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Topological equivalence between two classes of three-dimensional steady cavity
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The present study concerns Lagrangian transport and (chaotic) advection in three-

dimensional (3D) flows in cavities under steady and laminar conditions. The main

goal is to investigate topological equivalences between flow classes driven by differ-

ent forcing; streamline patterns and their response to nonlinear effects are exam-

ined. To this end we consider two prototypical systems that are important in both

natural and industrial applications: a buoyancy-driven flow (differentially-heated

configuration with two vertical isothermal walls) and a lid-driven flow governed

by the Grashof (Gr) and the Reynolds (Re) numbers, respectively. Symmetries

imply fundamental similarities between the streamline topologies of these flows.

Moreover, nonlinearities induced by fluid inertia and buoyancy (increasing Gr)

in the buoyancy-driven flow versus fluid inertia (increasing Re) and single- or

double-wall motion in the lid-driven flow cause similar bifurcations of the La-

grangian flow topology. These analogies imply that Lagrangian transport is gov-

erned by universal mechanisms and differences are restricted to the manner in

which these phenomena are triggered. Experimental validation of key aspects of

the Lagrangian dynamics is carried out by particle image velocimetry (PIV) and

3D particle-tracking velocimetry (PTV).

a)Electronic mail: p.s.contreras.osorio@tue.nl
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I. INTRODUCTION

Transport under laminar flow conditions and chaotic advection are key to natural and

industrial systems involving small-scale flows or viscous flows in, for example, microflu-

idics, biological flows or geophysics.1,2 Chaotic advection is understood in the present

context as purely kinematic, the solution of the advection equations (that describes the

motion of passive tracers) exhibits a chaotic behaviour.1–4 Closely related to chaotic ad-

vection is the ‘Lagrangian flow topology’ (or global streamline pattern for steady flows)

and its response to nonlinearities. This is fundamental to the analysis of transport

phenomena.1–3,5–9

Flows in cavities are one of the canonical configurations to study Lagrangian trans-

port and chaotic advection in three-dimensional (3D) laminar flows.2 In this context,

buoyancy-driven and lid-driven flows have been considered as archetypal configurations

to study fundamental aspects of advection.1–3,10–18 The main goal of this study is to in-

vestigate universal phenomena in 3D cavity flows and to this end, buoyancy-driven and

lid-driven flows are adopted as representative systems. Limited insight into Lagrangian

transport in this class of flows, crucial to further technological development, motivates

this study.

The 3D cavity flows studied here are steady and laminar. A smooth introduction of

the nonlinear effects is accomplished by increasing the governing parameters which are

kept well below the onset of unsteadiness so as to ensure steady flows; see e.g. Refs. 19–21

for comparable flow conditions. The buoyancy-driven flow is generated by a horizontal

temperature gradient (differentially-heated cavity with two opposite isothermal vertical

walls). Two driving modes are considered in the lid-driven flow: single- and double-

lid forcing. This study mainly focuses on the buoyancy-driven flow in the large Prandtl

number (Pr) case, and its comparison with the double-lid-driven flow (anti-parallel motion

at the same speed of two facing walls). Former and latter flows are governed by the

Grashof (Gr) and Reynolds (Re) numbers, respectively. Moreover, we consider flows in

cavities of unit aspect ratio, a cubical differentially-heated system and a lid-driven flow

in a square cylinder (height/diameter = 1).

We further investigate the strong similarity and analogy between flows exposed in

Ref. 22. This includes single-lid-driven flows (only one endwall moves) and the changes

induced by double-lid-forcing. The response to nonlinearities in the buoyancy-driven

flow has an equivalent counterpart in lid-driven flows: (i) the limit of vanishing Gr yields
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the same topology as the Stokes limit (Re = 0) of single-lid-driven flows. (ii) Increasing

Gr changes the flow topology in a similar way as introducing fluid inertia (Re > 0)

in the single-lid-driven case. (iii) Further increasing Gr generates a buoyancy-induced

bifurcation of the streamline pattern that is reminiscent of double-lid-driven flows. The

symmetry properties of the cavity flows implicate their topological similarities. This

allows for a fundamental analysis while introducing nonlinear effects on two levels: (i)

dynamics in the symmetry plane, and (ii) 3D dynamics outside the symmetry plane.

Furthermore, a comparative numerical-experimental analysis is presented in order to

validate and highlight the practical relevance of the studied Lagrangian dynamics. Parti-

cle image velocimetry (PIV) is considered to study the dynamics in the symmetry plane

(in the case of the buoyancy-driven flow), and experimental analysis of tracer motion is

performed by 3D particle-tracking velocimetry (PTV) for the double-lid-driven flow.

To date, both the buoyancy-driven and lid-driven flows have been widely considered in

literature because of their rich dynamics from a fundamental fluid mechanics point of view

and their relevance to applications. However, there are still few 3D studies concerning

the present cavity flows and, in particular, their Lagrangian properties. Research has

shown that bifurcations occur in this type of flows promoting complicated Lagrangian

dynamics.19,23–26 However, such bifurcations in 3D have been less investigated than in the

2D case. This motivates the present study that examines the evolution of the streamline

topologies as nonlinearities are introduced (increasing Gr, Re). Such evolution is also

relevant to the onset of chaotic advection (involving break-up of transport barriers) since

a substantial number of studies often consider the response of non-chaotic systems to

small perturbations (e.g. Stokes flow regime).1,2

A review of pioneering studies on the buoyancy-driven flow is presented in Refs. 22

and 27. In this configuration, extensive research has considered simplified situations in

unbounded regions in which one of the aspect ratios tends to infinity. The objective in

several of these studies is the understanding of the onset and the development of time-

dependent flows focusing on low Pr fluids.27,28 A large body of literature has investigated

fundamental aspects in 2D and 3D rectangular cavities, see e.g., Refs. 29–32 and references

therein. Experimental visualization of flow structures can be found in Refs. 19, 33, and 34,

for example. A numerical study of an air-filled cavity (Pr = 0.71) considering bifurcations

and the route to chaos with increasing values of the governing parameter is found in

Refs. 25 and 26. Insight into Lagrangian transport in this configuration is relevant to
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buoyancy-driven flows involving additional effects, such as wall and medium radiation35

or external vibration,36 inclination of the temperature gradient,37,38 time-periodic flows

composed of reoriented steady flows39 or unsteady effects.40

Similar to the situation of the buoyancy-driven flow, 3D studies on the double-lid-

driven flow remain limited. Challenges in the 3D case appear due to the greater topo-

logical complexity of 3D flows compared with their 2D counterparts.15,20,21,23,24 A recent

review of studies on the 2D and 3D single- and double-lid-driven flows is presented in

Ref. 18. In particular, evolution in the dynamics of the double-lid system with increas-

ing nonlinearities in 2D cavities and in a 3D spatially-periodic (unbounded) flow can be

found in Refs. 41 and 42, respectively. Experimental studies on this flow configuration

are performed in, e.g., Refs. 43–45.

The present work substantiates the universality of key aspects of the Lagrangian dy-

namics. In particular, the 3D flow topology of the double-lid-driven system is charac-

terised by similar secondary toroidal structures as found in the buoyancy-driven flow. The

appearance of these structures is understood in terms of the corresponding symmetries,

and the evolution of tori families is governed by generic Hamiltonian mechanisms.

This paper is organised as follows. The flow models, tracer kinematics and numerical

methods are introduced in Section II. In Section III the details of the experimental meth-

ods are described. The comparative numerical-experimental analysis of the flow topology

and Lagrangian dynamics is discussed in Section IV. Conclusions are drawn in Section V.

II. PROBLEM DEFINITION

A. Buoyancy-driven flow

We consider the steady flow in a differentially-heated cubical cavity (side length H)

driven by buoyancy under laminar conditions. Two opposite vertical walls are isothermal

and held at different temperatures, TH at the left hot wall and TC at the right cold wall.

The other four walls are thermally insulated. Furthermore, the no-slip condition for the

velocity (u = 0) is considered on all boundaries. Gravity acts in the negative z-direction

and the origin of the frame of reference is located in a corner of the cube (see Fig. 1a).

Note that left and right walls are interchanged compared with the system considered in

Ref. 22 due to practical reasons in the laboratory set-up.

The fluid is assumed to be Newtonian with constant physical properties except for
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(a) (b)
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FIG. 1. Schematic of the 3D steady cavity flows. (a) Buoyancy-driven flow in a cubic cavity.

(b) Double-lid-driven flow in a cylindrical cavity.

the density in the buoyancy term following the Boussinesq approximation. The steady

buoyancy-driven flow at strongly laminar conditions is governed by the mass, momentum

and energy conservation equations in non-dimensional form22

∇ ⋅u = 0, Gru ⋅ ∇u = −∇p +∇2u + Tez, Gr Pru ⋅ ∇T = ∇2T, (1)

parameterised by the Prandtl Pr = ν/α and Grashof Gr = gβ∆TH3/ν2 numbers. Non-

dimensional form (1) relies on the scaling x′ =Hx, u′ = Uu, p′ = Pp and T ′ = T0 + T∆T .

In the previous expressions U = gβ∆TH2/ν, P = µU/H, and ∆T = TH − TC , with g the

gravitational acceleration, ez the z-wise unit vector, µ the dynamic viscosity, ν = µ/ρ

the kinematic viscosity, β the thermal expansion coefficient and α the thermal diffu-

sivity. Note that Gr = UH/ν = Re, the Reynolds number and Eqs. (1) govern the

steady buoyancy-driven flow at low Gr. The non-dimensional problem corresponds to a

differentially-heated cavity with unit side length and thermal boundary conditions T = 1

at x = 0 and T = 0 at x = 1.

B. Double-lid-driven flow

We consider 3D flows inside a square cylinder (radius R and height H = 2R) driven

by the steady and simultaneous translation of the bottom and top walls. The walls move

a distance Dwall with the same constant velocity magnitude uwall in opposite direction;

positive and negative x-directions for bottom and top walls, respectively. The mantel of

the cylinder is stationary (u = 0 at the boundary). A schematic of the configuration is

shown in Fig. 1(b). The flow is governed by the steady and non-dimensional continuity

5
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and momentum equations

∇ ⋅u = 0, Reu ⋅ ∇u = −∇p +∇2u, (2)

with the Reynolds number Re = uwallR/ν as the control parameter. In Eqs. (2) u and p are

the non-dimensional fluid velocity and pressure, respectively. This assumes a dominance

of viscous over inertial forces and the following scaling x′ = Rx, u′ = uwallu, p′ = Pp with

P = uwall ρν/R. The cylinder C ∶ [r, θ, z] = [0,1] × [0,2π] × [−1,1] is the associated flow

domain. Note that the origin of the frame of reference is chosen to be at the center of

the cylinder (Fig. 1b). The non-dimensional wall displacement is D =Dwall/R.

The single-lid-driven flow is governed by Eqs. (2) with boundary condition at the top

wall, utop = 0. In Section IV A the fundamental states of lid-driven flows are presented;

the flow topology of single-lid-driven flows and the changes induced by double-lid forcing

are introduced.

C. Tracer kinematics

The motion of passive tracers advected by the steady velocity field u is governed by

the kinematic equation with corresponding solution

dx

dt
= u(x), x(t) = Φt(x0). (3)

The continuous flow Φt describes the Lagrangian tracer trajectory from the initial x0

to the current position x(t). The Lagrangian fluid trajectories are described by curves

x(t) parameterised by t. These coincide with streamlines in the present context of steady

flows.

A representation of the 3D flow x(t) = Φt(x0) by a 2D map Φ is possible due to the

existence of a circulatory structure in cavity flows according to

xk+1 = Φ(xk), (4)

with xk = (yk, zk) the kth intersection of the 3D fluid trajectory starting at x0 with a

given plane. The intersections of the streamline with this plane form a sequence of planar

positions and constitute the corresponding Poincaré section.22 Both representations of the

dynamics in terms of 3D streamlines and Poincaré sections will be employed in this study.
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D. Numerical methods

The numerical simulation of the flow fields governed by Eqs. (1) and (2) is performed

using the commercial CFD finite element package COMSOL Multiphysics. Standard set-

tings are considered using the modules Laminar Flow and Heat Transfer in Fluids.

In the case of the lid-driven flow, a Physics-controlled mesh with an extra fine

element size is used. The computational mesh consists of O(1 × 106) elements. The tol-

erance factor for the nonlinear solver is set to yield residuals of O(10−10 − 10−12). Similar

solver properties are considered for the buoyancy-driven flow, see Ref. 22 for details.

Lagrangian tracer paths are determined by numerical integration of the advection

equation (3) using a dedicated tracking algorithm implemented in MATLAB.22 Integration of

the kinematic equation uses an explicit third-order Taylor-Galerkin scheme with adaptive

step size. The reliable isolation of the fundamental topological structure by the considered

numerical scheme (consistent with theoretical considerations) indicates the requirement

of an adequate degree of resolution (see the discussion below).

In Ref. 22 a comparative analysis of the particle tracking scheme using the COMSOL

field and its projection onto a divergence-free basis constructed from Chebyshev polyno-

mials (spectral approach) is performed. The COMSOL field is able to display fundamental

topological properties; the employed numerical scheme using the COMSOL field adequately

resolves the formation of closed streamlines for the Stokes flow and the response to per-

turbations following Hamiltonian mechanisms (e.g., formation of toroidal structures).

Computational departures from the incompressibility constraint in the COMSOL field lead,

however, to numerical artefacts in the Lagrangian dynamics for long integration times.

This involves poor resolution of the small-scale features in the Poincaré sections for fur-

ther increasing the governing parameter (e.g., island-chain formation). The projected

field satisfies incompressibility up to machine accuracy and enables reliable simulation of,

in particular, the small-scale dynamics.

Based on the previous considerations, we present in Section IV a detailed numerical

analysis of the buoyancy-driven and lid-driven flows. This includes the main features of

the Lagrangian dynamics using the COMSOL field (resolution of the fundamental topological

properties such as relevant structures and bifurcations of the streamline patterns), and

long-term dynamics and small-scale features of the Poincaré sections of the buoyancy-

driven flow using the spectral representation of the COMSOL field according to Ref. 22. The

numerical study of flows concerns a qualitative comparison between the flow topology and
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asociated structures. All results are critically compared with theoretical predictions based

on the symmetries governing the Lagrangian dynamics (Section IV A) and experimental

measurements when possible (see Section III and Sections IV B 1, IV C 2). Regarding the

double-lid-driven flow, the particle tracking performance is examined in Appendix A. This

includes a comparison between the streamline patterns obtained with the COMSOL field

and a semi-analytical solution (Re = 0), and computation of the Lagrangian dynamics

with increased mesh resolution O(3× 105) versus O(106) (Re > 0). This reveals adequate

resolution and robustness of the simulated topological features.

III. EXPERIMENTAL METHODS

A. Buoyancy-driven flow

The laboratory set-up consists of a cubical convection cell (H = 77 mm). This set-

up is essentially a modified version of that utilised in Ref. 46 and 47 (see the sketch in

Fig. 2a). Copper plates serve as isothermal hot and cold walls (left and right vertical

walls, respectively). The other walls are made of glass. The left wall is heated using

an electrical heating foil (Minco HK5955) attached to the copper plate. The right wall

is cooled using water from a thermostatic bath (Julabo FP51) flowing through channels

inside the wall.

The working fluid is glycerol (Boom B.V.), with density ρ = 1260 kg m−3 and Pr ∼

1.1 × 104 (α = 9.45 × 10−8 m2/s, ν = 1.04 × 10−3 m2/s). The temperature difference be-

tween the vertical walls is varied in the interval ∆T ∈ [1.3,21.5] oC (corresponding to

Gr ∈ [2.6,43]). (The analysis in Section IV B 1 mainly concentrates on small Gr (∆T ≤

3.3 oC) in order to reduce the effects of the temperature dependence of the fluid vis-

cosity. Non-constant viscosity effects are mentioned as source of the differences between

experiments and simulations.) The temperatures of the hot and cold plates are kept

symmetrically about the laboratory ambient temperature of 22 oC in order to minimise

heat losses to the surroundings. The temperature of the vertical walls is monitored using

Pt100 sensors (Omega Engineering) with an inaccuracy of 0.03 oC. The maximum ob-

served non-uniformities of wall temperatures (examined by measuring the temperature

at different locations in the plates) are ∼ 0.03 oC and ∼ 0.01 oC for heated and cooled

plates, respectively. The Pt100 sensors are embedded in designed holes inside the copper

plates; temperatures are collected by a data acquisition module and monitored using a
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FIG. 2. Schematic of the laboratory set-ups. (a) PIV in the buoyancy-driven flow. (b) PTV in

the double-lid-driven flow.

logging software.46 (Once the measured temperatures do not vary more than 0.01 oC for

a time duration of at least 15 minutes, the average temperature obtained by two sensors

in each copper plate is considered as the wall temperature.)

Particle image velocimetry (PIV) measurements are performed to obtain highly re-

solved 2D velocity fields in the mid-plane of the cavity (Fig. 2a). A light sheet of approx-

imately 2 mm thickness is created using a diode-pumped solid-state laser, wavelength of

532 nm and power of 0.8 W (Pegasus). A cylindrical lens and a mirror are used in order

to illuminate the convection cell from the top.

The fluid is seeded with hollow glass spheres (density ρp = 1100 kg m−3, mean di-

ameter dp = 10µm, Dantec Dynamics). The gravitationally induced particle velocity

is Up =
∣ρp−ρ∣
18µ gd

2
p ∼ 7 × 10−9 m/s. Typical experimental velocities are Uexp ∼ 50 µm/s

and 270 µm/s in the high-velocity regions for minimum and maximum Gr, respectively.

Therefore, Up/Uexp ∼ 10−4 and settling effects can be neglected. Since the particle Stokes

number St = Tp/Tf ≈ 0, particles can be considered passive tracers. With Tp =
ρpd2p
18µ the

particle response time and Tf =H/Uexp the characteristic time scale in the flow.

Particle images are recorded using a PIV camera with 1376 × 1040 pixels resolution

(LaVision). Velocity vectors are calculated from the raw images based on a multi-pass

cross-correlation with final interrogation windows of 16 × 16 pixels and an overlap of

50% using the LaVision software (Davis 8.4.0). The time difference between consecutive

images is adjusted to have a maximum particle image displacement of about 6 pixels at

each experiment for a fixed temperature difference.
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The mean velocity fields are determined by averaging over 3600 instantaneous velocity

fields in the steady state. The uncertainty of the mean PIV velocity vectors is less than

1% of the maximum velocity in the cavity. Typical duration of experiments is between five

hours (at the minimum ∆T ) and two hours (at the maximum ∆T ). From the calculated

velocity fields, the streamlines of the steady flow are obtained using the before mentioned

LaVision software with standard settings of the interpolation factor.

B. Double-lid-driven flow

Experimental analysis of tracer motion in the double-lid-driven flow is carried out by

3D particle-tracking velocimetry (PTV) using the laboratory set-up introduced in Ref. 48.

It consists of a container filled with water (ν ∼ 10−6 m2/s) into which a transparent

Perspex cylinder (R = 35 mm, H = 70 mm) is submerged (see Fig. 2b). Wall displacement

is Dwall = 200 mm (this is restricted by the finite-size walls/container). The wall velocity

is varied in the interval uwall ∈ [0.5,1] mm/s with an inaccuracy below 0.1%. This yields

an experimental Reynolds number in the interval Re ∈ [17.5,35].

The fluid is seeded with fluorescent polyethylene particles (density ρp = 1002 kg m−3,

diameter dp = 75-90µm), which are illuminated by four LED arrays. Salt is added to water

in order to nearly match the density of the tracer particles, resulting in ρ = 1001.7 kg m−3.

The tracers are tracked by four CCD cameras, 8-bit 1600×1200 pixels (MegaPlus II

ES2020, Redlake) with B+W (orange 550) filters (Schneider Optische Werke GmbH),

recording at a frame rate of f = 0.5 Hz synchronous with the illumination. The particle

tracking velocimetry algorithm developed at ETH (Switzerland) is applied to recover

the 3D tracer trajectories.49,50 A low seeding density (∼ 50 particles) facilitates particle

matching and isolation of complete trajectories (total duration of the experiment).

The Stokes number equals St = Tp/Tf ∼ O(10−5) and thus particles can be consid-

ered passive. With Tp =
ρpd2p
18ρν the particle inertial response time and Tf = R/uwall the

characteristic flow time scale. The ratio particle velocity Up = ∣ρp − ρ∣
gd2p
18ρν to character-

istic flow velocity amounts to Up/uwall ∼ O(10−3), and settling can be neglected. More-

over, since Up ∼ 1.3 µm/s and Tf ≤ 70 s, a typical deviation in a particle trajectory

∆xp ≡ UpTf ∼ 0.1 mm is obtained.

Since the Strouhal number is Sr = Tν/Texp∈ [3,6], unsteady transient effects are ex-

pected in the experiments. With Tν = R2/ν= 1225 s the viscous time scale, and Texp =

Dwall/uwall∈ [400,200] s the forcing time scale. The initial time lapses, associated with the
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essentially time-dependent acceleration stage, are excluded from the experimental trajec-

tories presented in Section IV C 2 in order to diminish the influence of transients. For the

experimental velocity range, the considered time span τ (tracking interval) varies from

70 s to 40 s for minimum and maximum uwall, respectively. It was verified numerically

(by monitoring the time evolution of the velocity components at different locations in the

cavity and instantaneous flow patterns) that during the considered experimental track-

ing intervals, the experimental tracer trajectories should approach the final streamline

patterns (essential for the purpose of this investigation). This is elaborated below.

The computations reveal that transients can be neglected after ∼ 300 s for the con-

sidered velocity range. For the minimum wall velocity, this means that the experimental

tracer trajectories represent the streamlines in the steady state. For the higher explored

wall velocities, the numerical analysis reveals that convergence to the steady streamline

topology occurs relatively fast and is reached earlier than that of the velocity field itself.

That is, small variations in the velocity field (caused by transients) do not produce a

change in the streamline topology (differences are entirely quantitative). A qualita-

tive comparison between simulated (steady state) and experimental tracer trajectories is

presented in Section IV C 2.

Moreover, tracking of tracers without wall motion was performed in order to estimate

the order of magnitude of experimental disturbances that act as a natural perturbation

(e.g., thermal room conditions originated by the presence of electronic equipment). A

circulatory-type of motion was observed consistent with a buoyancy-induced perturba-

tion with corresponding drift velocity vp ≲ 0.1 mm/s. In Section IV C 2 the effect of

experimental disturbances is discussed.

IV. FLOW TOPOLOGY

A. Equivalences between flow classes

We start this section by introducing key analogies between flows in terms of the gov-

erning equations (Section II) and symmetry properties. A summary from Ref. 22 of the

buoyancy-driven flow is presented. Regarding lid-driven flows, the fundamental states of

the flow topology of single-lid-driven flows and the changes induced by double-lid forcing

are considered.

Non-dimensional form (1) admits identification of two fundamental flow states. (i) The
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(Ia)

(Ib) (IIb) (IIIb)

(IIIa)(IIa)

FIG. 3. Topological equivalences between flow classes. Buoyancy-driven flow (top row). Lid-

driven flows (bottom row). (Ib,IIb) Single-lid-driven flow. (IIIb) Double-lid-driven flow. (I)

Gr, Re = 0. (II) 0 < Gr < Gr∗, Re > 0. (III) Gr > Gr∗, Re > 0. Symmetry plane/line Pb,s,d/Lb,d
(grey/dashed), stagnation point at the cavity center (xc). Three trajectories are displayed,

streamlines in Pb,s,d (black), outside Pb,s,d (cyan/red). (IIa,IIIa) Pr = 1.1 × 104. (IIa) Gr = 2.6.

(IIIa) Gr = 4.6. (IIb) Re = 10. (IIIb) Re = 100. Pairs of points in (Ia), (Ib) and (IIa,IIIa,IIIb)

denote symmetries Sx,z, Sx and Sc, respectively.

linear limit Gr = 0, characterised by closed streamlines. System (1) collapses on the

Stokes limit −∇p+∇2u+Tez = 0 and conductive limit ∇2T = 0. (ii) The nonlinear regime

Gr > 0, where generically non-closed streamlines are present and the convective terms

in the governing equations become relevant. Analogous states exist for lid-driven flows

corresponding to cases Re = 0 and Re > 0 in Eqs. (2), respectively.24,48,51

The topological similarity between the buoyancy-driven and lid-driven flows is caused

by the corresponding symmetries. Furthermore, symmetries enable the introduction of

equivalences between the streamline patterns of both flows (represented by regimes I-III

in Fig. 3, see the discussion below). In this figure, the mid-plane portrays a ‘left-right’

reflectional symmetry, and extra symmetries are illustrated by pair of points. Subscripts

b, s, d are used to indicate the buoyancy-driven and single- and double-lid-driven flows,
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respectively.

The buoyancy-driven flow (1) displays the following two symmetries in the general case

Gr > 0.22,27 Reflectional symmetry about the mid-plane y = 1/2 (denoted Pb hereafter):

SP ∶ (x, y, z) → (x,1 − y, z), (ux, uy, uz, T̂ ) → (ux,−uy, uz, T̂ ). (5)

Centro-symmetry about the central transverse line x = z = 1/2 (denoted Lb hereafter):

SL ∶ (x, y, z) → (1 − x, y,1 − z), (ux, uy, uz, T̂ ) → (−ux, uy,−uz,−T̂ ). (6)

With T̂ = T − 1/2 and T̂ez the effective buoyancy force.22 Coexistence of symmetries (5)-

(6) translates into symmetry Sc = SLSP about the cavity center xc that is a stagnation

point, u(xc) = 0. Centro-symmetry (6) in the limit Gr = 0 divides into the reflectional

symmetries

Sx ∶ (x, y, z) → (1 − x, y, z), (ux, uy, uz, T̂ ) → (ux,−uy,−uz,−T̂ ), (7)

Sz ∶ (x, y, z) → (x, y,1 − z), (ux, uy, uz, T̂ ) → (−ux,−uy, uz, T̂ ), (8)

about planes x, z = 1/2, respectively. Symmetries (5) and (7)-(8) represent the con-

straining mechanism underlying the formation of closed symmetric streamlines, see e.g.,

Fig. 3 (Ia). Single-lid-driven flows in the Stokes limit possess symmetries (5) and (7)

about planes y, x = 0, respectively (see e.g., Fig. 3 Ib). Absence of symmetry (8) does not

affect the topological equivalence with the buoyancy-driven flow.

Breakdown of symmetries (7)-(8) and (7) for Gr, Re > 0, respectively, dictates the

formation of (generically) non-closed streamlines. The Lagrangian flow topology consists

of symmetrically arranged toroidal structures (primary tori). Streamlines in the mid-

plane show an outward spiralling motion (Figs. 3 IIa,b), corresponding to the existence

of a focus-type stagnation point.

In the buoyancy-driven flow, xc bifurcates from a repelling focus for 0 < Gr < Gr∗ to a

saddle for Gr > Gr∗, with Gr∗ the bifurcation threshold (Figs. 3 IIa,IIIa). This bifurcation

is accompanied by a pair of repelling foci in the symmetry plane. (See Ref. 22 for

details regarding the manifolds of stagnation points.) The bifurcation threshold follows

a hyperbolic relation

Gr∗ = aPrb, with (a, b) = (2.53 × 104,−0.97), (9)

and stems from limits Pr→ 0 (absence of convective heat transfer, fluid inertia dominates)

and Pr → ∞ (symmetry breaking dominated by buoyancy) in Eqs. (1).22 Double-lid
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forcing generates essentially the same bifurcation for lid-driven flows in the case Re > 0,

see Figs. 3 IIb,IIIb.

Moreover, the double-lid-driven flow (2) for Re > 0 displays symmetries (5)-(6). Reflec-

tional symmetry about the mid-plane y = 0 (denoted Pd hereafter) and centro-symmetry

about the central transverse line x = z = 0 (denoted Ld hereafter). Along Lb,d the only (in

general) non-vanishing velocity component is uy (i.e., ux = uz = 0) due to symmetry (6).

In summary, the response to nonlinearities in the buoyancy-driven flow has an equiv-

alent counterpart in lid-driven flows (this includes single- and double-lid forcing). Equiv-

alent flow topologies (see Fig. 3) result from the corresponding symmetries.

Two main cases can be distinguished in the buoyancy-driven flow at small and large

Pr, respectively. (In Ref. 22 the considered parameter range is 10−2 ≤ Pr ≤ 102 and ‘large

Pr’ means Pr ≥ 7.) Only for large Pr the existence of secondary tori around Lb (displaying

a reversed circulation) is observed. Increasing Gr causes the progressive disintegration of

tori into chaotic streamlines following universal Hamiltonian mechanisms (governed by

the Kolmogorov-Arnold-Moser (KAM) and Poincaré-Birkhoff theorems).4

The emergence of secondary tori is caused by the existence of stagnation points on

Lb (whenever uy vanishes); details on this mechanism can be found in Ref. 22. Presence

of such points results in the formation of a ‘separatrix’ between tori families due to

intricate heteroclinic manifold interactions. Moreover, the existence of stagnation points

(generally) precludes the possibility of a global Hamiltonian structure in the flow domain.2

This restricts the Hamiltonian scenario to subregions (as in the case of the two tori

families).

In this study we further investigate the equivalences between flows by both numerical

and experimental analyses. The study of the buoyancy-driven flow in the large Pr case

is shown in Section IV B, followed by the dynamics of the double-lid-driven flow and its

comparison with the buoyancy-driven flow in Section IV C. In particular two key elements

are considered: (i) the dynamics and bifurcations in the symmetry plane, and (ii) the 3D

emergence of secondary tori.
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(a)

(b)

FIG. 4. Buoyancy-driven flow, Pr = 1.1 × 104. Lagrangian fluid trajectories in the symmetry

plane (y = 1/2). Experiments, streamline collection (left). Simulations, representative stream-

lines (colors represent different initial positions) (right). (a) Gr = 2.6. (b) Gr = 4.6.

B. Buoyancy-driven flow

1. Dynamics in the symmetry plane

We focus hereafter on the analysis of the buoyancy-driven flow in the large Pr case

(Pr = 1.1 × 104). Differences between large and small Pr are emphasised. In particular,

the PIV experiments introduced in Section III A were designed to test and extend the

study of the Lagrangian dynamics in the symmetry plane (Section IV A).

Fig. 4 shows the comparison between the streamlines in the symmetry plane Pb for

two values of Gr obtained experimentally (left panels) and, numerically (right panels).

The experiments clearly show the bifurcation of the central stagnation point from a focus
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(a)

(b)

FIG. 5. Buoyancy-driven flow, Pr = 1.1 × 104. Lagrangian fluid trajectories in the symmetry

plane (y = 1/2). Experiments, streamline collection (left). Simulations, representative stream-

lines (colors represent different initial positions) (right). (a) Gr = 6.7. (b) Gr = 43.

for small Gr (Fig. 4a) to a saddle for larger Gr (Fig. 4b) accompanied by a pair of foci.

In the experimental case a collection of streamlines obtained by PIV is displayed. In the

numerical simulations, representative trajectories (tracked both forward and backward in

time) are shown. Different colors are used for clarity of the streamline patterns. Red and

black streamlines in the right panel of Fig. 4(b) have symmetric initial positions. The

numerical streamlines indicate stability of foci as discussed in Section IV A.

Note the typical behaviour of large Pr, circulation is weak (compared with small Pr)

and streamlines, in consequence, display a dense winding.22 There is a good agreement be-

tween experiments and simulations, the experimental measurements qualitatively follow

the predicted Lagrangian dynamics with increasing nonlinearities.
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Fig. 5 shows the evolution of the Lagrangian dynamics in Pb by further increasing Gr.

The experimental streamlines continue to reflect the simulated dynamics; the evolution

from Fig. 4(b) to Fig. 5(a) shows an increased area associated with the pair of foci. More-

over, a good agreement is also found regarding the occurrence of a new bifurcation of the

central stagnation point by further increasing Gr, see Fig. 5(b). This new bifurcation is

entirely consistent with the evolution of the Lagrangian dynamics in the symmetry plane

for small Pr, the central stagnation point changes from a saddle to a focus accompanied

by two focus-saddle pairs.26 This can be clearly seen in the experiments of Fig. 5(b).

A new feature for the large Pr case can be deduced from the simulations shown in

Fig. 5, the existence of an unstable limit cycle (repelling both in its interior and exterior

regions, this was determined by forward and backward tracking of trajectories). The limit

cycle divides the flow domain and encloses the arrangement of stagnation points (e.g.,

separation of red/black and blue streamlines in Fig. 5a). Accompanying the limit cycle,

stability reversal is observed (in comparison with lower Gr), e.g., foci in Fig. 5 (right)

become attracting within the symmetry plane (determined by forward and backward

tracking). With increasing Gr, the interior region of the limit cycle increases gradually

in size. The limit cycle is also found in the representative case of study with Pr = 7 in

Ref. 22, and for Pr = 50 in Ref. 52.

Symmetry SP restricts the dynamics in Pb to a bounded 2D manifold under steady

conditions. The Poincaré-Bendixson theorem essentially dictates the dynamics in the

symmetry plane: streamlines must describe a closed path (limit cycle) or approach a stag-

nation point or a limit cycle.53 Note in particular, that chaotic streamlines are excluded

within Pb. An important remark is that the observed dynamics represents an entirely 3D

behavior associated with the three-dimensionality of the flow domain. Streamlines remain

as closed curves with increasing nonlinearities in 2D cavities; see e.g. Refs. 29, 30, and

41. A state of the 3D flow topology characterised by closed streamlines is only present

for the Stokes limit (Gr = 0), see e.g. Fig. 3 (Ia).

The same evolution shown in Figs. 4 and 5 in terms of the stagnation points was

numerically obtained in this investigation for Pr = 1 and increasing Gr (4.9 × 103,4 ×

104,3×105) (as a representative example of small Pr). However, no limit cycle was found

up to Gr ∼ 5 × 105. This agrees with the analysis in the symmetry plane for Pr = 0.71

presented in Refs. 25 and 26. The existence (or absence) of the limit cycle represents

a clear difference in the dynamics between large and small Pr fluids, respectively. The
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1

10

100

1000

2000 4000 6000 8000 10000 12000 14000

Gr

Pr

Hiller et al., Pr = 6 × 103

Yarin et al., Pr = 6.3 × 103

Present, Pr = 1.1 × 104

FIG. 6. Comparison between the predicted bifurcation threshold Gr∗ (Eq. (9), line) and ex-

perimental and simulated data for larger Pr. Pre-bifurcated and bifurcated streamline patterns

are indicated using solid circles and asterisks, respectively. The open circle represents the data

of Fig. 5(b).

considered dynamics and discussion of a Rayleigh-Bénard flow in a bounded domain

in Refs. 54 and 55 suggest that a similar behaviour is found in the symmetry plane

of that system: existence of the limit cycle only for large Pr. Reconciliation of this

phenomenon from a unified point of view of general buoyancy-driven flows in cavities is

needed, however, this is beyond the present scope.

Closer examination of the experimental results displayed in Figs. 4 and 5 indicate a

slight asymmetry in comparison to the theoretical and numerical results. This was further

confirmed by inspection of the corresponding PIV velocity fields. Moreover, exploration

of single streamlines showed no evidence of a limit cycle in the experimental data (Fig. 5,

left panels).

The agreement between simulated and experimental streamline patterns indirectly

suggests that departure from symmetries is weak. However, as considered in Ref. 19, tem-

perature differences produce (local) viscosity changes of glycerol from 40% for ∆T = 4 oC

and more than 100% for ∆T = 15oC. This implicates a violation of the Boussinesq approx-

imation which is expected to be the reason behind the asymmetries in the experimental

streamline patterns. See also the discussion in Ref. 56 regarding non-Boussinesq effects
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(a) (b)

FIG. 7. Buoyancy-driven flow, Pr = 1.1 × 104. Emergence of a secondary family of KAM tori

with increasing Gr, Lb (dashed line). Representative tracer trajectories (distinguished by color

for clarity of the concentric structure) with different initial positions. (a) Gr = 2.6. (b) Gr = 4.6.

in the present configuration. Furthermore, typical experimental disturbances such as

non-ideal boundary conditions are also known to have an effect that translates into dis-

crepancies between experiments and simulations.19,34,57 This is an important issue for

future research, particularly regarding 3D flow structures.

Agreement between experiments and simulations is shown in Fig. 6. This figure com-

pares the bifurcation threshold Gr∗ according to Eq. (9) (line) with the experimental

results shown in Fig. 4, and the experimental and numerical results for Pr ∼ O(6 × 103)

of Ref. 19 and 58, respectively. (Data from Fig. 5 is also shown for completeness.) Fig. 6

experimentally validates the bifurcation threshold for larger Pr. As predicted by the

hyperbolic relation (9), we observe a decreasing threshold and earlier bifurcation with

growing Pr (Section IV A).

2. Secondary tori

Fig. 7 presents numerical 3D tracer trajectories with increasing Gr. The primary

family of tori centred on Lb (dashed line) is shown in Fig. 7(a). The emergence of a

secondary family of KAM tori close to the cavity wall (y = 0) with increasing Gr is shown

in the central region of Fig. 7(b). Only tracers in the region y < 1/2 are shown which is

sufficient due to symmetry SP .

Fig. 8 shows the Poincaré sections associated with a collection of tracer trajectories

with increasing Gr. The z = 1/2 dashed line represents Lb. The typical structure of
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(a) (b)

(c) (d)

FIG. 8. Buoyancy-driven flow, Pr = 1.1 × 104. Evolution of simulated toroidal structures with

increasing Gr, Lb (dashed line). Visualisation by intersections with the plane x = 1/2 (Poincaré

section). (a) Gr = 2.6. (b) Gr = 4.6. (c) Gr = 20. (d) Gr = 43.

the primary family of tori and the co-existence of the two tori families are shown in

Figs. 8(a,b), respectively. The evolution shown in Figs. 7 and 8 confirms the generality

of the existence of the secondary family of KAM tori for larger Pr, and the response to

nonlinearities of the tori families according to the dynamics presented in Section IV A.

Moreover, the intimate relation between the appearance of secondary tori and the exis-

tence of stagnation points on Lb (whenever uy vanishes, see Section IV A) for Pr = 1.1×104

was confirmed in this study. Considering only the left half of the cavity due to symmetry
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SP , velocity component uy continuously changes from positive to negative in the interior

region (between Pb and the cavity wall) with increasing Gr. At intermediate Gr, stagna-

tion points exist in the interior region corresponding to zeros of uy. Examination of the

dynamics for Pr = 7 (representative example in Ref. 22) and further increasing nonlin-

earities, up to Gr = 1.3 × 105, indicates a similar evolution. This includes the dynamics

in Pb (Section IV B 1), the Poincaré sections and the evolution of the stagnation points

on Lb. Therefore, the described Lagrangian dynamics are expected to be generic for the

large Pr case.

Furthermore, exploration of the dynamics for Pr = 1 and increasing nonlinearities (up

to Gr ∼ 5 × 105) confirmed that no secondary tori exist (and closely related to that, no

stagnation points in the interior region on Lb appear); in this case, uy > 0 in the interior

region along Lb.

There are similarities between the evolution displayed by the two tori families and

steady vortex cylindrical cavity flows generated by rotating one or both end covers, see

Ref. 7, 59, and 60 and references therein. One or more recirculating zones appear (occu-

pying different regions of the flow domain) depending on the governing parameters. In

particular, a bifurcation described by the creation of a closed bubble-shaped region of

fluid ‘vortex-breakdown’ has been widely studied. The creation of bubbles can be anal-

ysed by monitoring the existence of stagnation points on the cylinder axis (zeros of the

axial velocity). The cylinder axis plays the role of Lb in the buoyancy-driven flow (see

also Section IV C 3).

Analogous behaviour has also been observed in flows between rotating spheres.59,60

The dynamics of the steady flow between concentric rotating spheres, or spherical Cou-

ette flow, discussed in e.g., Refs. 61–63 suggests that the appearance of secondary tori

might be induced by changing geometrical parameters (in a wide range of Re). The flow

topology can change from a ‘one-cell’ to a ‘two-cell’ flow pattern depending on the rota-

tion parameters. Future efforts are needed to understand these similarities from a unified

framework.

C. Double-lid-driven flow

In this section the analysis of the flow topology of the double-lid-driven flow is pre-

sented. Symmetry properties (Section IV A) allow for a similar fundamental analysis

with increasing nonlinearities as in the buoyancy-driven case. In the following we con-

21

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
26

49
7



-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

z

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

z

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

z

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

z

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

z

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

z

(a) (b) (c)

(f)(e)(d)

FIG. 9. Double-lid-driven flow with increasing Re. Representative simulated streamlines with

different initial positions (distinguished by color for clarity) in the symmetry plane (y = 0). (a)

Re = 0. (b) Re = 50. (c) Re = 100. (d) Re = 200. (e) Re = 350. (f) Re = 500.

sider first the dynamics in Pd and subsequently the essentially 3D dynamics outside this

plane. Similarities and differences between the double-lid-driven and buoyancy-driven

flows are emphasised.

1. Dynamics in the symmetry plane

Fig. 9 shows the evolution of representative numerical streamlines in the symmetry

plane Pd with increasing Re. Tracers are tracked both forward and backward in time

in order to determine the stability of the relevant structures (see the discussion below).

Different colors (representing trajectories with different initial positions) are used for

clarity of the streamline patterns.

The Stokes limit (Re = 0) is characterised by closed streamlines (Fig. 9a). In this case

the stagnation point at the cavity center is a hyperbolic saddle and there are two sym-

metrically arranged centres (or degenerate foci) giving rise to the ‘two-eddy’ streamline
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pattern or ‘cat-eyes’ flow structure.17,24,42 In this case the streamline pattern is also sym-

metric about the planes x, z = 0 according to symmetries (7)-(8). Combination of these

extra symmetries with SP results in the formation of three stagnation lines (correspond-

ing to the three stagnation points in the symmetry plane) extending along y. Similarly

to the buoyancy-driven flow, the Stokes limit is the only state analogous to the 2D flow.

Increasing Re eliminates the two extra symmetries of the Stokes limit in favour of SL

and consequently the constraining mechanism underlying the formation of closed stream-

lines vanishes. The two-eddy structure is perturbed and the dynamics is characterised

by the appearance of a pair of repelling foci with a saddle at the cavity center. Typical

streamlines in this case are shown in Figs. 9(b,c). (We show representative streamlines to

highlight the Lagrangian dynamics; red and black streamlines in Figs. 9(b-d) have sym-

metric initial positions). This is entirely equivalent to the dynamics shown in Fig. 4(b)

of the saddle-foci arrangement in the buoyancy-driven flow (Figs. 3 IIIa,b).

In the double-lid-driven flow, increasing Re reduces the area of influence of the pair

of foci. Eventually an unstable limit cycle appears surrounding the arrangement of stag-

nation points plus stability reversal of the foci that become attracting (Fig. 9d). This

behaviour is completely analogous to the dynamics shown in Fig. 5(a) in the buoyancy-

driven case.

Further increasing Re causes a bifurcation of the central stagnation point that becomes

an attracting focus (Fig. 9e), and the unstable limit cycle remains. Fig. 9(f) shows the

evolution with further increasing nonlinearity; the central focus becomes repelling and two

limit cycles exist: a stable one (inner, attracting in both interior and exterior regions) and

an unstable one (outer, repelling in both interior and exterior regions). First exploration

suggests that this behaviour remains up to Re = 1000. The evolution shown in Figs. 9(e,f)

reveals a bifurcation resulting in a streamline pattern consisting of multiple limit cycles.

(See Refs. 5 and 64 for a discussion regarding similar bifurcations.) In particular, the

transition in the central part of Figs. 9(e,f) from an attracting focus at the cavity center

to a repelling focus accompanied by the stable inner limit cycle with increasing Re shows

similarities with a supercritical Hopf bifurcation.4 This should be explored in more detail

in future studies.

Completely equivalent to the dynamics of the buoyancy-driven flow, the Poincaré-

Bendixson theorem governs the dynamics in the symmetry plane. However, a one-to-one

correspondence between both flows with increasing nonlinear effects restricts to the foci-
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x x x

(a) (b) (c)

FIG. 10. Double-lid-driven flow. Comparison between 3D experimental (red) and numerical

(black) tracer trajectories. (a) Re = 17.5. (b) Re = 28. (c) Re = 35. Open circles (red) and

asterisks (black) indicate the corresponding final tracer positions.

saddle structure with and without the unstable limit cycle (Figs. 4b, 5a and Figs. 9b-

d). Further increasing nonlinear effects displays clear differences between flows in the

symmetry plane: on the one hand, the double-lid-driven flow is characterised by a single

focus stagnation point at the cavity center and multiple limit cycles (Fig. 9f). On the

other hand, multiple bifurcations of the central stagnation point occur accompanied by

focus-saddle pairs for the buoyancy driven flow (see, e.g., Fig. 5b and Refs. 25 and 26).

However, the 3D dynamics outside the symmetry plane of the double-lid-driven flow

(Section IV C 3) shows an analogous behaviour to the one presented in Section IV B 2

for the buoyancy-driven flow and increasing nonlinearities (particularly regarding the

existence of secondary tori).

2. Experimental 3D flow structure

In this section a qualitative analysis of 3D tracer motion and governing symmetries is

presented for Re > 0. Fig. 10 shows typical 3D experimental tracer trajectories obtained

by PTV and their simulated counterparts. An overlay of trajectories is exposed revealing

a general agreement between both cases. The streamline patterns shown in Fig. 10 begin

to delineate the typical perturbed two-eddy structure. In particular, Figs. 10(a,c) give a

first clear indication of the effect of increasing Re, an inclination of the two circulatory

regions.

Natural disturbances in the experiments can induce departures from the predicted

dynamics. Experimental imperfections act as natural perturbations of the (idealised)
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(a) (b)

x
x

FIG. 11. Double-lid-driven flow, Re = 35. (a) Trajectories near Pd, ∣y∣ ≤ 0.25. Black (y >
0), red (y < 0), and blue/thick (mid-plane crossing). (b) Side view, ∣y∣ ≤ 0.45. Measured

trajectories (red), and reflected trajectories according to SL (black). Circles indicate the final

tracer positions.

unperturbed state (Section III B). Even a minute asymmetry produced by the non-parallel

translation of the moving lids, for example, can trigger symmetry breaking (this was

observed numerically in this investigation). These experimental disturbances are expected

to be the reason behind the deviations from the simulated tracer trajectories shown in

Fig. 10.

Fig. 11(a) shows the experimental trajectories close to the mid-plane Pd in the region

∣y∣ ≤ 0.25. Streamlines exhibiting mid-plane crossing (i.e., symmetry breaking) are high-

lighted in blue (thick markers). However, displacement along y is considerably less than

in the other directions. The crossing angle δ for the two tracers moving vertically near

the mantle of the cylinder is δ ≃ 26o, and δ ≲ 7o for the others. This reflects the fact that

even if no exact symmetry exists in the experimental streamlines, perpendicular motion

is limited and tracers remain near the mid-plane.

Fig. 11(b) presents a side view of measured streamlines and their reflected counter-

parts (according to SL) in the region ∣y∣ ≤ 0.45 for clarity. The two circulatory regions

characterising the foci-saddle structure are delineated and a global consistency in tracer

motion is visible. A similar behaviour is found for the other explored values of Re. The

previous discussion strongly suggests that experimental departure from symmetries is

weak.
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FIG. 12. Double-lid-driven flow. Emergence of a secondary family of KAM tori with increasing

Re, Ld (dashed line). Representative tracer trajectories (distinguished by color for clarity of the

concentric structure) with different initial positions (top), and corresponding Poincaré sections,

z = 0 (bottom). (a,d) Re = 50. (b,e) Re = 200. (c,f) Re = 500.

3. Secondary tori

The evolution of typical 3D streamlines (and corresponding Poincaré sections, z = 0)

obtained by numerical simulations with increasing Re is shown in Fig. 12. Only tracers

on one half of the cavity (y > 0) are shown which is sufficient due to the symmetry SP

(streamlines are colored differently for clarity). For low Re a single family of toroidal

structures exists (primary tori) (Figs. 12a,d). The emergence of a secondary family of

tori around Ld (represented by the x = 0 dashed line) with increasing nonlinearity can

be seen in the center and right panels of Fig. 12. The region occupied by the secondary

tori closely matches the position(s) of the limit cycle(s) that exist in the symmetry plane

(Fig. 9). First inspection suggests that the persistence of the two families of KAM tori

remains up to Re = 1000.

The dynamics of the Poincaré sections in Fig. 12 is fully consistent with the Hamil-

tonian scenario of the buoyancy-driven flow (Section IV A). Increasing Re progressively

triggers torus breakdown accompanied by growing chaotic regions. Moreover, entirely

equivalent to the behaviour found in the buoyancy-driven case (Section IV A), a circu-

lation in a reversed direction corresponding to the families of tori is observed: counter-
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clockwise and clockwise direction for primary and secondary tori in the region x > 0 of

Fig. 12, respectively. Because of the similarities between flows (Fig. 12 and Figs. 7, 8),

a similar behaviour regarding the separatrix between tori families (Section IV A) is also

suspected to occur here (conclusive establishment is outstanding).

As in the buoyancy-driven flow, exploration of uy enable us to detect stagnation points

on Ld. A similar evolution is found for the double-lid-driven flow with increasing nonlin-

earities. However, the position of the stagnation point on Ld at, e.g., Re = 200 (close to

Pd) implies a difference between the double-lid-driven and buoyancy-driven flows. Sec-

ondary tori in this case do not appear near the bounding cavity wall and gradually expand

towards Pd with increasing nonlinearity; they appear and remain close to the symmetry

plane, see Fig. 12.

Nevertheless, the dynamics shown in Fig. 12, and the closely related evolution of

stagnation points on the symmetry line, reinforces the generality of the existence of the

secondary family of tori with increasing nonlinearities in flows in bounded domains.

Moreover, the evolution displayed in Fig. 12 (bottom) is similar to the evolution pre-

sented in Ref. 59 of steady vortex breakdown flows in a cylindrical cavity with co-rotating

top and bottom walls at the same angular velocity and increasing Re. Secondary tori

behave as vortex bubbles and the axis of the rotating cavity plays the role of Ld in

the double-lid-driven flow (see also Section IV B 2). The robustness of this phenomenon

has been explored by including an inner cylinder in the rotating cavity.65,66 Exploitation

of this analogy may deepen insights into the onset of oscillatory regimes with further

increasing nonlinearities in the present cavity flows.

V. CONCLUSIONS

This study presents a comparative numerical-experimental investigation of the global

streamline patterns (‘Lagrangian flow topologies’) of three-dimensional (3D) flows in cav-

ities under laminar and steady conditions. The main objective is to examine topological

equivalences between flow classes and generic transport phenomena. To this end two

prototypical configurations are considered, buoyancy-driven and lid-driven flows.

A differentially-heated cubical cavity with the direction of the temperature gradient

perpendicular to gravity serves as the buoyancy-driven configuration. The lid-driven

counterpart consists of a flow generated by the motion of two facing walls at the same

speed in opposite direction in a cylindrical cavity (double-lid-driven flow). These sys-
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tems are governed by the non-dimensional Grashof (Gr) and Reynolds (Re) numbers,

respectively.

Previous research established that fluid inertia prevails for small Gr and the buoyancy-

driven flow exhibits a behaviour that is analogous to single-lid-driven flows (motion of

one endwall only). A buoyancy-induced bifurcation occurs for larger Gr resulting in a

flow topology that is reminiscent of double-lid-driven flows.22 This is the starting point of

our investigation that concentrates on the analysis of the buoyancy-driven flow for larger

Prandtl (Pr) and its equivalence with the double-lid-driven flow.

Two main symmetries organise the Lagrangian dynamics: (i) reflectional symmetry

about the mid-plane, and (ii) centro-symmetry about the central transverse line. These

symmetries imply fundamental similarities between the streamline patterns of the consid-

ered cavity flows, and enable a detailed study of generic phenomena based on two aspects:

(i) dynamics in the symmetry plane, and (ii) 3D dynamics outside the symmetry plane.

Bifurcations of the streamline topologies occur with increasing nonlinearities in the

symmetry plane of the considered cavity flows. The Poincaré-Bendixson theorem governs

the dynamics in this plane. In particular, the considered cavity flows are characterised by

the same foci-saddle structure and a one-to-one correspondence between flows is possible

in this case. This extends the above-mentioned link between the buoyancy-driven flow

and single-lid-driven flows.

Moreover, the 3D flow topology is characterised by the coexistence of two families

of KAM tori. Secondary toroidal structures appear with increasing nonlinearities. Fur-

thermore, similarities with vortex breakdown flows regarding this structure are noted.

The response of the flow topology to nonlinear perturbations is governed by universal

Hamiltonian mechanisms.

Laboratory experiments validate several key aspects of the Lagrangian dynamics. Par-

ticle image velocimetry (PIV) measurements are considered to study the dynamics in the

symmetry plane of the buoyancy-driven flow. Experimental analysis of tracer motion is

performed by 3D particle-tracking velocimetry (PTV) in the double-lid-driven flow. PIV

experiments show a good agreement between numerical and experimental bifurcations

with increasing Gr. In particular, these experiments confirm the predicted bifurcation

threshold for larger Pr. Moreover, comparison between experimental trajectories ob-

tained by PTV and their simulated counterparts reveal a good agreement with increasing

Re. Taken together, the findings of this study support the universal character of the key
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aspects of the Lagrangian dynamics.

Future experimental efforts should focus on the identification of structures outside the

symmetry plane (involving long-term experiments). Direct measurement of the two fam-

ilies of tori using PTV could be performed by using modified versions of the experimental

lid-driven set-up for higher Re (possibly using the alternative of moving bands instead of

the finite-size walls).

Further research should be undertaken to explore the influence of the spatial La-

grangian structures on the time-dependent dynamics for further increasing nonlinearities.

Symmetry breaking and full exploration of stagnation points and their interactions will

be fundamental (also considering different cavity aspect ratios). In this context, recon-

ciliation between the Lagrangian dynamics of the present flows and other configurations

(especially vortex breakdown flows and Rayleigh-Bénard systems) may contribute to the

understanding of unsteady cavity flows in general. Moreover, future studies might explore

the important extension to non-passive scalar transport and finite-size particles.1–3,18,67
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Appendix A: Double-lid-driven flow. Performance of the tracking algorithm

A comparative analysis of particle tracking with the Taylor-Galerkin scheme using the

COMSOL velocity field for the double-lid-driven flow is carried out in this section. Following

Sections IV C 1 and IV C 3, the Lagrangian dynamics in the symmetry plane and outside

this plane are considered.

The first presented test concerns the limit Re = 0 in the symmetry plane Pd. Fig. 13(a)

shows the comparison between the streamline patterns obtained using the tracking al-

gorithm with the COMSOL field (red) and calculated by numerical simulation with the

semi-analytical solution in the noninertial limit according to Refs. 23 and 24 (black).

The computed streamlines closely shadow each other. In full agreement with symme-

tries (7)-(8) closed orbits are obtained. Typical examples tracked for 50 revolutions using

the COMSOL field are displayed in Fig. 13(b). Fig. 13(c) presents the drift Xn = ∣xn −x0∣ of
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FIG. 13. Double-lid-driven flow, Re = 0. Streamlines in the symmetry plane (y = 0). (a)

Comparison between the streamline pattern; semi-analytical solution (black), COMSOL field (red,

O(106) mesh elements). (b) Typical streamlines obtained using the COMSOL field; initial tracer

positions (markers). (c) Drift Xn corresponding to intersections of the streamlines in (b) with

the positive x-axis as a function of the number of revolutions n.

the intersection xn of each streamline with the x-axis after n revolutions about the cavity

center. Initial tracer positions (x0, z0 = 0) are shown in Fig. 13(b) (markers). As exhibited

in Fig. 13(c), streamlines are closed to an acceptable degree of precision, Xn < O(10−2).

Fig. 14 shows the comparison between the streamline patterns in the symmetry plane

for Re = 500 obtained using the COMSOL field and increased resolution. The computa-

tional mesh consists of O(3 × 105) and O(106) elements in figures Fig. 14(a,b), respec-

tively. Three tracer trajectories are displayed (distinguished by color). The flow topology

remains unchanged (variations are entirely quantitative).

A comparison regarding the 3D dynamics is shown in Fig. 15 by exposing the Poincaré

section of typical tracer trajectories (distinguished by color) for Re = 200 using the COMSOL

field and increased resolution. The coexistence of two families of KAM tori is displayed

and differences are again entirely quantitative. Similar tests for different Re confirm the

robustness of the simulated Lagrangian dynamics. This indicates an adequate degree of

resolution.
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