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The optimum shape problems considered in this part are for those profiles of a
two-dimensional flexible plate in time-harmonic motion that will minimize the
energy loss under the condition of fixed thrust and possibly also under other
isoperimetric constraints. First, the optimum movement of a rigid plate is
completely determined; it is necessary first to reduce the original singular
quadratic form representing the energy loss to a regular one of a lower order,
which is then tractable by usual variational methods. A favourable range of the
reduced frequency is found in which the thrust contribution coming from the
leading-edge suction is as small as possible under the prescribed conditions,
outside of which this contribution becomes so large as to be hard to realize in
practice without stalling. This optimum solution is compared with the recent
theory of Lighthill (1970); these independently arrived-at conclusions are
found to be virtually in agreement.

The present theory is further applied to predict the movement of a porpoise
tail of large aspect-ratio and is found in satisfactory agreement with the experi-
mental measurements. A qualitative discussion of the wing movement in
flapping flight of birds is also given on the basis of optimum efficiency.

The optimum shape of a flexible plate is analysed for the most general case
of infinite degrees of freedom. It is shown that the solution can be determined to
a certain extent, but the exact shape is not always uniquely determinate.

1. Introduction
One of the most inspiring questions concerning the phenomena of aquatic

animal propulsion and of flapping flights of birds and insects is invariably
connected with the highest possible hydrodynamie efficiency. This problem
has been brought up from time to time by various observers who have noted the
impressive capabilitity of these animals in generating fast movements at low
energy cost. According to the first principle of energy balance or momentum
consideration, as has been explained in part 1 of this paper (Wu 1971), much
can already be said about the desirable shapes of body movement: that at large
Reynolds numbers, a thin two-dimensional plate gains thrust by sending a
transverse wave from head to tail, with amplitude slightly increasing towards
the rear, thereby achieving a forward swimming velocity somewhat less than
the phase velocity of the body wave form. As for the tail of large aspect-ratio
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of some high-performance fish, the tail should move nearly tangentially to the
path traversed in the space by the body wave form. These basic features have
been elegantly elucidated, with perhaps more physical reasoning, in an excellent
review by Lighthill (1969). However, it would still be of great interest to resolve
a quantitative determination of the optimum shape under some appropriate
constraints.

The problem of the optimum shape is interesting in its own right from the
mathematical point of view, since the effective methods of solution do not
seem to fall into the known categories of the calculus of variation. The special
case of a two-dimensional waving plate in harmonic motion has been treated
by Wang (1966), who adopted a discretized Fourier representation of the body
motion, and found that his solutions exist only for a set of eigenvalues. How-
ever, it is found in the present study that this optimum shape problem is
basically not an eigenvalue problem, and therefore merits a new discussion.
On physical grounds, it would be indeed difficult to see the significance of the
idea that the shape function can have eigensolutions.

In this part we shall consider the optimum shape problem only for the case
of two-dimensional flexible plate, of negligible thickness, in harmonic motion.
(Some three-dimensional problems will be treated in part 3 of this paper.)
The two-dimensional theory is reckoned to have utility in problems of lifting
surfaces of large aspect-ratio, such as the tails of some cetaceans and high-
performance game fish (the lunate tails: swordfish, tuna, albacore, porpoises,
etc.), and even the wings of most birds and some insects. The optimum shape
problem is concerned with those profiles or movements that will minimize the
energy loss under the condition of fixed thrust (required to overcome the viscous
drag), and possibly also under other isoperimetric constraints. First, the optimum
movement of a rigid plate is determined by reducing the original singular
problem to a regular one of a lower rank. This optimum solution is found to
depend on two variables: one being the reduced frequency and the other a
'proportional-loading parameter', defined as the prescribed thrust coefficient
divided by the dimensionless heaving amplitude squared. For given loading
parameter, a favourable range of the reduced frequency is found in which the
thrust contribution coming from the leading edge suction is as small as possible
under the prescribed conditions. This consideration seems to provide the
optimum range of the reduced frequency utilized in practice.

These theoretical results are further applied to predict the movement of a
porpoise tail, and comparisons made with the experimental investigation of
Lang & Daybell (1963). As a related problem of interest, the optimum movement
of a flapping wing of some birds or fiatfish is discussed qualitatively.

The general problem of optimum shape of a flexible surface having an infinite
degree of freedom is finally analysed and discussed. It is found that the solution
can be determined to a certain extent, and, with the additional degrees of freedom,
the optimum efficiency can be further improved from the rigid-plate value, but
the exact shape is not uniquely determinate.



2. Statement of the optimum shape problem
As a starting point, the following basic results are reproduced from part i

(Wu 1971). The class of motion treated here is that of a two-dimensional flexible
plate, immersed parallel to a uniform stream of velocity U in the x-direction,
and performing a harmonic transverse motion

y=h(x,t)_h1(x)exp(jot) (-1x1), (1)

which is assumed to be continuous in - i x i and to possess a Fourier
expansion

N
h(x,t) = fi0+ fi cos nO (x = cosO, O O iT),n1

2 '"with fir, = -J
h(x,t) cos nOdO (n = O, i... N cc).

7T

This motion generates at the plate a transverse flow velocity,

V(x,t)=Jj+U= U(+jo-h) (o=/U),

which can also be expanded in a Fourier series,
N

V(x,t) = b0+ b, cos nO (x = cos O),
n=1

2 1"
with b = - V(x,t)cos nOdO (n = 0, 1... N cc).

7TJ o

In (2)(4) and in the sequel, the harmonic time factor exp (jolt) of h, V, fin's and
ba's is always taken as understood. The reduced frequency o- is referred to half-
chord i, which is being taken as the unit length, or

o-=wl/U. (5)

The time averages of thrust , energy loss R, and power required P can be put
in the coefficient form,

CE R/(irpUl) B(o-)(b0+b1)(b1'+bn/U2, (6)

P/(irpUl) = Re {- (jo-/U) (b0+b1) [(ß' -fifl 0(o) +,8fl}, (7)

CT /(ipU2l) = GpGE, (8)

where the symbols with * stand for their complex conjugates, 0(o-) denotes
Theodorsen's function

0(o-) = K1(jo-)/[K0(jo-)+K1(jo-)] = (9a)
B(o-) = (9 b)

K being the modified Bessel function of the second kind, and being the
real and imaginary parts of 0.

The general optimum shape problem can be stated as follows: Within the
class of shape function h as specified above, find the optimum one which will
minimize CE under the condition of fixed thrust coefficient, say

CT = CT,o> 0, (10)

the reduced frequency being regarded as a fixed parameter.

Hydromechanics of swimming propulsion. Part 2 523



I

524 T. Y. Wu

As has been pointed out in part 1, CE O for o> O with any admissible h,
consequently the extremal solution of CE will not be negative. Here, CT rather
than C is chosen to be a fixed positive quantity for the sole reason that the
result will always give a meaningful hydrodynamic efficiency:

1 = 0T/Cp = CTO/CP = CT,oI(Cr,o+CE). (11)

If C is fixed instead, the solution of CT may become negative. Aside from this
point, there is no fundamental difference whether CT or C is fixed.

It is of interest to note that only the first two Fourier coefficients of h and of V
appear in the expressions for CE, C and CT. Since h and V are related by a
differential equation (3), b can be expressed in terms of fin's upon substituting
(2), (4) in (3). Conversely, if V is first prescribed by a set of bn'8, fi, can be
evaluated in terms of b upon integration of (3), thus introducing a comple-
mentary solution proportional to exp ( jcrx). In either case, b0 and b1 will
depend on all the fin's which are admitted to h, or fi0 and fi1 will depend on all
the ba's admitted to V. If the number N of the terms in (2), (4), is taken to be
infinite, so that h and V each will define a vector space of infinite dimensions,
the problem can be recast somewhat as follows. Define the scalar product of

h(x) and i itwo functions g(x) over - x by

A striking feature here is that there are only three different scalar products
involving h and V that can be subjected to variation, from which the optimum
h is to be determined

The number of the Fourier coefficients, or equivalently, the number of scalar
products can be increased by a few if the waving plate propels itself without
external agencies whilst the recoil conditions are imposed on the plate's being
free from lateral and angular recoil. These recoil conditions require that the
hydrodynamic lift L and moment M must be equal and opposite to the time-rate
of change of the lateral and angular momentum of the body (see (40), (41), (56)
of part 1), or

(JTQ.2 i
(b0+b1)ø()+j(b0b2) =

+ f m(x)h(x)dx, (15)

i
(b0+ b1) O(a) - (b1 + b2) - j(b1 - b3) = - f xm(x) h(x) dx, (16)

where m(x) is the plate mass per unit distance in x. Conditions (15), (16) are
additional isoperimetric conditions to be satisfied together with (10)111 extre-
mizing CE. These two conditions can, however, be disregarded or accounted for
separately, when this two-dimensional theory is applied to evaluate the propul-
sion of a lifting surface (of large aspect-ratio) which is only a part of the self-

2 '"
1TJ o

then (6), (7) may be written

(h,g) = - I h(x)g*(x)dO (x = cosO), (12)

CE = U-2B(o)(V, 1+x)(V*, 1+x), (13)

= Re{( -jo]U) (V, 1 +x) [(h*, 1) )(o) + (h*, s) (1 ø(o))]}. (14)
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propelling body, such as the tail of certain cetaceans and Lunate tails, or the
wings of birds, since the question of recoil requires a consideratiou of the entire
body.

3. Optimum movement of a rigid-plate wing
The basic nature of this optimum shape problem can be best seen from the

following simple case:

h(x,t) = [0+(1+j2)x]exp(jat) (jx 1), (17a)

so that = exp(joit), ,8 = (1+j2)exp(jùt), (17b)

where are real. The above h represents a rigid plate performing a heaving
with amplitude and a pitching about x = O with amplitude +j2 at a
phase angle tan-1 (2/1) leading the heaving motion. This special case, though
about the simplest in form for the general optimum problem, still embraces a
considerable interest for its result may cast light on the tail motion of some
high-performance fish and cetacean, as well as on the flapping wings of birds in
flight.

Before we proceed further, we list here two fundamental cases:
Heaving only, so that = = O and only + O. Then, by (2)-(4),

b0 = Ujo0exp(jct), b1 = 0. (18)

The corresponding CT, CE, (l are

CE = o-2B(o), C = CT = cr2(2+2). (19)

The hydrodynamic efficiency of heaving propulsion,

Thieav(°) = CT/Cp (2 + (20)

is seen to depend on o- only, decreasing monotonically from (0) = 1 to
= O-5, as shown in figure 1. This general trend of 71h is readily verified

from the known asymptotic behaviour of . and that, for o- < 1,

ITo- / 2 1T2\3(o) '- 1----u2(log2 --,-J+O(o-3log2o-) (y= 1.781...), (21a)
\ Yi° /

2-o-(l-iro-)log +O(o-3log3o-),
y1 o-

and, for o ' 1,

11[i +
8cr2

+ O(o-_4)] (o-) - [i
- 128cr2 + O(o-4)].

Pitching only, so that = O and we may also set 2 = O as a reference
phase,

in which the harmonic time factors are omitted as understood. Whence, from
(6)-(8), CE = B(o-) Q22, C = oP22, CT = (24)

where Q22 = 4+o-, '2 = o-(1-.)-2, T22 = crP92-BQ92. (25)

fib = 0, fi1 = , b = 2U1, b1 = Ujo1, (23)

(21b)

(22)
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In this pure-pitching mode, both CE and C are positive definite for o-> O.
But T2, (o-) = O has one real root,

T29 (o-0) = O for o = 1781, (26)

and T22 O according as o- o (see figure 2 for its numerical value). When
CT> O, we may define the hydrodynamic efficiency

CT T22(cr)
(o- > o), (27).,p1tch(o-) - C - o-P22(o-)

which is found to increase monotonically from (o-0) = O to () = o-5, as
shown in figure 1. We further note that in either case (i) or (ii), power must be

10

08

OE6

04

02

At the same time, CE, C and CT all vanish with (b0+b1), according to (6)(8).
This particular set of values (, 2) will be seen to play a significant role in the

O i o 2 3 4

Cr

FIGuRE 1. Hydrodynamic efficiency of heaving propulsion, (Cr), and of pitching
propulsion, (Cr), the latter being defined for the reduced frequency Cr > Cr0 = i -781.

supplied to maintain the motion, consequently it is impossible to extract energy
from the fluid in so far as either (i) or (ii) is concerned separately. The main
objective of optimization is then to determine if the efficiency can be greatly
improved when both heaving and pitching modes are admitted.

Returning to the combined motion, the value of (b0 + b1) corresponding to h
of (17) is, by (3) and (4),

b0 + b1 = U exp (j&t) {jcr0 + (2 +jo-) ( +j2)]. (28)

We note here that b0 + b1 = O when

= - o2(o2 + 4)_1
, 2 = 2 - 2o-(cr2 + 4)_1 (29)
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optimum solution. Upon substituting (17), (28) in (6) and (7), CE and C can be
written CE = B(o)(, Q), C = o, P) (30)

where = (, , ) is a vector in a 3-dimensional vector space, (, ) denotes
the inner product of and , or + + Q and P are 3 x 3 symmetric
matrices with elements,

Q11 = Q12 = z, Q13 = 2cr, Q22 = Q33 = 4+cr2, Q23 = 0;

P11 = P12 = '+r, P13 =r P22 = P33 = cr(1)-2, (31)

P23 = 0.

Q22 and P22 in (31) are identical to (25). It can be shown from the properties of
and that P is non-singular for a> O since none of the three eigenvalues of

P vanishes for a> 0. However, Q has the eigenvalues 0, (o-+4), (20-2+4), and
hence Q is singular in the third order, but non-singular in the second order.

04

02

o

- 02

04

06
0 3

a.

FIGURE 2. Coefficient T22 (a) associated with pitching of a rigid plate and T'22 (a)
pertaining to a flexible plate.

The optimum problem at hand is to minimize the quadratic form CE of (30)
under the constraint (10), whereas the recoil conditions (15), (16) are relaxed for
the reason already stated. This constrained optimization is equivalent to
minimizing a new function,

C = CEÀ'(CTCT,o) = (1+A')CE-À'Cp+A'CT,o, (32)

A' being a Lagrange multiplier. If one sets all the derivatives of C with respect
to , to zero, one finds that the secular equation,

Q,aP( = 0hasthreeroots:1= 0,/2= 0,t3= Q22/P22, (33)
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where 1u is related to the old multiplier A' (the actual relationship being im-
material). The first two eigenvalues ¡, p2, being a double root of zero, yield the
same eigenveetor (, , ) with given by (29). But, as noted before,

= O when = , = thereby making GE, C and C all vanish.
Clearly this eigenvector is not the solution since condition (10) can not be
satisfied. (The generalized eigenvector of rank 2 in the sense Q = 0, Q O

for the multiple root 4u9 does not exist, nor does any generalized eigenvector of
higher ranks.) The third eigenvalue 1u3 gives the eigenvector having = 0;
the resulting CE therefore becomes proportional to G,, implying that this last
eigenvector is a stationary solution. This also shows that the foregoing method
based on the spectral theory, as was used by Wang (1966), does not work.

The correct approach is found by noting that since Q is singular, but non-
singular in the second order, the quadratic form CE can always be reduced to a
non-singular form in two variables. In fact, in terms of the new variables,

= o/(4+°2), i = i1' 2 =

with given by (29), CE and C in (30) reduce to

CE = B()Q22(+), (35)

= o{P22 ( + ) + 2A1 + 2A2 J 2}' (36)

A1 = P12Q22Q12P2, A2 = P13Q33Q13P33. (37)

Now it is clear that, while G spans the whole vector space (, , ), C spans
only its subspace (, ). Obviously the surface CE = const. = GE,0> O is a
circular cylinder with its central axis along the 0-axis The quadric G1 = const.
= G,0> O is seen to be an oblique hyperboloid of one sheet, since its intersection
with the plane = const. is a circle centred at (-A10/P22, A20/P22), of
radius [(At + A) (0/P22)2 + C/(oP2)]. The extremal solutions under condition
(10) are therefore given by the points in the subspace (, ) at which (grad GE)
is proportional to (grad Ce). This situation is depicted in figure 3 in terms of
GE and CT. Thus, after setting the derivatives of G = (CE - A"C) with respect
to and to zero, we obtain

1=AA10, 2=AA20 (38)

where A is a Lagrange multiplier. Upon substituting (38) in (35)-(36),

CE = BQ22A2(A0)2, A2 = A+A, (39)

= o(P22A2+2A)(A&0)2. (40)

Now, application of condition (10), or C - GE = CTO, results in a quadratic
equation for A,

T22(cr)A2+2oA = CTo(4+o2)2/A2, (41a)

where CT,0 = CT,oI, A2 = A+A, (41b)

and T22 (o) is given by (25). T, will be called the proportional-loading para-
meter'. The multiplier A therefore has two solutions

AÌ
) = (-1±(1+A)k}, A = (T,oT22I (42)

2) 22 \0 /

(34)



H,dromechanics of swimming propulsion. Part 2 529

A2 depend on two parameters: o- and ÖT By virtue of the behaviour
T22(o-), O according as o- o- = 1781, it follows that for fixed 0,
A(o, C ) increases monotonically from - to O as o- moves from o = O to o.
Consequently, A1, A2 will be real (as are required to be physically meaningful)
if A - 1; or, equivalently, for

o- o-(C,0), where A(o-, 0T,0) = - 1. (43)

The solution o-1 = o-(() is shown in figure 4 to lie between or(0) = O and
o (x) = o-0 For given CTO> O, the real optimum solution therefore exists only

FIGURE 3. For fixed, the quadric C = Cr,0 > O is an off-centred circle which meets
tangentially the surface CE = CE,1 at M1 and CE = CE,2 (> Cr, ) at M2. The points M1
and M2 correspond, respectively, the maximum and minimum hydrodynamic efficiency
under condition of fixed Cr = CT0.

for o- o-c- Within this range, A1 is positive, numerically smaller than A2, and
corresponds to the highest efficiency attainable under condition (lo),

C,0 - C1 Q22A1
ç' - - ID 2P P o- 22 1 i

The lowest efficiency imjfl that can be realized under the same conditions (10)
is given by the last expression of (44) with A1 replaced by A2. For any combination
of different from (38), the efficiency is mjn < / < max so long as
CT,O is kept fixed.

The following salient features of the solution are noteworthy.
(i) At o = A = 1, so that A1 = A9 = o-/T22(o-); hence, from (44) and

(25), it follows that for arbitrary T 0> O

?imax(o-c) = [2+P99(o-)A1(o-)] < (45)
34 ELM 46
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in virtue of P22(o-) > 0 and À1(o-) > 0. This shows that, in the frequency range
near o-c, 1lmax cannot be very impressive. In fact, 1lmax (o) -0 monotonically as- co, since in this limit T22 (o)- T22 (o-e) = 0, and hence À1 * co (see figure 4).

Fxauax 4. For given r0 > 0, tho critical o marks the lower bound of the reduced
frequency cr, below which no real optimum solution exists.

However, when CT 1, o is also small. By making use of the asymptotic
expansions (21) for and ï, we readily deduce that

27CT,o{1+ÖT,o[(2_)log +]+o(oIog2o.c)}, (46)
Yi T,0

11 o- 2 ¡o--o.\i[ +4 2]
o- ) L'

a-log] , (47)

the last expression being valid for O (o- °-) 1. Note that d(o-)/do = co;
thus lmax rises rapidly from max (o) as o- increases from o.

Near a- = o (0.0 defined by (26)), we deduce from (26), (44), and (22) that

= Cr,o(o.+4)2/(o.oA2)+O(o_a-oI), (48)

max(0-) [1+0(a-0)À1(o0)]+O(Ia--o0) [1 +%ÖT,o]_1+O(IcT_ cToI). (49)

We note that max(a-e) is already more than twice max(Oc).
For CT,O i and o a-, A is small, say A = e 1. Then À1 = O(e),

consequently max = i O(e) for o- o-, indicating that high efficiencies can be
achieved in the neighbourhood of = G oI = 0. In this operating region the
amplitude of heaving of course must not vanish ( + 0). In the limit as -0,
À1-O, and hence 2 T, , P all tend to zero whereas 1, corresponding
to the singular case already mentioned in part 1.
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Fiou-xx 5. Maximum and minimum efficiencies for fixed Cr o:- - - -,
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accordance with the special case of pure pitching oscillation (see (27) and figure 1),
namely, it can be used to produce thrust only when r is sufficiently high, at the
expense of low efficiency.

The above features are all exhibited in the numerical result of max as plotted
in figure 5 for several values of C

.

The optimum motion of the plate is given by (34), (38), (29) and (42),

= (À,A1o2)/(o-2+4), 2/0 = (A,A2-2o-)/(o-2+4). (51)

Hence, the amplitude ratio and the phase advance of pitching relative to the
heaving mode are

Zp ( + = (o-2 + 4)_1 {(À1A, o-2)2 + (A1A2 - 2o-)']. (52a)

= tan' 2/1 = tan' [(À,A, - 2o-)/(À1A1 - o-2)]. (52 b)

Hydromechanics of swimming propulsion. Part 2 531

(iv) For 1, we deduce from (44), by using expansions (22), that, for
arbitrary Ör,0> O,

[i + CT,o ( 4o2)] [i +CT,o (i - 240-2)]

- 15 - 5 1
(50)

which has the bounds 05 <max < 1. The lower bound corresponds to large
I C,0, a limit which is reached as the flapping amplitude -0. This result is in
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These results are shown in figures 6 and 7 for several values of T, For o- suffi-
ciently large, say o-> 2, curves of different 0T ( < 1) approach to a common
asymptotic representation:

o-2+2(1_5ÖT.o13)
p +tan-'[(1+ro)]. (53)

z3,

lo-I

10-2

1O-

I 11111111

25 x 10_2

10-2

5 x l0

10_2 10-1 10

o.

FIGURE 6. The amplitude ratio (pitching/heaving) Z,, (o., CT ).

In summary, we first notice the advantage of operating at small values of
C, corresponding to sufficiently large heaving amplitude. A smaller Ö
renders the optimum solution valid to lower frequencies o-, and makes max
greater at the same o-. As o- increases from o-e, the pitching-heaving amplitude
ratio Z first decreases to a minimum, then increases steadily to a common
asymptote. Over the same range of o-, the phase difference changes very
rapidly at first, followed by a much slower variation at higher o-. A rather
sophisticated control would therefore be necessary if the operating range of o-
is chosen in which fast variations of Z and may take place. It is a remarkable
result that in the higher range of o-, very high efficiencies can be realized with
an appropriate interplay between the heaving and pitching motions. This effect
is exhibited in the result with the pitching amplitude as little as only a small
fraction ('-i 01 or less) of the heaving motion, provided the phase difference is
correctly observed.

The foregoing exposition of the optimum solution leaves very little clue as to
whether there also exists an optimum range of o- (aside from the understanding
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that o should be sufficiently greater than o) for practical operations. A possible
source for such crucial information lies in the knowledge of the thrust contribu-
tion coming from the leading-edge suction, as was pointed out by Lighthill
(1970), for the following reason. Although this suction force has been simplified
to appear mathematically as a singular force acting on a pointed leading edge,
it can be realized physically only when the thin section's leading edge is suffi-
ciently rounded. The magnitude of this suction is therefore of utmost importance
to its being realizable or not in practice.

a2,

270°

240'

210'

iSO

150

120'

90°

I i litli i i i iii i i iii I ii

\
60° I ill I i I Ii I i i Ii ii i I i ri ir

l0 10_2 10_1 1 10

FIomE 7. The phase advance anglo a,, (o, Jr. ) of the pitching mode.

The leading-edge suction is given by (see part 1, equations (43), (62))

T5 = iip(a0+a')2, a0 = (b0+b1)®(o)b1.
Its time average in harmonic motions is clearly

T5 = 7rpa0a', (54)

which can be expressed in terms of , , for the motion given by (17) by a
straightforward substitution upon using (9 a), (28), yielding for the ratio of the
mean suction thrust coefficient C5 5/(irpU2l), to the prescribed total thrust
coefficient CT = CTO as

Cs/CT =

12\
L

o ii (55)
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For the optimum movement, i/o and 2/o in (55) assume the values given by
(51). The final result is plotted in figure 8 for various proportional-loading
parameter G . It is of great interest to note that the ratio Cs/CT has a minimum
at o- = °rn (tT, ) say, and is relatively small in a short stretch of o- about 0m
Outside of this range, CS/CT increases rapidly beyond I and becomes so large
(the complementary thrust delivered by the plate surface is then negative) as
to be certainly difficult to realize in practice without leading-edge stalling. It is
also noteworthy that o- = o is very near the corresponding maximum of the c(o-)
curve about which varies relatively slowly with o. It is thus convincing that
the optimum range of operating o- in practice should be somewhere very near
0m, most likely to be a little greater than before CS/CT rises sharply
so that a slightly improved efficiency can be achieved without risking to cause
stall.

o I I II
10_2 IO-i

o.

FIGuX 8. The ratio of the thrust coefficient C due to leading-edge suction
to the total thrust coefficient CT.

The general problem of optimum movement of a rigid plate was investigated
by Lighthill (1970); this study was known to the author when the present paper
was written. It is thought to be of interest to discuss these independently
arrived-at conclusions. Lighthill takes the section's lateral displacement in the.
form

y = [hic«xb)] exp (iwt) (i < x < i), (56)

where h and are real numbers signifying the amplitude of the heaving and
pitching motions respectively, and x = b, y = O is the axis of pitch. Clearly,
Lighthill's adopting a fixed phase difference of 90°, while generalizing the axia
of pitch, is equivalent to adopting a general phase difference between heaving
and pitching-about-mid-chord-axis. In fact, this equivalence is completed by
introducing a reference phase y to (17), and recovering the half-chord length l

y = [l0+(1+i2)x] exp [i(at+y)] (-1< x < i).
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Then the above two expressions of y are equivalent if

b/i = = ._Z;l cosc,, (57)

h/i= - 02(g1+) 0sincx, (58)

= (+ = ozp. (59)

As a useful measure of the relative magnitudes of pitching and heaving,
Lighthill (1969, 1970) introduced a C proportional-feathering parameter',
O = U/wh, which is found to be indicative of thrust and efficiency considerations.
Physically, this parameter provides a measure of the deviation of the plate slope
from the tangent to the path traversed in the space by the axis of pitch. Since
this path is sinusoidal, the largest value z can assume for positive thrust is the
maximum slope of the path, = k/i, k being the wave-number, which gives

10

102

l0-
10_2 lo-I lo

o-

FIouaE 9. The optimum location of pitching axis x = b when the heaving is taken to
lead the pitching by 90° in phase. The dotted chain line denotes o = o along which the
leading-edge suction is minimum.

O = Uk/oi = U/c, where c is the wave velocity relative to the plate. Thus, O is
usually less than 1, and O = i corresponds to geometrically accurate feathering
of the fin. In terms of the present notation, O can also be written as

O = (+)/0E9 = -Zcscc9. (60)

The advantage of Lighthill's form (56) first appears in the result that the
wasted energy in the wake has a sharp minimum when b l, or when the
pitching axis is at the i-chord point, whereas the rate of working increases
somewhat for axis positions b distal to that. Consequently, an optimum from
thrust considerations as well as from efficiency considerations lies somewhere
between b = l and b i (i.e. for the pitching axis to lie between the -ehord
point and the trailing edge).

The present optimization, however, is held under an extra isoperimetric

-.*

lo-I
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condition (10) for fixed thrust. The corresponding results of the optimum values
of b/i and O for given CTO, by using (51) in (57) and (60), are plotted in figures
9, 10, in which the dotted chain lines correspond to o = o,,, along which the
leading-edge suction is the smallest possible. Along this line, the pitch-axis b
increases from i to -1 whereas the feathering parameter O falls off from i to O
as 0T increases. These general features are in qualitative agreement with the

10 2

Zr0rr104
l0-

5 x 102

2.5x102

102

10-i I I II I i t t i,..

10_2 10-' I 'o
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FlotmE 10. Variation of the feathering parameter O (defined by (60)) with the reduced
frequency o.. The dotted chain line denotes o- = o-m along which the loading-edge suction
is minimum.

predictions of Lighthill (1970). As a further remark here, we note that the
point b/i = , O = i is readily seen, by (29), (57) and (60), to be equivalent to

= = , of which the significance has already been discussed.
For further comparison of the theory with experiments we proceed to discuss

the following specific numerical example.

4. Movements of porpoise tail
Lang & Daybell (1963) reported a series of experiments dealing with the

swimming performance of a porpoise (of genus Lagenorhgncus obiiquidens, or
the Pacific Whitesided Dolphin) who was trained to swim and glide along an
almost straight course in a long towing tank This was perhaps one of the very
few exhaustive and carefully conducted tests of a live cetacean under a well-
controlled condition. The following data, which are thought to be useful for a.
qualitative comparison, are cited from Lang & Daybell (1963).

I I I I I (II
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The porpoise, 67 ft. long, had a total body surface of S 168 ft2, including
the tail surface area 0527 ft2. The tail, nearly triangular but slightly crescent
in shape, had a span of 169 ft. and a maximum central chord of 0625 ft..
corresponding to an aspect-ratio of 54. The total drag D was estimated for full
laminar, full turbulent, and 40 % laminar flows at various porpoise speeds
based on known test data for rigid, smooth ellipsoidal bodies. A particular run
selected for the present study was a stretch at porpoise speed U = 17 ft./sec,
even though a slight acceleration was also recorded. The drag coefficient
CD = D/(pU2S) equal to 00027 based on 40% laminar flow at this speed (or
the laminar region Reynolds number of 42 x 106) seems to agree fairly well
with the observed drag derived from the deceleration measurement during glide
runs, though the data of the latter kind have a considerable scatter. This value
of CD will be taken as a representative case for comparison. The amplitude of
tail stroke, as measured from this particular run (run no. 15-22, see figure 11)
was about 10 in., or 083 ft. The tail angles of attack, measured relative to the
undulating path traversed by the tail base, are also shown in figure 11 as given by
Lang, who remarked ou the considerable difficulty of determining the accuracy
of the data. As thought to be most likely, the large size of the tail, its great
vertical movement, and its noticeable changes in angle of attack would all
suggest that a major part (perhaps more than 50 %) of the total thrust was
produced by the tail alone, leaving the remainder to be generated by the body
movement.

Since the aspect-ratio of the tail is sufficiently large to justify the strip theory,
we shall adopt this approach, using the local two-dimensional characteristics
for each strip. Just as a qualitative estimate we shall further simplify the strip
integration by using its algebraic mean, though this will over-estimate the thrust
and efficiency. Assuming the total drag D is balanced by the tail thrust during
the cruising period, we find

CT,0 = D/(1TpU2lS ) - (417r)(SIStUll)CD = 4OSCD = 011, (61)2 taIl -
where CT stands for the local two-dimensional characteristic. The amplitude of
tail stroke of 083 ft., when referred to an effective mean half-chord of the tail,

= 02 ft. (which is taken to be slightly on the larger side in order to account
for the missing part of the body contribution to the thrust) gives in dimensionless
form.:

= (0.83)/(0.2), or = 83,
and hence CTO = CT,o/ = 16 x 10. (62)

The corresponding value of o, by (46), is about o 001. The wavelength of
the track of the tail base is estimated from figure 11 to be about À = 5.5 ft.,
corresponding to the reduced frequency of the tail motion,

= 2il
0.47T/5.5 = 0228, (63)

which is very large compared with o, but is quite close to o, for this ÖT
0.

Now, suppose this tail movement was performed at the optimum efficiency.
Then, the efficiency, the amplitude ratio Z, and the phase advance of the
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pitching mode of the tail are found from figures 6, 7 at the above C, and o
to be

1/ = O99, Z = = OE104, c = tan'2/1 = 263°. (64)

The tail motion, upon taking the real part, is

h = L0coswt+(T1coscùt-0sincút)x (-1< x < 1),

where h and x are both referred to the mean half-chord i = O2 ft. The tail
angles of attack relative to the free stream is

oh/ax = 0Zcos(wt+) = 0-862cos(ct+263°).
o

6

I I I I I J

8 5° Water surface

_: 3°)

+55°

t7
_I0o

/UnaIc to read 7 -
+24 +5°

Bottom of tank
I I I I I I I j

FIGuRE 11. Tail movements of a porpoise in cruising. The angles with arrows are the
incidence angles of the tail relativo to the path of tail-base measured by Lang & Daybell
(1963); the angles in parentheses are the present theoretical prediction at the corresponding
positions. (Experimental data - -, courtesy of Dr T. G. Lang.)

The slope of the path traversed by the tail base was observed, quite approxi-
mately, as dy/dx = 055 sin ct. Hence, the tail angles of attack relative to the
path traversed by the tail base is

= dy/dx_ah/1x 0.55 sin wtOE862 sin (wt-7°). (65)

The angles ta11 predicted by (65) are shown in figure 11 within parentheses
directly below the experimental data of Lang. This comparison, however, should
be properly qualified, since the application of the two-dimensional theory tends
to overestimate the efficiency, determination of the effective mean chord is
crude, and the accuracy of the measured ta11 was claimed to be somewhat
uncertain. These rather obscure circumstances notwithstanding, it is still of
significance to observe that the general trend of the predicted is in fair
accordance with the experimental measurements.

In terms of Lighthill's form (56) of the lateral motion, the location of the
pitch-axis corresponding to the Z and o given by (64) assumes the value, by

and the corresponding feathering parameter is, by (60),

O = (0208/0.228)(sec7°) = 092. (67)

(57), b/i = (sin7°)/(0104) = OE585, (66)

16 14 12 10 8 6 4

Grid station (ft.)
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The above value of b/i locates the pitch axis at -(1 + o-585) = OE793-chord
point from the leading edge, which is well in the favourable range predicted by
Lighthill (1970, see particularly his figure 4). The value of feathering parameter
O = 0-92 is somewhat higher than the range 06 to 08 discussed by Lighthill,
but it is in the right direction for higher efficiencies. Finally, an interpolation
check with figures 8-10 shows that the observed reduced frequency o- = OE228
is somewhat greater than the 0m (which is about 014 for the T, at hand), the
leading-edge suction at this o- is, nevertheless, still reasonably small,

Cs/CT 04.

In conclusion, the following comments are perhaps in order about the main
features of the tail movement. (i) The estimated reduced frequency o- = OE228
is large compared with o = o-01, but lies well in the range in which the leading-
edge suction is not large. (ii) The loading parameter ÖT (= 1-6 X i 0 as
estimated) turns out to be very small, mainly owing to the large amplitude of
heaving. (iii) The phase difference cx = 263° between the pitching (about the
mid-chord) and heaving modes falls in the range of o- where a, is nearly sta-
tionary, and is 'safely' away from the region of rapid changes of

.
(iv) With

pitching kept only at a rather small amplitude (Z = 011 in this case) but with
the correct phase

,
impressively high efficiency ( 0-99) can be achieved.

(y) When the heaving is forcibly made to lead the pitching by 90° in phase, the
pitch axis is at about 0-8-chord point, and the feathering (O = 0.92) is nearly
accurate. It seems quite conclusive that (i) is the primary condition for selecting
the frequency o- in practice.

5. Movements of bird's wing in flapping flight
The present two-dimensional theory can also be used to discuss qualitatively

the optimal movement of a bird's wing in flapping flight as most species of
migrating birds have wings of high aspect-ratio, and there must be a considerable
saving of energy with optimum wing movement. We shall again adopt the strip
theory to give a first-order estimate, leaving the effect of finite span as a further
refinement. A somewhat superficial difference between fish propulsion and bird
flight arises from the need in the latter case of adding to the oscillatory motion
the constant angle of attack required for supporting the body weight in air.
But this steady component can be accounted for separately; it does not correlate
with the oscillatory component in the balance of mean energy.

Take the z-axis to lie along the mean position of the wing span, with the wing
stretched from z = - b to b. The wing motion is assumed to have primarily a
heaving and a pitching mode, so that, for a wing strip at station z, the up-and-
down flapping displacement in the y-direction can be written

h = {0(z)+{1(z)+j2(z)Jx}exp(jct) ((x, z)eS), (68)

where S denotes the plane form of the wing, and the amplitude functions 's
generally depend on z, they being real and even functions of z for symmetrical
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motions. Ordinarily, bending of the wing is relatively small except possibly
near the tip. To fix our ideas, we assume

= c0(zz) (0 < z < b), (69)

so that (c0z) gives the amplitude of the vertical displacement of body centroid,
which is probably quite small in general. The z-dependence of and 2 can then
be discussed qualitatively based on the argument of optimum efficiency.

Suppose for simplicity that the chord is nearly constant along the span,
except in the vicinity of the wing tip, so that the reduced frequency o referred
to the local half-chord is almost uniform. To simplify the picture, we further
assume that the spanwise distribution of the thrust coefficient CT is approxi-
mately constant, and fixed as required for overcoming the viscous drag.
According to the present optimum solution, high efficiencies very close to unity
can be achieved if o- is sufficiently greater than o, and if the local = CT,
is sufficiently small, a condition which can be satisfied by making the amplitude

o of flapping large. This high efficiency implies that G will be nearly equal to
C (since i - CT/Cp = i - 1), and hence also will be almost uniformly
distributed along the span. However, since the flapping amplitude (z) grows
monotonically outwards from z = z, we have

- (2CT,o/3) (d0/dz) < O (z >

so that ÖT decreases rapidly towards the wing tip. Figure 6 then indicates
that the amplitude ratio Z = ( + )/ should increase slightly with z,
implying that ( + )i should increase at least at the same rate as towards
the wing tip. Furthermore, figure 7 indicates that the phase advance angle cz.
of pitching should also increase with decreasing as z moves towards the
wing tip. In this range of o-, cì is somewhat smaller than 270°. The general
picture is then roughly as follows: As the wing flaps up and down, the pitching
amplitude increases with the distance outward from the body, reaching a nearly
horizontal position at the top and bottom of each stroke. Such awing movement,
according to this simple strip-theory argument, is the most efficient, and leaves
behind the least possible vorticity in overcoming a given frictional drag. This
crude picture may be further refined by employing a more accurate lifting-line
or lifting-surface theory, and by including physiological considerations about
limitations of physical structure, muscular power, metabolic rate and other
factors. Such a broad study is, however, out of the scope of present considerations.

6. The general optimum shape problem
As soon as the shape function h(x, t) of a flexible plate is allowed to have

a higher number of possible modes, with more Fourier coefficients fi1 fi2'...'
fiN (2 < N co) admitted to h (see (2)), the optimum shape problem immediately
becomes more involved. To begin with, we note that the degree of complexity
of the analysis depends somewhat on the primary, but crucial, step of choosing
the independent variable between h and V. If h is taken as the independent
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function, having the Fourier expansion (2), the Fourier coefficients of V (see (4))
can be expressed in terms of the ß's as

b/U=joß+2 (2s+n+1)fl281 (n=0,1,2,...). (70)
8=0

The analysis subsequent to this approach can be developed along a line very
much similar to the previous case of two-term expansion discussed in § 3, the
major step being again the reduction of the singular quadratic form CE to a
non-singular one of a lower order. It turns out that the first non-singular reduced
quadratic form of CE is always of order 2 regardless of the value N (> 2) to
begin with. This is not surprising, since CE depends on only the first two Fourier
coefficients b0, b1 of V. This property of CE also explains the advantages of taking
V as the independent function.

It is convenient first to decompose V as

V(x,t)exp(jwt)/U = (c1+jc2)cos9+V(x) (x = cosO), (71a)

V (x) = e0 ( - cos O) + (c2fll +jc2) cos nO, (7 lb)
n= 2

in which the c,'s are all real, and the coefficient of the constant term is taken to
be purely real as a reference phase. By comparison with (4),

b0/U = e0, b1/U = (c1c0)+je2, bu/U = c2,_1+jc2 (n = 2,3,...), (72)

in which the time factors exp (jcut) of the b's are omitted as understood. The
above representation of V is complete, and is so decomposed that V (x) is ortho-
gonalto (1+x), i.e. by (12),

(V,1+cosO) 0, (73)

whence (V, i + cosO) = b0+b1 = Uexp(jwt)(c1+jc2). (74)

The plate movement h(x, t) corresponding to the above V can be determined
by integration of (3), giving

rx VH t'h(x,t) = exp(jox) I exp(jo) 'e" 'dT+(5+j6)exp(jwt)
Jo U

(-1 <x< 1), (75)

where ( +j6) is a constant of integration, which becomes known once h(0, t)
is prescribed. Upon substituting (71) in (75),

h(x, t) exp ( jut) C1 ±3C2 (1 jo-x - exp ( jcrx)) + h1 (x) + +j6) exp ( jcrx),

(76 a)

h1 (x) = exp ( _jcrx)fXexp (jo) V1 ()d. (76b)

Again we note that h can admit a progressing wave exp [j(ot - ox)] without
affecting V.
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The Fourier coefficients fin's of h can be derived from (76) by making use of
the FourierBessel expansion (Watson 1944, p. 22)

exp(±jo-cosû) = .J0(o-)+2 (±j)J(o-)cosnO.
n= i

The first two coefficients are determined as

fi0 exp (ja.t) = 2(c +jc2) , + ( +j2) + ( +i) J (o-)'
1 J, (o-)

(T-

oi +jc2
Ji (o-)] + ( +j4) j(5 +j6) J1 (o-)fi1exp(jt)=

o- L o-

= 3+j4 = Ih±(x)cos8d0.
7TJ 1TJO

Upon substituting (74) and (78) into (6)(7), we obtain

CE

= P22(c+4)+o-A1c1+o-A2c2,

P22 =(1_E)[1_J(o-)]+[1_Jo(o-)J,where

A1 +jA2 = ( +j2) ( +i) - ( +j) [ j( 1-
+(5+j6)[( +j)J(o-)+(1 +j)J1(o-)J.

The present result (79)(80) is now seen to be analogous to the previous case of
rigid plate, (35)(37). Proceeding in a similar way, we extremize CE, with again
CT = C0 fixed (see (10)), by varying first c and c2. The variational solution.
containing o, CTO as well as (, ..., ) as a family of parameters, is of the form,

= AA1, c2 = AA2, (81)

A being a Lagrange multiplier. By substituting (81) in (79)(80)

CE = B(AA)2, C = (P22A2+o-A)A2, A2 Ai+jA2j2. (82)

Application of condition (10) now yields

122A2+oA = CT,O, (83a)

where 22 = P20B, 0T,O = CT,oI(A)2. (83 b)

In this case, A again has two solutions:

A1) o

A2J
= 1{_1±(1+A)k}, A 22cr,0. (84)

In comparing this result with (42) of the rigid plate case, we note that the
general feature of T22 (o-) is quite similar to T22, namely, 122 vanishes at o- = O
and o- = = 2.51, and

T22(o-) O according as = 2-51. (85)

The derivative d122/do is found to be appreciably smaller than dT22/do-, as is
shown in figure 1. From this property it follows that, if the parameter CT of

(77)

(78a)

(78 b)

(78c)

(79)

(80a)

(80 b)

(SOc)
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this solution assumes the same value as ÖT,o in the rigid plate case, the rate of
increase dA/do- is slower than dA/do-, and hence the critical reduced frequency

<° where A(C, CT,o) = 1, and o is given by (43). Consequently, A and
A2wi11berea1ifA 1,or

o- where A(à, CT,o) = - 1. (86)

Within this range of o-, A1 corresponds to the maximum efficiency,

1max = CF - - - P22A1+cr
°

CT,01 CE1 BA1
(87)

whereas A2 yields the minimum efficiency
BA.,

1lmjn = CT,o! Cp,max i (o- o-e). (88)
P22A2+o-

The present optimum solution, being not yet subjected to the recoil conditions,
contains the parameters o-, CTO, ... . When these eight parameters are pre-
scribed, A1 is given by (84), e1 and c2 by (81), and the optimum proffle h is furnished
by (76), except the component h1 (x) is determinate only up to the first two
Fourier coefficients (see (78 e)). To this end, we note that the Fourier coefficients
of h1 (x) higher than the second have no influence upon the optimum efficiency.
Furthermore, it is of significance to observe that the parameters T1, 2'
appear in the solution of max only through the quantity A2, which is a quadratic
form of , 2' 6 with frequency-dependent coefficients. Consequently, every
point (' , ... 6) on the quadries A2 = const. will yield the same max This
result shows that the optimum solution, as presently posed, can be determined
only to a certain degree, but not to the extent to provide a unique h(x, t). The
reason for this, as mentioned earlier, is because there appears in this variational
problem only a few scalar products involving h and V.

Judging from the known properties of the rigid plate solution, which are
quite similar to the present general case, it can be inferred that for fixed o- and
0T,o' max will increase with decreasing A, or with increasing A2 (see (84)).
Furthermore, imax very close to unity can be attained when C. 0/(A)2 < L

The actual numerical work can be facilitated by first expressing the quadratic
form A2 in the canonical form. A possible choice of the new variables is

1=g1-1(3,...6), (89a)

where and 2 are the values of and 2' respectively, which will make
A1 +jA2 and hence also A2 vanish for arbitrary (... ). Then (80e) becomes

A1+jA2 = (+j)(1+j2), (89b)

hence A2 = (89e)

this being in the canonical form. Clearly, max depends on two parameters
[o-, C0/( + n)], e1 and e2 depend on four parameters (o-, CT,o, 2), whilst
and fi1 depend on (o-, CTO, ... ). The above canonical form is not
unique. The expression for A1 +jA2 in (80e) indicates several other combinations
of new variables. For instance, as another set, one may take

= 4 = (90a)
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where and are such that A1 +jA2 vanishes at = , = Then

A1+jA2 = [j(1)](+j), (90b)

and the corresponding form of A2 is again canonical.
For each of these canonical forms of A2, the calculation of the optimum

?imax will be entirely parallel to the special case of the rigid plate, although
there remain additional free parameters in the determination of the optimum
shape. It may be expected that due to the additional degrees of freedom admitted
to h(x, t) for this general case, max will be further improved from the rigid plate
value at fixed o- and CT being the heaving amplitude.

Finally, suppose the body recoil conditions (1 5)( 16) are also to be satisfied,
then these two conditions will give four scalar equations relating four more
parameters of V, say c3, c4, c5, c6, to the remaining unknown coefficients. This
shows that h(x, t) as given by (76) can be determined to a higher degree, the lack
of complete determinateness of the optimum shape remains, nevertheless, an
intrinsic feature of the problem.

I am deeply indebted to Professor M. J. Lighthill for interesting and stimu-
lating discussions, and particularly for calling my attention to the significance
of leading-edge suction in this problem. My remarks in this paper would have
been less complete had I not had the privilege of knowing his important con-
tribution (1970) prior to its publication. I am also grateful to Dr T. G. Lang for
discussion on his experiments, and to Professors C. R. De Prima and Duen-pao
Wang for their interest in the general problem presented in § 6. Assistance
provided by Dr Arthur Whitney and Mr Allen Chwang in numerical studies is
greatly appreciated. This work was partially sponsored by the National Science
Foundation, under Grant GK 10216, and by the Office of Naval Research, under
Contract N00014-67-A0094-0012.
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