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Introduction

Europe is the continent most severely suffering from demographic change: as society gets older, the
workforce shrinks [1]. The agricultural sector is hit especially hard: from 1994 to 2019, agriculture’s share
of the workforce has fallen from 11% to 4% within the EU [2]. To keep up living standards, production
per person needs to increase. The technical solution to this problem lies in automation. Recent ad-
vancements in robotics and artificial intelligence offer new opportunities for maintaining agricultural output
with a decreasing labour force [3, 4]. In what is often referred to as the fourth industrial revolution, ev-
ery available bit of data is harvested to make production processes more efficient, thereby increasing output.

Applied to agriculture, this could mean that crops are fitted with sensors that in real-time feed intelligent
models of the plants, often called digital twins [5]. But placing these sensors on the growing plants and
removing them when they are harvested demands a lot of manual work that — paradoxically — is best
carried out by humans [5, 6]. Instead, sensing could take place on board of micro aerial vehicles (MAVs)
that repeatedly inspect the crops, taking photos or measurements about volatile compounds that signal
stress and necessary intervention [6, 7]. Greenhouses, due to their weatherproof environments and
especially their high-value crops, are identified as potential starting grounds to develop this technology
and assess feasibility for greater scales.

Moreover, the advent of commercially available flapping-wing MAVs offers inherently safe drone platforms
that minimise the risk of harming the plants with fast-spinning rotors [8, 9, 10]. On the contrary, the
oscillatory movements of these drones limit the use of certain sensing capabilities, such as optical flow
[11]. Visual navigation or time-of-flight sensors could pose a feasible alternative [12].

Another promising technology that has gained a foothold lately is swarming: instead of relying on a single
MAV with limited range and payload capacity, a team of MAVs can be equipped with different sensors
and cover significantly more area in a given time [7, 13]. Recent breakthroughs in reciprocal localisation
methods using ultra-wideband communication [14, 15, 16] have shown that swarms of tiny drones are
fit for increasingly more applications, ranging from search-and-rescue [17] to gas-source localisation
[18]. Furthermore, new methods for the automatic design of swarming behaviour have been developed.
The most promising ones lie in the field of evolutionary robotics [9], which optimise reactive planning
representations such as finite-state-machines [19] or behaviour trees [9, 20]. These methods circumvent
the burden of explicit planning, which is typically too computationally expensive for micro aerial vehicles [21].

This work aims to find a suitable planning strategy that enables a swarm of flapping-wing MAVs to enhance
automatic crop monitoring in greenhouses. Potential solutions need to address the limited computational
resources and sensor availability of flapping-wing drones, e.g. by building on recent advancements in
reciprocal localisation and visual navigation.
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Flapping-Wing Drones

Flapping wings are arguably the most natural way to generate lift. They have evolved in nature by very
distinct types of animals. The first ones were flying insects almost 350 million years ago [22], which are also
considered the most sophisticated fliers today. Furthermore, there used to be flying reptiles (dinosaurs)
which eventually evolved into flying birds. There are even flying mammals (bats) and essentially also flying
fish (manta rays) that rely on flapping wings. This omnipresence of flapping-wing flight must have also
inspired minds like Leonardo Da Vinci in 1505 for his theoretical ornithopter sketch [23]. The advent of
mobile combustion engines in the late 19th century gave rise to a wide range of flapping-wing machines,
which, however, were all unsuccessful. Although humanity eventually achieved controlled and sustained
flight, both crewed and uncrewed, it were lifting gases, fixed wings and propellers that solved the problem,
not flapping wings.

1.1. Advantages of Flapping Wings

That was until recently. The need for ever smaller drones had researchers resort again to flapping wings.
Fixed wing approaches like aeroplanes show poor performance in miniature vehicles due to the very low
Reynolds numbers, which can be more than 1000 times smaller for centimetre-scale vehicles compared
to general aviation aircraft [24]. The Reynolds number describes the ratio of inertial to viscous forces in
a flow with higher Reynolds numbers resulting in higher lift-to-drag ratios and thus higher aerodynamic
efficiencies [25]. Moreover, flapping wings can simultaneously produce useful aerodynamic thrust and
lift, whereas rotor-based drones must counteract their own torque-induced rotation, typically by using
additional rotors or complex control schemes, thus requiring part of their thrust to be spent on stability
rather than propulsion. This ability furthermore allows flapping-wing MAVs to achieve a smooth transition
from hovering to fast forward flight, in which the wings generate extra lift, similar to fixed-wing aircraft [26].
These factors make flapping wings among the most efficient means of generating lift on tiny MAVs. On
top of that, the relatively low flapping frequencies compared to multicopters result in a more low-pitch,
less aggressive noise pattern. As flapping wings are often soft as well, they are inherently safe to operate
around humans or delicate crops [26].

1.2. Recent Developments

The first flapping-wing MAV was the DelFly I, developed in 2005 by Jongerius et al. with a wingspan
of 50 cm [28]. In 2008 the DelFly Micro reduced the wingspan to just 10 cm [10], being the first true
insect-scale flapping-wing MAV. The same year saw the first take-off of the RoboBee with a wingspan
of 3.5 cm [29]. However, unlike the DelFly Micro, the RoboBee did not carry its own power supply and
had to be guided with a rail to maintain stability. Nevertheless, the RoboBee is a major achievement in
smart composite microstructures and piezoelectric propulsion which will be useful in the future. Instead of
reducing the wingspan further, the DelFly Explorer with a wingspan of 28 cm focussed on flight autonomy,
which it achieved in 2013 by means of a custom 4g depth sensor [30]. Furthermore, 2018 saw the first
flight of a DelFly that uses insect-inspired wing motions for steering, instead of relying on a conventional
rudder-elevator tail. With a wingspan of now 33 cm, the tailless Delfly Nimble showed strong improvements
on robustness and agility [27]. An overview is given in Figure 1.1. The DelFly Nimble also functioned as a

9
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Figure 1.1: Overview and flight dynamics of the DelFly Nimble, which served as inspiration for the Flapper
Nimble+, from [27].

blueprint for the commercialised version Flapper Nimble+, available since 2021 [8]. Combining all the
achievements of the DelFly prototypes with efficient production and professional support, the Flapper
Nimble+ is chosen as ideal candidate to study industrial implementation in higher numbers, like a swarm in
a greenhouse.

The dynamics of the DelFly or Flapper Nimble has been extensively analysed [27, 31, 16]. Despite its
outstanding agility, the model developed in this work will limit itself to slow hoverflight, as greenhouse
monitoring is not a time-critical task and the navigation robustness is not yet strong enough for faster and
thus riskier maneouvres. This is due to the Flapper’s oscillatory nature, which imposes high noise onto
measurements from the inertial measurement unit (IMU) and time of flight (ToF) sensors, limiting them to
coarse navigation only. Moreover, it was found that optic flow based velocity estimation is difficult to use
on the Flapper due to feature matching problems. Previous work has thus relied on a relationship between
pitch/roll angle and the horizontal velocities that was found experimentally[16]. Albeit with reduced accuracy,
it is possible to use these velocity estimates alongside ultra-wideband (UWB) ranging for reciprocal lo-
calisation among Flappers [16] or for position control with fixed UWB anchors [32]. More on this in Chapter 3.



Drones in Agriculture

The versatile challenges faced in agriculture offer a myriad of use cases for robots and especially drones.
This is also reflected in the exponential growth of scientific articles about agricultural robots since 2015
[3, 33]. While many of these use cases just deal with automated versions of already existing machines,
e.g. for tilling [34], harvesting [35] or pruning [36], aerial robots are really a novelty in the agricultural
world. Characterised by their ability to simply fly over the crops, drones can help farmers by applying
fertilisers and pesticides without the need for fruitless driving lanes. Another advantage is that with drones,
pesticides and fertilisers can be applied exactly where they are needed, avoiding unnecessary spread of
toxic chemicals on healthy plants and adversely high concentrations of minerals in the soil [33].

2.1. Aerial Information Gathering

On the contrary, fertilisers and pesticides are rather heavy and therefore require frequent refilling of the
drones. Moreover, this task can be carried out with equivalent precision by ground-robots, for which weight
is less critical. Most importantly, however, this site-specific treatment requires detailed information about
the location and the severity of a plant’s need. It is exactly this aerial information gathering (Figure 2.1)
that will be the most valuable addition of using drones in agriculture. A bibliometric analysis conducted by
Rejeb et al. in 2022 indicates that crop monitoring is by far the most researched topic related to drones in
agriculture [33]. This is further supported by Canicatti and Vallone, which analysed drone research on
vegetable farms and found that a mere 2% of articles were dedicated to drone spraying, while all 129
others were dedicated to aerial information gathering [38].

Conventional aerial information gathering is typically conducted with multispectral cameras, which are
capable of measuring the three visible light bands red, green and blue, along with two infrared bands: red
edge and near infrared. Using these bands, vegetation indices like the normalised difference vegetation
index (NDVI) or the normalised difference water index (NDWI) can be calculated that inform the farmers
about plant stress due to disease or drought [38]. However, these cameras tend to be rather heavy and
expensive. That is why late research focussed on estimating vegetation indices like NDVI with artificial
intelligence (Al) from visual camera images only [39, 40]. These methods allow the use of smaller drones,
which are subject to weaker regulations due to their inherent safety.

While vegetation indices can detect plant stresses few days after their initial occurrence, Schuman and
Baldwin found in 2016 that plants react to herbivore attacks by emitting volatile bioactive compounds
that can be measured within hours after the attack began [41]. Geckeler et al. suggests using drones
to deploy measuring stands in greenhouses that collect the volatile compounds over time [6]. These
stands are then retrieved by drones again to be analysed in a laboratory. While this method may give
very accurate information about the composition of the gases, it defies the main advantage of volatile
sensing, namely the short latencies. Moreover, physical interaction is a complicated matter and carrying
the measurement stands requires bigger drones. Instead, volatile compound sensors could be mounted
on the drones directly. These sensors typically have a lower resolution and provide less information about
the composition of the compounds, which needs to be addressed in data processing [6].

11
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Figure 2.1: Visualisation of a drone gathering aerial information about a crop field, from [37].

A common problem faced both by outdoor and greenhouse drones is the relatively short flight duration due
to limited battery capacity. A possible solution to that problem is using multiple drones simultaneously [7,
13], a practice often referred to as swarming. An experimental study conducted by Ju and Son in 2018
proved that using distributed control algorithms, a drone swarm can increase the field coverage per unit
time without interference. However, their swarm consisted of only three drones, and problems related to
the scalability of swarms have not been investigated.

2.2. Greenhouse Applications

Other applications related to greenhouses were studied by Aslan et al. in 2022. Research here focusses
on providing sensor feedback to the climate control system by measuring temperature, as well as gas
concentrations like CO2, methane and water vapor [7]. The strength of drones is their ability to reach any
point in space at any time. Furthermore, studies investigate the use of drones for pollination [42, 43], in
which drones first need to locate flowers and then mechanically pollinate them. Hiraguri et al., however,
leave out information about how the drones manage to navigate in cluttered environments like tomato
greenhouses [42].

Conventional crop monitoring based on vegetation indices is also possible in greenhouses, but it is not
as common as outdoors [7]. This is because there is a range of challenges that drones face in indoor
environments: a) lack of reliable satellite positioning, b) obstacles such as pillars and other instruments, c)
constrained motion space due to relatively low ceiling and walls. Generally, greenhouses pose a more
three-dimensional navigation and planning problem, involving flights between the crop rows and avoiding
obstacles, while outdoor agricultural drones tend to fly in a more two-dimensional manner, multiple metres
above the crops with motion taking place mostly horizontally.

The use cases surveyed in this section can be partitioned into two planning scenarios: 1) repetitive visits
of certain places such as flowers, fruits or infested plant parts, and 2) area or volume coverage, e.g. to
measure gas concentrations or monitor a certain area from above. Moreover, it was found that operation
in greenhouses comes with a few challenges regarding the navigation, which will be addressed in the
following chapter.



Resource-constrained Indoor Navigation

According to Kayton, navigation is the determination of the position, attitude and velocity of a moving
vehicle [44]. Modern roboticists like Siegwart, Nourbakhsh, and Scaramuzza also include the perception
of the environment and sometimes even path planning in their definitions [45]. While outdoors typically
navigation satellites like GPS or Galileo are used along with inertial navigation systems (INS) to determine
position and velocity, indoors this service is often not available with sufficient reliability. That is why indoor
navigation, and GNSS-denied navigation generally, is a vibrant research topic.

3.1. Navigation Requirements

Based on the challenges that drones face in greenhouses, the following requirements for an indoor
navigation system are identified:

1. The drones must be able to localise obstacles in their environment

The drones must be able to localise their peers in the swarm

The drones must be able to localise themselves in an absolute coordinate system

The navigation method must be viable with the limited power and compute on the Flapper Nimble+
The navigation method must be viable without external infrastructure

The navigation method must be compatible with the oscillatory nature of the Flapper Nimble+

ook wN

The need for an ability to sense the absolute position in the greenhouse is motivated twofold: firstly, the
drones need to assign observations about fruit ripeness or disease to a certain plant, such that in the next
step, actions can be taken. This is possible without an explicit map, but not without a sense of absolute
position. Secondly, modern drones still have quite a limited battery capacity and thus flight time. So before
their battery reaches a critical level, the drones need to move to a safe space to land, where their batteries
can be changed and operation can be resumed. This should ideally be a fixed space in the absolute
coordinate system.

3.2. Simultaneous Localisation and Mapping

Rejeb et al. suggests applying simultaneous localisation and mapping (SLAM) to overcome the navigation
bottleneck and enable the flight of drones in greenhouses. In SLAM, the environment is scanned while
the drone moves, typically with a rotating LIDAR module or depth camera. These scans are then assem-
bled together with what is called pose graph optimisation (PGO). Knowing the distance to the mapped
surroundings, the drone can position itself with respect to its environment [46].

However, traditional SLAM requires the processing of gigabytes of data and a high computational power
[47]. Moreover, LIDAR modules are heavy, which along with the high energy needs limits these methods to
larger drones. But there is a lot of movement in the SLAM research area, with many modern approaches
relying on visual data instead of LIDAR scans, known as visual SLAM (V-SLAM) [46]. Commonly used for

13
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its robustness, ORB-SLAM2 [48] was developed by Mur-Artal and Tardés in 2017 as a continuation of
ORB-SLAM [49] or in a wider sense Mono-SLAM [50]. While it works best with stereo cameras, monocular
cameras are also supported, which can be very affordable and lightweight nowadays. ORB-SLAM2 works
by extracting features from the environment and tracking their motion. In contrast, Large-Scale Direct
SLAM (LSD-SLAM) works with raw images directly without the need for feature extraction. This makes it
even more computationally efficient and more applicable to large environments with less distinct features
[51].

Other research focusses on distributed SLAM, in which a team of drones collaborate to map an environment
[52]. In fact, 2024 has seen the first successful application of a collaborative SLAM algorithm on a swarm
of Crazyflies, miniature quadrotor drones, working on a mere 1.5 MB of RAM [53]. This achievement was
made possible by the use of Time-of-Flight (ToF) sensors, like the VL53L5CX which generates a 8x8 pixel
depth map of the direction it is facing [54]. These ToF-sensors are in principle similar to LIDAR scanners,
but have significantly lower ranging distance and do not rotate. ToF-based SLAM, however, requires an
extra computing module and an optic flow sensor for motion priors. Moreover, the oscillatory nature of
flapping-wing MAVs makes the ToF-based measurements very noisy, which complicates the loop closure.
Nevertheless, ToF-sensors offer a lightweight option to sense the environment and avoid collisions. More
on that will be elaborated in Chapter 4.

3.3. Visual-Inertial Odometry

Reducing the computational demand even further can be attained by leaving out the mapping of the
surroundings and simply reacting to obstacles when necessary. The most common mapless navigation
method is visual-inertial odometry (V10), which fuses measurements from the IMU about linear and
angular accelerations with visual feature tracking to determine velocities and rotational rates [55]. These
methods work best with depth cameras, like OKVIS, published in 2015 [56], which relies on the non-linear
optimisation of motion estimates between keyframes. Depth cameras, however, are heavier than single
cameras, and their benefits are hardly usable on miniature drones due to the limited possible distance
between the cameras, which decreases depth resolution.

A low-compute monocular VIO approach is MSCKF [57]. MSCKF uses an Extended Kalman Filter (EKF)
to fuse information from extracted visual features with IMU measurements. Another monocular algorithm,
Robust VIO (ROVIO) [58], also uses an EKF to fuse visual and inertial information, but works with pixel
intensities directly, instead of extracted features. In fact, the difference between IMU-predicted image
patches and actual camera measurements can directly be used as innovation in the Kalman filter update
step. Working on pixel-intensities directly allows ROVIO to be used in environments with little texture, which
increases robustness. While both ROVIO and MSCKF are already highly computationally efficient, in 2022,
Bahnam et al. managed to decrease the average computational time necessary to process a frame by 40
% [59]. This improvement makes ROVIO suitable for miniature drones like the Crazyflie or Flapper Nimble+.

More rudimentary algorithms based on the fusion of visual and inertial measurements build on the concept
of optic flow, the motion of distinct points in the image plane. Optic flow can be used alongside depth
information to draw conclusions on the ego-motion of the drone [11]. While this typically does not yield
accurate 3D position estimates, it can help in stabilising the horizontal motion on the drone with minimal
effort. Depth information is not always necessary. For instance, if optic flow is used for landing with a
fixed-gain proportional controller, de Croon has shown that the onset of instability in the vertical motion can
be used to estimate the distance to the ground with a monocular camera [60]. In fact, it was proven that
optic flow is also leveraged by flying insects, such as honeybees, to navigate in complex environments [61].
Although most flying insects possess two eyes and could hence in principle infer depth information from
parallax, their small size does not allow for a sufficient distance between the eyes to obtain useful depth
cues. This problem translates accurately to miniature drones. For optic flow as well as all VIO algorithms
holds that they can estimate an absolute position, but the missing reference to a static environment and
the integration of measurement errors lead to the accumulation of positioning errors, known as drift.



3.4. Indoor Positioning Systems 15

3.4. Indoor Positioning Systems

So while VIO is a very lightweight localisation approach, it needs correction over longer periods of
time. This correction can be provided by indoor positioning systems, which aim to observe the drones’
position directly, without integrating their prior motion. In fact, this resembles very closely what satellite
positioning systems do for the outdoor use case. By measuring the distance to anchors with known
positions, the drones can calculate their position in a local coordinate frame with multilateration methods
[62]. The drawback of these systems is that they tend to be less accurate. However, fusing these posi-
tioning estimates with the more accurate odometry estimates allows for precise localisation with limited drift.

Most commonly, these systems are installed in the indoor workspace of the drones. What distinguishes
different approaches is the way they estimate the distances from the drone to the anchors. The most
accurate methods are motion capture systems, which use cameras to track the positions of reflective
infrared markers installed on the drone. This way, they have a direct estimate of the drone’s position and
even their attitude. A disadvantage is that the pose is estimated off-board and needs to be communicated
to the drone. This issue is mitigated by equipping the drone with sensors to receive the infrared rays
emitted by the anchors. These sensors can measure the angles to the respective anchors and hence
compute their position with multiangulation methods. An example for this technique is the Lighthouse
positioning system developed by Bitcraze that uses SteamVR beacons as infrared-emitting anchors [63].

Since both these approaches rely on infrared light, they require a direct line of sight between the drone
and the anchors. Especially in greenhouses, when drones fly low between the crop rows, they might
not maintain this line of sight to a sufficient number of anchors. Moreover, the greenhouse glass walls
sharply reflect the infrared rays which leads to artifacts that result in very confident but false position
estimates. For this reason, approaches based on radio-frequency waves have been developed. As
radio-waves can penetrate most materials and warp around them, a direct line of sight is not required. Next
to that, they also do not get reflected off glass panes, which makes them fit for greenhouse applications.
Initial research started in the late 2010s with measuring the received signal strength (RSS) of WiFi and
Bluetooth Low Energy (BLE) signals as a proxy for distance [14, 62]. Accuracies for these approaches
lie in the order of decimetres to metres and are hence not suitable for precise navigation between crop rows.

A more promising technique uses very sharp, high-bandwidth pulses for ranging, known as Ultra-Wideband
(UWB). The time needed for these pulses to be propagated back and forth from the anchors to the drone is
used to calculate the distance in what is called Two-Way-Ranging (TWR). Alternatively, the time difference
of arrival (TDOA) of signals emitted by multiple anchors can be used by a drone to calculate its position
[64]. With these UWB methods, drones can estimate their position in the order of a few decimetres, and
combined with optic flow or VIO even to one decimetre. Hence, UWB positioning is considered the most
promising indoor positioning technique these days [64].

Looking at swarms of drones, current research has come close to avoiding external infrastructure for
localisation altogether. In the field of reciprocal localisation, drones do not estimate their positions with
respect to static anchors but with respect to other moving drones. This was first achieved in 2021 for
the 2D case by Li et al. [65], and for the 3D case later in 2022 [16], both for tiny quadrotor drones and
flapping-wing drones. The current challenge is that in contrast to the static anchors, the initial positions of
the drones are unknown, so the underlying EKF needs about 20-30s to converge. In this initial uncertain
time, the drones need a free space to move in until their relative positions are known [16]. Moreover,
while this approach can be used for collision avoidance between drones, there is no absolute position
information, so even if a map of the environment is available, it cannot be used.

3.5. Homing

An absolute sense is in principle possible with a VIO or optic flow approach, but it drifts over time. Long-term
absolute positioning is only possible with an external positioning system, such as UWB anchors. However,
it might be sufficient to cancel the drift every time the drones land to change their batteries. In the swarming
case, battery swaps can be scheduled subsequently with a constant period to have more frequent drift
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resets. However, as the drift will be maximal just before landing, it might not be fair to assume that this
landing succeeds. For a guaranteed landing, a homing algorithm might be necessary. [47]

A great example of a minimal effort homing strategy was demonstrated by McGuire et al. in 2019 [17].
When a certain battery threshold is reached, the drones simply follow the gradient of the received signal
strength of a radio beacon. Since drones need to be monitored via radio anyway, this solution comes at no
extra weight or hardware cost. A more complex, yet entirely infrastructure-less solution was published
by van Dijk et al. in 2024 [12]. In this approach, a 360 degree camera was placed on top of a Crazyflie
Brushless to capture periodic snapshots of the environment. When the drone was commanded to return
to home, it simply followed its optic-flow-based absolute path back to the locations where snapshots
have been taken. The drone then checks with its camera if the snapshot location has been reached by
comparing the low-pass filtered horizontal features. This way, the drift could be cancelled regularly over
longer distances.

3.6. Conclusion

The performance of the different navigation methods discussed in this chapter with respect to the require-
ments for greenhouse monitoring is summarised in Table 3.1.

Table 3.1: Qualitative comparison of selected indoor navigation methods with respect to the requirements
for greenhouse monitoring.

Pos. of . External
Method o, Other Absc_:l_ute G Infrastruc- FI_app_e_r
Obstacles Position Compute Suitability
Drones ture
V-SLAM [46, :
48, 51] Yes No Yes High No Low
ToF-SLAM Yes No Yes Mid No Low
[53]
Direct ToF Yes No No Low No High
[54]
ROVIO [58, No No Yes Mid No Mid
59]
Optic Flow .
[60, 61] No No Yes Low No Mid
Anchored i
UWB [66] No Yes Yes Low Yes Mid
Reciprocal .
UWB [16] No Yes No Low No Mid

Fields coloured in red indicate that a requirement is violated, orange indicates compliance but with problems.
Since no single method can fulfil all the requirements, a combination must be chosen. An ideal combination
would be to use ToF-sensors for obstacle detection and optic flow to estimate an absolute position.
However, the absolute position estimates from optic flow are significantly less accurate than those from
ROVIO, which should alternatively be used. The trade-off here is that ROVIO also requires significantly
more compute and is heavier. Lastly, the positions of the other drones in the swarm need to be estimated
with reciprocal ultra-Wideband ranging. The subsequent thesis research focusses on peer localisation
with UWB and ToF sensors to avoid collisions.



Path Planning

Having established a suitable means of navigation for flapping-wing MAVs in greenhouses, the drones
know where they are relative to their environment and their peers, ready to carry out their tasks. This
chapter aims to answer the question of how exactly drones can move in a smart but efficient way to do
their jobs.

4.1. Explicit Path Planning

Most commonly, drones and robots plan their paths explicitly, i.e. with an explicit list of coordinates in the
local coordinate frame that needs to be followed. Being a very intuitive approach, paths can be easily
visualised for verification. Moreover, explicit planning comes with the opportunity of optimality, i.e. methods
exist to plan paths optimally with respect to a certain utility function.

One of these optimal methods that is very applicable to crop monitoring is Informative Path Planning
(IPP). IPP, adapted for UAV-based terrain monitoring by Popovi¢ et al. in 2017, aims to maximise the
information gain relative to a budget that typically represents the flight time [67]. This way, drones can
focus on more information-rich regions first while constructing a stochastic map belief. For that purpose,
the flight path is updated online based on new discoveries. The stochastic map belief is modelled as a
Gaussian process (GP) which comprises two components distributed over a 2D or 3D domain: the first is
the expectation of the monitored variable, e.g. NDVI, and the second makes up the covariance of that
monitored variable and hence gives insight about the local uncertainty. The paths are planned adaptively
with the CMA-ES metaheuristic solver [68]. This requires significant compute however, with real-world
experiments performed on a 3.2 GHz / 16 GB RAM system.

To reduce planning time, the method was refined in 2022 by Cao et al. by discretising the planning space
into a graph and encoding the map beliefs into node-features for context [69]. This approach is called
CAINIPP: Context-Aware Attention-based Netwrork for IPP. Using deep reinforcement learning (DRL),
a reactive policy for IPP was learned that can be run on a Raspberry Pi 4 with 216 MHz / 2 GB RAM.
Furthermore, this single-drone approach can be paired with sequential greedy assignment (SGA) [70].
SGA is a fast but suboptimal algorithm to let a team of drones sequentially but collaboratively plan their
flight paths. Combined with CAtNIPP, individual drones can share their map beliefs and intended flight
paths with the swarm. This way, each drone can sequentially plan its path to maximise information
gain and avoid collisions with the others [71]. Deep Reinforcement Learning is the state-of-the-art in
decentralised multi-drone adaptive IPP, with other approaches like Collaborative IPP [21] (Figure 4.1)
based on counterfactual multi-agent policy gradients (COMA) [72] or information gain [73].

However, most approaches have so far only been evaluated in simulation with no information on computa-
tional demand provided. Furthermore, the IPP approaches above deal with conditions of ideal perception:
flying over almost horizontal fields without occlusion and uniform lighting from above. In greenhouses
however, drones have to deal with occlusions, e.g. due to leaves, and potentially backlighting from
the lamps. These so-called perceptual factors should be incorporated next to past observations and
peer drones’ intent in a holistic IPP framework [74]. In fact, perceptual factors also show repercussions
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Figure 4.1: Three simulated drones performing collaborative IPP to map a crop field, from [21].

in navigation. Navigation and planning are often treated separately, but modern approaches tend to
acknowledge their subtle coupling [45]. In nature, this so-called sensory-motor coordination SMC) [75] is
for example exploited by locusts, which shake their head to create motion parallax and therefore obtain
depth information before jumping [76]. A distinct example from swarm robotics is the inclusion of random
movements in a drone swarm to increase the observability of each others position in UWB ranging [47].
More on this in Chapter 5.

Moving back to IPP, other approaches focus on gas source localisation (GSL). This could be applicable
to volatile compound sensing in greenhouses. Adaptive Cascaded Local Optimal Planning (ACLOP)
[77] for instance employs convolutional kernels on local gas concentration belief maps to plan from
the small scale to the large scale. While the authors claim ACLOP to be lightweight and executable
on small embedded systems, there is no quantitative metric given. Moreover, experiments have only
been performed in simulation and not on real devices. These simulations also reduced the planning
problem to two dimensions, despite dealing with a clearly three-dimensional phenomenon. A more
promising approach is Sniffy Bug [18], which tackles the GSL problem in a reactive approach that has been
demonstrated on the Crazyflie, a tiny drone that works on the same processing unit as the Flapper Nimble+.

4.2. Reactive Planning

In contrast to explicit planning, reactive planning does not compute a flight path as an explicit list of
waypoints, but instead performs small local actions at each time step, based on most recent sensor
information [78]. This allows for a drastic reduction in the computational cost of path planning, but also
results in suboptimal paths. While purely reactive approaches do not have knowledge about any past or
future states, they can be adapted to memorise certain bits of information, which allows them to solve
more complex problems without a strong increase in computational cost [78].

In the case of Sniffy Bug [18], the reactive behaviour is implemented in form of a finite state machine
(FSM) [79]. FSMs put the drones in certain behavioural states, such as random exploration if no obstacles
are in sight or wall-following if the ToF-sensors detect walls in range. Each state contains a limited set of
actions which are executed periodically. Broadly speaking, these actions are computed by combining a
constant set of parameters with the sensory inputs available at this execution. Next to executing its current
action, the robot also checks if its sensory inputs require it to transition to another state. For example, in
the state moving_forward, the robot might transition to the state turning_right if a ToF sensor has detected
an obstacle in front. The exact condition of when to transition is also determined by the constant parameters.
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The wall-following in Sniffy Bug is based on the so-called bug algorithm [80] (Figure 4.2) which first
came up in 1986 and is based on the observed behaviour of insects. Bug algorithms were also used for
wall-following in swarm-based exploration of indoor environments [17].

oT o T o T
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Figure 4.2: Visualisation of different versions of bug algorithms, from [81].

For reactive collision avoidance between drones, artificial potential fields (APF) [82] offer an intuitive
approach. When a drone enters another drone’s repulsion radius, the on-board controller can simulate a
spring force on the drone and set an according velocity command to fly away from the other drone. This
lightweight approach for example allows drones to fly together in a flock with decentralised control and
sensing [83]. APF can also combine repulsive forces from walls and other drones with attractive forces to
target points such as plants, which need to be monitored next, as demonstrated by McGuire et al. [17].

The state of the art in inter-drone collision avoidance is set by Alonso-Mora, Beardsley, and Siegwart
in 2018, which have adapted the Optimal Reciprocal Collision Avoidance (ORCA) [85] method for non-
holonomic systems such as quadrotor or flapping-wing drones. ORCA is based on the concept of velocity
obstacles, i.e. the representation of obstacles in the velocity domain. For that purpose, the drone assumes
a constant velocity of the obstacle for a small time frame. Knowing the relative velocity and positions of
the two drones, a set of relative velocity vectors can be found for which the two drones will not collide
by the end of the time frame. The drones can then pick the velocity vector that is closest to their desired
velocity vector, e.g. by sampling the velocity domain. This will typically mean that a drone needs to make
a concession from its desired path, but in a collaborative swarming scenario, this burden can be split in
half for each pair of drones, equally distributing the path correction and thereby keeping the swarm in tact
as a whole. The adaptation to non-holonomic systems consists of increasing the drones’ collision radius
by a small amount to account for the position error due to the assumption of holonomic motion [84].

4.3. Conclusion

While explicit planning methods offer immense potential for crop monitoring in general, they are not quite
suitable for the limited power and compute available on the Flapper Nimble+. Thus, we must resort to
the toolbox of reactive methods, combining them in an efficient behavioural framework to overcome the
challenges of multi-drone greenhouse monitoring.



Evolutionary Robotics

The limited power and compute of the Flapper Nimble+ and the complexity of navigating through greenhouse
environments with multiple drones at once demand utmost efficiency for the planning strategy. In Chapter 4,
a range of reactive planning methods were reviewed. This chapter focusses on how to combine these
methods with efficiencies that outperform intuitive, human-made strategies. A key approach here lies in
Evolutionary Robotics.

5.1. Evolutionary Robotics and Reinforcement Learning

Evolutionary Robotics (ER) is considered a major bio-inspired behavioural approach to robotics, next to
Reinforcement Learning (RL). While RL mimics the natural process of learning based on rewards that
can be seen in humans day to day, ER mimics the interplay of natural variation and selection that have
defined the inherited characteristics of humans and other animals long before they were born [86]. In
nature, evolution is responsible for very slow but profound behavioural changes, while learning allows for
fast adaptation to new circumstances. However, ER and RL are highly abstracted versions that take place
in computer simulations and thus are both able to find solutions for the behaviour of robots in a relatively
short time. Both RL and ER can find find efficient reactive behaviours for robots, which ideally succeed at
exploiting features of the simulation environment that are un- or even counter-intuitive to humans and
would hence be overseen in a manual user-defined solution [86].

While RL is an excellent choice for Markov Decision Processes (MDPs), their suitability for only partially
observable MDPs or non-markovian tasks is limited. This is because RL aims to estimate a value-function
for policies, i.e. the mapping from states to actions. However, if certain states are ambiguous or the
value function is discontinuous, this becomes a problem [87]. Swarming is such a non-markovian task
as from the perspective of the individual robot, the global state of the swarm as a whole is not observ-
able [47]. ER mitigates these issues by searching in the policy-space directly, bypassing the complex
relationship between value and action. Moreover, it is difficult to define suitable rewards for the actions of
the individual that stem from the success of the swarm. This is known as the credit assignment problem [88].

5.2. Practical Considerations

Taking a closer look at ER, it relies on meta-heuristic optimisation in the form of evolutionary algorithms,
like the highly bio-inspired genetic programming [89], or evolutionary strategies like the more abstract but
highly efficient covariance matrix adaptation (CMA-ES) [68]. All optimisation algorithms rely on a scalar
objective function, which rates the performance of obtained solutions with respect to the user-defined
goals. The difficulty herein lies in the precise choice of an accurate objective function that is robust against
trivial solutions, which distract the optimiser from finding meaningful solutions [86, 47]. Moreover, like all
meta-heuristic optimisation approaches, ER is subject to non-optimality as solutions will almost always
converge to local optima instead of finding the global optimum. That is why ER and other meta-heuristics
are typically only used for highly complex optimisation problems, for which no closed-form solution exists
[86].
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Lastly, it must be acknowledged that ER optimises a behaviour for the given simulation environment,
which is not guaranteed to be useful in the real world. This so-called reality gap can be reduced by adding
sensor noise and varying the simulation parameters randomly in order to prevent overfitting, often called
Monte Carlo simulation [90]. The reality gap has also been seen in the context of the bias-variance
trade-off, concluding that a more abstracted simulation environment, i.e. a more biased environment, will
lead to reduced variance in the real world, and thus in a reduced reality gap [91]. According to Scheper
and De Croon, this abstraction does not necessarily hinder the evolution from exploiting sensory-motor-
coordination (SMC) or the exhibition of emergent behaviours. Moreover, abstraction helps to overcome the
bootstrapping problem, i.e. the problem that initial low-level behaviours struggle to cater to the high-level
goals of the objective function, and abstraction reduces the computational time of the simulations [92].

5.3. Application to Swarm Robotics and Behaviour Trees

One of the first approaches to ER applied to swarm robotics was F-Race in 2002 by Birattari et al. [93].
F-Race, short for focussed race, generated random sets of behavioural parameters for a swarm of
homogeneous ground robots. These solutions were then evaluated with respect to a certain task and after
every round of evaluations, the worst performing solutions were discarded [93]. Thus, the more promising
solutions receive more thorough evaluation until a final solution remains. This focussed approach was
computationally efficient and robust at the same time, which was an important requirement in 2002. F-Race
introduced the concepts of evaluation and selection, however the true power of ER lies in recombination
and mutation of the most effective solutions to obtain potentially better solutions in future generations. This
breakthrough took place in 2007 with Iterated F-Race [94], which improved performance significantly. In
2014, the same research group published AutoMoDe-Vanilla [91], introducing Finite State Machines (FSMs)
as behavioural framework for the robots. FSMs are explained in Chapter 4. Together with Iterated F-
Race, they allowed ER to outperform a manually designed swarming behaviour for the first time in 2015 [19].

Another behavioural framework especially suitable for ER is the behaviour tree (BT). Behaviour trees are a
generalised form of FSMs. The main difference is that BTs allow a behaviour to be defined with very high
precision by branching the tree over and over again and adding new nodes [95]. In FSMs, this is only
possible with hierarchical states. The problem is that adding a new state to refine the behaviour requires
connecting it to all other states within a super state. This leads to combinatorial overload, i.e. a rapidly
rising number of links, too large to be maintained and understood by humans. In contrast, BTs only require
the understanding of nearby nodes to understand a sub-behaviour. The shift from FSMs to BTs is akin to
the shift from GOTO-based programming to the nowadays ubiquitous function-based programming [95].

BTs were implemented alongside a tournament selection based genetic algorithm in 2016 to evolve a
behaviour for the DelFly Explorer to fly through a window [9]. Again, the evolved solution outperformed a
manually designed solution in the real world, underlining the potential of ER. Scheper et al. emphasize
the benefits of BTs: the high interpretability of evolved BTs allow the user to identify and remove inactive
components in the solution which can reduce the size and thus computational demand of the behaviour
enormously without impairing its performance. Furthermore, this interpretability enables the user to make
intuitive adaptations that can bridge the gap from simulation to reality, which is the decisive advantage of
BTs over FSMs or other representations such as neural networks [9, 96, 47].

The success of behaviour trees was echoed by the authors of the AutoMoDe series, who in 2021 published
a tool for creating and evaluating BTs [97] for swarms, that in 2022 was used for AutoMoDe-Cedrata, a
BT and genetic programming based swarming framework that supports peer-to-peer communication [20].
While Cedrata proved to be effective, it did not manage to outperform a manual user-designed BT for
various swarming tasks. This can potentially be due to the limited complexity of BTs in Cedrata. With a
maximum of 13 nodes, the evolutionary algortihm might not be able to explore sufficiently many designs
before converging on more compact solutions. For comparison, the approach in [9] temporarily generated
BTs with up to 7000 nodes before settling at 32 nodes for the final solution. Hence, it must be ensured that
the BTs have sufficient exploratory freedom to maximise their utility.



Conclusion

This literature review has given an overview of the current state of flapping-wing MAVs and the use of
drones in agriculture. Their robust and non-destructive properties make flappers ideal candidates for
real-time greenhouse monitoring. However, unlike their larger quadrotor counterparts flying outdoors,
indoor flappers cannot rely on GNSS satellites for positioning and do not have the computational capacity
for map-based optimal path planning. While different approaches to indoor positioning exist, there is
currently no single method providing bounded position estimates, obstacle detection and peer localisation
simultaneously.

Deploying a swarm of flappers enhances the robustness of the system to individual failures. Moreover, it
creates room for complex collective behaviour, outperforming that of single agents. But for swarming to work,
there must be an efficient coordination strategy that can be implemented on the Flapper's microprocessor.
Examples for effective coordination are given by finite state machines or behaviour trees. Moreover, it was
found that strategies obtained by evolutionary robotics can outperform manually designed ones and in for
the multi-agent case, also those obtained by reinforcement learning.

6.1 Research Objective

Hence, the objective of this research is to develop a coordination strategy for a swarm of flapping-wing
MAVs for autonomous greenhouse exploration by means of reactive planning methods, time-of-flight
sensors and ultra-wideband based peer localisation.

6.2 Research Question
Central to the pursuit of said objective is the following research question:

How can a swarm of flapping-wing MAVs be coordinated to perform decentralised autonomous
greenhouse exploration by means of reactive planning methods?

This can be further split in the following sub-questions:

1. Which methods of evolutionary robotics can be applied to find the best possible coordination strategy?

2. Which reactive planning methods implemented as useful behaviour modules for multi-drone green-
house monitoring?

3. How can a coordination strategy found in simulation be effectively implemented on the real drone
platform?
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Evolving Behaviour Trees to Control a Swarm of
Flapping-Wing Micro Aerial Vehicles for Greenhouse
Exploration

L.H. Uptmoor, S. Stroobants, M. Popovi¢, G.C.H.E. de Croon
Delft University of Technology, Delft, The Netherlands

ABSTRACT

Micro aerial vehicles have shown promising use
to further automate food production in green-
houses recently. Compared to conventional mul-
tirotor drones, flapping-wing drones offer safe
and robust operation around plants due to their
soft, slowly-moving wings. Their limited sens-
ing and computational capabilities, however,
prohibit the use of map-based navigation meth-
ods. To compensate for individual shortcomings,
swarming ensures scalability and redundancy.
This work proposes a hardware setup combining
time-of-flight (ToF) and ultra-wideband (UWB)
sensing and explores the artificial evolution of
behaviour trees as a reactive planning strategy.
Genetic programming, paired with CMAES fine-
tuning was able to improve a human-designed
exploration strategy by 50%. Neuroevolution has
been investigated to encourage emergent swarm-
ing behaviours, but requires further experimen-
tation in combination with behaviour trees. The
solution obtained in simulation can be readily
ported to hardware, but a reality gap in perfor-
mance persists. These findings contribute to the
development of lightweight, scalable aerial sys-
tems for autonomous greenhouse monitoring.

1 INTRODUCTION

The way our food is produced is drastically changing: from
1994 to 2019, the fraction of Europeans working in agricul-
ture has fallen from 11% to just 4%'. This is only possible
because of automation and intensification [1]. An outstanding
example for that are Dutch greenhouses, which have evolved
from simple glass containers to food factories with meticu-
lously controlled climates [2]. Since the early 2020s, micro
aerial vehicles (MAVs), have joined static sensors in provid-
ing fine-grained data to the growers, increasing productivity
even further [3, 4, 5, 6]. The advent of commercially available

'https://ourworldindata.org/grapher/
share-of-the-labor-force-employed-in-agriculture?
tab=chart&time=1994..latest&country=~European+
Union

flapping-wing drones, like the Flapper Nimble+, looks espe-
cially promising: their soft and comparatively slowly moving
wings are inherently safe to use around delicate crops and
even humans. While quadrotor drones would cut leaves and
crash in the event of a direct contact, flapping-wing drones
have demonstrated their robustness and ability to maintain se-
cure flight around plants [7].

But challenges remain: the Flappers’ limited on-board pro-
cessing capabilities have ruled out simultaneous localisation
and mapping (SLAM) [8, 9] and map-based explicit plan-
ning methods like informative path planning (IPP) [10, 11].
What’s more, their oscillatory nature has so far hampered the
use of visual-inertial navigation methods. As a result, we
have chosen reactive planning approaches which make de-
cisions based on recent sensory inputs [12].

To unfold the true potential of these computationally con-
strained Flappers, we resort to the bio-inspired concept of
swarming [13, 14, 15]. Swarming has three key advantages:
(1) it allows flexibly scaling a team of agents to environments
of any size; (2) when individual reliability is limited by hard-
ware, decentralised swarms offer redundancy and thus robust-
ness to individual failures; (3) even with limited individual
cognition, a swarm of agents can exhibit emergent behaviours
that allow solving far more complex tasks than a single agent
could ever achieve [16]. How to design for these emergent
behaviours remains subject to research. Mimicking natural
evolution seems a promising approach.

The contributions of this article are twofold:

1. We present a reproducible hardware setup that allows
simultaneous height estimation, obstacle detection and
decentralised peer-to-peer localisation for the Flapper
Nimble+ drone platform, and provide real-world au-
tonomous peer localisation data.

2. We explore different levels of evolving a low-compute,
decentralised reactive planning algorithm for a swarm
of Flappers, using hybrid approaches of neuroevolu-
tion, genetic programming of behaviour trees, and pa-
rameter tuning with CMAES.

The remainder of this article is structured as follows:
section 2 gives a short account of related work in resource-
constrained indoor navigation and swarm intelligence with
behaviour trees. Next, section 3 presents the methods by
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giving an overview of the Flapper Nimble+ and its modified
sensing capabilities, as well as the different evolution
frameworks for its behaviour tree. The experimental setup
is outlined in section 4. Thereafter, section 5 provides the
evolution results, followed by the limitations and discussion
of potential shortcomings in section 6. At last, section 7
concludes this work and presents an outlook on future work.

2 RELATED WORK

A cornerstone in the field of swarming is the ability of
agents to locate other members of the swarm. This allows
for collision avoidance or coordinating collective movements
such as formation flight [17]. Pfeiffer et al. achieved a major
breakthrough on this matter by the dual-use of a DWM1000
ultra-wideband (UWB) antenna: the antenna can be used to
share on-board velocity estimates with the swarm, but also
to estimate the distance between drones. Correcting relative
velocities with UWB distance estimates by means of an Ex-
tended Kalman Filter (EKF) eliminates drift and thus yields
bounded peer-to-peer positions in 3D [18, 19]. While their
approach paved the way for other UWB-localisation meth-
ods, it lacks scalability in its communication protocol and
requires long convergence times if initial positions are un-
known. The scalability problem has been mitigated by more
scalable broadcast-based communication protocols [20], and
the convergence problem we mitigate by launching the drones
from pre-defined starting locations.

As swarms are typically constituted by small or even ex-
pendable agents, they tend to lack the computational power
for mapping or explicit path planning. McGuire et al. have ad-
dressed this by implementing reactive behaviour in the form
of a finite-state machine (FSM) to explore an unknown in-
door environment [15]. They relied on radio signal strength
indicator (RSSI) for inter-drone collision avoidance. The suc-
cess was echoed by Duisterhof et al. in 2021, who adapted
the FSM approach to include UWB-based peer localisation
with the goal of gas source localisation [21]. However,
both approaches rely on optic flow sensing that is unsuitable
for flapping-wing platforms due to feature matching failures
[22]. We propose a reactive control scheme that builds on
more oscillation-resistant sensing modalities.

Small FSMs have proven their utility in reactive planning.
But once a more complex behaviour is necessary, they tend
to suffer from combinatorial overload, i.e. the transitions be-
tween a large number of states become hard to overview for
a human designer. Behaviour trees (BTs), on the other hand,
allow for the same expressivity as FSMs, but organise their
actions more locally, which significantly improves their scal-
ability [23]. A major advantage over black-box methods like
neural networks is the human readability of BTs, which facil-
itates manual adaptation and bridging the reality gap [14].

Behaviour Trees for swarm robotics are often used along

with evolutionary algorithms. Evolution’s edge over Rein-
forcement Learning (RL) for instance, is its ability to reward
communal efforts directly, while RL needs a state-action pair
of an individual agent to assign reward, which scales poorly
with number of agents [24, 25]. Evolved BTs have been suc-
cessfully implemented on a flapping-wing drone by Scheper
et al. in 2016 with the goal of flying through a window [26].
It was then not long until their application to swarm robotics.
Jones et al. used genetic programming to evolve a BT for a
ground-robot foraging task [13]. Although agents were given
the ability to communicate and store information, the evolved
solution did not make use of that, so the agents essentially
work for themselves. More recently, Kuckling et al. also pur-
sued the goal of evolving swarm communication [27], with
limited success. One reason for that could be a too restrictive
maximum tree size constraint. Thus, this work will permit
larger trees to allow more exploration.

3 METHODS
3.1 Hardware Modifications

The chosen drone platform for this work is the Flap-
per Nimble+2, a commercially available flapping-wing MAV,
rooted in the academic research around the Delfly [28, 29,
30]. With two wing pairs, a wingspan of 49 cm and a maxi-
mum takeoff weight of 127 g, it is capable of stable and con-
trollable flight for up to 5 minutes. It uses differential flap-
ping frequencies on its two wingpairs to control its roll angle.
Pitch is controlled by setting the wing dihedral angle with a
servo motor. And a yawing moment is generated by feather-
ing its wing pairs in opposite directions with another servo.
It can be steered remotely via a 2.4 GHz antenna, interfac-
ing with its STM32F405 microcontroller unit on the Crazyflie
Bolt 1.13 flight controller board.

To enable autonomous navigation, obstacle avoidance
and peer-to-peer communication, the following changes
were made: the landing gear is amended with two
VL53L8CX* time-of-flight (ToF) sensors [31] on breakout
boards, mounted with 3D-printed parts that ensure one sensor
faces forward, and one sensor faces downward, see Figure 1
and Figure 2, respectively. The sensors provide a 8 x 8 depth
array within a square field of view of 48.4°. While the manu-
facturers claim a 4.00 m depth range, practice has shown that
reliable estimates are only obtainable until about 1.50 m. The
front sensor is intended for obstacle recognition, the bottom
one for height estimation.

The data streams from both sensors are joined on a 12C
bus, which is read by a Teensy 4.1 microprocessor board® that
is mounted on the back of the Flapper with two 3D-printed

2https://flapper-drones.eu/nimbleplus/
3https://www.bitcraze.io/products/
crazyflie-bolt-1-1/

4https://www.st.com/en/imaging-and-photonics-solutions/

v15318cx.html
Shttps://www.pjrc.com/store/teensy4l.html
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Figure 1: Front view of the Flapper’s landing gear including
the forward ToF breakout board in blue.

brackets. The Teensy takes over pre-processing of the raw
ToF sensor data, like filtering, height estimation and calcu-
lating obstacle densities in the horizontal field of view. It is
soldered to a Crazyflie battery holder to facilitate the plug-
and-play pin connection with the Crazyflie Bolt. The Teensy
and Bolt communicate via UART?2. The setup can be seen in
Figure 3.

At last, a Crazyflie Locodeck® with a DWM1000 UWB
module is placed on the front of the Crazyflie Bolt, also via
the pin connectors. On the back of the locodeck, the traces
GS1 and GS2 had to be cut, and the pads GS3 and GS4 sol-
dered together to use the alternative UART pin set. This is be-
cause the default UART pins are occupied by the Teensy now.
The use of these external decks requires the LED ring to be
deactivated in the Flapper configuration file. The front view
in Figure 4 shows the setup. The locodeck allows peer-to-peer
communication, distance estimation, and thus also relative lo-
calisation [18].

With all modifications, the weight of the Flapper including
battery totals 127g, which is in line with the maximum,
although without margin. Future weight optimisation is
likely possible. The firmware necessary to fly with the
hardware expansions can be found on GitHub 7, just like the
firmware for the Teensy 4.18.

3.2 Behaviour Tree Implementation

To bestow the agents with a modular and lightweight ex-
ploration capability, behaviour trees (BTs) have been chosen

Shttps://www.bitcraze.io/products/
loco-positioning-deck/

"https://github.com/luptmoor/flapper-firmware/
tree/teensydeck_behaviour_tree_uwb

Shttps://github.com/sstroobants/VL53L8CX_Teensy

Figure 2: Bottom view of the Flapper’s landing gear. The
downward ToF breakout board can be seen in green.

as reactive planning strategy. In this work, the BT frame-
work as explained by Colledanchise and Ogren is used [23].
It can be summarised as follows: BTs consist of leaf nodes,
which can execute an action or assess a condition, and com-
posite nodes, which control the logic in which the leaf nodes
are triggered. Composite nodes can have other nodes as their
children, which creates depth of the tree, while leaf nodes al-
ways mark the end of a branch, hence the name.

Action nodes need to be defined by the user and can be
either low-level actions like “move forward” or more com-
plex like “fly towards closest peer”. They can return either
“Running” when an action is currently carried out, “Suc-
cess”, if it has been successfully completed, or “Failure” if
not. One may readily implement action nodes which always
return “Running” without a stopping criterion. However, if all
actions only return “Running”, the BT is functionally equiva-
lent to a simple if/else decision tree, which drastically reduces
its expressivity.

Condition nodes read variables from a so-called black-
board, and compare them between each other or with respect
to pre-set constants. If a condition is true, the node returns
“Success”, if not it returns “Failure”. What information is
contained in the blackboard is also to be decided by the user.
Actions and conditions are constrained by what the robot can
physically sense and carry out, but also by the capabilities of
the simulation environment. Both condition and action nodes
are defined by a qualitative description, like “Turn” or “Path
clear?” that answer the question “What is to be done?”, but
they can also have one or more quantitative parameters like
“turn_rate: 0.2” that define “How is it to be done?”.

Composite nodes on the other hand only take shape of two
logic operators: firstly, sequence nodes execute all their child
nodes in a sequence until they return “Success” or “Failure”.
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Figure 3: Dorsal view of Flapper. The Teensy 4.1 can be seen
in the centre between the wings in green. At the bottom, the
outputs from the bottom and forward ToF sensors are joined
on a I12C bus.

If the child returns “Success”, it moves on. If it returns “Fail-
ure”, the sequence is stopped and the sequence node returns
“Failure”, too. A sequence node only returns “Success” when
all their child nodes return “Success”. Sequence nodes are vi-
sualised with a right-pointing arrow in a rectangular node.

Selector nodes are the opposite of sequence nodes: they re-
turn “Success” if any of their children return “Success” and
move on when their currently active child returns “Failure”.
Selector nodes are visualised by a question mark in a circular
node. An example behaviour tree for the greenhouse explo-
ration task can be seen in Figure 5.

As the main goal of the BTs in this work is motion
planning, most their actions contain changing the setpoints
for forward speed V., vertical speed V, , and yaw rate
remd. Flying backwards and sidewards is not permitted, since
the drone only holds a ToF distance sensor on the front, and
thus can only avoid obstacles in the direction it is facing.

cmd

3.3 Genetic Programming of Behaviour Trees

Evolutionary algorithms like Genetic Programming (GP)
can outperform human-made intuitive designs, especially

Figure 4: Ventral view of Flapper. The Loco deck can be seen
in the centre between the wings in black/blue.

in complex situations like multi-agent coordination in 3D.
Hence, GP is used to find a BT that effectively guides the
Flappers through the greenhouse. In the first step of GP, BTs
need to be randomly generated. The maximum tree depth was
set to 4, and the maximum number of child nodes that a com-
posite node can have is set to 4, too. Thus, in total 4* = 256
nodes can be used. For every potential child node of a com-
posite node, there is a 50% chance of being a leaf node and a
25% chance of being another composite node. Hence, there
is also a 25% chance that no node is added. In the case of
leaf nodes, action and condition nodes have equal chances,
just like sequence or selector for composite nodes. The first
node in the tree, the root, is always a composite node. Leaf
nodes are chosen randomly from the set of user-defined leaf
nodes, which are explained in the next section. Their param-
eters are randomly chosen from a user-defined range that is
deemed useful for that particular parameter.

A generation consists of 30 BTs. Each BT is evaluated by
simulating a swarm of 5 Flappers that follow the BT’s map-
ping from sensory input to action. Upon collision with the
walls, obstacles or other drones, a drone is removed from the
simulation. The simulation is terminated when there is only
1 Flapper left or 300 simulated seconds have passed. At the
end, a score is calculated based on how much of the environ-
ment has been collectively discovered in 3D. To that end, the
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Action
Random Walk
EXP_VX: 0.30
EXP VZ SPREAD: 0.30
EXP_R SPREAD: 0.26

Condition
Minimum peer distance > X ?
MINP_DISTANCE: 1.00

Condition
Path clear?

Avoid other drones

AVD R REP: 1.
AVD_HEADING_PRECISION: 0.17

Action
Disperse
DISP_K_HEADING: 0.60
VX:

Action

Condition
Swarm spread out?
SPRD_THRESHOLD: 2.00

SP_VX: 0.
DISP_HEADING_PRECISION: 0.22

Action
Turn right
RGHT TURN_RATE: 0.50

Condition
Random > X ?
RND_THRESHOLD: 0.50

Figure 5: Manually designed behaviour tree with composite and leaf nodes including their parameters. The tree has a depth of
4, as defined by the longest chain. Node parameters are listed in capitals. Read from top to bottom, left to right.

domain is discretised in cubes of size 0.50m. The score is
then equal to the fraction of cubes visited, which lie below
2.00 m. This is to prevent the agents from learning to exploit
the trivial solution of simply flying in the obstacle-free space
above the crops. Every BT is simulated in 3 different ran-
domly generated greenhouse environments. Their final score
is the average score of all 3 simulation runs.

Having simulated all BTs of a generation, the fittest 2
BTs are directly admitted to the next generation (elitism).
The remainder is chosen by tournament selection with
tournament size 5 [32]. 80 % of the new generation are
then subject to crossover: a random node in the tree is
selected and the branch that is formed by its child nodes is
replaced by a random branch of another member of the new
generation. At last, 20 % of the new generation is subject
to mutation: in 80 % of the cases, a random leaf node is
re-instantiated as a new leaf node of random type and with
random parameters (micromutation). In 20 % of the cases,
a random composite node is re-instantiated with new child
nodes, up to the maximum tree depth (macromutation). The
new generation obtained after all these steps is then evaluated
again by simulation, and the cycle is repeated 160 times.

3.4 Manually Designed Behaviour Modules

While composite nodes provide an efficient and scalable
switching logic, it is the leaf nodes that actually define what
sensor inputs to consider and what actions to take. With the
goal of fast, coordinated and collision-free greenhouse explo-

ration in mind, the following actions and conditions were im-
plemented. An overview of the numerical parameters for each
node is given in Table 1.

Random Walk [27] The drone performs a random walk
with constant V., a vertical velocity that randomly varies
between :N:AVZCXP , and a yaw rate that varies between £Aryp.
Always returns “"Running”.

Disperse [27] The drone moves away from the geometric
centre of the swarm. It calculates a target heading ¢mq and
then sets a yaw rate command to 7emg = Kgisp (wdisp — ).
Once the heading error is within the precision range =%egjsp,
the forward velocity is set to Vgsp. Always returns “Run-
ning”, unless drone is the last one active, then ”Success”.

Turn The drone halts and turns with a yaw rate of rym,
which can be either left or right, depending on the parame-
ter. It returns ”"Running” until a full 360° turn since the time
this node was initiated has been completed. Then it returns
”Success”.

Avoid The drone avoids nearby drones with the method of
an artificial potential field (APF) [33]. When peer drones are
within a certain radius rapp, they generate a specific force
component in all three principal axes. For instance, in the
x-direction Af, = K APF%, where r is the direct distance
between the peers. The direction of the resulting force is
then used as reference heading ¥app. A yaw rate command
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Temd = Kapr (Yapr — 1) Once the heading error is within
the precision range +eapr, the forward velocity is set to Vapg.
Always returns "Running”, unless drone is the last one active,
then ”Success”.

Vertical The drone halts and moves vertically with V, ,
which can be either up or down, depending on the parameter.
It returns "Running” until it has reached either the ceiling or
the floor. Then it returns ”Success”.

Brake The drone halts completely. Returns “Success”
when velocity has reached zero. Until then it returns “Run-
ning”.

Send Message [27] The drone sets its binary message flag
from O to 1. Returns ”Success” immediately.

Next to these actions, the following condition nodes are
implemented. Many conditions were conceptualised to
go along with certain actions, known as implicit success
conditions [23].

Path clear? Returns “Success” if central 50% of ToF-
sensor readings contain no obstacle closer than 1.00 m. Oth-
erwise it returns “’Failure”.

Peer distance < rper? Returns “Success” if at least one
peer drone is closer than 7,.,.. Otherwise it returns “Failure”.

Swarm spread? Returns “Success” if the closest third
(rounded down) of active agents are beyond a threshold dpread
away from the agent. Otherwise it returns “Failure”.

Message received? [27] Returns ”Success” if at least one
peer has set their binary message flag to 1. Otherwise it re-
turns “Failure”.

Random condition Returns ”Success” if a random number
from a uniform distribution between O and 1 is larger than a
threshold /5. Otherwise it returns “Failure”.

Timer condition Returns ”Success” if the recorded time
since takeoff is greater than Tiye,. When this node returns
”Success”, the recorded time is reset to zero. Otherwise it
returns “Failure”.

Table 1: Overview of parameters for manually designed ac-
tion and condition nodes.

Module Parameter Range

Random Walk Ve 0.1 —1.0m/s
AV, 0.1 —0.5m/s
ATexp 0.1 — % rad/s

Disperse Kisp 0.1 —5.0
Edisp 0.0 — 45.0°
Vidisp 0.1-1.0

Turn T T — Trad/s

Avoid Kapr 0.1 —10.0
€APF 0.0 — 45.0°
dapr 0.5 —-10.0 m

Vertical e -0.5-0.5

Brake — —

Send Message — —

Path clear? - —

Peer distance < dpeer?  dpeer 0.0 —-8.0m

Swarm spread? spread 0.0—-8.0m

Message received? - —

Random condition 8 0.0-1.0

Timer condition Thimer 50—1500 ticks
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3.5 Neuroevolution of Behaviour Modules

Besides the manually designed behaviours, more high-
level behaviours controlled by neural networks were consid-
ered. These neural behaviours were thought to compliment
the manually designed nodes in a behaviour tree and ex-
pected to be especially useful for swarm coordination tasks
based on relative positions and peer-to-peer communication.
Neural networks’ ability to approximate very complex func-
tions seem a promising means to enable useful emergent be-
haviours of the swarm, i.e. the ability to perform more com-
plex tasks as a group than the sum of individuals could ever
achieve.

To that end, two neural modules were conceptualised: one
for exploration, in which the agents could learn to spread the
domain between each other rather than each blindly discov-
ering it on their own, and one for exploitation which lets the
agents repetitively visit the stored fruit locations from the dis-
covery phase. The output of these neural network are set-
points for forward velocity V;, ., vertical velocity V, , and
yaw rate 7¢mg, as well as a communication message to the
peers, which are all limited to a acceptable ranges with a sig-
moid function.

The neural exploration mode works with the peer position
estimates in the agent’s local frame and also processes the
scalar message from every peer. The message is limited be-
tween -1 and 1 and could be used by the drones to indicate
attraction or repulsion. In reality, individual agents can fail
or not respond to the UWB-based positioning queries. This
must be accounted for in the network architecture.

The neural exploitation mode works with stored 3D posi-
tions of discovered fruit. Similar to the exploration mode,
there is a fourth information which weighs the respective po-
sition, namely the time since last visit of that fruit. Both visit
times and positions are broadcasted across the swarm. While
these messages may not reach all drones at all times, the im-
plementation shall allow the drones to still use the neural net-
works to their most up to date knowledge.

Both networks need to be invariant to the number of in-
put data points. Hence, for both networks we propose the
neural architecture of the Weighted DeepSet, inspired by the
work of [34] [34]: all relative 3D positions are initially en-
coded in a 16-dimensional latent space. The encodings are
then weighted by the correspondent message for the explo-
ration case, or time since last visit for the exploitation case.
At last, the weighted encodings are summed and mapped to
the four-dimensional output, which consists of the three mo-
tion commands and the message to the peers. An overview is
given in Figure 6.

The weight-sharing for every data point also drastically re-
duces the parameter count and execution time, which is es-
sential for implementation on board of the microcontroller
and simulation. It must furthermore be acknowledged that
the proposed architecture is partially recursive, i.e. the trans-
mitted peer message determined by the network is amplified

cmd

Nx3 Nx16 Nx16 1x16 1x4
o Sigmoid
Yi 11,1:,:5 Vrmd
Zi Vme
Temd
m
ReLU

Figure 6: Weighted DeepSet architecture chosen for neu-
roevolution. The input is a set of 3D points in the agent’s body
frame, which is then encoded to 16 dimensions and lastly ag-
gregated by weighing the encodings and summing them. The
output is a 4D vector obtained by parsing the weighted sum
through a dense layer and applying a sigmoid. In total this
architecture has 404 trainable parameters.

by the received peer messages. This feedback loop can lead to
decay, blow-up or oscillations of the neural activations, which
likely harms the performance of the swarm. To hedge against
this, instead of weighting the inputs, the message could be
used as input just like the position, or the message could be
left out of the neural network altogether.

As the networks shall be given room for counter-intuitive
emergent behaviours, there is no behavioural reference
given as training data. Instead, parameters shall be set
by neuroevolution, a type of unsupervised learning that
optimises utility with respect to a preset objective function.
For the exploration network, this objective function is equal
to the fraction of discovered fruit in the environment, for the
exploitation network, the objective is equal to the negative
average time a fruit had to wait for an inspection. Neu-
roevolution is implemented via covariance matrix adaptation
evolutionary strategy (CMAES) [35], a very efficient abstract
algorithm that works well for low-dimensional parameter
spaces, like the 404 parameters of this architecture.

3.6 Parameter Fine-Tuning

Finally, next to tuning the parameters of the neural net-
works, CMAES also serves to fine-tune the numerical param-
eters of the BTs obtained through genetic programming and
a manual benchmark. CMAES was chosen due to its high ef-
ficiency and suitability for optimisation of low-dimensional,
continuous variables. To that end, all parameters that can be
seen in Figure 5 are treated as independent parameters with
initial 3-0 environments set to the ranges seen in Table 1.
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4 EXPERIMENTAL SETUP
4.1 Simulation Environment

All evolutionary approaches need a simulation environ-
ment to evaluate the performance of a solution with respect to
the goal of greenhouse exploration. The greenhouse is simu-
lated in a 15.00 m x 8.00 m environment with a ceiling height
of 3.00 m. To represent crop rows, 3-5 cuboids with a breadth
of 0.60 m, length of 12.90 m and a height of 1.80 m are placed
along the length of the greenhouse, leaving 10% of the length
free for the drones to be placed. The drones themselves are
represented by spheres with radius 0.25 m.

For simplification, full position, attitude and velocity
knowledge of the drones is assumed. State estimation is ex-
plicitly left out. Moreover, the ToF-sensor array is assumed
to be perfectly reliable in providing distances within the field
of view, while in reality, the chosen sensor model requires
significant filtering and postprocessing.

The simulation is accelerated with numba, a library that
provides decorators allowing just-in-time (JIT) compilation
of Python code [36]. JIT compilation adds a little overhead
processing time at the start of the simulation, however sig-
nificantly reduces processing time during repeated function
calls in the simulation loop. However, this is only possible
when adhering to certain requirements, i.e. a significant range
of the Python repertoire like classes and dynamically typed
structures become unavailable.

Figure 7: Screenshot of simulated environment shortly after
a simulation run has started. The drones are shown in dark
blue on the left, with their central field of view visualised in
cyan. The crop rows are also shown in dark blue.

For verification, the environment can be visualised using
the PyGame library. A screenshot of the visuals is shown
in Figure 7. To increase evolution speed, visuals are typically
turned off. Moreover, the current state of the active behaviour
tree, which nodes are running, have succeeded or failed, can
be visualised for one drone using graphviz. This drastically
increases simulation time though.

The Python code to run the simulation and evolution is
available on GitHub’.

https://github.com/luptmoor/flapper_greenhouse_

4.2 Flapper Dynamic Model

Despite multiple efforts of system identification for the
Flapper, there currently exists no comprehensive dynamic
model. As the drones will navigate with the three control in-
puts Vu. s Vaw and 7¢mg, thus limiting sideways movement
as much as possible, the longitudinal dynamics are most im-
portant. The most recent longitudinal model is from 2019
[37]. This nonlinear model has been replicated in numba-
Python and fitted with a Runge-Kutta solver.

The yaw dynamics were assumed to follow a simple first-
order lag with time constant 7, = 0.05 s. A step response is
shown in Figure 8.

— Vx [my/s]

=== Vx_cmd [my/s]
— vz [m/s]

=== Vvz_cmd [m/s]
—— r[rad/s]

=== r_cmd [rad/s]
—— Theta [rad]

States

T T T T T
0.0 0.5 10 15 2.0 2.5 3.0

Time [s]
Figure 8: Step response of simulated longitudinal and

yawrate model with V|

= 0.5,V = 1.0 and remg = 0.2.

cmd
It can be seen that there is a significant steady-state error
for the velocity commands. This is in line with observations
of the real Flapper. Furthermore, as this is a closed-loop
response, performance depends on the controller gains
implemented on the drone. While the PD gains for the
pitch angle 6 were taken from the model of Kajak et al.,
the velocity gains were manually tuned to K, = 0.2 and
K. = 80. Moreover, it can be observed that vertical and
forward velocity are coupled, which explains why the pitch
oscillations are propagated to the vertical velocity.

4.3  Real World Tests

To validate performance of the obtained solution in the real
world, the best evolved solution is implemented with a cus-
tom BT framework for the Flapper firmware, using the app
layer. The created app allows flying every Flapper in the
swarm manually with a remote transmitter and then switching

swarm
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Figure 9: Photo of the initial test setup in the CyberZoo. The
Flappers are spaced 1.50 m apart at first and facing towards to
aisles that are supposed to mimic crop rows in a greenhouse.

to autonomous flight mode. While flying autonomously, the
implemented behaviour tree commands the Flappers motion
and peer-to-peer communication, but motion commands can
be overridden with the manual remote for safety.

Two Flappers are deployed in the CyberZoo test facility
at TU Delft’s Aerospace Engineering faculty. Using mobile
walls, a simple maze is constructed that mimics the row-
like structure of the simulation environment. The drones are
spaced 1.5 m apart, which is the pre-defined relative position
for the relative localisation EKF. An overview of the initial
scenario can be seen in Figure 9.

The relative position estimates are logged on-board on a
micro SD card. Absolute positions and attitude are logged
using the Optitrack motion capture system. During post-
processing, the relative position beliefs are reconstructed in
the absolute frame using affine transformations, as seen in
Equation 1.

Tp=xp+2Tapcostp —Japsinyp
Ja =yB +Tapsinyp + Jap cosyp

6]

5 RESULTS

5.1 Neuroevolution Results

To understand how well the neuroevolution modules can
fulfil the goal of obstacle-free volume exploration, the av-
erage and maximum fitnesses are plotted versus generation
count, as shown in Figure 10. Overall, the best solution
reaches a fitness of around 60%. That means, 60% of the
voxelised 3D domain is visited by any of the agents. For the

neuroevolution runs, collisions with crops and walls were dis-
abled, as the exploration nodes were supposed to focus on
domain exploration and peer-to-peer collision avoidance. Af-
ter around 80 generations, the population converges to a local
optimum, after which no significant improvement could be
observed. It was found that using messages in the interval
—1 < m < 1 as weights leads to numerical instability, since
basically all encodings are multiplied by a number with mag-
nitude smaller than 1, and thus decay over time. For this rea-
son, the allowed message range was shifted to 2 < m < 3.
However, this lead to binary messages switching between 2
and 3, again due to numerical instability, this time due to ex-
ponential growth.

The evolved behaviour learned this way can be described
as follows: the drones engage in rapid but nearly constant
turning and use their communication ability to tell their peers
when to move forward. They move forward when receiving
a “High” message of 3, and stop when receiving a “Low”
message of 2, with a period roughly synchronised to their turn
rate. This way the agents perform a translating circular sweep
of the domain with a slight beneficial noise due to imperfect
synchronisation. Inter-drone collision avoidance has not been
proven to work, as hoped for.
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Figure 10: Improvement of fitness score versus increasing
number of generations for the message-weighted DeepSet of
peer positions. The mean fitness of a generation is shown
by a blue dot, the total best-performing solution up until a
generation is shown as the red solid line.

To prevent mentioned numerical instability, two follow-up
experiment were conducted: one using the peer message as
fourth dimension of data next to the three relative position co-
ordinates, and one without communication at all. The weight-
ing of encodings is thus left out in both cases. Results are
shown in Figure 11 and Figure 12, respectively.

With communication, the algorithm quickly converges to
a local optimum of similar fitness, around 60%, interestingly
though with a smaller average score. Qualitatively, the appre-
hended behaviour is very similar to the one described for the
previous experiment.
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Figure 11: Improvement of fitness score versus increasing
number of generations for the unweighted DeepSet of peer
positions and peer message. The mean fitness of a generation
is shown by a blue dot, the total best-performing solution up
until a generation is shown as the red solid line.

Although in previous experiments communication-free so-
Iutions could be occasionally observed among the high-
performing individuals, completely restricting communica-
tion leads to a reduced maximum fitness overall, namely 50%
compared to 60% with communication. Intuitively, this is to
be expected.
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Figure 12: Improvement of fitness score versus increasing
number of generations for the unweighted DeepSet of peer
positions only. The mean fitness of a generation is shown
by a blue dot, the total best-performing solution up until a
generation is shown as the red solid line.

5.2 Genetic Programming Results

Next, the genetic programming results are studied to see
how well the programme can assemble BTs for volume ex-
ploration, this time including obstacles and wall collisions.
Figure 14 shows the fitness over generation count. The best
solution manages to explore 8% of the domain, which in prac-
tice means that most of the time the agents do not manage to

travel between crop rows. Compared to the the neural explo-
ration mode, the fitness is significantly less (8% versus 60%),
as collisions with walls and plants prevent drones from dis-
covering more parts of the domain. Even if a successful col-
lision avoidance strategy is learned, exploration in cluttered
environments within a given time is significantly harder than
without obstacles.

Due to the random manner of BT generation during genetic
programming, not all nodes can be reached during execution,
and some may be redundant. In both cases, the fitness is not
negatively affected by this, so these evolution artefacts typi-
cally persist. Due to BTs” human readability, these artefacts
can be removed manually after evolution, without adding hu-
man bias to the solution. The pruned, absolute best BT ob-
tained from GP is shown in Figure 15.

Despite its differing structure, the evolved BT exhibits
similar traits to the manually designed one in Figure 5. Most
important - and thus leftmost in the tree - is the “Path clear?”
condition which decides whether or not moving forward
is safe. If that is the case, both trees go on to explore the
domain. If the path is not clear, then both trees resort to
turning. While for the manual tree it was decided to turn
randomly left or right, the evolved tree only turns right.
There is no clear benefit in either solution. The biggest
difference between evolved and designed tree is that the
evolved tree utilises neither peer-to-peer communication,
nor localisation, which makes the ultra-wideband module
obsolete.

5.3 Parameter Fine-Tuning Results

To improve exploration performance further, CMAES was
applied to fine-tune the continuous parameters of the evolved
tree from Figure 15, while keeping its structure unchanged.
This has increased fitness from 8% to 36%, due to signifi-
cantly more travel between crop rows. The progress for that
is plotted in Figure 16 and the fine-tuned evolved solution is
shown in Figure 17. The tuning can be described as follows:
The random condition is essentially bypassed, as it always
returns “Failure” and is thus skipped by the selector. This
makes sense, as there is no benefit if a drone just waits when
encountering an obstacle. Moreover, the exploration velocity
was slightly increased with more vertical variation and less
horizontal variation. The latter likely leads to longer distances
travelled without encountering obstacles, while the former al-
lows the agents to occasionally fly over the rows, improving
exploration. Also, the avoidance turn rate has been increased
to save time. Interestingly, the direction was switched from
right to left turns. This is likely a coincidence without a clear
benefit.

In a second run, CMAES was also applied to fine-tune the
manually designed tree from Figure 5, improving its fitness
from 25% to 37%. The progress is shown in Figure 18 and



39

—— Drone 0
—— Drone 1
—— Drone 2
—— Drone 3
—— Drone 4

Y Coordinate

O B N W Bk WU oo =

o 2 4 6 g 10 12 14
X Coordinate

(a) Trajectory flown by BT obtained through genetic programming.
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(c) Trajectory flown by CMAES-tuned BT from genetic programming.
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(d) Trajectory flown by CMAES-tuned manually designed tree.

Figure 13: Comparison of the trajectories of the four obtained solutions. The top row (a) and (b) shows the result from
genetic programming compared with the manually designed solution. The bottom row (c) and (d) shows the trajectories of both
solutions after fine-tuning with CMAES. All spatial dimensions are given in metres.

the fine-tuned manual tree is visualised in Figure 19. Com-
pared to the manually selected parameters, the main differ-
ence is that drone avoidance is at the core of the behaviour
now. This can be seen by the very large distance of 9.55 m
that is now required between the drones. Interestingly, the

threshold for the related but distinct “Swarm spread?”” condi-
tion is below the 9.55 m, which renders this condition and the
following “Disperse” node unreachable. For the rare cases of
“Random Walk”, the forward velocity and vertical deviation
are increases, like for the BT obtained by GP. The “Turn” ac-
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Figure 14: Improvement of fitness score versus increasing
number of generations for genetic programming. The mean
fitness of a generation is shown by a blue dot, the total best-
performing solution up until a generation is shown as the red
solid line.

Action
Turn

TURN_RATE: -0.29

Condition
Random > X?
RND_THRESHOLD: 0.07

Action
Random Walk
EXP_VX: 0.57

EXP_VZ_SPREAD: 0.12

EXP_R_SPREAD: 0.39

Condition
Path clear?

Figure 15: Pruned evolved behaviour tree from genetic pro-
gramming. Read from top to bottom, left to right.

tions in response to a blocked path is also made more rapid,
just like for the GP tree, with a slight bias for left turns, as
caused by the increased random threshold. This is in opposi-
tion to the bias for right turns in the GP tree, which indicates
that this decision is arbitrary.

An overview of the simulated trajectories of all four solu-
tions, manually and evolved, with and without fine-tuning is
given in Figure 13.

5.4 Real World Test Results

The evolved, fine-tuned BT was implemented on board of
two Flappers and tested in the Cyberzoo test cage to investi-
gate how well a simulated solution performs in reality. Tra-
jectories can be seen in Figure 20. Unfortunately but as ex-
pected, the evolved solution did not transfer to the real world
as-is. While both Flappers managed to navigate through their
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Figure 16: Improvement of fitness score versus increasing
number of generations for CMAES fine-tuning of the evolved
BT structure. The mean fitness of a generation is shown by
a blue dot, the total best-performing solution up until a gen-
eration is shown as the red solid line. A maximum fitness of
36% is reached.

Condition
Random > X ?
RND_THRESHOLD: 1.00

Action
Random Walk
EXP_VX: 0.68

EXP_VZ _SPREAD: 0.29

EXP_R SPREAD: 0.10

Condition
Path clear?

Figure 17: Fine-tuned evolved behaviour tree from genetic
programming. Read from top to bottom, left to right.

corridors for a few seconds, when they reached an orthogo-
nal wall, they did not manage to successfully turn and both
crashed.

This is likely because of the low-quality on-board velocity
estimation that was not simulated. While the agents correctly
recognise the wall, command a halt and initiate a turn, their
real velocities probably did not entirely reach zero, so they
kept on drifting and crashed into the wall. This is more sig-
nificant when encountering orthogonal obstacles than simply
adjusting their course to keep away from side walls.

Another major result of the real-world test is the recording
of relative localisation data on a Flapper during autonomous
flight of both agents. Due to erroneous yaw data, the trajec-
tory as seen from the peer drone could only be reconstructed
for one drone. Looking at the relative trajectory, we see that
although the initial position was precisely known, the esti-
mate drifted away and needed some time to converge again.
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Figure 18: Improvement of fitness score versus increasing
number of generations for CMAES fine-tuning of the manu-
ally designed BT structure. The mean fitness of a generation
is shown by a blue dot, the total best-performing solution up
until a generation is shown as the red solid line. A maximum
fitness of 37% is reached.

This is because for this setup, the drones remained on the
ground for a few seconds with the relative EKF already run-
ning. Because both drones during this time had a slightly
non-zero pitch and roll angle, the on-board velocity estima-
tor predicted a non-zero relative velocity between the drones
[18], which drifted away the relative position estimate from
ground truth.

Once taken off, the on-board velocity estimate is correct
again and the relative positions get closer to reality. In the cur-
rent firmware version, this issue has been addressed by only
using the attitude-based velocity estimation if the drones are
actually flying. On ground, velocities are reset to zero. More-
over, the bottom ToF height estimates still need to be used
in the relative EKF, as it currently only relies on barometer
estimates. This will likely reduce localisation error further.

The drones thus demonstrate a coarse understanding of
each other’s position during autonomous flight - notably
while being separated by an opaque wall and without external
infrastructure - which is available to the reactive planning
strategy in real-time.

6 DISCUSSION

Genetic Programming allowed for the automatic creation
of a behaviour tree that enables a swarm of Flappers to ex-
plore around 8% of a simulated greenhouse environment,
nearly collision-free (Figure 14). Fine-tuning the continuous
parameters of the evolved tree increases the exploration to
around 36% (Figure 16). However, a manually designed tree
achieves to explore 25% of the domain, 37% with fine-tuning
(Figure 18).

This gives us two insights: firstly, the evolved tree struc-

ture has a similar performance potential as the human-made
tree (36% and 37% respectively), but the chosen GP approach
fails to also find a suitable parameter set (only 8%). Secondly,
human intuition is able to find acceptable parameter sets, as
seen by the 25% un-tuned fitness score, but is nevertheless
outperformed by the CMAES fine-tuning (37%). Thus, evo-
lution trumps the manual solution by around 50%.

Behaviour Trees have convinced their users with their scal-
ability, modularity and human-readability. Compared to Fi-
nite State Machines, this allows human-designed BTs to gov-
ern far more complex behaviours by handling the problem of
combinatorial overload more efficiently. However, in the con-
text of genetic programming, combinatorial overload is still a
problem, as only specific combinations of nodes result in de-
sirable behaviour. The more fine-grained a behaviour tree can
be, the harder it is for genetic programming to find these com-
binations. This is exacerbated by the reliance on so-called
explicit success conditions [23], as has been the case in this
research. Explicit success conditions are very useful when
paired with actions that can eventually fulfil these conditions.
One example is “Path clear?” and “Turn”. The “Turn” action
is likely to eventually make the “Path clear?” condition true.
This has been used in the manually designed tree in Figure 5.
What is obvious to a human designer, however takes many
generations of guided search in genetic programming.

So in order for behaviour trees to develop useful com-
plex behaviours, a lot of patience and compute is needed.
For smaller behaviour trees, a human design can be im-
plemented within minutes, so genetic programming is not
strictly needed. And if a simple behaviour is designed by
a human user, FSMs are a lot more intuitive, so they should
be the first choice, as seen in prior work [15, 21].

This is especially true, because in this research, most leaf
nodes were designed by a human user. In the design pro-
cess, the user typically imagines a potential use case for a
node. If the same user is then asked to assemble a manual BT
from these nodes, it is likely that this assembled tree is very
close to the global optimum of all possible combinations. As
genetic programming has a tendency of converging to local
optima, it is unlikely that GP can find a better combinations
with human-made leaf nodes than the human that made these
leaf nodes initially. This is also supported by the GP results
(36% GP versus 37%).

To shield solutions further from human bias, neural be-
haviour nodes were explored. These neural behaviour nodes
nevertheless were subject to a human-designed objective
function and human designed architecture. Although the neu-
ral behaviour nodes were not selected by the human designer
or the GP algorithm, neural nodes are believed to be an impor-
tant enabler for emergent behaviours in the swarm, as they of-
fer sufficient complexity for exhibiting useful properties that
a human designer would likely not be able to create intu-
itively. Thus, in future research, a combination of different
neural nodes with different architectures could be used to en-
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Action
Random Walk
EXP_VX: 0.50
EXP _VZ SPREAD: 0.71
EXP_R SPREAD: 0.26

Condition
Minimum peer distance > X ?
MINP_DISTANCE: 9.55

Condition
Path clear?

Avoid other drones

AVD_K_REP: 10.00

AVD_R_REP: 0.24
AVD_HEADING_PRECISION: 2.68

Action
Disperse
DISP_K_HEADING: 0.86
DISP_VX: 0.35
DISP_HEADING_PRECISION: 0.19

Action
Condition
Swarm spread out?
SPRD_THRESHOLD: 5.00

Action
Turn
TURN_RATE: 1.37

Condition
Random > X ?
RND_THRESHOLD: 0.70

TURN_RATE: -0.58

Figure 19: Fine-tuned manually designed behaviour tree. Read from top to bottom, left to right.
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Figure 20: Trajectories of two Flappers recorded by the Opti-
track motion capture system. Setup walls are shown in thick
black lines. Due to faulty data recordings, only one trajectory
estimate could be reconstructed in post-processing.

able more complex behaviour. The difficulty lies in letting
the behaviour tree define objectives for these neural nodes
without introducing human bias. This step could be compa-
rable in magnitude to the shift from human-designed filters
to convolutional neural networks in image classification tasks
[38]. Just as CNNs displaced hand-crafted feature pipelines,
evolved neural nodes may surpass manually engineered be-

havioural primitives.

Furthermore, it is believed that the volume exploration
task was not complex enough for significant emergent
behaviours to be realised, which is a potential reason why
communication and relative localisation did not appear in
the evolved tree, and only showed marginal benefits when
selected by human designer. In fact, the disperse function has
even been removed again by the fine-tuning algorithm. This
is in line with the findings of Jones et al. [13] and Kuckling
et al. [27].

7 CONCLUSION

In this work, a simulated greenhouse environment was cre-
ated to explore different artificial evolution methods with the
goal of finding a reactive planning strategy based on the sen-
sor availability described above. Genetic programming was
employed to find a suitable tree configuration to maximise
collective volume exploration. The evolved behaviour tree
was fine-tuned with covariance matrix adaption evolutionary
strategy (CMAES) and compared to a manually designed tree
that was also fine-tuned with CMAES. Fine-tuning signifi-
cantly improved performance for both the manually designed
and the evolved behaviour tree.

Moreover, hardware modifications for flapping-wing
drones were presented with the objective of scalable peer-to-
peer communication, relative localisation and obstacle detec-
tion. This was made possible, respectively, through the use of
an ultra-wideband communication module, as well as time-
of-flight (ToF) sensors on the front and bottom sides. The
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setup was tested in a real-world environment and has proven
to work reliably on the sensing side, but imperfect on the nav-
igation side. A reality gap persists with respect to perfor-
mance in simulation, and a deployment for real greenhouse
monitoring is still far from feasible.

Future work could investigate the optimised placement of
sensors, or the addition of further sensors. Moreover, the ad-
dition of a camera for a lightweight visual inertial odome-
try (VIO) suite would be interesting to improve the on-board
velocity estimation, which is currently unsatisfactory. Fur-
thermore, the shortcomings in estimation and ToF perception
should be modelled in the simulation environment, along with
a more accurate dynamic model of the Flapper. The evolu-
tion trials can be resumed with more computational resources
and a different selection of leaf nodes for the behaviour tree.
A larger step could be made by the automatic and bias-free
generation of neuroevolution nodes for more fine-grained and
complex behaviours. This way, the swarm is more likely to
realise complex collective behaviours.
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Conclusion

This thesis explored the artificial evolution of behaviour trees to find a coordination strategy for a swarm of
flapping-wing drones. The goal was to maximise the collectively visited volume in a simulated greenhouse.
Problems arose regarding the simulator: it was found that Aerial Gym does not allow simulating multiple
robots in the same physical environment. Consequently, an ad-hoc Python simulator was created based
on PyGame and numba.

The artificial evolution was carried out in three phases: firstly, neuroevolution of a weighted deepset was
investigated to find high-level swarm coordination behaviours such as exploration or exploitation of known
fruit locations in the greenhouse. However, the obtained neural networks did not prove useful with regards
to their computational cost. Thus, the neuroevolution behaviours were discarded.

In a second evolution run, genetic programming was applied to assemble a behaviour tree from simple
motion commands and more complex reactive planning methods such as artificial potential fields (APF).
The behaviour tree obtained this way managed to let the swarm explore 8% of the volume of the simulated
greenhouse.

In the last evolution run, covariance matrix adaptation evolutionary strategy (CMAES) was applied to
fine-tune the continuous numerical parameters of the behaviour tree obtained in the second run. This
fine-tuning lifted exploration performance from 8% to 36%, underscoring the relevance of correct numerical
tuning. CMAES also lifted the performance of a manually-designed behaviour tree from 25% to 37%, which
shows that genetic programming of behaviour trees does currently not outperform a human design.

Finally, the best purely evolutionarily designed behaviour tree was implemented on board of two Flapper
Nimble+ drones, modified to include ultra-wideband-based peer localisation and a forward time-of-flight
(ToF) sensor array for obstacle detection. While the implementation was relatively straight-forward, the
behaviour exhibited a significant reality gap, most notably in its collision avoidance performance. Both
drones did not manage to turn away from a traverse wall on time.

The reality gap is likely worsened by the low fidelity of the simulator: velocities are simulated to be perfectly
known at all times. Moreover, the ToF-based obstacle recognition is also modelled perfectly. The simulator
also lacks a comprehensive dynamic model of the Flapper Nimble+, which can bypass possible delays
and dynamic couplings.

Looking back at the research question “How can a swarm of flapping-wing MAVs be coordinated by means
of reactive planning methods?”, a range of answers were found, albeit not satisfactory. The research thus
needs to be continued, especially finding suitable behaviour modules. Hence, the current implementation
is not yet ready for deployment or even tests in a real greenhouse. The next chapter will propose future
work to increase robustness and effectiveness of the Flapper swarm.
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Future Work

A key problem in the current setup is that behaviour trees of the chosen complexity cause combinatorial
overload, i.e. a lot of computational power is necessary to find useful solutions. It is thus recommended to
accelerate the artificial evolution by moving to a more low-level simulation environment like the Swarmulator.

An improved simulator should also include the imperfect sensing and velocity estimation that is characteristic
for the Flapper. This way, potential drifting velocities can be actively countered by the evolutionary
algorithm. Moreover, a comprehensive dynamic model of the Flapper needs to be created that captures its
nonlinearities.

Less important but central to a real deployment is also the creation of a more detailed greenhouse
environment. The current environment only includes cuboidal obstacles protruding from the ground, while
real greenhouses also feature suspension wires from the ceiling. Moreover, as modern greenhouses tend
to be very dense, the dynamics of a Flapper touching the leaves would be interesting to incorporate.

Furthermore, it is recommended to supplement the purely model-based on-board velocity estimation with
measurements from optic flow. Although optic flow estimation is difficult on oscillatory platforms, early
evidence suggests a potential benefit.

This is especially true, as a mature version of the greenhouse Flapper needs to hold a frontal camera for
crop inspection anyway. However, the integration of such a camera requires weight reduction by optimising
the cable layout, as the current version is already at its maximum takeoff weight.

Regarding the reactive planning, the investigation of different neural architectures for the behaviour modules
is still interesting. A challenge lies in preventing human bias to influence the neuroevolution. With all these
ideas in mind, the development of a greenhouse Flapper looks promising and can probably be achieved in
a few years.
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