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Abstract

Johnstone and Coleman (2012) [18] were among the first to opt the idea of wind farms with
mixed tower heights and predicted an increased power production due to the decrease of losses
to TKE production from the mean kinetic energy balance. In the current study, the perfor-
mance of infinite wind farms with alternating tower heights imposed by a neutrally stratified
half-channel boundary layer is investigated.

A LES approach is selected by using the existing LES code DALESURBAN. To model wind
turbines, the non-uniform actuator disk model is selected and its implementation into DALESUR-
BAN described. Three wind farm configurations are investigated and compared: a farm with
only high turbines, a farm with tower heights alternating in row configuration and a farm with
tower heights alternating in staggered configuration. When comparing the two alternating config-
urations, no significant difference in power production is found. For the farm with tower heights
alternating in staggered configuration, the fluctuation of power production is found higher and
the fatigue life expected shorter. When comparing the alternating configurations with the farm
with only high turbines, an increased power production of 4% to 5% is found. However, the source
for this increase is primarily the decrease of tower drag surface and not the result of decreased
losses to TKE production as proposed by Johnstone and Coleman (2012) [18]. Furthermore, the
fluctuation of the power production increases and the fatigue life of the high turbines is expected
to decrease. As an undesirable side-effect, in the alternating configurations the fatigue life for
the high turbines is found to be shorter than for the low turbines.

Investigation of tower height alternation in the infinite wind farm gave results against its
application. However, the effects of flow development along the wind farm are not taken into
account. Therefore, it is recommended to perform future research on wind farms with tower
height alternation within an inflow-outflow model description.
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Chapter 1

Introduction

Thesis background and motivation

By the end of 2013, the global wind energy capacity has reached a total of 318GW. Over 2014, a
record breaking 51GW has been installed additionally [20]. Strong ongoing development calls for
work on a great number of research subjects. Current major research subjects are: micro-siting
and wind farm layout optimization, accurate prediction of the atmospheric boundary layer, blade
optimization and modeling, detailed turbine and flow modeling, support structures and sound
modeling. [2],[29]. One recently opted alternative research topic is on the performance of wind
farms with mixed tower height. [18], [29]. Johnstone and Coleman (2012) [18] were the first
to opt a more efficient power extraction by application of a wind farm with mixed tower height
wind turbines. Johnstone and Coleman (2012) [18] performed a Large-Eddy Simulation (LES)
imposed by a neutral turbulent Ekman boundary layer description for a conventional infinite
wind farm. For such farm, the physics were discussed based on the mean kinetic energy profiles.
At turbine height, the power extracted by the turbine is locally balanced largely by the turbulent
transport of mean kinetic energy. The increased turbulence kinetic energy (TKE) production at-
tributed to the turbines is a large fraction of the power extracted by them. The TKE production
and viscous stresses represent additional sink terms that must be balanced by pressure work.
These losses are found to be significant: overall TKE production is larger than the useful power
extracted by the turbines, i.e. more energy is transferred into turbulence than into effective
power. High values of TKE production offer no obvious direct benefit in the context of a wind
farm. Rather an increase of velocity fluctuations implied by a high Reynolds stress and thus
high TKE production could lead to component fatigue. For the design of the wind farm it thus
seems desirable to reduce the absolute value of the Reynolds stress while keeping its gradients
high at turbine height. To do this, Johnstone and Coleman (2012) [18] suggest using a mixture
of mixed tower heights in the hope of obtaining a sawtooth curve for the Reynolds stress. This
would imply high local gradients of the stress and thus high kinetic energy transport, but might
keep its maximum level, and therefore TKE production, lower, i.e. higher energy transport and
less turbulence production. [18].

Although Johnstone and Coleman (2012) suggest a more efficient power extraction due to
mixed tower height wind farms, they do not perform any actual measurements or simulations
onto this specific subject. A scarce total of three other publications on mixed tower height wind
farms are known and described in detail in appendix B. All three publications use an optimiza-
tion algorithm to optimize the number of low tower and high tower turbines over a fixed 1D
length or 2D area. Wind turbines are analytically modeled according to Jensen’s wake model
and the imposed inflow velocity profile is analytically modeled by the logarithmic law. Acero et
al. (2009) performed a 1D optimization and an increase of 10 to 24% in power production due to
enabling mixed tower heights in the optimization algorithm was found. Ying Chen et al. (2015)
also performed a 1D optimization and found a 6 to 12.4% increased power production. Lastly,
Ying Chen et al. (2013) performed a 2D area optimization and found an increase of 4 to 7.3%
in power production.

1



To summarize, previous work on mixed tower height wind farms consistently give an increase
in power production compared to conventional wind farms. However, there is little agreement
on the quantitative aspect. Additionally, only analytic models are applied, no turbulence is
considered and Jensen’s wake model is applied outside its intended and validated purposes:
non-aligned wakes and the near wake region. Furthermore, other aspects of wind farms with
mixed tower heights such as the physics and change in fatigue life, are yet to be investigated.
Therefore, the research topic on wind farms with mixed tower heights is highly interesting for
further advancements.

Thesis research question and general assumptions

In line with Johnstone and Coleman (2012) [18] only infinite wind farm conditions are consid-
ered in the current study. Furthermore, all simulations are imposed by a neutrally stratified
half-channel boundary layer. This simplification omits the difficulty of developing and verifying
a realistic atmospheric boundary layer. The Coriolis force, gravity and any thermal effects are
assumed negligible. While these assumptions are significant with respect to a real atmospheric
boundary layer, study into their validity is considered out of scope.

For the current study the term ’alternating tower height wind farm’ is introduced, defined as
a wind farm composed by two turbines with different tower heights and implemented in a struc-
tured streamwise alternating manner. Johnstone and Coleman (2012) [18] did not give guidelines
or suggestions on the tower height difference and tower height spatial configuration within the
wind farm. Based on these definitions and simplifications, the main research question and its
sub questions are defined:

How is the power production, the fluctuation of power production and the fatigue
life affected by application of tower height alternation for an infinite wind farm
imposed by a neutrally stratified half-channel boundary layer?

Sub questions:

• What tower height difference is appropriate and optimal?

• What wind farm configurations to consider and is there a performance difference between
configurations?

• Are the physics as proposed by Johnstone and Coleman (2012) valid for such application?

The power production and fluctuation of power production are chosen performance measures
to give an indication of the quantity and quality of power extraction. Additionally, the fatigue
life is identified as a performance measure. Summarizing the physics proposed by Johnstone and
Coleman (2012) [18], the occurrence of the following is discussed:

• Decreased local and overall TKE production.

• A sawtooth curve for the Reynolds shear stress magnitude.

As infinite wind farms are considered, experimental work is not applicable and computa-
tional modeling is required. Atmospheric boundary layer flows and turbine wakes are known
to be anisotropic and dominated by large-scale turbulent structures and turbulent mixing. Ad-
ditionally, the flow through a wind farm comprises eddies that range in size from the smallest
dissipative scales to the atmospheric boundary layer height. Widely used engineering models
such as WaSP are fast and accurate for an overview of wind farm aerodynamics and gauging
mean power production. However, they cannot resolve phenomena like wake meandering, the
effect of atmospheric stratification and a turbine’s response to partial wake interaction and yawed
inflows. [26]. An alternative for engineering models are models based on the Navier-Stokes (NS)
equations, such as Reynolds Averaged Navier-Stokes simulations (RANS), LES and Direct Nu-
merical Simulations (DNS). These models solve the full relevant flow field, while the underlying
turbulence model differs. RANS generally assumes isotropic turbulence and is therefore unfit
for atmospheric boundary layer flows. In recent years, LES is receiving more attention in the
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wind energy wake community. For LES the dominant large-scale turbulent structures are fully
resolved, while the small-scale structures are treated by a subgrid model. Lastly, DNS resolves
all eddies of a flow but requires very fine grids of the order of the Kolmogorov scale. This un-
fortunately makes application of DNS for wind turbine wakes and atmospheric boundary flows
unworkable with today’s computational means [26],[34]. Therefore, LES is chosen for further
advancements.

To choose a proper LES code, the following considerations are stated:

• The tip speed of large turbines might approach the limit of the incompressibility assumption
(Ma=0.3 at sea level), the flow in the wake remains incompressible. [26].

• A wind turbine wake experiences high shear near wake shear layers, which might result
in overapproximation of the turbulent viscosity if not compensated. Therefore, there is a
need for a dynamic Smagorinsky sub-grid model (SGM) or Vreman SGM [35], [41].

Within the Technical University of Delft, the DALES (Delft Atmopheric Large Eddy Simulation)
code has been in development for many years. A spin-off of the DALES code (v.3.2) is the
DALESURBAN code, mostly identical to the DALES code, however, with the advantage of
having both static Smagorinsky and Vreman SGM built in. Therefore, the DALESURBAN
code is chosen for further development regarding wind turbine modeling. Application of a wind
turbine in DALESURBAN requires the development of a wind turbine model. To guide this
development, the following sub questions are introduced:

• What wind turbine models are applicable for LES and how have such models been imple-
mented in literature?

• What model is selected, how is it implemented to DALESURBAN, to what validation case
is the implementation aimed and what are its inputs?

• How does the model perform compared with analytic wind turbine models and experiments?

Thesis overview

First, the basics of LES as applied in DALESURBAN are described in chapter 2, Theoretical
background and literature. The mean kinetic energy budget is introduced as it is applied in the
current study for analysis purposes. In order to describe characteristics of wind turbine models,
the properties of the wind turbine wake are discussed. An overview of wind turbine models
applicable to the selected code is given, followed by the literature on application of such models.

In chapter 3, Methodology, one wind turbine model is selected and its implementation to
DALESURBAN is described. Then, the methodology for the verification and validation of the
selected model is introduced and a validation case is selected. Two simulations are set-up: the
simulation for model verification and validation and the infinite domain for alternating tower
height wind farms. Lastly, all wind turbine model inputs are summarized.

In chapter 4, Validation, the implemented wind turbine model is verified and validated. First,
code verification is performed. Then, the calculation is verified by comparing the implemented
model to engineering wake solutions and Frandsen’s double-log-law theory. Lastly, the model is
validated by measurements as introduced by the validation case.

The fully validated wind turbine model is then finally applied with respect to the research
questions in chapter 5. The sub questions are discussed and results for the power production,
the fluctuation of power production and the fatigue life are given.
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Chapter 2

Theoretical background and
literature

First the basics of LES as applied within DALESURBAN are described and the mean kinetic
energy budget is introduced. The latter is applied in the current study for analysis purposes.
Then, the characteristics of the wind turbine wake are discussed. An overview of wind turbine
models applicable to the selected code is given, followed by the literature on application of such
models.

2.1 Basics of LES as applied within DALESURBAN

LES formulations are based on the filtered Navier-Stokes equations, as defined by equations 2.1
and 2.2. All notations follow the Einstein-summation-convention and symbols indicating the
notation of filtering is omitted.

∂ui
∂xi

= 0 (2.1)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂

∂xi

(
p

ρ

)
+ ν

∂2ui
∂x2

j

− ∂τij
∂xj

+Mbody. (2.2)

In equation 2.2, Mbody is a collective term for all large-scale body forces. Further, the term
τij is the subgrid scale stress tensor, generally unknown and approximated by the Boussinesq
hypothesis as found in equation 2.3. Here, e is the subgrid energy, δij the Kronecker delta and
νe the eddie viscosity.

τij =
2

3
δije− 2νeSij (2.3)

In the Boussinesq hypothesis τij consists of an isotropic part, 2
3δije and an anisotropic part,

−2νeSij . The isotropic part may be lumped with the pressure into the so-called modified pres-
sure term. For the anisotropic part Sij is defined according to equation 2.4 and therefore, the
anisotropic part may be lumped with the diffusion term, as found in equation 2.5.

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

∂ui
∂t

+
∂uiuj
∂xj

= −∂pmod
∂xi

+
∂

∂xj
(2(ν + νe)Sij) +Mbody (2.5)
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Code flowchart

Figure 2.1 gives a simplified flowchart of the DALESURBAN code. The code consist of two main
steps: first fill in the Navier-Stokes equations and second, solve the Navier-Stokes equations.
These two steps are repeated every Runga-Kutta (RK) time integration step within each full
time-step. Time integration is achieved by application of an explicit three-stage Runga-Kutta
method wherein the value of any term for the current time-step, χm+1, is calculated based on
the previous time-step according to three Runga-Kutta steps as described by equations 2.6, 2.7
and 2.8.

χRK1 = χm +
∆t

3

(
∂χ

∂t

)m
(2.6)

χRK2 = χm +
∆t

2

(
∂χ

∂t

)RK1

(2.7)

χm+1 = χm + ∆t

(
∂χ

∂t

)RK2

(2.8)

Here, ∆t is either a predefined fixed time-step or a dynamic time-step based on the CFL-
criterion. For all momentum terms, the required time-derivatives are found by means of the
pressure-correction method.

Pressure-correction method

The Navier-Stokes’ equation as defined in equation 2.5 may be written discretized as equation
2.9, with superscript ’n’ indicating Runga-Kutta steps.

un+1
i − uni
∆tRK

= −
(
∂pmod
∂xi

)n
− ∂p̃

∂xi
+Remn (2.9)

Where p̃ is a correction for the fact that the pressure gradient at the previous time step is
used, i.e. pn+1 = pn + p̃. Furthermore, the term Remn is a collective term including advection,
diffusion and body-forces. Equation 2.9 may be split into two components by application of a
prediction velocity u∗, as found in equations 2.10 and 2.11.

u∗i − uni
∆tRK

= −
(
∂pmod
∂xi

)n
+Remn (2.10)

un+1
i − u∗i
∆tRK

= − ∂p̃

∂xi
(2.11)

Taking the divergence of equation 2.11 gives equation 2.12. Due to mass conservation,
Oūn+1

i = 0, equation 2.12 simplifies to equation 2.13.

O

(
un+1
i

∆tRK

)
− O

(
u∗i

∆tRK

)
= −O2p̃ (2.12)

O

(
u∗i

∆tRK

)
= O2p̃ (2.13)

The LHS of equation 2.13 is found by taking the divergence of equation 2.10 and reordering
as in equation 2.14. Equation 2.13 is then solvable for the RHS by application of a Poisson solver.

O

(
u∗i

∆tRK

)
= −O

(
∂pmod
∂xi

)n
+ O

(
uni

∆tRK

)
+ ORemn (2.14)
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Figure 2.1: Flowchart of the DALESURBAN code.
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2.2 Kinetic energy budget of the mean flow

The energy budget of the mean flow is found by multiplying the Reynolds averaged Navier-Stokes
equations with ūi. The fully developed (converged) mean flow is considered stationary: ∂ūi

∂t = 0,
resulting in equation 2.15 for the energy budget of the mean flow.

ūi
∂ūiūj
∂xj

= −ūi
∂p̄mod
∂xi

+ ūi
∂

∂xj
(2(ν + νe)S̄ij)− ūi

∂u
′
iu
′
j

∂xj
− ūiMbody (2.15)

By application of the product rule for derivatives, equation 2.15 is rewritten into equation 2.16
as four components [30]: kinetic energy work, transport, production and extraction, respectively
given in equations 2.17, 2.18, 2.19 and 2.20.

0 = W̄ + T̄ + P̄ + Ē (2.16)

W̄ = −ūi
∂p̄mod
∂xi

(2.17)

T̄ = −ūi
∂ūiūj
∂xj︸ ︷︷ ︸

advection

− ∂

∂xj

(
ūiu

′
iu
′
j

)
︸ ︷︷ ︸
Reynolds stresses

+
∂

∂xj
(2ūi(ν + νe)S̄ij)︸ ︷︷ ︸

viscous and subgrid

(2.18)

P̄ = u
′
iu
′
j

∂ūi
∂xj︸ ︷︷ ︸

Reynolds stresses

− 2(ν + νe)S̄ijS̄ij︸ ︷︷ ︸
viscous and subgrid

(2.19)

Ē = ūiMbody (2.20)

The work term, W, describes the mean work performed by the set pressure gradient. The
transport term, T , is responsible for transporting or distributing KE over the domain. This term
consists of four different components: advective transport, transport due to Reynolds stresses,
transport due to viscous stresses and transport due to subgrid stresses. The production term,
P, is a loss in KE and is better known as the production term for turbulent kinetic energy. This
term consists of three different components: production due to Reynolds stresses, production
due to viscous stresses and production due to subgrid stresses. The extraction term, E , is the
direct result of body forces.

Due to the complexity of the discretization, the transport term is not calculated explicitly
and is found as the residual of all other terms by equation 2.21.

T̄ = −W̄ − P̄ − Ē (2.21)

1D profiles of the kinetic energy budget of the mean flow

For assessment of the energy budget, 1D profiles in wall-normal direction are used. These profiles
are defined according to equation 2.22 analogously for each component.

W̄(zk) =

Nx∑ Ny∑
W̄(xi, yj , zk)

∆x∆y

LxLy
(2.22)
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Domain averaged kinetic energy budget of the mean flow

Additionally, an energy budget for the whole domain is introduced according to equation 2.23. By
definition, the integral of the transport term over the whole domain equals zero [30]. Therefore,
the transport term is not explicitly present in equation 2.23, yet lumped in a newly introduced
budget error, Ebudgets. This budget error is defined by 2.24 and is thus the resultant of equation
2.23. Practically, this integral is calculated according to equation 2.25, analogously for each
component and following up on the previously defined 1D profiles.

0 =

∫∫∫
W̄dV +

∫∫∫
P̄dV +

∫∫∫
ĒdV + Ebudgets (2.23)

Ebudgets = −
∫∫∫

W̄dV −
∫∫∫

P̄dV −
∫∫∫

ĒdV (2.24)

∫∫∫
W̄dV =

Nz∑
W̄(zk)LxLy∆z (2.25)

2.3 The wind turbine wake

A wind turbine subtracts momentum from the flow, thereby forming two straightforward wake
characteristics: decreased velocity and increased turbulence. For the turbulence within a wake,
three main sources may be identified [34]:

• Atmospheric turbulence

• Mechanical turbulence

• Wake turbulence

The latter two sources are wind turbine specific. Mechanical turbulence is the result of the
direct interaction of the flow with the blades, tower and nacelle. Wake turbulence on the other
hand results from shear layers and the breakdown of tip vortices. Tip vortices describe helical
trajectories and are the product of the roll-up of vortex sheets[39]. Further downstream of the
rotor these tip vortices break down, inducing additional wake turbulence and therewith thick-
ening of the shear layer. The break down of tip vortices has been found to occur about 2 to 4
rotor diameter lengths downstream of the turbine, the distance at which the peak turbulence is
generally observed [26]. Additionally, the wake experiences wake rotation and wake meandering.
Wake rotation occurs in opposite rotation direction to the direction of rotation of the turbine
[24]. Wake meandering is the appearance of a low-frequency fluctuation both in the wake and in
the flow outside.[24, 25]

The wind turbine wake may be divided into two regions: the near wake region and the far
wake region. The downstream division distance between these two regions is defined as the point
at which the shear layer created near the the blades’ tips thickens with downstream distance and
merges near the wake’s center line. As noted, additional shear layer thickening is caused by tip
vortex breakdown, therefore, the division between near wake and far wake region is again found
to occur about 2 to 4 rotor diameter lengths downstream of the turbine [26, 39]. The near wake
and far wake regions may be considered as two separate research areas: near wake research and
far wake research. Near wake research is specifically focused on the performance and physical
process of power production. Both mechanical and wake turbulence play an important role on
near wake characteristics, as is wake rotation and the occurrence, production and development of
helical tip vortices. Furthermore, other mechanical processes as blade bending, blade vibrations
and noise generation may be considered [39]. Far wake research is specifically focused on the
mutual influence when wind turbines are placed in clusters. Mechanical turbulence becomes
insignificant compared to atmospheric and wake turbulence [33, 34], while all tip vortices are
assumed to have broken down in the near wake region. Tip vortices are therefore commonly
neglected in far wake research.
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2.4 Introduction of wind turbine models for LES

Wind turbine modeling for the current study is focused on far wake applications: no mechanical
turbulence is considered and modeling of tip vortices is optional. Additionally, only wind turbine
models applicable for Navier-Stokes based solutions are introduced. Figure 2.2 gives a hierarchical
overview of wind turbine models. Two main types are identified on level 1 [34]:

• Model the wind turbine as a distributed momentum sink

• Model the wind turbine as actual rotating solid geometry

The application of the latter of these two with respect to the far wake study focus is rarely
found in literature, one example being the work of Gross [16] in which the blades are modeled as
solid geometry following the cubic grid cells. For the momentum sink models, the wind turbine
forces are modeled as an additional momentum sink term added to the filtered Navier-Stokes
equation. The momentum sink, here expressed as a cartesian vector M, is defined according to
equation 2.26. Here, Acell,⊥ is the cell surface perpendicular to the Cartesian flow direction and
the term (F/(ρA)) is the force per unit mass vector and differs in magnitude for each type of
momentum sink model.

M =

(
F

ρA

)
Acell,⊥
Vcell

=

(
F

ρA

)
1

dx
(2.26)

On level 2 of figure 2.2, the momentum sink models are introduced. Figure 2.3 gives an
illustrated overview of the three momentum sink based models [34]:

• Actuator disk model, uniform or non-uniform (ADM)

• Actuator line model (ALM)

• Actuator surface model (ASM)

Figure 2.2: Hierarchical overview of wind turbine models. The models have been ordered by
increasing complexity and number of inputs per hierarchical level.
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(a) (b) (c)

Figure 2.3: Types of distributed momentum sink models (level 2) (modified from[34]).

Uniform actuator disk model (U-ADM)

For the U-ADM the applied force per unit mass on the flow is defined by equation 2.27.

F

ρA
= −1

2
u2
refC

loc
T (2.27)

The applied force of the U-ADM depends on a local thrust coefficient, ClocT , and a streamwise
reference velocity, uref . The trust force only acts streamwise and thus the force vector F is only
non-zero for the streamwise direction. Distribution of the resulting momentum sink over the
LES grid underlying the disk may be performed according to various methods, for example an
area-factorization based distribution or a regularized smoothing by a Gaussian filter. As the grid
and actuator disk do not geometrically change over time, the distribution is constant in time.
Due to the fact that: the U-ADM only models a streamwise applied force and the only modeled
wake phenomena is a velocity deficit, the U-ADM is only expected to give acceptable results in
the far wake region. A summary of the explanation above is found in table 2.1.

Non-uniform actuator disk model (NU-ADM)

For the NU-ADM, the applied force per unit mass on the flow is defined by equation 2.28 and a
non-zero streamwise, spanwise and wall-normal component holds.

F

ρA
= −1

2
U2 Bc

2πr
(Clel + Cded) (2.28)

Here, B is the number of blades, r is the radius of the blade element and c is the chord of
the blade element. Additionally, equation 2.28 requires the lift and drag coefficients, Cl and
Cd. The vectors el and ed are unit vectors in the direction of lift and drag. More detail on the
calculation of the velocity relative to the blade, U , and these unit vectors is found in chapter
3.1.3. Equation 2.28 has its origin in the blade element theory. In this theory, the blade is
divided into multiple elements and for each element a constant geometry is assumed [22]. The
definition and distribution of the forces is performed over annuli corresponding with the chosen
blade elements, as illustrated by figure 2.3(a). All relevant geometry remains constant over time,
therefore the distribution is constant over time. The NU-ADM models two wake phenomena: a
velocity deficit and wake rotation, and thus, the NU-ADM is expected to give acceptable results
in the far wake region. A summary of the explanation above is found in table 2.1.

Actuator line model (ALM)

For the ALM, the applied force per unit mass on the flow is defined by equation 2.29. Again,
the applied force vector contains a non-zero streamwise, spanwise and wall-normal component.

F

ρA
= −1

2
U2c(Clel + Cded) (2.29)
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Equation 2.29 differs from equation 2.28 only due to disk-averaging; locally, the force is
determined based on the number of blades divided over the circumference of the annulus, hence
the B

2πr term. This has its origin from the fact that actuator disk models average the local forces
(at blade location) over a disk (or annulus). As the ALM applies the force only at the location of
the blade, the distribution of the applied force changes over time based on the rotational speed
of the turbine. Contrary to the NU-ADM, the ALM is capable of modeling tip-vortices [34].
Therefore, the actuator line model is expected to give acceptable results for both near wake as
far wake regions. A summary of the explanation above is found in table 2.2.

Actuator surface model (ASM)

For the actuator surface model (ASM) the applied force on the flow is defined by equation 2.30.
This model has been developed by Shen et al and is yet highly experimental [36]. The required
inputs for the actuator surface model are chord-wise pressure and skin friction distributions.

F

ρA
= −f2DFdistr(ξ) (2.30)

The term f2D is the skin friction and Fdistr(ξ) is determined by fitting empirical functions
to chord-wise pressure distributions [34]. More detail on this model can be found in the article
by Shen et al [36]. The ASM is however not considered a feasible model for application due
to the high complexity of the model and the required inputs that are difficult to obtain. Some
additional properties of the actuator surface model are given in table 2.2.

Table 2.1: Overview of properties of the actuator disk models (ADM) (level 3).

Property U-ADM NU-ADM

Inputs ClocT (uref ), turbine geometry Cl(Re, α), Cd(Re, α),Ω, turbine
and blade geometry

Distribution constant over disk constant over annuli

Modeled phenomena velocity deficit velocity deficit, wake rotation

Application far wake far wake

Table 2.2: Overview of properties of the actuator line and actuator surface models (level 2).

Property ALM ASM

Inputs Cl(Re, α), Cd(Re, α),Ω, turbine
and blade geometry

Cpdistr(Re, α), Cfdistr(Re, α),Ω,
turbine and blade geometry

Distribution time-dependent over rotating
line

time-dependent over rotating
surface

Modeled phenomena velocity deficit, wake rotation,
tip vortices

velocity deficit, wake rotation,
tip vortices

Application far wake and near wake far wake and near wake
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2.5 Literature on wind turbine models for LES

There are three main groups actively publishing a large variety of articles on topics wherein wind
turbine(s) are applied within a Large-Eddy Simulation description:

• John Hopkins University, Baltimore, Maryland, USA, lead by C. Meneveau

• KU Leuven, Leuven, Belgium, lead by J. Meyers

• École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, lead by F. Porté-Agel

Additionally, the application of the study by Johnstone and Coleman (2012) [18] is noted.
For each group, first, the type of actuator disk(s) and its driving inputs are given. Then, the
method of distribution of the forces on the LES grid is described and, if applicable, the direction
of smoothing is discussed. For smoothing, two types may be applied: radial smoothing and axial
smoothing. Smoothing is recommended to avoid singular behavior and numerical instabilities
such as 2dx-waves and Gibbs instabilities [37][28].

John Hopkins University

For the JHU-LES (John Hopkins University -LES) the application of the wind turbine model
starts at the definition of the total actuator thrust force on the flow, Ft, as given by equation
2.31 [4].

Ft = −1

2
ρCTu

2
∞
π

4
D2
disk (2.31)

Here, the thrust coefficient, CT is defined as function of the upstream undisturbed reference
velocity, u∞. Equation 2.31 is only applicable for research on isolated turbines as the undisturbed
reference velocity is unknown for turbines disturbed by a upstream turbine wake. Therefore, a
method is implemented to relate the force of each turbine to a local reference velocity, udisk.
Classic actuator disk theory allows the use of equation 2.32 to transform the undisturbed disk
velocity into the disk velocity by application of the induction factor, a. Equation 2.33 then gives
a definition of the local thrust coefficient, ClocT .

u∞ =
udisk

(1− a)
(2.32)

ClocT =
CT

(1− a)2
(2.33)

The total thrust force as function of the disk reference velocity is then given by equation
2.34. Here, the term 〈ūT 〉2disk stands for the disk averaged and time-averaged local disk velocity.
Time-averaging is performed by application of a one-sided exponential time filter, whereas the
averaging time-scale is defined by equation 2.35.

Ft = −ρ1

2
ClocT 〈ūT 〉2disk

π

4
D2
disk (2.34)

Tuτ
δ

= 0.27 (2.35)

In equation 2.35, uτ is the friction velocity (including turbines) and δ is the boundary layer
height. For the relevant thrust coefficient, typical values for existing wind turbines, CT = 0.75
and a = 1/4, are applied. This leads to ClocT = 4/3 assumed as a constant model input. For
the distribution of the total thrust force over the grid, area-factorization is applied. Here, the
area-factor variable is defined as γj,k. For the disk interior grid points representing cells entirely
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contained inside the disk, γj,k = 1 holds. For cells with partial overlap, the factor corresponds
to the fractional area overlap of the disk within that cell. Equation 2.36 gives the distributed
force (per unit mass) in the streamwise direction at a given grid point.

(
F

ρA

)
i,j,k

= −1

2
ClocT 〈ūT 〉2diskγj,k (2.36)

Due to the application of distribution by area-factorization, no smoothing of the forces is
applied. Table 2.3 gives a summary of the JHU application and a comparison with other appli-
cations, while figure 2.4 gives a plot of the applied distribution.

KU Leuven

The KU Leuven application follows the same method for the definition of the total undistributed
thrust force as the JHU application as given in equation 2.34 [4]. Distribution of the force over the
mesh and the definition of the disk-averaged and time-averaged reference velocity is performed
differently for the KU Leuven application and allows for a rotation of the disk over any axis. In
a first step, turbine forces are described in the turbine-rotor plane. In a second step, these forces
are smoothed over the grid using a Gaussian convolution filter on locations which correspond to
the coordinates of the LES grid. Two frames of reference are of relevance. First, the coordinate
system in the turbine rotor plane is defined by y = (y1, y2) with origin in the rotor center and
y1 and y2 the horizontal and vertical direction on this rotor plane respectively. Second, in the
LES coordinate frame, the rotor plane is given by xt which satisfies e⊥ · (xt − x0) = 0 with x0

the coordinate of the rotor center and e⊥ a unit vector perpendicular to the rotor plane. The
distributed forces in the LES coordinate frame are defined by equation 2.37.

(
F

ρA

)
i,j,k

= QijFt,j(x) (2.37)

Here, Qij is a rotation matrix accounting for possible different orientations between the rotor
plane, y, and the LES x coordinate frame. Ft,j(x) is the turbine thrust force smoothed over the
grid by a Gaussian convolution filter in the LES coordinate frame as defined by equation 2.38,
with xc the coordinates of the closest disk position relative to the relevant cell. Furthermore,
δdirac is the Dirac function and the selected Gaussian filter is defined by equation 2.39.

Ft,j(x) =

(
Ft
ρA

)
(y(xc − x0)) ∗ (G(x− xc)δdirac(e⊥ · (xc − x0))) (2.38)

G(x) =
6(3/2)

ε3π(3/2)
exp

[
−6||x||2

ε2

]
(2.39)

In equation 2.39, ε is a regularization kernel, chosen as 1.5h with h the grid spacing in the
relevant direction. This method of distribution allows for the smoothing of the applied forces in
the turbine-rotor plane and axial direction. A similar distribution approach is also applicable for
the non-uniform actuator disk method and the actuator line method. Table 2.3 gives a summary
of the KU Leuven application and a comparison with other applications, while figure 2.4 gives
a plot of the applied distribution. Spatial averaging of the reference velocities is performed
accordingly. Furthermore, one-sided exponential time-averaging of the reference velocities is
performed according to the time-scale T defined by equation 2.35 set at 0.60.

École Polytechnique Fédérale de Lausanne

Porté-Agel (2011) [32] implemented three wind turbine models: the uniform actuator disk, non-
uniform actuator disk and actuator line model. For all three models, the force on the flow per
unit mass is defined by equations 2.27, 2.28 and 2.29 respectively. For the uniform actuator disk,
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the instantaneous streamwise velocity at disk center is taken as reference velocity. For the other
two models, the relative velocity is analogously defined as described in chapter 3.1.3 for each
separate blade element, while instantaneous reference velocities are used.

Distribution of the force is again performed by smoothing over the grid by application of
a Gaussian convolution filter. Furthermore, Porté-Agel (2011) implements all three wind tur-
bine models oriented perpendicular to the bulk flow, resulting in a simplified expression for the
Gaussian convolution filter by equation 2.40 [32]. Here, ηε, is defined by equation 2.41.(

F

ρA

)
i,j,k

=

(
F

ρA

)
∗ η (2.40) η =

1

ε3π(3/2)
exp

[
−d
ε

]2

(2.41)

In equation 2.41, the term d is the distance between grid points and points representing
the actuator disk and is comparable with the term ||xc − x0|| as applied by the KU Leuven
application. Furthermore, ε is chosen as ∆x, the grid spacing in streamwise direction for an
uniform grid [44]. Application of equation 2.40 results in both radial and axial smoothing.
Additionally, Porté-Agel (2011) [32] also applied the tower and nacelle as uniform drag force
surfaces distributed over the LES grid in a similar way as described in equation 2.40. Table 2.3
gives a summary of the Lausanne application and a comparison with other applications, while
figure 2.4 gives a plot of the applied distribution.

University of Southampton

Johnstone and Coleman (2012) [18] essentially apply the same method as applied by the John
Hopkins University to define the total thrust force of the disk on the flow, as previously defined
by equation 2.34. Here, ClocT is set at 2 corresponding to the Betz limit. The reference velocity
is only spatially averaged over the disk by area-factorization. The resulting momentum sink is
distributed over several grid points in the axial direction and similar smoothing is performed in
the radial direction at the edge of the disk. Equation 2.42 describes this smoothing.

(
F

ρA

)
i,j,k

= −

(
F
ρA

)
√
πεx

exp

(
−
[
dx
εx

]2
)

1

2

[
1− erf

(
r2 − r2

disk

Ddiskεr

)]
(2.42)

Here, dx is the axial distance between the grid points and the points representing the actuator
disk. εx and εr are again regularization kernels controlling the smoothing and are set at 1

10Ddisk

and 1
16Ddisk, respectively. These imposed parameters are however case-specific and dependent

on the diameter of the disk and the grid. Both in-plane an axial smoothing is applied, while
the method applied for smoothing is only applicable for uniform actuator disks. Additionally,
Johnstone and Coleman (2012) [18] also implemented rotation of the actuator disk over its z-
axis, i.e. swivel of the disk. This method is however not described in detail. Table 2.3 gives a
summary of the Southampton application and a comparison with other applications, while figure
2.4 gives a plot of the applied distribution.

Summary and comparison of distributions

Table 2.3 gives a summary of presented methods for wind turbine modeling in LES. Figure
2.4 compares the continuous smoothing / distribution of the presented methods. In figure 2.4,
the JHU distribution is radial only and cuts off directly at the disk edge. Both KU leuven
and Lausanne applications apply axial and radial smoothing by a Gaussian convolution filter.
Although the applied Gaussian filters differ for the KU Leuven and Lausanne applications, the
resulting smoothing is near identical due to different values for the regularization kernels, ε.
Furthermore, the KU Leuven and Lausanne applications only exhibit radial smoothing past
the actuator disk edge, while for the Southampton application radial smoothing already starts
within the actuator disk and drops to exactly 50% of the central uniform forcing at the actuator
disk edge. Under the correct settings, all distributions are continuously self-containing, i.e. the
integral of the continuous distributed force, as plotted in figure 2.4, matches the real total force,
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as defined by equation 2.34. The smoothing is applied on a computational spatial grid and thus
discretization of continuous smoothing occurs. Due to this discretization, an error between this
continuous smoothing and the resulting discretized smoothing is introduced. Minimization of
this error is possible by two methods. First the application of an as fine as possible grid over
the disk. Or, second, grid-specific fine-tuning of the regularization kernels to ensure correct
match between the real total force, again as defined by equation 2.34, and the total sum of the
distributed force. The second method is applied by the University of Southamption, while for the
other applications no notice is made of this discretization error. Moreover, the second method
requires iterative fine-tuning, only feasibly applicable with regards to the required wall-clock
time for actuator disk models with a constant distribution.

Table 2.3: Summary and comparison of application of
wind turbine models in LES by research group.

Property JHU KULeuven Lausanne Southampton

Disk type uniform uniform & line uniform,

non-uniform & line

uniform

Driving inputs constant CT constant CT all variable constant CT

Distribution area-
factorization

Gaussian convo-
lution filter

Gaussian convo-
lution filter

equation 2.42

Smoothing none radial & axial radial & axial radial & axial

Specifics fixed disk all-axis rotation fixed disk, tower
& nacelle

z-axis rotation
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Figure 2.4: Comparison of distribution methods from literature.
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Chapter 3

Methodology

From the overview of applicable wind turbine models as presented in chapter 2 a wind turbine
model is selected and the distribution method described. Then, the methodology for the de-
velopment of the selected wind turbine model is introduced and a validation case is selected.
Two simulations are set-up: the simulation for model verification and validation and the infinite
domain for wind farms. Lastly, all wind turbine model inputs are summarized.

3.1 Selection of models and methods

To select the model to implement, two selections are required: first the selection of the ac-
tuator disk model and second the selection of the distribution method. The following model
requirements are set with respect to the research question:

• Far wake research focused, i.e. wake interactions between turbines are of importance while
near wake phenomena such as tip vortices and mechanical turbulence are not considered
relevant.

• Constant wind direction, constant driving force.

• Actuator disk plane fixed and oriented perpendicular to streamwise direction.

• Actuator disk plane oriented on cubic grid.

• Application of smoothing by distribution to give control over singular behavior and numer-
ical instabilities.

3.1.1 Selection of wind turbine model

From section 2.5 it is found that the majority of far wake research applies the uniform actuator
disk model (U-ADM). This model requires a thrust coefficient. For alternating tower height wind
farms, two different tower heights are implemented and non-aligned wakes occur. Currently, the
value of the thrust coefficient is unknown and it is unclear if the thrust coefficients are identical
for turbines with different tower heights. Therefore, the thrust coefficient cannot be estimated
as a constant and a relation between the thrust coefficient and the reference velocity is required.
Determination of this relationship can either be performed experimentally or computationally.
One computational method is by application of the Blade Element Theory [22]. Here, the thrust
coefficient is determined as a result of the turbine blade geometry and its lift and drag coefficients.
Execution of this practice is the basis behind the non-uniform actuator disk model (NU-ADM).
Therefore, instead of implementing the simpler U-ADM with the requirement to determine the
thrust coefficient as function of the reference velocity, the NU-ADM is selected for implementa-
tion. Additionally, the actuator line model (ALM) is not selected due to the higher complexity
and the non-constant nature of the location of the forces. Furthermore, tip-vortices as modeled
by the ALM require the application of a relatively high resolution grid, which is unlikely to be
feasible for the final infinite domain with respect to wall-clock time.
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From section 2.5 it is also found that the tower and nacelle are mostly neglected. Turbines
with different tower heights experience a difference in tower drag due to a difference in tower drag
surface. The influence on performance measures by tower height alternation is yet unclear. As a
result, it is unclear whether or not the influence of the tower and nacelle is negligible. Therefore,
the tower and nacelle are taken into consideration and implemented in the wind turbine model.
To summarize:

• The NU-ADM is the selected model for implementation.

• Additionally, the tower and nacelle are implemented.

3.1.2 Distribution method

The applied distribution method is not directly a selection of previously applied methods as
described in the literature, section 2.5. Rather, a custom method is implemented with the
following aims:

• Minimize spread and maximize concentration.

• Fix discretization error between continuous smoothing and discretized smoothing.

The first aim is based on the large spread of the implemented distribution methods as previ-
ously found in figure 2.4. Smoothing spreads to nearly twice the diameter of the actuator disk for
the KU Leuven and Lausanne application. Increased spread also results in a decreased uniform
forcing near the disk center and thus, the forcing becomes less concentrated. The second aim
concerns the discretization error as discussed in section 2.5. As stated, one method to reduce this
discretization error without increasing the number of cells over the disk, is to apply grid-specific
fine-tuning of the regularization kernels, ε. This method then assures a correct match between
the intended total force and the total sum of the distributed forces, and is applied for the current
application.

Equation 3.1 gives the discretized force per unit mass distributed over the grid. First, the
magnitude of the force per blade element (a) is described according to equation 2.28. Then, this
force is distributed by multiplication with the smoothing factor, η.

(
F

ρA

)
i,j,k,a

=

(
F

ρA

)
a

ηi,j,k,a (3.1)

This smoothing factor consist of two components: first an axial smoothing component, ηx,
and second a radial smoothing component, ηr. Equation 3.2 defines the smoothing factor, with
equations 3.3 and 3.4 defining the axial and radial components. Both smoothing components are
Gaussian distributions and originally proposed by Mikkelsen (2003) [28]. Additionally, modifi-
cation is applied by addition of the (10/Ddisk) factor to allow for more sensible response on the
relevant distance (di and dj,k) for miniature wind turbines.

ηi,j,k,a = ηxi η
r
j,k,a (3.2)

ηxi =
1

εx
√
π
exp

[
−
(

(10/Ddisk)di
εx

)2
]

(3.3)

ηrj,k,a =
1

ε3rπ
3/2

exp

[
−
(

(10/Ddisk)dj,k
εr

)2
]

for a = Na (3.4)
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Both smoothing components are based on a certain distance to the disk, for axial smoothing
defined by equation 3.5 and for radial smoothing by equation 3.6, the latter is only non-zero if
the cell is located outside the outer edge. Here, β is the angle between cell-center and the horizon
as illustrated in figure 3.2. Also, xdisk, ydisk, zhub and rdisk describe the location of the hub and
the radius of the disk and are all global constants.

di = |xi − xdisk| (3.5)

dj,k =
√

(yj − yhub − 0.5Ddiskcos(βj,k))2 + (zk − zhub − 0.5Ddisksin(βj,k))2 (3.6)

The axial smoothing component is comparable with the Southampton application, while the
radial smoothing component is comparable with the Lausanne application. Additionally, to give
control over the minimization of the spread two input parameters are introduced: the number of
upstream axial cells over which smoothing is set to occur, Nsmooth,x, and the number of radial
cells over which smoothing is set to occur, Nsmooth,r. For example, if Nsmooth,r is set to zero
radial smoothing is only present for cells within the first radial cell-distance. If Nsmooth,r is
set at 5, radial smoothing occurs up to 5 cells radially removed from the actuator disk edge.
Furthermore, axial smoothing only occurs upstream in order to increase the concentration of the
forces.

Figure 3.1 compares the implemented distribution method with the methods from litera-
ture. Both axial and radial smoothing exhibit a smaller spread of forces than the KU Leuven
and Laussanne application. The spread of axial and radial smoothing is comparable with the
Southampton application, while the radial smoothing only occurs past the actuator disk edge.
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Figure 3.1: Comparing applied radial and axial smoothing with methods from literature.
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3.1.3 Implementation in DALESURBAN

The DALESURBAN code as described in section 2.1 is extended with a new module specifically
for the application of the wind turbine model: modwindturbines. The module is requested
three times in the main program loop: first during the initialization of the fields, then during the
definition of the additional NS terms and finally during the writing of statistics to file. Therefore,
the module on itself may be separated into three main parts: imports, processing and exports.
Figure 3.3 gives an overview of the position at which the new module is requested within the
main program loop and summarizes the steps taken in that part of the module.

Imports

As the blade element theory discretizes the blade into separate elements, the actuator disk
is separated into multiple annuli with each annulus corresponding to a certain blade element.
For each blade element, inputs are the blade geometry, the smoothing factors and the area
factors. The latter are used for the determination of the spatially averaged reference velocity
and distribution of the inner annuli. The area factors, γ, are defined as the cell-area that overlaps
the annulus over the annulus area of the blade element as given in equation 3.7.

γj,k,a =
Aoverlap,j,k,a
Aannulus,a

(3.7)

The area factors and smoothing factors are defined using a separate MatLab code and ex-
ported to DALESURBAN by text-file. For the outer annulus, smoothing is performed as previ-
ously described by equation 3.2. For all other annuli, only axial smoothing is applied according
to equation 3.3, while distribution in the radial direction is based on area-factorization with an
additional overall smoothing correction as stated by equation 3.8. Figure 3.2 gives an example
of the distributed forces.

ηrj,k,a = γj,k,a.
1

ε3rπ
3/2

exp

[
−
(

0

εr

)2
]

for a < Na (3.8)

(a) (b)

Figure 3.2: Smoothed / distributed force per unit mass. (a) Radial smoothing, white circles
indicate boundaries of blade elements. (b) Axial smoothing through turbine midplane,

additionally the tower and nacelle are present.
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Figure 3.3: Flow chart of the NU-ADM. Showing the locations where the newly added module
modwindturbines is used including the steps taken in that part of the module.

20



Processing

Equation 3.9 repeats the definition of the magnitude of the force per unit mass, but now explicitly
for each annulus.

(
F

ρA

)
a

= −1

2
U2
a

Bca
2πra

(Clel + Cded) (3.9)

To determine the relative velocity, U , three reference velocities are required for each annulus:
〈ū〉a, 〈v̄〉a and 〈w̄〉a. To ensure a realistic response of the wind turbine model to small-scale
turbulence (small time-scale and spatial-scale), the reference velocities are time-averaged and
spatially-averaged. For each reference velocity, time-averaging is performed analogously to equa-
tion 3.10 [21]. Here, the averaging time, T , is yet undefined and 〈u〉n−1

a is the annulus-averaged
velocity of the previous RK3-step.

〈ū〉a =
∆tRK
T
〈u〉n−1

a +

(
1− ∆tRK

T

)
〈ū〉n−1

a (3.10)

The term 〈u〉n−1
a is defined by equation 3.11. Here, the reference velocity is sampled at an

imposed position upstream, set by iref .

〈u〉n−1
a =

Ny∑ Nz∑
(un−1
iref ,j,k

.γj,k,a) (3.11)

The resulting velocity relative to the blade, Uj,k,a, and angle of attack, αa, are then defined
by equations 3.12 and 3.14 respectively. Both are dependent on the angle of relative wind as
defined by equation 3.13. The angle of relative wind is dependent on the clockwise rotational
speed of the turbine and the blade tangential reference velocity. Figure 3.4 illustrates these
different terms.

Figure 3.4: Relevant terms to define velocity relative to blade, Uj,k,a, and direction of resultant
lift and drag force.
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Uj,k,a =
〈ū〉a

sin(φj,k,a)
(3.12)

φj,k,a = arctan

(
〈ū〉a

Ωra + (〈v̄〉asin(βj,k) + 〈w̄〉acos(βj,k))

)
(3.13)

αj,k,a = φj,k,a − θa (3.14)

The relative velocity and angle of attack are cell dependent and thus each cell experiences
a different lift- and drag coefficient. The final magnitude of the cell momentum sink is then
found by substitution of equation 3.9 to equation 3.1 and equation 3.1 to equation 2.26. These
substitutions are summarized in equation 3.15 and given fully discretized. Also, the two direction
vectors el and ed are readily defined.

Mi,j,k =

Na∑
−1

2
U2
j,k,a

Bca
2πra

Cl

cos(θa)

sin(θa)

sin(θa)

+ Cd


sin(θa)

−cos(θa)

−cos(θa)


 ηi,j,k,a

1

∆xi,j,k

 (3.15)

The final distributed momentum sink is then implemented to the NS-equations by modifying
the cell prediction velocity according to equation 3.16.

u∗i,j,k = u∗i,j,k −Mi,j,k∆tRK (3.16)

Exports

Every full time-step the following disk-averaged data is exported to file for each wind turbine:

• Time [s]

• Disk-averaged streamwise ref. velocity [m/s] as defined by equation 3.17

• Disk-averaged spanwise ref. velocity [m/s] as analogously defined by equation 3.17

• Disk-averaged wall-normal ref. velocity [m/s] as analogously defined by equation 3.17

• Produced power [W ] as defined by equation 3.18

• Uniform equivalent thrust coefficient ClocT as defined by equation 3.19

Additionally, equation 3.20 gives an expression for the local power coefficient, while, according
to this specific definition (equation 3.20), the thrust and power coefficient are identical and thus
the power coefficient is not exported separately.

uref,disk =

Na∑(
〈ū〉a

Aannalus,a
Adisk

)
(3.17)

Px = ρ

Na∑Nx∑ Ny∑ Nz∑((
Fx
ρA

)
i,j,k,a

uref,diskAcell,j,k

) (3.18)

ClocT =

Na∑Nx∑ Ny∑ Nz∑((
Fx
ρA

)
i,j,k,a

Acell,j,k

) 1
1
2u

2
ref,disk.Adisk

(3.19)

CP =
Px

1
2ρu

3
ref,disk.Adisk

(3.20)
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Modeling of tower and nacelle

For the tower the streamwise drag is considered and the applied force per unit mass is defined
by equation 3.21. Here, the reference velocity, utower,i,j,k, is instantaneous and cell-local.

(
Ftower
ρA

)
= −1

2
u2
tower,i,j,kCd,tower (3.21)

The tower force per unit mass is again smoothed over the grid by application of a smooth-
ing factor, ηtower. This smoothing factor is the product of two components: axial smoothing
and spanwise smoothing. Both components are defined analogously to equation 3.3. For axial
smoothing, the distance di is defined by equation 3.22. For spanwise smoothing, the distance dj
as defined by equation 3.23 holds. Here, dj is substituted in equation 3.3 for di. Equation 3.24
gives the distributed momentum sink for the tower drag.

di = |xi − xtower| (3.22)

dj = |yj − yhub ± 0.5Dtower| (− if yj < yhub and + if yj > yhub) (3.23)

Mtower,i,j,k =

(
Ftower
ρA

)
ηtoweri,j,k

1

∆xi
(3.24)

The nacelle is located at the center of the disk as illustrated by figure 3.2. For the nacelle,
the force per unit mass is defined by equation 3.25 and the resulting applied momentum sink
term by equation 3.26.

(
Fnacelle
ρA

)
= −1

2
u2
nacelleCd,nacelle (3.25)

Mnacelle,i,j,k =

(
Fnacelle
ρA

)
ηnacellei,j,k

1

∆xi
(3.26)

The nacelle’s momentum sink is distributed in axial direction by the same axial smoothing
factor as applied for the actuator disk, equation 3.3. Radially, the nacelle is distributed area-
factorization based. See equation 3.27 for the definition of the area-factors for the nacelle and
equation 3.28 for the definition of ηnacellei,j,k . The reference velocity for the nacelle, unacelle, is taken
as the streamwise reference velocity of the most inner annulus, 〈ū〉1. Both tower and nacelle drag
coefficients are model inputs considered constant.

γnacelle,j,k =
Acell,j,k − γj,k,1Acell,j,k

0.25πD2
nacelle

(3.27)

ηnacellei,j,k = ηxi γnacelle,jk (3.28)
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3.2 Methodology for model verification and validation

Figure 3.5 gives the followed methodology for wind turbine model development. The model
inputs are divided into two categories: the known inputs and the unknown inputs. The known
inputs are either known or estimated from the validation case. The unknown inputs cannot be
defined without parameter estimation. For this, the sensitivity of the model to a certain input and
its induced uncertainty is assessed. Examples of unknown inputs are model specifics, such as the
spatial and temporal discretization and non-physical inputs such as subgrid constants. Finally,
the model’s uncertainty is quantified and full model verification and validation is applied.

Figure 3.5: Followed methodology for model parametrization and uncertainty quantification
with regards to verification and subquential validation.

The process of verification consist of two steps: code verification and calculation verification
[38]. The purpose of code verification is to confirm that the software is working as intended and
the main focus is to identify and eliminate programming and implementation errors. The purpose
of calculation verification is to quantify the error of numerical simulation by demonstration of
convergence of the model and, if possible, to provide an estimation of the numerical errors induced
by the use of the model. Furthermore, model validation is the process of determining the degree
to which a model is an accurate representation of the real world from the perspective of the
intended uses of the model. [38]. The validation case is chosen from literature to omit the need
of performing a new experiment. For the validation case, the following requirements are set:

• A multitude of turbines in a streamwise aligned arrangement, which experience fully de-
veloped flow conditions.

• Actual turbines, no model simplifications such as semi-permeable surfaces, i.e. gauzes.

• Detailed geometric specifications.

• Constant flow direction perpendicular to turbines and aligned with column of turbines.

• Measurements within a neutrally stratified boundary layer, preferably approaching half-
channel flow simplification.

• Detailed measurements: time-averaged flow fields and profiles of streamwise velocity and
Reynolds stresses.
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3.3 Wind turbine model validation case

The measurements performed by Chamorro and Porté -Agel [5] fit stated validation case require-
ments. Measurements are presented in appendix C. Figure 3.6 gives a graphical representation
of the measurement setup. A total of 30 turbines are placed: 10 in a column and 3 on each row.
Here, the last 3 to 4 turbines seem to approach infinite wind farm conditions; time-averaged flow
and turbulence profiles remain approximately identical while the relative rotational speed of the
turbines has approached an asymptote. The distance between turbines is five turbine diame-
ters streamwise (Sx) and four turbine diameters spanwise (Sy). All turbines are fitted with a
GWS/EP-6030x3 propeller with a diameter of about 15cm, more detail on this propeller and its
blades is presented in appendix D.1. The hub-height is 12.5cm. Figure 3.7 gives more detail on
the miniature wind turbines.

Figure 3.6: Schematic of wind turbine array for validation measurements (modified from [5]).

All measurements are performed based on an neutrally stratified inflow profile as defined by
table 3.1. Measurements are performed on the midplane of the middle row of a 10x3 miniature
wind turbine array, as shown in figures 3.6 and 3.7. Data are given for the time-averaged flow
fields of the streamwise velocity and u′u′ Reynolds stress in the turbine midplane. Furthermore,
the streamwise flow profiles at specific distances behind the turbines and the average rotational
speed of the turbines in a column are given, see appendix C.

Table 3.1: Specification of inflow profile as applied in the validation measuements [31].

Attribute Symbol Value Unit

Shear velocity uτ 0.12 m/s

Roughness length z0 3.0×10−5 m

Boundary layer height δ 0.68 m

Reynolds number Reδ 14.5×103 −
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(a) (b)

Figure 3.7: (a) Overview of wind turbine array for validation measurements. (b) Schematic of a
single wind turbine used for validation measurements within the wind turbine array (modified

from [5]).

3.4 Simulation set-up

With respect to the research question, all simulations are performed for an infinite wind farm.
The infinite wind farm is a theoretical approach for which the following statements are considered
true [4], [18]:

• Boundary layer flow approaches fully developed regime.

• The power output is only governed by the rate at which the ABL replenishes energy.

In practice, wind farms exceeding horizontal extents of 10 to 20km may approach these state-
ments. With the current development of large offshore wind farm, such theoretical approach
becomes more realistic [12]. For example, the current largest off-shore wind farm, London Array,
is built over a total surface area of 100km2 [10]. However, not only size is a restriction for infinite
wind farms. Other restrictions such as a flat terrain and a minimal difference in surface rough-
ness should be noted. The main reason the infinite wind farm approach is considered in a large
number of wind farm studies is its practicality regarding academic and engineering exercises.
The approach allows for the application of streamwise and spanwise periodicity, useful for both
analytic and numeric wind farm solutions.

As the scales of the largest eddies are limited by the size of the computational domain, it is
important to define the requirements for a proper infinite wind farm simulation. The smallest
infinite domain imaginable is based around a single wind turbine and limited in size by the
streamwise and spanwise spacing between turbines within the considered wind farm. Such a
domain is hereby defined as the single domain. This smallest infinite domain is however not
capable of resolving the larger scale eddies occurring within a wind farm. Therefore, only time-
averaged results are considered for the single domain. In order to prevent contamination of
the flow by periodic boundary conditions, to allow analysis of instantaneous results and to
model large scale wind farm phenomena, a larger infinite (double-periodic) domain is required
for applications such as wind farms with alternating tower heights.
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Initially, to optimize the efficiency of parameter estimation, verification and validation of the
wind turbine model, the smallest imaginable infinite domain is applied: the single domain. Final
work on alternating tower height wind farms is performed for an infinite domain constructed
from a multitude of these single domains. This choice is made to suppress the need for any
redefinition and re-estimation of inputs and parameters. First, for the single domain all known
and unknown wind turbine model inputs and its model uncertainty is quantified. Then, the
infinite domain is defined and its model uncertainty quantified.

3.4.1 The single domain

Table 3.2 gives all known model inputs and, if applicable, refers to appendices describing how
the input is found. Some inputs are chosen and estimated as weakly-sensitive. No further sen-
sitivity study is performed on these inputs as the model is not expected significantly sensitive.
Furthermore, table 3.3 gives all unknown inputs. Appendix E gives a comprehensive description
of how these inputs are estimated.

The length and width of the domain is the result of the configuration of the wind turbines in
the validation case. Introduction of wind turbines within an undisturbed boundary layer results
in a growth of boundary layer height. Johnstone and Coleman (2012) state a 45% increase from
the undisturbed height for an infinite wind farm in a turbulent neutral Ekman boundary layer
[18]. Based on the specification of the inflow profile as found in table 3.1, the model boundary
layer is set at 1m accordingly. The position of the wind turbine, xhub and yhub, is freely chosen
and the simulation results are considered non-sensitive due to domain periodicity. Figure 3.8
gives a graphical representation of the single domain. The nacelle drag coefficient is chosen high
to ensure no bypass of flow from the disk through disk center. The drag coefficient of the tower is
estimated according to the drag of a flow around a cylinder at high Reynolds number [1]. Lastly,
the nacelle’s diameter and the tower’s diameter and x-position are unknown from the validation
case and have been estimated from figure 3.7.

Figure 3.8: Dimensions of single domain and position of the turbine.
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Table 3.2: Known wind turbine model inputs for the single domain.

Input Symbol Value Unit Source

Domain length Lx 0.75 m Sx = 5Ddisk [5]

Domain width Ly 0.6 m Sy = 4Ddisk [5]

Domain height Lz 1.0 m Table 3.1 + BL growth

x-position disk xhub 0.15 m Chosen (non-sensitive)

y-position disk yhub 0.3 m Chosen (non-sensitive)

Hub-height zhub 0.125 m Validation [5]

x-position tower xtower 0.17 m Chosen (weakly-sensitive)

Disk diameter Ddisk 0.154 m Validation [5]

Tower diameter Dtower 0.01 m Chosen (weakly-sensitive)

Nacelle diameter Dnacelle 0.015 m Chosen (weakly-sensitive)

Nacelle drag coef. Cd,nacelle 1 − Chosen (weakly-sensitive)

Tower drag coef. Cd,tower 0.5 − Chosen (weakly-sensitive)

Number of blades B 3 − Appendix D.1

Annuli per number of
disk cells

Na/Ncells,disk 1/2 − Appendix D.1

Blade element radius ra Variable m Appendix D.1

Blade element chord ca Variable m Appendix D.1

Blade element pitch θa Variable deg Appendix D.1

Lift coef. Cl Variable − Appendix D.2

Drag coef. Cd Variable − Appendix D.2

Rotational speed Ω Variable rad/s Appendix D.3

Viscosity ν 1.41×10−5 m2/s Physical constant

Table 3.3: Unknown wind turbine model inputs
that require parameter estimation, see appendix E.

Input Symbol Value Unit Estimated in

Convergence time tconv 100 s Appendix E.2

Statistical avg. period Tstat,avg 1000 s Appendix E.2

Reference avg. time T 1 s Appendix E.2

Time step ∆t 2.5×10−3 s Appendix E.2

Number of x-cells Nx 96 − Appendix E.1

Number of y-cells Ny 48 − Appendix E.1

Number of z-cells Nz 48 − Appendix E.1
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Radial kernel εr 0.62 − Appendix E.1

Axial kernel εx 0.8 − Appendix E.1

Radial smoothing width Nsmooth,r 0 − Appendix E.1

Axial smoothing width Nsmooth,x 2 − Appendix E.1

Subgrid model SGM Vreman − Appendix E.3

Subgrid constant Cv 0.07 − Appendix E.3

Single domain model uncertainty

Appendix E.2 discusses the statistical averaging period, Tstat,avg, and estimates the sampling
error of the performance measures of the wind turbine within the single domain. The sampling
error as a result of the imposed statistical averaging period is summarized in table 3.4. For
example, these errors are of relevance when comparing cases for which the solution is found by
application of the model. In such situation it is necessary to know when differences between
model results are significant and not the result of model uncertainties.

Additionally, the temporal and spatial discretization errors are assessed in appendix E. Tem-
poral discretization errors are found to be negligible. A supported spatial discretization error
could not be determined due to difficulty in obtaining grid convergence. However, the sensitivity
of the performance measures to grid refinement was found to be minimal: <2%. Practically, this
implies that any significant difference (>3%) between the model and the validation case is most
likely not the result of discretization errors.

Table 3.4: Summary of quantified uncertainties.

Uncertainty EP̄x [%] Eūref,disk [%] EC̄p [%]

Statistical avg. period 0.37 0.14 0.03

3.4.2 The infinite domain

For the infinite domain, the number of single domains (or turbines) in a column, Ncolumn, and
the number of single domains (or turbines) in a row, Nrow, have to be determined. Also, all
model inputs are as stated for the single domain with the exception of the convergence time and
statistical averaging period. Due to a larger number of turbines, the statistical averaging period
of the combined results (of all turbines within the domain) exhibit a different sampling error.
Therefore, the statistical averaging period is reassessed.

To determine the number of turbines in the infinite domain, cross-correlations between the
disk-averaged reference velocities: uref,disk, vref,disk and wref,disk, are investigated. See ap-
pendix F for details. Table 3.5 summarizes the resulting number of columns and rows in the
infinite domain. Figure 3.9 gives a graphical representation of the resulting domain.

Table 3.5: Number of columns and rows in the infinite domain.

Input Symbol Value Unit Estimated in

Number of columns Ncolumn 6 - Appendix F

Number of rows Nrow 12 - Appendix F
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Figure 3.9: Numbering of turbines for the second domain, row numbers and column numbers
under row and col respectively.

Infinite domain temporal parameters and model uncertainty

In appendix F.2, the temporal parameters of the infinite domain are determined, as summarized
in table 3.6. The temporal parameters of the infinite domain differ from the single domain. Most
noticeably, the statistical averaging period is about 70% shorter than found for the single domain.
It is found that time-averaged performance measures of all 72 turbines combined, exhibit a lower
sampling error. Table 3.7 summarizes the resulting sampling error.

Table 3.6: Summary of estimation of all temporal parameters for the infinite domain

Input Symbol Value Unit

Convergence time tconv 200 s

Statistical avg. period Tstat,avg 300 s

Table 3.7: Summary of quantified uncertainties of all 72 turbines combined.

Uncertainty EP̄x [%] Eūref,disk [%] EC̄p [%]

Statistical avg. period 0.49 0.22 0.02

3.4.3 Boundary conditions and initial conditions

Boundary conditions for all vertical domain walls are periodic as required for the aim of an
infinite wind farm. Top and bottom boundary conditions are further detailed.

Top boundary condition

For the top, the boundary conditions stated by equations 3.29, 3.30, 3.31 and 3.32 hold (free
slip).

∂u

∂z
= 0 (3.29)

∂v

∂z
= 0 (3.30)

w = 0 (3.31)
∂νe
∂z

= 0 (3.32)
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Bottom boundary condition and wall-function

Bottom boundary conditions are no-slip wall, with a wall-function to suppress the need for a
computationally expensive resolved grid near the wall. For the wall-normal velocity, equation 3.31
holds. The wall shear stress is computed by the Werner and Wengle [42] wall function. This wall
function is valid for hydraulically smooth flows and assumes a linear-law-of-the-wall description
(equation 3.33) for the wall-shear stress for z+ < (zm = 11.81), with zm the upper boundary
of validity of the linear-law-of-the-wall. For z+ > zm, the wall function becomes a power-law
description (equation 3.34)[42], yet different from the more commonly used logarithmic-law-of-
the-wall. One advantage of the Werner and Wengle wall function is its ability to determine the
shear without the need of iteration.

τ

ρ
=

2ν|u‖|
∆z

(3.33)

τ

ρ
=

[
1−B

2
A

1+B
1−B

( ν

∆z

)1+B

+
1 +B

A

( ν

∆z

)B
|u‖|

] 2
1+B

(3.34)

In equations 3.33 and 3.34, |u‖| is the wall parallel reference velocity, either streamwise or
spanwise depending on calculated wall shear direction. Furthermore, A and B are constants
with values 8.3 and 1.7, respectively. Based on the validation inflow conditions (undisturbed)
as summarized in table 3.1, the flow near the wall is checked on hydraulical smoothness. The
influence of wall roughness is expressed as a roughness Reynolds number, as defined by equation
3.35. For flows with Rez0 < 5, hydraulic smoothness holds [43]. Application of the wind turbine
model is expected to reduce the friction velocity near the wall, therefore, the flow is also expected
to be hydraulically smooth with application of the wind turbine model.

Rez0 =
uτz0

ν
= 0.26 (3.35)

Initial conditions

Table 3.8 gives an overview of initial conditions. All initial velocities are set spatially constant
over the whole domain. The streamwise velocity is set such that the bulk velocity corresponds
with the bulk velocity of the undisturbed boundary layer flow as previously defined in table 3.1.

Table 3.8: Initial conditions.

Attribute Symbol Value Unit

Streamwise velocity u 3 m/s

Spanwise velocity v 0 m/s

Wall-normal velocity w 0 m/s

3.4.4 Model driving force

For infinite domains, a driving force is required. In DALESURBAN the driving force is set as
a pressure difference per unit length. To determine this driving force, the force balance of the
model is determined. This balance can be determined by taking the domain volume integral of the
converged time-averaged filtered Navier-Stokes equations. The filtered Navier-Stokes equations
as applied in DALESURBAN were given by equation 2.5. Assuming convergence and applying
time-averaging gives equation 3.36
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∂ui
∂t︸︷︷︸
=0

+
∂uiuj
∂xj

= −∂pmod
∂xi

+
∂

∂xj
((2ν + νe)Sij) +Mbody (3.36)

Here, Mbody only consists of the momentum sink as imposed by the turbine, the nacelle and
the tower. The streamwise force balance is then found by taking the volume integral of the
streamwise component of equation 3.36. Solving this integral by application of the divergence
theorem for volume integrals, results in the force balance as given by equation 3.37. Here, Nwt is
the number of turbines in the domain. Note that this force balance is only valid for steady-state
double-periodic domains with free-slip conditions for the top boundary.

∆pmodLyLz =
1

ρ

Nwt∑
Fx + (ν + νe(z = 0))

∂u

∂z
(z = 0)LxLy (3.37)

The eddy viscosity approaches zero infinitely close to a wall. Therefore, the viscous term from
equation 3.37 may be rewritten to τx as found by application of the wall function. Reordering of
terms results in equation 3.38 for the force balance. Here, the term

[
∆pmod/Lx

]
is the pressure

difference per unit length as required in DALESURBAN. Equation 3.38 can be further simplified
to equation 3.39. Here, the RHS is defined as the friction velocity as commonly applied for
boundary layer flows.

[
∆pmod
Lx

]
Lz =

1

ρ

(
Nwt∑

Fx + τ̄x

)
(3.38)

[
∆pmod
Lx

]
Lz = u2

τ (3.39)

From equation 3.39, the importance of the set driving force on the final results is clear. For
the validation inflow profile without turbines, table 3.1 gave u2

τ =1.44×10−2m2/s2. Application
of a turbine within the same flow, results in an increase of total force on the flow. In order to
match validation results it is found to be necessary to increase the pressure difference compared
to the undisturbed flow. Table 3.9 gives the resulting pressure difference found by trial-and-error
of matching simulation results with validation measurements.

Table 3.9: Definition of model driving force for all domains.

Input Symbol Value Unit

Driving force times
unit height

∆(p/Lx)Lz 0.04895 m2/s2

Additionally, in the current study various time related results (such as power production
time-series) are presented scaled by a time-scale, δ/uτ . This time-scale is defined according to
equation 3.40 as a direct result of equation 3.39.

(
δ

uτ

)
= Lz

(√
∆pmod

Lz
Lx

)−1

(3.40)
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Chapter 4

Model verification and validation

The implemented wind turbine model is verified and validated. First, code verification is per-
formed. Then, the calculation is verified by comparison to engineering wake solutions and Frand-
sen’s double-log-law theory. Lastly, the model is validated by measurements as previously intro-
duced by the validation case, section 3.3. In line with the validation case, the domain height is
set as 0.89 m [31] for all verification and validation runs only.

4.1 Code verification

The code is verified by comparing the model result with the analytic result. First, the analytic
result is found for a spatially constant fixed known reference velocity: uref = 2m/s. Then,
the model is run for one time-step, initialized by a spatially constant streamwise velocity of
the same magnitude. For the analytic result, the power production is determined according to
equation 4.1. Here, the force per unit mass for each blade element (annulus) is analytically
defined according to equation 3.9.

Panalytic = ρ

Na∑(
Fx
ρA

)
a

Aannulus,auref (4.1)

For the model, the distribution of the total force is fine-tuned via the smoothing regularization
kernels, εx and εr, upto an error of one ten-thousandth of a percent compared with the analytic
solution. This high accuracy of fine-tuning is applied to eliminate the force distribution as a
source of the resultant code error. For each blade element it is found that the relative velocity,
Ua, lift coefficient and drag coefficient match with the analytic results by less than 0.01% error.
Table 4.1 gives the error between the analytically defined power production, Panalytic, and the
resulting power production as found by the model. Also, the code errors of the tower and nacelle
are assessed in a similar manner and given in table 4.1.

Table 4.1: Overview of code errors.

Px Ftower Fnacelle

Ecode [%] < 0.01 < 0.01 < 0.01

The results from table 4.1 support the following statements:

• The code error of the wind turbine model, tower and nacelle is negligible.

• Any remaining errors in the code (if any) have a negligible influence on results.

• The discretization error between continuous smoothing and discretized smoothing as dis-
cussed in section 2.5 is indeed mitigated by the distribution method, see section 3.1.2.
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4.2 Calculation verification by engineering wake solutions

The NU-ADM is compared with two engineering wake solutions: the Risø WAsP model (Jensen’s
wake model) and the Risø analytic model.

The Risø WAsP model contains a simple wake model based on linear expansion of the wake
downstream [3] and is developed for a single wind turbine. The wake velocity behind the turbine
is determined according to equation 4.2. Here, kwake is the wake decay constant set to 0.075 as
suggested for onshore conditions.

uwake(x) = uhub

[
1− (1−

√
1− ClocT )

(
Ddisk

Ddisk + 2kwakex

)2
]

(4.2)

For the Risø analytic model the wake velocity behind the turbine is calculated according to
equation 4.3 [3]. Here, the term A0/Awake is the swept area of the rotor over the area of the wake.
The expansion of the area of the wake prior to impacting the ground, is given by equation 4.4
[3]. Here, the term β is given by equation 4.6. For α, equation 4.5 is used specifically developed
for application of an infinite row of turbines [15]. Here, the term Rt is known as the turbine
reduction factor and defined by equation 4.7 as the resulting hub velocity, uhub, over undisturbed
hub velocity, u0,hub.

uwake(x) =
1

2
uhub +

√
|0.25− 0.5u2

hub

A0

Awake

1

ClocT
| (4.3)

Dwake

D0
=

1

(β3/2 + α(x/Ddisk))1/3
(4.4)

α =
1

2

ClocT
sr

Rt
1−Rt

(4.5)

β =
1

2

1 +
√

1− ClocT√
1− ClocT

(4.6)

Rt =
uhub
u0,hub

(4.7)

Figure 4.1 compares the wake velocity of the analytic engineering solutions, with the disk
averaged and time-averaged streamwise velocity of the NU-ADM as function of the normalized
distance behind the turbine. A satisfying match with the Risø analytic model is found. Com-
parison with the WAsP model is however not as satisfying. Furthermore, for an infinite row of
turbines to be in balance with the boundary layer flow, the engineering solutions should return
to set hub velocity. This is only true for the Risø analytic model, specifically modified for such
application [15]. Barthelmie (2006) performed a similar analysis for a single wind turbine, and
found that engineering wake solutions tend towards either a high or low prediction with an aver-
age mean absolute error of 15% [3]. Therefore, performing calculation verification by engineering
wake solutions is inconclusive.
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Figure 4.1: Comparison of engineering wake solutions with the NU-ADM.

4.3 Calculation verification by Frandsen’s double-log-law
theory

The time and slab-averaged streamwise velocity profile of the NU-ADM is compared with the
double-log-law theory. This theory considers the vertical change in the atmospheric boundary
layer due to the increase in the surface roughness induced by a cluster of a large number of wind
turbines [4]. The theory is originally developed by Frandsen [14], [15], while the equations shown
below follow the description by Calaf (2010) [4]. The double-log-law theory models the resulting
flow profile as two log layers: one below turbine hub-height, equation 4.8, and one above turbine
hub-height, equation 4.9. Figure 4.2 gives a graphical representation of the two log layers and
all introduced variables.

Figure 4.2: Terms and variables for the double-log-law theory (modified from [15].)
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〈ū〉low(z) =
uτ,low
κ

ln

(
z

z0,low

)
for z0,low < z ≤ zhub (4.8)

〈ū〉high(z) =
uτ,high
κ

ln

(
z

z0,high

)
for z ≥ zhub (4.9)

Both log layers depend on a characteristic friction velocity and roughness. For equation 4.8,
z0,low is the roughness length of the wall as defined in table 3.1 and uτ,low is defined by equation
4.10. Here, κ = 0.41 and is known as the von Kármán constant. For equation 4.9, z0,high is
defined by equation 4.11 and uτ,high is found by solving the sum of the total shear, equation
4.12, for uτ,high.

uτ,low =
Rtκu0,hub)

ln
(
zhub
z0,low

) (4.10)

z0,high = zhubexp

− κ√
1
2cft +

[
κ

ln(zhub/z0,low)

]2
 (4.11)

u2
τ,high = u2

τ,low +
1

2
ClocT

Adisk
LxLy

(
1

κ
ln

zhub
z0,high

)2

u2
τ,high (4.12)

Equation 4.12 can be simplified to equation 4.13 by definition of the turbine friction coefficient,
cft as defined by equation 4.14.

u2
τ,high = u2

τ,low +
1

2
cft

(
1

κ
ln

zhub
z0,high

)2

u2
τ,high (4.13)

cft =
ClocT Adisk
LxLy

(4.14)

Figure 4.3 gives the time and slab averaged streamwise velocity profiles of the NU-ADM and
the double-log-law theory. Differences are significant and the simulation result of the NU-ADM
overestimates the double-log-law velocity profile. Largest differences are found in the outer region
of the upper log-profile. For the outer region of any undisturbed boundary layer flow driven by a
pressure difference, the velocity profile is known to deviate from the common log-law description
according to the law of the wake [30]. In order to improve the NU-ADM’s match with the
double-log-law theory, equation 4.9 is modified by application of Coles’ wake law [9], as found in
equation 4.15.

〈ū〉high(z) =
uτ,high
κ

[
ln

(
z

z0,high

)
+

2Π

κ
sin2

(π
2

z

δ

)]
(4.15)

Here, Π is set as a constant of 0.55 as recommended for constant pressure driven flows [9].
Figure 4.3 indicates an improved match between the NU-ADM and the double-log-law theory.
One important assumption of the double-low-law theory is: the thrust on the wind turbine
rotors is concentrated at hub height [15]. This assumption is naturally untrue and could explain
differences between the NU-ADM and the double-log-law theory.
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Figure 4.3: Comparison of time and slab averaged streamwise velocity profiles with (modified)
double log law theory. Dotted lines indicate top-tip height, hub height and bottom-tip height.

Summarizing sections 4.2 and 4.3. The engineering wake solutions verified the calculation of
the thrust coefficient and the streamwise reference velocity. Also, a good match for the wake
velocity was found for the Risø analytic solution driven by the NU-ADM’s uniform equivalent
thrust coefficient ClocT , see equation 3.19. From the required modification of Frandsen’s double-
log-law theory, the significant influence of the pressure difference on model results has become
apparent. For the validation by measurements, it is recommended to take the influence of the
pressure difference in the outer region into consideration.

4.4 Validation by measurements

Validation is performed for the streamwise velocity profiles, the streamwise velocity fields in the
turbine midplane and the turbulence intensity in the turbine midplane.

Figure 4.4 compares the streamwise velocity profile of the NU-ADM in the turbine midplane
with the validation measurements. The velocity profiles at x/Ddisk = 4+ are sampled at highest
wake velocity. Sampling at x/Ddisk = 5 is not possible due to the presence of the turbine
at that position, see figure 4.1 for further clarification. Figure 4.4 gives a satisfactory match in
streamwise velocity profile, however, there are noticeable differences. Again, an over-acceleration
of the flow above top-tip height is found, likely the result of the fundamental difference between
the experiment and the simulation: the application of a pressure difference to drive the flow.
In order to prove this statement, the simulation results are reduced by the law of the wake as
estimated by Coles’ wake law [9] by equation 4.16. This practice is only performed for validation
purposes as presented in this section.

uColes = uτ,high
2Π

κ
sin2

(π
2

z

δ

)
(4.16)

Here, uτ,high is estimated by Frandsen’s double-log-law theory according to equation 4.13.
Figure 4.5 gives the reduced simulation result and indicates a clear improvement of the match
above top-tip height. Below top-tip height, Coles’ wake law does not directly hold due to the
presence of the wind turbine. However, the pressure difference does influence the flow profiles
resulting in a faster wake regeneration.
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Figure 4.4: Comparison of streamwise velocity profiles at different positions behind the turbine
in the turbine midplane.
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Figure 4.5: Comparison of streamwise velocity profiles at different positions behind the turbine
in the turbine midplane. Simulation results are reduced by Coles’ wake law for pressure driven

flows.
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Figures 4.6 and 4.7 compare the normalized streamwise velocity and turbulence intensity in
the turbine midplane with the validation measurements. Here, the turbulence intensity is defined
by equation 4.17. The hub velocity used for normalization is u0,hub = 2.4m/s, corresponding
with the undisturbed hub velocity of the validation case.

σu
u0,hub

=

√
u′u′ + τxx

u0,hub
(4.17)

Figure 4.6(a) indicates a decent agreement of the streamwise velocity field. Velocities are
higher overall for the simulations, again in line with expectation due to the application of a
pressure difference. For the turbulence intensity, figure 4.7(a) indicates a good match. For the
validation measurements, a peak in turbulence intensity is found slightly below top-tip height
and between x = 2Ddisk and x = 3Ddisk behind the turbine. For the NU-ADM, this peak is
found slightly below top-tip height and halfway between x = 1Ddisk and x = 3Ddisk behind the
turbine. The turbulence intensity is higher overall for the simulation, especially noticeable above
top-tip height. Table 4.2 gives the time-averaged performance measures and rotational speed of
the NU-ADM. The latter is found as 81.7 rad/s, which is close to 78.4 rad/s as approximated
from validation measurements by figure C.4. Measured values of the power production and thrust
/ power coefficient are unfortunately unavailable from the experiment. Therefore validation of
these performance measures is not possible.

Table 4.2: Time-averaged results of the validated NU-ADM.

P̄x ūref,disk C̄P Ω̄

[mW ] [m/s] [−] [rad/s]

35.66 1.953 0.3994 81.7

4.5 Conclusions on verification and validation

The code is verified by comparison of the analytic model with the implemented NU-ADM. It is
found that any remaining errors in the code (if any) have a negligible influence on the results.

The engineering wake solutions verified the calculation of the thrust coefficient and the stream-
wise reference velocity. Here, a good match for the wake velocity was found for the Risø analytic
solution driven by the NU-ADM’s uniform equivalent thrust coefficient ClocT . From the required
modification of Frandsen’s double-log-law theory, the significant influence of the pressure differ-
ence on model results has become apparent.

Concluding on validation, it is stated that the implemented NU-ADM gives good results both
quantitatively and qualitatively. Again, the significant influence of the pressure difference driving
the flow is proven. Proper validation remains therefore difficult, not only due the fundamental
difference of the application of a pressure difference, but also due to the absence of performance
measures and quantified uncertainty of the measurements.
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(a) (b)

Figure 4.6: Comparison of normalized streamwise velocity over turbine midplane: (a)
simulation result and (b) validation measurements. Left color bar is for simulation result and

right color bar for validation measurements. The figures’ aspect ratios are modified in line with
available validation data.

(a) (b)

Figure 4.7: Comparison of turbulence intensity over turbine midplane: (a) simulation result
and (b) validation measurements. Left color bar is for simulation result and right color bar for

validation measurements. The figures’ aspect ratios are modified in line with available
validation data.
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Chapter 5

Results and discussion for
alternating tower heights

First, the tower height difference of the wind turbines is investigated and three wind farm con-
figurations are introduced. Then, for each of these configurations the wind farm performance is
discussed.

5.1 Tower height difference

In order to determine the appropriate and optimal tower height difference, runs with two consec-
utive single domains with differing tower height are performed. The tower height (hub-height)
of the first single domain is expressed as zhub,low and for the second single wind turbine domain
as zhub,high. Results are compared in terms of relative surface overlap, Ψ, see figure 5.1 for a
graphical representation of these terms. The following five cases are considered:

1. zhub,low = 0.125m zhub,high = 0.1625m Ψ = 69%

2. zhub,low = 0.125m zhub,high = 0.1875m Ψ = 50%

3. zhub,low = 0.125m zhub,high = 0.2125m Ψ = 32%

4. zhub,low = 0.125m zhub,high = 0.2375m Ψ = 16%

5. zhub,low = 0.125m zhub,high = 0.2750m Ψ = 0%

The hub-height of the low turbine corresponds to the original turbine height as defined by
the validation case for all cases. For the determination of the cases, the hub-height of the high
turbine increases gradually until the overlap surface of the two swept areas is just 0%. The
chosen hub-heights of the high turbines are in accordance with the single domain grid to ensure
that all turbines are distributed over the grid identically. For example, if the disk center of the
NU-ADM of the low turbine is located exactly at the intersection of four cells, then the disk
center of the high turbine is also located exactly at the intersection of four cells (but higher).
The performance of the cases with tower height alternation is compared with two high turbines
at corresponding high hub-height, the latter is further referenced to as the ’2h-case’. This choice
of comparison is made to:

• Mitigate any economic and mechanical issues related to changing tower heights, i.e. if
it is economically and mechanically feasible to position a multitude of turbines at high
hub-height, then it is also economically and mechanically feasible to position half of these
turbines at a lower hub-height.

• Ensure that the change in power production is the result of tower height alternation, i.e. if
a case with tower height alternation is compared with the result of only low towers, then
it is uncertain if the change in power production is the result of tower height alternation
or the result of the fact that higher turbines generally produce more power.
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A tower height difference is considered appropriate only if the physics proposed by Johnstone
and Coleman (2012) apply. Recalling the physics behind a wind farm with mixed tower heights
as proposed by Johnstone and Coleman (2012), the occurrence of the following is discussed:

• Decreased local and overall TKE production.

• A sawtooth curve for the Reynolds shear stress magnitude.

As any economic and mechanical issues related to changing tower heights are mitigated, only
the following conditions are set for the definition of the optimal tower height difference:

• Maximum increase in power production.

• Realistic dimensions of turbine and tower heights.

Figure 5.1: Graphical representation of different hub-heights, relative surface overlap and the
two consecutive single domains.

5.1.1 Appropriateness of tower height difference

Equation 5.1 gives the domain averaged kinetic energy budget of the mean flow for any case
with alternating tower heights. This budget is given in terms of the corresponding 2h-case and
the change (∆) as a result of tower height alternation. Equation 5.1 is the result of reordering
equation 2.23.

(∫∫∫
Ē2hdV + ∆

∫∫∫
ĒdV

)
=−

(∫∫∫
W̄2hdV + ∆

∫∫∫
W̄dV

)
−
(∫∫∫

P̄2hdV + ∆

∫∫∫
P̄dV

)
−
(∫∫∫

E2hdV + ∆

∫∫∫
EdV

) (5.1)

The term
∫∫∫
ĒdV can be rewritten as the sum of two terms:

∫∫∫
ĒeffdV and

∫∫∫
ĒlossdV .

Here, the first term corresponds to the effective mean kinetic energy extraction and is the energy
flow potentially available for conversion to electric output. The second term is lost extraction,
which is the result of the drag of the tower and nacelle. Furthermore, the TKE production term,∫∫∫
P̄dV can be rewritten as the sum of two terms:

∫∫∫
P̄walldV and

∫∫∫
P̄reddV . Here, the first

term is an expression of the TKE production due to viscous wall shear and the second term is the
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remainder. Equation 5.2 gives the expression of the TKE production due to viscous wall shear,
note that this equation does not fully satisfy the rules of Reynolds averaging and is therefore
intended as an estimation to quantify the influence of the wall. Furthermore, in equation 5.2, τ̄
is the time-averaged shear near the wall. Determination of this term is performed according to
the Werner and Wengle wall function (equations 3.33 and 3.34) with |u‖| the spatial-average of
the time-averaged streamwise velocity of the slab of cells closest to the wall.

∫∫∫
PwalldV =

∫∫
τ

ρ

∂u

∂z

∣∣∣∣
wall

dA ≈
∫∫

τ̄

ρ

∂̄u

∂z

∣∣∣∣
wall

dA (5.2)

Subtracting the term
∫∫∫
Ē2hdV from both sides of equation 5.1 gives an expression for the

kinetic energy budget change due to application of tower height alternation. Application of the
split of the extraction and TKE production terms, correction of the sign of the work and division
of all terms by the total effective extraction of the corresponding 2h-case,

∫∫∫
Ēeff,2hdV , results

in equation 5.3.

∆
∫∫∫
ĒeffdV∫∫∫

Ē2h,effdV
=−

∆
∫∫∫
ĒlossdV∫∫∫

Ē2h,effdV
+

∆
∫∫∫
W̄dV∫∫∫

Ē2h,effdV
−

∆
∫∫∫
P̄reddV∫∫∫

Ē2h,effdV

−
∆
∫∫∫
P̄walldV∫∫∫
Ē2h,effdV

−
∆
∫∫∫

EdV∫∫∫
Ē2h,effdV

(5.3)

The intention of equation 5.3 is to give an indication of the source of the relative change of
effective extraction. In words: the change of effective extraction is the result of:

• a change in the extraction losses due to the tower and nacelle.

• a change in the resultant pressure work.

• a change in the TKE production (minus viscous effect at the wall).

• a change in the energy dissipation due to viscous effects at wall.

• a change in the budget error, see equation 2.24.

Table 5.1 gives the change of the effective extraction and the magnitude of the components
driving this change.

Table 5.1: Change of the effective extraction and the magnitude of the components driving this
change due to tower height alternation.

Surface
overlap

∆
∫∫∫
ĒeffdV∫∫∫

Ēeff,2hdV
∆

∫∫∫
ĒlossdV∫∫∫

Ēeff,2hdV
∆

∫∫∫
W̄dV∫∫∫

Ēeff,2hdV
∆

∫∫∫
P̄reddV∫∫∫

Ēeff,2hdV
∆

∫∫∫
P̄walldV∫∫∫
Ēeff,2hdV

∆
∫∫∫

EdV∫∫∫
Ēeff,2hdV

% % % % % % %

69 +1.611 -1.791 +5.755 +5.134 +0.436 +0.370

50 +2.545 -3.161 +9.313 +8.722 +0.331 +0.877

32 +5.119 -4.614 +6.973 +6.698 +0.546 -0.774

16 +5.632 -6.240 +7.443 +6.467 +0.973 +0.612

0 +10.763 -9.165 +7.742 +6.918 +0.419 -1.214
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The results from table 5.1 support the following statements:

• Effective extraction increases with decreasing surface overlap, i.e. increasing tower height
difference increases effective extraction. Increased effective extraction greatly surpasses the
single domain sampling error for all cases.

• Extraction losses (due to tower and nacelle) decrease due to tower height alternation. The
larger the tower height difference, the larger this decrease.

• Pressure work changes accordingly: any change in total extraction and TKE production
results in a change in total pressure work due to balancing of bulk velocity.

• TKE production increases due to tower height alternation, indicating a larger undesired
loss of mean kinetic energy to TKE.

• The energy dissipation due to viscous effects at the wall increases slightly, but its effect on
the total effective power production is minor (<5%) on the total absolute sum of change
components). This increase of energy dissipation due to viscous effects at the wall appears
not to be in line with expectations: i.e. it may be expected that positioning a turbine
closer to the wall would result in a reduced streamwise velocity near the wall and thus a
decreased energy dissipation due to viscous effects at the wall.

• The effect of the budget error on the effective extraction is null. The source of the budget
error is not in the effective extraction term, Ēeff , but in all other terms. The effective
extraction is defined by taking the statistical time-average of an instantaneous signal cor-
responding with effective extraction. The error (uncertainty) of this signal has been found
to be small, <<1%, as summarized in section 3.4.1.

• There is a strong indication that the majority of increased power production is the result
of the decrease in extraction losses, i.e. reduced tower drag surface.

Regarding the last statement, table 5.2 gives the change in effective extraction and the mag-
nitude of the components driving this change due to tower height alternation for the case with
32% overlap without the application of towers.

Table 5.2: Change of the effective extraction and the magnitude of the components driving this
change due to tower height alternation for the case with 32% surface overlap without the

application of towers.

Surface
overlap

∆
∫∫∫
ĒeffdV∫∫∫

Ēeff,2hdV
∆

∫∫∫
ĒlossdV∫∫∫

Ēeff,2hdV
∆

∫∫∫
W̄dV∫∫∫

Ēeff,2hdV
∆

∫∫∫
P̄reddV∫∫∫

Ēeff,2hdV
∆

∫∫∫
P̄walldV∫∫∫
Ēeff,2hdV

∆
∫∫∫

EdV∫∫∫
Ēeff,2hdV

% % % % % % %

32NT +0.017 +0.460 +1.658 +3.453 -1.295 -0.977

The results from table 5.2 support the following statements:

• Increase of effective extraction is now, contrary to the case with application of towers,
insignificant.

• Extraction losses increase and only comprehend drag losses over the nacelles.

• Total TKE production again increases due to tower height alternation, indicating a larger
undesired overall loss of mean kinetic energy to TKE.

• The energy dissipation due to viscous effects at the wall decreases, contrary to the case
with application of towers. This result is now in line with expectations.

• For the 32% surface overlap case, the majority of increased power production is indeed the
result of the decrease in extraction losses due to reduced tower drag surface.
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Figures 5.2 and 5.3 give the slab averaged mean kinetic energy profiles for the 32% surface
overlap with and without application of towers, respectively. Tables 5.1 and 5.2 show an overall
increase in TKE production by tower height alternation for both cases. The same result is
found in figures 5.2 and 5.3, furthermore, the increase in TKE production is mainly concentrated
near the surface overlap between turbines. Figure 5.4 gives the slab averaged mean shear stress
magnitude, τSSM , which is defined by equation 5.4, note that subgrid contribution is included.

τSSM =
√
〈u′w′〉+ τ̄xz + 〈v′w′〉+ τ̄yz (5.4)

As given in equation 2.18, the transport of mean kinetic energy due to Reynolds stresses is
dependent on the gradient of these stresses. Lower gradients (see figure 5.4) indeed result in
a lower transport as found in figures 5.2 and 5.3. TKE production due to Reynolds stresses is
dependent on the absolute value of these stresses, as given in equation 2.19. Figure 5.4 gives an
increase in Reynolds stresses due to tower height alternation. From figures 5.2 and 5.3, a higher
TKE production is indeed found. From the results as presented in figures 5.2 and 5.3 and figure
5.4, it is found that:

• Local and overall TKE production increases due to tower height alternation.

• A sawtooth curve for the Reynolds stresses is not found for the 32% surface overlap. Figure
5.5 gives the normalized shear stress magnitude for the largest tower height difference with
0% surface overlap. Here, a sawtooth curve begins to form, however, for a sawtooth with
two near identical teeth, a far larger tower height difference would be required.

• Additionally, an increased power extraction is found, however only for the case with the
application of towers. There is strong evidence that increase in power production due to
tower height alternation is only the result of decreased tower drag surface.

5.1.2 Optimal tower height difference

None of the tower height alternation cases are appropriate with respect to the physics as pro-
posed by Coleman and Johnstone (2012) [18]. Also, the proposed physics cannot be confirmed to
be valid for tower height alternation. Therefore, a non-optimal choice of tower height difference
based on the optimization conditions is made for further advancements.

Table 5.3 gives the tower height to diameter ratio for the high turbine of each investigated
case. The tower height to turbine diameter ratio of common wind turbines is about 0.75 to 1x
turbine diameter. Furthermore, table 5.1 gave a maximum increase in effective extraction for the
largest tower height difference. Therefore, the 32% surface overlap case is chosen as a midway
between sufficient increase in effective extraction and realistic tower heights: zhub,low = 0.125m
and zhub,high = 0.2125m.

Table 5.3: Ratio of high turbine height to turbine diameter
for each of the five surface overlap cases.

Surface overlap zhub
Ddisk

% -

69 1.06

50 1.22

32 1.38

16 1.54

0 1.78

45



−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Normalized KE flow

z
[m

]

KE work
KE transport
TKE production
KE extraction

Figure 5.2: Thin line is the 2h-case, thick line is for tower height alternation. Slab averaged
mean kinetic energy profiles for 32% surface overlap with application of towers, normalized
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remaining swept area of the low turbine.)
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Figure 5.3: Thin line is the 2h-case, thick line is for tower height alternation. Slab averaged
mean kinetic energy profiles for 32% surface overlap without application of towers, normalized

with total pressure work
(
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. (Backgrounds: darkest grey is surface overlap,

lightest grey is the remaining swept area of the high turbine and medium-dark grey is the
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5.2 Introduction of wind farm configurations

All wind farm configurations are row configurations. The following wind farm alternation con-
figurations (z-spatial) are considered:

1. High turbines only (2h), figure 3.9.

2. Tower heights alternating in row configuration (RA), figure 5.6.

3. Tower heights alternating in staggered configuration (SA), figure 5.7.

For the understanding of the remainder of this study it is important to understand the
difference between a column and a row in a wind farm. Columns follow the direction of the bulk
flow and rows are perpendicular to the direction of the bulk flow.

Figure 5.6: Wind farm configuration in row alternation (RA). Grey turbine numbers are low
tower turbines, black turbine numbers are high tower turbines.

Figure 5.7: Wind farm configuration in staggered alternation (SA). Grey turbine numbers are
low tower turbines, black turbine numbers are high tower turbines.
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5.3 Power production and mean kinetic energy profiles

In this section the sum of the mean production of all 72 turbines combined is considered. Equation
5.5 gives the relation between effective extraction and total power production.

∫∫∫
ĒeffdV =

1

ρ

Nwt∑
P̄x (5.5)

Table 5.4 gives the change in effective extraction due to tower height alternation relative to
the 2h-case. Here, the magnitude of the components driving this change is given in terms of
equation 5.3. For both RA and SA configurations, an increase in total mean power production is
found. Furthermore, a decrease in extraction losses due to the tower and nacelle is found, while
an undesired increase in TKE production is present. Similar to the results in section 5.1, there
is a strong indication that the increase in effective extraction is mainly the result of a decrease
in extraction losses due to the decrease of total tower drag surface.

Table 5.4: Change of the effective extraction and the magnitude of the components driving this
change due to tower height alternation relative to the 2h-case.

Spatial
config.

∆
∫∫∫
ĒeffdV∫∫∫

Ēeff,2hdV
∆

∫∫∫
ĒlossdV∫∫∫

Ēeff,2hdV
∆

∫∫∫
W̄dV∫∫∫

Ēeff,2hdV
∆

∫∫∫
P̄reddV∫∫∫

Ēeff,2hdV
∆

∫∫∫
P̄walldV∫∫∫
Ēeff,2hdV

∆
∫∫∫

EdV∫∫∫
Ēeff,2hdV

[%] [%] [%] [%] [%] [%]

RA +4.658 -3.927 +3.501 +2.872 +0.731 -0.838

SA +4.692 -3.569 +4.068 +3.641 +0.726 -1.429

When comparing the RA and SA configurations, the results from table 5.4 support the following
statements:

• The SA configuration shows a greater increase in power production. This increase is how-
ever less than 1% larger than the increase of the RA configuration. Based on the expected
sampling error of about 0.5% for the time-averaged results (as summarized in 3.4.2), the
difference is insignificant.

• TKE production is higher for the SA configuration. It can thus be expected that the SA
configuration is more turbulent (higher Reynolds stresses) and the gradient of the wake
shear layers larger.

Figures 5.8 and 5.9 compare the slab averaged kinetic energy flow profiles of the RA and SA
configurations with the 2h-case. The (normalized) profiles of the RA and SA configurations are
near identical. For both alternation configurations the following statements hold regarding the
slab averaged kinetic energy flow profiles:

• The KE transport profiles of the 2h-case indicate an entrainment of kinetic energy from the
flow below the turbines. Application of tower height alternation suppresses this transport
mechanism.

• Locally, the TKE production only increases at heights with surface overlap between tur-
bines. Contrary to the profiles as presented in figure 5.2 a (slab averaged) decrease in TKE
production is found near top-tip height of the high turbines.
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Figure 5.8: Thin line is the 2h-case, thick line is for RA. Slab averaged mean kinetic energy

profiles for row alternation (RA), normalized with total pressure work
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ūbulk

[
∆pmod
Lx

]
Lz

)
.

(Backgrounds: darkest grey is surface overlap, lightest grey is the remaining swept area of the
high turbines, medium-dark grey is the remaining swept area of the low turbines.)
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Figure 5.9: Thin line is the 2h-case, thick line is for SA. Slab averaged mean kinetic energy

profiles for staggered alternation (SA), normalized with total pressure work
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.

(Backgrounds: darkest grey is surface overlap, lightest grey is the remaining swept area of the
high turbines, medium-dark grey is the remaining swept area of the low turbines.)
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5.4 Local fluctuation of power production

Figure 5.10 gives the time-series for the power production of four centrally located turbines: tur-
bine 29, 30, 41 and 42 for each of the three configurations. For the 2h-case, figure 5.10(a), it is
found that turbines in the same column, i.e. turbines 29 and 30, and, 41 and 42, produce approx-
imately the same amount of power over the whole time-series. For the other two configurations,
turbines in the same column follow the same trend in power production while the low turbines
always give a lower production than the high turbines. For the alternation configurations, the
power production of two separate columns appear to be following a weakly identical trend, an
observation absent in the 2h-case. For the SA configuration, figure 5.10(c), there appears to be
a stronger relation between the power production of two columns than in any other of the two
configurations. Table 5.5 firstly compares the largest cross-correlation coefficients between two
turbines in the same column but on different rows (CC row) for the two alternating configura-
tions with the 2h-case. Secondly, the largest cross-correlation coefficients between two turbines
on different columns (CC column) are compared.

Table 5.5: Comparison of cross-correlation coefficients and standard deviations of time-series of
power production between the 2h-case and the two alternating configurations. All bold values

of the standard deviations correspond to high turbines.

Spatial
config.

CC row CC column σPx(T29) σPx(T30) σPx(T41) σPx(T42)

[-] [-] [mW] [mW] [mW] [mW]

2h 0.41 0.15 5.0 5.0 4.8 4.8

RA -9.1% -5.3% -4.7% +5.6% +4.4% +34%

SA -11% +9.3% +5.0% +32% +19% -1.7%

Table 5.5 shows for both alternation configurations a decrease of about 10% for the cross-
correlation coefficient between two turbines on the same column but on different rows (CC row).
Therefore, not only is there a difference in absolute power production between two consecutive
turbines in a column, they are also less strongly correlated to each other. This result is to be
expected, as wakes only partly overlap in the alternation configurations. Furthermore, table 5.5
indeed gives the highest cross-correlation coefficient between two turbines in different columns
(CC column) for the SA configuration. Simultaneously, this cross-correlation coefficient (CC col-
umn) decreases compared with the 2h-case for the RA configuration. To explain this observation,
the following is considered:

• Explaining the decrease of CC column for the RA configuration, figure 5.10 (b). The wake
of turbine 29 is obstructed by the wake of turbine 41 more or less identical to the 2h-case
(same heights). Furthermore, turbine 29 is at a different height than turbine 42 (partial
overlap), resulting in a lower CC column compared to the 2h-case.

• Explaining the increase of CC column for the SA configuration, figure 5.10 (c). The wake
of turbine 29 is less obstructed by the wake of turbine 41 due to a difference in heights.
Therefore, compared to the 2h-case, the wake of turbine 29 can more easily influence turbine
42 and thus CC column is higher.

For each of the four turbines the standard deviation of the power production is determined
over the statistical time-averaging period, Tstat,avg. Table 5.5 gives for the high turbines of both
alternation configurations an increase of the standard deviation of the power production by about
5 to 34%. Simultaneously, the standard deviation of the low turbines remain approximately the
same compared with the same high turbine in the 2h-case. Therefore, there is a strong indication
that the local fluctuation in power production increases for all high turbines within the alternation
configurations.
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(a)

(b)

(c)

Figure 5.10: Time-series of power production for four centrally located turbines: 29, 30, 41 and
42. (a) High turbines only (2h), (b) Row alternation (RA), (c) Staggered alternation (SA).
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5.5 Fatigue and flow fields

To give an indication of the change in fatigue life due to tower height alternation various flow
fields are presented. Firstly, links to moving instantaneous flow fields are given. Secondly,
the instantaneous flow fields of the streamwise velocity are given, and various structures and
phenomena are identified qualitatively. Lastly, the time-averaged flow fields of the streamwise
velocity and the u′u′ Reynolds stress are presented.

Moving instantaneous flow fields

The following movies of the flow fields through the horizontal plane at z = zhub,high and the
midplane of the sixth column of turbines are available:

• Streamwise velocity for 2h: http://bit.ly/1XFqioZ

• Streamwise velocity for RA: http://bit.ly/1FvkL9h

• Streamwise velocity for SA: http://bit.ly/1Lh3QsV

• Comparison in the turbine mid-plane: http://bit.ly/1g6T2VO

Instantaneous fields

Figure 5.11 gives the instantaneous flow field of the streamwise velocity over the horizontal plane
at z = zhub,high for all three configurations. Turbines are located at the intersection of the grid
lines. For the RA and SA configurations the low turbines are not as distinctly recognizable,
which is the result of the set height of the horizontal plane section. Behind the turbines, the
wakes exhibits a meandering structure for all three configurations. Directly behind the turbines,
some back-flow is found for some of the turbines. This might be an indication of the formation
of temporary vortices (non-coherent) close to the wind turbine which are quickly perturbed by
the semi-permeable character of the actuator disks. Between adjacent columns, the velocity
is generally higher and large structures of increased velocity are present. From the moving
instantaneous fields it is found that these structures exhibit Lagrangian coherency over multiple
domain pass-throughs. Figure 5.12 gives the instantaneous flow field of the streamwise velocity
at the turbine midplanes of the third and fourth column. Again, wake meandering and local
back-flow is found. No distinct differences between the alternation configurations in the wake
meandering process can be identified based on figure 5.12. Further analyses of wake meandering,
such as its frequency and amplitude, is however considered out of scope.

Time-averaged fields

Figure 5.13 gives the time-averaged flow field of the streamwise velocity at the turbine midplanes
of the third and fourth column. Overall velocities are slightly higher for the row and staggered
alternation configurations, figures 5.13(c) and (d) and 5.13(e) and (f) respectively. These overall
higher velocities (i.e. bulk velocity) are in line with the increased power production and the overall
increased mean kinetic energy work,

∫∫∫
W̄dV , as found in table 5.4. Furthermore, no back-flow

is present giving an indication that any vortices directly behind the turbines are not coherent.
Figure 5.14 gives the time-averaged u′u′ Reynolds stress (including sub-grid contribution) at
the midplanes of the third and fourth column. Production of u′u′ is strongest near top-tip
height of the turbines. For the alternation configurations, the high turbines exhibit an increased
production of u′u′ due to the increased gradient of the shear layer present at top-tip height.
The low turbines in the alternation configurations produce less u′u′ compared with the same
high turbine of the 2h-case as the gradient of the shear layer near top-tip of the low turbines
is less strong. Directly in front of the turbines, the u′u′ Reynolds stress for both alternation
configurations is smaller than for the 2h-case. Furthermore, the Reynolds stresses of the SA
configuration are higher than for the RA configuration. Therefore, the TKE production may be
expected to be higher, as verified by table 5.4.
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Figure 5.11: Instantaneous flow-field of streamwise velocity, top view at z = zhub,high. (a) high
turbines only (2h), (b) row alternation (RA), (c) staggered alternation (SA).



Figure 5.12: Instantaneous flow-field of streamwise velocity, xz-section in the turbine midplane.
(a) 2h at column 3, (b) 2h at column 4, (c) RA at column 3, (d) RA at column 4, (e) SA at

column 3, (f) SA at column 4.
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Figure 5.13: Time-averaged flow-field of streamwise velocity, xz-section in the turbine
midplane. (a) 2h at column 3, (b) 2h at column 4, (c) RA at column 3, (d) RA at column 4, (e)

SA at column 3, (f) SA at column 4.
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Figure 5.14: Time-averaged flow-field of Reynolds stress u′u′ , xz-section in the turbine
midplane. (a) 2h at column 3, (b) 2h at column 4, (c) RA at column 3, (d) RA at column 4, (e)

SA at column 3, (f) SA at column 4.
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Chapter 6

Conclusions

Recalling the main research question and its sub questions as defined in the introduction:

How is the power production, the fluctuation of power production and the fatigue
life affected by application of tower height alternation for an infinite wind farm
imposed by a neutrally stratified half-channel boundary layer?

Sub questions:

• What tower height difference is appropriate and optimal?

• What wind farm configurations to consider and is there a performance difference between
configurations?

• Are the physics as proposed by Johnstone and Coleman (2012) valid for such application?

Regarding the physics as proposed by Johnstone and Coleman (2012), the occurrence of the
following is discussed: local and overall TKE production and a sawtooth curve for the Reynolds
shear stress magnitude.

A LES approach was selected by application of DALESURBAN. To model wind turbines,
the non-uniform actuator disk model (NU-ADM) was selected and its implementation into
DALESURBAN described. The NU-ADM is verified and validated within an infinite (double-
periodic) and neutrally stratified half-channel boundary layer. Here, the pressure difference
driving the simulation was proven to have a significant effect when comparing results with ex-
perimental measurements. Nevertheless, good agreement with validation measurements from
literature was found.

To determine the appropriate and optimal tower height difference, two wind turbines with
varying tower heights were placed behind each other within an infinite (double-periodic) domain
and imposed by a neutrally stratified half-channel boundary layer. Simulating a multitude of
varying tower height differences gave no conclusive optimum, while the physics as proposed by
Johnstone and Coleman (2012) [18] could not be verified for any of the considered cases. One
tower height difference was selected for further advancements, corresponding to zhub,low = 0.125m
and zhub,high = 0.2125m. Furthermore, three wind farm configurations were considered:

1. High turbines only (2h).

2. Tower heights alternating in row configuration (RA) (figure 5.6).

3. Tower heights alternating in staggered configuration (SA) (figure 5.7).

Each wind farm configuration consisted of 12 turbines in a column and 6 turbines in a row,
resulting in a domain length of 60Ddisk and a domain width of 30Ddisk. To conclude on the
performance difference between wind farm configurations, the results for the power production,
the fluctuation of power production and the fatigue life are summarized.
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An increase in power production of about 4.658% to 4.692% compared with the 2h-case for
the RA and SA configuration was found, respectively. Contrary to what is expected from the
physics as proposed by Johnstone and Coleman (2012), the local and overall TKE production
increases and no sawtooth curve for the Reynolds stress is found. Furthermore, any increase in
power production appeared to be mainly caused by the decrease in tower drag surface. On the
fluctuation of power production, an increase of the standard deviation of about 5 to 34% for all
high turbines in the alternating configurations relative to the 2h-case was found. For the low tur-
bines, the fluctuation of power production remained approximately unchanged. Furthermore, it
was found that the SA configuration experienced a larger increase in fluctuation than the RA con-
figuration. Regarding cross-correlations between turbines a decrease in the correlation between
turbines in the same column but in a different row was found. Only for the SA configuration, an
increase in the correlation between turbines in different columns was found. Regarding fatigue,
when comparing the alternation configurations with the 2h-case various results are relevant:

• The increase in fluctuation of power production of the high turbines.

• Increased TKE production and thus overall, the flow is more turbulent (higher Reynolds
stresses).

• Flow fields gave a decreased u′u′ Reynolds stress directly in front of each turbine (low and
high). Simultaneously, an increased production of u′u′ Reynolds stress near the actuator
disk edge for the high turbines was found.

Although the turbulence directly in front of each turbine is lower, other statements (of the
above) point to a decrease in fatigue life for high turbines in the alternation configurations. Fur-
thermore, for the low turbines in the alternation configurations there is not enough evidence of
any improvement compared with the high turbines in the 2h-case. This result also indicates a
difference in the fatigue life of the high and low turbines.

To finally conclude on the sub questions:

• An appropriate tower height difference could not be determined as the proposed physics by
Johnstone and Coleman (2012) [18] could not be verified for any of the considered cases.
Therefore, definition of an optimal tower height remains inconclusive.

• The difference in power production between the two alternation configurations was found
to be insignificant. Furthermore, the SA configuration experienced a stronger fluctuation
of the power production and correlations between turbines where stronger overall when
compared to the RA configuration. Regarding fatigue, there is weak evidence of a shorter
fatigue life for the SA configuration compared to the RA configuration. This is based on
the the slightly higher TKE production, fluctuation of power production and u′u′ Reynolds
stress for the SA configuration.

• The physics proposed by Johnstone and Coleman (2012) [18] have been found to be incor-
rect for infinite wind farms with alternating tower heights imposed by a neutrally stratified
half-channel boundary layer.

To finally conclude on the main research question: although an increased power production for
the alternation configurations is found, the source for this increase is primarily the decrease of
overall tower drag surface. The quantified increase is of the order of 4% to 5%, however due to
simplistic modeling of the tower and its unexpected large influence, the found increase is highly
uncertain and is most likely not of such significant magnitude. Furthermore, the fluctuation of
the power production increases and the fatigue lives of the high turbines is expected to decrease.
Additionally, as an undesirable side-effect, in the alternation configurations the fatigue life for
the high turbines is found to be shorter than for the low turbines.
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Chapter 7

Recommendations and future
research

Equation 7.1 recalls the force balance as derived in section 3.4.4 and is only valid for steady-state
double-periodic domains with free-slip conditions for the top boundary. Here, Fx contains the
turbine force, tower drag force and nacelle drag force on the flow.

[
∆pmod
Lx

]
Lz =

1

ρ

(
Nwt∑

Fx + τ̄x

)
(7.1)

The force balance indicates a strong relation between the pressure difference and the resulting
forces of the turbine. Produced power is related to turbine force by the reference velocity as found
in equation 3.18 and simultaneously, the turbine force is related to the reference velocity. An
increase of the power production thus requires an increase in the turbine force. Due to a fixed
pressure difference driving the flow, there are a limited number of ways to achieve this:

• Decrease in tower drag.

• Decrease in nacelle drag.

• Decrease in shear near the wall, τx

In hindsight it is thus not surprising that the increase in power production due to tower height
alternation is mainly caused by a decrease in tower drag surface. Additionally as a result thereof,
the physics proposed by Johnstone and Coleman (2012) [18] are not applicable for infinite wind
farms.

For future research it is therefore recommended to use an inflow-outflow model description.
In such model description the inflow is undisturbed by wind turbines and thus all developmental
effects occurring within the wind farm are taken into account. Furthermore, the outflow is not
returned to the inflow as was the case for the infinite wind farm and the pressure difference is set at
zero (or some physical low). Therefore, the produced power is not dependent on the set pressure
difference. Rather, the dependency of the produced power is on the ability of the boundary layer
to transfer kinetic energy to the wind turbines. For the inflow-outflow model description it is
thus interesting to re-investigate the validity of the physics proposed by Johnstone and Coleman
(2012) [18]. Additionally, it is interesting to repeat the investigation into the optimal tower
height difference for the inflow-outflow model description. For this investigation a larger domain
than applied in the current study is however recommended due to developmental effects.
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Appendix A

List of Symbols

Symbol Dimension Explanation

a − Axial induction factor

A m2 Area

ARC − Asymptotic Range of Convergence

B − Number of blades

c − Blade chord

C − Coefficient

d − Distance

D m Diameter

DIM - Spatial dimension

e m2/s2 Energy

e − Directional unit vectors

E − Any error

E m2/s3 Kinetic energy extraction

EV − Expected value

f m2/s2 Skin friction

F N Cartesian force vector

F m2/s2 Smoothed turbine force

G − Guassian filter-kernel

GCI − Grid convergence index

h − Grid spacing in any direction

k − Wake decay constant

L m Length

M m/s2 Momentum

n − Blade element

N − Number of..

p Pa Pressure
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P W Power

P m2/s3 Turbulent kinetic energy production

Pe − Peclet number

q − Order of convergence

Q − Rotation matrix

r − Local radius

R − Ratio

Re − Reynolds number

Rem m/s2 Collective term for remaining Navier-Stokes terms

s % Sensitivity

S 1/s Fluid strain

SGS m2/s2 Subgrid-scale energy

SGSE % Subgrid-scale energy percentage

STAT − Stationarity

t s Time

T s Period

T m2/s3 Kinetic energy transport or some time-scale (s)

u m/s Streamwise velocity

U m/s Relative velocity to blade

v m/s Spanwise velocity

V m3 Volume

w m/s Wall-normal velocity

W m2/s3 Kinetic energy work

x m Streamwise position

y m Spanwise position

z m Wall-normal position

Greek

Symbol Dimension Explanation

α radians Angle of attack

β radians Angle of cell on actuator disk to horizontal reference
through disk center

γ − Area-factor

δ m Boundary layer height or Kronecker delta

ε − Regularization kernel

ζ − Efficiency

η − Regularization filter

θ radians Pitch angle
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κ − Von Karman constant

λ − Tipspeed-ratio

µ − Mean

ν m2/s Kinematic viscosity

Π − Coles’ wake law parameter

ρ kg/m3 Density

σ − Standard deviation

τ m/s2 Shear (subgrid)

φ radians Angle of relative wind

χ − Some arbitrary term, undefined

Ψ − Relative surface overlap

Ω rad/s Rotational speed

Subscripts

Symbol Dimension Explanation

0 − Roughness

2D − Two-dimensional

3D − Three-dimensional

2h − High hub-height only

a − Blade element index

alt − Alternating

d − Drag

distr − Distribution

δ − To boundary layer

e − Eddie

eff − Effective

ε − Regularized by regularization kernel

f − Friction

gen − Generator

i − (Cell-integer of) streamwise direction

j − (Cell-integer of) spanwise direction

k − (Cell-integer of) wall-normal direction

l − Lift

mod − Modified

p − Pressure

P − Power

⊥ − Perpendicular
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‖ − Parallel

r − Radial

red − Reduced

ref − Reference

rel − Relative

SSM − Shear stress magnitude

s − Smagorinsky

sgs − Subgrid

stat, avg − Statistical averaging

t − Turbine

T − Thrust

τ − Shear

v − Vreman

wc − Wall-clock

ω − To pitch

x − Streamwise direction

y − Spanwise direction

z − Wall-normal direction

Superscripts

Symbol Dimension Explanation

′ − Fluctuation (Reynolds stress)

∗ − Prediction

c − Closest

loc − Local

m − Full time-step

n − Any Runga-Kutta time-step

r − Radial

RK1 − Runga-Kutta time-step 1

RK2 − Runga-Kutta time-step 2

RK − Runga-Kutta time-step

x − Axial

Others

Symbol Dimension Explanation

¯ − Time-averaged

〈 〉 − Spatially-averaged˜ − Correction
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Appendix B

Mixed tower height wind farms

Three publications on mixed tower height wind farms are known. A short description of the
methods and results of these publications is further given.

Acero et al. (2009)

Acero et al. (2009) [17] performed a linear wind farm layout optimization for an in-outflow
model with inflow conditions defined by the logarithmic law. For the optimization, a genetic
algorithm is applied and the wind turbines are analytically modeled by Jensen’s wake model
[19] parameterized for a Repower MD77 turbine. The objective is to optimize the layout of a
single column of turbines within a fixed length, whereas the free parameters for the optimization
objective are: the number of turbines, the distances between the wind turbines and the wind
turbine tower heights.

Two of the presented cases in Acero et al. (2009) [17] are relevant:

1. Constant tower height with equal turbine spacing.

2. Fully optimized configuration with mixed tower heights.

For the first case the tower height is set at 85m. For the second case an optimization is
performed for a mixture of two tower heights: zhub,low = 50m and zhub,high = 85m. Figure B.1
gives the optimized wind farm layout for the west-to-east direction for this case. The optimized
configuration from figure B.1 does not show a consistent pattern and distance between turbines
is unconventionally small at about 2 turbine diameters. Resulting power output of this optimized
configuration of 7 turbines is about 10.4% higher than the configuration of case 1 with 6 turbines
and equal spacing. A second mixed tower height optimization is performed with zhub,low = 85m
and zhub,high = 120m. Instead of positioning turbines lower than case 1, turbines are set higher.
Also, the number of turbines to optimize is now limited to 6 to ensure an equal number of
turbines as in case 1. An increase of 24.2% in power production is found compared with case 1.

Figure B.1: Optimized wind farm layout for a mixture of two tower heights for the west-to-east
regime (modified from [17]).
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Ying Chen et al. (2015)

Ying Chen et al. (2013) [8] and Ying Chen et al. (2015) [7] also investigated the wind farm
optimization by application of the genetic algorithm. Again, the wind turbines are modeled
by Jensen’s wake model [19] and inflow conditions are driven by the logarithmic law while no
turbulence is considered. In Ying chen et al. (2015) [7] a 1D wind farm optimization is performed
over a length of 2km for two cases:

1. Genetic algorithm on a grid of 200mx200m

2. Genetic algorithm on a grid of 25mx200m

A finer grid results in an improved freedom of optimization for the genetic algorithm. Two
different tower heights are considered: zhub,low = 50m and zhub,high = 85m. Power production
of the optimized mixed tower height layout is 6% higher, while the number of turbines is signifi-
cantly larger (8 to 6). For case 2, an increase in produced power is 12.4%, however some turbines
are located within 25m (about 0.3 turbine diameters) behind each other.

(a) (b) (c)

Figure B.2: Optimized wind farm layout for a mixture of two hub-eights for case 1 (modified
from [7]). (a) High tower height only, (b) Optimal mixture of tower heights, (c) Optimal when

minimal number of wind turbines is set as main driver.

Ying Chen et al. (2013)

In Ying Chen et al. (2013) [8] a 2D wind farm optimization is performed within a area of 500m
and three cases are discussed:

1. Constant wind speed and direction

2. Constant wind speed and various directions

3. Various wind speeds and direction

Two tower heights are considered: ztower,low = 50m and ztower,high = 78m. For the first case,
compared with the optimized wind farm layout with only high turbines, an increase of 4% in
power production was found by optimization for two different tower height turbines. Surprisingly,
the number of low turbines was optimized as 5, to 20 high turbines. Furthermore, the optimized
layout with only high towers contained 24 turbines, one less than the optimized layout with two
different tower heights. For the second case the number of turbines for the optimized layouts is
the same, while an increase of 7.3% is found due to the application of different tower heights.
For the third case, an increase of 6.7% was found for the same number of turbines within the set
area.
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Appendix C

Validation measurements

The wind turbine model is validated based on the measurements performed by Chamorro and
Porté -Agel [5]. Figure C.1 shows the normalized stream-wise velocity and figure C.2 shows the
normalized turbulence intensity as defined by equation C.1, both measured over the midplane of
the middle-row of the turbine array. The normalization value, uhub, is defined as the stream-wise
hub-velocity of the undisturbed flow, found to be 2.4 m/s.

σu
uhub

=

√
u′u′

uhub
(C.1)

Figure C.1: Normalized stream-wise velocity [5].

Figure C.2: Normalized turbulence intensity [5].
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Figure C.3 shows multiple velocity profiles behind turbines downstream, these profiles will
be thoroughly used for further validation of the model.

Figure C.3: Velocity profiles behind turbines in the near developed regime [5].

Figure C.4 gives the mean rotational speed of each turbine in the middle column.

Figure C.4: Relative rotational speed (modified from [5]).
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Appendix D

Known model inputs

The required model inputs regarding the blade geometry, the lift and drag coefficients and
rotational speed are discussed. A summary of resulting model inputs is given in table 3.2.

D.1 Blade geometry

All turbines from the validation case are fitted with a GWS/EP-6030x3 propeller. In order to
define the required blade geometric inputs for the determination of the lift and drag coefficients,
geometric measurements on a two-bladed GWS/EP-6030 propeller where performed. Required
measurements are the blade-element chord and pitch at different blade-element radii, all depen-
dent on the chosen number of blade elements.

D.1.1 Number of blade elements (or annuli)

In order to ensure smoothness of the flow field, the number of blade elements is required to be
grid dependent. It is found that coupling the number of blade elements with half the number
of cells over the disk diameter, Ncells,disk, is an appropriate estimation. Figure D.1 compares
the DALESURBAN result of the u′u′ field of two simulations in the turbine midplane, (a)
with Na/Ncells,disk = 3/24 and (b) with Na/Ncells,disk = 12/24. In (a) three shear layers
corresponding with the three blade elements are clearly visible, while these disappear in (b) by
increasing the number of blade elements.

(a) (b)

Figure D.1: u′u′ field for:
(a) Low number of blade elements over a fine grid: Na/Ncells,disk = 3/24

(b) High number of blade elements over a fine grid: Na/Ncells,disk = 12/24
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D.1.2 Blade measurements

The blade is cut at four measurements positions, painted orange and photographed, as found
in figure D.2. Measurements are then performed on these photographs with the help of PTC
Pro/Engineer Wildfire. Results of these measurements are found in table D.1.

(a) (b) (c) (d)

Figure D.2: Cross-sections of GWS/EP-6030 blade, note: figures not to scale, (a) Cross-section
at BE-radius 17.0mm, (b) Cross-section at BE-radius 30.4mm, (c) Cross-section at BE-radius

50.8mm, (d) Cross-section at BE-radius 69.7mm

Table D.1: Blade geometry measurements.

BE-radius
[mm]

BE-chord
[mm]

BE-pitch
[deg]

17.0 14.9 20.2

30.4 15.0 19.3

50.8 13.2 12.4

69.7 10.5 10.1

Measurements presented in figure D.2 and table D.1 are for a blade consisting of four blade
elements only. As stated, the number of blade elements is set coupled to half the number of
cells over the disk diameter. Therefore, the number of blade elements is grid dependent and the
above measurements should be performed for each simulation using a unique number of blade
elements. To suppress the need for a large number of blades to cut to determine these inputs, the
blade is modeled as a surfaced 3D model using PTC Pro/Engineer Wildfire based on presented
measurements. This model assumes one single cross-section, changing in all dimensions relative to
chord length and following a pitch angle approximately linearly interpolated in between measured
positions. The cross-section is based on the photographed section at a blade element radius of
30.4mm as found in figure D.2(b). Figure D.4 gives more detail of this model, while figure D.3
gives the main dimensions of the blade cross-section. The assumption of constant cross-section
has been chosen for two reasons: first of all 3D modeling is easier, and secondly, this allows for
one data-set of lift and drag coefficients valid for all blade elements.

Figure D.3: Assumed constant cross-section of turbine blade.
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Figure D.4: Drawing of GWS/EP-6030 blade from PTC Pro/Engineer Wildfire 3D model.
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D.2 Lift and drag coefficients

The lift and drag coefficients are part of the import data of the wind turbine model. Initially,
lift and drag coefficients are found by XFOIL in a 2D environment. XFOIL is developed for the
design and analysis of subsonic isolated airfoils to determine airfoil characteristics, and is based
on a panel method. For more detail on the method of XFOIL, refer to the XFOIL methodology
[11]. To correct for 3D effects such as rotation of the blade, the method of Chaviaropoulos and
Hansen [6] is applied as described in equations D.1 and D.2.

Cl,3D(Re, α) = Cl,2D(Re, α) + 2.2

(
ca
rdisk

)
cos4(θa)(Cl,inv(Re, α)− Cl,2D(Re, α)) (D.1)

Cd,3D(Re, α) = Cd,2D(Re, α) + 2.2

(
ca
rdisk

)
cos4(θa)(Cd,2D(Re, α)− Cd,2D(Re, 0)) (D.2)

The method of Chaviaropoulos and Hansen requires three inputs as function of the chord
Reynolds number and angle of attack: the 2D lift coefficient Cl,2D, the 2D inviscid lift coefficient
Cl,inv and the 2D drag coefficient Cd,2D. These coefficients are imported as a look-up table for
each combination and equidistant tick within a set range of Reynolds numbers and angles of
attack. The wind turbine model then estimates the required 2D coefficients by means of two-
sided linear interpolation over the four closest datasets available within this look-up table. The
required range and set look-up table ticks are summarized in table D.2.

Table D.2: Estimated range of Reynolds numbers and angles of attack for determination of lift
and drag coefficients.

Unit Min Max Tick

Reynolds number - 0 10000 1000

Angle of attack deg -20 80 2

Within XFOIL, the cross-section as previously defined by figure D.3, is imported as custom
profile by means of point data. This imported cross-section is slightly modified to optimize the
number of panels and panel-angle by application of a rounded leading edge and an open trailing
edge. The profile is paneled into a total of 400 panels with a maximum panel-angle of 34.6
degrees, as shown in figure D.5. The dark green line in figure D.5 represents the chord. The
angle of attack is positive downwards and relative to this chord. For every calculated value, the
pressure distribution is checked on smoothness to ensure proper calculation of the resulting 2D
coefficients.

Figure D.5: Paneled cross-section used in XFOIL.

As the used profile is a custom profile, no validation measurements are available. Furthermore,
XFOIL is not validated for low Reynolds numbers, let alone high numbers of angle of attack [11].
Measurements of any airfoil at such low Reynolds numbers and high angles of attack are scarce.
One example is the experimental work by Y. Zhou [45] on a symmetric NACA0012 airfoil at
Rec = 5300 and an angle of attack ranging from 0 to 90 degrees. These measurements are
used to assess XFOIL’s error for these conditions. Figure D.6(a) gives a comparison of the lift
coefficient between Zhou’s measurements and XFOIL results of a NACA0012 airfoil and figure
D.6(b) gives the XFOIL results for the custom profile at Rec = 5000 and an angle of attack
ranging from 0 to 80 degrees. Figures D.7(a) and D.7(b) give the same results for the drag
coefficient.
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(a) (b)

Figure D.6: (a) NACA0012 lift coefficients; XFOIL compared with measurements and proposed
correction, (b) Custom profile lift coefficients from XFOIL and proposed correction.
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Figure D.7: (a) NACA0012 drag coefficients; XFOIL compared with measurements and
proposed correction, (b) Custom profile drag coefficients from XFOIL and proposed correction.

For the NACA0012 profile, the measurements as shown in figure D.6(a) indicate a minor stall
effect at a stall-angle of about 12 degrees. XFOIL overestimates the stall effect and the stall-
angle, resulting in a large overestimation of the lift coefficient between 12 and 37 degrees of angle
of attack. Past stall, the XFOIL results underestimate the lift coefficient by about 15%. The
XFOIL results for the custom profile, as found in figure D.6(b), indicate a minor stall effect at a
stall-angle of approximately 3 degrees. The custom profile is fully flat on one side resulting in a
smaller stall angle due to increased leading edge separation. As overestimation of the stall angle
appears not to be an issue with the custom profile, a fixed relative correction of +15% is proposed
to compensate for XFOIL errors. Figure D.6(a) and (b) both show this proposed correction. For
the drag coefficients, figure D.7(a) indicates a XFOIL underestimation increasing with the angle
of attack. The XFOIL drag coefficient of the custom profile largely follows the same trend as the
drag coefficients for the NACA0012 profile, as found in figure D.7(b). Assuming for the custom
profile an identical error as for the NACA0012 profile, an empirical drag correction is proposed
according to equation D.3.
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Cd,2D,corr = Cd,2D

(
1

50
α+ 1

)
(D.3)

Lift and drag coefficient sensitivity

Three different cases are introduced to assess the model sensitivity to lift- and drag coefficients:

1. Using 2D lift and drag coefficients directly from XFOIL without any correction.

2. Using 2D lift and drag coefficients directly from XFOIL with 3D correction by method of
Chaviaropoulos and Hansen [6].

3. Using 2D lift and drag coefficients from XFOIL with proposed corrections for 2D lift and
drag coefficients and with 3D correction by method of Chaviaropoulos and Hansen [6].

All cases are run based on fully verified inputs. Table D.3 gives the time-averaged mean power
production, reference velocity and power coefficient, each compared with case 1.

Table D.3: Time-averaged results of lift and drag sensitivity.

Case P̄x ūref,disk C̄P

[mW ] [m/s] [−]

1 24.69 2.031 0.244

2 -3.38% -14.1% +51.8%

3 -2.10% -15.4% +61.0%

Table D.3 indicates minor sensitivity to changes in lift and drag coefficients on power pro-
duction, while reference velocity and power coefficients increase significantly. The first may be
expected as power production is mainly dependent on set pressure difference as supported by
the force balance from equation 3.38. Therefore, a more appropriate performance measures on
the effect of the lift and drag coefficients is the power coefficient and it is stated that:

• The 3D correction method of Chaviaropoulos and Hansen has a significant influence on the
performance of the turbine.

• The proposed XFOIL error correction increases the performance further, while its effect is
minor relatively to the 3D correction method (+5.7% between case 2 and case 3).

• Therewith concluding: the 3D correction method of Chaviaropoulos and Hansen is applied
for all cases, while the sensitivity to the proposed XFOIL error correction is too small to
support further application.

D.3 Rotational speed

The rotational speed of the first turbine in the validation case is set at tip-speed ratio, λ, of 4
[31]. From the hub-velocity in front of the first turbine as given in appendix C, an estimation is
made of the resulting rotational speed for the first turbine according to equation D.4.

Ω1stturbine =
λuhub
2Ddisk

≈ 112[rad/s] (D.4)

Figure C.4 gave an asymptote of about 0.65 relative rotation speed, or or 72.8 rad/s. Physi-
cally, the rotational speed is coupled with power production according to equation D.5.
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Ω =
ζPx
ρTgen

(D.5)

In equation D.5, ζ is the mechanical efficiency and Tgen is the generator torque correspond-
ing to the rotational speed. As both Px and Tgen are unknown from validation measurements,
it not possible to develop a dynamic function for Ω based on equation D.5. From available
validation measurements, only the rotational speed as function of the stream-wise hub velocity
can be approximated. Two sets can be approximated: (uref,disk,Ω) = (1.8,72.8) and (2.4,112).
Additionally, one set can be assumed based on the stream-wise reference velocity being zero, the
rotational speed is zero: (uref,disk,Ω) = (0,0)

Based on these three sets a function is developed coupling the rotational speed with the ref-
erence velocity. First, the proportionality of this function is estimated. The generator is known
to be a DC type for which Tgen ∝ Ω holds for the greater part, i.e. torque increases linearly with
rotational speed. Simultaneously, produced power on the generator side is directly proportional
with Ω2, as Pgen = Tgen(Ω)Ω. Under the assumption of a constant thrust coefficient, the pro-
duced power on the turbine side is directly proportional to u3

ref,disk, as Px = 1
2ρAdisku

3
ref,diskC

loc
T .

Assuming constant mechanical efficiency, equation D.6 holds.

Px(u3
ref,disk) ∝ Pgen(Ω2) (D.6)

Therefore, Ω2 ∝ u3
ref,disk, and thus the proportionality of the function coupling the rotational

speed with the reference velocity may be estimated as Ω ∝ u3/2
ref,disk. Equation D.7 gives the final

function coupling the rotational speed with the reference velocity, found by fitting the defined
proportionality with the approximated points. Figure D.8 plots the fit of equation D.7 through
the approximated sets.

Ω = 30u
3/2
ref,disk (D.7)
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Figure D.8: Plot of fit through approximated sets.
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Appendix E

Parameter estimation

The unknown model inputs are determined with respect to the selected validation case. Among
others, the grid resolution is discussed by grid convergence study, all temporal parameters are
defined and the subgrid model is chosen by comparison.

E.1 Grid convergence and sensitivity and smoothing

A study on grid sensitivity with respect to the NU-ADM has been performed by Porté-Agel
(2011) [32]. Here, it was revealed that the NU-ADM can be used by placing no more than 5 to 7
grid points on the disk along the spanwise and wall-normal directions, while placing more points
does not improve the results significantly. In the current study, grid convergence is performed in
two steps to give control over the resulting time-step and magnitude of 2dx-waves:

1. x-grid convergence and sensitivity on the NU-ADM.

2. yz-grid convergence and sensitivity on the NU-ADM.

From the results of the first step, an x-grid is chosen for further advancement. Performance
parameters are the spatial discretization error, the estimated wall-clock time and the magnitude
of 2dx-waves. The second step assesses the proportional refinement of the y-grid and z-grid.
For the mean power production, streamwise reference velocity and thrust / power coefficient,
the spatial discretization error is determined by comparing simulation results with the ’exact’
solution. This ’exact’ solution is found according to Richardson extrapolation, as defined by
E.1 [27]. Here, Reffective is the effective grid refinement ratio as defined by equation E.2 with
N total number of grid cells and DIM the number of dimensions in which grid refinement is
performed. Furthermore,q is the order of convergence as defined by equation E.3. Finally, the
relative solution error is defined by equation E.4. All numerical subscripts indicate a certain
simulation number, with lower numbers corresponding to a finer grid. Furthermore, at least
three different grids are required to estimate the exact solution by Richardson extrapolation.

P̄x,exact = P̄x,1 +
P̄x,1 − P̄x,2
Rqeffective − 1

(E.1)

Reffective =

(
N1

N2

)1/DIM

(E.2)

q =
ln((P̄x,3 − P̄x,2)/(P̄x,2 − P̄x,1)

ln(Reffective)
(E.3)

E =
100 ∗ (P̄x,simulation − P̄x,exact)

P̄x,exact
(E.4)
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To determine whether or not the results exhibit convergence, the asymptotic range of con-
vergence, ARC, is determined according to equation E.5, whereas convergence is achieved only if
ARC approaches 1. Here, the GCI are the grid convergence indices which are determined using
equations E.6 and E.7 [27]. Furthermore, the maximum sensitivity of the performance measure is
defined according to equation E.8. This gives an indication of the maximum difference between
the performance measures normalized by the normalized grid spacing, NGS. Here, a and b are
levels of grid refinement with b always larger than a.

ARC =
GCI23

RqeffectiveGCI12
(E.5)

GCI12 =
1.25|(P̄x,2 − P̄x,1)/P̄x,1|

(Rqeffective − 1)
(E.6)

GCI23 =
1.25|(P̄x,3 − P̄x,2)/P̄x,2|

(Rqeffective − 1)
(E.7)

s = max

(
P̄x,a − P̄x,b
P̄x,min(a,b)

NGSa
NGSb

)
∗ 100 (E.8)

E.1.1 x-grid convergence and sensitivity

The following three grids are used to determine x-grid discretization error and sensitivity. Grids
are chosen in accordance with an effective grid refinement ratio of 2 and the local subgrid energy
of the coarsest grid is below 20% except for the near-wall region:

• NGS(x) = 1 Nx = 192 Ny = 48 Nz = 48 Ncells,disk = 12

• NGS(x) = 2 Nx = 96 Ny = 48 Nz = 48 Ncells,disk = 12

• NGS(x) = 4 Nx = 48 Ny = 48 Nz = 48 Ncells,disk = 12

All inputs are further set as previously defined by table 3.2. Furthermore, smoothing occurs
only in the radial direction, with a width of zero, i.e. Nsmooth,r = 0; number of blade elements set
as six; and all further unknown inputs as summarized in table 3.3. Table E.1 gives an overview of
the exact solutions as found by Richardson extrapolation (NGS(x)=0), the x-grid discretization
errors induced by each grid for each performance measure and an estimation of the wall-clock
time relative to the finest grid, twc. Figure E.1 gives a graphical representation of the x-grid
convergence.

Table E.1: x-grid discretization errors.

NGS(x) P̄x ūref,disk C̄P twc/twc,1

[mW ] [m/s] [−] [−]

0 24.11 1.760 0.3684 -

1 -0.36% -0.409% -0.102% 1

2 -1.05% -0.614% -0.292% 1/4

4 -3.06% -0.920% -0.835% 1/16

80



0 1 2 3 4

0.0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

NGS(x)

D
is

cr
et

iz
at

io
n

er
ro

r
[%

]

Richardson extrapolation

P̄x
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Figure E.1: Discretization errors as function of normalized grid spacing over x-grid refinement.

Figure E.1 exhibits grid convergence for the power production and the power coefficient,
however, the convergence of the streamwise reference velocity appears unsatisfactory. Table E.2
gives the asymptotic ranges of convergence for the power production. Indeed, for the power
production and power coefficient the asymptotic range of convergence approaches 1 and thus
convergence is verified, while the streamwise reference velocity is not within the asymptotic
range of convergence.

Table E.2: Asymptotic range of convergence and sensitivity
of mean performance measures with respect to x-grid variation.

P̄x ūref,disk C̄P

ARC 1.01 0.53 1.00

s 1.04% 0.155% 0.274%

Table E.2 also gives the sensitivity of the performance measures as a result of grid variation.
Although no clear discretization error can be defined for the streamwise reference velocity, its
sensitivity to grid variation is the smallest. Therefore, it is fair to assume that the discretization
error of the streamwise reference velocity is always smaller than the discretization error of the
produced power. The definition of the final x-grid is therefore only based on the discretization
error of the produced power and the required wall-clock time.

The discretization error of the NGS(x)=4 grid for the produced power surpasses 3%, yet
this is acceptable. Regarding wall-clock time, the NGS(x)=4 grid performs naturally optimal,
however, coarseness of the NGS(x)=4 grid increases the magnitude of the 2dx-waves. Suppression
of these waves is desired for the quality of the flow fields, while simultaneously, the NGS(x)=4
grid is too coarse to allow for suppression of 2dx-waves by axial smoothing of the wind turbine
momentum sink. Therefore, the NGS(x)=2 grid is chosen for further advancements as this grid
has an acceptable error, an acceptable wall-clock time and allows for 2dx-wave suppression by
axial smoothing. See chapter E.1.3 for more details on axial smoothing.
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E.1.2 yz-grid convergence and sensitivity

Three grids are introduced to determine yz-grid discretization error and sensitivity. Grids are
chosen in accordance with an effective grid refinement ratio of 2 and the local relative subgrid
energy of the coarsest grid is below 20% except for the near-wall region. The coarsest grid also
corresponds with 6 cells over the disk diameter comparable to the statement by Porté-Agel (2011)
on the number of required grid points on the disk [32]. The following grids are introduced:

• NGS(y, z) = 1 Nx = 96 Ny = 96 Nz = 96 Ncells,disk = 24

• NGS(y, z) = 2 Nx = 96 Ny = 48 Nz = 48 Ncells,disk = 12

• NGS(y, z) = 4 Nx = 96 Ny = 24 Nz = 24 Ncells,disk = 6

All inputs are set as previously defined by tables 3.2 and 3.3, however no axial smoothing is
applied and for radial smoothing Nsmooth,r = 0. Table E.3 gives the exact solutions as found by
Richardson extrapolation (NGS(y,z)=0), the yz-grid discretization errors induced by each grid
for each mean performance measure and an estimation of the wall-clock time relative to the finest
yz-grid. Figure E.2 gives a graphical representation of the yz-grid convergence.

Table E.3: yz-grid discretization errors.

NGS(y,z) P̄x ūref,disk C̄P twc/twc,1

[mW ] [m/s] [−] [−]

0 22.77 1.739 0.3825 -

1 +2.84% +0.057% -4.18% 1

2 +4.78% +0.299% -3.19% 1/4

4 +1.52% -0.977% -2.43% 1/16
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Figure E.2: Discretization errors as function of normalized grid spacing over y-grid and z-grid
refinement.
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From figure E.2 it is clear that neither performance measure exhibits grid convergence. There-
fore, the resulting exact solutions by Richardson extrapolation are inaccurate and the found
discretization errors not representative. Due to the absence of convergence, there is a strong
indication that the performance measures are not exclusively grid-dependent while varying the
yz-grid. The following issues are noted as possible sources for this result:

• For the yz-grid convergence the number of blade elements (annuli) varies according to half
the number of cells over the disk.

• The regularization kernels are manually fine-tuned and thus not identical for each grid.
Although the regularization kernels are fine-tuned down to 0.1% deviation between each
grid, cell-local forcing per unit mass may differ.

Omitting these issues by keeping the number of blade elements and the regularization kernels
constant for each grid in order to define a discretization error is not a proper approach. Even
if a discretization error is found, the error would only hold for model applications that deviate
from recommended practice.

Table E.4 gives the sensitivity of the performance measures with respect to yz-grid variation.
Comparable with the x-grid convergence, the sensitivity to the grid variation is the largest for
the power production. For all performance measures, the sensitivity is overall larger than for the
x-grid convergence. Therefore, it may be expected that the discretization error for the yz-grid
variation is larger than the discretization error for the x-grid variation, however, a supported
quantification cannot be made. Figure E.3 gives the time-averaged streamwise flow profiles over
turbine mid-plane at various distances behind the turbine for various yz-grids.

Table E.4: Sensitivity of performance measures with respect to yz-grid variation.

P̄x ūref,disk C̄P

s 1.60% 0.645% 0.513%

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
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ū/uhub
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NGS=2 @ x/D=4+

NGS=2 @ x/D=3

NGS=1 @ x/D=4+

NGS=1 @ x/D=3

Figure E.3: Resulting time-averaged streamwise flow profiles over turbine mid-plane at various
distances behind the turbine for various yz-grids. Dotted horizontal lines indicate the top tip

height, hub-height and bottom-tip height.
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In figure E.3, the coarsest (NGS(y,z)=4) yz-grid exhibits a strong deviation of the profile
compared with the finer grids. The NGS(x,y)=4 grid is therefore considered inappropriate,
deviating from the statement of grid requirement by Porté-Agel (2011). The difference in time-
averaged streamwise flow profiles is the largest near the wall. It is fair to expect strong errors
near the wall as a result of application of a coarser grid. Porté-Agel’s (2011) statement of 5 to 7
grid point on the disk is thus not necessarily incorrect. The wall-clock time of the NGS(x,y)=2
grid is approximately a factor four shorther than the NGS(x,y)=1 grid, while the sensitivity of
the performance measures to xy-grid variation is relatively small. Therefore, the NGS(x,y)=2
grid is chosen as the final grid for all further advancements.

E.1.3 Smoothing and 2dx-waves suppression

During the study into grid convergence, both axial and radial smoothing widths, Nsmooth,x and
Nsmooth,r, were set to zero. With these settings, clear numerical errors where exhibited in the
form of 2dx-waves for the spanwise and wall-normal flow fields. Such 2dx-waves are characteristic
for central differential schemes as applied in DALESURBAN. In order to suppress these waves,
upstream axial smoothing is further investigated.

2dx-waves are purely the result of numerical errors and their source is found at/near sudden
changes in velocity. To fully suppress these waves the cell Peclet number should be smaller than
2 for each cell. Here, the cell Peclet number is defined by equation E.9 [13].

Pecell =
u∆x

(νe + ν)
(E.9)

Assuming νe to approach zero for an infinitely fine grid, the theoretically required number
of streamwise cells to fully suppress 2dx-waves is approximately 1.3×105 for a single domain.
Such fine grid is unfeasible regarding wall-clock times on the currently available computational
resources. A secondary option to reduce 2dx-waves is by reducing the intensity of the sudden
change in velocity, which is already implemented within the wind turbine model by axial smooth-
ing of the wind turbine momentum sink.

For axial smoothing, two additional parameters are required to be set: the axial smoothing
width, Nsmooth,x and the axial regularization kernel, εx. To assess the influence of axial smooth-
ing, the first is set to Nsmooth,x = 2 and the second is set to εx = 0.8. Figure E.4 gives the
time-average spanwise and wall-normal velocities near turbine top-tip and bottom-tip for one
case without axial smoothing and one case with axial smoothing. Here, the turbine is located at
x/Ddisk = 1. The applied axial smoothing resulted in a clear reduction of 2dx-waves, however
full suppression can not be claimed. Table E.5 gives an overview of the performance measures
of one case without axial smoothing and one case with axial smoothing. Differences are minor,
therefore, no further optimization on axial smoothing parameters has been performed. Neverthe-
less, axial smoothing will be applied in all further runs as the intensity of 2dx-waves are reduced,
improving the quality of the flow fields. Simultaneously, it is not expected that radial smooth-
ing will result in any improvement in the magnitude of the 2dx-waves, while no clear singular
behavior or other numerical errors near the radial edges of the disk are found. Therefore, the
radial smoothing width is kept at zero while no further investigation is performed on its effect.

Table E.5: Time-averaged mean results on influence 2dx-waves and axial smoothing.

Case P̄x ūref,disk C̄P

[mW ] [m/s] [−]

Without axial smoothing 23.85 1.7445 0.3703

with axial smoothing -0.02 % -0.28% +0.81%
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Figure E.4: Time-averaged spanwise and wall-normal velocities near top-tip and bottom-tip
assessing the effect of axial smoothing: thin line is without smoothing, thick line is with

smoothing.

E.2 Single domain temporal analysis

In order to estimate the required convergence time and statistical averaging period, comparisons
are made with undisturbed channel flows. For these flows, time is usually scaled by δ

uτ
.

E.2.1 Convergence time

An initial estimation for the convergence time is based on the work on LES of turbulent channel
flows by Mason and Callen (1986) [23]. Here, convergence was found at tconv ≈ 20 δ

uτ
. Figure

E.5 gives the development of the sum of the wall and turbine induced shear, normalized with
the imposed pressure difference. In accordance with equation 3.38, convergence to a stationary
constant attractor of 1 occurs.

Trend-stationarity is verified by Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, where the
null-hypothesis of trend-stationarity is rejected for a p-value below 0.05. For the expected value
of a trend-stationary process, EV , equation E.10 holds, while, but not necessarily for all trend-
stationary cases, µ1 = 0 is desired for this application.

EV → µ+ µ1t for t→∞ (E.10)

From figure E.5 and KPSS tests, convergence is indeed found for tconv ≥ 20 δ
uτ

s. Additionally,
the streamwise bulk velocity and the power production, Px, have been checked for convergence
in a similar manner. Also for these variables, convergence is found for tconv ≥ 20 δ

uτ
s.
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Figure E.5: Convergence of normalized total shear.

E.2.2 Statistical averaging period

The statistical averaging period is the period over which mean performance measures and mean
fields are defined. The lower time boundary is immediately set after convergence is achieved and
steady-state conditions are met: tstat,avg,low = 20 δ

uτ
s. To determination the appropriateness of

the statistical averaging period, the following should hold as a result of steady-state conditions:

• Mean turbine performance measures approaching real mean, minimize sampling error.

• Full stationarity.

• Field symmetry for symmetric fields.

Sampling errors of performance measures

Over the instantaneous signals of the performance measures, Px, uref,disk and Cp, the means are
determined for three consecutive time-averaging periods of a certain defined length. The resulting
values are compared with each-other and with the ’real mean’, hereby defined as the resulting
mean over a time-averaging period of Tstat,avg,real = 240 δ

uτ
s. Table E.6 gives the sampling errors

compared with the ’real mean’ for each of these three consecutive time-averaging periods. For
Tstat,avg = 120 δ

uτ
s only two consecutive periods are compared, while for Tstat,avg = 200 δ

uτ
s only

one period is given. Figure E.6 plots the development of the largest absolute sampling error of the
three consecutive periods for each wind turbine performance measure as function of the number
of samples. When comparing sampling errors of consecutive time-averaging periods with each-
other: table E.6 indicates a decrease of difference in sampling error between each consecutive
sampling period with increasing number of samples. Furthermore, the sampling error compared
to the ’real mean’ is found to decrease as function of the number of samples according to equation
E.11. This function is plotted for each performance measure as the expected error in figure E.6.

Esampling,expected =
Esampling(Nsamples = 20640)

(Nsamples/20640)
=
Esampling(Tstat,avg = 10 δ

uτ
)

(Tstat,avg/10 δ
uτ

)
(E.11)
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Table E.6: Sampling errors of three consecutive time-averaging periods.

tavg,stat Nsamples Period EP̄x [%] Eūref,disk [%] EC̄p [%]

10 δ
uτ

20640

1 7.40 2.73 -0.15

2 -0.38 0.03 0.56

3 6.77 2.20 -0.15

20 δ
uτ

41280

1 3.58 1.37 0.20

2 -0.11 -0.15 0.12

3 2.54 1.02 -0.10

40 δ
uτ

82560

1 1.73 0.60 0.15

2 -1.43 -0.46 -0.02

3 0.49 0.14 0.02

80 δ
uτ

165120

1 0.15 0.07 0.05

2 -0.73 -0.25 -0.02

3 0.58 0.18 -0.05

120 δ
uτ

247680
1 0.26 0.09 0.05

2 -0.26 -0.09 -0.05

200 δ
uτ

412800 1 -0.35 -0.12 -0.04

20640 82560 165120 247680 412800
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Figure E.6: Maximum absolute sampling error as function of number of samples for each wind
turbine performance value. Both sampled and expected sampling error shown.
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The sampling error is a simple error to suppress, the only limitation is wall-clock time. With
a time-averaging period of Tstat,avg = 200 δ

uτ
s, the required wall-clock time is approximately

half a day for an fully resourced Intel Xeon E5-2643V2 @ 3.50GHz. By equation E.11, this
results in an expected sampling error of 0.37% for the produced power and even lower errors
for the other performance measures. For the single domain in this current application, it is
therefore not necessary to optimize the sampling error versus the wall-clock time. To conclude,
the final chosen time-averaging period is Tstat,avg = 200 δ

uτ
s, resulting in tstat,avg,low = 20 δ

uτ
s and

tstat,avg,high = 220 δ
uτ

s.

Stationarity and field symmetry

As previously stated in equation E.10, µ1 should approach zero for a full stationary process
indicating neither an average increase nor decrease in expected value. Defining stationarity
according to equation E.12, table E.7 gives the stationarity of various instantaneous variables
averaged over a set statistical averaging period. Additionally, flow fields that may be expected
symmetric exhibit symmetry after averaging over a set statistical averaging period of Tstat,avg =
220 δ

uτ
, see appendix G for detailed time-averaged flow fields. Therefore, the chosen statistical

averaging period is additionally proven appropriate.

STAT = 100 ∗
(

1− |µ1|
µ

)
(E.12)

Table E.7: Stationarity of selected variables.

P̄x ūref,disk C̄P Total shear

STAT [%] 96.5 98.9 99.6 98.6

E.2.3 Wind turbine reference velocities averaging time

Equation E.13 repeats the method for time-averaging of the wind turbine reference velocities.
Equation E.13 requires one fixed input: the reference velocity averaging time, T .

〈ū〉a =
∆tRK
T
〈u〉n−1

a +

(
1− ∆tRK

T

)
〈ū〉n−1

a (E.13)

To determine the reference velocities averaging time, the instantaneous reference velocities
are transformed by Fast Fourier Transform into a single-sided amplitude spectrum to determine
the frequency of the small time-scale fluctuations as shown in figure E.7. All reference velocities
show increased amplitudes at about 2.5 Hz and 5 Hz and every other multitude of 2.5 Hz with
reduced amplitude. This 2.5 Hz small time-scale fluctuation frequency corresponds with the
average domain flow-through time at wind turbine height. Therefore, the small time-scale fluc-
tuations are dependent on the domain length and are therefore considered non-physical and the
result of periodic contamination occurring for a single domain. Time-averaging of the wind tur-
bine reference velocities is thus recommended to suppress response to this contamination error.
For a single domain, T is set at 1s, approximately a multitude of 4 small time-scale fluctuations,
i.e. domain length flow-throughs.

The John Hopkins University and KU Leuven applications also apply a time-averaging of
the reference velocities, see chapter 2.5. Translating the time-averaging time-scale as previously
defined for these applications by equation 2.35 to the current study, a time-averaging time of
1.4s and 3.1s would result respectively. Applied reference velocity averaging time is thus shorter
than found in literature, while the definitions found in literature are not based on the number of
flow-through times.
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(a)

(b)

(c)

Figure E.7: Single sided amplitude spectra. (a) of instantaneous uref,disk, (b) of instantaneous
vref,disk and (c) of instantaneous wref,disk

E.2.4 Time-step and temporal discretization error

In DALESURBAN temporal discretization is dynamic during convergence to a steady state
and limited by Courant-Friedrichs-Lewy criterion according to equation E.14, where CFLmax is
chosen based on the applied advection scheme.

max

(
u

∆x
+

v

∆y
+

w

∆z

)
∆t ≤ CFLmax (E.14)

During the time-averaging period, the time-step is taken constant allowing for direct ap-
plication of various post-processing methods such as Fast Fourier Transforms. To determine
the temporal discretization error, three different runs with different time-steps during the time-
averaging period are compared. The same method for the definition of the spatial discretization
error is applicable for the definition of the temporal discretization error [27]. Table E.8 gives
the resulting performance measures for three runs, each run identified by a normalized time-step
(NTS). Figure E.8 gives a graphical representation of the time-step convergence and table E.9
gives the sensitivity of the model to time-step variation, whereas sensitivity is defined analogous
to equation E.8.
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Table E.8: Temporal discretization errors.

NTS P̄x ūref,disk C̄P twc/twc,1

[mW ] [m/s] [−] [−]

0 23.67 1.7416 0.3732 -

1 +0.981% +0.232% -0.655% 1

1.5 +0.478% +0.105% -0.844% 3/4

2 +0.725% +0.163% -0.603% 1/2
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Figure E.8: Discretization errors as function of normalized time-step, NTS.

Table E.9: Sensitivity of performance measures with respect to time-step variation.

P̄x ūref,disk C̄P

s 0.3741% 0.0946% 0.1820%

From figure E.8 it is clear that neither performance measure exhibits convergence on time-
step variation. Therefore, the resulting exact solutions by Richardson extrapolation are again
inaccurate and the found discretization errors not representative. Table E.9 gives the sensitivity
of the model to time-step variation. Here it is found that the sensitivity of the model to time-step
variation is about a factor 5 smaller than the sensitivity to yz-grid variation. Furthermore, it is
the expectation that the absence of convergence is the result of minimal sensitivity of the model
to time-step variation and the relatively large sampling error with respect to this sensitivity.
Therefore, it is concluded that the discretization error due to time-discretization is negligible
compared to spatial-discretizations and the largest fixed time-step satisfying the CFL criterium
is chosen due to highest wall-clock time efficiency.
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E.3 Subgrid modeling

To assess the influence of the subgrid model on results, the following subgrid models are com-
pared:

• Smagorinsky, Cs = 0.10

• Smagorinsky, Cs = 0.165

• Smagorinsky, Cs = 0.20

• Vreman, Cv = 0.07

For more information on the Smagorinsky subgrid model and/or Vreman subgrid model,
refer to Alberto (1993) [35] and/or the work by Vreman [40] [41], respectively. Note that the
influence of the subgrid is grid dependent, for coarser grids the subgrid contribution increases
and therefore the influence of the subgrid model on results is most likely to increase. Study
into the influence of the subgrid model is performed only for the final chosen grid as defined
in chapter E.1 with all temporal aspects as defined in chapter E.2. Therefore presented results
and conclusions are only valid for this specific grid. Table E.10 gives mean turbine performance
measure for the Smagorinksy model with a constant of 0.10 and compares the results of the
other models. Also, the local relative maximum subgrid energy near the turbine and the overall
relative subgrid energy are given, defined by equation E.15 and E.16 respectively. Here, the term
2νe|S| is an approximation for the subgrid energy and valid for both Smagorinsky and Vreman
subgrid models [40].

SGSElocal = 100 ∗ 2νe|S|

2νe|S|+ 0.5
((
u′u′

)
+
(
v′v′

)
+
(
w′w′

)) (E.15)

SGSEoverall =

∫∫∫
SGSElocaldV

V
(E.16)

SGSdissipation = 2νe|S| ¯|S| = (u
′
iu
′
j)sgs

1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(E.17)

From table E.10 it is found that local maximum and overall relative subgrid energy increases
with increasing Smagorinsky constant and thus local eddy viscosity increases analogously, i.e.
mostly linearly. Furthermore, the influence of the Smagorinsky constant on wind turbine perfor-
mance is significant and a proper choice of the subgrid model is required. Comparing velocity
profiles and various flow fields of the runs with different Smagorinsky constant with validation
data, resulted in no clear ’best case’. According to equation 2.19, an increased eddy viscosity
results in an increased production of turbulent kinetic energy. Therefore, an increased subgrid
dissipation of mean kinetic energy is to be expected as both subgrid models are fully dissipative
and allow no backscatter. The Smagorinsky model is known to overestimate the turbulent dis-
sipation for regions with high shear, such as near the wall and the wind turbine wake boundary
[40]. For a channel flow, the Vreman model with a Vreman constant of 0.07 approaches the
Smagorinsky model with a Smagorinksy constant of 0.17 outside of regions of high shear [40].
Therefore, it is considered fair to compare the Vreman model with the Smagorinsky model with
the Smagorinsky constant set as Cs = 0.165.

Figure E.9 gives the subgrid dissipation over the midplane just behind the turbine calculated
according to equation E.17 [40] for the Smagorinsky model and the Vreman model. Three areas
of increased subgrid dissipation are identifiable: the wall, wake boundary (near turbine bottom-
tip and top-tip) and around the nacelle. As expected, the Smagorinsky model gives higher
subgrid dissipation near all areas of high shear. Simultaneously, while not shown in figure E.9,
the subgrid dissipation near the wall is nearly identical for both subgrid models. This is most
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likely due to the application of a wall function instead of actually resolving the wall. Again it
is not possible to define a ’best case’ by comparison with validation data, while differences in
wind turbine performance between the Smagorinsky and Vreman model are small. Therefore,
assuming an overestimation of the subgrid dissipation by the Smagorinsky model near regions
of high shear, simply because theory states so [40], it is concluded that the Vreman model gives
better results around the turbine and therefore the Vreman model is chosen as the definitive
subgrid model for all further advancement.

Table E.10: Time-averaged mean results on influence 2dx-waves and streamwise smearing.

Case P̄x ūref,disk C̄P SGSElocal SGSEoverall

[mW ] [m/s] [−] [%] [%]

Smagorinsky Cs = 0.10 22.80 1.7245 0.3644 8.9 2.73

Smagorinsky Cs = 0.165 +5.00 % +1.29 % +1.98% 15.6 4.78

Smagorinsky Cs = 0.20 +4.82 % +1.25 % +1.92% 19.6 5.59

Vreman Cv = 0.07 +4.60 % +1.16 % +1.62% 13.5 4.56

−0.40 −0.35 −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00

0.10

0.20

0.30

0.40

0.50

Normalized SGS dissipation

z
[m

]

Smagorinsky with Cs = 0.165
Vreman with Cv = 0.07

Figure E.9: Subgrid scale dissipation normalized with total pressure work pressure work(
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)
for the Smagorinsky and Vreman model plotted in the midplane directly

behind the turbine.
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Appendix F

The infinite domain

The infinite domain is set-up as a multitude of single wind turbine domains. For this domain, the
number of turbines in a column and the number of turbines in a row are determined and some
temporal parameters are assessed. Table F.1 gives the unknown model inputs for the infinite
domain.

Table F.1: Unknown model inputs for the infinite domain, require parametrization.

Input Symbol Unit

Number of columns Ncolumn -

Number of rows Nrow -

Convergence time tconv s

Statistical avg. period Tstat,avg s

Reference avg. time T s

F.1 Domain dimensions

To determine the number of turbines in a column and the number of turbines in a row forming
the infinite domain, three conditions are defined:

• Minimize periodic contamination.

• Containment of largest relevant large-scale structures.

Minimization / suppression of periodic contamination is required to simulate a physically re-
alistic case, while simultaneously the infinite domain should be capable of containing the largest
relevant large-scale structures. To check the appropriateness of the number of columns and the
number of rows, cross-correlations between the reference velocities of the turbines are investi-
gated. Two domains are proposed expected to fit above conditions:

1. Number of turbines in column = 6 Number of turbines in row = 6

2. Number of turbines in column = 12 Number of turbines in row = 6

Additionally, turbines are numbered column first, row second. For example: for the second
proposed infinite domain the turbines in the first column are numbered 1 to 12 and in the second
column 13 to 24 etc. Figure 3.9 gave a graphical representation of the turbine numbering of the
second proposed infinite domain.
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Number of columns (domain width)

The domain width is considered appropriate if the cross-correlation between a turbine on the first
column and a turbine on the fourth column is near zero. This requirement indicates no response
between these turbines and thus, all relevant large-scale structures with respect to the domain
width are contained. To check if the width of the domains is appropriate, the cross-correlation of
the streamwise and spanwise reference velocity of two turbines are shown in figures F.1 and F.2.
The chosen two turbines are turbine 1 and the turbine on the fourth column with the highest
corresponding cross-correlation coefficient. For both domains, the cross-correlation coefficient is
close to zero while each peak-to-peak corresponds with a streamwise domain flow-through time.
Therefore, the domain width appears to be appropriate.

(a) (b)

Figure F.1: Cross-correlations to determine appropriate domain width for the first domain, (a)
Streamwise reference velocity, (b) Spanwise reference velocity.

(a) (b)

Figure F.2: Cross-correlations to determine appropriate domain width for the second domain,
(a) Streamwise reference velocity, (b) Spanwise reference velocity.
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Number of rows (domain length)

Ideally, the domain length is considered appropriate if a wind turbine within the double periodic
domain does not respond to itself after one flow-through delay. In that case, all large-scale
structures with respect to the domain length are contained within the domain and no periodic
contamination occurs, i.e. fully physical conditions. The cross-correlation of the streamwise and
spanwise reference velocity of two turbines in one column are shown in figures F.3 and F.4. The
chosen turbines are located in the column in which the streamwise cross-correlation coefficient
of the first row and last row is the highest. For the first domain cross-correlations are defined
for turbine 1 and turbine 6. For the second domain cross-correlations are defined for turbine 1
and turbine 12.

(a) (b)

Figure F.3: Cross-correlations to determine appropriate domain length for the first domain, (a)
Streamwise reference velocity, (b) Spanwise reference velocity.

(a) (b)

Figure F.4: Cross-correlations to determine appropriate domain length for the second domain,
(a) Streamwise reference velocity, (b) Spanwise reference velocity.
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The cross-correlations from figures F.3 and F.4 exhibit a near unity peak in past time. This
peak occurs over a negative time (past) and is the correlation of the first turbine with the last
turbine. This response is as expected as the first turbine is only one turbine spacing from the
last turbine due to periodicity of the domain. Therefore, the past-time correlation is not of im-
portance in the determination of the appropriateness of the domain length as it is independent
of domain length.

Figure F.3 indicates a strong correlation for both streamwise and spanwise reference veloc-
ities between the first and last turbine in a column for the first domain. A significant positive
streamwise correlation holds for the whole flow-through time, an indication of a strong contin-
uous periodic contamination. This periodic contamination results in a continuously returning
signal which does not die out over a multitude of streamwise flow-through times. Clearly, the
domain length of the first domain is not appropriate.

Figure F.4 again indicates a strong correlation for both streamwise and spanwise reference
velocities between the first and last turbine in a column for the second domain. However, the
correlation between the first and last turbine in a column does approach zero within one flow-
through, indicating a strong decrease in periodic contamination compared with the first domain.
The signal of the first turbine does return rather strongly after one flow-through but is nearly
lost after the second flow-through. Cross-correlations for the second domain are certainly not
perfect but a great improvement over the first domain. Based on the cross-correlations of the
second domain, the following recommendation can be stated for the domain size in order to
greatly suppress periodic contamination:

• Number of turbines in column = 48 Number of turbines in row = 6

The infinite domain size is also limited by the available wall-clock time. Therefore, recom-
mended domain size to greatly suppress periodic contamination is not feasible and the final
chosen domain for all further infinite domain simulations is domain 2.

F.2 Power production time-series and temporal analysis

Figure F.5(a) gives the time-averaged time-series of the power production of 6 turbines in the first
row as a result of set T = 1s as applied in the single domain simulations. By applying additional
time-averaging over 1 δ

uτ
s, the large correlation between the large reference velocity fluctuations

becomes apparent, as is shown in figure F.5(b). In accordance with the cross-correlations of
figures F.2(a) and (b), no clear correlation of the power production between the turbines on the
same row is found. Figure F.6(a) gives the time-averaged time-series of the power production
of 6 turbines in the first column as a result of set T = 1s. Again, by applying additional
time-averaging over 1 δ

uτ
s, the large correlation between the large reference velocity fluctuations

becomes apparent, as is shown in figure F.6(b). All turbines produce approximately the same
power with a slight on distance increasing time-lag compared with the first turbine. Therefore,
the power production of a column of turbines is indeed highly correlated as previously found in
figures F.4(a) and (b).

Wind turbine reference velocities averaging time

The frequency of the high-frequency fluctuations in figures F.5(a) and F.6(a) are, comparable
with the single domain simulations, approximately in accordance with the domain flow-through
time at hub-height. This is a strong indication that periodic contamination is still present even
in the largest domain and that these fluctuations are not the result of a physical process that
could induce such fluctuations, such as wake meandering. To mitigate these high-frequency
fluctuations, an increase in the averaging time, T and/or an increase in the domain length are
options. For the increase of the averaging time, a multitude of domain flow-through times is found
to be appropriate. However, increasing the averaging time during processing also introduces an
increased response delay of the turbine to the instantaneous reference velocities. Also, an increase
in the domain size is computationally too expensive. Therefore, also for the infinite domain, the
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1s averaging time is applied while for time-series analysis purposes, an additional averaging time
over 1 δ

uτ
s is applied in post-processing.

(a)

(b)

Figure F.5: Time series of power production of 6 turbines in the first row. (a) As a result of
T=1s. (b) Additionally time-averaged in postprocessing.
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(a)

(b)

Figure F.6: Time series of power production of 6 turbines in the first column. (a) As a result of
T=1s. (b) Additionally time-averaged in post-processing.
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Convergence time

Figure F.7 gives the time-series of the total sum of produced power over all 72 turbines. The
convergence time for the single domain is set at 20 δ

uτ
s, while figure F.7 indicates an ongoing

development of the total sum of the produced power even past 20 δ
uτ

s. Full convergence of the

overall summed power production for all 72 turbines is found for 40 δ
uτ

s.

Figure F.7: Time series of sum of power production of all 72 turbines.

Statistical averaging period and sampling error performance measures

Table F.2 gives the sampling error of the combined wind turbine performance measures of all 72
turbines, here, the sampling error is compared with the long-time averages of Tstat,avg = 80 δ

uτ
s.

Figure F.8 gives the corresponding maximum absolute sampling error as function of number of
samples. Here, the expected errors are defined according to equation E.11.

The expected error as analogously defined by equation E.11, does not match the measured
error in figure F.8. Either, the long-time averages of Tstat,avg = 80 δ

uτ
s are inappropriate, and/or,

the statistical averaging period of Tstat,avg = 10 δ
uτ

s is too short and corresponds with a too low
number of fluctuations to filter out any extremities. Nevertheless, the sampling error appears to
be smaller overall than for the single domain. Furthermore, comparing the level of fluctuation
of the combined instantaneous power production signal, figure F.7, to the same signal for a
single wind turbine, figure F.5, it is expected that the required sampling time is smaller for
the combined signal. The final chosen statistical averaging period is set at Tstat,avg = 60 δ

uτ
s,

about 70% lower than for the single domain. This choice results in a reduced wall-clock time
of the infinite domain simulations, yet with an accurate estimation of the overall wind farm
performance. The resulting time-averaged performance for each single wind turbine is however
not as accurate, and only the instantaneous signal of these turbines should be taken into account
for the final analysis.
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Table F.2: Sampling errors of three consecutive time-averaging periods for the second infinite
domain for the instantaneous signal for the combined wind turbine performance of all 72

turbines.

Tavg,stat Nsamples Period EP̄x [%] Eūref,disk [%] EC̄P [%]

10 δ
uτ

20640

1 1.74 0.64 0.05

2 -1.34 -0.47 0.05

3 2.85 1.00 0.02

20 δ
uτ

41280

1 0.19 0.08 0.02

2 0.34 0.14 0.09

3 -0.48 -0.22 -0.09

40 δ
uτ

82560
1 0.26 0.11 0.05

2 -0.25 -0.11 -0.07

60 δ
uτ

123840 1 0.01 -0.01 0.00

20640 41280 82560 123840
0

0.5
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Number of samples

E
sa

m
p
li
n
g

[%
]

P̄x measured error

P̄x expected error
ūref,disk measured error
ūref,disk expected error

C̄p measured error

C̄p expected error

Figure F.8: Maximum absolute sampling error as function of number of samples for the second
infinite domain for the instantaneous signal of the combined wind turbine performance of all 72

turbines. Both sampled and expected sampling error are shown.
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Appendix G

Single domain flow fields

The following time-averaged flow fields of the single domain are presented:

• Local SGS energy percentage as defined by equation E.15.

• Streamwise velocity.

• Reynolds stress u′u′.

Local SGS energy percentage as defined by equation E.15 in the turbine midplane, figure G.1.

Figure G.1: Non-uniform actuator disk: local subgrid scale energy percentage.
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Time-averaged streamwise velocity field in the turbine midplane, figure G.2, and in the hori-
zontal plane through hub-height, figure G.3.

Figure G.2: Non-uniform actuator disk: stream-wise velocity over midplane.

Figure G.3: Non-uniform actuator disk: stream-wise velocity over horizontal plane through
hub-height.
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u′u′ field in the turbine midplane, figure G.4, and in the horizontal plane through hub-height
gives u′u′ field in the turbine midplane, figure G.5.

Figure G.4: Non-uniform actuator disk: u′u′ over midplane.

Figure G.5: Non-uniform actuator disk: u′u′ over horizontal plane through hub-height.
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