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SUMMARY

Quantum technology is an exciting research area that has gained a lot of interest in the
past few decades with the advances made in quantum computing. The quantum com-
puter promises speedups that are impossible to achieve with classical computers. It does
so by exploiting quantum mechanical properties such as entanglement and superposi-
tion with the quantum bit, or qubit, as its main building block.

Today, quantum computers are in their infancy and realizing a computer powerful
enough to perform useful calculations poses major challenges. The fragility of qubits
being the main difficulty. Approaches to mitigate this include implementing error cor-
rection schemes or alternative qubit designs. Topological qubits are part of the latter
category and exploit the robustness of topologically invariant states to small perturba-
tions to create more stable qubits.

In this thesis we explore semiconductor-superconductor hybrid nanowire structures
and in particular the interaction of electron spins in quantum dots with superconduc-
tivity. When connected to superconductors, arrays of superconductor quantum dot hy-
brids can host Majorana states, a promising approach to realizing topological qubits.
Creating Majoranas in quantum dots, as opposed to traditional methods, offers greater
control over their properties. Additionally, understanding the interaction between spins
in these quantum dots superconductor hybrids could enable new readout methods or
coupling mechanisms between superconducting and spin qubits.

We start by investigating a nanowire SNS Josephson junction with signatures of Ma-
jorana states. A nanowire junction is capacitively coupled to an on-chip microwave de-
tector made from a Josephson tunnel junction. We monitor the Josephson radiation fre-
quency as a function of magnetic field and find a transition from a 2π to a 4π-periodic
Josephson current-phase relation, consistent with a topological transition.

In a different device, we investigate a multi-orbital double quantum dot Josephson
junction. We measure the excitations between doublet and singlet states that arise in
a quantum dot weakly coupled to a superconducting lead, also known as Yu-Shiba-
Rusinov (YSR) states. With increased dot-lead coupling we observe a supercurrent and
reveal its current-phase relation, both in the single and multi-orbit regime. We show
that in the single-orbital regime the supercurrent sign follows an even-odd charge oc-
cupation effects. In the even charge parity sector, we observe a supercurrent blockade
when the spin ground state transitions to a triplet – demonstrating a direct spin to super-
current conversion. For yet stronger dot-lead coupling we find a rectified current-phase
relation at the transition between even and odd charge states. We investigate this appar-
ent non-equilibrium effect and think about possible explanations.

To conclude, we discuss possible applications in spin qubit state readout and ex-
tensions of the device geometry towards realizing a Kiteav chain able to host Majorana
states.
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SAMENVATTING

Kwantum technologie is een spannend onderzoeksgebied dat door de vooruitgang op
het gebied van kwantumcomputers de afgelopen decennia veel belangstelling heeft ge-
kregen. De kwantumcomputer belooft versnellingen die onmogelijk zijn met de klas-
sieke computer. Dit kan door gebruik te maken van kwantum mechanische eigenschap-
pen zoals verstrengeling en superpositie met de kwantum bit, of qubit, als bouwsteen.

Vandaag de dag staat de kwantumcomputer nog in de kinderschoenen en het ma-
ken van een computer die krachtig genoeg is om bruikbaar te zijn, stelt een aantal grote
uitdaging. Qubits zijn namelijk erg vatbaar voor verstoringen. Oplossingen kunnen ge-
vonden worden in foutcorrectieschema’s of alternatieve qubit ontwerpen. Topologische
qubits vallen onder de laatste categorie, ze benutten de robuustheid van topologische
toestanden tegen kleine verstoringen.

In dit proefschrift onderzoeken we de interactie van elektronen spins in kwantum
dots met supergeleiding in halfgeleider-supergeleider hybride nanodraadstructuren. Wan-
neer ze zijn verbonden met supergeleiders, kan een serie geschakelde rij kwantum dots
met supergeleiding Majorana toestanden vormen, een veelbelovende kandidaat voor to-
pologische qubits. Het maken van Majorana’s in kwantum dots biedt meer controle over
hun eigenschappen dan traditionele methoden. Bovendien kan het begrijpen van de
interactie tussen spins in kwantum dots en supergeleiders nieuwe uitleesmethoden of
koppel mechanismen met supergeleidende qubits mogelijk maken.

We beginnen met een nanodraad Josephson junctie met kenmerken van Majorana’s.
De nanodraad is op de chip via een condensator gekoppeld aan een microgolfdetector
gemaakt van een Josephson tunnel junctie. We meten de Josephson stralingsfrequentie
in een magnetisch veld en vinden een overgang van een 2π naar een 4π periode in de
Josephson stroom-faserelatie, wat kan duiden op een topologische transitie.

In een ander apparaat onderzoeken we een multi-orbitale dubbele kwantum dots in
een Josephson junctie. We meten de excitaties tussen doublet- en singlet toestanden die
ontstaan in een kwantum dot met een zwakke koppeling naar het supergeleidende con-
tact, ook wel bekend als Yu-Shiba-Rusinov (YSR) toestanden. Met verhoogde contact
koppeling observeren we een superstroom en meten we de stroom-faserelatie, zowel
met een enkele als met meerdere orbitalen. We laten zien dat bij een enkel orbitaal de
richting van de superstroom een even-oneven ladingseffect heeft. Met een even aantal
ladingen zien we een superstroom blokkade bij de overgang naar een triplet grondtoe-
stand – dit maakt een directe conversie van spin naar superstroom mogelijk. Bij een nog
sterkere koppeling met de contacten vinden we een gelijkgerichte stroom-faserelatie bij
de overgang tussen even en oneven ladingstoestanden. We onderzoeken dit opvallende
effect en bespreken mogelijke verklaringen.

Tot slot stellen we een nieuwe methode voor om spin qubit toestanden uit te lezen
en kijken we vooruit naar een uitbreiding van ons experiment waarmee Majorana toe-
standen gerealiseerd kunnen worden met behulp van een zogenaamde Kiteav chain.

xi





1
INTRODUCTION

Een boek zegt meer dan duizend woorden.

Herman Finkers
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2 1. INTRODUCTION

1.1. QUANTUM MECHANICS
Quantum mechanics describes the behavior of microscopic particles – molecules, atoms
and subatomic particles. The field started in the year 1900 with Max Planck’s solution
for black-body radiation and Einstein’s photo-electric effect and was advanced by, now
famous, physicists like Schrodinger, Heisenberg, Born.

The name comes from the fact that several quantities, such as electric charge and
energy, only have discrete values – they are quantized. Additionally, quantum mechan-
ics introduces the concept of wave-particle duality, where all particles can be described
both as a wave and as a particle. This is distinctly different from classical mechanics
where quantities are treated as continuous and particles as hard point-like objects.

Perhaps the most convincing illustration of this counter-intuitive property is from
an experiment performed by Italian researchers in 1976. They performed a double-slit
experiment with electrons [1]. When classical particles are send through a double slit
with a screen behind it, the particles will strike the screen at two spots– directly behind
the slits (blue curves in Figure 1.1a). When a wave propagates through the slits, an in-
terference pattern forms on the screen (orange curve in Figure 1.1a). Figure 1.1b shows
the results from the Italian researchers, where they send electrons, one-by-one through
the slits. In the upper panels it can clearly be seen that the electrons hit the screen as if
they are particles. But in the lower panels an interference pattern emerges, meaning that
the electrons propagate as waves. From this observation it makes sense to describe elec-
trons as waves. And indeed, a quantum system is described by a wave function where its
value is a probability amplitude of where you will find the electron when measuring it.

(a) (b)

Figure 1.1: Demonstration of wave-particle duality. (a) A double-slit experiment. The curves show the pat-
terns expected for a classical particle (blue) and a wave (orange) on the screen. (b) Experimental results of a
double-slit experiment performed with electrons. The panels show consecutive recordings, progressing from
the top left to the bottom right. Figure adapted from [1].

A great manifestation of quantum mechanics is a superconductor, a material where
electrons flow without resistance. The lowest energy state of a superconductor, known as
the ground state, is described by a single wave function. It is therefore an excellent sys-



1.2. QUANTUM COMPUTING

1

3

tem to explore quantum mechanical effects. In the field of condensed matter physics,
quantum mechanical effects in superconductors such as quantum interference, super-
position and entanglement are well-researched topics. In this thesis we study the quan-
tum mechanical interactions between superconductors and single electrons in the con-
text of quantum computing.

1.2. QUANTUM COMPUTING
Quantum mechanics lies at the heart of many modern technologies and has enabled the
realization of now ubiquitous devices such as lasers, LEDs, photodetector and transis-
tors. Transistors in particular have had a big impact on society as they form the building
blocks of today’s computers. The new possibilities classical computers have unlocked
dramatically changed the daily life of most people over the last 70 years. Although qu-
antum mechanics plays an important role in making today’s transistors – the logic gates,
the underlying mechanism of any software program, behave entirely classical. Since the
1980’s people have thought about using quantum mechanical properties for computa-
tion, quantum logic gates [2].

First proposed by Paul Benioff, Richard Feynman and Yuri Manin to simulate quan-
tum mechanical systems, the field of quantum computing really gained traction in the
1990’s when it was shown that quantum computation could drastically speed up certain
calculations. Most famously, Shor’s algorithm for prime factorization which breaks the
RSA public-key encryption [3].

In general quantum computation exploits the properties superposition and entan-
glement of the quantum wave functions to perform computations much faster then clas-
sical computers. At the heart of this is the quantum bit, or qubit. Unlike its classical
counterpart, the bit, the qubit can be in a superposition of 0 and 1, with some proba-
bility of being in 0 and some probability of being in 1. Additionally it can be entangled
with other qubits, which makes the number of possible states 2N , instead of N 2 for N
(qu)bits. The trick of a quantum algorithm is to choreograph the wavefunction of all the
qubits in such a way that the probability amplitude of the correct state is much larger
then for the incorrect states.

There are several qubits realizations. Currently, the two leading solid-state platforms
are spin qubits in semiconductor quantum dots [4] and superconducting circuits [5]. At
this point existing quantum computers are not able to perform computations faster than
classical computers. A major challenge that prevents this is decoherence of the qubits.
The quantum information from the delicate quantum states is lost when it interacts with
its environment. Unfortunately, we cannot completely isolate the qubits because for the
choreography of the quantum states, the qubits need to be manipulated. Making a useful
quantum computer requires a careful balance between these opposing needs.

Currently the main approach to deal with this issue is to employ some form of error
correction. For low enough rates, quantum error correction can enable reliable algo-
rithms [6]. A different approach is to make quantum states less sensitive to decoherence
to environmental interaction. One way to do that is by encoding the quantum infor-
mation in topological states. This makes changing the state by accident, less likely. A
simple example of topological robustness can be given with geometrical objects. Two
shapes share the same topological state when they can be smoothly transformed into
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one another, without creating or erasing holes (Figure 1.2).

Figure 1.2: Topology. The doughnut and mug share the same topological state, while the pretzel is in a different
state due to its two extra holes.

The same principles apply for topological states in condensed matter systems, a fa-
mous example is the quantum Hall effect [7]. More relevant for quantum computation
are so-called Majorana states, the condensed matter version of the Majorana fermion
predicted by Ettore Majorana [8]. Condensed matter Majorana states appear as non-
local zero-energy quasiparticle state at the ends of a specific one-dimensional system
[9]. This is a topological state and quantum information encoded in it, is protected by
topology. There are several proposals to realize these states and to make qubits out of
them [10–12]. One, so far unrealized, proposal for creating Majorana states is by simu-
lating a Kitaev chain in array of quantum dots [13, 14]. This approach has the advantage
of direct control over many of the parameters that influence the Majorana states.



2
THEORY

Tea. Earl Grey. Hot.

Jean-Luc Picard

This chapter gives a theoretical overview of the most relevant topics for the experi-
mental chapters in this thesis. We start with an introduction to BCS superconductivity
and Andreev reflections, and continue with a more detailed treatment of Josephson junc-
tions. Next, we introduce quantum dots followed by quantum dots in close proximity to
superconductors. We conclude this chapter with a toy model for Majorana states and
two approaches for physical realization in condensed matter systems.

5
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6 2. THEORY

2.1. BCS SUPERCONDUCTIVITY
Superconductivity is a striking phenomenon where a metal loses all its resistance. This
effect was discovered by Heike Kamerlingh Onnes when observing the resistance of mer-
cury drop to 0Ω at liquid helium temperatures [15]. He later received a Nobel prize for
his discovery. It was later found that superconductors also expel magnetic fields, making
it a perfect diamagnet [16], but only up to a certain critical magnetic field, above which
superconductivity is quenched [17].

The first successful effort in giving a general description of superconductivity was
provided by Ginzberg and landau [18], now known as the Ginzburg-Landau (GL) theory
[19]. It does a good job in describing the macroscopic behavior of superconductors, but
fails to describe a microscopic origin. Seven years later Bardeen, Cooper and Schrieffer
created a theory describing a microscopic origin of superconductivity, now known as the
BCS theory [20]. The trio introduced the concept of a Cooper pair, where two electrons
feel an effective attraction mediated by the collective motion of phonons in the material.
The electrons come in pairs with opposite momentum and spin and its size is charac-
terized by the BCS coherence length ξ0. The Cooper pairs are effectively bosons and
condense into a condensate. This allows us to describe a superconductor with a single
wave function ∆e iφ, where ∆ is the superconducting pairing energy and φ the phase of
the superconducting condensate. In this section we briefly discuss the BCS theory us-
ing the Bogoluibov-de-Gennes (BdG) formalism, mostly by following the treatment from
[19].

We start by writing down the so-call pairing Hamiltonian [19]:

H = ∑
k,σ

εk nk,σ+
∑
k,l

Vk,l c†
k,↑c†

−k,↓cl ,↑c−l ,↓, (2.1)

where the first term describes the single-particle kinetic energy with respect to the Fermi
energy εk =ħ2k2/(2m∗)−EF, with Fermi energy EF and Vk,l the pairwise interaction ma-
trix element. The Hamiltonian is written in the language of second quantization, where
c†

k,σ and ck,σ are creation and annihilation operators and nk,σ = c†
k,σck,σ the number op-

erator which gives the number of fermions with momentum ħk and spin σ.
We simplify this Hamiltonian by using the mean-field approximation, which assumes

that fluctuations of c−k,↓ck,↑ are small and around their mean value and can therefore be
neglected. This makes it convenient to write the product of the operators as the sum of
the mean value bk and the fluctuation:

c−k,↓ck,↑ = bk +
(
c−k,↓ck,↑−bk

)
, (2.2)

where bk ≡ 〈c−k,↓ck,↑〉. We substitute this into Equation 2.1 and ignore the higher order
fluctuations terms due to the earlier mentioned assumption of their negligible contribu-
tion. We then retrieve the mean-field approximated Hamiltonian, also known as the BCS
Hamiltonian:

HBCS =
∑
k,σ

εk nk,σ+
∑
k,l

(
∆k c†

k,↑c†
−k,↓+∆∗

k c−l ,↓cl ,↑
)

, (2.3)

with the pairing energy ∆k = −∑
l Vk,l bl , for simplicity we have omitted an irrelevant

constant. Note that due to the mean-field approximation, particle number is no longer
conserved. Parity however, is a conserved quantity.
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To find the excitation spectrum, we rewrite the BCS Hamiltonian as

HBCS =
∑
k
Ψ†

k HBdGΨk , (2.4)

where HBdG is known as the Bogoliubov-deGennes Hamiltonian (BdG) andΨk the spinor
field operator, defined as

HBdG =
(
εk ∆

∆∗ −ε∗k

)
, Ψk =

(
ck ↑
c†
−k↓

)
. (2.5)

We look for excitations in the form of quasiparticles, superpositions of a spin-up elec-
trons and spin-down holes. We can describe these quasiparticles with the BdG equation
[21]:

HBdG

(
uk

vk

)
= Ek

(
uk

vk

)
, (2.6)

where the uk and vk are spin-up electron and spin-down hole probability amplitudes

respectively. For plane wave solutions the eigenenergy is given as Ek =
√
ε2

k +∆2
k . Note

that uk and vk are complex number with the normalization constraint |uk |2 +|vk |2 = 1.
Given this constraint, we find that

u2
k = 1

2

(
1+ ε

ε2
k +∆2

k

)
, v2

k = 1

2

(
1− ε

ε2
k +∆2

k

)
, ψS =

(
uk

vk

)
e i kr . (2.7)

withψS the quasiparticle vector. We can now define new operators for these Bogoliubov
quasiparticles:

γk,↑ = uk ck↑− vk a†
−k↓

γ†
k,↓ = vk ck↑+uk a†

−k↓. (2.8)

Now that we have determined the quasiparticle excitations, we can calculate the den-
sity of states. There is a direct correspondence between γ and c, which means we can
write the density of states of the superconductor with

NS(E)dE = NN(ε)dε. (2.9)

We restrict ourselves to energies in the meV range and so we can take N (ε) to be constant
and so

NS(E)

NN(ε)
=

{
Ep

E 2+∆2
, E >∆

0, E <∆.
(2.10)

2.2. ANDREEV REFLECTION
When a normal conductor is attached to a superconductor, it is not immediately appar-
ent what happens with electrons that are incident on the normal-super interface. For
energies E >∆ it is relatively easy to see that an incident electron is transmitted as a Bo-
goluibov quasiparticle with energy E . For energies E <∆ one might expect that the elec-
tron is always reflected due to a lack of quasiparticle states below the gap. It turns out
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however that the electron can also be reflected as a hole in a process known as Andreev
reflection [22]. Due to the hole’s positive charge, effectively two electron are transferred
to the superconductor, which implies that a Cooper pair is added to the superconductor
in the process (see Figure 2.1).

kh kF ke

Δ

E

N

kF

S

|Δ|

(a)

(b)
x

Figure 2.1: Normal and superconducting interface. (a) Schematic representation of Andreev reflection. A
electron from the normal metal incident on the interface is retro reflected as a hole. A charge of 2e is transferred
to the superconductor in the form of a Cooper pair. (b) Bandstructure representation. The left side shows a
linear normal dispersion E(k) = ħvFk −EF, with two incident electrons for E >∆ and E <∆. The high-energy
electron is transmitted as Bogoliubov quasiparticle in the superconductor, while the low-energy electron is
Andreev reflected as hole as with opposite momentum.

Using the BdG formalism we can calculate what happens at the interface, using the
approach introduced by Blonder, Tinkham and Klapwijk (BTK) [23]. To account for any
scattering at the interface, the BTK model includes a potential barrier V0δ(x), with am-
plitude V0 and its strength described by the dimensionless parameter Z =V0/(ħvF), with
vF the Fermi velocity. The wavefunction for the incident electron in the normal metal
can be written as

ψN =
(
1
0

)
e i ke

Nx + rA

(
0
1

)
e i kh

Nx + rN

(
1
0

)
e−i ke

Nx , (2.11)

where rN is the amplitude for normal reflection of the incident electron and rA, the su-
perscript of the wave vectors denotes if it is for an electron or hole. In the superconductor
excitations are Bogoluibov quasiparticles, excitations of electron-holes pairs

ψS = te

(
u
v

)
e−i ke

S x + th

(
u
v

)
e i kh

S x , (2.12)
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with te and th are the electron and hole-like amplitudes, respectively. We can obtain
expressions for the probabilities by matching Equations 2.11 and 2.12 at the interface.

Since ke,h
S =

(
kF ±2m∗/ħ

p
E 2 −∆2

)1/2
, there are no solutions for in the superconductor

for E <∆ apart from an evanescent solution decreasing in amplitude away from the in-
terface [24, 25]. For E >∆ there is a solution and electrons can be transmitted as Bogoli-
ubov quasiparticles into the superconductor. Here, we will focus only on the solutions
for the normal metal:

|r A |2 =


∆2

E 2+(∆2−E 2)(1+2Z )2

u2v2

γ2

, |rN |2 =
1−|r A |2 for E <∆

(u2−v2)2
Z 2(1+Z 2)
γ2 for E >∆ , (2.13)

with γ = (u2 + Z 2(u2 − v2))2. Note that for energies below the gap, in the absence of a
barrier Z = 0 we get full Andreev reflection and no normal reflection. With these results,
the current through the interface can be calculated with

I (V ) = 2e

h

∫
dE

(
f (E −eV )− f (E)

)(
1+|rA|2 −|rN|2

)
, (2.14)

where f is the Fermi distribution and V the voltage over the interface. For small voltages
eV ¿∆ a simple solution can be found for the Andreev conductance G = dI /dV [24]:

GA = 2GQ
T 2

(2−T )2 , (2.15)

with GQ = 2e2/h the conductance quantum and the transmission probability T = 1/(1+
Z 2). Note the factor of two, coming from the fact that a 1e charge in the normal con-
ductor becomes a Cooper pair with a charge 2e in the superconductor. In the other limit
eV À∆, the the conductance G =GQT .

2.3. JOSEPHSON JUNCTIONS
When superconductors are placed on both sides of the normal metal, a structure known
as a Josephson junction is formed (Figure 2.2a), named after Brian Josephson who first
predicted the effect of a dissipationless dc current at zero voltage, a supercurrent, in such
a structure [26].

(a) (b)
S SN S SI

|Δ|eiϕ2 |Δ|eiϕ1

Figure 2.2: Josephson junctions. (a) Junction consisting of a superconducting-normal-superconducting (SNS)
interface. The supercurrent is carried by Andreev Bound states. (b) Tunnel junction, where the weak link is
replaced an insulating barrier, making an superconducting-insulator-superconducting (SIS) junction. Cooper
pairs tunnel through the barrier.

In general, a Josephson junction is a device with two or more superconducting leads,
separated by a weak link. This weak link can indeed be a normal metal as in the SNS
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junction shown in Figure 2.2a, but it can also be a constriction or, a thin insulation bar-
rier (Figure 2.2b). We refer to the latter option as a Josephson tunnel junction. In fact,
this type of junction was used in the first experimental observation of the Josephson ef-
fect – reported just one year after its prediction [27]. Here, we derive the Josephson effect
for an SNS junction from the Andreev reflections.

Andreev reflection can occur at both the SN and the NS interfaces of the junction
in Figure 2.2a. An electron incident on the right NS interface retro reflects as a hole,
the hole travels in the opposite direction and reflects of the left SN interface back to an
electron, which travels to the right and so on and so forth. Constructive interference of
these reflections gives rise to a fermionic mode called an Andreev bound state (ABS). The
energy of this state EA can be found by matching the electron and hole wavefunctions at
the interfaces and solving the boundary-value problem. If the length of the weak link d
is sufficiently short d ¿ ξ and we assume ballistic propagation ξ= ħvF/∆, the energy of
a single-channel Andreev state is given by [28]

EA =±∆
√

1−T sin2 ϕ

2
, (2.16)

where ϕ = φ2 −φ1 is the phase difference between the superconducting condensates.
Figure 2.3a shows the ABS spectra for different T .

(a) (b)

Figure 2.3: Andreev energy spectrum and current. (a) Energy spectrum of a single band, positive parity an-
dreev bound state for different transmission probabilities; T = 1 (blue), T = 0.8 (orange), T = 0.3 (green). With
perfect transmission the bound state energy reaches zero at ϕ = nπ. The minimum moves to higher energies
for lower transmission. (b) Supercurrent carried by the Andreev bound states of the respective transmissions.
For high transmission the current-phase relation is skewed, while for low T the current-phase relation becomes
sinusoidal.

An ABS effectively transports Cooper pairs between the leads and gives rise to the
earlier mentioned supercurrent. We can derive the amplitude of this supercurrent by
looking at the electrical power related to the Andreev bound state energy and applying
the chain rule [25]

P = dEA

dt
= ∂EA

∂ϕ

dϕ

dt
. (2.17)
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Next, we use the fact that the time derivative of the phase is related to voltage over the
junction by [26]

ϕ̇= 2eV /ħ, (2.18)

known as the ac Josephson relation. Since P = IV , we find that the supercurrent

IS(ϕ) =−2e

ħ
∑
p

∂EA,p

∂ϕ
= e∆

2ħ
∑
p

Tp sinϕ√
1−Tp sinϕ/22

, (2.19)

where p denotes a transport channel. The Josephson tunnel is effectively in the limit of
many channels with low transmission Tp . The supercurrent in that case reduces to

IS(ϕ) = IC sinϕ, (2.20)

where IC = π∆/(2eRN) is the critical current with RN = 1/(GQ
∑

p Tp ). The critical cur-
rent is the maximum supercurrent a junction can sustain. This effect is known as the dc
Josephson relation.

When the current through a Josephson junction changes, it will induces a voltage
over the junction. This means that there is an inductance associated with the junction,
given by

L(ϕ) = LJ

cosϕ
, LJ = Φ0

2πIC
, (2.21)

with Φ0 = h/(2e) the magnetic flux quantum. A related and often used quantity is the
Josephson energy EJ = LJI 2

C.
Josephson junctions are surprisingly versatile and have a wide range of applications.

It is an essential part of the superconducting Transmon qubit [29] and due to its funda-
mental relation between frequency and voltage (Equation 2.18), it is used to define the
international Voltage standard [30]. In the following sections we will discuss how the
Josephson junctions can be used as a spectrometer or to gain control over the phase of a
parallel junction.

2.3.1. SQUID
When configured correctly, a SQUID can be used to control the phase of a Josephson
junction. The name stands for Superconducting Quantum Interference Device and it is
build around quantum interference of supercurrents through two parallel arms. In this
section we only consider the dc-SQUID variant which has a junction in both arms. In
general the dc current through a SQUID is the sum of the current through the two arms:

ISQUID = IS1(ϕ1)+ IS2(ϕ2), (2.22)

where IS1(ϕ1) is the phase-dependent supercurrent through junction 1. Threading a
magnetic flux through the SQUID loop area constraints the phase over both junctions
via [19]:

ϕ1 −ϕ2 = 2π
Φ

Φ0
mod 2π, (2.23)

where Φ is the magnetic flux through the loop and Φ0 = h/(2e), the magnetic flux quan-
tum.
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When both junctions have a sinusoidal current-phase relation and have the same
critical current IC,1 = IC,2, it can be shown that the maximum supercurrent for the SQUID
becomes:

IC,S(Φ) = 2IC

∣∣∣∣cos

(
πΦ

Φ0

)∣∣∣∣2

. (2.24)

This is the maximum current for which Equation 2.22 has a solution and is therefore the
critical current of the SQUID. This type of SQUID, with symmetric arms, is often used in
mesoscopic devices as a tunable Josephson element [31–34]. The flux-current relation is
plotted in Figure 2.4a. It is important to note that we neglect any kinetic or geometrical
inductance.

(a) (b)

Figure 2.4: (a) Critical current of symmetric SQUID as a function of magnetic flux. (b) Critical current of a
highly asymmetric SQUID. The upper panel compares the approximation of Equation 2.26 (dashed) with the
exact shape (solid) of a SQUID with IC,ref/IC2 = 5. The lower panel shows this for IC,ref/IC2 = 1.1

Another use for a SQUID is to apply a phase bias over one of the junctions through
Φ. For this use we consider another limit where one junction, the reference, has a much
larger critical current then the other junction: IC,ref À IC2. For simplicity we assume that
the reference junction has a sinusoidal CPR and by substituting Equation 2.23, the dc
current through the SQUID becomes

ISQUID = IC,ref sin
(
ϕ2

)+ IS2

(
2πΦ

Φ0
+ϕ1

)
. (2.25)

Since IC,ref À IC2, the maximum current for which Equation 2.25 has a solution will al-
ways be close to IC,ref. Therefore we can approximate the critical current with

IC,S(Φ) ≈ IC,ref + IS2

(
2πΦ

Φ0
+ π

2

)
. (2.26)

The CPR of the SQUID now has the shape of that of junction 2, offset by IC,ref. This means
that we can directly control the phase over junction 2 and measure its CPR. The validity
of this approximation for different asymmetries is shown in Figure 2.4b.
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2.3.2. RCSJ MODEL
To properly describe the behavior of a Josephson junction in an electromagnetic envi-
ronment, we start with a more realistic description of its dynamics by shunting the ide-
alized junction with a resistor and a capacitor (see Figure 2.5a). This is known as the
restively and capacitively shunted Josephson junction (RCSJ) model and is required to
accurately describe the current and voltage characteristics when a finite voltage drops
over the junction. We follow mostly follow the treatment of Tinkham [19] and Chauvin
[35].

(b)(a)

Ib R CEJ

Figure 2.5: (a) RCSJ model circuit, with a current bias Ib, resistor R, Josephson energy EJ and capacitor C . (b)
Washboard potential with the phase particle in the trapped state Ib < IC (blue) and in the running state Ib > IC
(orange).

From the dc Josephson relation (Equation 2.20) we know the current through the
junction and with Kirchhoff‘s current law we find the total current through the circuit:

Ib = IC sin
(
ϕ

)+ V

R
+C

dV

dt
, (2.27)

where V is the voltage over the circuit. Note that we limit ourselves to a sinusoidal
current-phase relation for simplicity, sufficient for the purpose of this thesis 1.

Next, we substitute in the ac Josephson relation (Equation 2.20) and rewrite the equa-
tion to obtain a second-order differential equation( ħ

2e

)
C

d2ϕ

dt 2 +
( ħ

2e

)
1

R

dϕ

dt
+ IC sin

(
ϕ

)− I = 0. (2.28)

This is similar to an equation of motion for a particle in a one-dimensional potential

U (ϕ) =−EJ cos
(
ϕ

)− ħI

2e
ϕ, (2.29)

where EJ = ħIC
2e is the Josephson energy. The phase particle has a mass M = ( ħ

2e

)2
C and

is subject to a damping proportional to the velocity η = ( ħ
2e

)2 1
R . U (ϕ) is known as the

1A more general solution that includes arbitrary current-phase relations was developed by Ambegaokar and
Halperin [36, 37].
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washboard potential, named for its characteristic shape (Figure 2.5b). The tilt of the
potential is set by the current bias I and according to Equation 2.28, the phase particle
is ‘trapped’ in one of the local minima as long as I < IC. When I exceeds IC, the phase
particle rolls down the potential, generating a finite ϕ̇ and thus ‘switching’ to a finite
voltage.

We can now extract two characteristic quantities of the RCSJ circuit, its quality factor
Q and plasma frequency ωp . By replacing the time variable t with τ= tωp and dividing
everything by IC we obtain the following dimensionless equation.

I

IC
= d2ϕ

dτ2 + 1

Q

dϕ

dτ
+ sin

(
ϕ

)
. (2.30)

We findωp =
√

2eIC
ħC and Q =ωpRC . The quality factor describes the amount of damping

the phase particle experiences and is equal to
√
βc , known as the McCumber Stewart

parameter [38, 39]. When in the potential minimum, the phase particle oscillates around
the center with the plasma frequency.

So far we have ignored temperature effects. Temperature effects are usually respon-
sible for observing a maximum supercurrent that is always lower than IC, we therefore
refer to this experimentally obtained quantity as the switching current ISW. We model
the effects of temperature as an Johnson Nyquist noise current term In(t ). This term is
equivalent to a random force acting on the phase particle with a Gaussian probability
distribution and is described by the current-current correlation function:

〈
In(t )In(t ′)

〉= 2kBT

R
δ(t − t ′), (2.31)

with an expectation value 〈In(t )〉 = 0.
This extra current term changes the tilt of the washboard potential and is responsi-

ble for ISW < IC. Due to the stochastic nature of the noise, a distribution of switching
currents will be observed (see Figure 2.6a). For a tunnel junction the mean switching
current can be approximated by

〈ISW〉 = IC

(
1−

[
kBT

2EJ
ln

(
ωp∆t

2π

)]2/3
)

, (2.32)

where ∆t is time required for the current bias sweep [40]. For example, a typical small
Al-AlOx -Al tunnel junction with C = 2fF, IC = 20nA, T = 20mK and δt = 0.1s, has 〈ISW〉 =
8.1nA [41]. Clearly, even at low temperatures the ISW is significantly lower than the criti-
cal current and thus important to keep in mind. Figure 2.6a shows a qualitative image of
an IV curve, of a zero-temperature (dashed) and a finite-temperature (solid) junction.

Ivanchenko and Zil’Berman calculated the dc current-voltage behavior for a tun-
nel junction [42]. Figure 2.6b shows current-voltage curves for the zero temperature
(dashed) and non-zero temperature case (solid). The blue and orange dots indicate if
the phase particle is in a potential minimum (blue) or in the running state (orange).

For the zero temperature case, as long as I < ISW, the phase particle will sit in a lo-
cal minimum of the washboard potential (blue curve in Figure 2.5). Since there are no
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(b)(a)

Figure 2.6: Current-voltage characteristics of a Josephson junction. (a) Qualitative description of a current-
biased junction at finite temperature (solid) and zero temperature (dashed). The dots indicate if the junction
is in the trapped (blue) or in the running (orange) state. (b) Ivanchenko Zil’Berman calculations for a voltage-
biased junction.

thermal fluctuations, the measured voltage 〈V 〉 = 0. When I > ISW, the minima of the
potential disappear and the junction goes into the running state (orange curve in Figure
2.5). The phase particle moves with a constant velocity set by R, creating a finite voltage
ϕ̇ħ/(2e) over the junction.

At finite temperature the thermal fluctuations generate phase diffusion. In the wash-
board potential picture, the phase particle is moving back and forth – sometimes enough
to escape a potential minimum, generating a finite voltage. When in a running state, en-
ergy will be dissipated and so the particle can be re-trapped in a minimum when enough
is lost. As a result, the average phase velocity

〈
ϕ̇

〉
will be non zero – generating a small

voltage which grows with increasing current bias.

2.3.3. GENERAL ELECTROMAGNETIC ENVIRONMENT

A junction can be subject to range of different environments such as unintended stray
inductances and capacitances in the circuit or by something purposely coupled to the
junction. In the latter case one can, in fact, use the Josephson junction as a spectrometer.

(b)(a)

V Z(ω) CEJ

ħω

Figure 2.7: (a) Circuit for a general environment. (b) Inelastic Cooper pair tunneling process, where a photon
with energy difference is absorbed by the environment Z (ω).

To generalize the RCSJ model, we replace the resistor R in the circuit of Figure 2.5
with a complex impedance Zenv(ω) that describes the environment (Figure 2.7a). This is
valid when R À Re{Zenv(ω)}, which is the case if we voltage bias the junction inside the
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superconducting gap. The complex impedance of the circuit then becomes

Z (ω) = 1

Z−1
env(ω)+ iωC

. (2.33)

We can then determine the current through the circuit by realizing that the Josephson
junction is an ac current source at finite V with I (t ) = ICe iωt and V (t ) = Z (ω)I (t ). The
real dissipated power is then

P = 1

2
Re

{
V I∗

}= I 2
C Re{Z (ω)}

2
. (2.34)

When then find that the dc current through junction at finite voltage is given by [31]

I = I 2
C

2

Re{Z (ω)}

V
. (2.35)

Note that this derivation ignores the possibility of charging effects due to Coulomb block-
ade. Specifically, we consider only the limit EJ À U , where U is the charging energy. A
more rigorous derivation can by found in reference [43].

Intuitively, this effect can be seen in the context of Cooper pairs tunneling between
the leads. In isolation, Cooper pairs tunnel back and forth at finite voltage with a fre-
quency set by this voltage but with a mean current of zero. When a dissipative environ-
ment is attached, the Cooper pairs can in-elastically tunnel and generate a consequently
a dc current will flow (see Figure 2.7b). This allows for using the junction as a spectrom-
eter.

2.3.4. PHOTON ASSISTED TUNNELING
The previous sections have dealt with effects related to the Josephson current in an en-
vironment. In this section we focus on the superconducting gap edge. In particular,
we treat photon assisted tunneling (PAT) in a Josephson junction coupled to a radiation
source.

When a Josephson tunnel junction is biased to V = 2∆/e −ħω0, where ħω0 is the ra-
diation energy and V the voltage over the junction, quasiparticles will tunnel through
the junction assisted by the radiation photons and contribute to the dc current (see
Figure 2.8a). In this section we will discuss what this current looks like and how it re-
lates to the radiation spectrum. This subject has been investigated by several authors
[32, 33, 44], here we mostly follow the treatment presented in Onac [45], where more
in-depth derivations can be found.

The quasiparticle current comes about from an energy exchange with its environ-
ment:

IQP(V ) =
∫ ∞

0
dεP (eV −ε)IQP,0

( ε
e

)
, (2.36)

where P (E) describes the probability of an energy exchange with the environment and
the junction, IQP,0 is the current through the junction in the absence of an environment.
By relating P (E) to the power spectrum of the voltage fluctuations across the tunnel junc-
tion SV (ω), one can rewrite Equation 2.36 to obtain the current due to photon-assisted
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Figure 2.8: Photon assisted tunneling (a) Densities of states of a tunnel junction at voltage V with an inci-
dent photon (orange). Quasiparticles from the left superconducting lead tunnel to the right superconducting
lead by absorbing the photon with an energy ħω ≥ 2∆− eV . (b) Capacitively coupled PAT detection circuit
with a Josephson tunnel junction as detector with voltage V (blue), a Josephson junction as a single frequency
radiation source (orange) and a resistor as a shot noise source (green), at voltage VS. (c) Current-voltage char-
acteristic of an isolated tunnel junction (blue), a junction subject to single frequency radiation (orange) and
to shot noise radiation (green). The inset shows the spectra for the shot noise (green), a white noise spectrum
and for the single frequency centered at 30 GHz (orange). Subfigure generated with Python code from [46].

tunneling [45]:

IPAT(V ) =
∫ ∞

0
dω

( e

ħω
)2 SV (−ω)

2π
IQP,0

(
V + ħω

e

)
. (2.37)

Note that we have limited ourselves to the experimentally relevant case, which assumes
that eV < 2∆ and neglects any emission from the junction itself. The shape of the PAT
current-voltage characteristic is thus a convolution of the voltage noise spectral density
function SV (−ω) and IQP,0. The voltage spectral density function is defined as

SV (ω) =
∫ ∞

−∞
dτe iωτ 〈δV (τ+ t )δV (τ)〉 , (2.38)

the Fourier transform of voltage fluctuations correlation function.
When we capacitively couple the detector junction to another Josephson junction,

we can measure its noise spectrum using the PAT current. In this case, we can relate
SV (ω) in the detector to the current spectral density function of the source:

SV (ω) = S I (ω)|Z (ω)|2, (2.39)

where Z (ω) is the transimpedance and depends on the coupling circuit [32, 33, 47]. Typ-
ical |Z (ω)|2 values for a mesoscopic on-chip circuit are on the order of a few hundred
ohms.

We now consider two relevant types of noise from the source junction [48]; single-
frequency noise originating from in-elastically tunneling Cooper pairs (see Figure 2.7c)
and shot noise from electrons tunneling through a resistive shunt. Both are shown in
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the PAT circuit in Figure 2.8b, with the ideal Josephson tunnel junction as the single-
frequency source in orange and the resistor as the white spectrum source in green.

In the idealized single-frequency case with δV (t ) = Z (ω0)IC cos
(
ω0t +ϕ)

, the spec-
tral density function will have two Dirac-delta peaks at |ω| =ω0. Inserting this into Equa-
tion 2.37 results in a current

IPAT(V ) = 1

8π

(
e|Z (ω0)|IC

ħω0

)2

IQP,0

(
V + ħω0

e

)
. (2.40)

We see that this case the PAT current is simply scaled copy of current-voltage character-
istic of an isolated tunnel junction, offset by the ħω0/e. A regular Josephson junction
will have a source frequency ω0 = 2eVS/ħ, due to its 2π-periodic current-phase relation.
When the junction hosts MBS however, this frequency halves ω0 = eVS/ħ.

When the source junction emits shot noise, the current spectral density function is
frequency independent and has a constant value. This means that SV (ω) = S I ,0|ω|2 and
the PAT current

IPAT(V ) = SI ,0

4π

(
e|Z (ω)|
ħω

)2

IQP,0

(
V + ħω

e

)
. (2.41)

This results in a smooth addition to IQP,0 and rounds off the otherwise sharp onset of
quasiparticle current (Figure 2.8c). Measuring shot noise could be a helpful tool in mea-
suring the transconductance [49].

2.4. QUANTUM DOTS
Quantum dots are small structures – typically nanometers up to a few micrometers in
size, with a relatively small number of electrons, ranging from a single electron to thou-
sands. Due to the small size, Coulomb repulsion becomes a significant effect and pre-
vents electrons from flowing through the dot without paying an energy cost. When the
flow of electrons is stopped, the system is said to be in Coulomb blockade. Ohm’s law is
no longer valid in these systems. Quantum dots show many similarities with atoms and
are sometimes referred to as artificial atoms [50, 51].

The research in, and applications of, quantum dots is wide spread and includes the
realm of quantum information; such as in spin qubits [4], as part of a Josephson junction
[52, 53] or as a readout device for Majorana states [11, 12]. In this section we concern
ourselves with single and double quantum dot properties that are most relevant when
they are the weak link of a Josephson junction.

The total charge of an object is given by the integer number of charges present Q =
Ne, where e is the elementary charge. Usually, charge appears to behave as a continuous
variable. This is simply due to the large size of the conductors and the enormous number
of conduction electrons that are typically involved. When dealing with small structures
the charging energy EC = e2/C , with C the capacitance of the structure, becomes an
important energy scale. Consider a simple circuit for a localized charge Q and potential
VI (Figure 2.9a). It consists of a small island connected one side to a voltage source Vg via
a capacitor with capacitance Cg, and on the other side to ground via tunnel junction with
a capacitance Cd and resistance Rd. This resistance has to be large enough for charging
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Figure 2.9: Single-electron island (a) Circuit diagram of a small island with Coulomb blockade effects. The
island has charge Q and potential VI, is connect to a battery Vg via capacitance Cg and to ground via a tunnel
junction. The tunnel junction is a resistor Rd with a parallel capacitor Cd. (b) Continuous energy U of the
island in the upper panel with the corresponding discreet number of charges N present on the island.

effects to manifest themselves, the condition is Rd À RQ = 2/GQ ≈ 25kΩ2. A related
quantity is the tunnel rate, which can be obtained from Fermi’s golden rule [43, 54]:

Γ= ∆EdeVI

e2 Gd
1

e∆Ed/kT −1
, (2.42)

with ∆Ed the energy difference between the initial and final configurations, Gd the con-
ductance and T the temperature.

Using the assumptions from the constant-interaction model3 we can write down ex-
pressions for the charge and potential

Q =CVI −CgVg, VI =Q/C +Vext, (2.43)

where C =Cg+Cd and Vext =CgVg/C . The energy of the island consists of an electrostatic
energy term and an energy term provided by the external voltage:

U (N ) = (Ne)2

2C
−NeVext =

(
Ne −CgVg

)2

2C
. (2.44)

We plot equation 2.44 in the upper panel of Figure 2.9b as a function of Vg for every
integer value of N . This results in a series of parabolas with a horizontal offset given by
N . The actual charge on the island can be determined by finding the value of N for which
U is minimal. These values plotted in the lower panel of Figure 2.9b.

2.4.1. SINGLE QUANTUM DOT
In order to do transport measurements, we modify the circuit in Figure 2.9a to a more
realistic setup (see Figure 2.10a). The new expression for the electrostatic energy is given

2The charge/discharge time for an electron ∆t = RC . We then arrive at this condition with the Heisenberg
uncertainty relation ∆E∆T >ħ, where ∆E = EC.

3Two assumptions are made in this model: Coulomb interactions of electrons in the dot are described by the
effective constant total capacitance C , the sum of capacitances surrounding the dot and the energy spectrum
is independent of the number of electrons on the dot N .
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by

U (N ) = 1

2C

(
e(N −N0)−∑

i
Ci Vi

)2

+
N∑

n=1
En , (2.45)

where the electron number is adjusted by an offset charge N0, C =Cs+Cd+Cg, the sum-
mation in the first term sums over all capacitances and associated voltages, the second
term sums over the single-particle energy levels EN of occupied states and are deter-
mined by the confinement potential. Unlike the electron number, the effective induced
charge CgVg by the plunger gate, can be changed continuously [51, 55, 56].

6 7 8 9
Vg (mV)

−1

0

1

eV
bi

as
/E

C

N N + 1 N + 2

6 7 8 9
Vg (mV)

G

e

c

d

b

(b)

(e)

(d)

(c)

(g)

Vg

Vbias

Cg

Cs Cd

(f)(a)

Figure 2.10: (a) Circuit diagram of a quantum dot capacitively coupled to a source lead (Cs), a drain lead
(Cd) and plunger gate (Cg). The junctions are comprised of a (large) resistor and capacitor in parallel. (b-e)
Schematic diagrams of electrochemical potentials µs,µdot,µd in four different configurations. (f ) Qualitative
illustration of a gate trace at Vb ≈ 0, revealing Coulomb peaks in the conductance. (g) Qualitative illustration
of a Coulomb diamond scan. White areas are blockaded, in blue areas the blockade is lifted. Excited states are
shown in orange. The open circles indicate the locations of the diagrams in b-e.

The electrochemical potential of the dot µ(N ) is defined as

µdot(N ) ≡U (N )−U (N −1)

= EC

(
N −N0 − 1

2

)
−eαgVg +EN , (2.46)

where we have substituted Cg/C = αg which is the lever arm of the electrostatic gate.
From Equation 2.46 we can retrieve the spacing between ground states, called the addi-
tion energy

Eadd =µdot(N +1)−µdot(N )

= EC +∆EN . (2.47)
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The electrostatics of quantum dots gives the electron transport through them a few
unique signatures. As shown in the circuit diagram, we apply an asymmetric bias to the
dot by grounding the the drain lead Vd = 0. We apply a very small source voltage Vb ≈ 0
and the plunger gate is such that U (N +1) > 0 >U (N ). This scenario is depicted Figure
2.10b and is called Coulomb blockade for the reason that the Coulomb repulsion blocks
the electron from tunneling to the dot – no current will flow. When the Vg is changed
such that U (N +1) = 0 (Figure 2.10c), the chemical potential of the dot is equal to that of
the source lead – the blockade is lifted and electrons can tunnel from the source to the
dot, increasing N to N+1. The electron can tunnel further to the drain lead and decrease
the electron number back to N .

By sweeping the plunger gate, we move through multiple of these cycles and find a
trace similar to that shown in Figure 2.10f. The peaks are known as Coulomb peaks and
their shape contains information about the coupling strength to the leads and the tem-
perature of the electrons [57]. Recall that the distance between the peaks is determined
by αgEadd.

By doing finite-bias measurements we can obtain more information about the quan-
tum dot from its transport signatures. For a given N , when the bias voltage −eVb <µ(N )
transport is blockaded. Only when −eVb ≥ µ(N ) blockade is lifted and current can flow
(Figure 2.10d). This results in characteristic Coulomb diamonds as shown in Figure
2.10g. The height of the diamonds is equal to Eadd. At bias −eVb > µ(N ) transitions
to excited states become allowed (Figure 2.10e)). These are visible as additional lines
parallel to the Coulomb diamond boundaries (orange lines in Figure 2.10g))

2.4.2. DOUBLE QUANTUM DOT

Two quantum dots, connected in series form what is known as a double-quantum dot
(DQD). Figure 2.11a shows the circuit, which is an extended version of the single dot
where the two dots are coupled via a tunnel barrier. The electrostatic energy for this
system is

U (N1, N2) = 1

2
N 2

1 EC1 + 1

2
N 2

2 EC2 +N1N2ECm + f (Vg1,Vg2), (2.48)

f (Vg1,Vg2) = 1

−|e|
(
Cg1Vg1(N1EC1 +N2ECm)+Cg2Vg2(N1ECm +N2EC2)

)
(2.49)

+ 1

e2

(
1

2
C 2

g1V 2
g1EC1 + 1

2
C 2

g2V 2
g2EC2 +Cg1Vg1Cg2Vg2ECm

)
,

where Cm is the inter-dot charging energy and C1(2) = Cs(d) +Cg1(2) +Cm [58]. For the
single dot case, we defined the charging energy of the dot using its total capacitance. In
a DQD, each dot also has a capacitive coupling to the capacitances of the other dot. This
leads to a correction factor to the charging energy compared to a single isolated dot:

EC1(2) = e2

C1(2)

 1

1− C 2
m

C1C2

 . (2.50)
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The electrostatic coupling is described by the inter-dot charging energy:

ECm = e2

Cm

 1
C1C2

C 2
m

−1

 . (2.51)
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Figure 2.11: (a) Circuit diagram of serial double-quantum dot. (b) Stability diagram of a double-quantum dot,
as a function of plunger gates Vg1 and Vg2. (c) Schematic diagrams of electrochemical potentials at a triple
point where electrons are shuttled from source to drain (filled circle, indicated in e) (d) Schematic diagrams of
electrochemical potentials along a horizontal charge-degeneracy line. (e) Zoom-in around triple point, show-
ing avoided crossing of charge boundaries µ1,µ2 due to coupling between charge states. Relative electron
numbers N , M are written inside the charge regions.

A characteristic measurement of a DQD is the charge stability diagram (Figure 2.11b).
It has hexagonal areas with stable charge configurations. Such a measurement is usually
taken at eVb ≈ 0. When three charge states become degenerate a conductance resonance
appears (Figure 2.11c), this location in Vg 1,Vg 2 space is called a triple point. We plot two
types of triple points, filled and open circles. These correspond to different charge trans-
fer processes, around the filled (open) circles an electron(hole) can be shuttled through
the system. The spacing between these two types of triple points is determined by ECm.
The (almost) horizontal vertical lines between triple points are where one of the two dots
is on resonance with the leads. Naively one would expect no current to flow since one
of the dots is off resonance. However, second-order processes involving an intermediate
virtual state, makes it possible for an electron to tunnel through the off-resonance quan-
tum dot in a process called co-tunneling [54]. Figure 2.11d schematically depicts such a
process. For a very short time, allowed by the uncertainty principle, the electron violates
energy conservation by occupying the high-energy level in dot 1. When another electron
simultaneously tunnels from the high-energy level to dot 2, energy is conserved while
the electron has tunneled from the left lead to dot 2.
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The two dots have a finite coupling to each other, this coupling lifts the degeneracy
at the triple points and causes avoided crossings of the charge boundaries. We describe
the system with a one-electron Hamiltonian

Hcoupling =
(
ε1 τ

τ ε2

)
, (2.52)

where τ is the coupling strength between the dots and ε1(2) the electrochemical poten-
tial of dot 1(2) [56] (not to be confused with τ in section 2.3.2). Diagonalizing this Hamil-
tonian gives the energy eigenvalues

E± = ε± 1

2

√
δ2 +4|τ|2, (2.53)

where ε and δ defines a new coordinate system – ε is the equal energy axis moving
through both triple points and δ the de-tuning axis, perpendicular to ε. The boundaries
are given by the energy difference between the ground-state energies EN+M of neighbor-
ing charge states.

µ1 = E1 −E0 = ε− 1

2

√
δ2 +4|τ|2

µ2 = E2 −E1 = ε+ 1

2

√
δ2 +4|τ|2 +EC m , (2.54)

where EC m accounts for the distance between the triple points (Figure 2.11e).

2.5. SUPERCONDUCTIVITY AND QUANTUM DOTS
Combining superconductivity and quantum dots gives rise to range of different phe-
nomena, depending on device design and on the coupling strength [59]. In the weak
coupling regime, the interaction between a superconducting lead and the single spins in
the coupled quantum dot, give rise to new energy states below the gap. These states are
known as Yu-Shiba-Rusinov states [60–62].

2.5.1. YU-SHIBA-RUSINOV STATES
Apart from influencing the supercurrent in a Josephson junction, a superconductor cou-
pled to quantum dots gives rise new excitations inside the superconducting gap. These
sub-gap states are known as Yu-Shiba-Rusinov (YSR) states and where first theorized by
the equally named trio [63–66].

YSR states are closely related to earlier introduced sub-gap states called ABS. They are
however commonly used in different regimes. ABS are usually used to describe transport
in a regime of negligible charging energy EC ¿ ∆, whereas YSR states offer a more suit-
able description for the emerging sub-gap energy states when there is strong coulomb
interaction EC À∆ [67].

The system we consider in this section is a single quantum dot coupled to a super-
conducting lead (see Figure 2.12a). For analytical insights of the ground state behavior
of the quantum dot we construct an effective Hamiltonian where ∆→∞ [68, 69]:

HYSR = ∑
σ=↑,↓

ξc†
σcσ−Γ

(
c†
↑c†

↓ +h.c.
)
+ EC

2

( ∑
σ=↑,↓

c†
σcσ

)2

. (2.55)
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(b)(a)

Figure 2.12: (a) Schematic diagram of the YSR model system, with a quantum dot shown as a green circle and
a superconducting lead in blue. In the upper version the quantum dot is in a singlet ground state, whereas
the lower version is in a doublet configuration. (b) Phase diagram of the YSR system showing the two different
ground states as a function of quantum dot potential ε+EC/2 and coupling Γ.

The hybridization parameter Γ between the dot and the superconducting lead now acts
as an effective ∆ and we have shifted the dot energy level with ξ = ε+ EC

2 to make the
Hamiltonian particle-hole symmetric around ξ= 0.

Through a Bogoliubov transformation we can find that HYSR has four eigen states;
two single spin-1/2 (doublet) states |↑〉 and |↓〉, with eigenenergies E↓ = E↑ = 0 in addition
to two BCS-type (singlet) eigenstates [68] :

|+〉 = u |↑↓〉+ v |0〉 , |−〉 =−v |↑↓〉+u |0〉 , (2.56)

with eigenenergies E± =±
√
ξ2 +Γ2 +EC/2 and coefficients

u2 = 1

2

(
1+ ξ√

xi 2 +γ2

)
, v2 = 1

2

(
1− ξ√

xi 2 +γ2

)
. (2.57)

It is clear that of the two BCS singlet states, E− has a lower energy, which means that
HYSR has two possible ground states – a singlet or a degenerate doublet configuration.
Whenever ξ> 0 the ground state is a doublet and a singlet otherwise. By setting E− = 0,
we can find the phase boundary of the transition between the two configurations and
find it to be

ξ2 +Γ2 = U 2

4
. (2.58)

The resulting phase diagram is shown in Figure 2.12b. When the coupling between the
superconducting lead and the dot Γ> EC/2, the quantum dot will always be in a singlet
configuration. In this case, superconductivity has broken conservation of charge in the
quantum dot. The phase diagram for a finite ∆ looks qualitatively similar and calcula-
tions for that regime can be found in Reference [68].

Next, we discuss the shape of the sub-gap states. Unfortunately, there are no known
analytical approaches to properly describe the sub-gap states of the system. Numerical
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(b)(a)

Figure 2.13: Qualitative depiction of YSR sub-gap states. (a) Weak coupling limit, the system moves between a
doublet and a singlet ground state as a function of dot potential. (b) Strong coupling limit, the system is always
in a singlet ground state. Conservation of charge is broken.

re-normalization group does a good job in describing the states, but is beyond the scope
of this thesis 4. We therefore limit ourselves here to a qualitative discussion.

In weak coupling limit (see Figure 2.13), the energy cost for going from singlet to dou-
blet is maximum ∆ when in even state and minimal ∆ when in odd state, with smooth
transition around degeneracy points. When the coupling increases, the shape becomes
more asymmetric as the energy cost for a doublet state increases as the superconduc-
tivity in the dot becomes stronger. At a certain point the coupling becomes so strong
that the system always stays in a singlet ground state. In this scenario the YSR states no
longer go below 0 in the odd occupation (see Figure 2.13b). At this point, conservation
of charge is broken.

2.5.2. SUPERCURRENT
When the coupling to the quantum dot(s) is strong and superconducting leads are on
both sides, a supercurrent can flow – creating a special type of Josephson junction [52,
53, 71–73]. Although Cooper pairs cannot tunnel at once though a quantum dot, single
electrons can tunnel coherently to transfer Cooper pairs. The occupation of the quan-
tum dot(s) influences the supercurrent and give rise to a so-called π-junction. The su-
percurrent becomes negative in this type of junction, equivalent to a π phase-shift in the
current-phase relation.

Here we will start with a treatment the supercurrent through a double-quantum dot
Josephson junction and give an intuitive picture of the even-odd (0-π) effect. Most of
this theory also holds for a single quantum dot junction. For simplicity we do not con-
sider spin-orbit coupling and temperature. The theory and simulations in this section
were developed in collaboration with András Pályi, Dávid Pataki, Gorm Steffensen and
Jens Paaske. More extensive discussions can be found in the supplementary information
of Chapter 6.

4References [67, 70] give an extensive overview of available analytical and numerical approaches.
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We model the system as four single-orbital fermionic sites with nearest-neighbor
hopping (see Figure 2.14). The outer sites are superconducting leads and the green cir-
cles are the quantum dots. The Hamiltonian reads

H = HL +HtL +HDQD +HtR +HR, (2.59)

where HL and HR are the lead terms H0 is the quantum dot system and Ht contains the
tunneling between the dot(s) and the leads.

(b)(a)

Figure 2.14: (a) Schematic representation of the double-quantum dot Josephson junction. The four fermionic
sites are coupled to nearest neighbors only. The blue sites are superconducting leads and the green circles the
dots. (b) Numerical simulation using the Hamiltonian in Equation 2.59 with EC = 600µeV, tL = tR = τ= 50µeV.

The leads are modeled with the zero-bandwidth (ZBW) approximation, which has a
single energy level at the superconducting gap ∆. This is the simplest model for qualita-
tively representative results 5:

HL =∆
(
e−iϕ/2c†

L,↑c†
L,↓+h.c.

)
, (2.60)

HR =∆
(
e iϕ/2c†

R,↑c†
R,↓+h.c.

)
, (2.61)

with ϕ the phase difference between the leads, c†
l ,σ the creation operator for lead l and

spin σ. Tunneling from the dot 1,2 to the lead L,R is described by

HtL = tL
∑
σ=↑,↓

(
c†

L,σc1,σ+h.c.
)

, (2.62)

HtR = tR
∑
σ=↑,↓

(
c†

R,σc2,σ+h.c.
)

, (2.63)

where cm,σ is the annihilation operator for dot m. Finally double-quantum dot term is

5A treatment using BCS leads and comparison with ZBW can be found in the supplement of reference [53]
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given as

HDQD = ε1n1 +ε2n2 + EC1

2
n1(n1 −1)+ EC2

2
n2(n2 −1)+ECmn1n2

+τ ∑
σ=↑,↓

(
c†

1,σc2,σ+h.c.
)
+ gµBB

2

∑
m=1,2

(
nm,↑−nm,↓

)
, (2.64)

with εm the on-site energy of dot m, particle number operator nm = ∑
σ=↑,↓ c†

m,σcm,σ, τ
the inter-dot coupling, g the Landé g -factor, µB the Bohr magneton and B the magnetic
field.

Next, we evaluate the ground state energies for different charge occupations. The
ground state of a sector determines which electron transfers are allowed and that in turn
determines the direction and amplitude of the supercurrent. For simplicity, we set the
on-site and charging energies of both dots to be equal; ε1 = ε2 = ε and EC1 = EC2 = EC.

When the dots are empty, all terms in HDQD,0 are zero and so the ground state energy
E0 = 0. For the one-electron sectors we consider the basis states

{∣∣n1,↑
〉∣∣n2,↑

〉∣∣n1,↓
〉∣∣n2,↓

〉}
which gives a 4×4 matrix:

HDQD,1 =


ε+ gµBB

2 τ 0 0

τ ε+ gµBB
2 0 0

0 0 ε− gµBB
2 τ

0 0 τ ε− gµBB
2

, (2.65)

with eigenenergies for the four possible configurations

E1,2 = ε+ gµBB

2
±τ, E3,4 = ε− gµBB

2
±τ. (2.66)

Since all quantities here are positive numbers, the ground state energy of the single elec-
tron sector is Eg ,1 = E4 = ε− gµBB/2−τ.

Using the singlet-triplet basis, the two-electron matrix becomes

HDQD,1 =


2ε+EC 0

p
2τ 0 0 0

0 2ε+EC
p

2τ 0 0 0p
2τ

p
2τ 2ε+ECm 0 0 0

0 0 0 2ε+ECm 0 0
0 0 0 0 2ε+ECm−gµBB 0
0 0 0 0 0 2ε+ECm+gµBB

. (2.67)

The triplet part of the Hamiltonian is already diagonal, so we can directly read off the
eigenenergies. For the singlet part, we find the eigenenergies after diagonalization and
if we assume τ to be small, we find that the ground-state energies are

Eg,S ≈ 2ε+UCm − 4τ2

EC −UCm

Eg,T = 2ε+UCm − gµBB.

As expected, at zero magnetic field the ground-state configuration is a singlet. At finite
magnetic field however the triplet ground state becomes lower in energy and at magnetic
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fields above B/(gµB) = 4τ2/(EC−ECm), the ground state becomes a triplet configuration.
As we will see, this has consequences for the supercurrent amplitude.

The current operator for the interface between the left lead and dot 1 is defined as

jL =− i

ħ [n1, HtL] = tL
i

ħ
∑
σ=↑,↓

(
c†

L,σc1,σ−h.c.
)

. (2.68)

The supercurrent through the junction is then the expectation value of the current oper-
ator

IS(ϕ) ≡ 〈
Ψ0(ϕ)

∣∣ jL
∣∣Ψ0(ϕ)

〉
. (2.69)

Because of the quantum dot barriers, the transmission will be low and so the supercur-
rent is sinusoidal and the critical current is IC = IS(π/2). Figure 2.14b shows the resulting
current values for up to 4 electrons. For this simulation EC = 600µeV, tL = tR = τ= 50µeV.
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Figure 2.15: (a) Visual representation of a Cooper pair transfer through an odd occupied DQD. During the third
transfer, the spin-down electron encounters a spin-up electron and causes a sign flip in the supercurrent. (b)
Cooper pair transfer through an even occupied DQD. Numbers indicate the order of the transfers.

Notice that the sign of the critical current follows an even-odd pattern, for a total even
number of electrons on the dots the critical current is positive and for an odd number
it is negative. An intuition for this is shown in Figure 2.15. The electrons hopping from
the left lead to the right lead in six tunneling events. In this representation, when an
electron encounters an electron with opposite spin – when tunneling from one site to
another – the current operator will be multiplied with a minus sign. In Figure 2.15a we
show a process for an odd number of electrons on the dot. Here an electrons encounters
an opposite spin during the third event. Since this happens an odd number of times,
the resulting critical current for this configuration is negative. In Figure 2.15b a process
is shown for an even number of electrons on the dot and we see an even number of
opposite spin encounters, zero in total. Therefore the critical current is positive. It turns
out that this even-odd effect is independent of the length the quantum dot array. As long
as the dots are single orbital, the even-odd pattern remains. A formal proof for this can
be found in the supplementary material of Chapter 6.

When the DQD is in a triplet ground state, the number of possible electron transfer
processes is sharply decreased. This results in a suppression of the supercurrent [74, 75].
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If we replace the ZBW superconducting leads with BCS leads, it can be shown that in the
limit ∆→∞ the effective Hamiltonian becomes [74]

Heff = HtL +HDQD +HtR +ΓLe−iϕ/2c1,↑c1,↓+ΓR e−iϕ/2c2,↑c2,↓, (2.70)

where Γl is the coupling strength to lead l . Note that the new lead terms in Equation 2.70
couple to electrons with opposite spins from one dot only. Thus a triplet configuration
does not couple to the leads, resulting in a complete suppression of supercurrent. In the
limit where ∆ is finite and EC → ∞, only transport processes where no extra electrons
have to be charged on the quantum dots are allowed. It turns out that these transfer
processes exists for a singlet configuration, but not for a triplet. Resulting also in this
limit in a complete suppression . Interestingly, in the regime in-between these two limits,
a finite triplet current is possible. Numerically it can be shown that the maximum triplet
supercurrent suppression is roughly a factor of 4 (See Chapter 6 for more details).

2.6. MAJORANA STATES
In this section we introduce a theoretical toy model for creating Majorana states in a
condensed matter system and discuss two different approaches for realizing a physical
system that can host Majorana states.

2.6.1. KITAEV CHAIN

The Kitaev chain is a one-dimensional system with p-wave superconductivity proposed
by Kitaev. He showed that that Majorana states can appear at the ends of the quantum
wire [9].

...

...
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 cN
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Figure 2.16: Kiteav chain. (a) Blue boxes are fermionic sites c containing with each two Majorana sites. Ma-
jorana operators γ are paired neighboring operators in the same fermionic site. This corresponds to the limit
where ∆ = t = 0 and µ < 0. (b) The limit where ∆ = t > 0 and µ = 0. Majorana operators are paired with op-
erators from neighboring fermionic sites. This leaves two unpaired Majorana operators (orange), creating a
non-local fermion.

The model consist of a linear chain of fermionic sites with annihilation and creation
operators c j ,c†

j . The chain with N fermionic sites is described by the following Hamilto-
nian

H =−µ
N∑

j=1

(
c†

j c j − 1

2

)
+−t

N−1∑
j=1

(
c†

j c j+1 + c†
j+1c j

)
+

N−1∑
j=1

(
∆c j c j+1 +∆∗c†

j+1c†
j

)
, (2.71)
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with µ the chemical potential, t the hopping amplitude and superconducting gap ∆.
Note that the Hamiltonian does not contain any spin parameters, meaning that we as-
sume p-wave superconductivity. Figure 2.16 shows a depiction of a Kitaev chain with N
sites in two limits. Next, we introduce Majorana operators

γ2 j−1 = c j + c†
j , γ2 j =

c j − c†
j

i
. (2.72)

We can now rewrite equation 2.71 with these operators and investigate two limits high-
lighting the special properties of this model.

In the limit where ∆= t = 0 and µ< 0

H =−µ
N∑

j=1

(
c†

j a j − 1

2

)
= −iµ

2

N∑
j=1

γ2 j−1γ2 j . (2.73)

This is a topologically trivial phase, the Majorana operators pair with each other on the
same fermionic sites. There is a unique ground state which has zero electrons, since
µ < 0, and an even parity. Excitations from this ground state correspond to adding an
electron with energy

∣∣µ∣∣. This situation is schematically shown in Figure 2.16a.
A different – more interesting limit is where ∆= t > 0 and µ= 0. The Hamiltonian in

that case becomes

H = i t
N−1∑

j
γ2 jγ2 j+1. (2.74)

Note that now Majoranas from neighboring fermionic sites pair up, instead of in the
same site. Also, the first and last Majorana from the chain do not appear in this Hamilto-
nian (see Figure 2.16. We can rewrite Equation 2.74 by defining new fermionic operators
which pair Majoranas from neighboring sites

c̃ j = 1

2
(γ2 j + iγ2 j+1), c̃†

j =
1

2
(γ2 j − iγ2 j+1) (2.75)

leading to

H = 2t
N−1∑
j=1

c̃†
j c̃ j . (2.76)

Since the unpaired Majorana states do not appear in the Hamiltonian, their excitation
energy is zero. This results in a zero-energy state in the density of states of the system,
in contrast with conventional s-wave superconductors which have a completely gapped
excitation spectrum below |∆|.

Let us define two new operators for the non-local fermions

c̃0 = 1

2
(γ1 + iγ2N ), c̃†

0 = 1

2
(γ1 − iγ2N ) (2.77)

Using these operators we define a ground state |0〉 with zero occupancy that satisfies
c̃0 |0〉 = 0. We can add one non-local fermion c̃†

0 |0〉 = |1〉, which will have the same energy
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due to zero energy cost of the operations. As a result the system has a two-fold degen-
erate ground state, characterizing the system as topological. The states are orthogonal
and have a different parity. We can verify this with the parity operator

− iγ1γ2N . (2.78)

The conditions that we have set above can be relaxed to 2t > ∣∣µ∣∣,∆ 6= 0, when we con-
sider a chain of infinite length l →∞. In a realistic situation we can add an interaction
term to the Hamiltonian to describe coupling between the Majorana end modes:

Heff =
i

2
t0γ1γN , (2.79)

where t0 ∝ e−l/ξ, with Majorana localization length ξ= ħvF/∆, with vF the Fermi veloc-
ity. Due the exponentially decaying interaction strength, the ground-state degeneracy is
maintained for a sufficiently long chain.

2.6.2. FRACTIONAL AC JOSEPHSON EFFECT
Apart from the zero-energy state in the excitation spectrum, another key signature of
Majorana states is the fractional ac Josephson effect that arises in a Josephson junction
with topological superconducting leads. In such a junction (see Figure 2.17), the un-
paired fermionic sites at the ends of the topological superconducting leads give rise to a
Majorana bound state (MBS). The energy of this states has a 4π periodicity as a function
of phase, instead of 2π for regular ABS.

γL γR

(a) (b)

Figure 2.17: Topological Josephson junction. (a) Two Kiteav chains forming a Josephson junction. The Majo-
rana states are shown in orange. (b) Energy spectrum of MBS as function of phase. The inset shows an avoided
crossing at ϕ= nπ arising from the finite-length of the Kitaev chains.

To see how this comes about we include the, previously ignored, phases of the super-
conducting leads in our definition of the Majorana operators in the junction

γL = c†
0e iφL/2 + c0e−iφL/2, γR = i

(
c†

0e−iφL/2 + c0e iφL/2
)

, (2.80)
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where φL,R are the phases of the left and right superconductors. Combined, these states
form a fermion. We can determine the occupation by writing out the number operator

n0 = c†
0c0 = 1

2

(
1+ iγLγR

)= 1

2

(
1−e iϕ/2

)
+ c†

0c0 cos
ϕ

2
, (2.81)

where ϕ=φR−φL. Note that when the phase is advanced by 2π, the parity of the system
is changed n0 = 1− c†

0c0. Since parity is a conserved quantity in this system, the system
will wind another 2π to restore the original parity. This effectively makes the Josephson
current 4π periodic [9].

The energy states of the MBS is plotted in Figure 2.17b and is given by [76, 77]:

E0 =±∆
p

T cos
ϕ

2
. (2.82)

Note that unlike ABS, the MBS are detached from the continuum for non-ideal transmis-
sion T < 1 and the maximum energy is given by

p
T . The Josephson current is obtained

by differentiating the energy with respect to phase

IS = 2e

ħ
dE

dϕ
=∆

p
T

e

ħ sin
ϕ

2
. (2.83)

Apart from the 4π periodicity in the current-phase relation, the current scales with
p

T
(assuming T ¿ 1) in contrast to I ∝ T for ABS.

In a realistic setup we have to consider the interaction term from Equation 2.79,
due to the coupling of Majoranas at the other ends of the two chains. This results in
an avoided crossing around E = 0 in the energy spectrum (inset of Figure 2.17b) and
makes the junction effectively 2π periodic. It turns out however, that when the junction
is voltage biased such that the phase evolves fast enough, so-called Landau-Zener tunnel
processes restore 4π periodicity [78, 79].

2.6.3. PHYSICAL REALIZATIONS
Due to a lack of readily available spin-less superconductors, the Kiteav chain seems non-
physical. Their are however proposals to realize Majorana states in a physical system. We
will discuss two approaches in this section. Perhaps the most straightforward approach
coming from the Kitaev chain, is to use a linear array of quantum dots as fermionic sites.
This does leave us with the issue of spin-less superconductivity. It turns out that this can
be resolved with a combination of spin-orbit interaction and an external magnetic field
[13, 14, 80].

Consider the linear array of quantum dots in Figure 2.18. Each quantum dot is cou-
pled to a superconductor that induces an s-wave pairing ∆ind,n in dot n, the dots have
tunable couplings tn between neighboring dots. The dots are made of a semiconductor
material with a strong spin-orbit interaction. Spin-orbit interaction describes the cou-
pling between the spin and momentum of an electron and creates an effective magnetic
field. When the spin propagates, its spin precesses around that field (schematically de-
picted in the left dot of Figure 2.18). This allows for a spin-less p-wave pairing between
electrons in neighboring dots. The length along which the spin makes a 180° rotation is
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...
tn

Δind,i

 μi

Figure 2.18: Kiteav chain realized in a quantum dot array. Quantum dots are depicted by green boxes with
capacitively coupled plunger gates to tune electrochemical potentials µn . The quantum dots are single orbital
and are coupled superconductors that induce an s-wave pairing ∆ind,n . The dots are coupled to their neigh-
bors with coupling strength tn . Spin-orbit coupling precesses over a length lSO to achieve spin-less coupling.

given by lSO = ħ/(2m∗α), with m∗ the effective mass of the electron and α the Rashba
spin-orbit strength [81].

The quantum dots are assumed to have a large level spacing such that we only to
consider a single level and that it is the largest energy scale in the Hamiltonian. An ex-
ternal magnetic field lifts the spin degeneracy of the quantum dot levels and in combi-
nation with the spin-orbit interaction we have effectively created a spin-less chain. Here
we have assumed that the dimensions of the quantum dot perpendicular to the wire
length, are much smaller than the dimension along the wire ly,DQ, lz,DQ ¿ lx,DQ. This
assures that spin-orbit direction is the same for each quantum dot and we can apply a
single, global external magnetic field [13]. The spin-orbit strength should be such that
lSO < lx,DQ in order to get superconducting pairing. We have created a system equivalent
to the Hamiltonian in Equation 2.76 when we tune the parameters such that

εn =
√
ε2

Z −∆ind,n , (2.84)

where εZ is the Zeeman energy.
Another option is to use a semiconductor nanowire, also with induced supercon-

ductivity, but without quantum dots. This proposal was introduced by Lutchyn et al.
[82] and Oreg et al. [83] and is the most widely used model for investigating Majorana
states in condensed matter systems. The model comprises of a quasi-one-dimensional
nanowire with strong spin-orbit interaction and a large Landé g -factor. The wire is cou-
pled to a superconductor that induces superconductivity in the semiconductor material
through the proximity effect. An in-depth description can be found in References [84–
86].

We assume a system with a single subband and with the following Hamiltonian:

HBdG =
(

p2
x

2m∗ −µ
)
τz + α

ħ pxσyτz + g

2
µBBxσx +∆τx , (2.85)

where we use the BdG formalism with the Nambu spinor basisΨ:

H =
∫

dxΨ†HBdGΨ, Ψ=
(
c↑,c↓,c†

↓ ,−c†
↑
)

. (2.86)

The first term in HBdG is a kinetic energy term and describes a one-dimensional con-
ductor with effective m∗, chemical potential µ and momentum px confined to the x-
direction in a Cartesian coordinate system, τz is a Pauli matrix acting on particle-hole
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space. The second term describes a Rashba-type spin-orbit interaction with interaction
strength α, σy is a Pauli matrix acting on the spin degree of freedom. The spin-orbit in-
teraction term gives rise to an effective magnetic field BSO. If we assume an electric field
along the z-direction 6, BSO is oriented in the y direction, perpendicular to the axis of the
nanowire. The third term accounts for an external magnetic field Bx along the length of
the wire, with µB the Bohr magneton. The last term adds superconductivity with pairing
potential ∆. The eigenenergies of the Hamiltonian can be found to be

E =
(
ε2

k +εSO2+ε2
B∆

2 ±2
√
ε2

k

(
ε2

SO +ε2
B

)+ε2
Z∆

2
) 1

2
, (2.87)

where εk =ħ2k2/(2m∗)−µ, εSO =αk and εZ = 1/2gµBBx .

(a) (b) (c)

2εZ
μ

εSO

Figure 2.19: Nanowire band structure evolution. (a) Spin-orbit interaction shifts the bands along the mo-
mentum axis by 2kSO. The arrows and colors denote the spin direction of each band; ← blue, → orange. The
parabolic bands are shifted also down along the energy axis by an amount εS) = m∗α2/(2ħ2). (b) An external
magnetic field creates a helical gap. When

∣∣µ∣∣ < |εZ| transport electrons only cross a single subband making
them effectively spinless. The color gradients indicates the gradual spin rotation along the momentum axis.
(c) Adding superconductivity makes the wire topological, with inverted bands.

It is instructive to add each ingredient separately, to see how they affect the band-
structure of the nanowire (Figure 2.19). Spin-orbit interaction splits the otherwise spin-
degenerate conduction band and gives rise to the effective magnetic field. The spins
are projected in the direction of the BSO. The parabolas are shifted along the k-axis by
±kSO =±m∗α/ħ2 (Figure 2.19a). Note that this does not completely lift the spin degen-
eracy. When the magnetic field along the x-axis is turned on, the bands are split in along
the energy axis and completely lifts the spin degeneracy (Figure 2.19b). It opens up a
gap in the spectrum of size εZ, called the helical gap. The spins are rotated towards the
magnetic field axis by a momentum-dependent amount. Around k = 0 the spins are
completely aligned with the magnetic field since here the spin-orbit field is zero. Toward
higher momentum the spins gradually rotate towards the spin-orbit field axis.

Note that if the chemical potential µ lies within the helical gap, electrons with op-
posite momentum see the same spin subband. And so electrons can pair with the same
spin, making spin-less superconductivity a possibility. By now proximitizing the nano-
wire with s-wave superconductivity (Figure 2.19c), we have created topological super-
conducting wire with is accompanied with Majorana states at the ends of the wire.

6This is a reasonable assumption if the nanowire lies flat on a substrate.
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In an experimental setting, the ingredients are usually added in a different order. All
but magnetic field are present from the start and magnetic field is gradually increased
until the topological phase transition is reached. To illustrate this we plot the band struc-
ture for four different Zeeman energies in Figure 2.20. At εZ = 0 the induced supercon-
ductivity opens a gap in the spectrum. We keep track of two different gaps, ∆0 and ∆F

situated at k = 0 and k = kF respectively. Due to spin-orbit interaction, both gaps behave
different in magnetic field. At k = 0, where spin-orbit strength is zero, the gap decreases
linearly with Bx ,∆0 =

√
µ2 +∆2−εZ. ∆0 is completely closed when εB =

√
µ2 +∆2 (Figure

2.20c) and reopens (with a negative sign) when Bx is further increased (Figure 2.20d).
This is the topological phase transition. The gap ∆F hardly changes in field due to the
strong spin-orbit field.

Both approaches use a clever combination of spin-orbit interaction and external
magnetic field to engineer spin-less superconductivity. Although a linear quantum dot
array is conceptually closer to the Kitaev chain model, the nanowire approach is easier to
realize in an experimental setting and most experimental signatures of Majoranas have
been obtained with this approach in InAs or InSb nanowires [87, 88].

(a) (b) (c) (d)

Δ0 ΔF 

Figure 2.20: Band structure evolution with increasing magnetic field. (a) No external magnetic field. Spin
split by spin-orbit interaction and gapped by superconductivity. Due to the momentum dependence of the
spin-orbit interaction we keep track of two gaps ∆0 and ∆F. (b) Magnetic field turned on but below the topo-
logical transition decreases ∆0. (c) At the phase transition, ∆0 = 0 while ∆F remains almost unchanged. (d)
The gap at k = 0 reopens, but ∆0 < 0. The system is now in the topological regime.
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METHODS

The way you make an omelet reveals your character.

Anthony Bourdain

In this chapter we summarize the most important materials and fabrication tech-
niques that are used to make the devices for the experimental chapters. Next, we discuss
important details of the used measurement setup and novel superconducting intercon-
nects.
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3.1. FABRICATION
All devices in this thesis are build with Si wafer coupons as a substrate. A detailed list of
all fabrication steps can be found in Appendix A.

3.1.1. NANOWIRE GROWTH AND TRANSFER

InAs-Al core-shell nanowires are at the heart of the experiments presented in this the-
sis. They are grown by the groups of Jesper Nygård and Peter Krogstrup using a vapor-
liquid-solid method in a molecular beam epitaxy (MBE) system with an axial (0001)B
wurtzite orientation [89]. The wires grow vertically on a substrate, underneath Au cata-
lyst droplets. After growth, Al is deposited in situ on two or three facets using directional
evaporation. The Al layer induces superconductivity in the InAs. Typical wire lengths are
between 5 and 10µm with a diameter between 60 and 100 nm. The Al layer is between 5
and 10 nm thick, providing a large critical magnetic field. Growing Al directly on the InAs
without breaking the vacuum of the MBE chamber allows for a clean interface between
the materials, which is crucial for inducing a hard superconducting gap in the wire and
has enabled great advancements in the field of superconducting nanowires [90, 91].

Individual nanowires are manually transferred from the growth chip to a Si substrate
with lithography alignment markers, shown in Figure 3.2a, using a W needle attached
to a micromanipulator under an optical microscope. The wires stand up vertically on
the growth chip, like trees in a forest, and are visible through the microscope as small
dots. By varying the focal plane of the microscope one can estimate the vertical position
of the needle with respect to the nanowires. By carefully brushing the needle past the
vertical wire, the wire breaks off at its base and sticks to the needle with van der Waals
forces. Next, the wire can be deposited on the Si substrate by brushing the needle with
attached nanowire over the surface. The transfer from the needle tip to the substrate is
possible because the contact surface area between the wire and the substrate is much
larger then between the needle and the wire, resulting in a stronger van der Waals force
to the substrate. A in-depth explanation with illustrations can be found in references
[92, 93].

Figure 3.1: a Scanning electron micrograph (SEM) of a nanowire ‘forest’ on an InAs (111)B substrate. b Trans-
mission electron micrograph (TEM) of the top part of a wire, the Al shell is marked in blue. c TEM highlighting
the sharp and clean interface between InAs core wire and the Al shell. Figure adapted from [89].
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3.1.2. SELECTIVE ALUMINUM ETCHING

Figure 3.2: Left panel shows an SEM of a deposited InAs nanowire between unique lithography markers on a
Si substrate. Each of the four marker images cover a 4 by 4µm square. Right panel shows an SEM of selectively
etched Al sections. Etch windows were designed to be 50 nm, 100 nm and 200 nm in width. The measured
widths of bare InAs after etching are 63 nm, 119 nm and 219 nm respectively.

The Al shell covers the entire length of the nanowire and so to make a junction, part
of this shell has to be removed. Selectively etching part of the Al is commonly done with
a commercial product named Transene-D, originally developed to be selective against
GaAs, Ga or GaP [94]. The process involves heating the solution to 48.2 ◦C submerging
the wire in the solution for a period of 12 s for shell thickness on the order of 10 nm.
This method is prone to over or under etching due to the short time window and the
sensitivity to temperature. This is problematic since Transene-D is known to be not en-
tirely selective against InAs and cause damage [95]. As an alternative, we use a solution
with diluted Tetramethylammonium hydroxide (TMAH, 2.14% by weight) in the form of
a photo developer (MF-321). TMAH has a better selectivity against InAs, can be used at
room temperature and has a slower etch rate. This makes the process simpler, since we
do not require heating the solution, and the longer etch time is more forgiving on timing
errors. Figure 3.2b shows three junctions etched using the MF-321 etchant. The designed
windows were 50, 100 and 200 nm, with resulting junction lengths 63, 119 and 219 nm
respectively. Compared to the Transene-D process, the MF-321 does tend to leave more
AlOx residues as can be seen in the smallest junction in Figure 3.2b.

We cover the substrate with a thin layer (∼ 200nm) of PMMA (polymethyl methacry-
late) and subsequently open a window with e-beam lithography, exposing a small part
of the nanowire to the etchant. We then chemically etch the Al in those windows by sub-
merging the chip in the etch solution. To avoid creeping of the etchant, the Si substrate
with nanowire is baked on a hotplate at 175 ◦C for 1 min to remove moisture from the sur-
face and improve resist adhesion. Directly after baking, a layer of PMMA is spin coated
on the chip and subsequently baked at 175 ◦C for 5 min. After electron beam exposure,
the PMMA is developed for 60 s in a solution of H2O/IPA (1:3 ratio by volume) and dried
directly with N2. The chip is then submerged in MF-321 for 55 s without agitation, fol-
lowed by a thorough H2O rinse. The resist is stripped in heated acetone.
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The use of H2O/IPA as a developer for PMMA is relatively uncommon but has some
key advantages over the traditional MIBK/IPA solution. The contrast of the PMMA for a
1:3 solution of H2O/IPA is between 6.3 and 7 compared to 5.4 for the standard MIBK/IPA
1:3 solution. After developing, the sample can be dried directly with N2 without the
need for a rinsing step [96, 97]. Finally, a pre-mixed solution of H2O/IPA is shelf stable
at 7 ◦C for at least six months, unlike pre-mixed MIBK/IPA solutions which are known to
produce unreliable results after being stored for a few weeks. Note that the contrast de-
pends on the ratio of H2O/IPA and on the rinsing method: directly drying with N2 results
in a higher contrast compared to rinsing in IPA. Additionally, H2O/ethanol solution are
reported to yield even higher contrasts of up to 10 [96, 97].

3.1.3. NANOWIRE CONTACTS
After selectively removing the Al to form junctions, the nanowire needs contacts in or-
der to perform transport measurements. The native oxide of the InAs and the Al shell
prevents ohmic contacts. We therefore use in situ argon milling to remove both oxides
before depositing the contact metal. In the case of the SQUID devices, the supercon-
ducting material NbTiN is deposited by DC sputtering. It is important to note that the
contacts are placed at least 1µm away from the junctions. The argon milling process
physically removes atoms from the surface and leaves a relative rough surface. This will
negatively influence the induced superconductivity and result in a soft gap [98].

3.1.4. CONFORMAL TOP GATES

1

2

3

Figure 3.3: Left panel shows a schematic representation of the gate evaporation process from a cross-section
point of view with the nanowire shown in green. The right panel shows an SEM of two gates made using this
approach. In between the gates is a piece of NbTiN that is unrelated.

To create quantum dots, electrostatic gates are used to locally deplete the nanowire.
In this thesis we use full wrap-around gates with a 10 nm AlOx dielectric in between,
deposited using atomic layer deposition (ALD). It was found that AlOx deposited through
ALD is an excellent gate dielectric for InAs: low hysteresis and higher electron mobility
compared to SiN [94, 99]. The conformal coverage of AlOx also protects the nanowire
from further degradation in air.

The gate pattern design for the double quantum dot (DQD) devices consists of five
parallel gates, each with a width of 40 nm and a pitch of 80 nm – covering a nanowire
section (see Chapter 6). Regular evaporation at a 90° angle to the substrate would require
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the gate metal to have a height of approximately 140 nm to ensure a continuity over the
wire. On top of that, the hexagonal shape of the nanowire creates shadows underneath
the edges, weakening part of the of gate. This height results in a high aspect ratio of 3.5
that is difficult to obtain with a PMMA resist since they will almost certainly fall over
during processing.

Instead, we evaporate the gate metal (Ti/Au) under an angle to achieve a continuous
line with a thin layer. Figure 3.3a shows a schematic representation of the evaporation
procedure. The first layer is evaporated under a 30° angle with respect to the substrate.
This step is repeated, but mirrored with respect to the wire. To ensure a fully continuous
gate line, we finish with a layer from a 90° angle. A 50 nm thick layer is now enough
for a reliable gate with a resist layer with a thickness of approximately 150 nm. Figure
3.3b shows an SEM of two gates made in this fashion. Due to the 30° angle, some metal
is also evaporated on the walls of the resist. To minimize lift-off issues, the sample is
aligned to angled along the length of the gate lines, this way only a 40 nm wide vertical
wall is evaporated onto the resist wall, which easily tears of during lift off. The remaining
vertical metal can be seen at the end of the gates in figure 3.3b.

The resulting gates typically have a lever arm between 0.1 and 0.5. Gate hysteresis
is very low and almost negligible (see Figure 3.4a). Note that in order that in order to
achieve this low level of hysteresis, any handling with electrical discharge, such as SEM
imaging or dicing was avoided after deposition of the dielectric [94].

(b)(a)

Figure 3.4: (a) Pinch-off (blue) and pinch-on (orange) curve of a plunger topgate P2 for a quantum dot. Note
the low hysteresis. (b) A finished device chip, mounted and wirebonded to a PCB.

3.1.5. POST PROCESSING
After cleanroom fabrication, the device is visually inspected under an optical micro-
scope and electrically with probe needles. The electrical inspection aims to select the
most promising devices on a chip to be measured. The 48 electrical lines limits the num-
ber of devices that can be measured in a single cool down. The chip is glued with a con-
ductive silver paint to the cold finger of a dilution refrigerator and the on-chip devices
are electrically connected to a PCB with AlSi wedgebonds (see Figure 3.4b). The PCB is
connected to the electrical lines in a dilution refrigerator.
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3.2. CRYOGENIC TRANSPORT MEASUREMENTS
The transport data presented in this thesis is acquired in Leiden Cryogenics cryogen-free
dilution refrigerators with base temperatures between 20 and 40 mK 1, depending on the
instance. Figure 3.7a shows the different cooling stages.

At room temperature we use a battery-powered, galvanically isolated electronic mea-
surement system known as the IVVI rack 2. This system is designed and build in-house
and is build up of interchangeable modules housed in an enclosure suitable for mount-
ing in a 19 inch rack (figure 3.5b). The system is designed and maintained by Raymond
Schouten and meant for low-noise cryogenic electrical measurements. The main com-
ponents are 16 bit digital-to-analog converters (DACs) that can supply an output voltage
with a range of 4 V. They are digitally controllable through a fiber-optic interface for
galvanic isolation. The rack has isolated input and output ports with low-pass filters,
that can be connected to commercial equipment for external readout and readout, re-
spectively. Typically these are arbitrary waveform generators (AWG), lock-in amplifiers,
oscilloscopes and digital multimeters (DMMs). Common modules used in this thesis
include a voltage (V ), current (I ) source and voltage, current measure modules.

(b)

(a)

Figure 3.5: (a) Photograph of a matrix module with 48 separate channels. Each channel has a toggle switch
to ground, float or connect the line. (b) Photograph of a full IVVI rack. The S0 module (far left position) con-
tains isolated input ports, next to that are S3b modules for voltage/current bias, M2b and M1h are voltage and
current measure modules respectively.

Accompanying the IVVI rack is a matrix module, used in a way similar to an old-

1See https://leiden-cryogenics.com/products/cryogen-free/cf-cs50 for more information.
2More information can be found on http://qtwork.tudelft.nl/ schouten.
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fashioned telephone switchboard: it allows the operator to route lines to the device
through modules or DACs (Fig. 3.5a). From the matrix module, the lines go into the
dilution refrigerator and pass through several passive low-pass filters before reaching
the sample (see Figure 3.6b).

The first is a π-filter at room temperature, attached to the back of the matrix mod-
ule that starts attenuating at 1-10 MHz. Made from a π configuration of capacitors and
an inductor, mounted in a feedthrough construction with a metal enclosure to enable
filtering up to 10 GHz. The output of the filter is connected to fridge lines via a 24-pin
fisher cable with shielded twisted pair lines. Figure 3.6 shows the approximate attenua-
tion ranges of the filters and a schematic layout of the measurement setup arrangement.
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Figure 3.6: Filter electronics (a) Attenuation range of the different filters that used. (b) Schematic overview of
the filtering. Enclosed in orange, the effective circuit diagram of the π filters, with C ≈ 1.5nF. Enclosed in blue,
second order RC filters, with R1 = 510Ω, C1 = 10nF, R2 = 2kΩ, C2 = 220pF.

Inside the fridge, the twisted pairs continue down to the mixing chamber stage, where
the lines go through Cu-powder filters. Here, the lines are on a printed circuit board
(PCB) – immersed in an epoxy with suspended Cu particles. The Cu powder acts as a
lossy dielectric for high-frequency signals starting at a few GHz [100, 101]. To keep the
signals clean after this filtering stage, the Cu-powder filters are directly attached to the
entrance of an RF-tight Cu can. Inside the can, the lines are filtered one final time by
second-order RC filters with an attenuation elbow around 10 kHz. Throughout the dilu-
tion fridge, other measures have been taken to keep the electron temperature by adding
radiation absorbing paint and broadband microwave absorbing materials [102].
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3.2.1. SUPERCONDUCTING INTERCONNECTS
Running large currents, up to several tens of milliampere, through on and off-chip re-
sistive lines generates heat which is usually detrimental to the base temperature of a
dilution refrigerator as the generated heat is more than the cooling power of the fridge
– warming up the mixing chamber significantly. For a magnet coil one can get around
this by using superconducting wires, thus removing the resistance of the lines and elim-
inating the heating. But for large on-chip currents the interconnects and filters between
the fridge lines and the chip, have to be continuously superconducting as well. On-chip
currents are commonly used to create local magnetic fields. For example in the Trans-
mon community, where a SQUID is used for a tunable Josephson energy for each qubit
[29]. It is known that this warms up the fridge but not to an amount to become a limit-
ing factor. For this thesis, the use case will be an on-chip spectroscopy device, which we
discuss in the outlook chapter 8. It uses multiple SQUID loops that need independent
flux biasing with currents of up to 5 mA, too high for acceptable base temperatures when
using resistive lines.

With the approach described in this section, we introduce superconducting inter-
connects that reach currents up to 45 mA without any measurable heating of the fridge
base temperature. The system is built into a removable probe that is hosted in a CF-1400
Leiden cryogenics dilution refrigerator and provides four superconducting lines used to
control two flux bias lines 3.

A schematic drawing of the setup is shown is figure 3.7a. At room temperature, nor-
mal resistive cables enter the fridge via coaxial feedthrough connections. The lines go
through the lower pulse tube plate and are soldered to a tagboard on the still plate, most
of the heat generated by these normal lines will be dissipated here. We estimate a power
of a few milliwatt based on the resistance of these normal lines, well within the cool-
ing power of the fridge at this stage. On the other side of the tagboard, NbTi cables in a
CuNi matrix are soldered. From here on, the NbTi lines are continuous all the way down
interconnect at the mixing chamber plate.

The NbTi lines are twisted pairs and at each temperature stage wound around a Cu
pole, thermally anchored to the stage. This achieves two goals: it thermalizes the lines
at every stage to keep them below their critical temperature of approximately 10 K and
it acts as a low-pass LC filter. At the mixing chamber stage the lines go trough a Cu-
powder filter and pass through an RF-tight can where the chip resides. Here, the wires
are soldered to specially coated Cu solder tabs. The solder consists of a superconduct-
ing tin/lead mixture and sits under a sputtered NbTiN film. Standard wedgebond AlSi
bondwires with a 25µm diameter, connect the tabs to the NbTiN lines on the chip. Fig-
ure 3.7b shows an image of an exemplary device with a superconducting line acting as
a flux-bias line (highlighted in purple). In this particular design, a current of approxi-
mately 3 mA threads a single flux quantum through the SQUID loop, which allows for
complete independent control using the superconducting lines at base temperature.

Figure 3.7c shows a photograph of the chip PCB with the superconducting tabs. A
more detailed schematic side view is depicted in figure 3.7d. The Cu tabs sit on a thin
layer of GE10 varnish, providing galvanic separation while still providing good thermal
contact to the Cu chip carrier which is thermally anchored to the mixing chamber. On

3This system was developed together with Matthew Sarsby, Olaf Benningshof and Jason Mensingh
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Figure 3.7: Superconducting bias lines. (a) Overview of the twisted-pair superconducting lines. The lines are
thermalized and filtered at each stage of the dilution fridge and go inside the RF-tight can via a feed through.
They are then connected to the chip via a superconducting solder tab. (b) Electron micrograph of a test device
with a superconducting flux-bias line highlighted in purple. (c) Photograph of the chip carrier with solder tabs,
PCB and chip. (d) Cross-sectional view of the superconducting interconnect between the NbTi fridge wire and
the NbTiN trace on the chip.
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top of the tab, a droplet of solder is placed and the entire top side of the tab is then sputter
coated with a 200 nm thick layer of NbTiN. The NbTi wire is attached by piercing through
the NbTiN shell of the solder droplet and soldered in. Al bondwires then connect the tabs
to the on-chip superconducting lines.

Fridge lines

Bonds

Traces

V

(a) (b)

V

V

Figure 3.8: Phase transitions of superconducting bias lines. (a) Four-terminal probe setups for each section
of the lines. (b) Line resistances of all sections as a function of temperature. Superconducting phase transitions
are found of the NbTi wires, the AlSi bond wires and the on-chip NbTiN.

We qualitatively test the superconducting lines by performing a temperature sweep
while measuring the resistance of each section of the lines through a four-terminal setup
(figure 3.8a). A current bias is connected to one pair of superconducting lines and volt-
age probes are attached to measure the voltage drops over the fridge lines, bond wires
and the on-chip traces. The results are plotted in figure 3.8b and show the supercon-
ducting phase transitions of each section. The thermometer is not well calibrated for
this temperature range, evident from the systematically lower than the expected critical
temperatures for the used materials. They do however still serve as qualitative indica-
tion. The bond wires (orange) are the first to turn normal, followed by the fridge lines
(green) and finally the on-chip NbTiN traces (blue). Below the transition temperature,
the fridge lines go to 2.6Ω due to the normal lines between the still stage and room tem-
perature (see figure 3.7a). This result shows that the superconducting interconnects are
working between the tabs and the chip.

The temperature-dependent scan can not exclude resistive interconnects between
the NbTi wires and the tabs via the solder droplet. To verify that this part is also super-
conducting, we run increasing currents through the lines while monitoring the temper-
ature of the mixing chamber. When any part of the interconnects is resistive, the gener-
ated power will be dissipated to the mixing chamber, increase its temperature. We first
turn on a magnetic field B = 20mT to quench the superconductivity in the bond wires,
making them resistive with R ≈ 46mΩ (figure 3.8). We see that the temperature increases
from below 20 mK without any current, to around 30 mK for a current of 20 mA. When
we apply the same currents but with the bond wires superconducting by turning off the
magnetic field, we find no measurable increase in the mixing chamber temperature. Im-
plying that the interconnects are fully superconductive or resistive below 1µΩ.
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Figure 3.9: Mixing chamber temperatures with current bias through continuous superconducting lines. (a)
With a magnetic field B = 20mT, turning the bondwires normal with a resistance of approximately 46 mΩ. (b)
Without magnetic field, no noticeable temperature increase.

3.2.2. MEASURING SWITCHING CURRENTS

Chapters 5, 6 and 7 rely on accurate supercurrent measurements. Although the critical
current cannot be measured directly (see 2.3), we can measure the switching current
ISW. This experimentally obtainable value is always lower than the critical current due
to thermal and noise activation.

Due to the stochastic nature of the switching current, between 20 and 100 measure-
ments are taken to get a reliable value for a single data point. In order to keep to the
measurement times practical, acquiring switching currents should be done fast. The ap-
proach used here is ramping a current bias Ibias with a saw-tooth waveform and record-
ing Ibias at the point where the voltage V measured over the junction jumps from zero to
a finite value. Figure 3.10a shows a schematic depiction of this protocol. The blue line is
the Ibias signal and the orange line V . The dashed lines indicate a threshold value set for
V , at these points Ibias is recorded.

(a) (b)

Figure 3.10: Switching current experiment. (a) Switching current protocol to obtain the switching currents.
When the measured voltage (orange) reaches VSW (horizontal dashed line), the current bias (blue) is recorded.
(b) Histogram of an experimentally obtained switching currents of a current-phase relation. The color scale
denotes the number of counts for a given current on the vertical axis as a function of the phase ϕ.
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At the heart of this setup is the M3m IVVI module, it serves as interface between all
the components. It monitors the four-probe voltage measured over the junction. When
it reaches a set threshold value VSW, the module sends the Ibias value to its output, con-
nected to a DMM. At the same time the module sends an optical pulse through a fiber-
optic cable to trigger the voltage readout of the DMM, this bias value is then saved as ISW.
The saw-tooth waveform is supplied by a Rigol DG4102 arbitrary waveform generator at
a frequency of 20 Hz.

By repeating this protocol we acquire a collection of the switching currents, provid-
ing a lower limit of the critical current. We can fit the data to theoretical models and per-
form statistical analysis to extract properties of the supercurrent, such as amplitude and
phase. Figure 3.10b shows a collection of histograms from a dataset of the current-phase
relation of a nanowire SQUID with an SNS Josephson junction. The color-scale denotes
the number of counts for a given switching current bin as a function of the phase over
the SQUID.

It is important to be aware of the limitations of this method. Figure 3.11 shows
benchmarking measurements for a range of current bias ramp frequencies. Due to the
resistance and capacitors of the filters in the bias lines, the IV curve is deformed. The
amount of deformation is determined by the ramping frequency. Figure 3.11a shows the
curves for three different frequencies. Notice that the sharp vertical parts of curve be-
come a gradual slope with increasing ramp frequency, additionally the entire curve shifts
to the right. Both effects are caused by delays in the circuit that are more pronounced
at higher frequencies. Apart from a constant offset, the gradual slope also results in a
broader distribution of switching current – shown in Figure 3.11b, where the standard
deviation σ is shown in the legend. On the other hand, slower ramping speeds makes
the junction likelier to switch to the normal state earlier, resulting in a lower switching
current on average. In the end a compromise has to be made. In this thesis we use ramp-
ing frequencies between 10 and 20 Hz where the IV curves show minimal deformation
and the acquisition speed allows us to obtain enough samples within a practical time
frame.

(a) (b)
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Figure 3.11: Switching current benchmarks (a) IV curves at current bias driving frequencies 10, 50 and 100 Hz.
(b) Switching current distributions for the same driving frequencies as in a.
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4π-PERIODIC JOSEPHSON EFFECT

IN INDIUM ARSENIDE NANOWIRES

D. Laroche†, D. Bouman†, D. J. van Woerkom, A. Proutski, C. Murthy,
D .I. Pikulin, C. Nayak, R. J. J. van Gulik, J. Nygård, P. Krogstrup,

L. P. Kouwenhoven, A. Geresdi

Quantum computation by non-Abelian Majorana zero modes (MZMs) offers an approach
to achieve fault tolerance by encoding quantum information in the non-local charge par-
ity states of semiconductor nanowire networks in the topological superconductor regime.
Thus far, experimental studies of MZMs chiefly relied on single electron tunneling mea-
surements, which lead to the decoherence of the quantum information stored in the MZM.
As a next step towards topological quantum computation, charge parity conserving exper-
iments based on the Josephson effect are required, which can also help exclude suggested
non-topological origins of the zero bias conductance anomaly. Here we report the direct
measurement of the Josephson radiation frequency in indium arsenide (InAs) nanowires
with epitaxial aluminium shells. We observe the 4π-periodic Josephson effect above a
magnetic field of ≈ 200mT, consistent with the estimated and measured topological phase
transition of similar devices.

This chapter has been published in Nature Communications 10.1 (2019): 1-7.
† These authors contributed equally to this work.
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4. OBSERVATION OF THE 4π-PERIODIC JOSEPHSON EFFECT

IN INDIUM ARSENIDE NANOWIRES

4.1. INTRODUCTION
The universal relation between the frequency fJ of the oscillating current and an applied
DC voltage bias V across a superconducting weak link [103] is determined solely by nat-
ural constants:

fJ

V
= 2e

h
=Φ−1

0 = 483.6 MHzµV−1, (4.1)

where e is the single electron charge, h is the Planck constant and Φ0 is the supercon-
ducting flux quantum. This relation, describing the conventional, 2π-periodic Joseph-
son effect, can be understood as the tunneling of Cooper pairs with a net charge e? = 2e
coupled to photons of energy h f [104]. This coupling, referred to as the AC Josephson
effect, has first been measured in superconducting tunnel junctions [105] and has been
shown to persist in metallic weak links [106], carbon nanotubes [107] and semiconduc-
tor channels [108, 109], as well as in high critical temperature superconductors [110].
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Figure 4.1: Principles of the experiment. (a) Energy dispersion of topologically trivial (dashed green line) and
nontrivial (solid red line) Andreev levels inside a NW Josephson junction as a function of the phase difference
across the junction. The gap εM arises from the finite MZMs wavefunction overlap. (b) Equivalent circuit
diagram of the device. The NW junction (in blue box) is capacitively coupled to the superconducting tunnel
junction (red box) via the capacitors CC . The microwave losses and stray capacitance are modeled by the RC
element enclosed by the dashed black box, see text. The applied DC bias voltages are V S

NW and V S
DET with

an effective internal resistance rNW and rDET, respectively. (c) Principle of the frequency sensitive detection
based on photon-assisted tunneling: an absorbed photon with an energy h f gives rise to quasiparticle current
if h f > 2∆DET − eVDET. (d) Scanning electron micrograph of the NW junction placed on three electrostatic
gates. A false color micrograph of the junction is shown in the inset, with the epitaxial Al shell highlighted
in cyan. (e) Bright field optical image of the coupling circuitry between the NW junction (blue box) and the
detector junction (red box). (f ) Micrograph of the split tunnel junction detector. The junctions are encircled.
(g) Measured INW(VNW) characteristics of the NW junction at zero in-plane magnetic field exhibiting a super-
current branch and multiple Andreev reflections. (h) Measured IDET(VDET) trace of the detector split junction
at zero in-plane magnetic field with a minimized switching current. The insets in panels (g) and (h) show the
large scale I (V ) trace of each junction. The normal state conductance, GN is given in the units of G0 = 2e2/h.
All images and data were taken on device NW1. The scale bars denote 1µm (d), 10µm (e) and 1µm (f ), respec-
tively.
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In proximitized semiconductor nanowires, an effective superconducting gap with
a p-wave symmetry arises due to the breaking of the time-reversal symmetry above a
threshold magnetic field [111–118]. When a weak link is formed between two leads,
the p-wave component leads to a factor of two increase in the flux periodicity, giving
rise to the so-called 4π-periodic Josephson effect [119, 120]. Phenomenologically, this
phase periodicity is equivalent to an effective tunneling charge e? = e instead of 2e in
Eq. (1). Therefore, in this MZM regime, the frequency at a given voltage bias V drops
by a factor of two, fMZM(V ) = fJ(V )/2, providing a robust signature of the topological
phase transition in the superconducting leads. In real devices however, the finite size of
the topological regions [121], poisoning events [111, 120] and Landau-Zener tunneling
to the quasiparticle continuum [122] can effectively restore the 2π-periodic, trivial state.
The latter two parity-mixing effects cause the system to relax to its ground state, effec-
tively constraining the system in the lowest topological energy branch (red solid lines
in Fig. 4.1a). Nevertheless, out-of-equilibrium measurements performed at rates faster
than these equilibration processes can still capture the 4π-periodic nature of topological
junctions [121–123]. In contrast, finite-size effects can be avoided by biasing the junction
at voltages large enough to overcome the Majorana hybridization gap εM [122].

Here, we report the direct observation of a magnetic field-induced halving of the
Josephson radiation frequency [124] in InAs nanowire (NW) junctions partially covered
with an epitaxially grown aluminium shell (Fig. 4.1d). In this system, possessing a hard
induced superconducting gap [125], previous direct transport experiments suggest par-
ity lifetimes above 0.1µs [126] and hybridization energies εM . 1µeV for leads longer
than 1.5µm [127]. Thus, a frequency-sensitive measurement in the microwave domain
is expected to reveal the 4π-periodic Josephson effect [128, 129].

4.2. RESULTS

FREQUENCY-SENSITIVE DETECTION OF THE JOSEPHSON RADIATION

As a frequency-sensitive microwave detector, we utilize a superconducting tunnel junc-
tion with a quasiparticle gap of ∆DET, wherein the photon-assisted electron tunneling
(PAT) current contributes to the DC current above a voltage bias threshold eVDET > 2∆DET−
h f [124, 130] (Fig. 4.1c). This on-chip detector [131], coupled via capacitors CC to the
NW junction (see Fig. 4.1b for the schematics and Fig. 4.1e for an optical image of the
device) is engineered to result in an overdamped microwave environment characterized
by a single fc = (2πRC )−1 ≈ 28GHz cutoff frequency with R = 538Ω and C = 10.4fF, see
Supplementary Figure 4.6. The resulting broadband coupling to the detector [109] in-
hibits higher order photon emission, which could mimic the 4π-periodic Josephson ef-
fect [132].

The nanowire is deterministically deposited on a set of three gates covered by 30nm
thick SiNx dielectric as shown in Fig. 4.1d. The Josephson weak link, where the Al shell is
removed by wet chemical etching, is located above the central gate (see inset of Fig. 4.1d).
We investigated devices with junction lengths ranging from 86nm to 271nm. The high
quality of the nanowire junction is apparent from the presence of distinct multiple An-
dreev reflection steps in its INW(VNW) characteristics [133] (Fig. 4.1g), which is a signa-
ture of the hard superconducting gap in the nanowire [125]. The observed curves and
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Figure 4.2: Magnetic field-induced 4π-periodic Josephson radiation. Differential transconductance
dIPAT/dVNW as a function of VNW and VDET for device NW1 (panels (a) and (b)), NW2 (panels (c) and (d))
at zero and finite magnetic fields, respectively. The position of the transconductance peak maps the frequency
of the monochromatic Josephson radiation. A linear fit e?VNW = 2∆DET−eVDET through these peaks is shown
as an orange line. Dashed green and red lines show linear fits with a fixed slope corresponding to e? = 2e and
e? = e, respectively. The shaded regions show the regimes where the fit of the transconductance peak is not
reliable, see text. Two normalized and smoothed horizontal linecuts are plotted, where arrows point at the
position of the extracted peaks. The orange, green and red dots denote the position of the best fit, the e? = 2e
fit and the e? = e fit, respectively. The evolution of e?(B) and 2∆DET(B) are presented in panels (e) and (f ) for
NW1 and in panels (g) and (h) for NW2. For the calculation of the error bars, see text and Supplementary Note
4.5.3. The transition from the 2π- to 4π-periodic Josephson radiation is observed between 175 and 300mT as
e? evolves from values near 2e (green circles) to values close to 1e (red triangles). For all devices, 2∆DET(B)
drops monotonically (black dashed line, see text), independently of the change in e?.

linear conductance also establish that no conductive mode with a transmission close to
unity exists in the channel, which could contribute to the 4π-periodic signal even in the
absence of topological ordering [122].

The microwave detector, presented in Fig. 4.1f, is fabricated using two angle evapo-
rated [134] Al/AlOx /Al tunnel junctions, forming a superconducting quantum interfer-
ence device (SQUID). This geometry allows us to minimize the Josephson energy of the
detector by applying Φ =Φ0/2 flux through the loop (see Fig. 4.1h) and thus to limit its
backaction to the nanowire. The respectively 8 and 11nm thick Al layers set an in-plane
critical magnetic field of the detector in excess of 1T, well above the measured topolog-
ical transition in similar devices [127]. Nevertheless, increasing subgap currents limited
our experimental field range to 325−650mT for different devices. The circuit parameters
and fabrication details are given in the Supplementary Tables 4.5.1 and in the Methods,
respectively.

In the presence of a voltage spectral density SV ( f ), the DC current contribution of
the PAT process is as follows [124, 130] in the subgap regime, where eVDET < 2∆DET:

IPAT(VDET) =
∫ ∞

0
d f

(
e

h f

)2

SV ( f )IQP,0

(
VDET + h f

e

)
. (4.2)
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Here, IQP,0(VDET) is the tunnel junction current in the absence of absorbed radiation,
SV ( f ) = 0 (see Fig. 4.1h). Note that the quasiparticle gap edge at eVDET = 2∆DET results
in a sharp increase of IQP,0(VDET). In the presence of monochromatic radiation with a
frequency f0, SV ( f ) ∼ δ( f − f0), IPAT(VDET) thus develops a step-like feature at h f0 =
2∆DET−eVDET. With a phenomenological effective charge e? of the AC Josephson effect,
we write this condition in terms of the voltage drop on the nanowire, VNW:

e?VNW = h f0 = 2∆DET −eVDET, (4.3)

where e? = 2e for conventional junctions (see Eq. (1)) and e? = e in the 4π-periodic
regime. To extract e? and thus determine the periodicity of the Josephson radiation, we
track the transconductance peak dIPAT/dVNW(VNW,VDET) measured by standard lock-in
techniques at a frequency of 17.7Hz (see Supplementary Figure 4.5). The experiments
were performed at the base temperature of a dilution refrigerator (∼ 20mK).

THE JOSEPHSON RADIATION AS A FUNCTION OF THE MAGNETIC FIELD
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Figure 4.3: Gate tuning of the 4π-periodic radiation regime. Differential transconductance dIPAT/dVNW as a
function of VNW and VDET for device NW3 at gate setting A (panels (a) and (b)) and setting B (panels (c) and
(d)) at zero and finite magnetic field, respectively. A linear fit and fits with a fixed slope e? = 2e and e? = e
are shown as an orange line, a dashed green line and a dashed red line, respectively. Two normalized and
smoothed horizontal linecuts are also presented, where arrows point at the position of the extracted peaks.
The evolution of e?(B) and ∆DET(B) are shown in panels (e) and (f ) for setting A and in panels (g) and (h) for
setting B. A transition from to 2π- to 4π-periodic Josephson radiation is observed for gate setting A, but the
radiation remains 2π-periodic for setting B. The gate voltage values are shown in Supplementary Table 4.2. For
the calculation of the error bars, see text and Supplementary 4.5.3.

Typical experimental datasets are shown in Fig. 4.2 for two nanowire junctions (NW1
and NW2, respectively) as the source of Josephson radiation. We limit the detector volt-
age range by the condition dIDET

/
dVDET < 10µS where the subgap quasiparticle cur-

rent is still negligible, typically IDET . 1nA. A lower limit of the emitter junction volt-
age is defined by the phase diffusion regime [135], characterized by periodic switching



4

54
4. OBSERVATION OF THE 4π-PERIODIC JOSEPHSON EFFECT

IN INDIUM ARSENIDE NANOWIRES

and retrapping events, which breaks the validity of Eq. (1) (see Supplementary 4.5.4).
We therefore do not consider the low VNW regime, within the supercurrent peak. We
show this range, excluded from the linear fits, shaded in grey in Fig. 4.2 and Fig. 4.3 (see
Supplementary 4.5.3 on the characterization of these limits). We fit the peak positions
using Eq. (3) in order to extract e? and ∆DET as a function of the applied in-plane mag-
netic field. The typical standard deviation is 3.6GHz for each frequency datapoint (see
Supplementary 4.5.3). The error bars of the fitted parameters are determined using the
bootstrapping method [136] (see Supplementary 4.5.3) and show the full width at half
maximum yielding a confidence level of 75% for a Gaussian lineshape.

At zero magnetic field (Fig. 4.2a and c), the emitted Josephson radiation is always 2π-
periodic with an extracted effective charge close to e? = 2e, as shown by the good agree-
ment between the orange line and the dashed green line (best fit with fixed e? = 2e). In
contrast, NW1 and NW2 exhibit the 4π-periodic Josephson effect above a threshold mag-
netic field (Fig. 4.2b and d), where e? ≈ e. The full evolution is shown in Fig. 4.2e and 2g,
respectively, where a sharp transition is visible from e? ≈ 2e (green circles) to e? ≈ e (red
triangles). Finally, the fitted∆DET (Fig. 4.2c and f) shows a monotonic decrease described

by 2∆DET(B) = 2∆0

√
1−B 2/B 2

c for all devices (dashed lines), with no additional feature
at the transition field. In contrast with the nanowire junctions, our control device, an
Al/AlOx /Al tunnel junction, exhibits no transition in e? over the entire magnetic field
range (see Supplementary Figure 4.9).

THE JOSEPHSON RADIATION AT DIFFERENT GATE VOLTAGES
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Figure 4.4: The calculated radiation spectrum. The voltage spectral density SV ( f ) incident on the detector
junction, computed by numerically solving the system of stochastic differential equations shown in Supple-
mentary 4.5.4. Panels (a) and (b) show results for a junction in the trivial regime (small transmission and large
transmission, respectively), while panels (c) and (d) show the emission spectrum in the topological regime. V0
and V1 are voltage scales for Landau-Zener tunneling between branches of the junction bound state and for
tunneling to the quasiparticle continuum, respectively, see text. Circuit parameters are set as rNW = 2.4kΩ,
RNW = 50kΩ, R = 0.5kΩ, C = 10fF, CC = 400fF, and I 0

NW = 8nA. The noise temperature is T = 150mK and the
quasiparticle poisoning rate is Γq = 100MHz. As in Fig. 4.2, the dashed green and red lines show the frequency
of the Josephson radiation corresponding to e? = 2e and e? = e, respectively. The estimated phase diffusion
region is shaded in gray.

Fig. 4.3 shows the magnetic field evolution of device NW3 at two distinct gate settings
with similar GN and dIPAT/dVNW corresponding to similar Josephson coupling. By tun-
ing the chemical potential in the nanowire via changing the gate voltages, it is possible to
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displace the position of the onset of the 4π-periodic Josephson radiation from ≈ 175mT
(Fig. 4.3b) to values larger than 375mT (Fig. 4.3d). Note that the additional local maxi-
mum at high VNW values, also observed in earlier experiments [109], is attributed to the
shot noise of the nanowire junction.

The possibility to tune the nanowire devices into the 4π-periodic Josephson radia-
tion regime with both magnetic field and chemical potential is consistent with the pre-
dicted phase diagram of this system [111, 112, 120]. We observe the same behaviour in
four distinct nanowire devices (see Supplementary Figure 4.8 for device NW4), which
we can interpret within the single subband model of the topological phase transition

that takes place at a magnetic field B?, where Ez = gµBB?/2 =
√
∆2

NW +µ2
NW. Here g

and µB are the Landé g-factor and the Bohr magnetron, respectively. From our device
parameters (see Supplementary Table 4.2), lower bounds on the g-factors ranging from
g ≈ 11 (B? = 175mT) in device NW3 to g ≈ 35 (B? = 190mT) in device NW4 are ob-
tained, in agreement with values reported in similar devices [117, 127, 137]. In contrast,
an accidental crossing of a trivial Andreev bound state would be inconsistent with the
observed field range of ∆B ∼ 0.3T of the 4π-periodic radiation, since within this range,
a spinful Andreev level [137] would evolve over the scale of the superconducting gap,
∆NW ∼ gµB∆B , suppressing the 4π periodicity. We however did not observe a continu-
ous variation of the onset magnetic field B? as a function of the applied gate voltages.
This behaviour is consistent with calculations of the topological phase diagram based
on realistic device simulations including orbital effects of the magnetic field [138] and
multiple spatial dimensions [139, 140] of the device.

We observe a single Josephson radiation frequency in the 4π-periodic regime, which
is consistent with the supercurrent being predominantly carried by a single transmit-
ting mode. While we were not able to reliably extract the transparency and the number
of modes in our devices, the single mode regime was observed earlier in similar InAs
nanowires [137, 141, 142]. We also note that an upper bound on the channel trans-
mission of τ = GN/G0 can be determined from the normal state conductance GN < G0,
which is measured in the linear regime well above the superconducting gap. This value
is shown in Fig. 4.2 and Fig. 4.3 for each device.

NUMERICAL SIMULATIONS OF THE JOSEPHSON RADIATION FREQUENCY
Next, we numerically evaluate the expected voltage spectral density seen by the detec-
tor junction in various regimes. We use the quasiclassical resistively and capacitively
shunted junction (RCSJ) model coupled to a stochastic differential equation describing
the occupation of the single pair of Andreev levels in the NW junction. The equivalent
circuit of the device in the microwave domain is shown in Fig. 4.1b, where each element
is experimentally characterized [109] (see Supplementary Figure 4.6 and Supplementary
Tables 4.5.1). Note that we neglect the load of the detector on the circuit, which is justi-
fied by its negligible subgap conductance compared to that of all other elements in the
circuit.

Our model of the nanowire junction considers Landau-Zener (LZ) tunneling between
branches of the energy-phase dispersion shown in Fig. 4.1a, as well as tunneling to the
continuum, and stochastic quasiparticle poisoning events [122]. The probability of LZ
tunneling is determined by the voltage drop VNW according to PLZ = exp(−V0/VNW),
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where eV0 = 4πε2
M/(∆NW

p
τ) is the characteristic voltage above which PLZ ∼ 1. In this

limit, 4π-periodicity is observed despite the gap εM caused by finite-size effects [127].
Similarly, LZ tunneling to the continuum close to ϕ = 2π defines a voltage scale eV1 =
2π∆NW(1−p

τ)2/
p
τ, above which 2π-periodicity is restored [122]. We note that a triv-

ial Andreev bound state in the short junction limit can be modeled similarly with eV0 =
π∆NW(1−τ) and eV1 = 0.

Fig. 4.4 shows representative plots obtained by numerically evaluating SV ( f ,VNW)
(see Supplementary section 4.5.4), which determines the photon-assisted tunneling cur-
rent by Eq. (2). We observe that the numerical results agree well with the characteristic
features of the experimental data. We find that the circuit equations allow for a phase dif-
fusion regime at low VNW values [135], where e?VNW < h f , because the junction spends
part of the time in the steady supercurrent state where the voltage drop is zero. The
calculations also reproduce the absence of higher harmonics in the radiation spectrum,
attributed to the low transmission of the junction and the overdamped nature of the mi-
crowave environment [132]. This confirms our expectation of the suppression of mul-
tiphoton processes due to a low quality factor, justifying the usage of the semiclassical
junction model.

A key result of these simulations in a wide range of junction parameters is that, with
the circuit elements taking values representative of those in the experiment, the radi-
ation frequency always reflects the internal dynamics of the nanowire Josephson junc-
tion both in the 2π-periodic (Fig. 4.4a and b) and in the 4π-periodic emission regime
(Fig. 4.4c and d). Finally, we note that our results are consistent with V0 . 15µeV trans-
lating to an avoided crossing εM . 10µeV. Using the exponential cutoff in Ref. [127], this
suggests that our devices have a continuous topological region of several hundreds of
nanometers on each side of the nanowire junction, which is consistent with the scan-
ning electron microscopy images of the devices.

4.3. DISCUSSION
In conclusion, we observed the 4π-periodic Josephson effect in multiple InAs nanowires
above a threshold magnetic field in a range of 175− 300mT. This effect, which can be
suppressed by tuning the gate voltages, is consistent with the expected signatures of a
topological phase transition. By observing the periodicity of the Josephson effect using
an on-chip microwave detector, we investigated this system whilst preserving its charge
parity, in line with the requirements for prospective topological quantum computers.
This experimental technique may also prove instrumental in identifying more exotic
non-Abelian anyon states [143, 144], due to its proven sensitivity to the periodicity of
the Josephson effect, directly measuring the charge fractionalization of the anyon state
[145, 146].

4.4. METHODS

DEVICE FABRICATION
The devices are fabricated on commercially available undoped Si substrates with an in-
sulating SiOx layer of 285nm thick in a similar fashion to Refs. [137] and [109]. All etch-
ing and metal deposition steps are realized using standard positive tone electron-beam
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lithography techniques. First, three Ti/Au (5nm/15nm) electrostatic gates and the cou-
pling capacitor bottom plates are deposited (see Fig. 4.1 for design details). These are
subsequently covered by a ∼ 30nm thick SiNx dielectric layer deposited by sputtering.
Eleven 100nm wide Cr/Pt (5nm/25nm) tracks are then defined. These ∼ 100Ωµm−1 re-
sistive lines connect the gates, the (yet to be defined) Al/AlOx /Al detector and the nano-
wire to the instrumentation setup. Next, the Al/AlOx /Al Josephson junctions are fabri-
cated by evaporating 8 and 11nm thick Al layers with an intermediate in-situ oxidation
step at 0.5mbar for 4minutes using the Dolan bridge technique [134]. The nanowires are
then deterministically deposited onto the electrostatic gates with a micro-manipulator
setup equipped with an optical microscope. A gap in the nanowire Al shell is then cre-
ated by wet etching using Transene D at a temperature of 48.2◦C for 12seconds. Next,
both the nanowire and the detector junctions are connected to the resistive lines with an
80nm thick sputtered NbTiN film after an in-situ Ar plasma milling step. Finally, a Ti/Au
(15/100nm) layer is evaporated to define quasiparticles traps, the upper capacitor plates
and the contact pads. We note that no NbTiN film was used in device NW3. Instead, a
Ti/Au (15/100nm) layer was used to contact the nanowire and the detector. The dimen-
sions and properties of each device are presented in Supplementary Table 4.1, and the
experimental setup is described in Supplementary Figure 4.5. We note that the detector
is made of narrow and thin aluminum sections (see Fig. 4.1f) to limit the presence of
vortices near the Al/AlOx /Al junctions, and thus to decrease the subgap current in finite
magnetic field.

The InAs nanowires used in this work are grown via a two-step process by molecu-
lar beam epitaxy. The InAs nanowires are grown at 420◦C using the vapour-liquid-solid
method with Au droplets as a catalyst. After cooling the system to −30◦C, Al is epitaxially
grown on two of the six nanowires facets [125].

THE MICROWAVE ENVIRONMENT OF THE INAS JOSEPHSON JUNCTION

We model the effective microwave environment of the nanowire Josephson junction with
a parallel lumped resistor (R) and capacitor (C) element, which accounts for the low-pass
nature of the coupling circuit (see inset of Supplementary Figure 4.6a). We determine the
effective RC values by measuring a sample wherein the nanowire junction is replaced by
an Al/AlOx /Al tunnel junction. The supercurrent peak is fitted against the Ivanchenko-
Zil’berman model to find the RC values and the noise temperature of the circuit [135] at
zero magnetic field (see Supplementary Figure 4.6a). The critical current as a function
of the magnetic field is then found using the same model, with the R,C and the noise
temperature fixed at their zero field value (Supplementary Figure 4.6b). We note that
the same coupling circuit was used in [109], leading to RC and noise temperature values
in good agreement with the current ones. Thus, we conclude that the reproducibility is
good for all samples featured in the current study. These parameters are used to theoret-
ically study the dynamics of the Josephson radiation.

REPRODUCIBILITY OF THE TRANSITION FOR NANOWIRE DEVICES

Supplementary Figure 4.7 shows every differential transconductance color plots from
which the effective charge e? has been extracted in Fig. 4.2e. The color plots nominally
follow the same trend as the ones presented in Fig. 4.2. Supplementary Figure 4.8 shows
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the magnetic field evolution of e? in device NW4. Device NW4 also exhibits a transition
from to 2π- to 4π-periodic Josephson radiation at B ∼ 175mT. As such, the observation of
a magnetic field induced transition in the periodicity of the Josephson radiation has been
observed in four distinct devices, showcasing the reproducibility of the observation.

JOSEPHSON RADIATION OF AN AL/ALOx /AL TUNNEL JUNCTION

Supplementary Figure 4.9 shows our measured data with a conventional Al/AlOx /Al su-
perconducting tunnel junction as the source of Josephson radiation. Evaluating e? as a
function of magnetic field in the same range as for Fig. 4.2 and Supplementary Figure
4.8, we observe no transition in the periodicity of the Josephson effect, confirming that
the 4π-periodic Josephson radiation only occurs in nanowire junctions. We note that,
in order to keep the circuit behavior similar, the normal state conductance of the tunnel
junction was set to GN,T = 0.26G0.

4.5. SUPPLEMENTARY INFORMATION
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Figure 4.5: Schematics of the PAT measurement. The voltage V S
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respectively.
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4.5.1. SUPPLEMENTARY TABLES

Parameter NW1 NW2 NW3 NW4

Nanowire channel length (nm) 139 86 131 271
Total length between contacts (µm) 6.49 5.02 2.55 4.06

Detector tunnel junction area (µm2) 0.040 0.014 0.025 0.024
Detector linear conductance, GN,DET (G0) 1.24 0.55 0.79 0.86

SQUID effective area, ASQUID (µm2) 5.34 3.62 5.37 5.49
Zero field detector gap, ∆DET (µeV) 258 265 252 262
Detector critical field, BC,DET (mT) 1180 670 1000 1070

Table 4.1: Geometric and electrical parameters of the devices with a nanowire junction.

NW1 NW2 NW3A NW3B NW4

Upper gate voltage, V upper
g (V) -4.0 -0.95 -1.8 -2.22 1.75

Middle gate voltage, V middle
g (V) -7.25 2.5 0.0 0.0 0.87

Lower gate voltage, V lower
g (V) -4.0 -0.95 -1.08 -1.825 1.75

Emitter linear conductance, GN (G0) 0.37 0.52 0.57 0.73 0.52
Nanowire induced gap, ∆NW (µeV) 232 105 60 84 164

4π transition field, B? (mT) 300 260 175 – 190
Estimated eV1 (µeV) 368 71 30 13 111

Table 4.2: Electrical parameters of the nanowire junctions, specific to the gate voltage values used.

Parameter Value

Emitter tunnel junction area (µm2) 0.027
Emitter linear conductance, GN (G0) 0.26

Zero field gap, ∆(B = 0) (µeV) 247
Zero field critical current, IC =π∆EMIGN/2e (nA) 7.58

Emitter junction critical field, BC,EMI (mT) 953
Detector tunnel junction area, ADET (µm2) 0.023

Detector conductance, GN,DET (G0) 0.26
SQUID effective area, ASQUID (µm2) 5.44
Zero field detector gap, ∆DET (µeV) 257
Detector critical field, BC,DET (mT) 1030

Table 4.3: Geometric and electrical parameters of device T with a superconducting tunnel junction as emitter,
used for calibration purposes.
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4.5.2. DETERMINATION OF THE SUPERCONDUCTING GAPS
This section describes the methods used to determine the superconducting gap in the
nanowire and the detector. 2∆NW is inferred from the position of the coherence peaks in
the nanowire differential conductance observed at the largest VNW, as shown in Supple-
mentary Figure 4.10a. The position of these peaks is comparable at both negative and
positive bias voltages, and these values are consistent with the additional MAR features
visible at fractions of 2∆NW. The evolution of this gap with field for device NW1 is pre-
sented in Supplementary Figure 4.10b. Consistently with earlier tunneling spectroscopy
experiments on similar devices [113, 114, 118, 127] and with the theoretical literature
[147–150], no gap closing is observed.
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Figure 4.10: Identification of the superconducting gaps. (a) Nanowire differential conductance (dINW/dVNW)
as a function of nanowire voltage VNW at B = 0 mT for device NW1. The coherence peaks at 2∆NW are identified
by black arrows and are located at ± 465 µeV. The large peak at zero-bias arises from the supercurrent and the
additional peaks are associated with multiple Andreev reflections (MAR). (b) Nanowire induced gap (2∆NW) as
a function of magnetic field. Gaps obtained in the 2π- and the 4π-periodic regimes are shown as green circles
and red triangles, respectively. (c) Al/AlOx /Al detector gap (2∆DET) as a function of magnetic field for device
NW1. The gap value is either obtained from the intercept of the fitted PAT data (open black circles, same as
Fig. 4.2d) or from the raw IV-trace of the detector (solid green circles).

As shown in Supplementary Figure 4.10c, the gap value of the SIS detector can be
obtained either from the intercept of the fitted PAT data, as extracted in Fig. 4.2d, or
from the raw IV-trace of the detector (Fig. 4.1h). Due to the limited range of the detector
IV-trace, the gap is determined by the point at which the derivative of the detector IV-
trace reaches 500 µS. The two methods agree well at magnetic fields larger than 250
mT. The discrepancy at lower fields is attributed to local heating effects at finite bias
across the superconductor, which artificially increases the derivative of the detector IV-
trace near the gap edge. Due to the unreliability of the data extracted from the IV at low
magnetic fields, the gap value extracted from the fitted PAT data has been reported in
Supplementary Table 4.2.
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4.5.3. PEAK FINDING AND FITTING
This section describes the methodology for finding the peaks of the PAT current transcon-
ductance, and subsequently fitting them to obtain the effective charge e?. An example
of a typical transconductance scan in shown in Supplementary Figure 4.11a. For ev-
ery VNW trace taken during this scan (see Supplementary Figure 4.11b for a typical line
trace), the data is interpolated into 100 evenly spaced points. This interpolated data is
then smoothed using a 2nd order polynomial Savitzky-Golay filter with a dynamical win-
dow length ranging between 5 and 21 points (red line in Supplementary Figure 4.11b).
The window length scales linearly, with the larger window size being used at larger VNW.
The f −2 dependence of the PAT signal [124] results in a decreased signal-to-noise ratio at
large VNW, making additional smoothing desirable. Next, the peak from this smoothed
curve is extracted. The data is then further smoothed using a 51 points dynamical win-
dow (not shown in Supplementary Figure 4.11b), and the first relative minimum reached
on each side of the peak is used to define the peak minimum. The half-width at half-
maximum on each side of the peak are then averaged, and used as the uncertainty on
the peak position.
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Figure 4.11: Peak finding algorithm. (a) Transconductance of the PAT current as a function of the bias across
the NW junction and the detector for device NW1 at B = 0 mT. The position of the transconductance peak
for each VNW trace, with its uncertainty, is shown as a red dot with error bars. The shaded regions represent
regimes where the position of the transconductance peak is shifted due to the large sub-gap current in the
detector (x-axis) and/or due to the presence of phase-diffusion in the nanowire junction (y-axis). (b) Typical
processed line-cut used to extract the transconductance peak. This line-cut corresponds to the yellow line in
panel (a). The maximum (red dot) is extracted from the smoothed curve (shown in red) and corresponds to
the red dots in panel (a). The estimated peak minimums (orange dots) and the corresponding half-maximum
values (cyan dots, corresponding to the error bars in panel (a) are also shown.

The peak finding algorithm initially finds the peak for the lowest VNW trace. To en-
sure that neither the current associated with quasiparticle tunneling at high VNW values
near the gap edge nor noise signals far away from the peak are inadvertently selected,
all subsequent peaks are required to be located at a position in VDET within a moving
window V last

DET −28µV ≤V new
DET ≤V last

DET +5µV.
Once the transconductance peaks are obtained, they are fitted using a Monte-Carlo

bootstrap method with 10000 iterations [136]. For every iteration, the peak position of
each VNW trace is randomly determined from a Gaussian distribution with the average
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and the deviation given by the original peak position and uncertainty. These generated
peaks are then linearly fitted and their slope and intercept are collected. The reported
slope and intercept are given by the average results obtained over the 10000 iterations,
and the uncertainty is given by their standard deviation.

The fitting procedure is carried out over a subset of the raw dataset. The lower bound
of the fitting range is set so as to exclude two phenomena causing the extracted peaks to
be improperly linked to the Josephson radiation, as inferred from Eq. (3). The first phe-
nomenon stems from the assumption that the detector IV characteristics is ideal, i.e.
that zero subgap current is present at detector voltages lower than the superconducting
gap. While this assumption is realistic at VDET values sufficiently far from the supercon-
ducting gap, it breaks down as VDET is increased, and Eq. (2) is not expected to remain
valid at these voltages. The breakdown point has been empirically determined in a trivial
device (at B = 0 mT), and is reached when the derivative of the detector IV at VNW = 0 µV
is greater than 10 µS (see Supplementary Figure 4.12a). This regime is represented by the
vertical gray-shaded area in Supplementary Figure 4.11a.
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Figure 4.12: Experimental determination of the reliable biasing regions. (a) Detector current (left axis) and
derivative of the detector current (right axis) as a function of the detector voltage. The detector voltage cut-off
(black dotted line) is determined by the value at which the derivative of the detector current at VNW = 0 µV
reaches 10 µS (blue dashed line). (b) Measured voltage across the nanowire junction (left axis) and derivative
of the measured voltage across the nanowire junction (right axis) as a function of the applied voltage across
the nanowire side of the circuit. The nanowire voltage cutoff is 5 µV larger than the value of the first peak in the
derivative of the measured nanowire voltage (gray dashed line). All data was taken on device NW1 at B = 0.

Phase diffusion in the nanowire junction can also induce a discrepancy between
the position of the transconductance peak and the Josephson radiation extracted using
Eq. (3). The dynamics of this phenomenon are presented in details later in this sup-
plement. The phase-diffusion regime is characterized by a non-linearity between the
applied voltage and the measured voltage across the nanowire junction. Experimentally,
we define this regime by locating the peak in the (low-pass filtered) derivative of the mea-
sured voltage with respect to the applied voltage (see Supplementary Figure 4.12b). Only
data obtained at voltages 5 µV larger than this peak are considered reliable. The excluded
phase-diffusive region occurs at VNW values located in the horizontal gray-shaded area
in Supplementary Figure 4.11a.



4

66
4. OBSERVATION OF THE 4π-PERIODIC JOSEPHSON EFFECT

IN INDIUM ARSENIDE NANOWIRES

4.5.4. THEORY

PROBABILISTIC MODEL OF VOLTAGE BIASED MAJORANA JOSEPHSON JUNCTION

For simplicity, we consider a single conduction channel through the proximitized nano-
wire. In the topological regime, four Majorana states emerge; two near the junction, and
two at the far ends of the wire. Taking into account the overlaps between these Majorana
states [151], one obtains two many-body levels of each parity, with energies of the form

E±,o/e (φ) =±
√
ε2

M ,o/e +ε2 cos2(φ/2) . (4.4)

Here φ is the gauge-invariant phase difference across the junction, ε is a typical cou-
pling energy of the Majorana states near the junction, and εM ,o/e is set by the couplings
of these interior Majorana states to the ones on the wire ends. The phase dependence
exhibits avoided level-crossings at φ = (2n +1)π, with minimum energy splitting εM ,o/e

between the upper and lower branches of the odd or even parity states respectively. We
make the simplifying assumption that the odd and even states have the same energy,
E±(φ) (i.e. that εM ,o/e = εM ). The supercurrent in the lower (ground state; −) or upper
(excited; +) branch is

I±(φ) = 2e

ħ
∂E±
∂φ

≈∓Im sgn[cos
(
φ/2

)
]sin

(
φ/2

)
, (4.5)

where the last formula holds in the limit εM → 0, with Im = eε/ħ. When the junction is bi-
ased by a DC voltage V , the phase differenceφwinds linearly with time, φ̇= (2e/ħ)V . For
sufficiently small bias, the system evolves adiabatically (entirely in the lower branch at
T = 0) and the usual Josephson effect results: the supercurrent oscillates at the Joseph-
son frequency ωJ = (2e/ħ)V . Larger bias voltages can induce Landau-Zener (LZ) tun-
neling [152, 153] between branches at φ = (2n + 1)π. The system can also tunnel from
the upper branch to the continuum at φ = 2nπ, effectively emitting a quasiparticle and
relaxing to the lower branch in the process. In addition, the quantum dynamics of the
junction are affected by thermal relaxation, dephasing, and quasiparticle poisoning pro-
cesses.

The appropriate model for the dynamics of the junction depends on the nature and
strength of the coupling to the external circuit. We assume that this coupling is strong,
and that the external circuit, which can be described classically, frequently measures the
current through the junction. As a result of such a measurement, the junction collapses
into a state of definite current, i.e. into either the upper or lower branch, E±(φ). Moti-
vated by this reasoning, we describe the instantaneous state of the junction by a random
variable ζ=±1, which labels the branches. LZ tunneling between branches is described
by the transition probability

P (ζ→−ζ) = p0(V ) = exp(−V0/V ) (4.6)

whenever φ crosses (2n +1)π, where V0 ≈ 4πε2
M /eε is the LZ voltage scale and V is the

instantaneous voltage across the junction. Tunneling to the continuum is described by
a transition probability of the same form [123, 154],

P (ζ=+1 → ζ=−1) = p1(V ) = exp(−V1/V ) (4.7)
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whenever φ crosses 2nπ, where V1 = 2π∆NW(1−p
τ)2/e

p
τ is another voltage scale. We

ignore thermal relaxation of the junction state, since the associated timescale is large rel-
ative to an oscillation period. Quasiparticle poisoning is described by a constant rate Γq

for transitions from ζ→−ζ (independent ofφ). Although these approximations are dras-
tic, we expect our results to be qualitatively correct as long as decoherence is fast enough
relative to other timescales. The opposite limit of very slow decoherence is discussed in
[151]. Effective discrete Markov models such as ours have been used to describe the
non-adiabatic dynamics of Majorana bound states in the past, for instance by [123].

POWER SPECTRUM FOR FIXED JUNCTION VOLTAGE (NO EXTERNAL CIRCUIT )

We first study the dynamics of our simplified model when the Majorana junction is bi-
ased by a constant external voltage V > 0, so that the phase difference across the junction
increases linearly with time; φ(t ) = φ0 + (2e/ħ)V t . In this case, one can obtain an ana-
lytical result for the power spectral density of the supercurrent noise. The supercurrent
branch of the system changes randomly due to LZ tunneling every time φ passes an odd
multiple of π, but we temporarily ignore tunneling to the continuum.

The supercurrent power spectral density (PSD) is defined as

S I (ω;V ,V0) = lim
t f →∞

1

t f

∫ t f

0
dt

∫ t f

0
dt ′

〈
I (t )I (t ′)

〉
e iω(t−t ′) (4.8)

where I (t ), the supercurrent at time t , is a random variable due to LZ tunneling with
associated voltage scale V0. We show later in this Supplement that

S I (ω;V ,V0) =
(ħI 2

m

eV

)
F

( ħω
2eV

,
V

V0

)
(4.9)

where F (x, y) is the scaled PSD,

F (x, y) =
[

x2(1+cos2πx)

π(x2 −1/4)2

][
1− (1−2e−1/y )2

1+ (1−2e−1/y )2 −2(1−2e−1/y )cos2πx

]
. (4.10)

Note that x is simply the frequency ω measured in units of the Josephson frequency
ωJ = (2e/ħ)V . The function F (x, y) is plotted in Supplementary Figure 4.13 and Supple-
mentary Figure 4.14. We draw attention to the fact that, for V between ∼ V0 and ∼ 2V0,
the spectral density is broad but has a maximum at a frequencyω∗ intermediate between
ωJ and ωJ /2.
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Figure 4.13: Scaled spectral density. The scaled spectral density F (x, y), defined in Eq. (4.10), is plotted versus
x for specified values of y . The variable x is frequency measured in units of Josephson frequencyωJ = (2e/ħ)V ,
while y =V /V0 is the ratio of the bias voltage to the characteristic LZ tunneling voltage. At small bias V /V0 ¿ 1,
the PSD exhibits a sharp peak atω=ωJ . Over an intermediate bias range V /V0 ∼ 1−2, the PSD broadens, with
the maximum gradually moving from ω = ωJ to ω = ωJ /2. Finally, for large bias V /V0 À 1, the PSD becomes
sharply peaked at ω=ωJ /2. Note that the peaks for y = 0.2 and 20 extend far beyond the range of the plot.
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Figure 4.14: Scaled spectral density over a larger range. Same linecuts of F (x, y) as in Supplementary Fig-
ure 4.13, but plotted over a larger range of x. The PSD is clearly peaked at all integer multiples of the Josephson
frequency, ω= nωJ . However, the weight of these peaks decreases rapidly with both increasing n and increas-
ing y ; even the n = 2 peak is negligible by y = V /V0 ≈ 1.5. The dependence on y is understood as follows:
for V ¿ V0, the dynamics are essentially adiabatic, and the peaks at ω= nωJ come from higher harmonics in
the expansion of the supercurrent I (φ) ∼ Im sgn[cos

(
φ/2

)
]sin

(
φ/2

)
, which changes abruptly from +Im to −Im

as φ crosses π. When V ≥ V0, on the other hand, LZ transitions between the branches smooth the effective
supercurrent-phase relation and wash out these higher harmonics. In the limit V À V0, the system tracks a
smooth 4π-periodic I (φ) ∼ sin

(
φ/2

)
, leading to the sharp peak at ω=ωJ /2, without any higher harmonics.
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The above results are valid in the regime V ¿ V1, where V1 is the voltage scale for
tunneling to the continuum (Eq. (4.7)). The effect of finite V1 on the dynamics of a per-
fectly 4π-periodic bound state (corresponding to V0 = 0) has been studied in detail by
Houzet et al. [123]. Eq. (14) in their paper gives the PSD obtained by solving an effective
discrete Markov model very similar to ours, but with V0 = 0 and V1 finite. Their result
may be compared with our Eqs. (4.9) and (4.10), which is for V0 nonzero and V1 → ∞.
Qualitatively, large but finite V1 > V broadens the ωJ /2 peak in Figs. 4.13 and 4.14, as it
provides an additional decay channel for the effective 4π-periodic state. When V & V1,
the ωJ /2 peak is strongly suppressed because the junction transitions out of the upper
branch at φ = 2nπ with high probability. Therefore, the ideal PSD S I (ω) exhibits a clear
peak at half the Josephson frequency only in the voltage range 2V0 .V <V1.

MODELING THE JUNCTION ENVIRONMENT: EQUIVALENT CIRCUIT
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Figure 4.15: Circuit diagram. Physical circuit parameters are: DC source voltage Vs , resistances r,RNW ,R,
and capacitances C ,Cc . V ,Vc ,Ṽ1,Ṽ2 are time-dependent voltages across the indicated circuit elements. The
current source In2 describes Johnson noise of the resistance R; current source In describes the combined
Johnson-Nyquist noise of resistances RNW and r . Note that here, RNW represents the sub-gap resistance in the
relevant voltage range, and is in general larger than the normal-state resistance of the nanowire.

We model the dynamics of the nanowire Josephson junction, along with its RF environ-
ment, via the following equivalent circuit (this corresponds to the left half of Fig. 4.1b
in the main text), which includes Johnson-Nyquist noise current sources for the vari-
ous resistances. The detector part of the circuit (right half of Fig. 4.1b) is not modeled
explicitly; the capacitive coupling via Cc of the emitter and detector decouple them at
low-frequencies, and we assume that any high-frequency feedback from the detector
can be absorbed into a renormalization of the effective environment capacitance C . The
measured noise power spectral density at the detector is approximated by the PSD of the
voltage Vc (t ) across the capacitor C .

First consider a standard Josephson tunnel junction in the non-topological regime
(we will treat the topological case in the next section). The phase difference φ(t ) across
the ideal Josephson junction element obeys

dφ

dt
= 2e

ħ V (t ) (4.11)
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and the supercurrent through the junction is given by

I J (t ) = I0 sinφ(t ) . (4.12)

The current sources In and In2 represent white Gaussian noise with zero mean and au-
tocorrelation

〈In(t2)In(t1)〉 = 2kB T

(
1

r
+ 1

RNW

)
δ(t2 − t1) , 〈In2(t2)In2(t1)〉 = 2kB T

R
δ(t2 − t1) (4.13)

respectively, where T is the effective noise temperature (assumed to be the same for
all resistors). Note: if one introduces independent noise current sources Ina , Inb for
resistors r and RNW, only the sum Ina + Inb appears in the equations of motion, and
In = Ina + Inb has the specified autocorrelation function.

The quantities of interest are the instantaneous current I (t ), voltage V (t ) across the
junction, and voltage Vc (t ) across capacitor C . It is convenient to describe the circuit
dynamics in terms of dimensionless variables. If we define

Reff = (1/r +1/RNW)−1

ω0 = 2eI0Reff/ħ
τ=ω0t

v =V /ReffI0

vc =Vc /RI0

vs =Vs /r I0

in = In/I0

in2 = In2/I0

Q2 =ω0ReffC = 2eI0R2
effC /ħ

α= Reff/R

γ= 2C /Cc

Γ= 2ekB T /ħI0,

(4.14)

then the equations of motion take the form (derivations are shown later in this Supple-
ment)

dφ

dτ
= v ,

dv

dτ
=Q−2

[
(1+γ)(vs − v − sinφ+ in)− vc + in2

]
,

dvc

dτ
=αQ−2

[
vs − v − vc − sinφ+ in + in2

]
,

(4.15)

where in , in2 represent white Gaussian noise with zero mean and autocorrelation

〈in(τ2)in(τ1)〉 = 2Γδ(τ2 −τ1) ,

〈in2(τ2)in2(τ1)〉 = 2αΓδ(τ2 −τ1) .
(4.16)
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The system of stochastic differential equations Eq. (4.15) describes a nonlinear sto-
chastic process in the three dimensional state space spanned by the variables φ, v and
vc . We can gain insights into the properties of typical solutions by studying the attractors
of the underlying deterministic process,

dφ

dτ
= v ,

dv

dτ
=Q−2

[
(1+γ)(vs − v − sinφ)− vc

]
,

dvc

dτ
=αQ−2

[
vs − v − vc − sinφ

]
,

(4.17)

i.e. the zero temperature limit of Eq. (4.15). For given parameters (α,γ,Q, vs ), the solu-
tion to Eq. (4.17) with initial condition (φ, v, vc ) defines a map

fτ : (φ, v, vc ) 7→ (φ(τ), v(τ), vc (τ)). (4.18)

We identify the attractors and their basins of attraction by numerically evaluating fτ for
large τ. The results are plotted in Figs. 4.16 and 4.17 for various parameter values. As in
the simpler RCSJ model, the attractors of Eq. (4.17) come in two varieties: zero-voltage
attractors, in which v = vc = 0 and φ = φ∗ is constant, and a nonzero-voltage attractor,
in which v > 0 and the phase winds. We will call these 0 and 1 states for brevity.

The low-temperature, noisy dynamics of the system can be understood in terms of
diffusive motion around an attractor in state space, together with intermittent noise-
induced transitions between the attractors [155]. We identify a thermally activated phase
diffusion regime at low bias voltages, vs < vs1, in which the measured average voltage v̄
is entirely due to the difference in transition rates for thermally activated φ∗ → φ∗+2π
and φ∗ → φ∗−2π processes. At intermediate bias, vs1 < vs < vs2, the dynamics is more
complicated, with the possibility of thermally activated transitions between coexisting 0
and 1 states. In this switching regime, the measured v̄ can be interpreted as a weighted
mean of the average voltage in the 1 state and the phase diffusion voltage. Finally, for
vs > vs2, the dynamics reduces to small thermal fluctuations around the 1 state.

We conclude from this analysis that, when vs < vs2, the frequency of radiation emit-
ted by the junction is not simply related to the Josephson frequency ωJ = (2e/ħ)V . On
the other hand, when vs > vs2, the dynamics of the external circuit does not play a ma-
jor role, and the emitted radiation faithfully represents the dynamics of the junction (we
verify this assertion by numerically solving the circuit equations—see Fig. 4.4 in the main
text and Supplementary Figure 4.21 below).

In the Γ¿ 1 limit, vs2 ≈ 1, since this is the bias voltage at which the 0 state attractors
vanish. For parameter values Q ∼ 1.1, α ∼ 4.6, and γ ∼ 0.05, we find that vs1 ≈ 0.58 (see
Supplementary Figure 4.16). For larger Γ, the threshold bias vs2(Γ) may be estimated as
the value of vs above which dv̄

/
dvs ≈ 1. In general, vs2(Γ) > vs2.



4

72
4. OBSERVATION OF THE 4π-PERIODIC JOSEPHSON EFFECT

IN INDIUM ARSENIDE NANOWIRES

-2π -π 0 π 2π
-1.0

-0.5

0.0

0.5

1.0

ϕ

v

vs = 0, vc = 0

-2π -π 0 π 2π
-1.0

-0.5

0.0

0.5

1.0

ϕ

v

vs = 0.5, vc = 0

-2π -π 0 π 2π
-1.0

-0.5

0.0

0.5

1.0

ϕ

v

vs = 0.6, vc = 0

-2π -π 0 π 2π
-1.0

-0.5

0.0

0.5

1.0

ϕ

v

vs = 0.95, vc = 0

Figure 4.16: Basins of attraction in the non-topological case. Basins of attraction of Eq. (4.17) on a vc = 0
slice through state space, for various values of dimensionless bias voltage vs . Other dimensionless parameters
are fixed at Q = 1.1,α = 4.6,γ = 0.05 (these are the approximate experimental values). The blue and orange
regions are stable manifolds of 0 state attractors; every point in such a region flows to the same 0 state. Two
0 state attractors are shown (black dots). The white region is the stable manifold of the 1 state; every point
in this region flows to the same periodic 1 state trajectory (not shown here). Note that the state space and all
attractors are 2π-periodic in φ.
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Figure 4.17: Non-topological 1 state attractor. Trajectories of the 1 state attractor for various values of di-
mensionless bias voltage vs , in the non-topological case Eq. (4.17). The two panels show projections of the
attractors onto the (φ, v) and (vc , v) planes, respectively. As is clear from the left panel, φ increases by 2π over
an orbital period. Other dimensionless parameters are fixed at Q = 1.1, α = 4.6, and γ = 0.05 (these are the
approximate experimental values). Note that, for these parameter values, the 1 state is only stable for vs & 0.58
(for smaller vs , all initial points flow to a 0 state).



4

74
4. OBSERVATION OF THE 4π-PERIODIC JOSEPHSON EFFECT

IN INDIUM ARSENIDE NANOWIRES

CIRCUIT EQUATIONS IN THE TOPOLOGICAL REGIME

In the topological regime, the Josephson current relation Eq. (4.12) is replaced, in our
model of the junction, by

I J (t ) = Im ζ(t )sgn[cos
(
φ(t )/2

)
]sin

(
φ(t )/2

)
. (4.19)

Here ζ=±1 is a random variable that accounts for LZ tunneling, as well as tunneling to
the continuum, as discussed previously. The critical current Im of the Majorana junction
replaces I0, the critical current of the trivial junction (the definitions in Eq. (4.14) are
modified accordingly).

As a result of this replacement, the dimensionless circuit equations Eq. (4.15) are
modified to

dφ

dτ
= v ,

dv

dτ
=Q−2

[
(1+γ)(vs − v −ζsgn[cos

(
φ/2

)
]sin

(
φ/2

)+ in)− vc + in2

]
,

dvc

dτ
=αQ−2

[
vs − v − vc −ζsgn[cos

(
φ/2

)
]sin

(
φ/2

)+ in + in2

]
.

(4.20)

As before, we may study the stable fixed points (0 state) and limit cycle (1 state) of an
underlying deterministic process. There are two distinct deterministic limits: i) the junc-
tion evolves adiabatically, remaining always in its ground state. This corresponds to
fixing ζ = 1 in Eq. (4.20). In this case the attractors and their basins of attraction are
qualitatively similar to those of the non-topological junction (Figs. 4.16 and 4.17). ii) the
evolution is perfectly non-adiabatic. This corresponds to fixing ζsgn[cos

(
φ/2

)
] = 1 in

Eq. (4.20). An ideal topological junction (in which there is negligible hybridization be-
tween the Majorana states at the junction and those at the far ends of the wire) would be
described by case ii) at any nonvanishing voltage.

The results for case ii) are plotted in Figs. 4.18 and 4.19. The analysis of the noisy dy-
namics in terms of phase-diffusion, switching, and running regimes applies here as well.
In particular, when vs < vs2, it is possible for the junction to radiate at a frequency in-
termediate between ωJ /2 and ωJ , where ωJ = (2e/ħ)V is the Josephson frequency, even
when the junction bound state is perfectly 4π-periodic (V0 → 0 and V1 →∞).
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Figure 4.18: Basins of attraction in the topological case. Basins of attraction of Eq. (4.20) with ζ = +1 on
a vc = 0 slice through state space, for various values of dimensionless bias voltage vs . Other dimensionless
parameters are fixed at Q = 1.1,α= 4.6,γ= 0.05 (these are the approximate experimental values). The blue and
orange regions are stable manifolds of 0 state attractors; every point in such a region flows to the same 0 state.
Two 0 state attractors are shown (black dots). The white region is the stable manifold of the 1 state; every point
in this region flows to the same periodic 1 state trajectory (not shown here). Note that the state space and all
attractors are 4π-periodic in φ.
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Figure 4.19: Topological 1 state attractor. Trajectories of the 1 state attractor for various values of dimension-
less bias voltage vs , in the topological case (Eq. (4.20) with ζ = +1). The two panels show projections of the
attractors onto the (φ, v) and (vc , v) planes, respectively. As is clear from the left panel, φ increases by 4π over
an orbital period. Other dimensionless parameters are fixed at Q = 1.1, α = 4.6, and γ = 0.05 (these are the
approximate experimental values). Note that, for these parameter values, the 1 state is only stable for vs & 0.6
(for smaller vs , all initial points flow to a 0 state).

NUMERICAL SOLUTION OF CIRCUIT EQUATIONS

We numerically integrate the stochastic differential equations describing the circuit us-
ing the first-order Euler-Maruyama method [156]. The update rule with step size δτ is

φ j+1 =φ j + v jδτ ,

v j+1 = v j +Q−2
[

(1+γ)
(
vs − v j −ζ j s(φ j )

)− (vc ) j

]
δτ

+Q−2
p

2Γδτ
[

(1+γ)X1, j +
p
αX2, j

]
,

(vc ) j+1 = (vc ) j +αQ−2
[

vs − v j − (vc ) j −ζ j s(φ j )
]
δτ+αQ−2

p
2Γδτ

[
X1, j +

p
αX2, j

]
,

(4.21)

where s(φ) = sgn[cos
(
φ/2

)
]sin

(
φ/2

)
for the topological junction, and where Xi , j are in-

dependent identically distributed standard normal (mean 0 and variance 1) random
variables. The probabilistic update rule for ζ=±1 takes into account quasiparticle poi-
soning, LZ tunneling between branches, and tunneling to the continuum:

P (ζ j+1 = ζ j ) =


(1−q)(1−p0 j )+qp0 j if cos

(
φ j /2

)
cos

(
φ j+1/2

)< 0,

(1−q)(1−p1 j )+qp1 j if ζ j =−1 and sin
(
φ j /2

)
sin

(
φ j+1/2

)< 0,

(1−q) otherwise,
(4.22)
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where

q = Γq δτ

ω0
p0 j = exp

(
− ṽ0

1
2 (v j + v j+1)

)
, and p1 j = exp

(
− ṽ1

1
2 (v j + v j+1)

)
. (4.23)

Here Γq is the rate of quasiparticle poisoning, and ṽ0 =V0/ReffIm and ṽ1 =V1/ReffIm are
the dimensionless voltage scales for LZ tunneling between branches and to the contin-
uum, respectively.

We estimate the PSD of vc (τ) by applying Welch’s method [157] to the simulated time
series. The result is then averaged over several independent simulations with the same
parameter values. The simulation step size δτ is chosen by requiring that the computed
PSD not change significantly when δτ is made smaller (see Supplementary Figure 4.20).

In the case of a non-topological short junction containing a single open channel with
transmission eigenvalue T (and thus hosting a single Andreev bound state), the update
rules are still given by Eqs. (4.21), (4.22) and (4.23), but with

s(φ) =
(

1+p
1−T

2

)
sinφ√

1−T sin2(φ/2)
, (4.24)

where ṽ0 = V0/ReffI0, and p1 j = 1. In the limit T ¿ 1 with I0 fixed, one has s(φ) ≈ sinφ,
and ṽ0 →∞ (so that p0 j ≈ 0).

S Vc
 (μ

V2 G
H

z-1
)

Figure 4.20: Simulation results with varying step sizes. Estimated PSD of Vc (t ) from simulations using the
Euler-Maruyama update Eq. (4.21) with different step sizes δτ, plotted versus frequency f . These results are for
a trivial tunnel junction (I J (φ) = I0 sinφ); circuit parameters are fixed at r = 2.4kΩ, RNW = 50kΩ, R = 0.5kΩ,
C = 10fF, Cc = 400fF, I 0

NW = 8nA, T = 150mK (recall, however, that only the dimensionless ratios α,γ,Q,Γ
appear in the equations of motion) and Γq = 100MHz. The estimated PSD is essentially independent of sim-
ulation step size for δτ. 0.02 (the deviations at larger δτ are likely due to aliasing of the spectrum above the
Nyquist frequency). Similar results are obtained in the topological case, and for various other circuit parame-
ter values. The simulations that were used to generate Fig. 4.4 and Supplementary Figure 4.21 were performed
with a step size of δτ= 0.02.
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Figure 4.21: Phase diffusion regime. Numerically computed PSD of Vc (t ) for a topological junction with the
indicated voltage scales for LZ tunneling between branches (V0 = 10 µV) and to the continuum (V1 = 100 µV).
This plot corresponds to a zoom in of the lower right corner of Fig. 4.4c (all other circuit parameters are as
specified in the Fig. 4.4c caption). Dashed green and red lines show the frequency of ideal Josephson radiation
corresponding to e? = 2e and e? = e, respectively. The horizontal gray line marks the upper boundary of the
estimated phase diffusion region.

DERIVATION OF POWER SPECTRUM FOR FIXED JUNCTION VOLTAGE

If the Majorana junction is biased by a constant external voltage V > 0, then the phase
difference across the junction increases linearly with time: φ(t ) = φ0 +2πηt , where η =
(2e/h)V . With the choice φ0 =π, the supercurrent at time t is given by

I (t )/Im = ξbηtc cos
(
π(ηt −bηtc)

)
, (4.25)

where bzc denotes the integer part of z, and the random variable ξn = ±1 specifies the
branch during the time interval ηt ∈ [n,n+1), i.e. between two LZ tunneling events. The
probability vector

Xn =
(

x+
n

x−
n

)
=

(
P (ξn =+1)
P (ξn =−1)

)
(4.26)

evolves according to

Xn+1 =
(
1−p p

p 1−p

)
Xn , (4.27)

where p = e−V0/V is the LZ tunneling probability.
The supercurrent power spectral density is defined as

SI (ω;V ,V0) = lim
T→∞

1

T

∫ T

0
dt

∫ T

0
dt ′

〈
I (t )I (t ′)

〉
e iω(t−t ′) (4.28)
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(in this section, T is time rather than temperature). Using Eq. (4.25) and changing inte-
gration variables to τ= ηt ,

S I (ω;V ,V0) = lim
T→∞

I 2
m

η2T

ηT∫
0

dτ

ηT∫
0

dτ′
〈
ξbτcξbτ′c

〉
cos(π(τ−bτc))cos

(
π(τ′−bτ′c)

)
e i (ω/η)(τ−τ′) .

(4.29)
Taking ηT = N to be a positive integer, we can write

S I (ω;V ,V0) = lim
N→∞

I 2
m

ηN

N−1∑
n=0

N−1∑
n′=0

∫ 1

0
dτ

∫ 1

0
dτ′ 〈ξnξn′〉cos(πτ)cos

(
πτ′

)
e i (ω/η)(n+τ−n′−τ′)

= lim
N→∞

I 2
m

ηN

[
N−1∑
n=0

N−1∑
n′=0

〈ξnξn′〉e i (ω/η)(n−n′)
]∣∣∣∣∫ 1

0
dτcos(πτ)e i (ω/η)τ

∣∣∣∣2

. (4.30)

One has ∣∣∣∣∫ 1

0
dτcos(πτ)e i 2πxτ

∣∣∣∣2

=
∣∣∣∣ x(1+e i 2πx )

2π(x2 −1/4)

∣∣∣∣2

= x2(1+cos2πx)

2π2(x2 −1/4)2 . (4.31)

In the remaining term, homogeneity of the random process ξ ensures that 〈ξnξn′〉 =
〈ξn−n′ξ0〉. We define

fn = 〈ξnξ0〉 . (4.32)

Clearly, f0 = 1. For n ≥ 1, we have

fn = P (ξn = ξ0)−P (ξn =−ξ0) . (4.33)

By conditioning on ξn−1,

P
(
ξn =±ξ0

)= (1−p)P
(
ξn−1 =±ξ0

)+pP
(
ξn−1 =∓ξ0

)
. (4.34)

Therefore, f satisfies the recursion

fn+1 = (1−2p) fn . (4.35)

Since f0 = 1, the solution is simply

fn = (1−2p)n . (4.36)

Thus,

lim
N→∞

1

N

N−1∑
n=0

N−1∑
n′=0

〈ξnξn′〉e i 2πx(n−n′) =
∞∑

k=0

〈ξkξ0〉
(
e i 2πxk +e−i 2πxk

)
−1

=
∞∑

k=0
(1−2p)k

(
e i 2πxk +e−i 2πxk

)
−1

= 1

1− (1−2p)e i 2πx
+ 1

1− (1−2p)e−i 2πx
−1

= 1− (1−2p)2

1+ (1−2p)2 −2(1−2p)cos2πx
. (4.37)
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Using Eqs. (4.31) and (4.37) in Eq. (4.30), we obtain

S I (ω= x ·2πη;V ,V0) = I 2
m

2πη

[
x2(1+cos2πx)

π(x2 −1/4)2

][
1− (1−2p)2

1+ (1−2p)2 −2(1−2p)cos2πx

]
. (4.38)

Recalling that p = e−V0/V and η= 2eV /h, this yields Eqs. (4.9) and (4.10).

DERIVATION OF CIRCUIT EQUATIONS

Kirchhoff’s laws, applied to the circuit of Supplementary Figure 4.15, require

I − I J − I1 + In = I2 , I2 − I3 + In2 = I4 , V = Ṽ1 +Vc + Ṽ2 . (4.39)

The current-voltage relations for the linear passive elements are

I = Vs −V

r
, I1 = V

RNW

, I2 =Cc
dṼ1

dt
=Cc

dṼ2

dt
, I3 = Vc

R
, I4 =C

dVc

dt
. (4.40)

The ideal Josephson junction element is described by Eqs. (4.11) and (4.12):

dφ

dt
= 2e

ħ V (t ) , I J (t ) = I0 sinφ(t ) . (4.41)

Using these relations in Eq. (4.39), we obtain

Cc
dṼ1

dt
= Vs −V

r
− I0 sinφ− V

RNW

+ In , (4.42)

C
dVc

dt
=Cc

dṼ1

dt
− Vc

R
+ In2 ,

dV

dt
= dVc

dt
+2

dṼ1

dt
.

Therefore,

C
dV

dt
= (Cc +2C )

dṼ1

dt
− Vc

R
+ In2 (4.43)

=
(
1+ 2C

Cc

)[
Vs

r
−

(
1

r
+ 1

RNW

)
V − I0 sinφ+ In

]
− Vc

R
+ In2

and

C
dVc

dt
= Vs

r
−

(
1

r
+ 1

RNW

)
V − I0 sinφ+ In − Vc

R
+ In2 . (4.44)

Eqs. (4.43) and (4.44), together with Eq. (4.11), constitute the relevant equations of
motion. Expressing them in terms of the quantities defined in Eq. (4.14), we arrive at the
dimensionless equations of motion Eq. (4.15).



5
MULTI-ORBITAL DOUBLE

QUANTUM DOT WITH

SUPERCONDUCTING LEADS

Semiconductor nanowires with serial quantum dots connected to superconducting leads
is a versatile platform with applications in quantum simulation and topological super-
conductivity. In this chapter we explore the interactions of the electron spins in a dou-
ble quantum dot Josephson junction in the multi-orbital regime. We measure Yu-Shiba-
Rusinov states in the weak dot-lead coupling limit and a supercurrent in the strong cou-
pling limit. In a second device, we embed the junction in a SQUID geometry to directly
measure the supercurrent amplitude and direction. As expected from theory for multi-
orbital quantum dot junctions, we find – contrary to single-orbital dots – that the super-
current can change direction within a single charge sector.

This work was performed in collaboration with R. J.J. van Gulik, D. Laroche, A. Pályi, P. Boross, G. Steffensen
and A. Geresdi
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5.1. INTRODUCTION
Quantum dots connected to superconducting leads allow for studying the interaction
between superconductivity and single electron spins. These devices are home to a range
of interesting transport phenomena, such as supercurrent reversal [52, 158], Yu-Shiba-
Rusinov (YSR) states [60–62], Andreev molecules [159–161] and Kitaev chains with topo-
logically protected states [13, 14, 80]. A common method of investigating topological
states, such as Majorana zero modes, is tunnel spectroscopy [87, 162, 163]. When acci-
dental quantum dots are present however, YSR states could mimic Majorana zero modes
[62]. In this chapter, we explore the properties of YSR states and supercurrent in multi-
orbital double quantum dots (DQD). We show that we can distinguish between YSR
states with different electron parities and in different coupling regimes. We furthermore
show that the supercurrent through an S-DQD-S junction can change direction within a
charge sector.
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1 2

(a)

(b) (c) (e) (f)

(d)
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Φ

VL VRVMP1 P2 VL VRVMP1 P2

200 nm2 μm 100 nm2 μm

Figure 5.1: Device layouts with device 1 in a-c and device 2 in d-f. (a) Circuit diagram of the voltage biased
S-DQD-S device. Green circles are quantum dots and the double lines indicate superconducting leads. The
charge potential is controlled by P1,P2 and the tunnel barriers by VL,VM,VR. (b,c) Color-enhanced electron
micrograph of the full device. Superconducting Al shell of the nanowire is blue, the bare nanowire is green, Au
gates and contacts are yellow. (d) Circuit diagram of the current biased S-DQD-S device with phase control.
The superconducting (double lines) reference arm of the SQUID contains a short Josephson junction, gated by
Vref. (e,f ) Color-enhanced electron micrograph of the full device. Superconducting parts of the device (Al shell
of the nanowire and the NbTiN strips) are blue, the bare nanowire is green, Au gates are yellow..

The measurement data come from two different devices: a stand-alone nanowire
double-quantum-dot (DQD) Josephson junction without direct control over the phase
(Device 1) and a nominally identical DQD junction, that is part of a superconducting
interference device (SQUID) that allows direct control over the phase (Device 2). Fig-
ure 5.1a shows the circuit of Device 1. Two quantum dots are placed in series (green
discs) and are capacitively coupled to electrostatic gates (P1,P2) that control the charge
potential. Three additional gates (VL ,VM ,VR ) control the tunnel couplings from the left
lead to dot 1, between dot 1 and 2 and dot 2 to the right lead, respectively. The device is
voltage biased with Vbias and we measure the voltage drop over the junction V in a four-
terminal setup. Device 2 has a nominally identical DQD junction, that has in parallel an
SNS junction with a Josephson energy tunable by an electrostatic gate Vref (Figure 5.1d).
This device is biased with a current source Ibias.
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Both devices are using InAs nanowires with an epitaxial aluminum shell. The Al shell
is removed where the DQD is formed by a selective wet chemical etch. The nanowires
are contacted by depositing metal leads at the ends of the nanowires, made of Ti/Au
(device 1, Figure 5.1b) or NbTiN (device 2, Figure 5.1e). A 10 nm dielectric layer of AlOx

is deposited by atomic layer deposition and Ti/Au electrostatic gates are evaporated on
top of the normal part of the nanowire to define the DQD. On device 1 the gates are
50 nm wide, 150 nm tall and evaporated using standard physical vapor deposition, under
a perpendicular angle to the substrate (Figure 5.1c). We use a multi-angle evaporation
technique to conformally cover the nanowire with approximately 50 nm tall gates for
device 2 (Figure 5.1f, reducing the likelihood of resist collapse that is common with high-
aspect-ratio nanostructures. See section 3.1.4 for more information on this technique).

5.2. YSR STATES
The DOS of a BCS superconductor has an energy gap ∆, where no quasiparticle states
are allowed. When coherently coupled to a single spinful electron, the interplay between
the electron and the superconductor changes the DOS. Excitations between the doublet
and singlet state of the QD will appear as in-gap states with an energy that depends on
the electrostatic potential, spin of the electron and the coupling strength to the super-
conductor. These states are known as Yu-Shiba-Rusinov (YSR) states ζ (sometimes also
called Andreev levels [62]). We investigate these YSR states in Device 1, where one of the
two dots has a tunable coupling to a superconducting lead and the other dot is tuned
off-resonance and is used as a tunnel probe for the QD-S system.
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Figure 5.2: (a) Charge stability diagram of DQD. The peaks in current are YSR states taken at Vb = −140µV.
The white vertical indicates the position of the scan shown in subfigure b. (b) Potential energy of the YSR dot
versus Vb . YSR states (ζ) with an even-odd distinction are visible, offset by ∆= 130µV and reaching up to ζ=∆
at Vb = 2∆.

We first establish that both dots are in Coulomb blockade by measuring a charge sta-
bility diagram (see Figure 5.2a). The diagram clearly shows a characteristic honeycomb
pattern and we extract charging energies U1 = 1.2meV and U2 = 1.4meV (see Supple-
mentary information in Chapter 5.4). Note however some unusual extra lines near the
triple points. These are due to the scan being performed while the Al is in the super-
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conducting state, implying that the lines are from YSR states instead of from Coulomb
diamonds as would be the case in the normal state. Since YSR states are correlated to
the expected charge of the quantum dots, the sub-gap excitations from the YSR states
qualify as a good alternative for a qualitative stability diagram. The diagram is obtained
at a voltage bias Vb =−140µeV just above the superconducting gap ∆= 130µeV.

The inter-dot coupling is tuned to τ = 7µeV such that it functions as a tunnel probe
only and the interaction with the YSR dot is minimal (see supplementary figure 5.9 and
table 5.1). Figure 5.2b shows a tunnel-spectroscopy scan of the YSR dot, in this case dot
2, using dot 1 as the tunnel probe. It is important to note here that the dot used as a
tunnel probe is also connected to a superconducting lead. The DOS of the tunnel probe
itself are convolved with the DOS of what it measures, in this case the YSR states in dot
2. This results in a shift of the YSR spectrum by ∆, which is clearly visible in Figure 5.2b.
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For this scan, the YSR dot is weakly coupled to the superconducting lead and the
states are visible as sharp peaks in conductance with an dependence on the potential
controlled by the plunger gate. The shape of the YSR state depends on the parity of the
quantum dot. At P2 ≈ 55mV the quantum dot has a singlet ground state |S〉 and the
doublet state energy becomes approximately equal to the superconducting gap and so
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the YSR state goes to ∆. Increasing P2 lowers ζ in energy and crosses zero at the charge
degeneracy point. Now in the doublet ground state |D〉 sector, ζ forms a sort of arc and
does not quite reach ∆. When a metallic, instead of a superconducting, probe would
be used, the positive and negative arcs would form a loop structure around V = 0. The
maximum value of ζ in the doublet ground state sector depends on the coupling to the
superconductor ΓS , higher coupling means higher maximum ζ [60–62]. Above the YSR
states we see additional states, most likely from the DOS of the probe dot.

We verify the singlet and doublet nature of the ground state by taking magnetic field
dependent scans in both parity states. When the dot is in a singlet ground state, two
excitations should be visible due to lifting of the degeneracy of the excited doublet state.
When the dot is in a doublet ground state however, only one transition will be visible.
The probability for the doublet-to-singlet transition that requires a spin flip, is too low
to give measurable resonance line. Figure 5.3a illustrates the different excitations for
doublet and singlet ground states. In Figure 5.3b a scan is shown with a doublet and
singlet ground state visible, it shows the positions where take magnetic field dependent
scans with white lines.
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Figure 5.4: (a) Qualitative phase diagram of YSR QD. In the orange region the ground state is a doublet con-
figuration and the white area represents a singlet ground state. The black lines roughly indicate the position
in this parameter space of the scans in the subfigures b-f (b-f ) Tunnel spectroscopy scans of the YSR QD with
increasing ΓS , where a has a weakest and f the strongest coupling to superconducting lead. The gate voltages
VL of b-f are −770 mV, −760 mV, −750 mV, −745 mV, −705 mV respectively. The conductance is numerically
derived.

When we follow the doublet ground state sector in magnetic field (Figure 5.3d), we
see the lowest resonance moving to lower energy but no splitting. This is in contrast to
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the scan in the singlet ground state sector, where we see a clear splitting (Figure 5.3e). By
extracting the energy difference of the two resonance lines and plotting it versus mag-
netic field, we extract a g-factor of 8 (Figure 5.3c). The decrease in energy with increasing
magnetic field that is observed for both sectors is expected from a decrease in ∆.

Competition between several energy scales determine if a singlet or a doublet ground
states is energetically favorable: ∆, ΓS , U and the detuning of the dots ε. Of these scales,
we have easy control over ΓS through an electrostatic gate. We use this control to reach
different superconducting coupling regimes. Figure 5.4 shows five datasets with increas-
ingly higher ΓS . In Figure 5.4a we plot a qualitative phase diagram of the YSR QD and
estimate the positions in this parameter space of the scans in the other subfigures. We
do this by judging the shape of the YSR states as we increase the coupling to the super-
conductor ΓS with VL . The scan with the lowest coupling has ΓS ¿ U , as the YSR state
touches the gap even in the odd sector. In the intermediate coupling regime (Figure 5.4d)
we clearly see ζ crossing zero energy at Vb = ∆. Moving to the last subfigure, we find ζ

never crosses zero and we conclude that here ΓS >U [62, 69].

5.3. SUPERCURRENT
Another key phenomenon of the S-DQD-S device, is supercurrent. In an S-N-S Joseph-
son junction, Cooper pairs are carried by Andreev bound states from one lead to another
and allow a supercurrent to flow. When a quantum dot with U > ∆ replaces the normal
area, Coulomb repulsion and the level structure of the dot strongly affects the behavior
of the supercurrent. The parity of single-level quantum dots determine the direction of
the supercurrent: positive for an even and negative for an odd parity (see Ch. 6) [52, 158].
This also holds for S-DQD-S junctions, the total parity of the DQD dictates the sign of the
supercurrent [53]. Here we discuss the multi-level regime, where the level spacing of the
dot is small enough for higher-lying orbitals to also play an important role in transport
and the simple even-odd rule is no longer universal.

With the addition of the extra levels, determining the sign of the supercurrent be-
comes more involved. Contributions from all levels with an appreciable tunneling prob-
ability have to be considered. Besides the breakdown of the even-odd rule, this can also
lead to sign change within a charge sector. This was first observed in a single dot junction
by van Dam et al. [52].

Figure 5.5a shows a minimal system to describe a multi-level system. In left dot we
consider two levels with lead couplings tL,1, tL,2, while the right dot is single-level. Figure
5.5b shows a possible path the electrons can take from the left lead to the right. It is split
up in the spin-up (yellow) and spin-down (green) part of a Cooper pair. Counting the
number of times a spin encounters the same spin on its path Nσ, where σ is the spin,
then determines the supercurrent sign for this path by evaluating (−1)N↑+N↓ 1. Following
these simple rules for each path and adding summing all paths with their corresponding
amplitudes, gives the total current. A numerical simulation is shown in Figure 5.5d. On
the horizontal axis, the energy of both dots is changed simultaneously. The amplitudes
of the paths depend on many electrostatic parameters of the system and determining all
of them is not an easy task. Therefore this simulation serves as an example using a min-

1This approach is developed by Gorm Steffensen.
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Figure 5.5: (a) Schematic drawing of a minimal multi-orbital S-DQD-S system. Leads are shown in blue and
quantum dot levels in horizontal black lines. The arrows denote the relevant couplings. (b,c) An example
configuration with an even number of electrons. The colors denote the spin direction, with yellow for up
and green for down spin. Two situations are shown, corresponding to two different parts of a charge sector,
resulting in different supercurrent signs. (d) Numerical simulation of the supercurrent in a multi-orbital DQD
junction, with sign flips within a charge sector.

imal model that qualitatively reproduces key features of the multi-orbital supercurrent
characteristics.

Figure 5.6a shows a supercurrent stability diagram of the multi-level DQD of device
1, without explicit control over the phase. The data is taken at V = 0, with the color
scale representing differential current (with a 2µV bias excitation). The abrupt changes
in amplitude coincide with boundaries of charge sectors.

To investigate the multi-level nature of this DQD, we measure the supercurrent more
carefully along two horizontal linecuts, shown in yellow (Fig. 5.6b) and red (Fig. 5.6c).
In the lower panels, we plot an estimate of the critical current magnitude |IC |. This is
obtained by fitting the I (V )-curve for each plunger value with the finite temperature so-
lution of Ivanchenko and Zil’bermann [42] for Josephson current. Note that is only an es-
timate, since we do not have an independent measure of the environmental impedance.

Looking at the evolution of the IC with plunger voltage, we see a pattern very similar
to that of Fig. 5.5d. Note that since we have no control over the phase we cannot directly
measure a negative IC . One might expect the critical current magnitude to still go to zero
when changing sign, which is not the case in the data. This is likely due to temperature
broadening effects, smoothing the transition.

To directly measure the sign of the supercurrent we switch to device 2, where we
measure the switching as a function of phase over the junction. The DQD junction is
connected in parallel with a regular S-N-S Josephson junction with a Josephson current
much larger than that of the part of the S-DQD-S junction, thereby creating an asymmet-
ric SQUID (see Fig. 5.1d,e). By applying a flux through the loop area we control the phase
over the S-DQD-S junction (see section 2.3.1). To measure the switching current, we ap-
ply a current-bias ramp and monitor the measured voltage over the junction. When the
voltage switches from zero to a finite value, we record the current bias which is equal to
the switching current (see section 3.2.2).

In Figure 5.7a we plot a stability diagram with the IDQD, the switching current of the
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Figure 5.6: (a) Supercurrent charge stability diagram. Data is differential current from a 2µV voltage-bias lock-
in excitation at 78Hz. (b,c) Upper panels: differential current as a function of V versus P1. Lower panels:
extracted IC magnitude estimate from a fit to the finite temperature solution of Ivanchenko and Zil’bermann
[42].

DQD. We remove the contribution of the reference arm in the SQUID by recording two
datasets, with a π phase difference between them. We then get the DQD component by
taking half of the difference of IDQD:

IDQD = (ISW,0 − ISW,π)/2, (5.1)

where ISW,n is the average of around 20 switching currents. It is important to note that
this methods is only valid when the CPR is sinusoidal.

A more reliable method is to measure the entire CPR for each plunger value and ex-
tract IDQD, Iref from fitting each CPR. In the upper panel of Figure 5.7c, we show the
measured SQUID CPR for every point along P2 of the blue line in subfigure a. Note that
here, every pixel in this panel is an average of around 20 switching currents. Plotted in
the lower panel, are the extracted Iref and IDQD. For the fits we assume a sinusoidal CPR
and find an almost identical IDQD when we compare it to the linecut in the upper panel
of Figure 5.7b, where we used Equation 5.1 – suggesting that the CPR is indeed sinu-
soidal. In Figure 5.7d, we plot the fitted CPR on top of all the switching currents for two
values of P2, highlighted in subfigure c in green and red.

Note that Iref is not completely constant, but increases in amplitude whenever the
magnitude of IDQD increases. This is because the two junctions are part of each other’s
environmental impedance. When the DQD has a higher switching current it has a lower
impedance and thus less voltage fluctuation which results in a higher switching current
in the reference junction.

In conclusion, we have investigated the interplay of superconductivity with the spin
configuration of electrons in a DQD. We have shown the presence of YSR states and
were able to confirm the distinction between doublet and singlet ground states using
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Figure 5.7: Device 2 multi-orbital supercurrent results. (a) Supercurrent charge stability diagram, obtained
from (ISW,0−ISW,π)/2. (b) Upper panel: vertical linecut (blue line in a) with sign changes inside charge sectors.
The black dashed line is IDQD extracted from a fit to the full CPR in subfigure a. Lower panel: vertical linecut
one charge state further (orange line in a). (c) Upper panel: full CPR of the blue vertical line in a. Lower panel:
Iref and IDQD extracted from fitting a sinusoidal function to the CPR. The 1σ error bars are too small to be
noticeable. Two best fit examples are shown in d, marked in green (upper panel) and red (lower panel).
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an magnetic field. We have furthermore shown control over the coupling to the leads. In
addition, we have investigated the influence of the multi-orbital nature of the DQD on
the supercurrent through the S-DQD-S junction, both without and with control over the
phase.

5.4. SUPPLEMENTARY INFORMATION
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Figure 5.8: Normal-state characterization scans. (a) Coulomb diamonds of dot 1. (b) Coulomb diamonds of
dot 2. (c) Charge-stability diagram.

Electrostatic parameters from device 1 are estimated both in the normal state and su-
perconducting state. We quench superconductivity with an out-of-plane magnetic field
B⊥ = 0.5T. We start by extracting the lever arms α11 and α22 from Coulomb diamond
scans in Figure 5.8a,b. Next we find the cross-coupling lever arms α21 (P2 acting on dot
1) andα12 (P1 acting on dot 2) from the stability diagram in Figure 5.8 (see Table 5.1). We
assume that the lever arms stay constant in magnetic field and throughout the experi-
ments. This is almost certainly not entirely accurate when changing the dot’s potentials
over a large range. However, in this chapter we are mostly concerned about order of
magnitude estimates of these parameters. Therefore this approximation is sufficient.

In the data shown in Figures 5.2, 5.3 and 5.4, one dot is used as a tunnel probe for
the other dot. Hence, it is important that the coupling between the dots is much smaller
than the other energy scales ∆ and U . Figure 5.9 shows avoided crossings at the triple
points of normal-state stability diagrams, at tunnel gate values VM equal to those used
in Figures 5.2, 5.3 and 5.4. We extract the inter-dot coupling τ using a model described
by a one-electron Hamiltonian [56]

Hcoupling =
(
ε1 τ

τ ε2

)
, (5.2)

where εi is the on-site energy of dot i . Extracted tunnel couplings are listed in table 5.1
together with the other extracted parameters for device 1.

Device 2 is the same device as used for Chapter 6, but in a different plunger gate
range. Therefore the electrostatic parameters are very similar. See 6.1 the electrostatic
parameters extracted for Chapter 6.
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Figure 5.9: Tunnel couplings corresponding to (a) Figure 5.2 (b) Figure 5.3 (c) Figure 5.4.

Table 5.1: Electrostatic parameters of the device 1. τ1,τ2,τ3 correspond to Figures 5.2, 5.3 and 5.4 respectively.

Quantity Extracted value

U1 1.2 meV
U2 1.4 meV
U ′ 0.2 meV
α11 0.47
α12 0.074
α21 0.064
α22 0.461
Cm 0.018 fF

C1(2) 0.132 fF (0.116 fF)
CP1(P2) 0.043 fF (0.050 fF)

Cl (r ) 0.07 fF (0.048 fF)
τ1 7µeV
τ2 18µeV
τ3 9µeV
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QUANTUM DOTS

D. Bouman, R. J. J. van Gulik, G. Steffensen, D. Pataki, P. Boross,
P. Krogstrup, J. Nygård, J. Paaske, A. Pályi, A. Geresdi

Serial double quantum dots created in semiconductor nanostructures provide a versatile
platform for investigating two-electron spin quantum states, which can be tuned by elec-
trostatic gating and external magnetic field. In this work, we directly measure the su-
percurrent reversal between adjacent charge states of an InAs nanowire double quantum
dot with superconducting leads, in good agreement with theoretical models. In the even
charge parity sector, we observe a supercurrent blockade with increasing magnetic field,
corresponding to the spin singlet to triplet transition. Our results demonstrate a direct
spin to supercurrent conversion, which can be exploited in hybrid quantum architectures
coupling the quantum states of spin systems and superconducting circuits.

This chapter has been published as arXiv:2008.04375.
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Semiconductor quantum dots, where the orbital and spin states of single localized
electrons can be controlled [164], are one of the leading platforms for quantum infor-
mation processing [165]. Specifically, double quantum dots (DQDs) connected in series
[58] became the preferred physical implementation of spin [166], and spin-orbit quan-
tum bits [167] in low-dimensional semiconductor nanodevices, such as heterostructures
hosting a two-dimensional electron gas or semiconductor nanowires. In these devices,
the readout of the spin quantum state relies on spin-dependent single electron tunnel-
ing processes, which then enable charge readout via direct electronic transport [164],
charge sensing techniques [168], or dipole coupling to a microwave resonator [169, 170].

In a superconducting nanodevice, the dissipationless supercurrent IS at zero voltage
bias is driven by the quantummechanical phase difference ϕ up to a maximum ampli-
tude, IC, the critical current [103]. In the lowest order of tunneling, the supercurrent-
phase relationship (CPR) [171] is sinusoidal, IS(ϕ) = IC sin

(
ϕ

)
, which describes the co-

herent transfer of single Cooper pairs through the weak link. When the weak link is a
non-magnetic tunnel barrier, a zero phase difference is energetically favorable in the
absence of supercurrent, which is described by a positive critical current, IC > 0. In
contrast, a negative coupling yields a supercurrent reversal, IC < 0, often denoted a π
junction due the π phase shift in the CPR. This negative coupling has been observed
in ferromagnetic weak links [172, 173], out-of-equilibrium electron systems [174] and
semiconductor quantum dot junctions [175, 176].

The dependence of the critical current on the spin- and charge state of a DQD has
also been addressed theoretically [74, 177–181], and the recent progress in materials sci-
ence of superconductor-semiconductor hybrid nanostructures [89] enabled measure-
ments of the amplitude of the critical current as well [182, 183], in correlation with the
charge states of the DQD.

In this Letter, we report on direct measurements of the CPR through a DQD weak
link formed by an electrostatically gated InAs nanowire. By employing a phase-sensitive
measurement scheme, where the DQD is embedded in a superconducting quantum in-
terference device (SQUID), we characterize the full CPR of the DQD, enabling a sign-
ful measurement of IC. The direct observation of the supercurrent reversal in the to-
tal charge number boundaries allowed us to identify the even and odd occupied states.
Finally, the magnetic-field dependence of the supercurrent amplitude in the even oc-
cupied state reveals the presence of a supercurrent blockade in the spin triplet ground
state, in agreement with numerical calculations.

We built our device (Fig. 6.1) from an approximately 7µm long InAs nanowire grown
by molecular beam epitaxy, and in-situ partially covered by a 6nm thick epitaxial alu-
minum shell with a typical superconducting gap of∆≈ 200µeV [89, 184]. We formed two
segments with the aluminum layer selectively removed where the DQD and the reference
arm would be defined. Next, we created the SQUID loop from a sputtered NbTiN super-
conducting film, and covered the device with a 10 nm thick AlOx dielectric by conformal
atomic layer deposition. Finally, 40nm wide and 50nm thick Ti/Au gates (in yellow in
Fig. 6.1a) were evaporated under three angles to ensure a conformal coverage around the
wire (schematically shown in Fig. 6.1b). Five gates defined the DQD (on the right) and
a single gate controlled the reference arm (on the left in Fig. 6.1c). Details on the device
fabrication are shown in the Supplementary Information. All of our measurements were
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Figure 6.1: Device layout and characterization. (a) Color-enhanced electron micrograph of the nanowire DQD
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normal-state characterization with the reference arm depleted. (e) The measurement scheme of the switching
current measurements in the SQUID geometry. (f) Charge stability diagram of the DQD in the normal state at a
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display the corresponding VL range on the horizontal axis.



6

96 6. TRIPLET-BLOCKADED JOSEPHSON SUPERCURRENT IN DOUBLE QUANTUM DOTS

performed in a dilution refrigerator with a base temperature of approximately 30mK.
We first characterize the DQD with the leads driven to the normal state by a large

magnetic field, B⊥ = 0.5T. We measure the differential conductance dI /dV of the DQD
with the reference arm fully depleted (Fig. 6.1d). We control the coupling to the leads
with the gate voltages VBL and VBR, and the interdot coupling is tuned by VC (Fig. 6.1a).
A characteristic honeycomb diagram is plotted in Fig. 6.1f, where the charge occupancy
of the dots (nL,nR) is set by the voltages applied on the two plunger gates, VL and VR.

We perform the CPR measurements with the leads being superconducting and with
the reference arm of the SQUID opened with its electrostatic gate so that it exhibits a
higher critical current than the DQD arm. Due to this asymmetry, the phase drop over
the DQD junction is determined by the magnetic flux Φ through the SQUID loop area
(Fig. 6.1e) [175, 185], which is proportional to the applied magnetic field B⊥. We measure
the switching current ISW of the SQUID by ramping a current bias in a sawtooth wave-
form and recording the bias current value when the junction switches to the resistive
state marked by a threshold voltage drop of the order of 10µV. We show a typical dataset
in Fig. 6.1g, where each pixel in the main panel is an average of 18 measurements. The
right sidepanel shows the raw datapoints at two plunger gate settings denoted by the
magenta and green lines in the main panel, as well as the fitted sinusoidal curves in the
following functional form:

ISW = Iref + IDQD sinϕ, (6.1)

where ϕ= 2π(B⊥−Bo)/Bp, with Bp ≈ 1.7mT being the magnetic field periodicity corre-
sponding to a flux change equal to the superconducting flux quantumΦ0 = h/2e and Bo

being the offset perpendicular magnetic field. The switching current values Iref and IDQD

represent the reference arm and the DQD junction contributions, respectively. We show
these fitted values as a function of the gate voltage VL in the lower subpanel of Fig. 6.1g,
which displays the sign change of IDQD at the charge state boundaries. We note that
the change in the environmental impedance [186] causes a slight modulation of Iref as
well, despite the lack of any capacitive coupling between the two weak links. However,
in our measurements Iref > 5|IDQD| is always fulfilled, enabling a reliable observation of
the supercurrent reversal in the DQD.

In Fig. 6.2a, we plot IDQD as a function of the plunger gate voltages VL and VR, re-
sulting in the zero magnetic field charge stability diagram of the DQD mapped by the
supercurrent. Remarkably, our phase-sensitive measurement directly shows that the su-
percurrent reversal is associated with the change in the total charge number, and it is
absent in the case of internal charge transfers with (nL,nR) → (nL ±1,nR ∓1). However,
|IDQD| exhibits maxima near all charge boundaries, consistently with earlier experiments
[183].

We understand this data using a two-orbital Anderson model, where each dot with an
on-site charging energy Ui hosts a single spinful level at εi with the dot index i = L,R. In
the experiment, this corresponds to a quantum dot orbital level spacing which is larger
than the charging energy [175]. We consider an interdot charging energy term UCnLnR

and an effective interdot tunneling amplitude tC. The tunnel coupling energies to the
superconducting leads are denoted by ΓL,R.

We consider the leading term of the supercurrent in the weak coupling limit where
tC,ΓL,ΓR ¿∆¿Ui [179, 187], and evaluate the current operator I (ϕ) = i e

ħ [H ,nR], where
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Figure 6.2: The supercurrent charge-stability diagram at zero magnetic field. (a) Colormap of the measured
IDQD as a function of the plunger gate voltages VL and VR revealing a supercurrent sign reversal between the
adjacent total charge sectors. The dashed lines denote the numerically calculated charge boundaries, see the
text. Measurements along the solid line are shown in Fig. 6.1g and Fig. 6.3a. (b) The ZBW calculation of the
critical current IC of the DQD using the same parameters. The charge occupation of the dots is indicated
in brackets. Visual representations of a Cooper pair transfer when the DQD has an even (c) and odd charge
occupation (d). The ±1 values indicate the spin permutation parity for each spin species, which yields a su-
percurrent reversal for an odd charge occupation of the DQD, see the text.

H is the Hamiltonian of the system at a phase difference of ϕ between the supercon-
ducting leads (see the Supplementary Information). We numerically evaluate 〈I (ϕ)〉 =
IC sinϕ to find the signful IC. We perform a global fit of the calculated sign reversal
contours (see dashed lines in Fig. 6.2a) against the experimental dataset and recover
UL = 596.6µeV, UR = 465.9µeV, UC = 41.5µeV and tC = 85µeV. We match the critical cur-
rent amplitude scale with the experimental data by setting ΓL = ΓR = 33.2µeV. The width
of the even-odd transitions establishes an upper bound on the electron temperature of
the DQD, T < 80mK. We use these parameters to display IC(VL,VR) in Fig. 6.2b and find
a good correspondence with the experimental data using a zero bandwidth (ZBW) ap-
proximation [183, 188], see the Supplementary Information.

The observed supercurrent reversal [158, 175] is linked to the number of permuta-
tions of fermion operators required to transfer a spin-singlet Cooper pair through the
DQD (see the Supplementary Information). In the weak coupling limit, this amounts to
counting the number of same-spin dot electrons, which each electron in the Cooper pair
crosses. Each such crossing contributes with a factor of −1 to IC, which we illustrate for
a DQD with even (Fig. 6.2c), and odd charge occupations (Fig. 6.2d). Consequently, the
sign of IC is determined by the ground-state charge parity of the DQD.

Next, we focus on the magnetic-field dependence of IDQD (Fig. 6.3a) along the to-
tal energy axis (solid line in Fig. 6.2a) spanning both even and odd charge states. At
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Figure 6.3: The superconducting DQD in finite magnetic fields. (a) The measured signful supercurrent oscilla-
tion amplitude IDQD as a function of the total energy (see the solid line Fig. 6.2a) and magnetic field. Note the
slight charge shift between the zero magnetic field line and the rest of the data. (b) The corresponding ZBW
calculation of the signful critical current, see the text. (c) The calculated spin expectation value in the ground
state showing the singlet to triplet transition in the even occupied state as a function of the magnetic field. In
panels (b) and (c), we use the parameters extracted in Fig. 6.2b.

B∥ = 0, a finite tC results in a singlet-triplet splitting ∆ST in the even occupied (1,1)
charge state [164]. We model the DQD with an effective identical g-factor on both dots,
which results in a spin-polarized triplet ground state above a threshold magnetic field,
BST = ∆ST/(g∗µB). To account for spin-orbit coupling, we refine our interdot tunneling
Hamiltonian to include both spin-conserving and spin-flip tunneling amplitudes, t0 and

tx, resulting in an effective tC =
√

t 2
0 + t 2

x (see the Supplementary Information).

With a global fit to the experimental data (Fig. 6.3a,b), we extract t0 = 80µeV, tx =
30µeV and g∗ = 15.9. This g-factor is in agreement with earlier experimental values
measured on InAs quantum dots [167, 189–191] and ballistic channels with supercon-
ducting leads [184, 192]. We estimate the spin-orbit length lSO = ldott0/(

p
2tx ) ≈ 75nm

[193], using the gate pitch as an estimate of the dot length, ldot = 40nm. This coupling
length yields an energy scale ESO = ħ2/(2m∗l 2

SO) = 290µeV with an effective electron
mass of m∗ = 0.023me , which is similar to earlier experimental results on semiconduc-
tor nanowires in the presence of strong electrostatic confinement [194, 195].

In Fig. 6.3c, we plot the calculated expectation value 〈SZ 〉 of the total spin z compo-
nent of the DQD, which visualizes the transition between the spin singlet state 〈SZ 〉 = 0
and the spin-polarized triplet state, where 〈SZ 〉 = 1, as a function of the magnetic field.
This transition point at BST is accompanied by a drop of the critical current in the (1,1)
sector, however this sudden decrease is absent in the odd sector (see blue regions in
Fig. 6.3b). We note that the gradual global decrease in IDQD is consistent with the orbital
effect of the magnetic field applied along the nanowire [196].

We analyze this data in Fig. 6.4, where we first find the charge state boundary at each
value of B∥ at IDQD = 0 (blue dots and error bars in Fig. 6.4a) and overlay the calcu-
lated boundary (black solid line, corresponding to Fig. 6.3b). We quantify BST ≈ 80mT,
which agrees consistently with the characteristic cutoff magnetic field of IDQD at several
plunger gate values (dots in Fig. 6.4b, colors corresponding to the arrows in Fig. 6.3a).
Furthermore, we find an excellent agreement with the calculated critical current IC(B)
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Figure 6.4: Triplet-blockaded supercurrent. (a) The measured (blue dots and error bars) and calculated (black
solid line) even-odd charge boundary extracted from Fig. 6.3a and Fig. 6.3b. (b) Dots: the measured IDQD at
three plunger gate settings in the even (1,1) sector, see the corresponding arrows in Fig. 6.3a. Scaled theoretical
values are shown as solid lines, see the text. Representative sixth order tunneling processes are shown in the
T� (c) and in the singlet regime (d).

(solid lines in Fig. 6.4b) with a common scaling factor of 0.29, which may stem from the
reduced switching current inside the charge state due to thermal activation compared to
the corresponding critical current [186].

The suppression of the Josephson supercurrent through a DQD in the spin triplet
sector can be understood considering the virtual states involved in the Cooper pair trans-
fer. Starting from the (1,1) T� state close to the charge boundary with the single occupa-
tion sector, we always encounter a virtual state with a double occupation on one of the
dots (magenta circle in Fig. 6.4c). In the U À∆ limit corresponding to our experiments,
this configuration is energetically unfavorable and suppresses Cooper pair tunneling. In
contrast, a spin singlet starting condition can avoid this configuration (Fig. 6.4d). We
finally note that the opposite limit, where U ¿ ∆, also leads to a triplet supercurrent
blockade [74] (see the Supplementary Information), which persists with a finite residual
supercurrent in the spin triplet state when U ∼∆.

In conclusion, we directly measured the supercurrent reversal associated with the
even-odd charge occupation in an InAs DQD, where the large level spacing allows us to
use a single orbital for each dot in our quantitative modeling. In the (1,1) charge sector,
we showed that the singlet to triplet transition is accompanied by a supercurrent block-
ade. This enables a direct spin to supercurrent conversion [192, 197] in hybrid semicon-
ductor nanodevices [187] used for quantum information processing.

Raw datasets and computer code are available at the Zenodo repository [198].
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6.1. SUPPLEMENTARY INFORMATION

6.1.1. DEVICE FABRICATION

The device is fabricated on a commercial undoped Si wafer with a 285 nm thermally
grown SiOx layer with conventional electron beam lithography methods. First, the nano-
wire is deterministically deposited using a micro manipulator between identification
markers [92]. Next, the junctions are defined by etching the Aluminum shell for 55 s
at room temperature in a photoresist developer containing 2% TMAH. The wire contacts
and the SQUID loop are created by Ar plasma milling and in-situ sputtering of NbTiN.

A 10 nm thick global AlOx gate dielectric is deposited through a low-temperature
thermal Atomic layer deposition process. Wrap-around gates with a thickness of ap-
proximately 50 nm are deposited in a high-vacuum electron-beam evaporation cham-
ber. They are deposited under three different angles to ensure conformal coverage: 60°,
0° and −60° with respect to the normal. Finally, the AlOx is removed at the bondpads to
allow easy bonding, using the same wet etching solution as used for the aluminum shell.

6.1.2. ESTIMATING ELECTROSTATIC PARAMETERS

We start characterization in the normal state by quenching superconductivity in the
nanowire with a perpendicular magnetic field B⊥ = 0.5T (Fig. 6.5a). The SQUID ref-
erence junction is pinched off and by measuring the conductance at a voltage bias close
to zero, we obtain the charge stability diagram of the DQD. The scan is taken around the
same gate values as the data in the main text. We estimate the inter-dot lever arms from
the slopes of the charge boundaries, shown as white solid lines in Fig. 6.5a.
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Figure 6.5: Normal-state characterization (a) Charge stability diagram taken at B⊥ = 0.5T. The ranges of the
Coulomb diamond scans in the other subfigures are marked by the dashed lines. (b) Coulomb diamond scan
of quantum dot 1 with voltage bias Vbias. We extract αLL = 0.2,UL = 1.03meV. (c) Coulomb diamond scan of
quantum dot 2. We verify UR = 504µeV.

Next, we find the lever arm αLL by comparing the measured height of the Coulomb
diamond in Fig. 6.5b with the width in VL. Combined with inter-dot lever arms, this
gives us enough information to estimate the charging energies and relevant capacitances
using equations 6.2 .

UL = e2

CL

 1

1− C 2
C

CLCR

 ,UR = e2

CR

 1

1− C 2
C

CLCR

 ,UC = e2

CC

 1
CLCR

C 2
C

−1

 , (6.2)
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where CC is the inter-dot capacitance and CL(R) =CBL(BR) +CVL(VR) +CC, with CBL(BR) the
capacitance between a dot and the nearest lead and CVL(VR) the capacitance between a
dot and the nearest gate [58]. A complete list of extracted parameters is shown in Tab.
6.1. Due to the poor visibility of the Coulomb diamond scan of dot 2, we extractαRR from
the other parameters and verify that the resulting UR is reasonable in Fig. 6.5c.

Table 6.1: Electrostatic parameters of the DQD device.

Quantity Normal state Superconducting state

UL 1030µeV 597µeV
UR 504µeV 466µeV
UC 71µeV 42µeV
αLL 0.2 0.2
αLR 0.012 0.011
αRL 0.014 0.013
αRR 0.088 0.0124
CC 0.022 fF 0.024 fF

CL(R) 0.157 fF (0.321 fF) 0.270 fF (0.346 fF)
CVL(VR) 0.031 fF (0.028 fF) 0.047 fF (0.039 fF)
CBL(BR) 0.104 fF (0.271 fF) 0.199 fF (0.283 fF)

Due the non-zero g-factor of the InAs, the extracted charging energies in the normal
state at B⊥ = 0.5T are not the same as for in the superconducting state at B⊥ ≈ 0. There-
fore, we extract a separate set of parameters from the superconducting data and only use
αLL = 0.2 from the normal state data and determine all other parameters independently.
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Figure 6.6: Superconducting-state characterization (a) Supercurrent charge stability diagram. The estimated
charge-sector boundaries are shown by black solid lines.

The charge state boundaries are where the supercurrent crosses zero. We then over-
lay estimated charge boundaries, without considering avoided crossings due to the cou-
pling between the quantum dots. We useαLL = 0.2 from the normal-state data and man-
ually adjust the other parameters such that they agree with the supercurrent stability
diagram (Fig. 2). We use these values for the numerical zero-bandwidth calculations
shown in the main text. Tab. 6.1 lists all the electrostatic parameters extracted in the
superconducting regime in the rightmost column.
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6.1.3. SUPERCURRENT MODELING
In this section we will present the two approaches used to model the critical current IC

namely a zero-bandwidth (ZBW) approximation and a leading order perturbation theory
in dot-lead tunneling amplitude (same approach as in supplement of Ref. 199). At suffi-
ciently weak coupling and at zero temperature, these two approaches yield very similar
critical current, IC.

We describe the full S-DQD-S system using a serially coupled two-orbital Anderson
model with superconducting (BCS) leads:

H = H0 +Hd +HSO +HBCS +HT (6.3)

H0 =
∑

σ,i=L,R
(εi +σgi B)niσ+

∑
i=L,R

Ui ni↑ni↓+UC(nL↑+nL↓)(nR↑+nR↓) (6.4)

Hd = t0
∑
σ

(d †
LσdRσ+d †

RσdLσ) (6.5)

HSO = ∑
j=x,y,z

∑
σ,σ′

(
i t jτ

j
σσ′d

†
LσdRσ′ − i t jτ

j
σσ′d

†
RσdLσ′

)
(6.6)

HBCS =
∑

k,σ,i=L,R
ξi c†

i kσci kσ+
∑

k,i=L,R

(
∆i c†

i k↑c†
i−k↓+∆∗

i ci−k↓ci k↑
)

(6.7)

HT = ∑
k,σ,i=L,R

ti

(
c†

i kσdiσ+d †
iσci kσ

)
(6.8)

Here niσ denotes the electron occupation operator for dot i = L,R with spin σ =↑,↓. tx ,
ty and tz are interdot spin-orbit tunneling amplitudes, and τ j is the vector of Pauli ma-
trices [200]. Through lever arms the gating will affect εi and thereby control the ground
state. For this setup all phases on tunnel couplings t0, tL and tR can be gauged onto the
superconducting order parameter∆L =∆,∆R =∆e iφ whereφ is the phase difference and
∆= |∆L| = |∆R|. Corresponding to the experimental setup we consider the regime where
|∆|¿Ui and ΓR,ΓL ¿UL,UR,∆with Γi =πνF|ti |2 where νF is the normal-state density of
states in the leads, assumed be constant in the relevant range around the Fermi energy.

6.1.4. ZERO-BANDWIDTH APPROXIMATION
In the zero-bandwidth approximation (ZBW), one replaces the full BCS lead with a single
superconducting impurity,

HBCS ≈ HZBW = ∑
i=L,R

(
∆i c†

i↑c†
i↓+∆∗

i ci↓ci↑
)

(6.9)

This kind of expansion is in principle uncontrolled in the sense that it is not an expan-
sion in any small parameter and as such its parameters should be regarded as fitting
parameters rather than physical parameters.

Within this approximation, the Hamiltonian can be readily diagonalized numerically
and from the eigenenergies, Ei , the free energy can be found as,

F (φ) = kBT log
∑

i
e−Ei /(kBT ) (6.10)

and thereby the supercurrent can be obtained as,

I (φ) = 2e

ħ ∂φF (φ) (6.11)
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Figure 6.7: a), b) Plots of stability diagrams using fourth order perturbation theory and ZBW approximation,
respectively. c), d) B-field line cuts along P = PL = PR using BCS and ZBW description respectively. Parameters
are similar to the main article ∆ = 200, UL = 595.25. UR = 464.84, UC = 41.41, t0 = 80, tx = 30, ty = tz = 0,
all in units µeV, and g = 15.9. The charge of the dots are determined through lever arms by εL = −UL/2−
UC −αLLPL −αLRPR and εR = −UR/2−UC −αRLPL −αRRPR where αLL = 0.2, αLR = 0.011, αRL = 0.013 and
αRR = 0.124. For the fourth order expansion we use ΓL = ΓR = 33.18 µeV while for the ZBW approximation we
use the scaling tL,ZBW = tR,ZBW =√

2ΓL∆/π= 65 µeV.

From this, the critical current is found as IC = maxφ |I (φ)|, which is used to generate the
maps of the main article.

One choice of fixing the ZBW parameters is ti ,ZBW =p
2Γi∆/π. This scaling leads to

a very good quantitative match between ZBW approximation and fourth order pertur-
bation theory for a wide range of parameters and sufficiently small values of Γi /U . A
comparison between results from ZBW and fourth order expansion in lead coupling is
shown in Fig. 6.7.

6.1.5. PERTURBATIVE EXPANSION OF IC WITH BCS LEADS
Here we calculate the critical current IC to lowest (4th) order in the dot-lead couplings,
tL and tR. In general, the current is calculated as

I = i
e

ħ
∑
σ
〈[H ,nRσ]〉 = 2e

ħ Im
∑
σ
〈tRc†

RσdRσ〉 (6.12)

and the lowest order perturbation expansion takes the form

I ≈−2e

ħ
1

3!
Im

1

β

∫ β

0
dτ1dτ2dτ3dτ4

∑
σ

〈
Tτ

(
HT (τ1)HT (τ2)HT (τ3)tRc†

Rσ(τ4)dRσ(τ4)
)〉

0

= 4e

ħ ∆
2ΓRΓL sinφ

1

β

∫ β

0
dτ1dτ2dτ3dτ4 f ∗(τ1 −τ2) f (τ3 −τ4)Bi j kl (τ1,τ2,τ3,τ4), (6.13)
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where f (τ) = ∑∞
n=−∞

e−iωnτp
ω2

n+∆2
with fermionic Matsubara frequencies ωn = (2n + 1)π/β

and β = 1/kBT . The label 0 on the expectation value indicates that it is taken with re-
spect to the thermal state of the decoupled dot-lead system. The important object is
now Bi j kl (τ1,τ2,τ3,τ4) which contains all information about the double dot,

Bi j kl (τ1,τ2,τ3,τ4) =
〈

Tτ
(
d †

L↑(τ1)d †
L↓(τ2)dR↓(τ3)dR↑(τ4)

)〉
0

(6.14)

This object is conveniently evaluated in the basis of eigenstates of H0 + Hd + HSO, ob-
tained numerically for a given parameter set, and the critical current is finally evaluated
as IC = I /sinφ, whose sign determines if it is in a 0 or π phase.

This result is not used in the main text, and it is included here only as a check of the
ZBW calculations in Fig.6.7.

6.1.6. SIGN OF THE CRITICAL CURRENT TO LEADING ORDER IN DOT-LEAD

COUPLINGS
In this section, we calculate the sign of IC to lowest order in dot-lead couplings, and
demonstrate that it is determined from the double-dot ground state, using the simple
rule stated in the main text. We start by rewriting Eq. (6.13) from the lowest order expan-
sion in lead coupling,

IC =
∫ β

0
dτ1dτ2dτ3dτ4g (τ1,τ2,τ3,τ4)B(τ1,τ2,τ3,τ4) (6.15)

=
4∑

i , j ,k,l=1
(εi j kl )2

∫ β

0
dτi

∫ τi

0
dτ j

∫ τ j

0
dτk

∫ τk

0
dτl g (τ1,τ2,τ3,τ4)Bi j kl (τ1,τ2,τ3,τ4),

which is a sum over all permutations of τi ’s. Here g (τ1,τ2,τ3,τ4) = 4e/ħ∆2ΓLΓR f ∗(τ1 −
τ2) f (τ3 −τ4) and the Levi-Civita symbol is specified with ε1234 = 1. As we sum over the
different permutations of operators in Bi j kl it no longer contains any time sorting and
can be written as,

Bi j kl (τ1,τ2,τ3,τ4) = εi j kl

〈
di (τi )d j (τ j )dk (τk )dl (τl )

〉
0

(6.16)

where i , j ,k, l specify the ordering with the definitions d1(τ1) = d †
L↑(τ1), d2(τ2) = d †

L↓(τ2),
d3(τ3) = dR↓(τ3) and d4(τ4) = dR↑(τ4). At zero temperature, the dot system is in a definite
ground state,

∣∣g〉
, of the full dot Hamiltonian and

Bi j kl (τ1,τ2,τ3,τ4) = εi j kl
〈

g
∣∣diU (τi ,τ j )d jU (τ j ,τk )dkU (τk ,τl )dl

∣∣g〉
, (6.17)

where we have separated the trivial time evolution of the isolated dots due to H0 from the
evolution generated by Hd +HSO, which couples the dots. The time evolution operator
above is defined in the interaction picture as

U (τi ,τ j ) = e−(H0−Eg)τi Tτ e
−∫ τi

τ j
dτ′H̄d(τ′)

e(H0−Eg)τ j , (6.18)

with H̄d(τ) = eH0τ(Hd +HSO)e−H0τ, where Tτ is the τ-ordering operator.
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In Eq. (6.15) we expand the time evolution operators appearing in Eq. (6.17) to N ’th
order in H̄d. From now on we will discuss generic contributions to this expansion, which
we label I (a,b,c)

C,i j kl with IC = ∑4
i , j ,k,l=1

∑∞
a,b,c=0 I (a,b,c)

C,i j kl . The integers a, b and c specify the

order of expansion (counting from left) of each time evolution operator in Eq. (6.17). A
single N ’th order (a +b + c = N ) contribution can, in terms of the amplitudes〈

g
∣∣C (a,b,c)

i j kl

∣∣g〉= εi j kl (−1)N 〈
g
∣∣di (Hd +HSO)ad j (Hd +HSO)bdk (Hd +HSO)c dl

∣∣g〉
(6.19)

be expressed as,

I (a,b,c)
C,i j kl =

∫ β

0
dτi

N+2∏
µ=0

(∫ τ′µ

0
dτ′µ+1e−(Eµ−Eg)(τ′µ−τ′µ+1)

)
g (τ1,τ2,τ3,τ4)

〈
g
∣∣C (a,b,c)

i j kl

∣∣g〉
= 4e

ħ ΓLΓR |∆|2
∫ ∞

∆

dωp
ω2 −∆2

∫ ∞

∆

dω′
p
ω′2 −∆2

n∏
m=1

(
1

Em −Eg +ω+ω′

)
(6.20)

×
n′∏

m′=1

(
1

Em′ −Eg +ω
) n′′∏

m′′=1

(
1

Em′′ −Eg +ω′

) n′′′∏
m′′′=1

(
1

Em′′′ −Eg

)〈
g
∣∣C (a,b,c)

i j kl

∣∣g〉
,

with the definition τi = τ′0, τ j = τ′a+1, τk = τ′a+b+2 and τl = τ′N+3. In the second line
n + n′ + n′′ + n′′′ = N + 3 are positive integers whose values are specified by both the
expansion in a, b and c and the ordering i j kl , while En are energies of the uncoupled
charge basis H0.

Next comes the critical statement: since fractions in Eq. (6.20) are positive, the sign is
determined solely by C (a,b,c)

i j kl . For this to be true, the ground state energy of H0 +Hd, Eg,

must satisfy that Eg ≤ En where En are eigenenergies of H0. For a hermitian matrix, A,
with diagonal entries ann and minimal (maximal) eigenvalues λmin (λmax), the min-max
theorem [201] states that λmin ≤ ann ≤λmax. In charge basis, Hd+HSO only contains off-
diagonal elements, and with A = H0 + Hd, we may therefore conclude that Eg = λmin <
ann = En , as needed. Note that this perturbation series breaks down if Em′′′ = Eg in the
denominator 1/(Em′′′−Eg). Such a denominator occurs only if Em′′′ relates to a state with
±2 electrons compared to the ground state. In such instances one would have to go to
higher order in tL, tR.

By removing the integrals
∫ ∞
∆

dωp
ω2−∆2

, setting ω,ω′ = ∆ in the denominators and us-

ing Γi = πt 2
i ,ZBW/2∆ one would obtain the corresponding IC expansion for a ZBW de-

scription of the superconductors. As such, the previous and following arguments about
the sign of IC also holds for a ZBW description.

6.1.7. SIGN OF ALL CONTRIBUTIONS TO CRITICAL CURRENT

We now turn our attention to the time independent part C (a,b,c)
i j kl , which specifies the

total sign, and we wish to show that no matter the value of a,b,c or i , j ,k, l the sign of
a contribution to IC is determined by the ground state. In this subsection we neglect
spin-orbit coupling, HSO, the effect of which we discuss in a following subsection.

It is convenient to work in a spin-sorted basis definition of the many-body state
〈2,2| = 〈0|dL↑dR↑dL↓dR↓. With this choice, one can make use of the fact that Hd con-
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serves spin and therefore commutes with operators of opposite spin to sort C (a,b,c)
i j kl as,

〈
g
∣∣C (a,b,c)

i j kl

∣∣g〉= ∑
n,m

αnα
∗
m

〈
n↑

∣∣C (a↑b↑c↑)
↑,i ′ j ′

∣∣m↑
〉〈

n↓
∣∣C (a↓b↓c↓)

↓,i ′′ j ′′
∣∣m↓

〉
, (6.21)

where we have expressed the ground state as a tensor product state between the two
spin sectors,

∣∣g〉=∑
nαn

∣∣n↑
〉⊗∣∣n↓

〉
, withαn being prefactors from the diagonalization of

H0+Hd. The indexes of C
(aσ,bσ,cσ)
σ,i ′ j ′ are specified by the i j kl index as follows: i ′, j ′ ∈ {1,4}

for spin-up and i ′′, j ′′ ∈ {2,3} for spin-down while ordering is the same as in i j kl for each

subset independently, e.g C (a,b,x)
3124 corresponds to C

(a↑,b↑,c↑)
↑,14 and C

(a↓,b↓,c↓)
↓,32 . Finally, the

powers aσ, bσ and cσ denote the number of Hd operators containing spin-σ, such that∑
σ aσ +bσ + cσ = a + b + c = N where we do not permute any operators of same spin

in the sorting. This yields the following object, which determines the sign of each spin
independently,

〈nσ|C (aσbσcσ)
σ,i j |mσ〉 = εi j (−1)aσ+bσ+cσ 〈nσ| (Hdσ)aσdi (Hdσ)bσd j (Hdσ)cσ |mσ〉 , (6.22)

with Levi-Civita symbols, εi j , defined with ε14 = 1 and ε23 = 1, respectively.

We will now consider a few specific spin contributions. We start with the state where
both dots are void of spin-up electrons such that

∣∣n↑
〉= ∣∣m↑

〉= |0,0〉 where left and right
number in the kets refer to the number of spin-up electrons on the left and right dots
respectively. Such a contribution yields,

〈0,0|C (a↑b↑c↑)
↑,i j |0,0〉 = εi j (−1)a↑+b↑+c↑ 〈0,0| (Hd↑)a↑di (Hd↑)b↑d j (Hd↑)c↑ |0,0〉 (6.23)

= δi 4δ j 1δa↑0δc↑0ε41(−1)1t
b↑
0 〈0,0|dR↑d †

R↑dL↑d †
L↑ |0,0〉 ≥ 0,

where the disappearance of H
b↑
d↑ stems from the fact that the only non-zero contribu-

tion arises when b↑ is odd and H
b↑
d↑ contains a single t0d †

L↑dR↑ multiplied by (b↑ − 1)/2

back-and-forth operators of the type t 2
0 d †

L↑dR↑d †
R↑dL↑. A visual representation of such

processes is shown in Fig.6.8 a). If the two dots are void of spin-up electrons, the spin-up
part will therefore yield a positive sign to Eq. (6.21) to all orders of Hd.

Due to electron-hole symmetry a very similar derivation follows for the doubly occu-
pied spin-up state,

〈1,1|C (a↑b↑c↑)
↑,i j |1,1〉 = εi j (−1)a↑+b↑+c↑ 〈1,1| (Hd↑)a↑di (Hd↑)b↑d j (Hd↑)c↑ |1,1〉 (6.24)

= δi 1δ j 4δa↑0δb↑0ε14(−1)1t
b↑
0 〈1,1|d †

L↑d †
R↑dL↑dR↑ |1,1〉 ≥ 0,

where a visual representation is shown in Fig.6.8 b).

The odd ground state configurations are a little more complicated, as there is more
than one way of organizing operators. Consider contributions with

∣∣n↑
〉 = ∣∣m↑

〉 = |1,0〉
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33
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a) b)

c) d)

Figure 6.8: We show the paths transferring one electron across for various ground states. The numbers rep-
resent the order of operations applied to

〈
n↑

∣∣ to reach
∣∣n↑

〉
. Lines with arrows in both directions indicate an

integer number of back-and-forth jumps each yielding t 2
0 . a)

∣∣n↑
〉 = |0,0〉, b)

∣∣n↑
〉 = |1,1〉 c), one ordering of∣∣n↑

〉= |1,0〉, d) another ordering of
∣∣n↑

〉= |1,0〉

meaning one spin-up electron on the left dot,

〈1,0|C (a↑b↑c↑)
↑,i j |1,0〉 = εi j (−1)a↑+b↑+c↑ 〈1,0| (Hd↑)a↑di (Hd↑)b↑d j (Hd↑)c↑ |1,0〉 (6.25)

= δb↑0t
a↑+c↑
0 (−1)1

(
δi 1δ j 4ε14 〈1,0|d †

L↑dR↑d †
R↑dL↑ |1,0〉

+δi 4δ j 1ε41 〈1,0|dR↑d †
L↑d †

R↑dL↑ |1,0〉
)

≤ 0,

which shows that all such non-zero contributions are negative. By symmetry, exchang-
ing spin-up with spin-down yields precisely the same signs. Similar calculations can be
done for the other configurations and here we list the results:

〈0,1|C (aσbσcσ)
σ,i j |0,1〉 ≤ 0, (6.26a)

〈1,0|C (aσbσcσ)
σ,i j |0,1〉 ≥ 0, (6.26b)

〈0,1|C (aσbσcσ)
σ,i j |1,0〉 ≥ 0. (6.26c)

With these results it is straightforward to compute the sign of the critical current for
a given ground state using Eq. (6.21). Here we will show some results to illustrate the
methodology:

〈0,0|C (a,b,c)
i j kl |0,0〉 = 〈0,0|C (a↑b↑c↑)

↑,i j |0,0〉〈0,0|C (a↓b↓c↓)
↓,i j |0,0〉 ≥ 0 (6.27a)

〈2,2|C (a,b,c)
i j kl |2,2〉 = 〈1,1|C (a↑b↑c↑)

↑,i j |1,1〉〈1,1|C (a↓b↓c↓)
↓,i j |1,1〉 ≥ 0 (6.27b)

〈↑,0|C (a,b,c)
i j kl |↑,0〉 = 〈1,0|C (a↑b↑c↑)

↑,i j |1,0〉〈0,0|C (a↓b↓c↓)
↓,i j |0,0〉 ≤ 0 (6.27c)

〈2,↑|C (a,b,c)
i j kl |2,↑〉 = 〈1,1|C (a↑b↑c↑)

↑,i j |1,1〉〈1,0|C (a↓b↓c↓)
↓,i j |1,0〉 ≤ 0 (6.27d)

What we have shown is that, independent of ordering and order of Hd, all contribu-
tions to IC in Eq. (6.20) have the same sign, proving that the signs shown above must
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also be the sign of IC for the respective ground states. This method can also be used to
compute the sign of IC for ground states that are not eigenstates of H0, but eigenstates of
H0+Hd. Consider for example the ground state with a single electron delocalized across
the dots, |↑〉 = a |↑,0〉−b |0,↑〉 where a and b have the same sign, then it follows that

〈↑|C (a,b,c)
i j kl |↑〉 = 〈0,0|C (a↓b↓c↓)

↓,i j |0,0〉
(
a2 〈1,0|C (a↑b↑c↑)

↑,i j |1,0〉+b2 〈0,1|C (a↑b↑c↑)
↑,i j |0,1〉

−ab 〈1,0|C (a↑b↑c↑)
↑,i j |0,1〉−ab 〈0,1|C (a↑b↑c↑)

↑,i j |1,0〉
)

≤ 0, (6.28)

which proves that the sign of IC in the single electron doublet sector is negative to all
orders in t0. Using the same methodology on other ground states, we find:

〈↑↓|C (a,b,c)
i j kl |↑↓〉 ≥ 0, (6.29a)

〈σ|C (a,b,c)
i j kl |σ〉 ≤ 0, (6.29b)

〈↑↓σ|C (a,b,c)
i j kl |↑↓σ〉 ≤ 0, (6.29c)

〈↑↑|C (a,b,c)
i j kl |↑↑〉 ≥ 0, (6.29d)

for eigenstates of H0 +Hd with electrons delocalized across the dots:

|↑↓〉 = a |↑,↓〉+b |↓,↑〉− c |2,0〉−d |0,2〉 , (6.30a)

|↑↓σ〉 = f |2,σ〉− g |σ,2〉 , (6.30b)

defined with positive prefactors, a,b,c,d , f , g , on all components.
Crucially for this experiment, we have shown that both a triplet ground state, |↑↑〉,

and a singlet ground state, |↑↓〉, will guarantee a positive IC. This concludes the proof
that for the serial double dot, neglecting spin-orbit coupling, the sign of IC to lowest
order in dot-lead couplings is completely determined by the ground state.

Even though these derivations are quite technical, the results can be summarized as
a rather simple rule: For each spin in a Cooper pair in the left lead, count the number of
same-spin dot electrons it crosses to get from left to right lead. For each such same-spin
crossing attribute a minus sign. The sign of IC will the be equal to the product of all such
crossing signs. This rule can be inferred from Eqs. (6.21) and (6.26), noticing that for a
delocalized ground state all contributions yield the same sign as resulting from one of
its localized constituents. For a serial double dot this rule clearly implies that the sign
of IC is determined by the total parity of the dots: the sign is negative for odd parity and
positive for even parity, regardless of the spin configuration.

6.1.8. DISCUSSION OF SPIN-ORBIT COUPLING

So far we have established that the sign of the critical current for a double dot with-
out spin-orbit coupling can be inferred solely from the ground state. In this subsection
we discuss the possible implications of a finite spin-orbit coupling on the two quantum
dots, implemented simply as a spin-dependent interdot tunneling amplitude. We begin
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by considering only the spin-conserving tunnel coupling, tz , and write the total interdot
tunneling Hamiltonian as

Hd +HSO =∑
σ

(
(t0 + iσtz )d †

LσdRσ+h.c
)

(6.31)

= teff

∑
σ

(
e iσθd †

LσdRσ+h.c
)

where teff is the modulus and θ the complex phase of t0+i tz . On this system we can per-
form a gauge transformation e iσθd †

Lσ = d̃ †
Lσ which removes θ from the interdot coupling

and moves it onto the left dot-lead tunneling amplitude:

HT L = tL
∑
kσ

(
e iσθc†

Lkσd̃Lσ+h.c
)

. (6.32)

Since the expansion in tL, tR in Eq. (6.13) contains two electrons of opposite spin jump-
ing from superconductor to dot, this phase cancels out in IC, and the only effect of tz

is simply to renormalize the interdot coupling teff =
√

t 2
0 + t 2

z , leaving the sign of IC un-

changed.
Including either tx or ty , interdot tunneling is no longer spin conserving, and there-

fore disrupts the spin-sorted arguments used above to show that all contributions to IC

have the same sign. This is most easily illustrated with an example. Consider a specific
term arising from the combination HSOHdHSO with ty finite:

HSOHdHSO =−t 2
y t0d †

L↑dR↓d †
R↓dL↓d †

L↓dR↑+ . . . (6.33)

When acting on |0,↑〉, this operator is equivalent to −t 2
y Hd. Such combinations of oper-

ators will arise in Eq. (6.19), where, for example, a contribution with a = 1 would contain
Hd while a contribution with a = 3 would contain HSOHdHSO. As these two terms will
have different signs we observe that not all contributions to IC have the same sign.

Without any external magnetic field, one may choose the spin quantization axis to
be aligned with the spin-orbit field, such that only tz is non-zero. As such the sign of IC

is still completely determined by the ground state. With a finite external magnetic field,
however, tx and ty components are unavoidable unless the field is carefully aligned with
the spin-orbit field. In this case, IC will sample amplitudes of different signs and the
overall sign of IC cannot be guaranteed analytically (at least we have not succeeded)
since the magnitudes of the individual terms now also matter. Instead, we have done this
numerically to confirm the observed signs of IC in the plots presented in the main text.
To lowest order in Hd and HSO, it can be shown analytically, that the sign of IC remains
determined by the ground state, and that it is only higher order terms including both Hd

and HSO, such as Eq.(6.33), which yield contributions of different signs. To leading order,
the sign of IC thus remains determined by the ground state.

6.1.9. SIMPLE ARGUMENTS FOR TRIPLET BLOCKADE
In the main text, the key quantity is the critical current in a double-dot Josephson junc-
tion that is tuned to the (1,1) charge configuration. We used the term ‘triplet blockade’
for the effect that the critical current in this setup is suppressed when the ground state is
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(c)        up-down (d)          triplet(a)        up-down (b)          triplet

Figure 6.9: Example processes contributing to the Josephson current through the double dot. (a) Up-down
process with intermediate states lacking quasiparticles, hence less penalized by a large gap ∆ÀU . (b) Triplet
process with intermediate states that all have at least one quasiparticle, hence more penalized by ∆. (c) Up-
down process with all states having at most singly occupied quantum dots, hence exempt from Coulomb en-
ergy penalty. (d) Triplet process with an intermediate state that has a doubly occupied quantum dot and hence
energetically penalized in the U À∆ regime.

tuned from a singlet configuration to a triplet configuration. We have shown measure-
ment results and numerical simulations that display triplet blockade.

Here, we provide simple arguments for a strong triplet blockade in two different lim-
iting cases: the large-gap limit, ∆ÀU , and the strong-Coulomb-repulsion limit, U À∆.
We also outline a process-counting argument that supports partial triplet blockade in
the intermediate regime ∆∼U .

For the simple arguments, we make a number of simplifying assumptions. (1) We
disregard interdot Coulomb repulsion UC . (2) Instead of the proper singlet ground state,
we address the case when the ground state holds a spin-up electron in the left dot and a
spin-down electron in the right dot (the up-down state), (3) We describe the leads within
the zero-bandwidth (ZBW) approximation. (4) We describe the Josephson current to
leading order in dot-lead as well as inter-dot tunnel amplitude, assuming these to be
small compared to the superconducting gap ∆ and the on-site Coulomb repulsion U .
With these simplifications, and following, the leading-order (6th-order) Josephson cur-
rent can be described as a sum of contributions, where each contribution can be visual-
ized as a six-step process in which a Cooper pair from one lead is transported over to the
other lead. Four exemplary processes are shown in Fig. 6.9. The intermediate states of
such processes are virtual states, in the sense that they have a high energy, either due to
quasiparticle excitations, or due to Coulomb repulsion.

First, we revisit the case of the large-gap limit ∆/U À 1, which was described in Ref.
[74, 75]. In this case, the reason for the triplet blockade is that a triplet ground state
allows only such processes whose intermediate states have one or two quasiparticles in
the leads. One example is shown in Fig. 6.9b. In the 6th-order perturbative description of
the ZBW model, the contribution of these processes scales as ∼∆−5. In contrast, the up-
down state allows for intermediate states where there are no quasiparticles in the leads;
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an example is shown in Fig. 6.9a, where the 2nd, 4th and 6th states of the diagram do not
have any quasiparticles. As a consequence, the contribution of such processes scale as
∼∆−2. In conclusion, in the large-gap regime the ratio of the triplet and up-down critical
currents is suppressed by ∆−3, leading to a strong triplet blockade.

Now let us turn to the strong-Coulomb-repulsion limit U /∆À 1. Consider a point in
the charge stability diagram in the vicinity of the boundary of the single-electron region
and the (1,1) region. In this case, any intermediate state that has a DQD occupation dif-
ferent from 1 and 2 has a large energy penalty in the corresponding energy denominator,
and hence strongly suppressed. In addition, among the processes where all states have
DQD occupation 1 or 2, the ones involving a doubly occupied quantum dot also come
with a large Coulomb energy penalty and hence are also suppressed.

Importantly, in the processes allowed by the triplet ground state, there is at least one
intermediate state that has a doubly occupied quantum dot; for example, see Fig. 6.9d,
where the right dot is doubly occupied in the 5th state. The critical current of the triplet
will therefore scale as ∼U−1. In contrast, for an up-down ground state, there is a process
where the intermediate states have only singly occupied quantum dots, see Fig. 6.9c. The
contribution of this process to the critical current will scale as ∼U 0. In conclusion, in the
strong-Coulomb-repulsion regime the ratio of the triplet and up-down critical currents
is suppressed as U−1, again leading to a strong triplet blockade.

Even though we have argued for a strong triplet blockade in both limiting cases ∆À
U and U À ∆, it is in principle possible that the triplet critical current exceeds the up-
down critical current in the intermediate regime U ∼ ∆. Here, we argue that this is not
the case. In this regime, we estimate the ratio of the triplet and up-down critical currents
from the ratio of the total number of 6th-order process. In the triplet case, the total num-
ber of allowed processes is 80, whereas the up-down state allows 320 processes in total,
leading to a rough estimate of the critical current ratio of 0.25. Note that the actual criti-
cal current ratio also depends on the amplitudes of every process. Due to this estimate,
we expect a partial triplet blockade in this intermediate regime.

Finally, we comment on the validity of the simplifying assumptions (1), (2) and (3)
above. (1) The above considerations generalize as long as the interdot Coulomb repul-
sion energy UC is moderate. The analysis of the strong-Coulomb-repulsion regime could
change, e.g., if UC would be a parameter tied to U , e.g., UC = U /2, but that is beyond
the scope of this work. (2) The above arguments generalize to the case when a singlet
ground state is considered, instead of the up-down state. One result that is changed is
the order-of-magnitude estimate of the critical current ratio in the intermediate regime
U ∼∆: counting the processes of the singlet ground state yields a ratio of 80/1120 ≈ 0.07,
which is even smaller than the estimate 80/320 = 0.25 quoted above. (3) The above con-
siderations generalize to the model with BCS leads. One technical difference is that in
that model, quasiparticles have not only a spin quantum number, but also a momentum
quantum number, and the contributions visualized in Fig. 6.9 have to be summed (or
integrated) with respect to the quasiparticle momentum. The main difference occurring
from this is that processes from BCS leads will scale with an additional ∆2 factor which
can also be accounted for in the choice of ti ,ZBW. Nevertheless the ∆ ratios between dif-
ferent processes are the same and as such the above blockade arguments also hold for
BCS leads.





7
RECTIFIED CURRENT-PHASE

RELATION IN AN S-DQD-S
JOSEPHSON JUNCTION

In quantum dot Josephson junctions with a dot-lead coupling on the order of the charg-
ing energy and superconducting gap, competition between superconductivity and local
electronic correlations gives rise to a phase-dependent charge parity. We explore this limit
in a double quantum dot Josephson junction and observe an unexpected rectification of
the current-phase relation, unexplained by current models. We analyze the results with a
phenomenological model and discuss a possible direction for finding an explanation.

This work was performed in collaboration with R.J.J. van Gulik, A. Proutski, A. Pályi, P. Boross and A. Geresdi
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7.1. INTRODUCTION
The behavior of supercurrent through a quantum dot Josephson junction depends on
the relative sizes of the involved energy scales – charging energy EC, superconducting
gap ∆ and dot-lead coupling Γ [52, 59, 71, 202]. In the limit of Γ¿ ∆,EC, the charge
parity of the quantum dot(s) becomes an important parameter as EC restricts the flow
of electrons to tunneling consecutively instead of in pairs. In the low-coupling limit, the
supercurrent phase relation (CPR) is described by

IS = IC sin
(
ϕ

)
, (7.1)

where IC is the largest supercurrent amplitude the junction can sustain, known as the
critical current and ϕ the phase difference between the superconducting leads. We have
seen in chapter 6 how the charge parity of a single-orbital (double) quantum dot can
change a standard 0-junction (as in Equation 7.1) to a π-junction by going from an even
to an odd occupation. In this naming convention 0 and π refer to the offset in ϕ, where
π results in a supercurrent reversal IC < 0.

In this chapter we investigate an intermediate regime, where Γ≈ EC ≈∆. Charge ef-
fects are still important and the even-odd effect of the quantum dot(s) charge remains.
But at the transition from 0 to π, the charge becomes tunable by the phase ϕ. This phe-
nomenon has been predicted and observed in single quantum dot Josephson junctions
[69, 71, 203–206]. The origin can be best explained from the Andreev bound state (ABS)
levels at the transition between 0 and π. For a strong enough lead coupling, the even
and odd ABS overlap, crossing each other at different values for ϕ. When the phase is
wound adiabatically, the system remains in the lowest energy level, switching parity at
every ABS crossing [203].

Investigating this limit in our double quantum dot junction, we observe a CPR that
does indeed appear to switch between parities – but has an even symmetry aroundϕ= 0
and a period half of the 0 and π CPR. These observations is not explained by any of the
current models. Furthermore, it suggests breaking of time-reversal symmetry, which is
curious due to the magnetic field being close to zero (B < 1mT). In this chapter we will
analyze the observed behavior and provide a phenomenological description.

7.2. EXPERIMENTAL SETUP
The device used in this chapter consists of an InAs nanowire with an epitaxial Al shell
on three of the wire’s six facets (7.1a,b) [89]. A section of approximately 360 nm of the
Al shell is selectively etched away to create a normal semiconductor section (shown in
green). Five conformal electrostatic top gates (shown in yellow) are used to create a dou-
ble quantum dot (DQD) in the semiconductor section (see Methods section 3.1.4), cre-
ating an S-DQD-S junction. A 10 nm AlOx dielectric layer galvanically isolates the gates
from the nanowire. The superconducting leads are contacted to NbTiN (shown in blue),
creating dc SQUID consisting of the DQD junction and a regular SNS junction.

A simplified electrical diagram of the device is drawn in Figure 7.1c, with the quan-
tum dots depicted as green circles, connected to the superconducting leads and each
other by tunnel couplings. To extract the switching current of the SQUID, the current
source Ibias is driven with a sawtooth waveform while we simultaneously monitor the
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Figure 7.1: Device layout. Panels (a) and (b) show electron micrographs of the entire device and a zoom-
in of the DQD area respectively. The false colored blue parts are superconducting, the green areas are bare
InAs nanowire where the superconductor has been selectively etched away and the yellow colored parts are
normal metal electrostatic gates. The quantum dots are formed by barrier gates VL, VM and VR and the dot
potentials by plunger gates P1 and P2. The scale bars are 2µm (a) and 100 nm (b) wide. (c) Equivalent electrical
circuit diagram of the device. (d) Numerical model of a DQD supercurrent charge-stability diagram. The
DQD charge occupation is written in each sector. The electrostatic parameters assumed for this numerical
result are extracted from this device, but in a weak QD-lead coupling limit, Γ¿ ∆,EC (see Chapter 6). The
experimental data in this chapter is not that limit. The rectangular inset indicates the equivalent location of
the data discussed in this chapter.

voltage over the SQUID. When a finite voltage is detected, the value of Ibias is recorded
as the switching current of the SQUID, ISW (see methods section 3.2.2). The SQUID is
made asymmetric with IDQD À Iref, the allows for direct control over the phase ϕ with
the magnetic flux Φ through the SQUID loop (see theory section 2.3.1). This enables us
to obtain the CPR of the DQD junction after subtracting Iref.

The results in this chapter are obtained in a small area of the supercurrent charge sta-
bility diagram, marked in a numerical simulation of a generic DQD junction with Γ¿ EC

in Figure 7.1d. Note that this is not completely representative for the data discussed here
and only serves as a rough indication of where data is taken. The important features to
consider here are the distinct areas of positive (0-junction, red) and negative (π-junction,
blue) supercurrent. The shape of these areas are different due to the stronger dot-lead
coupling as we will see in the results section of this chapter.

7.3. RESULTS
We focus our attention to the 0−π transitions in the marked area in Figure 7.1. We find
that at these transitions, the CPR is negatively rectified and consequently has an even
even symmetry around ϕ = 0 (Figure 7.2). This effect is most prominent in the center
of the transition and decreases gradually when moving away from the transition. To
analyze this effect we fit the measured switching currents to a phenomenological CPR:

ISW = Iref + IDQD sin
(
ϕ

)− Ianom
∣∣sin

(
ϕ

)∣∣, (7.2)

where Iref is the switching current amplitude of the reference arm, IDQD is the switching
current amplitude of the sinusoidal part of the DQD junction and Ianom of the anoma-
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Figure 7.2: Current-phase relation fits. The top row contains sketches of the supercurrent charge-stability di-
agram with the charge parity written in the sectors. Each column corresponds a linetrace through the stability
diagram, indicated by blue lines. A line along P2 in column (a), along P1 in columns (b) and a diagonal line
in column (c). In the second row from the top we plot the switching current amplitudes obtained from the
CPR fit. In blue the sinusoidal parts and the anomalous part in orange, where the upper trace is the reference
arm amplitude Iref, the traces below are IDQD (blue) and Ianom (orange). The third row shows heatmaps of
the average total switching current (from approximately 20 switching currents per pixel) as function of plunger
gate P1 or P2 and B⊥, which is proportional to the phase ϕ. In the bottom row the full CPR is plotted for three
selected plunger gate voltages, denoted by same-colored dashed lines on the heatmaps and filled circles on in
the second row. The filled circles are the average total switching current values, and the error bars indicate 1σ
of the distribution. The solid lines are the best fits of Equation 7.2.
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lous part,ϕ= 2π(B⊥−Bo)/Bp , with Bp ≈ 1.7mT the magnetic field period and Bo the off-
set magnetic field.. The reference junction is tuned such that Iref & 10

(∣∣IDQD
∣∣+|Ianom|)

at all times to ensure that we measure the CPR of the DQD junction only.

Figure 7.2 presents a summary of the results from fitting equation 7.2 at the differ-
ent transition locations. The top row of Figure 7.2a depicts qualitative sketches of the
superconducting charge-stability diagram with the DQD electron parity written inside
each sector. The blue lines indicate where the data in the lower rows of each column are
taken. The second row shows the evolution of the three switching current amplitudes at
the 0−π transition when the changing parity of one of the quantum dots. The ampli-
tude of the sinusoidal part of equation 7.2, IDQD (plotted as a blue solid line), changes
from positive to negative as we move between an even and odd parity, as expected for
a single-level DQD junction (see chapter 6). Higher up in the same subfigure we plot,
also in blue, the reference arm switching current Iref. It stays mostly flat with a slight
modulation when the junction switches from 0 to π, as expected for our asymmetric
SQUID configuration. Plotted as an orange solid line is the amplitude for the anomalous
part −∣∣sinϕ

∣∣. It reaches its maximum at the center of the transition between the 0 and
π region, and goes to 0 when moving away from the transition. Which shows that our
phenomenological description is general enough to describe the full range in quantum
dot potential energy that we measured.

The heatmaps in the middle row of Figure 7.2 show the averaged switching currents
ISW as a function of P2 or P1 and magnetic flux B⊥. Note that the transition region here
between the even and odd regions, spanning 370− 600µeV, is significantly larger then
in Figure 6.1g, where is at most ∼ 60µeV. This verifies that the quantum dots are more
strongly coupled to the leads.

We fit equation 7.2 for each value of P2 or P1 to obtain the amplitudes in the top
above. We show the complete CPR for three selected P2 or P1 values in the bottom row.
The P2 or P1 values for each CPR are indicated by dashed lines on the heatmap with
colors denoting each of the three characteristic CPRs: 0 phase sinusoidal (purple), π
phase sinusoidal (green) and anomalous (red).

Far away from the 0−π transition the CPR is completely sinusoidal, reconfirming
that that −∣∣sinϕ

∣∣ ≈ 0. Moving closer to the transition point, the −∣∣sinϕ
∣∣ contribution

becomes stronger and exactly at the transition it is the only contributing term, making
the CPR an even function of phase (shown in red). This effect is reproducible in both
quantum dots; Figure 7.2a shows the effect as a function of P2 (dot 2) and Figure 7.2b as
a function of P1 (dot 1). In Figure 7.2c we scan through both potentials simultaneously,
along the total energy axis and observe a non-zero −∣∣sinϕ

∣∣ contribution twice as we
transition from a 0-junction to a π-junction and back to a 0-junction.

Next, we extent the gate range to cover ad two dimensional charge-stability diagram
(Figure 7.3). We plot sinusoidal part IDQD in Figure 7.3a, similar to the charge-stability
diagram investigated in Chapter 6. In Figure 7.3b we plot the amplitude I ′anom for the
rectified CPR parts. It shows a shape similar to IDQD, but with an opposite sign and
a wider transition area between the positive and negative amplitude regions. Finally we
plot the ratio Ianom/IDQD and find that mostly the sinusoidal part dominates, but roughly
half way, at the transition between the positive and negative supercurrent, the −∣∣sin

(
ϕ

)∣∣
component becomes a significant part and at some points the only term in the CPR.
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Figure 7.3: Supercurrent charge stability diagrams. (a) Sinusoidal switching current amplitude IDQD (b)
Amplitude of the anomalous Ianom contribution to the CPR. (c) Ratio between the anomalous and sinusoidal
part of the CPR.
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Figure 7.4: Current-phase relations for different Josephson junctions. (a) Single-channel SNS junction with
a near unity transmission probability of 0.99. (b) Single-channel SNS junction with a low transmission prob-
ability of 0.1. (c) Single-channel SNS ϕ0 junction with a low transmission probability of 0.1 and a phase-shift
ϕ0 =π.

To illustrate the qualitative difference of the junction behavior with existing experi-
mental data and models in literature, we compare the measured data with CPR of three
different types of SNS Josephson junctions in Figure 7.4. A non-sinusoidal CPR from
highly transmitting modes in quantum dots junctions [202], shown in Figure 7.4a, does
not match the shape of the red datapoints in Figure 7.2 and has an odd symmetry around
ϕ = 0 in all orders. A low transmission junction has a sinusoidal shape, which matches
shape to the data better, but retains the odd symmetry. When combined with a ϕ0 junc-
tion, the CPR could have an even symmetry atϕ0 (Figure 7.4b), but besides requiring the
Zeeman effect [182, 207, 208], unlikely in our setup due to B < 1mT, the period of 2π is
not consistent with theπ periodicity of the observed CPR. In Figure 7.4c we plot an ideal-
ized zero-temperature CPR expected for a single quantum dot junction in the Γ≈ EC ≈∆
regime at the transition between 0 and π [71, 72, 206]. This behavior however, is also not
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consistent with our observations.
For a better understanding, we start by describing the Andreev bound state energies

in a single quantum dot junction using a model introduced by Vecino et al [203]. The
model considers a symmetrically coupled dot in a strong dot-lead coupling limit ΓÀ∆,
the ABS are described by [203]:

EA± =∆
√

cos2(ϕ/2)+2E 2 +Z 2(Z 2 + sin2(ϕ/2))±2X S(ϕ)

Z 2 +2(X 2 +E 2)+1
, (7.3)

S(ϕ) =
√

Z 2 cos2(ϕ/2)+E 2 + sin2(ϕ)/4,

where E = ε/(2Γ) with dot electrochemical potential ε, X = Eex/(2Γ) and Eex is the so-
called exchange field that represents the Coulomb interaction, finally we define Z =p

X 2 −E 2.
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Figure 7.5: Andreev bound states for a quantum dot junction. Top row shows Andreev levels, bottom row the
associated CPR. E = −0.5 for all panels. (a) 0-junction with X = 0.25. (b) Intermediate state with sign flips in
the CPR, resulting in phase-induced parity switches. X = 0.75 (c) π-junction with X = 1.5.

Equation 7.3 is plotted in the top row of Figure 7.5 for different Eex, representing
different points in the 0−π transition. In the bottom row the we plot the CPR, I (ϕ) =
∂EA

/
∂ϕ , of the level with the dominant contribution (highlighted in orange). For a small

Eex = 0.25 (Figure 7.5a), the derivative of EA yields a 0-junction, equivalent to an even
occupation of the quantum dot. Increasing Eex to 0.75 shows the inner ABS crossing
(Figure 7.5b). This has the result that CPR changes sign at the crossings around ϕ =
π, as shown by the current in the lower row. Increasing Eex further enlarges the region
where the supercurrent is negative and eventually the system is completely in the π state
(Figure 7.5c).

Note that the finite exchange field causes a splitting of the ABS, resulting in four en-
ergy levels for a single transport channel instead of two for ABS in a regular SNS junction.
Indeed, when the Coulomb interaction is turned off, X → 0, we recover the regular ABS
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expression for an SNS junction without quantum dot with two energy levels (not shown).
Lacking a satisfying microscopic explanation, we attempt to describe the effect phono-
logically. When our device is at the center of the 0−π transition, similar to X = 0.75
(Figure 7.5b), the shape of the CPR implies that the system switches parity at ϕ= nπ, for
integer n. This can effect can be approximated by

EA ∝ cos
(
ϕ

)
sgn[sin

(
ϕ

)
], (7.4)

and we retrieve the CPR by taking the derivative with respect to ϕ:

I (ϕ) ∝−∣∣sin
(
ϕ

)∣∣. (7.5)

In Figure 7.6a we plot Equation 7.4 with an orange solid line and its derivative, Equation
7.5, in solid red (Figure 7.6b). This CPR agrees well with experimental data and repro-
duces the key characteristics: a π period in phase, rectified to contain only negative su-
percurrent and it has an even symmetry around ϕ = 0. Indeed, this term was added to
Equation 7.2 to fit the experimental data produce Figures 7.2 and 7.3.
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Figure 7.6: Possible dynamics of anomalous CPR. (a) Illustration of EA at the transition. The system switches
parity at every ϕ = nπ. The orange lines indicate the main contribution to the supercurrent, where the solid
line following the ABS exactly and the dashed line is Equation 7.4. (b) Current phase relations of the 0 (purple)
state, the π (green) state and the transition state (red dashed). The red line is given by Equation 7.5.

This leaves us with the question why the system switches parity at every ϕ= nπ, in-
stead of staying in the lower ABS energy state as expected (Figure 7.5b). One possible
explanation could be the conversion of bound state electrons into free quasiparticles,
and vice versa, at ϕ = nπ/2+ 1/2 – as described in reference 209. Note however that
this non-equilibrium effect is explained through Landua-Zener transitions and requires
a phase winding through a finite voltage bias. This seems unlikely in our setup due to
the the slow winding we apply through the SQUID setup of our device. We suspect that a
competition between the charging and superconducting energy scales could be respon-
sible instead. This requires more detailed modeling of our device to confirm, which is
beyond the scope of this thesis.

In conclusion, we have investigated the current-phase relation of a serial double qu-
antum dot Josephson junction at the transition between 0 and π. We observe an anoma-
lous current-phase rectification and describe it phonologically. The microscopic origin
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of this apparent non-equilibrium effect might be due to quasiparticles, but requires fur-
ther investigation to obtain a satisfying explanation.





8
OUTLOOK

In this chapter we first explore possible new applications for the results of chapter 6. We
discuss extensions of the system used in chapters 5, 6 and 7 and the characterisation of a
prototype experiment performed for this purpose. In the final section, we briefly reflect
on the results of chapter 4 and suggest a new direction for these type of experiments.

123
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8.1. MEASURING SPINS WITH SUPERCURRENT
In chapter 6 we have shown that the direction of supercurrent through a single-orbital
double quantum dot Josephson junction depends on the parity of the double quan-
tum dot occupation. Furthermore, we have shown that the supercurrent becomes sup-
pressed when the even occupation ground state changes from a spin-singlet to spin-
triplet configuration. This effect could be used as a method of reading out spin qubit
states.

Among quantum computation platforms, spin qubits are one of the leading candi-
dates [210]. The field originally started with GaAs [211], but the field has since mostly
moved to group IV semiconductors such as Si. Mostly for their long coherence times due
to a lack of nuclear spins [212, 213]. Quantum state readout however has been a obstacle
in scaling up the number of qubits. Measuring the value of a single spin is difficult due
to the lack of an electrical signal and so most read-out schemes rely on converting differ-
ent spin states to different charge states using Pauli’s exclusion principle [55, 214]. The
charge is subsequently measured using external sensors positioned in close proximity
to the quantum dots containing the spins. The physical presence of these external de-
tectors however, makes scaling up to two-dimensional-qubit arrays difficult [210]. A dif-
ferent readout approach couples the already existing quantum dot gates to a resonator,
mitigating the traditional charge sensors [215]. By monitoring its resonance frequency,
a distinction can be made between spin singlet and triplet states, using Pauli blockade.
Recently, this method was improved by using an on-chip resonator, instead of an off-
chip one [216]. It has the potential of overcoming the scaling limitations of traditional
charge sensors, but still requires a spin-to-charge conversion.

Here we consider an alternative approach using a supercurrent. By placing the dou-
ble quantum dot spin qubit in a Josephson junction, as we did in chapter 6, the super-
current amplitude distinguishes between a singlet and a triplet configuration – making
the spin-to-charge conversion unnecessary. When the spins are in a singlet configura-
tion the number of allowed electron transfer processes that contribute to a supercurrent
is approximately four times higher than for a triplet configuration. On top of that, the
amplitudes for the singlet related transfer processes are significantly higher. This leads
to a highly suppressed supercurrent for the triplet configuration compared to the singlet
(see chapter 6).

From the perspective of superconductivity, InAs nanowires with epitaxial Al is a good
candidate for a material system. Hard-gap induced superconductivity in InAs nanowires
has been around now for a few years [90] and a supercurrent through single and double
quantum dots has been demonstrated, in this thesis and in other works [52, 53]. Spin(-
orbit) qubits have also been realised in InAs nanowires [217]. Recently, several studies
have shown hard-gap superconductivity in planar geometries as well [218, 219]. From
the perspective of the spin-qubit coherence times, InAs is not an optimal candidate due
to the magnetic noise from uncontrolled nuclear spins present in InAs 1. Group IV ma-
terials such as Ge and Si are gaining popularity due to a lack of these nuclear spins in
abundant isotopes, resulting in significantly improved coherence times [212, 221–224].
These materials could be an alternative to InAs as high-mobility planer Ge with induced

1Although a recent study shows that these effect could be mitigated by using a notch filter approach [220]



8.2. ANDREEV MOLECULE

8

125

superconductivity was recently reported [225, 226].
Another aspect to consider is the amplitude of the supercurrent. Most spin qubits are

operated in the few-electron regime, in contrast to the many-electron regime in which
the results from chapter 6 were obtained. Fewer electrons in the quantum dots will likely
decrease the supercurrent amplitude, which makes the switching current approach less
effective to determine the supercurrent amplitude. The supercurrent in chapter 6 was
on the order of 10-100 pA, reaching the lower limit of what is technically possible with
this method. An alternative is making the junction part of a superconducting resonator,
similar to what we have done in references [197, 227]. The Josephson inductance de-
pends on the critical current of the junctions. This inductance changes the resonance
frequency of the resonator and can be measured using standard circuit QED techniques.

8.2. ANDREEV MOLECULE
In the experimental chapters of this thesis, we have presented results from single Joseph-
son junctions in semiconductor nanowires. In an SNS junction supercurrent is carried
by Andreev bound states (ABS). These bound states are fermionic modes, trapped inside
the weak link and have discrete energy levels. One could see this as a type of artificial
atom and a natural extension of this would be to couple this atom to one or more atoms
to a molecule [159].

Apart from being an interesting new system in its own right – Andreev molecules
can serve as a technological stepping stone towards realising a physical Kiteav chain [13,
14, 80]. Additionally, the junctions can each host a so-called Andreev qubit [228–230].
Coupling the two junctions could enable two-qubit gates or coherent manipulation of
their energy spectra. These qubits have a key advantage over traditional spin qubit as
they potentially enjoy some of the same benifits, while also being suited for long-range
coherent interaction. Through spin-orbit interaction, the spin of the Andreev bound
state determines the supercurrent flow [228], the supercurrent then allows for readout
and manipulation through well-established circuit QED techniques [197, 227, 231].

φL φR

ΦL ΦR

(a) (b)

ϕ1 ϕ3 ϕ2

Figure 8.1: Andreev molecule (a) Schematic representation of an Andreev molecule made of two short Joseph-
son junctions closely spaced together with phases ϕL = φ1 −φ3 and ϕR = φ3 −φ2. The green parts are semi-
conductors contacted to superconductors in blue. Andreev bound states are depicted by the electrons (black
circle) and holes (white circle). (b) The Andreev molecule in a is part of two SQUID loops to control the phases
of the junctions via magnetic fluxesΦL andΦR. The double lines denote superconducting connections.

The simplest Andreev molecule is composed of two SNS Josephson junctions, or
atoms, spaced closely together. Figure 8.1 shows a schematic and circuit drawing of
a two-junction molecule. Both junctions contain Andreev bound states and when the
middle superconducting section is on the order of the superconducting coherence length,
ξ, the Andreev wave functions overlap – creating the molecule. The ABS of the junctions
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hybridize and form avoided crossings in their spectrum. Figure 8.2 shows the spectrum
as a function of the phase of the middle superconductor φ3, with the other phases are
kept constant atφ1 =π andφ2 = 3π/2. At the degeneracy points of, whereφ3 = nπ+π/2,
avoided crossings appear. The size of the gap created by the interaction, is given by 2δD.
The size of this gap is on the order of 10µeV for realistic parameters with Al as a super-
conductor 2 and a junction separation l = 50nm [160]. Keeping the material properties
constant, the energy gap depends on the junction separation and decreases exponen-
tially with increasing separation l . In the limit of l À ξ, the energy gap disappears and
the ABS in the separated junctions go back to their regular spectrum (shown by the red
and green lines in Figure 8.2a).

On top of the earlier mentioned uses of an Andreev molecule, one could also envi-
sion a new type of Andreev qubit. The phase dependence of the level structure can be
exploited to change excitation energies between levels. For example, one can adjust the
phase such that the excitation energy falls within the reach of commercial microwave
equipment and after exciting the qubit, change the splitting to frequencies where un-
wanted transitions are less likely to occur.

On a more fundamental note, the avoided crossing gap could be used to measure the
superconducting coherence length. The relation between the gap size and the coherence
length is derived in Reference [160].

ϕ3

L

R

Figure 8.2: (a) Andreev molecule energy spectrum as a function of φ3, the phases of the outer leads are kept
constant at φ1 = π and φ = 3π/2. When ξÀ l the ABS of both junctions behave as isolated junctions, shown
in red (left junction) and blue (right junction). If ξ is on the order of l however, a gap opens at the degeneracy
points of size 2|δD|. (b) The splitting falls of exponentially as l increases compared to ξ. Figure adapted from
Reference [160].

8.2.1. MICROWAVE SPECTROSCOPY

When realising this molecule, the first step would be to measure its spectrum an observe
the avoided crossings. Over the years several techniques have been used to measure
the spectra of Andreev bound states. Among the most common are tunnel spectroscopy
[232], superconducting resonators [197, 227, 233] and on-chip microwave spectroscopy
[184, 234, 235]. In this section we will focus on a novel approach to on-chip microwave

2With superconducting gap ∆= 200µeV, coherence length ξ= 96nm and sheet resistance Rä = 1.43Ω.
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spectroscopy, first introduced by the Flux Quantum Lab 3. For an extensive study on
the theoretical modelling and characteristics of this technique, we refer the reader to the
thesis of Griesmar [236].

The basic principles are the same as the traditional on-chip spectroscopy method; it
uses a Josephson tunnel junction both as a microwave source and detector. By voltage
biasing the spectrometer junction, the ac Josephson effect generates a microwave cur-
rent with frequency f = 2eVspec/h (see Figure 8.3). Coupled to the Andreev molecule, it
will excite transitions between the even-parity Andreev levels. This energy dissipation
in the spectrometer junction gives rise to a so-called inelastic Cooper tunneling current,
detectable as peaks in the dc current-voltage curve of the spectrometer junction. As
the peak voltage is related to the frequency of the ac current, we can measure the excita-
tion spectrum of the molecule by scanning the current-voltage curve of the spectrometer
junction (see section 2.3.3).

In previous works, the spectrometer was capacitively coupled to the Andreev junc-
tion [184, 234, 235] (see Figure 8.3a). This allowed for independent dc voltage biasing
of the spectrometer junction and the Andreev junction. An important condition for this
method is a good isolation of the spectrometer from circuit resonances that can crowd
the measured spectrum and obscure the Andreev spectrum. In two of the publications,
this was achieved by using resistive bias lines with resistances on the order of several kΩ.
This has the unwanted side effect of decreasing the quality factor of the spectroscopy cir-
cuit, increasing the linewidth. Another approach is to use on-chip LC filters. While this
does solve the issue of a decreased quality factor, it creates new unwanted resonances in
the circuit.

The novel on-chip spectroscopy approach makes clever use of a symmetric SQUID
with a magnetic fluxΦspec =Φ0/2, such that the supercurrents through the spectrometer
junctions are equal and opposite. Meaning that the supercurrent circulates through the
SQUID only and is effectively isolated from the external circuit. We embed the device
under test, in this case an Andreev molecule, inside the SQUID loop to couple it to the
spectrometer (see Figure 8.3b). This approach does not require any capacitors or on-
chip isolation filters, which greatly simplifies fabrication.

There are some constraints on the size of tunnel junctions for this scheme to work.
The Josephson energies of the junctions must be properly sized with respect to each
other:

EJ,spec

2
= EJ,1 = EJ,2, EJ,3 +EJ,4 = EJ,dev À EJ,spec, EJ,3 ¿ EJ,4. (8.1)

Symmetric spectrometer junctions ensures that the supercurrent is fully contained with
the spectrometer SQUID. Asymmetry will cause the spectrometer to pick up resonances
from outside the spectrometer circuit, crowding the spectrum. Next, the device Joseph-
son energy Edev must be much larger then that of the spectrometer. This ensures that
the circuit can still be seen as a simple dc SQUID with predictable behaviour. Finally, the
third constraint of having an asymetric SQUID at the Andreev junction, ensures control
over ϕL through the magnetic flux ΦL (see Section 2.3.1). The same condition should be
used for the right Andreev junction.

3Group webpage: www.phi0.org
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Figure 8.3: On-chip microwave spectrometer circuits (a) Traditional setup, where the spectrometer junction
(orange) is capacitively coupled to the Andreev molecule (blue). By scanning the voltage-current curve of the
spectrometer, Vspec− Ispec, excitations between the Andreev levels can be measured. The resistors R decouple
the circuit from its environment to ensure a clean spectrum, these are typically on the order of tens of kΩ.
The magnetic fluxes ΦL,ΦR control the phases over the Josephson junctions ϕL = φ2 −φ1, ϕR = φ3 −φ2 re-
spectively through asymmetric SQUIDs. (b) Alternative setup where two spectrometer junctions are used in a
symmetric dc-SQUID arrangement. The Andreev molecule is placed inside the dc SQUID. Isolation resistors
are not needed when the spectrometer SQUID is operated at Φspec =Φ0/2, where only resonances in the An-
dreev molecule are excited. (c) Prototype version of the circuit in b, where the Andreev molecule is replaced by
a symmetric dc SQUID made out of two tunnel junctions. At the top a flux bias line (green) is placed to control
Φspec preferentially.

To test the feasibility of the new spectroscopy method, we have fabricated and mea-
sured a test setup where the Andreev molecule is replaced by a tunnel junction in the
form of a symmetric SQUID arrangement for easier fabrication (see Figure 8.3c, note
however that we used an external magnet to control the flux, not Iflux. The purpose is
to test the functionality of the spectrometer approach by exciting the plasma frequency
of the device SQUID. External magnetic flux Φdev controls its critical current and thus
its plasma frequency, ωp = √

2eIC,dev/(ħC ) (see Section 2.3.2). The Josephson energies
of the device SQUID and spectrometer junctions are EJ,dev = 343.9µeV, EJ,spec = 37.2µeV
respectively.

Figure 8.4 summarizes the results of the test setup. In subfigure a we plot the mea-
sured spectrometer current as a function of the voltage over the spectrometer junctions
Vspec and external magnetic flux field Bflux . Note that Bflux is global and thus determines
bothΦspec andΦdev in a fixed ratio. Around Vspec = 0 we see the switching current of the
spectrometer SQUID oscillating with a period of 95.8µT in Bflux, corresponding to the
expected behaviour of a symmetric SQUID with a loop area of 21.6µm2, in agreement
with the designed size. We zoom in on green line at 234µV, where we are at the center of
a resonance from outside the spectrometer circuit. The line is plotted as function of Bflux

in Figure 8.4b. At Bflux ≈ 0, supercurrent through both spectrometer junctions is equal
in size and direction and so the critical current of the spectrometer SQUID is maximal.
This makes the spectrometer maximally sensitive to external modes. At Bflux ≈ 50µT, the
flux Φspec =Φ0/2, the point where the spectrometer supercurrent is equal and opposite
to each other. Resulting in a circulating supercurrent and a minimal sensitivity to exter-
nal modes. This is reflected in the strong attenuation of the spectrometer current, which
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means the spectrometer isolation from the external environment is working as designed.
We fit the dc current data to Equation 2.35 to characterize the external mode using:

I =
I 2

C,spec

2

Zext,0

Vspec
,

where Zext,0 = p
L/C is the characteristic impedance of the external mode with induc-

tance L and capacitance C , and IC,spec is the critical current of the spectrometer SQUID.
The fit is shown as a dashed black line and agrees well with the data. We find Re

{
Zext,0

}=
159.3Ω.

(a) (b)

(c)

Figure 8.4: On-chip microwave spectrometer prototype characterization (a) Overview scan of spectrometer
current Ispec as a function of Vspec and magnetic field Bflux. Around Vspec = 0, the supercurrent oscillations
of the spectrometer SQUID are visible. The breaks in the data at

∣∣Bflux
∣∣ ≈ 250µeV are due to the low EJ of the

device SQUID. (b) Spectrometer current due to an external resonance mode as a function of Bflux. Dashed line
shows a best fit for an RLC circuit. (c) Spectrometer voltage-current curve atΦspec = 0 (blue) with a fit (dashed
black line) to the external resonance and at the isolation settingΦspec =Φ0/2 (orange), with a fit to the plasma
mode of the device SQUID (dashed black line).

In Figure 8.4c we plot two voltage-current curves of the spectrometer. Plotted in blue
is the spectrometer at Φspec = 0 and we see the same external mode as in subfigure b
around 230µeV. We fit the external mode again with, this time for a frequency dependent
external parallel RLC circuit impedance:

Re{Zext(x)} = Zext,0Q

1+ Q2

x2

(
1−x2

)2
, (8.2)

with dimensionless frequency x = ω/ω0. The best fit results in a center frequency f0 =p
LC

−1
/(2π) = 113GHz, a quality factor Q = R

p
C /L = 2 and Zext,0 = 155Ω. The value for

Zext,0 is consistent with the characteristic impedance found from the data in Figure 8.4b.
The orange line is taken at Φspec = Φ0/2. Note that the external mode has disappeared
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and a mode around Vspec = 50.6µV has become visible. This is the plasma mode of the
device SQUID. We also fit this peak with Equation 8.2 and find f0 = 24.4GHz, Q = 2.3
and Zint,0 = 138.9Ω, similar to values found in other on-chip microwave experiments
[184, 235]. We summarize all extracted quantities in Appendix B.

These results show the feasibility of using this setup to measure the Andreev molecule
spectrum. One challenge however is the need for independent control over two different
fluxes (three in case of the Andreev molecule). In a typical dilution refrigerator transport
setup, usually there is only a single global external magnetic field available. Indepen-
dent control over multiple fluxes can be achieved by adding a flux-bias line close to the
SQUID loop area, as depicted in Figure 8.3c. A large current on the order of several mA
through these lines generates a local magnetic field to control the flux through the near-
est SQUID loop. In typical setups this would cause a problem, as the dissipated power of
these current through a resistive wire is higher then the cooling power of most dilution
refridgerators at the mixing chamber. We have adressed this issue by using continuous
superconducting wires up to the still level, where there is more cooling power available.
This allows for large currents without heating up the mixing chaimber. In section 3.2.1
we went into more detail of the practical challanges and solutions to them.

8.3. TOWARDS A PHYSICAL KITAEV CHAIN
In chapter 4 we have reported on the observation of the 4π-periodic Josephson effect,
a signature of Majorana bound states. The observed magnetic field threshold value is
in the range of 175-300 mT, consistent with estimations for other publications. We were
furthermore able to suppress the effect in the same device by changing the chemical
potential with electrostatic gates.

Ever since the first experimental signature of Majorana states [87], several articles
have reported on topologically trivial mechanisms of mimicking Majorana signatures
[62, 148, 237–239]. In 2018, the possibility of so-called quasi-Majoranas was introduced
[240] where local Majorana-like states can mimic many of the signatures of real Majo-
rana states, including the fractional Josephson effect. The existence of these ‘quasi Ma-
jorana’ states and the difficulty with which they are distinguished from real Majorana
states, makes one question the robustness of the current approach of creating Majoranas
in semiconductor nanowire structures. Developing a topological qubit and indeed scal-
ing up the number of qubits, requires a reliable and reproducible method for creating
Majorana states.

An alternative approach is mapping a Kitaev chain onto a linear array of supercon-
ducting quantum dots. Under the right conditions, the Hamiltonian of the array be-
comes identical to the topological non-trivial Kitaev chain Hamiltonian with Majorana
end states [13, 14, 80]. This approach allows for better control over the parameters that
control the Majorana states. For example, the seperation between the Majorana states
can be tuned in situ by adding/removing quantum dots to/from array with electrostatic
gates. Additionally another set of gates can tune the superconducting coupling. See also
Section 2.6.3.

From the Andreev molecule as described in the previous section, the technological
step to a Kitaev chain is actually quite small. We only need to add quantum dots in the
weak links of the Josephson junction and apply a magnetic field to lift the spin degen-



8.3. TOWARDS A PHYSICAL KITAEV CHAIN

8

131

eracy. This minimal chain of two sites lacks topological protection, but is can serve as
a prototype and demonstrate the feasibility of this approach [241]. In general longer
chains are preferable, as they are more forgiving to variations in the parameters [14].

This easy step towards a Kiteav chain does require the inter-dot couplings tn and p-
wave pairing ∆n to be equal, the spin-orbit length lSO less or equal to the length of the
quantum dots and the on-site chemical potentials of the dots µn = 0. This last condition
is trivially realized with plunger gates. The induced gap of the Al shell in InAs nanowires
is typically on the order of 200µeV, since we need a finite magnetic field for lifting the
spin degeneracy, this will be a lower value when searching for Majoranas. With the use
of electrostatic gates, tn is readily tunable between 1-200µeV, realising tn =∆n . Finally,
the spin-orbit length typically is around lSO ≈ 130nm, which sets an upper bound on the
length of the quantum dots. In chapters 5-7 we have used quantum dots with a pitch
down to 60nm, statisfying this condition.

lSO

Δind

t

(a)

(b)

Figure 8.5: Physical realisations of Kiteav chain (a) Nanowire Kiteav chain with normal leads (orange) on both
ends and a central superconductor (blue), coupled to single-orbital quantum dots (green) on either side. An
external magnetic field lifts the spin degeneracy of the electrons in the quantum dots and spin-orbit interaction
enables superconducting pairing between the quantum dots, provided that lSO is smaller than the quantum
dot. (b) 2DEG configuration where the superconducting leads are positioned on the side of the quantum dots,
allowing for independent tuning of both ∆ind and t . Note that ∆ind is the induced s-wave pairing, not to be
confused with the p-wave pairing ∆n .

In this setup, electrons can co-tunnel via above-gap quasiparticle states in the su-
perconductor between the dots – representing t . The superconducting lead should be
smaller than the superconducting coherence length ξ, such that the pairing is induced
through crossed Andreev reflection, representing ∆n . An external magnetic field lifts the
spin degeneracy and assuming the level spacing the quantum dots is much larger then
the other energy scale – we have a spin polarized electron in each dot, with hopping t
and pairing ∆n . Since we have an s-wave superconductor, the pairing will be zero. To
solve this, the authors of reference [241] rely on local magnetic field vectors to control
the angle between the spins, tuning the pairing. In the setup of Figure 8.5a, we rely on
spin-orbit interaction to give a finite pairing energy.

A downside to this approach is that there is limited independent tunablility of the
normal tunneling t and the p-wave pairing energy∆n . As the tunnel gate controlling the
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coupling to the quantum dots will affect both of these parameters. The spin-orbit cou-
pling could be varied by changing the potential landscape with the electrostatic gates,
thus changing∆n independently. But there is no simple relation between the a gate volt-
age and the resulting change in spin-orbit coupling strength. This approach might still
be a worthwhile endeavour as it turns out that longer chains have a relatively high toler-
ance for variations in t and∆n . An array with 5 quantum dots can still have a topological
gap of around 90µeV with t ,∆n varying randomly between 43 and 129µeV [14].

8.3.1. TWO DIMENSIONS
Using a two-dimensional electron gas (2DEG) as a platform allows for full independent
control over t and ∆ind. In a 2DEG one has the freedom to place the superconductors
alongside the quantum dots instead of in-between the dots. This allows the electrostatic
gates to tune ∆ind (and thus ∆n) independently from t (see Figure 8.5b).

The 2DEG platform however has its own set of challenges. The developments of in-
ducing superconductivity and quantum dots in large spin-orbit coupling materials, such
as InAs and InSb, lack behind those of VLS nanowires. The challenges arise from the fact
that the 2DEG layer should be close to the surface (order of 10 nm) in order to get good-
quality induced superconductivity from a superconducting layer on top. This however
reduces the mobility of the electrons as surface scattering effects become more promi-
nent.

Recently there have been reports of good-quality induced superconductivity in InAs
surface 2DEGs [218, 219, 242]. There has also been progress in InSb 2DEGs, where very
recently stable quantum dots were realised [243]. Induced superconductivity has also
been shown in this system using NbTiN [244]. These advancements make the 2DEG
platform a interesting alternative to nanowires for creating a physical Kitaev chain.



A
FABRICATION DETAILS

In this appendix we list the fabrication steps of the device measured in Chapters 5-7.
Fabrication is done on 9.5mm×9.5mm silicon coupons cut from a commercial 525µm
thick 4 inch intrinsic silicon wafer with a 285 nm thermally grown SiOx layer. The lithog-
raphy steps are performed with a 100 kV Raith EBPG5200. All steps are preformed at
room temperature, unless stated otherwise. The lithography developer solution is stored
at 7 ◦C. When used, it is poured into a beaker and used directly. Note that all of the steps
described below are optimized to work in the Kavli nanolab cleanroom in Delft. The
parameters might need adjustments for other cleanrooms.

1. Electron-beam alignment markers

• Spin coating - Polymethylmethacrylaat (PMMA) 950A4 - 4000 rpm (target
thickness: 200 nm)

• Soft bake - 175 ◦C - 5 min
• Electron-beam exposure - 1200µC/cm2

• Development - H2O:isopropanol (IPA) (1:3) - 7 ◦C - 1 min
• N2 dry
• Evaporation - titanium (Ti) - 10 nm
• Evaporation - gold (Au) - 90 nm
• Lift off - acetone - 52 ◦C - 20 min
• Rinse - IPA - 1 min
• N2 dry
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2. Shorting line
A continuous line made from aluminum that electrically shorts all ohmic nanowire
contacts. This is done to protect the nanowire from electrostatic discharge.

• Spin coating - PMMA 950A4 - 4000 rpm (target thickness: 200 nm)
• Soft bake - 175 ◦C - 5 min
• Electron-beam exposure - 1200µC/cm2

• Development - H2O:IPA (1:3) - 7 ◦C - 1 min
• N2 dry
• Evaporation - aluminum (Al) - 50 nm
• Lift off - acetone - 52 ◦C - 20 min
• Rinse - IPA - 1 min
• N2 dry

3. Deterministic deposition of nanowires
Nanowires are manually transferred from a growth chip to the silicon substrate as
described in Chapter 3.1.1.

4. Selective etch of nanowire shell The superconducting aluminum shell is selec-
tively removed for the two Josephson junctions by using a chemical wet etch as
described in Chapter 3.1.2.

• Pre-bake - 175 ◦C - 5 min
• Spin coating - PMMA 950A4 - 4000 rpm (target thickness: 200 nm)
• Soft bake - 175 ◦C - 5 min
• Electron-beam exposure - 1800µC/cm2

• Development - H2O:IPA (1:3) - 7 ◦C - 1 min
• Etch - MF-321 - 55 s
• Rinse - H2O - 10 s
• Rinse - H2O - 30 s
• Rinse - H2O - 30 s
• Strip - acetone - 52 ◦C - 20 min

5. Nanowire leads and bondpads
Normal metal layer for the nanowire source and drain bondpads and most of the
leads. This is made from a normal metal to avoid resonant modes in the circuit.

• Spin coating - PMMA 950A4 - 4000 rpm (target thickness: 200 nm)
• Soft bake - 175 ◦C - 5 min
• Electron-beam exposure - 1200µC/cm2

• Development - H2O:IPA (1:3) - 7 ◦C - 1 min
• N2 dry
• Evaporation - Ti - 10 nm
• Evaporation - Au - 50 nm
• Lift off - acetone - 52 ◦C - 20 min
• Rinse - IPA - 1 min
• N2 dry
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6. Superconducting arms and nanowire contacts
Superconducting arms connect the two Josephson junctions in parallel to form a
dc SQUID one one end and connect to the normal metal leads on the other end.

• Spin coating - PMMA 950A4 - 4000 rpm (target thickness: 200 nm)
• Soft bake - 175 ◦C - 5 min
• Electron-beam exposure - 1200µC/cm2

• Development - H2O:IPA (1:3) - 7 ◦C - 1 min
• N2 dry
• Argon milling - 50 W - 3 min
• Sputtering - Niobium titanium nitride (NbTiN) - 90 nm
• Evaporation - Au - 50 nm
• Lift off - acetone - 52 ◦C - 20 min
• Rinse - IPA - 1 min
• N2 dry

7. Global dielectric
This dielectric layer separates the electrostatic gates from the nanowire and is de-
posited over the entire substrate.

• Atomic layer deposition - aluminum oxide (Al2O3) - 105 ◦C - 10 nm

8. Gate electrodes
The metal for the gate electrodes is deposited under multiple angles to confor-
mally cover the nanowires with a thickness of approximately 50 nm. See Chapter
3.1.4 for details.

• Spin coating - PMMA 950A3 - 4000 rpm (target: 150 nm)
• Soft bake - 175 ◦C - 5 min
• Electron-beam exposure - 1200µC/cm2

• Development - H2O:IPA (1:3) - 7 ◦C - 1 min
• N2 dry
• Evaporation - Ti - 5 nm - −60°
• Evaporation - Ti - 5 nm - 60°
• Evaporation - Au - 10 nm - 60°
• Evaporation - Au - 10 nm - −60°
• Evaporation - Au - 20 nm - 5°
• Lift off - acetone - 52 ◦C - 20 min
• Rinse - IPA - 1 min
• N2 dry
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9. Gate leads and bondpads
Due to the evaporation angle of 60° of the gate electrodes, metal is deposited on
the side walls of the resist. This makes lift off difficult for large structures. The
leads and bondpads for the gate electrodes are therefore done in a separate step,
with a normal evaporation angle for 90°.

• Spin coating - PMMA 950A4 - 4000 rpm (target thickness: 200 nm)
• Soft bake - 175 ◦C - 5 min
• Electron-beam exposure - 1200µC/cm2

• Development - H2O:IPA (1:3) - 7 ◦C - 1 min
• N2 dry
• Evaporation - Ti - 10 nm
• Evaporation - Au - 90 nm
• Lift off - acetone - 52 ◦C - 20 min
• Rinse - IPA - 1 min
• N2 dry

10. Dielectric etch nanowire bondpads
We selectively remove the dielectric at the bondpads to facilitate wire bonding.

• Pre-bake - 175 ◦C - 5 min
• Spin coating - PMMA 950A4 - 4000 rpm (target thickness: 200 nm)
• Soft bake - 175 ◦C - 5 min
• Electron-beam exposure - 1000µC/cm2

• Development - H2O:IPA (1:3) - 7 ◦C - 1 min
• Etch - MF-321 - 3 min
• Rinse - H2O - 10 s
• Rinse - H2O - 30 s
• Rinse - H2O - 30 s
• Strip - acetone - 52 ◦C - 20 min



B
CIRCUIT PARAMETERS OF ON-CHIP

MICROWAVE SPECTROSCOPY

In this appendix we list all relevant circuit parameters extracted from the on-chip mi-
crowave spectroscopy prototype device described in Section 8.2.1. These parameters
help to asses the feasibility of this approach for spectroscopy, in Section 8.2.1 we aim for
measuring the energy spectrum of an Andreev molecule in a nanowire. Literature values
for these parameters can be found in references [184, 234, 235].

Table B.1: Extracted circuit parameters

Spectrometer SQUID Device SQUID External mode

RN (kΩ) 17.2 RN (kΩ) 1.9
∆ (µeV) 197.8 ∆ (µeV) 197.8
IC (nA) 18.1 IC (nA) 167.4

EJ (µeV) 37.2 EJ (µeV) 343.9
LJ (nH) 18.2 LJ (nH) 2.0

R (Ω) 323.4 R (Ω) 311.2
L (nH) 0.9 L (nH) 0.2
C (fF) 46.9 C (fF) 9.1

f0 (GHz) 24.5 f0 (GHz) 113.1
Z0 (Ω) 138.8 Z0 (Ω) 155.0

Q 2.3 Q 2.0

The critical current is determined from the superconducting gap ∆ and the normal-
state resistance RN with π∆/(2eRN). The Josephson energy is given by ħIC/(2e) and the
Josephson inductance byΦ0/(2πIC). The RLC resonance properties are defined as: cen-
ter frequency f0 = 1/(2π

p
LC ), characteristic impedance Z0 = p

L/C and quality factor
R
p

C /L.
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