such that ||f || ∨ ||g|| ≤ r.
Thus, fix f, g ∈ D(T ) such that ||f || ∨ ||g|| ≤ r and let x0 ∈ K be such that

Tf(x0) − Tg(x0) = sup
y∈K

Tf(y) − Tg(y)

Let fn, gn ∈ Bn such that LIM fn = f and LIM gn = g and supn ||fn|| ≤ M ||f ||, 
supn ||gn|| ≤ M ||g||. By Assumption 3.13 (c), there is a q with K ⊆ lim infn ηn(Kq

n). 
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Because of this, we can choose xn ∈ Kq
n such that limn ηn(xn) = η(x0) in X . By defini-

tion of D(T ) and T , we have Tf(x0) − Tg(x0) = limn Tnfn(xn) − Tngn(xn). It follows 
by strict equi-continuity on bounded sets that there is a q̂, C0(r) and C1(r, δ) such that

sup
y∈K

Tf(y) − Tg(y) = lim
n

Tnfn(xn) − Tngn(xn)

≤ lim
n

(
δC0(r)M + C1(r, δ) sup

y∈Kq̂
n

{fn(y) − gn(y)}
)
.

Set Ĉ0(r) = MC0(r) and Ĉ1(δ, r) = C1(δ, r). Finally, let yn ∈ K q̂
n be such that fn(yn) −

gn(yn) + n−1 ≥ supy∈Kq̂
n
{fn(y) − gn(y)}. By Assumption 3.13 (b), yn has a converging 

subsequence with a limit y0 ∈ K q̂. We obtain that

sup
y∈K

{Tf(y) − Tg(y)} ≤ δĈ0(r) + Ĉ1(δ, r) (f(y0) − g(y0))

≤ δĈ0(r) + Ĉ1(δ, r) sup
y∈Kq̂

{f(y) − g(y)} .

This establishes strict continuity on bounded sets for T .
We proceed with the proof of (b). First note that by strict continuity on bounded 

sets, and Lemma 3.10, we can extend T to the quasi-closure of D(T ), on which T is also 
strictly continuous on bounded sets.

Next, we show that D(T ) was in fact quasi-closed to begin with. Let h be in the
strict closure of D(T ) ∩ BR for some R > 0. We prove that h ∈ D(T ) ∩ BR. Using 
the extension of T to the quasi-closure of D(T ), we can define f := Th. Let hn ∈ Bn

such that LIMhn = h and supn ||hn|| ≤ M ||h||. To establish (b), we need to prove that 
LIMTnhn = f .

On bounded sets, the strict topology coincides with the compact-open topology. Thus, 
there are functions hK,ε ∈ D(T ) such that supK,ε

∣∣∣∣hK,ε
∣∣∣∣ ≤ R and

sup
y∈K

∣∣h(y) − hK,ε(y)
∣∣ ≤ ε.

Define fK,ε := ThK,ε. Furthermore, find fn, fK,ε
n , hK,ε

n such that

LIM fn = f, LIM fK,ε
n = fK,ε, LIMhK,ε

n = hK,ε,

and such that we have an upper bound r for the norms of all involved functions. To 
establish that LIMTnhn = f , it suffices by Lemma 3.23 to prove that LIMTnhn−fn = 0.

Fix an arbitrary q and ε. Then it suffices to prove that

lim
n→∞

sup
y∈Kq

n

|Tnhn(y) − fn(y)| ≤ 4ε. (3.9)

To do so, fix δ > 0 such that C0(r)δ ≤ ε.



18 R.C. Kraaij / Journal of Functional Analysis 282 (2022) 109346
By strict equi-continuity on bounded sets of the operators Tn, starting with q, r and 
δ, we find a q̂ and set K := K q̂. Note that we can use the same compact set K for the 
strict continuity estimate for the limiting operator T also.

Using this specific compact set K, it follows by the triangle inequality that

|Tnhn(y) − fn(y)|
≤
∣∣Tnhn(y) − Tnh

ε,K
n (y)

∣∣+ ∣∣Tnh
ε,K
n (y) − fK,ε

n (y)
∣∣+ ∣∣fK,ε

n (y) − fn(y)
∣∣

≤
∣∣Tnhn(y) − Tnh

ε,K
n (y)

∣∣+ ∣∣Tnh
ε,K
n (y) − fK,ε

n (y)
∣∣+ ∣∣fK,ε

n (y) − fn(y)
∣∣

After taking lim supn and supy∈Kq
n

over the three terms separately, we estimate as 
follows:

• By equi-continuity of the Tn and our choice of δ > 0 and q̂, we find that

sup
y∈Kq

n

∣∣Tnhn(y) − Tnh
ε,K
n (y)

∣∣ ≤ ε + sup
y∈Kq̂

n

∣∣hn(y) − hε,K
n (y)

∣∣
As LIMhn = h and LIMhε,K

n = hε,K , and the fact that supy∈K |h(y) − hK,ε(y)| ≤ ε

implies that the lim sup over the right-hand side is bounded above by 2ε.
• As hK,ε in D(T ), we have LIMTnh

K,ε
n = Thε,K = fε,K . We also have LIM fK,ε

n = fK,ε

so by Lemma 3.23 the middle term vanishes by choosing n large.
• To estimate lim supn supy∈Kq

n

∣∣fK,ε
n (y) − fn(y)

∣∣ note that as LIM fK,ε
n = fK,ε and 

LIM fn = f , we find

lim sup
n

sup
y∈Kq

n

∣∣fK,ε
n (y) − fn(y)

∣∣ ≤ sup
y∈Kq

∣∣fK,ε(y) − f(y)
∣∣ = sup

y∈Kq

∣∣ThK,ε(y) − Th(y)
∣∣

Using the strict continuity on bounded sets of T , we find

lim sup
n

sup
y∈Kq

n

∣∣fK,ε
n (y) − fn(y)

∣∣ ≤ ε + sup
y∈K

∣∣hK,ε(y) − h(y)
∣∣ .

Thus the right-hand side is bounded by 2ε.

This establishes (3.9) which concludes the proof of (b). (c) follows by a direct application 
of Lemma 3.22. �
3.7. An extension of notions of convergence to a space containing additional 
information

In the context of problems that involve homogenisation or slow-fast systems, it often 
pays of to work with multi-valued Hamiltonians whose range naturally takes values in a 
space of functions with a domain that is larger. This larger domain takes into account 
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a variable that we homogenize over or the ‘fast’ variable. We extend the setting of 
Section 3.5. We will not need the extension of all results therein, but restrict to the bare 
essentials.

Assumption 3.26. Consider spaces Xn and X, Y , and two spaces X , Y. We consider Baire 
measurable maps ηn : Xn → X , η̂n : Xn → Y and Baire measurable injective maps 
η : X → X , η̂ : Y → Y. Finally, there are continuous surjective maps γ : Y → X and 
γ̂ : Y → X . The maps are such that the following diagram commutes:

Y Y

Xn

X X

η̂n

ηn

γ̂ γ

η̂

η

Assumption 3.27. There is a directed set Q (partially ordered set such that every two 
elements have an upper bound). For each q ∈ Q, we have compact sets Kq

n ⊆ Xn a 
compact sets Kq ⊆ X and K̂q ⊆ Y such that

(a) If q1 ≤ q2, we have Kq1 ⊆ Kq2 , K̂q1 ⊆ K̂q2 and for all n we have Kq1
n ⊆ Kq2

n .
(b) For all q ∈ Q and each sequence xn ∈ Kq

n, every subsequence of xn has a further 
subsequence xn(k) such that η̂n(k)(xn(k)) → η̂(y) in Y for some y ∈ K̂q.

(c) For each compact set K ⊆ X, there is a q ∈ Q such that

η(K) ⊆ lim inf
n

ηn(Kq
n).

(d) We have γ(K̂q) ⊆ Kq.

Note the subtle difference with Assumption 3.13 in the sense that here (b) is writ-
ten down in terms of convergence in Y, whereas (c) is still written down in terms of 
convergence in X .

Remark 3.28. Note that (b) and (d) imply that ηn(k)(xn(k)) → η(γ(y)) in X with γ(y) ∈
Kq. Thus, the Assumption 3.27 implies the conditions for X, Xn, X for Assumption 3.13.

Thus, in the context of Assumptions 3.26 and 3.27, we can use all notions of the 
previous sections, if we talk about functions or operators on X, X and Xn.

Example 3.29 (Reduction of the dimension). Consider two spaces X and Z and let Y :=
X × Z, Xn := X × Z with maps ηn(x, z) = x, η̂n(x, z) = (x, z) and γ(x, z) = x.

Assumption 3.27 is satisfied for example with Q the collection of pairs of compact 
sets in X and Z:

{(K1,K2) | ∀K1 ⊆ X,K2 ⊆ Z compact} ,
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and K(K1,K2)
n = K1 ×K2, K(K1,K2) = K1 and K̂(K1,K2) = K1 ×K2.

We have LIM fn = f if and only if supn ||fn|| < ∞ and for all compact K1 ⊆ X and 
K2 ⊆ Z and sequences (xn, zn) ∈ K1 × K2 and x ∈ KX such that xn → x, we have 
fn(xn, zn) → f(x).

Note that the dependence of fn on zn should vanish in the limit.

4. Pseudo-resolvents and Hamilton-Jacobi equations

Having developed the topological and analytic machinery, we turn to the study of 
pseudo-resolvents {R(λ)}λ>0 and viscosity solutions for Hamilton-Jacobi equations f −
λHf = h. In the linear context, the relation between pseudo-resolvents and ‘classical’ 
solutions to the Hamilton-Jacobi equation is well established. In particular, pseudo-
resolvents have been used as tools in the approximation theory of linear semigroups and 
generators, see for example [17, Section 3.4]. We will show that the linearity of these the 
involved operators, however, is not essential.

In this section, we will not consider approximation problems yet, and restrict ourselves 
to the setting Y = X and γ(x) = x.

Definition 4.1 (Pseudo-resolvents). Consider a space X and a subset B such that 
Cb(X) ⊆ B ⊆ M(X) on which we have a family of operators R(λ) : B → B, for 
λ > 0. We say that this family is a pseudo-resolvent if R(λ)0 = 0 for λ > 0 and if for all 
α < β we have

R(β) = R(α)
(
R(β) − α

R(β) − 1
β

)
.

We extend our notion of strict continuity on bounded sets to a collection of operators 
similar to what we did in Definition 3.22. Whereas in that Definition we worked with 
bounded functions only, we extend to unbounded functions in the next definition. In 
addition, we use that the constants that appear for pseudo-resolvents are typically 1.

Definition 4.2 (Local strict equicontinuity on bounded sets). Let B be a collection of 
functions Cb(X) ⊆ B ⊆ M(X). We say that the pseudo-resolvent R(λ) : B → B is 
locally strictly equicontinuous on bounded sets if for each λ0 > 0, each compact set 
K ⊆ X and r, δ > 0, there is a compact set K̂ = K̂(K, δ, r, λ0) such that

sup
x∈K

|R(λ)f(x) −R(λ)g(x)| ≤ δ sup
x∈X

|f(x) − g(x)| + sup
x∈K̂(K,δ,r,λ0)

|f(x) − g(x)|

for all 0 < λ ≤ λ0, f, g ∈ B such that ||f || ∨ ||g|| ≤ r.

Note that the present definition, restricted to a collection B0 ⊆ B ∩Mb(X), reduces 
to a definition like the one in Definition 3.22.

The three main results of this section are
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• Proposition 4.4, which shows that a pseudo-resolvent R such that R(λ)(f−λHf) = f

yields viscosity solutions to the Hamilton-Jacobi equation for H. In other words, if the 
pseudo-resolvent is a left-inverse (classically) of 1 −λH, then it is also a right-inverse 
(in the viscosity sense). This implies that a pseudo-resolvent can be used to identify 
the resolvent of H.

• Proposition 4.8 establishes the converse, viscosity solutions to the Hamilton-Jacobi 
equation, if unique, can be used to construct a pseudo-resolvent.

• Proposition 4.10 shows that the pseudo-resolvent of the previous results can be used to 
define a new operator, which satisfies the conditions of the Crandall-Liggett theorem.

Even though, we will always formally think of the Hamilton-Jacobi equation f −
λHf = h, we will work with two operators H†, H‡ instead. These operators should be 
interpreted as a upper and lower bound of the ‘true’ H.

Thus, in all sections below we will work with H† ⊆ LSCl(X) × USCu(X) and H‡ ⊆
USCu(X) × LSCl(X) and study the Hamilton Jacobi equations

f − λH†f = h, f − λH‡f = h,

with λ > 0 and h ∈ M(X).
Before proceeding with the announced results, we note that at various points, it is 

of interest to know whether the domain of definition of the resolvents and operators B
includes Cb(X). At least for resolvents, we can under some assumptions include Cb(X)
in the domain by continuous extension. We will therefore henceforth work with pseudo-
resolvents that have Cb(X) included in their domain of definition.

Lemma 4.3. Suppose that R(λ) with domains Dλ is a pseudo-resolvent that is also locally 
strictly equi-continuous on bounded sets. Suppose that

(a) R(λ) restricted to Dλ ∩ Cb(X) maps into Cb(X),
(b) Dλ ∩ Cb(X) is quasi-dense in Cb(X).

Then the restriction of R(λ) to Cb(X) can be extended to a pseudo-resolvent that is 
locally strictly equi-continuous on bounded sets such that for each λ the domain of this 
extension includes Cb(X).

Proof. By Lemma 3.10, the restriction of R(λ) to Dλ ∩ Cb(X) can be extended to an 
operator R̂(λ) : Cb(X) → Cb(X) that satisfies property (b) of Proposition 3.8 (with the 
same choice of constants and compact set as in Definition 4.2). The pseudo-resolvent 
property follows by continuity. �
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4.1. Pseudo-resolvents give solutions to the Hamilton-Jacobi equation

Proposition 4.4. Let B be a collection of functions such that Cb(X) ⊆ B ⊆ M(X). 
Suppose that R(λ) : B → B is a contractive pseudo-resolvent. In addition, suppose that 
we have two operators H† ⊆ LSCl(X) ∩B × USCu(X) ∩B and H‡ ⊆ USCu(X) ∩B ×
LSCl(X) ∩B.

Fix λ > 0 and h ∈ M(X).

(a) Let h ∈ B and let H† be such that for all (f, g) ∈ H† and 0 < ε < λ we have 
f ≥ R(ε)(f − εg). Then (R(λ)h)∗ is a viscosity sub-solution to f − λH†f = h∗.

(b) Let h ∈ B and let H‡ be such that for all (f, g) ∈ H‡ and 0 < ε < λ, we have 
f ≤ R(ε)(f − εg). Then (R(λ)h)∗ is a viscosity super-solution to f − λH‡f = h∗.

The proof of this result follows key steps in the proof of Theorem 8.27 of [22]. To 
establish this result, we use an auxiliary lemma.

Lemma 4.5 (Lemma 7.8 in [22]). Let X be a some space and let f, g : X → [−∞, ∞] be 
two functions.

(a) Suppose there is some ε0 > 0 such that f − εg ∈ M(X) and supx f(x) ≤ supx f(x) −
εg(x) < ∞ for all 0 < ε < ε0, then there is a sequence xn in X such that limn f(xn) =
supx f(x) and lim supn g(xn) ≤ 0.

(b) Suppose there is some ε0 > 0 such that f − εg ∈ M(X) and infx f(x) ≥ infx f(x) −
εg(x) > −∞ for all 0 < ε < ε0, then there is a sequence xn in X such that 
limn f(xn) = infx f(x) and lim infn g(xn) ≥ 0.

Remark 4.6. The proof in Lemma 7.8 of [22] is not correct. In establishing limn f(xn) =
supx f(x) for (a), it is used that infx g(x) > −∞. This claim, however, is not true in 
general. Consider the following example. Let X = [0, 1] and set

f(x) =
{

log x if x �= 0,
−∞ if x = 0,

g(x) =
{

log x if x �= 0,
0 if x = 0.

For all 0 < ε < 1 we have supx f(x) = supx f(x) − εg(x) = 0. However, it does not hold 
that infx g(x) > −∞.

Proof. We only prove (a). Let 0 < εn < ε0 and εn → 0. For each n pick xn such that

f(xn) ≤ sup
x

f(x) ≤ sup
x

f(x) − εng(x) ≤ f(xn) − εng(xn) + ε2
n. (4.1)

Combining the outer two-terms leads to lim supn g(xn) ≤ limn εn = 0.
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We now establish that limn f(xn) = supx f(x). To do so, we first prove lim infn g(xn) >
−∞. Fix ε ∈ (0, ε0). For each n, using (4.1), we have the following chain of inequalities:

sup
x

f(x) − εg(x) ≥ f(xn) − εg(xn)

= f(xn) − εng(xn) + ε2
n − (ε− εn)g(xn) − ε2

n

≥
(

sup
x

f(x)
)
− (ε− εn)g(xn) − ε2

n.

Suppose there is a subsequence xn(k) such that limk g(xn(k)) = −∞, then clearly the 
right-hand side would diverge to ∞. This contradicts the boundedness of the left-hand 
side.

From the second and final term in (4.1), we obtain

(
sup
x

f(x)
)

+ εng(xn) − ε2
n ≤ f(xn).

Taking a lim inf on both sides, using that lim infn g(xn) > −∞, we find lim infn f(xn) ≥
supx f(x), which establishes limn f(xn) = supx f(x). �
Proof of Proposition 4.4. We prove (a). Fix λ > 0 and h ∈ USCu(X) ∩ B. We prove 
that (R(λ)h)∗ is a viscosity solution to f − λH†f = h∗. Fix (f, g) ∈ H†.

We use the pseudo-resolvent property of R with 0 < ε < λ, to re-express R(λ)h(x). 
For f(x) we use the assumption in (a). We obtain:

sup
x

R(λ)h(x) − f(x)

≤ sup
x

R(ε)
(
R(λ)h(x) − ε

R(λ)h(x) − h(x)
λ

)
−R(ε) (f(x) − εg(x))

≤ sup
x

R(λ)h(x) − ε
R(λ)h(x) − h(x)

λ
− (f(x) − εg(x)),

where we have used the contractivity of R(ε) to obtain the final inequality. Note that we 
use that the domain and range of H† are contained in B to be able to write down R(λ)
and R(ε) applied to h and f−εg. Next, we take the upper semi-continuous regularization. 
As ε < λ and f, f − εg ∈ LSCl(X), we obtain

sup
x

(R(λ)h)∗ (x) − f(x) ≤ sup
x

(R(λ)h)∗ (x) − ε
(R(λ)h)∗ (x) − h∗(x)

λ
− (f(x) − εg(x))

This establishes (a) of Lemma 4.5 which then yields that (R(λ)h)∗ is a viscosity subso-
lution to f − λH†f = h∗. �
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4.2. Solutions to the Hamilton-Jacobi equation give a pseudo-resolvent

In this section we prove the converse statement, namely that viscosity solutions give 
rise to a pseudo-resolvent. We start with an auxiliary lemma that will be key to recovering 
the pseudo-resolvent property for solutions of viscosity solutions.

Lemma 4.7. Let H† ⊆ LSCl(X) × USCu(X) and H‡ ⊆ USCu(X) × LSCl(X). Fix 
λ > ε > 0 and h ∈ M(X). Then

(a) A subsolution u to f − λH†f = h is a subsolution to f − εH†f = u − εu−h
λ .

(b) A supersolution v to f − λH†f = h is a supersolution to f − εH†f = v − εv−h
λ .

Proof. We prove (a) only. Let (f, g) ∈ H† and let xn be sequence such that limn u(xn) −
f(xn) = supx u(x) − f(x) and lim supn u(xn) − λg(xn) − h(xn) ≤ 0. Because

u(xn) − εg(xn) −
(
u(xn) − ε

u(xn) − h(xn)
λ

)
= ε

λ
(u(xn) − λg(xn) − h(xn)) ,

it follows that u is a viscosity subsolution to f − εH†f = u − εu−h
λ . �

Proposition 4.8. Let H† ⊆ LSCl(X) × USCu(X) and H‡ ⊆ USCu(X) × LSCl(X). 
Suppose that for each λ > 0 and h ∈ Cb(X) the comparison principle holds for

f − λH†f = h, f − λH‡f = h. (4.2)

Suppose that there exists a viscosity solution to (4.2) for all λ > 0 and h ∈ Cb(X). 
Denote this unique solution by R(λ)h. Then R(λ) forms a contractive pseudo-resolvent 
on Cb(X).

Remark 4.9. The proposition has the drawback that we have to assume the comparison 
principle for all h ∈ Cb(X) and λ > 0. In practice, often one only has the comparison 
principle for a dense set of functions. The result does show that we should expect the 
pseudo-resolvent property to hold. Thus, if one has a method to produce viscosity solu-
tions R(λ)h via some other means, like a limiting procedure, or an explicit formula, one 
can aim to prove the pseudo-resolvent property directly.

Proof of Proposition 4.8. Let 0 < ε < λ and h ∈ Cb(X). Let R(λ)h be the unique 
viscosity solution to f − λH†f = h and f − λH‡f = h. Note that by the comparison 
principle R(λ)h ∈ Cb(X).

By the comparison principle R(λ) is contractive. We next establish that R(λ) is a 
pseudo-resolvent. By Lemma 4.7, we find for h ∈ D that R(λ)h is a viscosity solution to

f − εH†f = R(λ)h− ε
R(λ)h− h

, f − εH‡f = R(λ)h− ε
R(λ)h− h

.

λ0 λ
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As h and R(λ)h ∈ Cb(X), we find by the comparison principle for (4.2) with ε instead 
of λ that

R(λ)h = R(ε)
(
R(λ)h− ε

R(λ)h− h

λ

)
. �

4.3. Defining a Hamiltonian using a pseudo-resolvent

We proceed by showing that a pseudo-resolvent can be used to define a Hamiltonian, 
so that the pseudo-resolvent gives both classical and viscosity solutions to the associated 
Hamilton-Jacobi equation. Thus, this newly defined operator satisfies the conditions for 
the Crandall-Liggett theorem, and can be used for approximation arguments.

Proposition 4.10. Let R(λ) : Cb(X) → Cb(X) be a contractive pseudo-resolvent. Define 
the operator

Ĥ =
{(

R(λ)h, R(λ)h− h

λ

) ∣∣∣∣λ > 0, h ∈ Cb(E)
}

For all h ∈ Cb(E) and λ > 0:

(a) For all λ > 0 and h ∈ Cb(X) the comparison principle holds for f − λĤf = h, and 
R(λ)h is the unique viscosity and classical solution.

(b) Ĥ is dissipative and satisfies the range condition.

The proposition is mainly useful in combination with Proposition 4.8. Namely, vis-
cosity solutions for (4.2) can be used to define a contractive pseudo-resolvent. Which by 
this proposition can be used to define a new operator that satisfies the conditions for 
the Crandall-Liggett result. Alternatively, one constructs a contractive pseudo-resolvent 
via an approximation argument as we will do below in Section 5.

We start by establishing a natural property for sub- and supersolutions of Hamilton-
Jacobi equations. We mention it separately for later use.

Lemma 4.11. Let H† ⊆ LSCl(X) × USCu(X) and H‡ ⊆ USCu(X) × LSCl(X). Fix 
ε > 0.

(a) Let (f0, g0) ∈ H†. Suppose that f̂ is a viscosity subsolution to f − εH†f = f0 − εg0, 
then f̂ ≤ f0.

(b) Let (f0, g0) ∈ H‡. Suppose that f̂ is a viscosity supersolution to f −εH‡f = f0−εg0, 
then f̂ ≥ f0.

Proof. We only prove (a). Fix ε > 0, (f0, g0) ∈ H† and let f̂ be a viscosity subsolution 
to f − εH†f = f0 − εg0. Then there is a sequence xn such that
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lim
n

f̂(xn) − f0(xn) = sup
x

f̂(x) − f0(x)

and

lim sup
n

f̂(xn) − εg0(xn) − (f0 − εg0)(xn) ≤ 0.

We obtain supx f̂(x) − f0(x) = lim supn f̂(xn) − f0(xn) ≤ 0 establishing the claim. �
Proof of Proposition 4.10. We prove the comparison principle. Fix λ > 0 and h1, h2 ∈ D. 
By construction R(λ)h1 and R(λ)h2 solve f−λĤf = hi classically. Let u be a subsolution 
to f − λĤf = h1 and v a supersolution to f − λĤf = h2. By Lemma 4.11 (a) for Ĥ
instead of H† and (f0, g0) =

(
R(λ)h1,

R(λ)h1−h1
λ

)
, we find u ≤ R(λ)h1. Because R(λ) is 

contractive, we find

sup
x

u(x) − v(x) ≤ sup
x

R(λ)h1(x) −R(λ)h2(x) ≤ sup
x

h1(x) − h2(x),

establishing the comparison principle for f − λĤf = h.
Next, we prove that R(λ)h is a viscosity subsolution to f−λĤf = h with an argument 

similar to that of Proposition 4.4. Pick R(μ)h0 ∈ D(Ĥ). By the pseudo-resolvent property 
of R, see Proposition 4.8, and the contractivity of R, we find for 0 < ε < λ ∧ μ that

sup
x

R(λ)h(x) −R(μ)h0(x)

= sup
x

R(ε)
(
R(λ)h− ε

R(λ)h− h

λ

)
(x) −R(ε)

(
R(μ)h0 − ε

R(μ)h0 − h0

μ

)
(x)

≤ sup
x

R(λ)h(x) − ε
R(λ)h(x) − h(x)

λ
−
(
R(μ)h0(x) − ε

R(μ)h0(x) − h0(x)
μ

)
.

By Lemma 4.5, we conclude that R(λ)h is a viscosity subsolution to f − λĤf = h. The 
super-solution property follows similarly.

Thus, by the comparison principle, R(λ)h is the unique viscosity solution to f−λHf =
h. Finally, suppose that f0 is another classical solution to f − λĤf = h. Thus, there 
is a g0 such that (f0, g0) ∈ Ĥ and f0 − λg0 = h. As R(λ)f is a viscosity solution to 
f − λĤf = h, and hence to f − λĤf = f0 − λg0, we find again by Lemma 4.11 that 
f0 = R(λ)h.

Finally, we establish (b). Note that the range condition for Ĥ is satisfied by construc-
tion. We establish dissipativity. By construction, there is some λ > 0 and h ∈ Cb(X)
such that f1 = R(λ)h and g1 = λ−1(f1 − h). As R(λ)h is a viscosity subsolution to 
f − λĤf = h by (a), there are xn such that

lim f1(xn) − f2(xn) = sup f1(x) − f2(x),

n x
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lim sup
n

g1(xn) − g2(xn) ≤ 0.

This implies for all μ > 0 that

sup
x

f1(x) − μg1(x) − (f2(x) − μg2(x))

≥ lim sup
n

f1(xn) − μg1(xn) − (f2(xn) − μg2(xn))

= lim
n

f1(xn) − f2(xn) = sup
x

f1(x) − f2(x).

A similar argument using the supersolution property yields the other inequality for the 
infima. We conclude that for all μ > 0:

||f1 − μg1 − (f2 − μg2)|| ≥ ||f1 − f2||

establishing dissipativity of Ĥ. �
4.4. The pseudo-resolvent yields viscosity solutions via a density argument

We introduce a final tool in the study of pseudo-resolvents R(λ) and viscosity solutions 
to Hamilton-Jacobi equations

f − λH†f = h1, f − λH†f = h2. (4.3)

In Proposition 4.8, we showed that if we can solve (4.3) in the viscosity sense for all 
λ > 0 and h ∈ Cb(X), then the comparison principle is sufficient to establish that the 
solutions R(λ) form a contractive pseudo-resolvent.

Often, however, one can construct a pseudo-resolvent R(λ) such that R(λ)h solves 
(4.3) in the viscosity sense for λ > 0 and h = h1 = h2 ∈ D, where D ⊆ Cb(X) is 
quasi-dense. Thus, the main step to establish the pseudo-resolvent property in the proof 
cannot be carried out. This happens for example in the construction in Theorem 5.7. 
Even though there we can establish the pseudo-resolvent property by approximation, 
this situation is not completely satisfying.

The result below gives an alternative that does not need an explicit form for the 
resolvent, or that it is the limit of a sequence of pseudo-resolvents.

A second reason to establish that R(λ)h gives viscosity solutions for all h ∈ Cb(X) is 
that this property can be used as input for follow-up arguments, see e.g. Condition 5.5
below.

The argument below is based on compactness and quasi-density of D in Cb(X).

Proposition 4.12. Let X be a space in which compact sets are metrizable. For each λ > 0
let R(λ) : Cb(X) → Cb(X) be an operator that is strictly continuous on bounded sets. 
Let D be quasi-dense in Cb(X).
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Then (i) and (ii) hold.

(i) Let H†, H̃† ⊆ LSCl(X) × USCu(X) be two operators such that

(a) For each h ∈ Cb(X) and λ > 0, if f is a viscosity sub-solution to f −λH†f = h

then it is a viscosity subsolution to f − λH̃†f = h.
(b) Each function f ∈ D(H̃†) has compact sub-levelsets.

Suppose that R(λ)h is a viscosity subsolution to f − λH†f = h for all h ∈ D and 
λ > 0. Then R(λ) is a viscosity subsolution to f −λH̃†f = h for all h ∈ Cb(X) and 
λ > 0.

(ii) Let H‡, H̃‡ ⊆ USCu(X) × LSCl(X) be two operators such that

(a) For each h ∈ Cb(X) and λ > 0, if f is a viscosity super-solution to f−λH‡f = h

then it is a viscosity supersolution to f − λH̃‡f = h.
(b) Each function f ∈ D(H̃‡) has compact super-levelsets.

Suppose that R(λ)h is a viscosity supersolution to f − λH‡f = h for all h ∈ D and 
λ > 0. Then R(λ) is a viscosity supersolution to f − λH̃‡f = h for all h ∈ Cb(X)
and λ > 0.

Remark 4.13. The conditions sketched above are satisfied in a wide range of situations. 
Consider for example a Hamiltonian H : R × R → R in terms of location x ∈ R and 
momentum p ∈ R (the argument easily extends to e.g. manifolds). We assume that 
p �→ H(x, p) is convex for all x.

Assume there is a continuously differentiable function Υ that has compact sub-level 
sets and is such that supx H(x, Υ′(x)) ≤ c for some c ∈ R.

The condition in (i) then holds for the operator (H†, D(H†)) defined by

D(H†) := C1
b (R), ∀ f ∈ C1

b (R) : H†f(x) = H(x, f ′(x)),

and the operator (H̃†, D(H̃†)) defined by

D(H̃†) :=
⋃

ε∈(0,1)

{
(1 − ε)f + εΥ

∣∣ f ∈ C1
b (R)

}
∀ f̃ := (1 − ε)f + εΥ : H̃†f̃(x) = (1 − ε)H†f(x) + εc.

For a proof of (a) one uses convexity and e.g. methods like Lemmas 7.6 and 7.7 in [22]. 
For an application of these lemmas, see e.g. Section A.2 in [7].

Proof of Proposition 4.12. We only prove (a). Fix h ∈ Cb(X) and λ > 0.
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Pick (f, g) ∈ H̃†. As f has compact sub-level sets, the set K := {x | f(x) ≤ 2 ||h||} is 
compact. By quasi-density of D in Cb(X), there are hn such that supn ||hn|| ≤ 2 ||h|| and 
supx∈K |h(x) − hn(x)| ≤ n−1.

By the viscosity subsolution property, the fact that f has compact level-sets, and 
supn ||hn|| ≤ 2 ||h||, there are xn ∈ K such that

R(λ)hn(xn) − f(xn) = sup
x

R(λ)hn(x) − f(x),

R(λ)hn(xn) − λg(xn) ≤ hn(xn).
(4.4)

Because K is compact and metrizable, we can assume without loss of generality that xn

converges to x0. hn converges uniformly to h on K. As R(λ) is strictly continuous on 
bounded sets also R(λ)hn converges uniformly on K to R(λ)h. Thus, we can take limit 
in the first equation and lim sup in the second equation of (4.4) to obtain

R(λ)h(x0) − f(x0) = sup
x

R(λ)h(x) − f(x)

R(λ)hn(x0) − λg(x0) ≤ h(x0).

Note that we used that g is upper semi-continuous to obtain the correct inequality. These 
two equations establish that R(λ)h is a viscosity solution f − λH̃†f = h. �
5. Convergence of resolvents

We now turn to the main question of the paper: that of approximation. Our first goal 
is to establish that viscosity solutions to f − λHnf = h converge to a viscosity solution 
of the equation f − λHf = h. All arguments will be based in the context of converging 
spaces.

As mentioned in the introduction some problems, e.g. slow-fast or multi-scale systems 
lead to natural limiting Hamiltonians that are multi-valued as a graph H ⊆ Cb(X) ×
Cb(Y ), where Y is some larger space that takes into account the fast variable or the 
additional scales. The notions of convergence of functions that are relevant have been 
introduced in Sections 3.5 and 3.7.

5.1. From convergence of Hamiltonians to convergence of resolvents

A first notion of a limit of Hamiltonians is given by the notion of an extended limit. 
This notion is essentially the extension of the convergence condition for generators from 
the setting of the Trotter-Kato approximation theorem to a more general context. The 
generalization is made to include operators defined on different spaces, and is also ap-
plicable to non-linear operators as well. See e.g. the works of Kurtz and co-authors 
[16,48,49,22].

We define this notion for the setting in which X = Y .
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Definition 5.1. Consider the setting of Assumptions 3.11 and 3.13. Suppose that for each 
n we have an operator Hn ⊆ Mb(Xn) × Mb(Xn). The extended limit ex − LIMn Hn is 
defined by the collection (f, g) ∈ Mb(X) × Mb(X) such that there exist (fn, gn) ∈ Hn

with the property that LIMn fn = f and LIMn gn = g.

We aim to have a more flexible notion of convergence by replacing all operators Hn

and H by operators (Hn,†, Hn,‡, H†, H‡) that intuitively form natural upper and lower 
bounds for Hn and H. We will also generalize by considering limiting Hamiltonians that 
take values in the set of functions on Y instead of X.

Definition 5.2. Consider the setting of Assumptions 3.26 and 3.27. Suppose that for each 
n we have two operators Hn,† ⊆ LSCl(Xn) × USCu(Xn) and Hn,‡ ⊆ USCu(Xn) ×
LSCl(Xn).

(a) The extended lim sup ex − LIM SUPn Hn,† is defined by the collection (f, g) ∈ H† ⊆
LSCl(X) × USCu(Y ) such that there exist (fn, gn) ∈ Hn,† satisfying

LIM fn ∧ c = f ∧ c, ∀ c ∈ R, (5.1)

sup
n

sup
x∈Xn

gn(x) < ∞, (5.2)

and if for any q ∈ Q and sequence zn(k) ∈ Kq
n(k) (with k �→ n(k) strictly increasing) 

such that limk η̂n(k)(zn(k)) = η̂(y) in Y with limk fn(k)(zn(k)) = f(γ(y)) < ∞ we 
have

lim sup
k→∞

gn(k)(zn(k)) ≤ g(y). (5.3)

(b) The extended lim inf ex − LIM INFn Hn,‡ is defined by the collection (f, g) ∈ H‡ ⊆
USCu(X) × LSCl(Y ) such that there exist (fn, gn) ∈ Hn,‡ satisfying

LIM fn ∨ c = f ∨ c, ∀ c ∈ R, (5.4)

inf
n

inf
x∈Xn

gn(x) > −∞, (5.5)

and if for any q ∈ Q and sequence zn(k) ∈ Kq
n(k) (with k �→ n(k) strictly increasing) 

such that limk η̂n(k)(zn(k)) = η̂(y) in Y with limk fn(k)(zn(k)) = f(γ(y)) > −∞ we 
have

lim inf
k→∞

gn(k)(zn(k)) ≥ g(y). (5.6)

Remark 5.3. The conditions in (5.2) and (5.3) are implied by LIM SUPn gn ≤ g and (5.5)
and (5.6) are implied by LIM INFn gn ≥ g.

It is not clear to the author whether a weakened symmetric statement in which (5.1)
is replaced by LIM INF fn ≥ f and (5.4) by LIM SUP fn ≤ f is possible.
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Remark 5.4. The notion of ex −LIM SUP and ex −LIM INF follows closely Condition 7.11 
[22]. Note, however, that our definition does away with the first conditions in (7.19) and 
(7.22), which in [22] are used in a crucial way in controlling the approximation of Hn

by operators Hε
n that are constructed from the Yosida approximant Aε

n of the linear 
operator An.

Given our main conditions on upper and lower bounds for sequences of Hamiltonians, 
we can state the main condition for our approximation result. Note that in the typical 
case Bn = Cb(Xn) a couple of statements simplify.

Condition 5.5. Consider the setting of Assumptions 3.26 and 3.27.
There are sets Bn ⊆ M(Xn), contractive pseudo-resolvents Rn(λ) : Bn → Bn, λ > 0, 

operators

Hn,† ⊆ LSCl(Xn) ∩Bn × USCu(Xn) ∩Bn,

Hn,‡ ⊆ USCu(Xn) ∩Bn × LSCl(Xn) ∩Bn,

and

H† ⊆ LSCl(X) × USCu(Y ), H‡ ⊆ USCu(X) × LSCl(Y ).

These spaces and operators have the following properties:

(a) There is a M > 0 such that for each h ∈ Cb(X) there are hn ∈ Bn such that 
LIMhn = h and supn ||hn|| ≤ M ||h||

(b) H† ⊆ ex − LIM SUPHn,† and H‡ ⊆ ex − LIM INFHn,‡;
(c) For each n ≥ 1, λ > 0 and h ∈ Bn the function (Rn(λ)h)∗ is a viscosity subsolution 

to f−λHn,† = h. Similarly, (Rn(λ)h)∗ is a viscosity supersolution to f−λHn,‡f = h.
(d) We have local strict equi-continuity on bounded sets: for all q ∈ Q, δ > 0 and λ0 > 0, 

there is a q̂ ∈ Q such that for all n and h1, h2 ∈ Bn and 0 < λ ≤ λ0 that

sup
y∈Kq

n

{Rn(λ)h1(y) −Rn(λ)h2(y)} ≤ δ sup
x∈Xn

{h1(x) − h2(x)}+ sup
y∈Kq̂

n

{h1(y) − h2(y)} .

Remark 5.6. As a follow up on Remark 3.19, note that (b) and (d) reflect a careful 
balance. Proving (d) will be relatively easy if one chooses large sets for Kq

n, which leads 
to a difficulties in (b). Context specific knowledge is needed for a proper choice.

We briefly discuss the relevance of our four conditions and a sketch of the proof.

• Conditions (b) and (c) are aimed at showing that LIM SUPn Rn(λ)hn yields a vis-
cosity subsolution to f − λH†f = h, whereas LIM INFn Rn(λ)hn yields a viscosity 
supersolution to f − λH‡f = h if LIMhn = h. In combination with the comparison 
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principle for h in a quasi-dense set D, we obtain a viscosity solution for h ∈ D that 
we call R(λ)h. In addition, we obtain that LIMRn(λ)hn = R(λ)h.

• Using Proposition 3.24, the operator R(λ) extends to Cb(X) on which it is strictly 
continuous on bounded sets. In particular the operator is contractive.

• The operator R(λ) is a pseudo-resolvent as it is the limit of pseudo-resolvents.

Some technical difficulties need to be settled. The main idea for our the first step of 
our strategy is to apply the method that was also used in the proof of Proposition 4.8. 
Here we used contractivity of the resolvent and Lemma 4.5. In this setting, we need to 
take care of our special notion of LIM. Thus, we need to replace contractivity by control 
along compact subsets Kq

n for a fixed q. This is the main aim of Condition (d).

Theorem 5.7. Let Condition 5.5 be satisfied. Let D ⊆ Cb(X) be quasi-dense in Cb(X). 
Suppose that for each λ > 0 and h ∈ D the comparison principle holds for

f − λH†f = h, f − λH‡f = h. (5.7)

Then there is a collection of operators R(λ) : Cb(X) → Cb(X) such that

(a) For each h ∈ D and λ > 0 the function R(λ)h is a viscosity subsolution to f−λH†f =
h and a viscosity supersolution to f − λH‡f = h.

(b) The operators are locally strictly equi-continuous on bounded sets.
(c) The operators form a pseudo-resolvent.
(d) For λ > 0, hn ∈ Bn and h ∈ Cb(X) such that LIMhn = h, we have LIMRn(λ)hn =

R(λ)h.

We state the main argument for the theorem as a separate proposition as it is valid 
in a context that goes slightly beyond the theorem.

Proposition 5.8. Let Condition 5.5 be satisfied.

(a) Let hn ∈ Bn, h ∈ USCu(X) and suppose that LIM SUPn hn ≤ h. Define

F := LIM SUP
n

Rn(λ)hn,

then F
∗ is a viscosity subsolution to f − λH†f = h.

(b) Let hn ∈ Bn, h ∈ LSCl(X) and suppose that LIM INFn hn ≥ h. Define

F := LIM INF
n

Rn(λ)hn,

then F ∗ is a viscosity supersolution to f − λH‡f = h.
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It should be noted that the proof of this proposition does not use Condition 5.5 (a).
The main idea of the proof of the proposition is based on the proof of Lemma 7.14 

in [22], but improves on this result in terms of the three properties mentioned in the 
introduction: applicability outside of the context of large deviations, operators Hn,†, Hn,‡
instead of Hn and the possibility to work in X instead of in X.

Proof of Proposition 5.8. We only prove (a). Note first of all that by contractivity of 
Rn(λ), we have

sup
n

sup
x∈Xn

Rn(λ)hn(x) ≤ sup
n

sup
x∈Xn

hn(x) < ∞, (5.8)

so that we can indeed write down F := LIM SUPRn(λ)hn.
We prove that f := F

∗ is a viscosity subsolution of f − λH†f = h. First of all, f is 
upper semi-continuous by construction. Second, f is bounded from above as seen above 
as a consequence of (5.8). We will prove that f also satisfies the final property of the 
definition of subsolutions. As in the proof of Proposition 4.4, we use Lemma 4.5(a).

Thus, for (f0, g0) ∈ H† it suffices to prove that for 0 < ε < λ

sup
y

{
F (γ(y)) − f0(γ(y))

}
(5.9)

≤ sup
y

{(
F (γ(y)) − ε

(
F (γ(y)) − h(γ(y))

λ

))
− (f0(γ(y)) − εg0(y))

}
< ∞,

as we can replace F by its upper semi-continuous regularization f first on the right and 
then on the left-side of the inequality. Note that the lemma indeed suffices to establish 
the sub-solution property as for any function φ on X, we have supx φ(x) = supy φ(γ(x))
because γ is surjective.

We extend the proof of Proposition 4.4. In that proof, we used that the pseudo-
resolvent is contractive. In this case, we have to pass to the limit using the adapted notion 
of convergence. Thus, we replace contractivity by strict equi-continuity on bounded sets, 
Condition 5.5 (d).

For every n ≥ 1 set fn := Rn(λ)hn and gn := fn−hn

λ . Note that fn is well defined as 
hn ∈ Bn. By assumption there are (fn,0, gn,0) ∈ Hn,† such that (5.1), (5.2) and (5.3) are 
satisfied. Let ε ∈ (0, λ) and define

hε
n := fn − εgn = fn − ε

fn − hn

λ
, hε

n,0 := fn,0 − εgn,0. (5.10)

Note the following

(1) fn = Rn(ε)hε
n because Rn is a pseudo-resolvent;

(2) As the domain and range of Hn,† are contained in Bn, we can apply Rn(ε) to hε
n,0. 

By Condition 5.5 (c) and Lemma 4.11 we find fn,0 ≥ (Rn(ε)hε
n,0)∗ ≥ Rn(ε)hε

n,0.
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(3) Finally

sup
n

hε
n(x) ≤ sup

n
hn(x) =: M1 < ∞,

inf
n

hε
n,0(x) ≥ inf

n
fn,0 − ε sup

n
gn,0 =: M2 > −∞.

(5.11)

The first equality follows by LIM SUPn hn ≤ h and ε < λ, whereas the second 
inequality follows by (5.1) and (5.2). Denote by M := M1 −M2.

Pick x ∈ X. Pick any q ∈ Q such that x ∈ Kq and such that there are xn ∈ Kq
n which 

satisfy ηn(xn) → η(x) in X (There is at least one such q by Assumption 3.27 (c)). Now 
take δ′ > 0 arbitrary. By (5.11) and Condition 5.5 (d), we find q̂ ∈ Q such that for all 
n, functions φ1, φ2 ∈ Bn satisfying supy∈Xn

φ1(y) − φ2(y) ≤ M

sup
y∈Kq

n

Rn(ε)φ1(y) −Rn(ε)φ2(y) ≤ δ′M + sup
y∈Kq̂

n

φ1(y) − φ1(y)

Fix δ = Mδ′, which we can choose arbitrarily small by choosing δ′ small. In addition, 
we can find z ∈ K q̂

n such that

sup
y∈Kq

n

Rn(ε)φ1(y) −Rn(ε)φ2(y) ≤ δ + sup
y∈Kq̂

n

φ1(y) − φ1(y) ≤ 2δ + φ1(z) − φ2(z). (5.12)

For next computation, we use (1) and (2) in line 3, Equation (5.10) in line 5 and for 
line 4 we find zn ∈ K q̂

n such that Equation (5.12) holds for all n and hε
n, h

ε
n,0 instead of 

φ1, φ2. This gives

fn(xn) − fn,0(xn) (5.13)

≤ sup
y∈Kq

n

fn(y) − fn,0(y)

≤ sup
y∈Kq

n

Rn(ε)hε
n(y) −Rn(ε)hε

n,0(y)

≤ 2δ + hε
n(zn) − hε

n,0(zn)

≤ 2δ +
(
fn(zn) − ε

fn(zn) − hn(zn)
λ

)
− (fn,0(zn) − εgn,0(zn)) .

Recall that our aim is to prove (5.9). Our next step is to take a lim supn on both 
sides of the inequality. To study this limsup, we see that only the term gn,0 is not yet 
understood in terms of its limiting behavior. Our aim is to apply (5.3), for which we 
need to construct a subsequence n(k) for which η̂n(k)(zn(k)) → η̂(y) in Y with y ∈ K̂ q̂

satisfying f q̂
n(k),0(zn(k)) → f0(γ(y)).

Without loss of generality, we assume that

lim sup fn(xn) − fn,0(xn) > −∞,

n
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as there is nothing to prove otherwise. Again without loss of generality, we restrict to a 
subsequence n(k) of n such that

• the lim sup on the left-hand side of (5.13) is achieved as a limit:

lim sup
n

fn(xn) − fn,0(xn) = lim
k

fn(k)(xn(k)) − fn(k),0(xn(k)) > −∞, (5.14)

• there is some y ∈ K̂ q̂ with limk η̂n(k)(zn(k)) = η̂(y). This is possible due to Defini-
tion 3.27 (b). Note that by continuity of γ̂ : Y → X also limk ηn(k)(zn(k)) = η(γ(y))
with γ(y) ∈ Kq (Assumption 3.27 (d)).

We first consider the lim infk over both sides of the inequality (5.13). By our assump-
tion (5.14) on xn(k) we find

lim inf
k

(
fn(zn) − ε

fn(zn) − hn(zn)
λ

)
− (fn,0(zn) − εgn,0(zn)) > −∞.

By (5.8) the sequences {fn}n≥1 and {hn}n≥1 are uniformly bounded from above and by 
assumption (5.2) we have a uniform upper bound on {gn,0}n≥1. This leads to

lim sup
k

fn(k),0(zn(k)) < ∞.

By (5.1), choosing c larger than this lim sup, we find limk fn(k),0(zn(k)) = f0(γ(y)), which 
established also the condition for the application of (5.3). Taking the lim supk over both 
sides of (5.13), we find

lim sup
n

fn(xn) − fn,0(xn) = lim
k

fn(k)(xn(k)) − fn(k),0(xn(k))

≤ 2δ +
(
F (γ(y)) − ε

F (γ(y)) − h(γ(y))
λ

)
− (f0(γ(y)) − εg0(y)) .

Now we take the supremum over y on the right-hand side. Afterwards, we send δ → 0. 
This gives the correct right-hand side for (5.9). Next, we work on the left-hand side. We 
take a supremum over all q and sequences ηn(xn) → η(x) in X with xn ∈ Kq

n, followed 
by a supremum over x This establishes (5.9) which concludes the proof. �
Proof of Theorem 5.7. Fix λ > 0, h ∈ D and hn ∈ Bn with LIMhn = h. Let F and 
F be as in Proposition 5.8. By construction, it follows that F ≥ F . By the comparison 
principle, we also have F ∗ ≤ F

∗. The combination of these inequalities yields F = F ∗ =
F = F

∗. Denote this function by R̂(λ)h, which is therefore the unique viscosity solution 
to (5.7).
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Following Proposition 3.24, define

D(R(λ))

= {h ∈ Cb(X) | ∃hn ∈ Bn : LIMhn = h, LIMRn(λ)hn exists and is continuous}

and R(λ)h = LIMRn(λ)hn. By the argument above, R(λ) extends R̂(λ). By Proposi-
tion 3.24 D(R(λ)) is quasi-closed, and as D is quasi-dense in Cb(X) by assumption we 
find D(R(λ)) = Cb(X). In addition Proposition 3.24 D(R(λ)) yields that R(λ) is strictly 
continuous on bounded sets.

The pseudo-resolvent property follows by continuity from that of the operators Rn. 
The local strict continuity on bounded sets can be proven by making the estimates in the 
proof of Proposition 3.24 (a) uniform for λ with 0 < λ ≤ λ0, using the uniform choice of 
q̂ as in Condition 5.5 (d). �
6. Convergence of semigroups

Theorem 6.1. Let Condition 5.5 be satisfied. Suppose in addition that for all n we have 
a collection of functions Bn such that: Cb(Xn) ⊆ Bn ⊆ M(Xn) and suppose that 
Rn(λ)Cb(Xn) ⊆ Cb(Xn).

Let D ⊆ Cb(X) be quasi-dense in Cb(X). Suppose that for each λ > 0 and h ∈ D the 
comparison principle holds for

f − λH†f = h, f − λH‡f = h.

Denote by R(λ) : Cb(X) → Cb(X) the operators constructed in Theorem 5.7
Consider the operators

Ĥn :=
⋃
λ

{(
Rn(λ)h, Rn(λ)h− h

λ

) ∣∣∣∣h ∈ Cb(Xn)
}
, (6.1)

Ĥ :=
⋃
λ

{(
R(λ)h, R(λ)h− h

λ

) ∣∣∣∣h ∈ Cb(X)
}
, (6.2)

as in Proposition 4.10.
Let Vn(t) and V (t) be the operator semigroups on the uniform closures of D(Ĥn) and 

D(Ĥ) generated by Ĥn and Ĥ as in the Crandall-Ligget theorem, see Theorem 3.3.
Suppose that the semigroups Vn(t) are strictly equi-continuous on bounded sets: for 

all q ∈ Q, δ > 0 and t0 > 0, there is a q̂ ∈ Q such that for all n and h1, h2 ∈ Bn and 
0 ≤ t ≤ t0 that

sup
y∈Kq

n

{Vn(t)h1(y) − Vn(t)h2(y)} ≤ δ sup
x∈Xn

{h1(x) − h2(x)} + sup
y∈Kq̂

n

{h1(y) − h2(y)} .

Denote by D the quasi-closure of D(Ĥ). Then
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(a) We have Ĥ ⊆ ex − LIM Ĥn as in Definition 3.15. That is, for all (f, g) ∈ Ĥ there 
are (fn, gn) ∈ Ĥn such that LIM fn = f and LIM gn = g.

(b) The semigroup V (t) extends to the quasi-closure D of D(Ĥ) on which it is locally 
strictly equi-continuous on bounded sets.

(c) For each f ∈ D there are fn in the uniform closures of D(Ĥn) such that LIM fn = f .
(d) If fn are in the uniform closures of D(Ĥn) and f ∈ D such that LIM fn = f and 

tn → t then LIMVn(tn)fn = V (t)f .

Remark 6.2. For applications it is of interest to know whether D(Ĥ) is quasi-dense in 
Cb(X). If the resolvent is obtained as in Theorem 5.7 and LIMRn(λ)h = h as λ ↓ 0 for 
all n, then this can sometimes be established directly from an approximation procedure, 
see for example Lemma 7.19 in [22]. This is indeed what one would expect from a 
Crandall-Liggett theorem for the strict topology. Another possibility is to find an explicit 
expression for the resolvent and verify this property directly. We will pursue a third 
possibility below, see Proposition 7.1, that is based on a comparison principle.

The main step to go from the result of Theorem 5.7 to that of above theorem is 
an approximation argument by Kurtz: Theorem 3.2 of [49]. The key argument in the 
approximation result is the embedding of all spaces and semigroups in a common product 
space. The notion of LIM is embedded into this product space as a closed subspace. We 
study these spaces in next proposition.

Proposition 6.3. Let Assumptions 3.11 and 3.13 be satisfied. The space

L :=
{
〈f, {fn}〉

∣∣∣∣ fn ∈ Mb(Xn), f ∈ Mb(X), sup
n

||fn|| < ∞
}
,

equipped with the norm ||〈f, {fn}〉|| = ||f || ∨ supn ||fn|| is a Banach space. Set

P := {(〈f, {fn}〉, f) ∈ L×Mb(X) | LIM fn = f} .

The set P is a closed linear subspace L ×Mb(X) and P interpreted as an operator from 
L to Mb(X) satisfies ||P|| ≤ 1.

In the proposition, we do not consider for which f there are fn such that f = LIM fn. 
We assume this e.g. in Condition 5.5 (a). In particular cases, however, surjectivity of P
can be established directly.

Lemma 6.4. Suppose that X is a normal space and that the maps ηn : Xn → X are 
continuous and that η : X → X is a homeomorphism onto its image. Then for each 
f ∈ Mb(X) there are fn ∈ Mb(Xn) such that LIM fn = f . If f ∈ Cb(X), then fn can be 
chosen in Cb(Xn).
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Proof. First let f ∈ Cb(X). The function g := f ◦η−1 is a continuous function with norm 
||f || on η(X) ⊆ X . By the Tietze extension Theorem, it extends to a continuous function 
g on X with norm ||g|| = ||f ||. We then define fn := g ◦ ηn, which leads to ||fn|| ≤ ||f ||. 
Next, let xn ∈ Kq

n and x ∈ Kq such that ηn(xn) → η(x). Because g is continuous, we 
find that g(ηn(xn)) → g(η(x)) implying that fn(xn) → f(x). Thus LIM fn = f . The 
result for Mb(X) then follows from the monotone class theorem, see e.g. Theorem 2.12.9 
in [3]. �
Remark 6.5. Note that in the use of the Monotone class theorem, we establish the result 
for functions that are bounded and measurable with respect to the σ-algebra generated 
by all bounded and continuous functions. For a general topological space this implies the 
final result holds for the set of bounded and measurable functions with respect to the 
Baire σ-algebra. In the case that X is Polish, the Baire and Borel σ algebra’s coincide. 
More general, this holds for perfectly normal spaces, see Proposition 6.3.4 in [3].

Proof of Proposition 6.3. That L is a Banach space, as that P is linear, is immediate. 
We establish that P is norm closed. Let fk

n , fn ∈ Mb(Xn) and fk, f ∈ Mb(X) such that 
for all k: LIM fk

n = fk and limk

(∣∣∣∣f − fk
∣∣∣∣ ∨ supn

∣∣∣∣fk
n − fn

∣∣∣∣) = 0. We prove LIM fn = f .
First of all, let k be such that supn

∣∣∣∣fk
n − fn

∣∣∣∣ ≤ 1. Then ||fn|| ≤
∣∣∣∣fn − fk

n

∣∣∣∣+ ∣∣∣∣fk
n

∣∣∣∣ ≤
1 +

∣∣∣∣fk
n

∣∣∣∣. The final term is bounded as LIM fk
n = fk. For the second property, fix q ∈ Q

and xn ∈ Kq
n converging to x ∈ Kq. We have

|fn(xn) − f(x)| ≤
∣∣fn(xn) − fk

n(xn)
∣∣+ ∣∣fk

n(xn) − fk(x)
∣∣+ ∣∣fk(x) − f(x)

∣∣
≤ sup

m

∣∣∣∣fm − fk
m

∣∣∣∣+ ∣∣fk
n(xn) − fk(x)

∣∣+ ∣∣∣∣fk − f
∣∣∣∣ .

The first and third term on the right-hand side can be made arbitrarily small by choosing 
k large. For fixed k the term final term converges to 0 as LIMn f

k
n = fk. Thus, we find 

fn(xn) → f(x). Contractivity of P follows by assumption. �
The proof of the theorem is based on a general semigroup approximation result [49, 

Theorem 3.2].

Proof of Theorem 6.1. For the proof of (a), pick f ∈ D(Ĥ). By definition there are 
λ > 0 and h ∈ D such that f = R(λ)h. By the assumption in Theorem 5.7, there are 
hn ∈ Bn ∩Mb(Xn) such that LIMhn = h. By Theorem 5.7, we obtain LIMRn(λ)hn =
R(λ)h = f . By construction Rn(λ)hn ∈ D(Ĥn) establishing (a).

We proceed with the proof of (b), (c) and (d) for which we will use Theorem 3.2 of 
[49]. Recall the set L and the closed subset P of Proposition 6.3. Denote also

H :=
{

(〈f, {fn}〉, 〈g, {gn}〉) ∈ L× L

∣∣∣ (fn, gn) ∈ Ĥn, (f, g) ∈ Ĥ
}
.

Note that H is dissipative and satisfies the range condition because the operators 
Ĥn and Ĥ do as well. The semigroup V(t) generated by H equals V(t) (〈f, {fn}〉) =
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〈V (t)f, {Vn(t)fn}〉 on the uniform closure in L of D(Ĥ) ×
∏

n D(Ĥn) (which might be 
smaller than the product over the uniform closures).

By (a), we have

Ĥ = {(f, g) | ((〈f, {fn}〉, f), (〈g, {gn}〉, g)) ∈ H ∩ (D(P) ×D(P))} ,

so that all conditions for Theorem 3.2 of [49] are satisfied. From Equation (3.4) in 
[49], we infer that if t ≥ 0, fn ∈ D(Ĥn) and f ∈ D(Ĥ) such that LIM fn = f , then 
LIMVn(t)fn = V (t)f .

Fix t > 0 and define

D(V (t)) :=

{h ∈ Cb(X) | ∃hn ∈ Bn : h = LIMhn,LIMVn(t)hn exists and is continuous} . (6.3)

By the argument above D(V (t)) contains D(Ĥ). By Proposition 3.24 the set D(V (t)) is 
quasi-closed and the operator V (t) extends to D(V (t)) on which it is strictly continuous 
on bounded sets.

Thus, the quasi-closure D of D(Ĥ) is contained in D(V (t)) for all t. Thus, (b), (c) 
and (d) (for tn = t) all follow from Proposition 3.24.

We now extend (d) to the context of tn converging to t. Thus, let tn → t, fn ∈ D(Ĥn)
and f ∈ D(Ĥ) such that LIM fn = f . We have seen above that LIMVn(t)fn = V (t)f . 
Using the decomposition

V (t)f − Vn(tn)fn = [V (t)f − Vn(t)fn] + [Vn(t)fn − Vn(tn)fn]

and the uniform continuity of V(t) on D(Ĥ) ×
∏

n D(Ĥn) we find that also LIMVn(tn)fn =
V (t)f .

Repeating the argument above for

D{tn}(V (t)) :=

{h ∈ Cb(X) | ∃hn ∈ Bn : h = LIMhn,LIMVn(tn)hn exists and is continuous} , (6.4)

we find by Proposition 3.24 a second extension of V (t) with the correct properties. 
However, as we have seen the extensions based on (6.3) and (6.4) agree on the quasi-
dense subset D(Ĥ) ⊆ D and therefore must be the same on D. This establishes (d). �
7. Density of the domain

In Theorem 6.1, we obtained a semigroup that was defined on the quasi-closure of 
D(Ĥ). In applications, often it is of interest to know whether this quasi-closure is in fact 
equal to Cb(X).
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A key method to verify this quasi-density, is the verification that as λ ↓ 0, we have 
LIMR(λ)h = h for the buc topology. For this there are two possible strategies:

1. One finds a explicit characterization of R, i.e. a control representation, and verifies 
this property directly,

2. In the context of Theorem 5.7, one knows that λ ↓ 0, we have LIMRn(λ)h = h for 
each n and h and establishes that such statements can be lifted to the limit, see e.g. 
Lemma 7.19 in [22].

We will introduce a new method, that bootstraps the procedure of Section 5.
We proceed with an informal discussion. Consider the setting in which R(λ)h is the 

viscosity solution to f−λHf = h. In the linear theory, it is generally known that R(λ)h →
h as λ ↓ 0 in an appropriate topology. Indeed, as R(λ)h ∈ D(H), this establishes density 
of D(H). We expect the same result to hold true in the non-linear case. Consider the 
operators An = 1

nH and resolvents Rn(λ) = R
(
λ
n

)
. Formally, the operator An converges 

to the zero-operator 0 ·H, so that we expect that the relaxed lim sup and lim inf of Rn(1)h
yield a viscosity sub- and supersolution to f−0 ·Hf = h, or informally written, to f = h. 
Clearly, we expect these limits to equal h. To obtain this result rigorously, we need a 
comparison principle.

Informally, we need that D(H) that is ‘large enough to uniquely identify functions’.
We make this intuition rigorous.

Proposition 7.1. Let X be a space with metrizable compact sets and let H† ⊆ Cb(X) ×
Cb(X) and H‡ ⊆ Cb(X) ×Cb(X). Let R(λ) : Cb(X) → Cb(X) be a collection of operators 
that is locally strictly equi-continuous on bounded sets as in Definition 4.2.

Let D be a quasi-dense set in Cb(X) and suppose that for λ > 0 and h ∈ D, the 
function R(λ)h is a viscosity solution to

f − λH†f = h, f − λH‡f = h.

Denote A† := 0 ·H† and A‡ := 0 ·H‡. Suppose that the comparison principle holds for 
f −A†f = h1 and f −A‡f = h2 for h1, h2 ∈ D. Let λn ↓ 0. Then for all h ∈ D we have 
LIMn R(λn)h = h. In particular, the domain D(Ĥ) is quasi-dense in Cb(X).

Remark 7.2. Generally, proofs that establish the comparison principle for f − λH†f =
h and f − λH‡f = h can be adapted in a straightforward way to also establish the 
comparison principle for f − λA†f = h and f − λA‡f = h.

We start by proving the seemingly trivial fact that h solves the equation f = h.

Lemma 7.3. Let H† ⊆ LSCl(X) ×USCu(X) and H‡ ⊆ USCu(X) ×LSCl(X) and define 
A† := 0 · H† and A‡ := 0 · H‡.
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For any h ∈ Cb(X) the function h is a subsolution to f−A†f = h and a supersolution 
to f −A‡f = h.

Proof. We show that h is a viscosity subsolution to f −A†f = h and a supersolution to 
f −A‡f = h.

We establish that h is a viscosity subsolution of f − A†f = h by using Lemma 4.5
(a). Let (f, g) ∈ A†. Thus g = 0 · ĝ with (f, ̂g) ∈ H†. Note that ĝ is bounded from above. 
Thus 0 · ĝ ≤ 0. Thus, for all ε > 0 we have

sup
x

h(x) − f(x) ≤ sup
x

h(x) − f(x) − ε ((h(x) − h(x)) − 0 · ĝ(x)).

This inequality, in combination with the fact that f is bounded from below, implies that 
the condition of Lemma 4.5 (a) is satisfied (note that the g’s in the Lemma and here are 
different). As a consequence, we find xn ∈ X such that

lim
n

h(xn) − f(xn) = sup
x

h(x) − f(x)

lim sup
n

h(xn) − f(xn) − 0 · ĝ(xn) ≤ 0,

that is, h is a subsolution to f −A†f = h. Similarly, we prove that h is a supersolution 
to f −A‡f = h, which concludes the proof. �

In the proof below, the notion of LIM refers to buc convergence. Thus, Q is the 
set of compact sets K in X with KK

n = KK = K. See Example 3.16. Note that we need 
metrizable compacts to extract converging subsequences from sequences in compact sets.

Proof of Proposition 7.1. If we can establish that LIMR(λn)h = h, then we have that 
D(Ĥ) is quasi-dense in D. As D is quasi-dense in Cb(X) by assumption, this establishes 
the claim.

By Lemma 7.3 and uniqueness of viscosity solutions, it suffices to apply Proposition 5.8
for An,† = λnH†, An,‡ := λnH‡ and Rn := R (λn).

Doing so, we obtain that Rnh is a viscosity subsolution to f − An,†f = h and a 
supersolution to f −An,‡f = h. Thus, it suffices to verify Condition 5.5.

We work with Bn = Cb(X). Then (a) is immediate. Condition (c) follows by as-
sumption. Also (d) is immediate by local strict equi-continuity on bounded sets of the 
resolvent R(λ).

Next, we establish (b), i.e.:

A† ⊆ ex− LIM SUPAn,†, A‡ ⊆ ex− LIM INFAn,‡.

We only prove the first claim. Suppose (f, g) ∈ A†. Then there is a ĝ such that g = 0 · ĝ
and (f, ̂g) ∈ H†. Set fn = f and gn = λn · ĝ. It follows that (fn, gn) ∈ An,†. It is 
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immediate that LIM fn∧c = f for all c and as ĝ is bounded above also supn supx gn(x) ≤
0 ∨ supx g(x) < ∞. Finally, we establish (5.3). Note that as xn → x in some compact set 
K ⊆ X, we have

lim sup
n

ĝ(xn) ≤ ĝ(x)

as ĝ is upper semi-continuous. It follows that

lim sup
n

gn(xn) = lim sup
n

λnĝ(xn) ≤ 0 · g(x).

Thus, we conclude by Proposition 5.5 and the comparison principle that LIMRnh as 
n → ∞ is the unique viscosity solution h to f −A†f = h and f −A‡f = h. �
8. Two applications

In this section, we consider two one-dimensional examples that are meant to illustrate 
working with embedding maps ηn, η̂n that are not the identity map. They are not meant 
to introduce new results, nor to illustrate the most advanced uses of the results of this 
paper, but to give an idea of how to apply the techniques.

In particular, we consider two distinct settings, in the first one we consider the con-
vergence of semigroups that correspond to the homogenization of a one dimensional 
first-order Hamilton-Jacobi equation. In the second case, we consider the semigroups 
corresponding the large deviations of a discrete mean-field model.

8.1. A homogenisation result

Consider the semigroups corresponding to the equations

∂tf(t, x) − aε (x) (∂xf(t, x))2 = 0, t ≥ 0, x ∈ R. (8.1)

Here a is roughly of the form aε(x) = a1(x) + a2(x/ε), where a2 is one-periodic. We 
assume aε to be uniformly bounded and bounded away from 0 in x and ε. It is known 
[37], that these semigroups converge as ε ↓ 0 to the solution of the homogenized equation

∂tf(t, x) − a(x)(∂xf(t, x))2 = 0, t ≥ 0, x ∈ R, (8.2)

where a can be determined exactly, see Theorem 8.1 below, due to the on-dimensional 
nature of the problem.

We consider this problem from the point of view of the techniques of this paper 
(Choosing e.g. ε = 1/n). We thus turn our view towards the convergence of viscosity 
solutions of the Hamilton-Jacobi equations

f − λHεf = h, to the solution of f − λHf = h (8.3)
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where Hε, H ⊆ Cb(R) × R with domains C2
c (R) given by Hεf(x) = Hε(x, f ′(x)) and 

Hf(x) = H(x, f ′(x))

Hε(x, p) = 1
2aε (x) p2, H(x, p) = 1

2a(x)p2. (8.4)

Standard control theory, see e.g. [2] or Chapter 8 of [22], yields that the associated 
semigroups and pseudo-resolvents are given in terms of Lagrangians obtained by taking 
a Legendre transform of the Hamiltonians Hε, H:

Lε(x, v) = 1
2aε(x)v

2, Lε(x, v) = 1
2a(x)v

2.

Let AC be the space of absolutely continuous trajectories on R. We then have

Vε(t)f(x) := sup
γ∈AC,γ(0)=x

f(γ(t)) −
t∫

0

Lε(γ(s), γ̇(s))ds,

V (t)f(x) := sup
γ∈AC,γ(0)=x

f(γ(t)) −
t∫

0

L(γ(s), γ̇(s))ds,

and

Rε(λ)h(x) := sup
γ∈AC:γ(0)=x

⎧⎨⎩
∞∫
0

λ−1e−λ−1t

⎡⎣h(γ(t)) −
t∫

0

Lε(γ(s), γ̇(s))ds

⎤⎦ dt

⎫⎬⎭ ,

R(λ)h(x) := sup
γ∈AC:γ(0)=x

⎧⎨⎩
∞∫
0

λ−1e−λ−1t

⎡⎣h(γ(t)) −
t∫

0

L(γ(s), γ̇(s))ds

⎤⎦dt

⎫⎬⎭ .

In particular, we have that Rε(λ)h and R(λ)h are viscosity solutions to the two equations 
in (8.3) respectively. Working e.g. along εn := 1/n, we will establish the following result. 
Here S1 := R/Z is the 1d torus.

Theorem 8.1. Let Hε and H be given as in (8.4). Suppose that there exists a function 
a ∈ C(R × S1) that is bounded and bounded away from 0 such that for any sequence 
xn ∈ R and (x, z) ∈ R × S1 satisfying (xn, xn/εn mod 1) → (x, z) we have

lim
n

aεn(xn) = a(x, z). (8.5)

Then we have the following convergence statements. Let fn, f ∈ Cb(R) such that buc −
lim fn = f . Furthermore, let λ, t > 0.

Then buc − limRεn(λ)fn = R(λ)f and buc − lim Vεn(t)fn = V (t)f .
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To prove this result with the framework of Theorem 2.1, we need to find appropriate 
functions fε converging to f , so that also Hεfε converges. This can be done by finding 
the so-called corrector and using the perturbed test function method, see e.g. [37]. To 
apply this method directly, however, one needs to establish regularity of the corrector. 
It turns out that we can avoid establishing regularity by performing an analysis on the 
basis of 5.7 and 6.1. The use of the corrector is then postponed to the proof of the 
comparison principle.

We analyze the limiting behavior of Hε. Let f ∈ C1
c (R) and φ ∈ C1(S1). Set fε(x) =

f(x) + εφ(x/ε). Then

Hεfε(x) = 1
2aε (x) (f ′(x) + φ′(x/ε))2, (8.6)

and a limiting result for Hεfε is immediate from (8.5) if the limit is expressed in terms 
of the extended set of variables (x, x/ε).

This motivates working in the context of Assumptions 3.26 and 3.27. In this context, 
we can identify X = X = R and Y = Y = R × S1 (η, ̂η both being the identity map) 
and work with ηn : R → R, ηn(x) = x and η̂n(x) = (x, x/εn).

For Assumption 3.27, we will work with a simple variant of the set-up of Example 3.29. 
We take Q to be the set

Q := {K |K ⊆ R compact} ,

and KK
n = KK = K, K̂K = K × S1. This way the notion LIM equals buc − lim, i.e. the 

notion of bounded and uniform convergence on compact sets.
The formula in (8.6) motivates the definition of the following limiting operator H. For 

f ∈ C1
c (R), φ ∈ C1(S1), set

Gf,φ(x, z) := 1
2a(x, z) [f ′(x) + φ′(z)]2 ,

and

H :=
{
(f,Gf,φ) ∈ Cb(R) × Cb(R× S1)

∣∣ f ∈ C1
c (R), φ ∈ C1(S1)

}
,

so that we immediately obtain H ⊆ ex − LIMHε.
For the application of Theorem 5.7 and 6.1, we need to verify the comparison principle 

for H, and verify that we have the appropriate conditions for convergence. We start with 
the latter.

Lemma 8.2. Condition 5.5 is satisfied with Bn = Cb(R). We also have for any compact 
set K ⊆ R, δ > 0, t0 > 0, that there exists a compact set K̂ ⊆ R such that for all 
h1, h2 ∈ Cb(R) and ε > 0 and t such that 0 ≤ t ≤ t0:

sup
x∈K

Vε(t)h1(x) − Vε(t)h2(x) ≤ δ sup
y

{h1(y) − h2(y)} + sup̂{h1(y) − h2(y)} .

y∈K
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The proof of the joint equi-coercivity estimates for the resolvents and semigroups will 
make use of a Lyapunov argument. As we will use the Lyapunov function at various later 
stages, we introduce it here for later reference. Set

Υ(x) = log
(

1 + 1
2x

2
)

(8.7)

and note that

cΥ := sup
ε

sup
x

1
2aε(x)(Υ′(x))2 < ∞. (8.8)

Proof of Lemma 8.2. We start with the verification of Condition 5.5. (a) is immediate, 
(b) has just been established and (c) follows from general theory on viscosity solutions, 
see e.g. [2, Section 3.2] or [22, Chapter 8]. We prove (d) using a Lyapunov function 
technique.

Let h1, h2 ∈ Cb(R), fix a compact set K ⊆ R, δ > 0 and λ0 > 0, and λ such that 
0 < λ ≤ λ0. Finally, let γx be the optimizer for Rε(λ)h1(x). We find that

sup
x∈K

Rε(λ)h1(x) −Rε(λ)h2(x) ≤
∞∫
0

λ−1e−λ−1t [h1(γx(t)) − h2(γx(t))] dt. (8.9)

Choose T such that

sup
0<λ≤λ0

∞∫
T

λ−1e−λ−1tdt ≤ δ.

Inserting this estimate into (8.9), we find

sup
x∈K

Rε(λ)h1(x) −Rε(λ)h2(x)

≤ δ sup
y

{h1(y) − h2(y)} +
T∫

0

λ−1e−λ−1t [h1(γx(t)) − h2(γx(t))] dt. (8.10)

We now analyze the time integral on the right-hand side. Note that for every ε > 0, the 
path that does not move has 0 Lagrangian cost. Thus,

Rε(λ)h1(x) ≥ h1(x),

which implies that the optimizer γx for Rε(λ)h1(x) satisfies

∞∫
λ−1e−λ−1t

t∫
Lε(γx(s), γ̇x(s))dsdt ≤ 2 ||h1|| .
0 0
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As Lε ≥ 0 and outer integral is taken over a measure with mass 1, we also find that

t∫
0

Lε(γx(s), γ̇x(s))ds ≤ 2 ||h1||

for all t ≥ 0 and ε > 0. Recall Υ defined in (8.7) and the estimate (8.8). It follows from 
the Fenchel-Young inequality that for all t ≤ T :

Υ(γx(t)) = Υ(γx(0)) +
t∫

0

〈γ̇x(s),Υ′(γx(s)〉ds

≤ Υ(γx(0)) + tcΥ +
t∫

0

Lε(γx(s), γ̇x(s))ds

≤ Υ(x) + TcΥ + 2 ||h1|| .

(8.11)

As K is compact, Υ is bounded on K. This implies that the set

K̂ :=
{
y′ |Υ(y′) ≤ sup

y∈K
Υ(y) + TcΥ + 2 ||h1||

}
,

is a compact set. By the definition of K̂ and (8.11), we find that for all x ∈ K, ε > 0, λ
such that 0 < λ ≤ λ0 and t ≤ T we have γx(t) ∈ K̂. Plugging this into (8.10), we obtain

sup
x∈K

Rε(λ)h1(x) −Rε(λ)h2(x) ≤ δ sup
y

{h1(y) − h2(y)} + sup
y∈K̂

{h1(y) − h2(y)} .

The joint equi-coercivity for the semigroups follows analogously. �
The second key ingredient for the application of Theorems 5.7 and 6.1 is the compar-

ison principle for the Hamilton-Jacobi equation f − λHf = h.

Proposition 8.3. The comparison principle holds for f −λHf = h and f −λHf = h and 
the solutions, if they exist, to both equations are the same.

The proof of this proposition is inspired by the methods of [22, Chapter 11] and [35]
and is carried out by establishing the diagram of Fig. 1. The operators H and H are the 
ones that were introduced above, the further four operators are defined below and are 
constructed out of H and H by the addition of a Lyapunov function in the domain that 
takes care of localization arguments.
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comparison

H1 H†

H H

H2 H‡

sub

super

sub

super

sub

super

Fig. 1. An arrow connecting an operator A with operator B with subscript ‘sub’ means that viscosity 
subsolutions of f − λAf = h are also viscosity subsolutions of f − λBf = h. Similarly for arrows with a 
subscript ‘super’. The box around the operators H† and H‡ indicates that the comparison principle holds 
for subsolutions of f − λH†f = h and supersolutions of f − λH‡f = h.

Let f ∈ C1
b (R), φ ∈ C1

b (S1), η ∈ (0, 1), set

f†(x) := (1 − η)f(x) + ηΥ(x),

G†
f,φ,η(x, z) := (1 − η)

(
1
2a(x, z) [f ′(x) + φ′(z)]2

)
+ ηcΥ,

f‡(x) := (1 + η)f(x) − ηΥ(x),

G‡
f,φ,η(x, z) := (1 + η)

(
1
2a(x, z) [f ′(x) + φ′(z)]2

)
− ηcΥ,

and set

H1 :=
{

(f†
η , G

†
f,φ,η)

∣∣∣ f ∈ C1
b (R), φ ∈ C1

b (S1), η ∈ (0, 1)
}
,

H2 :=
{

(f‡
η , G

‡
f,φ,η)

∣∣∣ f ∈ C1
b (R), φ ∈ C1

b (S1), η ∈ (0, 1)
}
.

Also set

f†
η(x) := (1 − η)f(x) + ηΥ(x),

g†η(x) := (1 − η)H(x, f ′(x)) + ηcΥ

f‡
η(x) := (1 + η)f(x) − ηΥ(x),

g‡η(x) := (1 + η)H(x, f ′(x)) − ηcΥ,

and finally

H† :=
{
(f†

η , g
†
η)
∣∣ f ∈ C1

b (R), η ∈ (0, 1)
}
,

H‡ :=
{
(f‡

η , g
‡
η)
∣∣ f ∈ C1

b (R), η ∈ (0, 1)
}
.

The operator H and H are related to H1, H2 and H†, H‡ by the following two Lemma’s 
respectively.

Lemma 8.4. Fix λ > 0 and h ∈ Cb(R).
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(a) Every subsolution to f − λHf = h is also a subsolution to f − λH1f = h.
(b) Every supersolution to f − λHf = h is also a supersolution to f − λH2f = h.

Lemma 8.5. Fix λ > 0 and h ∈ Cb(R).

(a) Every subsolution to f − λHf = h is also a subsolution to f − λH†f = h.
(b) Every supersolution to f − λHf = h is also a supersolution to f − λH‡f = h.

Analogous results to Lemma’s 8.4 and 8.5 has been proven in Lemma 3.3 of [35], so we 
refrain from carrying out the proofs here. We next establish the two horizontal arrows 
in Fig. 1, in which the corrector plays a key role.

Lemma 8.6. Fix λ > 0 and h ∈ Cb(R).

(a) Every subsolution to f − λH1f = h is also a subsolution to f − λH†f = h.
(b) Every supersolution to f − λH2f = h is also a supersolution to f − λH‡f = h.

Remark 8.7. In the proof of the lemma, it essential that we can indeed find an optimizer 
x0 for the definition of viscosity solutions, as this allows us to introduce the corrector 
φx0 in way that does away with establishing regularity on the corrector as a function 
of x. To find such an optimizer, we need compact level sets of the test functions. This 
motivates the construction of H1, H2, H†, H‡ using the Lyapunov function Υ.

Proof of Lemma 8.6. Let u be a subsolution to f − λH1f = h. We show it is also a 
subsolution to f − λH†f = h. Pick f ∈ C1

b (R) and η ∈ (0, 1).
First we show there exists x0 such that

u(x0) − f†
η(x0) = sup

x

{
u(x) − f†

η(x)
}
. (8.12)

First of all, note that u and −f†
η are upper semi-continuous. As Υ has compact sub-level 

sets, there exists x0 such that

u(x0) − f†
η(x0) = sup

x

{
u(x) − f†

η(x)
}
.

Next, let f̂ ∈ C1
b (R) be a smooth function such that f̂(x0) = f(x0) and f̂(x) > f(x) if 

x �= x0 so that x0 is the unique optimizer in

u(x0) − f̂†
η(x0) = sup

x

{
u(x) − f̂†

η(x0)
}

(8.13)

and in addition f ′(x0) = f̂ ′(x0).
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Next, we consider the corrector. The corrector φx0 is such that

Gf̂ ,φx0 ,η
(x0, z)

does not depend on z. This way, if we consider the subsolution property in (x0, z), the 
constant z does not play any role. Due to the one-dimensional setting, we can solve for 
φx0 , and find

φx0(z) := −f ′(x0)

⎡⎣z − ∫ z

0
1

a1/2(x0,y)dy∫ 1
0

1
a1/2(x0,y)dy

⎤⎦ (8.14)

and

Gf̂ ,φx0 ,η
(x0, z) = (1 − η)1

2a(x0)(f ′(x0))2 + ηcΥ.

Note that φx0(1) = φx0(0), so that indeed φ ∈ C1(S1).
As u is a subsolution to f − λH†f = h, there are (xn, zn) such that

lim
n

u(xn) − f̂†
η(xn) = sup

x
u(x) − f̂†

η(x)

and

lim sup
n

u(xn) − λG†
f̂ ,φx0 ,η

(xn, zn) − h(xn) ≤ 0.

As x0 is the unique optimizer of sup(u − f̂†
η), and as S1 is compact, there exists z0 ∈ S1

such that along a subsequence we have (xn, zn) → (x0, z0). We conclude that

u(x0) − λ

(
(1 − η)1

2a(x0)(f ′(x0))2 + ηcΥ

)
(x0, z0) − h(x0)

= u(x0) − λG†
f̂ ,φx0 ,η

(x0, z0) − h(x0)

≤ 0.

So that in combination with (8.12), we have obtained the two desired properties for each 
pair of functions in H†. We conclude that u is a subsolution to f − λH†f = h. �
Proof of Proposition 8.3. By Lemma’s 8.4, 8.5, and 8.6, viscosity subsolutions to f −
λHf = h or f − λHf = h are also viscosity subsolutions to f − λH†f = h. A similar 
statement holds for the supersolutions.

The comparison principle for sub- and supersolutions for f−λH†f = h and f−λH‡f =
h follows from standard comparison principles (See e.g. the proof of Theorem II.3.5 of 
[2]). Note that proofs are typically written down in terms of a single equation, but in 
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the first step of the doubling-of-variables method, a penalization function is added to 
localize the argument. The penalization function is now already contained in the domains 
of H†, H‡, and the comparison principle proof does not change, see e.g. [7] where this 
different point of view is worked out. �
Proof of Theorem 8.1. By Lemma 8.2 and Proposition 8.3 all conditions for Theo-
rems 5.7 and 6.1 are satisfied.

Thus, there exists a pseudo-resolvent R0(λ) and semigroup V0(t) such that Rε(t)
and Vε(t) converge to R0(λ) and V0(t). What is left to prove is that V0(t) = V (t)
and R0(λ) = R(λ). For the pseudo-resolvents this is immediate by Proposition 8.3. For 
the semigroups, note that by Theorem 3.3, the pseudo-resolvents R0(λ) approximate the 
semigroup V0(t). The same statement holds for the pseudo-resolvents R(λ) and semigroup 
V (t) by e.g. Lemma 8.18 in [22]. We conclude that as the pseudo-resolvents agree, the 
semigroups agree also.

This establishes the claim. �
8.2. Lumping together of variables: the dynamic Curie-Weiss model

We consider the dynamic Curie-Weiss model: a naive description for the microscopic 
causes of ferromagnetism. We refrain from giving a full description, but rather give the 
necessary definitions that are needed to follow the application of our main results. For 
a thorough discussion of the static Curie-Weiss model and related models, see e.g. [25]. 
The large deviation analysis of the dynamic model leads to a Hamilton-Jacobi equation, 
see also e.g. [14,30].

Let Xn = {−1, 1}n. We denote elements in Xn by σ = (σ1, σ2, . . . , σn) which are 
interpreted as ‘spins’ or magnetic moments. On Xn we consider a Markov process that 
we interpret as the thermal fluctuations of the spins. Let β ≥ 0 be a parameter that 
models the inverse of the temperature.

On Xn, we define a Markov process t �→ σn(t) that has infinitesimal generator An ⊆
Cb(Xn) × Cb(Xn) where for each f ∈ Cb(Xn) we set

Anf(σ) :=
n∑

i=1
e−βσimn(σ) [f(σi) − f(σ)

]
(8.15)

where the magnetization mn is defined by

mn(σ) := 1
n

n∑
i=1

σi

and where

σi
j =

{
−σj if j = i,

σ if j �= i,
j
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is the effect of changing the sign of the i-th spin.
Denote by Pn

σ the measure on the Skorokhod space DXn
(R+), see e.g. [16], of tra-

jectories on Xn that are right-continuous and have limits, that describes the law of the 
Markov process t �→ σn(t) when started in the configuration σn(0) = σ.

In the theory of large deviations for Markov processes, a key role is played by the 
semigroup of conditional log exponential generating functions:

Vn(t)f(σ) := sup
Q∈P(DXn (R+))

{∫
f(η)Q(dη) − 1

n
S(Q |Pn

σ )
}

where P(DXn
(R+)) is the space of probability measures on DXn

(R+) and where S is 
the relative entropy defined by

S(ν |μ) =
{∫ dν

dμ log dν
dμdμ if ν � μ,

∞ otherwise.

It is shown in [32] that Vn(t) : Cb(Xn) → Cb(Xn) is a semigroup that corresponds to the 
pseudo-resolvent

Rn(λ)h(σ) = sup
Q∈P(DXn (R+))

⎧⎨⎩
∞∫
0

λ−1e−λ−1t

[∫
f(η)Q(dη) − 1

n
S[0,t](Q |Pn

σ )
]

dt

⎫⎬⎭ ,

where S[0,t] is the relative entropy of the measures when they are restricted to the 
σ-algebra of information up to time t. In addition, it is shown in [32] that the pseudo-
resolvent Rn(λ) yields viscosity solutions to the Hamilton-Jacobi equations in terms of 
the Hamiltonians Hn given by{(

f,
1
n
e−nfg

) ∣∣∣∣ (enf , g) ∈ An

}
⊆ Hn (8.16)

and where An is the operator defined in (8.15).
As n → ∞, we aim to study the limiting behavior of the magnetization t �→ mn(t). 

This motivates us to introduce X = X = [−1, 1] and ηn(x) : Xn → X defined by 
ηn(σ) = mn(σ).

For f ∈ C2
b (X), we have

Hn(f ◦ ηn)(σ) = 1
n

n∑
i=1

e−βσimn(σ)
[
en

(
f(mn(σi))−f(mn(σ))

)
− 1

]
= 1

n

∑
i:σi=−1

eβmn(σ)
[
e
n
(
f(mn(σ)+ 2

n )−f(mn(σ))
)
− 1

]

+ 1
n

∑
e−βmn(σ)

[
e
n
(
f(mn(σ)− 2

n )−f(mn(σ))
)
− 1

]

i:σi=1
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= 1 −mn(σ)
2 eβmn(σ)

[
e
n
(
f(mn(σ)+ 2

n )−f(mn(σ))
)
− 1

]
+ 1 + mn(σ)

2 e−βmn(σ)
[
e
n
(
f(mn(σ)− 2

n )−f(mn(σ))
)
− 1

]
= Hf(ηn(σ)) + o(1) (8.17)

where Hf(x) = H(x, f ′(x)) and where

H(x, p) = 1 − x

2 eβx
[
e2p − 1

]
+ 1 + x

2 e−βx
[
e−2p − 1

]
(8.18)

and where o(1) is an error that is uniformly small as f ∈ C2
b (X).

Denote L(x, v) := supp pv − H(x, p). The limiting Hamiltonian corresponds to the 
semigroup and resolvent

V (t)f(x) := sup
γ∈AC:γ(0)=x

⎧⎨⎩f(γ(t)) −
t∫

0

L(γ(s), γ̇(s))ds

⎫⎬⎭ ,

R(λ)h(x) := sup
γ∈AC:γ(0)=x

⎧⎨⎩
∞∫
0

λ−1e−λ−1t

⎡⎣h(γ(t)) −
t∫

0

L(γ(s), γ̇(s))ds

⎤⎦ dt

⎫⎬⎭ .

Theorem 8.8. Let Hn and H be given as in (8.16) and (8.18) respectively.
Then we have the following convergence statements. Let fn, f ∈ Cb(R) such that 

buc − lim fn = f . Furthermore, let λ, t > 0.
Then buc − limRεn(λ)fn = R(λ)f and buc − limVεn(t)fn = V (t)f .

Proof. As seen above, we can work in this setting with X = X = Y = Y = [0, 1] and 
Xn = {−1, 1}n. As all these sets are compact, it suffices to work with Q a singleton 
set, corresponding to taking all compact sets equal to the full set. If fn ∈ Cb(Xn) and 
f ∈ Cb(X) then LIM fn = f is equivalent to limn ||fn − f ◦ ηn|| = 0.

The convergence of the operators Hn to H has been established in (8.17). The equi-
continuity estimates on the resolvent and semigroup can be verified by Lemmas 7.15 
7.16 in [32], if the assumption of exponential tightness for the processes is satisfied. As 
the spaces Xn and X are all compact, this follows immediately from the convergence of 
Hn to H and Corollary 4.17 in [22]. The comparison principle for the Hamilton-Jacobi 
equation in terms of H is established in Theorem 3 of [30].

Thus, the convergence of resolvents and semigroups follows from Theorems 5.7 and 
6.1. Note the large deviation perspective on this convergence statement has been worked 
out in further detail in [22] and [32]. �
Appendix A. Proof of Proposition 3.8

Proof of Proposition 3.8. We prove (a) to (b). Fix a compact set K ⊆ X and r, δ > 0.
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Because the semi-norm p(f) = supx∈K |f(x)| is continuous for the strict topology,
and T is strictly continuous, there is a semi-norm q(f) = supn an supx∈Kn

|f(x)| such 
that p(Tf − Tg) ≤ q(f − g).

Set C0(r) = 2r, C1(δ, r) = a1, and

K̂(K, δ, r) :=
⋃

i:ai>δ

Ki.

As ai ↓ 0, K̂ is indeed a compact set. Let n0 such that for n ≥ n0 we have an ≤ δ. Then, 
if ||f || ∨ ||g|| ≤ r:

p(Tf − Tg) ≤ q(f − g) ≤ sup
n<n0

an sup
x∈Kn

|f(x) − g(x)| + sup
n≥n0

an sup
x∈Kn

|f(x) − g(x)|

≤ a1 sup
x∈K̂

|f(x) − g(x)| + δ ||f − g||

≤ C1(δ, r) sup
x∈K̂

|f(x) − g(x)| + δC0(r),

establishing (b).
We prove (b) to (c). Let fα be a bounded net that converges to f . To prove that 

Tfα converges strictly to f , we need to establish that Tfα is bounded and that for each 
compact set K ⊆ X and ε > 0 there is a α0 such that for α ≥ α0, we have

sup
x∈K

|Tfα(x) − Tf(x)| ≤ ε.

First of all, as the net is bounded there is some r such that supn ||fn|| ≤ r for some r. 
By (b), using δ = 1, we find that ||Tfα − Tf || ≤ C0(r) + 2rC1(1, r). Next, fix a compact 
set K ⊆ X and ε > 0. By (b), with δ = 1

2εC0(r)−1, we find a compact set K̂ such that

sup
x∈K

|Tfα(x) − Tf(x)| ≤ 1
2ε + C1(δ, r) sup

x∈K̂

|fα(x) − f(x)|

Thus, there is some α0 such that for α ≥ α0 the left hand side is bounded by ε. We 
conclude that T is strictly continuous on bounded sets. �
References

[1] L. Ambrosio, J. Feng, On a class of first order Hamilton-Jacobi equations in metric spaces, J. Differ. 
Equ. 256 (7) (2014) 2194–2245.

[2] M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-
Bellman Equations, Birkhäuser, Boston, MA, 1997, pp. xvii + 570, English.

[3] V.I. Bogachev, Measure Theory, Springer-Verlag, 2007.
[4] G. Barles, B. Perthame, Exit time problems in optimal control and vanishing viscosity method, 

SIAM J. Control Optim. 26 (5) (1988) 1133–1148.
[5] R.C. Buck, Bounded continuous functions on a locally compact space, Mich. Math. J. 5 (2) (1958) 

95–104.

http://refhub.elsevier.com/S0022-1236(21)00428-6/bibD7614918BD39795CBBDFB2FF000D7C43s1
http://refhub.elsevier.com/S0022-1236(21)00428-6/bibD7614918BD39795CBBDFB2FF000D7C43s1
http://refhub.elsevier.com/S0022-1236(21)00428-6/bibB059D068D81BF74504C504AE7EF3CBDCs1
http://refhub.elsevier.com/S0022-1236(21)00428-6/bibB059D068D81BF74504C504AE7EF3CBDCs1
http://refhub.elsevier.com/S0022-1236(21)00428-6/bibA9E1E1D36818260D90D357991E45179Fs1
http://refhub.elsevier.com/S0022-1236(21)00428-6/bib9B766FD8F1162AD6202A47760775B65Ds1
http://refhub.elsevier.com/S0022-1236(21)00428-6/bib9B766FD8F1162AD6202A47760775B65Ds1
http://refhub.elsevier.com/S0022-1236(21)00428-6/bibF602023250BE47A33240D5EB563995FCs1
http://refhub.elsevier.com/S0022-1236(21)00428-6/bibF602023250BE47A33240D5EB563995FCs1


54 R.C. Kraaij / Journal of Functional Analysis 282 (2022) 109346
[6] A.-L. Cauchy, Cours d’analyse de l’École Royale Polytechnique, 1821.
[7] F. Collet, R.C. Kraaij, Dynamical moderate deviations for the Curie-Weiss model, Stoch. Process. 

Appl. 127 (9) (2017) 2900–2925.
[8] F. Collet, R.C. Kraaij, Path-space moderate deviation principles for the random field Curie-Weiss 

model, Electron. J. Probab. 23 (2018), 45 pp.
[9] M.G. Crandall, T.M. Liggett, Generation of semi-groups of non-linear transformations on general 

Banach spaces, Am. J. Math. 93 (2) (1971) 265–298.
[10] M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. 

Soc. 277 (1) (1983) 1–42.
[11] M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. 

IV. Hamiltonians with unbounded linear terms, J. Funct. Anal. 90 (2) (1990) 237–283.
[12] M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. 

V. Unbounded linear terms and B-continuous solutions, J. Funct. Anal. 97 (2) (1991) 417–465.
[13] M.G. Crandall, P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. VI. Nonlinear A and 

Tataru’s method refined, in: Evolution Equations, Control Theory, and Biomathematics, Han sur 
Lesse, 1991, in: Lecture Notes in Pure and Appl. Math., vol. 155, Dekker, New York, 1994, pp. 51–89.

[14] F. Comets, Nucleation for a long range magnetic model, Ann. Inst. Henri Poincaré B, Probab. Stat. 
23 (2) (1987) 135–178.

[15] X. Deng, J. Feng, Y. Liu, A singular 1-D Hamilton-Jacobi equation, with application to large 
deviation of diffusions, Commun. Math. Sci. 9 (1) (2011).

[16] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, 1986, 
pp. x+534.

[17] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, 
2000.

[18] J. Feng, Large deviation for a stochastic Cahn-Hilliard equation, Methods Funct. Anal. Topol. 9 (4) 
(2003) 333–356.

[19] J. Feng, Large deviation for diffusions and Hamilton-Jacobi equation in Hilbert spaces, Ann. Probab. 
34 (1) (2006) 321–385.

[20] J. Feng, J.-P. Fouque, R. Kumar, Small-time asymptotics for fast mean-reverting stochastic volatility 
models, Ann. Appl. Probab. 22 (4) (Aug. 2012) 1541–1575.
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