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ABSTRACT 

In 2020, as part of the European Green Deal, the European Commission initiated the 
Renovation Wave strategy with the goal of doubling the annual rate of energy renovation 
for buildings by 2030  (Delivering the European Green Deal - European Commission, n.d.). 
However, there is a delay in how quickly we renovate compared to the standards 
(Bouckaert et al., 2021). The reasons are mainly economical (Esser Anne et al., 2019) or 
based on the facts that a lot of homeowners choose to conduct retrofitting because of 
trigger points (Energy Saving Trust, 2015). 

Planning the house energy renovation in steps can be more economically feasible in some 
cases(Fritz et al., 2019). 

Up until now there has been some limited research on the optimization of the retrofitting 
planning as can be seen in the works of  (Maia et al., 2021) and (Maia et al., 2023). However, 
planning the cost optimal timing of the steps to find the correct sequence and time of 
actions based on the various variables of the environment (e.g. degradation rate of the 
materials, economic growth, budget allocation among others) can become a very complex 
problem since a lot of uncertainties about the environment are involved.   

Retrofitting planning correlates to typical predictive maintenance problem where some 
uncertainty about the environment can be involved and each action will have consequences 
on the actions that can be taken later , as explained by (Ogunfowora & Najjaran, 2023)  

There are various techniques that can solve sequential problems, including mixed integer 
linear programming(Littman, 1996) but the most upcoming ones come from the realm of 
reinforcement learning algorithms. Reinforcement learning is a machine learning approach 
that focuses on finding the optimal policy (optimal action for each scenario we are in now 
based on what we want to achieve in the future)(Sutton & Barto, 2018). For this reason, 
reinforcement learning will be used as an alternative to produce a roadmap of the staged 
retrofitting actions.  

Working with multiple components of a system has been addressed before by (Andriotis 
& Papakonstantinou, 2018)  and (Krachtopoulos, 2023) among others. However, the 
studies involving maintenance of buildings is rather limited. Ferreira et al.,(2023) provided 
a basis workflow  however they didn’t seem to take into account the building’s  energy 
demand as part of their objective function.   

Based on the limited research having been conducted in this domain the following thesis 
will focus on  the development solving of the building retrofitting planning optimization 
using Reinforcement Learning approaches.  

The following research will be developed into two sections. The first section will consist 
of framing the theories needed to create a basic understanding of some of the aspect 
involved on the formulation and solution of the problem.  The first chapter will consist of 
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the basic retrofitting theories as well as the basic notions of retrofitting in steps, as well as 
the optimization case studies . The theory and basic principles of Markov Decision 
Processes and Reinforcement Learning algorithms if Q-learning and Value Iteration will 
be explained at the second chapter to establish an understanding of the way that the 
planning optimization will be addressed. Based on those chapters conclusions will be 
drawn about the importance of conducting the following research.  Chapter three will 
involve building energy performance principles. The chapter will delve also into the aspects 
affecting the building degradation and focus on the aspect of insulation degradation. 
Conclusions about the building behavior and the overall methodology needed to be 
followed for simulating the building’s performance through time will be drawn from there.  

The second section will be focusing on the implementation of the theory into practice. An 
overview of the general methodology will be presented, and different steps and bottlenecks 
of the overall process will be discussed. In this part, the different parts of the code will be 
explained and incorporated in diagrams. 
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PART 1 : LITERATURE REVIEW 

1. BACKGROUND 

The Energy Performance of Buildings Directive (EPBD) is a set of rules created by the 
European Union to tackle the challenge of reducing energy usage in buildings and making 
them more environmentally friendly. Its main goal is to make sure that by the year 2050, 
all buildings in Europe will use much less energy(Energy Performance of Buildings Directive, n.d.) 
This is crucial because currently, buildings in Europe consume  40% of all the energy used 
in the EU. EPBD works alongside the Energy Efficiency Directive, which promotes 
various energy-saving measures(New Energy Efficiency Directive Published - European 
Commission, n.d.). 
According to their findings, 85% of buildings in the EU are constructed before 2000, and 
out of those, a concerning 75% have poor energy performance. ((New Energy Efficiency 
Directive Published - European Commission, n.d.) . Moreover, residential buildings, which make 
up around 75% of the total building stock, hold enormous potential for energy savings.  
However, improving energy efficiency in buildings isn't straightforward. It's often costly, 
and not everyone can afford it. That's why the EU is devising special plans and rules to 
help. For instance, the revised EPBD is aiming  (among other things) , to increase the rate 
of building renovations, especially for the worst-performing ones.  Fixing up buildings to 
use less energy could save a lot of money for people living in them (Energy Performance of 
Buildings Directive, n.d.). 

Despite these efforts, progress in deep energy efficiency renovations remains sluggish. For 
instance, the International Energy Agency (IEA) estimates that the annual rate of such 
renovations for existing buildings is less than 1% (Thijs Vandenbussche, 2021). This 
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underscores the importance of tools like building renovation passports1, which provide 
crucial information for homeowners, helping them understand the costs and benefits of 
renovating their buildings (Fabbri et al., 2016) 

One of the ways the directive works is through the development of roadmaps for 
retrofitting of buildings. The BRP is a tool that provides a long-term, step-by-step 
renovation roadmap for a specific building, resulting from an energy audit, outlining 
relevant measures and renovations that could improve the energy performance (Fritz et al., 
2019). In short, these roadmaps help owners decide on what to retrofit and when. (Sesana 
et al., 2020)Even more, some of these directives incorporate the possibility of planning the 
house energy renovation in steps in order to make it more economically feasible. 

In summary, the EPBD is a vital tool in the EU's efforts to make buildings more energy-
efficient and environmentally friendly. By tackling issues like poor energy performance and 
promoting renovations, it's paving the way for a greener future while also considering the 
financial well-being of building owners and tenants.   

With the rise of these tools to create personalized roadmaps, came also the rise of 
frameworks and optimization tools that try to optimize the timing and packages of 
renovation measures. The optimization methodologies tried to outline methodologies to 
deal with different aspects of roadmap creations. Some analysed economical aspects , 
others included CO2 emissions and Life cycle costs. Interesting aspect was the case of 
planning optimization of building components involving the uncertainty towards their 
physical degradation.  

Even though all these cases had interesting aspects to offer in the overall literature review 
, they underlined the lack of case studies focusing on planning optimizations. The following 
thesis will try to delve into literature review to outline important factors that should be 
considered and draw a methodology based on different aspects, with hope to create a basis 
for future works to take inspiration from and consider developing more wholistic tools.   

   

  

 

 

1 Available in both print and electronic formats, the Building Renovation Passport is a 
document that offers a thorough, step-by-step plan for a total renovation of a particular 
building over a period of 15 to 20 years. It provides owners with customized guidance on 
remodelling options and lays out the stages of the renovation for everyone involved.(Fabbri 
et al., 2016). 



10 | Page 

 

 

 

2. RETROFITTING PRINCIPLES 

2.1. Step by step retrofitting  

 
Figure 1 Retrofitting components step by step(Overall Retrofit Plan for Step-by-Step Retrofits to EnerPHit Standard(Passive House 

Institute, n.d.) 

Step-by-step retrofitting is a process of improving the energy efficiency of a building 
through a series of planned renovations over time. This approach is particularly useful for 
buildings that were constructed before energy efficiency standards were widely adopted. 
The step-by-step retrofitting process has direct implications on the improvement of 
building stocks’ energy efficiency, and consequently, the achievement of decarbonization 
targets set for 2050 (Maia et al., 2021). 

Staged renovations are the most common across Europe, with 85% of renovations in 
Germany being staged. This approach allows for less disruptive and more cost-efficient 
renovation measures by aligning them with given ‘trigger points’. (Fritz et al., 2019) Trigger 
points are circumstances that initiate home improvement projects unrelated to energy 
savings, providing an opportunity to modernize the energy performance of houses. There 
are two methods for retrofitting a house: the single-step method, where all measures are 
implemented simultaneously, and a phased approach, including room-by-room, measure-
by-measure, and step-by-step sub-categories. The step-by-step retrofitting strategy 
highlights the adaptability of building energy retrofitting to align with stakeholders' cost 
constraints.  

The step-by-step retrofitting process is a strategic approach to building renovation that 
considers the timing, cost, and interdependencies of various renovation measures. It aims 
to maximize energy savings and contribute to the decarbonisation of the building 
sector(Maia et al., 2021) 
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2.2. Retrofitting strategies  
In general, two types of measure exist for building retrofitting:  technical system measures, 
involving changes to building services, and envelope measures, such as adding insulation 
to envelope elements (Sewnath, 2024) 

Technical system measures, encompass domestic hot water, heating, cooling, lighting, and 
mechanical ventilation, are integral components, with a step-by-step approach emphasizing 
comprehensive packages at each stage  (Maia et al., 2021) 

Envelop measures on the other hand focus on adding or changing insulation layers to walls, 
roofs, or floors, and upgrading windows and doors (Konstantinou, 2014).  

Konstantinou, (2014) classified the envelop interventions into five categories: "wrap it," 
"add-in," "replace," "Add-on," and "cover-it."  

 
Figure 2 Refurbishment strategies (Konstantinou, 2014) 

 

(Maia et al., 2023) proposed the combination of measures for staged building renovations 
to achieve energy efficiency. Combining measures was considered crucial to avoid “lock-
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in effects,” where partial renovations could hinder future energy savings or necessitate 
premature replacements2.  

 In their paper , they emphasized the importance of considering the sequence and 
combination of renovation measures to maximize energy efficiency and minimize CO2 
emissions over time:  

● Roof and Upper Ceiling: Insulation of the roof or upper ceiling to reduce heat 
losses. 

● External Wall and Windows: Insulation of external walls along with window 
replacement to improve energy efficiency and air-tightness. 

● Heating System: Replacement of old heating systems with more energy-efficient 
options like heat pumps. 

● Floor and Cellar Ceiling: Insulation of floors and cellar ceilings to enhance thermal 
performance. 

 
Figure 3 Stages of renovation roadmaps as proposed in (Maia et al., 2023) 

 

 

 

 
2 According to their paper, lock-in effects occur when anticipated energy savings are not realized, and circumstances 
prevent swift adjustments, resulting in prolonged periods of suboptimal energy efficiency. This situation leads to 
missed opportunities for maximizing energy savings.For instance, if a heating system is promptly replaced, but 
subsequent improvements to the building envelope's quality are delayed, the new heating system may operate 
inefficiently due to over-dimensioning, resulting in suboptimal performance during partial operation loads. Even 
though the term seems to be used in other sources as well, further research should be made about the mechanics and 
importances of the effect in the overall building performance before and after the retrofitting action. 
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2.3. Economic aspects of step-by-step 
retrofitting 

 
Figure 4 Timeline of the two long-term renovation approaches for a 1990s building case with comparison between stepped approach 
and deep renovation approach  (Fritz et al., 2019) 

 

(Fritz et al., 2019) assessed the economic feasibility of staged retrofitting versus one-step 
deep renovation for six typical German residential buildings. They used the net present 
value3 method to compare the costs and benefits of both strategies over a period of 32 
years, considering different parameters such as interest rate, energy price, and carbon price. 
They found that for the exemplary residential buildings built in 1980s and 1990s, the staged 
deep renovation was cheaper than the one-step deep renovation by 4.8 % to 9.3 %. 
However, for the 1960s buildings, the one-step deep renovation was more economic 
feasible due to the high initial heat demand and the large saving potential of efficiency 
measures. The authors also discussed the impact of various parameters such as energy and 
carbon prices, interest rate, and timing of the measures on the economic viability of the 
two strategies. 

In their research (Maia et al., 2021) presented a model to deliver the optimum timing of 
step-by-step retrofitting activities. This model maximized the net present value of 
households’ energy-related cash flows and delivered the optimum timing when each step 
should be performed. When comparing both single-step and step-by-step approaches, the 
step-by-step presented 11–22% higher cumulated energy savings. The renovation period 
would last between 1 and 14 years and 2 to 11 years, depending on whether 
interdependency of measures was considered. Based on the results, it was concluded that 
in low-income house­holds living in less energy efficient single-family houses, the 

 

 
3 NPV tells that money now is worth more than the same amount of money in the future. 
In an example, the $5 now is worth more than $1 every week for 5 weeks(Net Present Value 
(NPV): What It Means and Steps to Calculate It, n.d.). 
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retrofitting steps would – under consideration of maximizing NPV – be performed with 
time delay, if no loans or appropriated countermeasures were available.  

2.4. Step by Step Retrofitting planning 
optimization  

Lopes et al., (2021)highlighted the increasing interest in staged renovation as a suitable 
strategy and the increase of various initiatives providing methodological guidebooks, 
informing stakeholders of  information of the building retrofitting measures, identifying 
steps in which they can be incorporated and planning the roadmaps in general terms, 
regarding the state of their buildings, what financial programs exist and how to financially 
plan their retrofitting actions and which to take first (Bastian et al., 2016) (Sesana et al., 
2020).  

2.4.1.1. STAGED RETROFITTING PLANNING 

 
Figure 5 Different roadmap variants in terms of the number of steps and possible combinations of measures for individual buildings 

(Maia et al., 2023) 

 

In their work Maia et al. delineated crucial factors of staged retrofitting planning. These 
factors include  

1)the number of stages, 

2)the allocation of measures within each stage, and  

3) the sequence in which stages are executed.  

They stated that crafting a roadmap comprising five or more steps will appear technically 
challenging, as it could elevate the risk of lock-in effects. However, such roadmaps might 
hold significance when considering the financial constraints of the building owner (Foxon, 
n.d.). 
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2.4.1.2. RETROFITTING PLANNING OPTIMIZATION  
Even though there are a few papers discussing planning maintenance of a building in time 
steps to optimize the retrofitting planning schedule (Vollmer et al., 2022) there are only a 
few introducing a complete methodology of the planning optimization of the deep staged 
retrofitting while considering the interdependency between retrofitting actions and the 
sequence which they should follow. 

In 2021 Maia et al., presented a framework for step-by-step retrofitting optimization that 
considered the budget restrictions, building material degradation process and the 
interdependency between retrofitting steps. Interdependency in this case meant the order 
that the steps should be conducted to avoid the lock in effect.   They developed a mixed 
integer linear programming workflow that maximized the net present value of a 
household’s energy cash flow. The model’s primary goal was to calculate the optimum 
timing of implementation for each package of renovation measures in an optimization 
period of 30 years4.  

The NPV is calculated as the sum of cash flows over the optimization period, adjusted for 
the discount rate and residual value. 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  �
𝐶𝐶𝐶𝐶𝑡𝑡

(1 + 𝑟𝑟)𝑡𝑡
+

𝐿𝐿𝑇𝑇
(1 + 𝑟𝑟)𝑡𝑡𝑡𝑡

𝑇𝑇

𝑡𝑡

 

 

Where:  

● 𝑁𝑁𝑁𝑁𝑁𝑁 = the energy related net present value in euros.  
● 𝐶𝐶𝐶𝐶𝑡𝑡 = cash flow of energy related balance  
● 𝐿𝐿𝑇𝑇= residual value of the retrofitting measures in year T 
● 𝑟𝑟 = interest rate (%)  
● 𝑡𝑡𝑡𝑡 = annual depreciation time  
● T = period in years  

 

 Cash flows were determined by subtracting investment costs, running energy costs, and 
operation and maintenance costs from the cumulated allocated energy-related assets. This 
provided the budget restrictions which the homeowners had to face.     

 

𝐶𝐶𝐶𝐶𝑡𝑡 = 𝐴𝐴𝑡𝑡 − 𝐼𝐼𝐼𝐼𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑡𝑡 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 

 

 
4 From 2020 to 2050. 
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In this expression: 

● 𝐶𝐶𝐶𝐶𝑡𝑡 represents the cash flow at time t. 
● 𝐴𝐴𝑡𝑡  = cumulated allocated energy related assets at time t. 
● 𝐼𝐼𝐼𝐼𝑡𝑡 = sum of investment cost in the year t. 
● 𝐸𝐸𝐸𝐸𝑡𝑡 = annual running energy costs in the time t (EUR/a). 
● 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡= annual running operation and maintenance costs in the time t (EUR/a)  

 

To define the right timing of the single-step approach, a simplified assumption was made: 
the right timing for a single-step is necessary for homeowners to accumulate money needed 
to perform the retrofitting. However, they stated that if government subsidies are available, 
this may change. Also, the single-step approach was preferable if the retrofitting was 
performed as soon as possible.  

 
Figure 6 Code architecture for the optimization model of the case study (Maia et al., 2021) 

 

According to the paper, the input data for the model consisted of technical and economic 
aspects: 

Technical aspects: 

● Specification of renovation measures and their combinations. Each combination 
was called a “step”. 

● Identification of each building case’s materials 
● Specifications of material’s lifetime according to existing databases  
● Calculations of material’s ageing process.  

Economical aspects: 

● Costs of conducting each “step”. 
● Energy price developments per energy carrier  
● The homeowner’s budget restrictions.  
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 The sensitivity analysis that they conducted revolved around how the model behaved 
according to the building case scenarios at hand.  

The optimization model took a lot of assumptions, for example the interest rate being at 
3% while the ageing rate of materials was considered through a Weibull distribution. The 
paper itself recognized that the constraints of the static input data that they used, 
underlining the need for an interface for the users to incorporate the correct data as the 
time processed. Even more the interdependency of renovation steps and homeowners’ 
budget restrictions impact the model’s results.  
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3. INTRODUCTION TO RL THEORY 

In the previous chapter it was explained that the staged retrofitting planning can be seen 
as a sequential decision making problem and thus be formulated and solved using 
Reinforcement Learning algorithms.   

In this section, the basic theories of reinforcement learning theory will be described. For 
better understanding, examples related to the context of the thesis will be used. 

A simple problem version of the actual thing we are trying to solve will be used to explain 
the theories.  

The problem:   

A house has a starting state of energy demand. The house’s energy demand is rising with 
rise of the U values. There is some uncertainty when the house will reach a certain threshold 
when the energy bills will be more costly on the long run than doing a retrofitting action 
that will return the house in a good energy performance state.  Objective, for the 
homeowner , is to see when to perform each retrofitting action to the components of the 
envelop in order to pay the least amount of costs at the  end of 60 years’ time5. 

 

2.5. Sequential decision making 
Sequential decision making is a crucial component of general decision-making theory. The 
fundamental concept is that the decisions made in the present not only impact the 
immediate future but also influence future decisions. Sequential decisions are significant as 
they lay the groundwork for subsequent actions(Littman, 1996). 

In sequential decision making there are some words to describe the general theory:  

An environment which is the world that we can perceive. For example, we can describe 
the environment as the house with all the dynamics that affect its performance. For 
example, its geometry, its components, the state that these components are in etc.   

 

 
5 We can assume that the house will be passed down to the next generation or that the 
owner has accepted the house at a young age , hence the years. The main objective is to 
determine the optimal timing of retrofitting a house during the building’s lifespan.  
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An agent (a system responsible of interacting with the world and making decisions) is 
interacting with this environment (anything that is not the agent). In this case, the algorithm 
that is called to observe the environment and take decisions will be the agent.  

A policy, is the agent’s behavior given a certain observation, meaning the way that it will 
decide to act given the state of the environment.   

An agent’s actions are usually met with a reward. The reward describes the consequence of 
an action. For example, if the agent decides to retrofit a component of a house he will have 
to pay some investment.  The reward is a very important component that defines the policy. 
In a usual loop of interaction, the agent observes the environment. Following a policy p 
that dictates what action to do based on the observation, he takes an action and receives a 
positive or negative reward consequently. The action brings him to a new state of the 
environment. 

   

 
 

2.6. Markov Decision Process 
The Markov Decision Process (MDP) is a mathematical framework that was developed to 
model and formalize sequential decision-making problems. It provides a way to represent 
what decisions an agent makes in the environment that he is in at that time.   

The Markov Decision Process can be described as a tuple consisting of the variables (S, A, 
P, R, g) which are the State, Action, Probability of Transition Probability, expected Reward 
and discount Factor(Sutton & Barto, 2018).  

2.6.1. States 
A state represents a configuration or scenario or representation of the environment at a 
point in time and includes the necessary information to determine the outcomes of actions 

Figure 7 The agent environment interaction  
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taken from that state. In Markov Decision Processes, the Markov property which is the 
first part of the equation states that the state that we are in depends only on the previous 
state, meaning it is completely independent of the past.  For example, if the state describes 
the environment of the house based on the energy demand, and that energy demand is 
suboptimal, probably because the agent hasn’t performed any actions that would better it 
in the previous step.(Sutton & Barto, 2018)  

 
     

2.6.2. Transitions 
If there is certainty about the state that will be reached next from the current state, the 
system is described as deterministic. However, states often account for the uncertainty in 
the system, or else called stochasticity, which is typically modelled through transition 
probabilities between states.  The Markov Process can be described as the probability of 
transitioning to the future state S’, given that we are in the state S. An example of how 
transitions work based on a very simplified problem can be found on the appendix.  

 

Probabilities can be stationary or non-stationary. Stationary probabilities describe a system 
that the same probabilities describe the transitions of one state to another throughout all 
the optimization time. Nonstationary probabilities on the other hand are changing.  

Some of the requirements of transition probability matrix are that: 

• All probabilities are non-negative and no greater than 1 so 0=<p<=1 
• The sum of each row should equal to 1 

 

Figure 9 State transition probability equation as given in (Markov 
Decision Process Explained | Built In, n.d.) 

Figure 8 Markov Property as given in (Markov Decision Process Explained | Built In, 
n.d.) 
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2.6.3. Rewards 
Markov Reward process incorporates the expected reward which can mean all the possible 
rewards that we can receive after we transition to the next state. Rewards define how good 
or bad reaching a certain state or taking a certain action is. In the example problem terms, 
if the house is in a good state, we will receive a better reward in the form of lower energy 
bills. If we don’t do something, it can be zero or negative (depending on the state that our 
house is in).  

 

2.6.4. Return 
During an episode in reinforcement learning, the agent visits a series of states.  The sum 
of the rewards that is going to receive from the series of actions that is going to take, is 
called a Return. The return is the objective function. For the retrofitting planning problem, 
the return can be described as the money that will be spent or saved over the optimization 
period.  

2.6.5. Discount Factor 
The discount factor γ helps define the importance of the present reward over the future 
rewards.  The discount g factor has a range of decimal numbers between 0 and 1. If the 
discount factor is closer to 1 it means that all the rewards will amount the same no matter 
how much into the future they are. If the discount factor is closer to 0, then the more the 
current reward gets more important compared to all the future rewards.  For example, 
because of the inflation of the economy, the homeowner’s money will have a smaller value 
as the time goes by. Based on that, the Return is described as below:  

Figure 10 Reward as given for Markov Reward 
Process in (Markov Decision Process Explained | 
Built In, n.d.) 

Figure 11 Return expression as given in (Markov Decision Process 
Explained | Built In, n.d.) 
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Figure 12 Discounted return expression as given in (Markov Decision Process Explained | Built In, n.d.) 

2.6.6. Policy  
As stated earlier, a policy is defining the action that will be taken in a given state.  

A stochastic policy is the probability that the agent will choose action a given that we are 
in state S over the probability of taking action b. A deterministic policy on the other hand 
always prescribes the same action for a given state. To give an example if the  agent is 
following a stochastic policy, it will choose to say, change the boiler  30% of the times and 
do nothing 70% of the time. In a deterministic policy, it will just choose 100% one action 
in a given state, say “Do nothing” when the state of the energy demand of the house is 
‘Good’. 

 
Figure 13 Policy expression as given in (Markov Decision Process Explained | Built In, n.d.) 

2.6.7. Bellman Optimality Equation 
A Bellman equation is a way to express the value of a decision-making process. It helps us 
understand how good it is to be in a certain situation (state) and take certain actions in that 
situation to maximize future rewards. Understanding the Bellman equations is crucial in 
reinforcement learning algorithms. By solving the Bellman equations, the best strategy 
(policy) can be found. The Bellman Optimality Equations are a specific form of the 
Bellman Equations used when we aim to find the best possible policy, or strategy, for 
maximizing rewards. It is a fundamental concept in reinforcement learning and dynamic 
programming.  

The Bellman Optimality Equation expresses the relationship between the value of a state 
and the values of its successor states. There are two important components of this 
equation: one for the state-value function (V∗) and one for the action-value function (Q∗). 
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2.6.7.1. STATE-VALUE FUNCTION (V∗) 
The optimal state-value function V∗(s) represents the maximum expected return (sum of 
discounted future rewards) that can be achieved from state s by following the best policy.  

The Bellman Optimality Equation for the state-value function is described as : 

𝑉𝑉(𝑠𝑠)
∗ =  𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎� 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)[𝑅𝑅(𝑠𝑠,𝑎𝑎, 𝑠𝑠′)] + 𝛾𝛾

𝑠𝑠′
𝑉𝑉(𝑠𝑠′)
∗  

where: 

• 𝑉𝑉(𝑠𝑠)
∗  is the optimal value of state s. 

• 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎  is the maximum value over all possible actions (a). 
• 𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) is the probability of transitioning to state s′ from state s after taking 

action a. 
• 𝑅𝑅(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) is the reward received after transitioning to state s′ from state s after 

taking action a. 
• 𝛾𝛾 is the discount factor, which represents the present value of future rewards. 
• 𝑉𝑉(𝑠𝑠′)

∗ is the optimal value of the next state s′. 

2.6.7.2. STATE-ACTION VALUE FUNCTION (Q∗) 
The optimal action-value function Q∗(s,a) represents the maximum expected return that 
can be achieved from state s, taking action a, and thereafter following the best policy. 

The Bellman Optimality Equation for the action-value function is: 

 

𝑄𝑄(𝑠𝑠,𝑎𝑎)
∗ =  � 𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎)[𝑅𝑅(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) +  𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′,𝑎𝑎′)

∗ ]
𝑠𝑠′

 

where: 

• 𝑄𝑄(𝑠𝑠,𝑎𝑎)
∗  is the optimal value of taking action a in state s. 

• ∑s′ denotes the sum over all possible next states s′. 
• P(s′∣s,a)is the probability of transitioning to state s′ from state s after taking action 

a. 
• R(s,a,s′)is the reward received after transitioning to state s′ from state s using action 

a. 
• γis the discount factor. 
• 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′,𝑎𝑎′)

∗  is the maximum value of the next state-action pair (s′,a′). 
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2.7. Taxonomy of Reinforcement Learning 
methods  

As explained above, a lot of reinforcement learning and dynamic programming methods 
rely on Bellman equations . Reinforcement learning methods can be classified into various 
categories. Primarily, problems in reinforcement learning are divided into Prediction 
Problems and Control Problems. 

Prediction Problems involve estimating the value function, which predicts future rewards 
given a state or a state-action pair. The objective is to forecast the cumulative rewards from 
the present state to the end of a given period. 

Control Problems focus on finding the optimal policy that maximizes the cumulative 
reward over time. In these problems, the policy is not predefined, and the goal is to discover 
it through interaction or simulation. The optimal policy is one that achieves the best 
balance between various factors, such as costs and benefits, over the long term.(Littman, 
1996) 

Additionally, these problems can be further categorized based on the approach used: 
Model-based or Model-free.(Dong et al., 2020) 

 
Figure 14 Taxonomy of the different RL methods(Dong et al., 2020) 

 

Model-based Methods involve creating a detailed simulation of the environment, which 
can then be used for planning and making predictions about future states and rewards, 
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guiding decision-making. Model-free Methods learn the value function or policy directly 
through interaction with the environment, without a predefined model. 

Reinforcement learning also distinguishes between Value-Based and Policy-Based 
methods. Value-Based methods focus on optimizing the action-value function from where, 
after optimization is done,  the optimal policy is derived. Policy-Based methods directly 
optimize the policy without relying on the value function. Combining these approaches 
leads to actor-critic algorithms, which use the value function to update the policy. 

Another important distinction in reinforcement learning is between On-Policy and Off-
Policy methods. On-Policy methods evaluate or improve the policy that is used to make 
decisions. The agent interacts with the environment based on the current policy, and this 
same policy is updated. Off-Policy methods on the other hand, evaluate and /or  improve 
a policy different from the one used to generate the data. These methods allow the agent 
to use experiences collected by different policies (Dong et al., 2020).  

2.8. Planning Algorithms 
There are several approaches to solve MDPs, including value iteration, policy iteration, and 
linear programming (LP). These algorithms differ in their methodologies but share the 
common goal of optimizing decision-making. 

Value iteration is an iterative algorithm that updates the value of each state by considering 
the expected rewards of future states, gradually converging to the optimal value function. 
Policy iteration, on the other hand, involves iteratively evaluating a policy and improving it 
until an optimal policy is found. Last, Linear programming is also a method that can be 
used MDP planning problems by using constraints to find the which actions will give the 
maximum value function.   

2.8.1. Linear Programming  
According to Sutton (Sutton & Barto, 2018) “ Linear programming methods can also be 
used to solve MDPs, and in some cases their worst-case convergence guarantees are better 
than those of DP methods. But linear programming methods become impractical at a 
much smaller number of states than do DP methods (by a factor of about 100). For the 
largest problems, only DP methods are feasible.” 

Linear programming provides a powerful alternative for solving MDPs. In this approach, 
the MDP problem is formulated as a set of linear constraints and an objective function. 
The core idea is to express the optimal policy and value functions in terms of linear 
equations. The objective is to maximize the total expected reward, subject to the constraints 
imposed by the MDP's dynamics. 

In an LP formulation, we define variables for the value of each state and use constraints to 
ensure these values are consistent with the MDP's transition probabilities and reward 
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structure. The linear program maximizes the sum of the state values, ensuring that the 
expected reward from following the optimal policy is captured. Solving this linear program 
yields the optimal value function, from which an optimal policy can be derived. 

To solve an MDP using Linear Programming, we can formulate it as an optimization 
problem. The LP approach focuses on finding the optimal value function 𝑉𝑉(𝑠𝑠) for each 
state 𝑠𝑠, which represents the maximum expected cumulative reward starting from state 𝑠𝑠. 

Since the objective is to maximize the sum of the values of all states(Abbeel, n.d.):  

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� 𝑉𝑉(𝑠𝑠)
𝑠𝑠∈𝑆𝑆

 

For each state 𝑠𝑠, the value function V(s) must satisfy the Bellaman equation, which ensures 
consistency with the transition dynamics and rewards of the MDP:  

𝑉𝑉(𝑠𝑠)  ≥  𝑅𝑅(𝑠𝑠,𝛼𝛼)  +  𝛾𝛾� 𝑃𝑃(𝑠𝑠′| 𝑠𝑠,𝛼𝛼)𝑉𝑉(𝑠𝑠′)         ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝛼𝛼 ∈ 𝛢𝛢
𝑠𝑠′∈𝑆𝑆

 

 

Based in that function, the objective function can be written as:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 𝑉𝑉(𝑠𝑠1) +  𝑉𝑉(𝑠𝑠2)+. . . + 𝑉𝑉(𝑠𝑠𝑠𝑠)  
Each V(s) can be solved as there are more knowns than unknowns. Given all the possible 
V(s) values we can use the constraints to check which actions will maximize the value of 
each state, thus determining the optimal policy. 

2.8.2. Dynamic Programming  
Dynamic Programming (DP) is a collection of algorithms based on the Bellman equations. 
Their aim is to compute the optimal policy (the optimal action that can be taken in each 
state) is a model-based  approach.  

Dynamic Programming methods provide a foundation for all the other RL methods. 
However, they are limited over the assumption of the perfect model of the environment 
and their great computational expense. (Sutton & Barto, 2018) 

The key idea of DP is the use of the value functions to organize and structure the search 
for good policies. Dynamic programming can be separated into two approaches: the Value 
iteration and the Policy Iteration.  

2.8.2.1. VALUE ITERATION 
Value Iteration uses the Bellman equations to iteratively update the value function until it 
converges to the optimal values. Once we have these optimal values, we can extract the 



27 | Page 

 

 

best policy by leveraging the Policy Extraction Equation derived from the Bellman 
Expectation Equation.(Sutton & Barto, 2018) 

Initialization 
Initialize the value function 𝑉𝑉(𝑠𝑠) for all states s ,using arbitrary or zero values. This is done 
in a form of a table that each state is described by a value function.  

Iterative Update 
For each iteration calculate its value function using the Bellman equation for each state.  

𝑉𝑉(𝑠𝑠) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎(𝑅𝑅(𝑠𝑠,𝑎𝑎) +  𝛾𝛾� 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)
𝑠𝑠′

𝑉𝑉(𝑠𝑠′)) 

Where :  

 

• 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 is the action that maximizes the value.  
• 𝑅𝑅(𝑠𝑠,𝑎𝑎) is the immediate reward received after taking action a in state s 
• 𝛾𝛾 is the discount factor 
• 𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) is the probability of transitioning to state s’ from state s after taking 

action a 

Then update the value function for each state using the maximum expected future reward 
achievable from that state. 

Convergence Check 

• Compute the change in value Δ (delta) for each state:  

Δ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠|𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠) − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠)| 

• If Δ is less than a small threshold e, the values have converged, and the iteration 
stops. 

Convergence in dynamic programming occurs when the value function no longer changes 
significantly between iterations or after a certain number of iterations. The iterative process 
continues, updating the value function table by repeatedly applying the Bellman update 
equation until the changes in values become sufficiently small. In simpler problems, 
convergence may be reached after a few iterations, as seen in the provided example where 
it happened after the second iteration. However, in more complex problems, convergence 
might require thousands of iterations. 

To determine convergence, a threshold is often employed. For instance, if the value of the 
medium state in the previous iteration was 5.05 and the value of the medium state after the 
last iteration is 5.055, with a threshold set at 0.01 (or 5e-2), the value has reached 
convergence as it is not changing significantly anymore. This threshold helps in 
determining when to stop iterating and consider the values stable. 
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Policy extraction 

𝜋𝜋∗(𝑠𝑠) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎(𝑅𝑅(𝑠𝑠,𝑎𝑎)  + 𝛾𝛾� 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝑉𝑉(𝑠𝑠′)
𝑠𝑠′

) 

(This equation tells to choose the action a that maximizes the expected sum of immediate 
and future rewards) 

Once the value function has converged, extract the optimal policy 𝜋𝜋∗(𝑠𝑠)  by selecting the 
action that maximizes the expression inside the max operator of the Bellman equation. The 
calculation of the value table provides insight into the desirability of being in each state and 
taking a certain action. 

To extract the optimal policy, the final Q-table obtained after convergence is leveraged. 
This table contains the expected cumulative rewards (Q-values) for each state-action pair. 
From the Q-table, we select the action with the highest Q-value for each state, as it 
represents the action that maximizes the expected cumulative rewards. The q table 
determines the optimal action to take based on the state we are in, thus is the policy.  

 

 
Figure 15 Pseudocode depicting the Value Iteration process (Sutton & Barto, 2018) 

 

In simple terms, Value iteration is a method used to find the best strategy for an agent in a 
given environment. It works by repeatedly estimating the expected future rewards for each 
state. This estimation considers both the immediate rewards the agent receives and the 
value of the next states it might transition to. 

The process continues iteratively, updating the value function until it reaches a stable 
solution. This stable solution represents the best possible expected return from each state, 
given the agent's actions and the dynamics of the environment. 

In essence, value iteration helps the agent make informed decisions by determining the 
most rewarding actions to take from each state. 
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2.8.2.2. POLICY ITERATION 
Policy iteration is another Dynamic Programming method that can be used to find the 
optimal policy for a Markov Decision Process (MDP). The process involves iteratively 
evaluating and improving a policy until it converges to the optimal policy.  

In policy iteration, the three components—policy evaluation, policy improvement, and 
iteration—work together to find the optimal policy. 

 

To find the optimal policy the methodology is as follows:  

Random policy Initialization 
 Start with an arbitrary policy π. This means that the value function for each state starts 
with value zero and a random policy (random action for each state) is introduced.  

 

Policy Evaluation 
The goal of Policy Evaluation is to determine the Value Function  (𝑉𝑉𝜋𝜋) for a given policy 
π.  That means that the goal in  this part is to compute the value function 𝑉𝑉𝜋𝜋 for the current 
policy π. This step involves solving the Bellman expectation equation iteratively until the 
value function converges. The equation is: 

 

𝑉𝑉  𝜋𝜋 = �𝜋𝜋(𝛼𝛼|𝑠𝑠)�𝑅𝑅(𝑠𝑠,𝛼𝛼) +  𝛾𝛾 � 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼𝛼)𝑉𝑉𝜋𝜋(𝑠𝑠′)
𝑠𝑠′∈ 𝑆𝑆

�
𝛼𝛼∈𝛢𝛢

 

In this part the goal is to compute the value of each state given the action that is provided 
by the policy.   

However, after the first iteration , the value function that will be calculated will not be 
accurate since zero state values were given in the initialization. So, in the next iteration, to 
compute the value function , the updated values for each state will be used. 

Figure 16 Random policy initialization graph taken from (Ravichandiran, 2018) 

Figure 17 State value after 1st iteration (Ravichandiran, 2018) 
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The iterations will be repeated until the values of each state change very little. 

Policy Improvement 
The value function was computed using an arbitrary policy, so in the beginning it will not 
be optimal . However, after the convergence of the value function a new policy can be 
obtained and be used to update the old policy.  

In order to extract the new policy , the State action value function will be computed using 
the value function computed in the previous step.  

𝑄𝑄(𝑠𝑠,𝛼𝛼)  =  �𝑃𝑃𝑠𝑠𝑠𝑠′𝛼𝛼 [𝑅𝑅𝑠𝑠𝑠𝑠′𝛼𝛼 +  𝛾𝛾𝑉𝑉(𝑠𝑠′)]
𝑠𝑠′

 

Based on the Q function, the action that gives the maximum value of each state will be 
chosen for the new policy. That means that all the actions that can be taken from that state 
will be checked using the Q function and the one that brings the maximum Q value will 
be chosen.  

This step is called ‘Policy Improvement’ , where the new policy that will be extracted is 
defined as: 

𝜋𝜋′(𝑠𝑠)  =  𝑎𝑎𝑎𝑎𝑎𝑎max
𝛼𝛼 ∈ 𝐴𝐴

�𝑅𝑅(𝑠𝑠,𝛼𝛼) +  𝛾𝛾 � 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼𝛼)𝑉𝑉𝜋𝜋(𝑠𝑠′)
𝑠𝑠′ ∈ 𝑆𝑆

� 

Convergence Check 
Every time a new policy is extracted, it is compared with the previous policy. If the 
policy is the same as the previous policy , then it can be concluded that the algorithm has 
converged and π is the optimal policy. Otherwise , the new policy is set to be the updated 
policy (π = π′) and the steps of policy evaluation and improvement are repeated.  
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Figure 18 Pseudocode for Policy Iteration process(Sutton & Barto, 2018) 
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2.9. Reinforcement Learning 

2.9.1. Q- learning  
Q-learning is a Reinforcement learning technique that uses the Q-values of state-action 
pairings to determine the best course of action. The goal is to learn the best actions to take 
in each state to maximize cumulative rewards over time. Q-learning is an off-policy 
algorithm because it updates the Q-values based on the maximum future reward 
𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) regardless of the action actually taken in the next state. This means the 
learning is driven by the optimal action, not necessarily the action that was executed. 

The steps of finding the optimal policy using Q-learning are:  

Initialization: 
Initialize a Q-table with starting values of zero for each item, Q(s,a), representing the 
estimated  future reward for action a in state s.  

𝑄𝑄(𝑠𝑠, 𝑎𝑎) =  0            ∀𝑠𝑠, 𝑎𝑎 
Where:  

• Q(s,a): Represents the Q-value for a given state s and action a. 
• ∀𝑠𝑠,𝑎𝑎 means "for all states s and actions a." In other words, this initialization applies 

to every possible combination of states and actions in the environment. 
 

Start a new episode: 
Initialize the starting state s. 

 

Repeat for each step of the episode until a terminal state is reached: 

Action Selection:  

For each state s, select an action a using an action selection policy called ε-greedy policy. 
This policy balances exploration (trying new actions) and exploitation (choosing actions 
that are known to be good). 

• With probability 𝜖𝜖, select a random action (exploration). 
• With probability 1 − 𝜖𝜖, select the action with the highest Q-value (exploitation) 

 

�
random action  with probability ϵ

argmaxaQ(s, a′) with probability 1 − ϵ 
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Take action and Observe: 

The action that is selected is passed to the environment to be implemented. The 
environment then and receives a reward R as a feedback and the observation of the next 
state S’ . 

Update Q-Value 

Update the estimate Q-value for the state-action pair using the Bellman equation. The 
update rule is: 

𝑄𝑄(𝑠𝑠,𝑎𝑎) ←  𝑄𝑄(𝑠𝑠, 𝑎𝑎) +  𝛼𝛼(𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)) 
 

This can be explained as  

𝑄𝑄𝑡𝑡+1(𝑠𝑠, 𝑎𝑎) = (1 − 𝑎𝑎 ) × 𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. +𝑎𝑎 ×  𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
Where: 

• 𝛼𝛼 is the learning rate which determines how much new information overrides old 
information  

• 𝛾𝛾 is the discount factor determining the importance of future rewards 
• 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) is the maximum expected future reward for the next state s’.  

 

Transition to Next State: 

Set the current state to the next state: s←s′ 

Check for Terminal State: 

If s′ is a terminal state, end the current episode. 

In terminal state, there are no future states to consider. Therefore the Q-Value update for 
the terminal state simplifies to  

 

𝑄𝑄(𝑠𝑠,𝑎𝑎) ←  𝑄𝑄(𝑠𝑠, 𝑎𝑎) +  𝛼𝛼(𝑟𝑟 + 𝑄𝑄(𝑠𝑠, 𝑎𝑎)) 
 

In this case the 𝛾𝛾 is not applied because there no future state to consider and the reward r 
is directly used to update the Q-value.  

 

Determine Convergence: 
Periodically run several episodes using the current policy derived from Q-values. 
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Calculate the average cumulative reward over these episodes. 

If the average cumulative reward does not change significantly between evaluations, it 
indicates that the policy has stabilized and the Q-values have converged. 

 

 
 

 

 

 

 

 

 

 

 

Figure 19 Pseudocode of Q-learning process (Sutton & Barto, 2018) 
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4. BUILDING PERFORMANCE 
DEGRADATION 

3.1. Energy system for the build environment  
 

 

 

The energy cycle starts with demand, which is the specific form of energy required—such 
as heat, cooling, or light. This demand must be met using renewable resources available on 
Earth. Various technical components are involved in the intermediate stages to convert, 
store, and distribute this energy, ensuring its availability at the right time and place. In the 
context of the built environment, the technical supply chain can be categorized into three 
levels: energy demand, final energy, and primary energy. Understanding these levels is 
essential for accurately assessing energy systems, as they have distinct implications and 
significance. 

Energy demand refers to the specific form of energy needed by the end user. In buildings, 
this includes the amount of heat required for heating or cooling to maintain desired 
temperature conditions over time. The energy demand at the building level is determined 
by the building’s energy system and is influenced by factors such as insulation and air 
tightness, as well as how the building is used. It does not depend on the specific technical 
systems or equipment used to meet this demand. 

Final Energy 

Figure 20  The Energy Supply Chain: energy demand, final energy and primary energy(Jansen et al., 2021) 
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Final energy is the energy in the form of an energy carrier—such as gas, electricity, or 
heat—that is used on the consumer's side of the meter. According to Eurostat, it is "the 
energy consumed by end users," which typically includes households and other consumers.  

Primary Energy 
Primary energy is the original form of energy that has not undergone any conversion or 
transformation. It includes both fossil and renewable energy sources.  

3.2. Theory of thermal energy balances 
An inventory of all building-related energy flows is required to ascertain how much energy 
a room or layout requires to maintain the necessary degree of health and comfort. Heating 
is required if the total of these energy flows is negative because the building is not receiving 
enough heat. When the overall energy flows are positive, cooling is required. An energy 
balancing is the process of compiling an inventory of all energy flows. This inventory relies 
on the thermodynamic law, which says the quantity of energy entering an isolated system 
at a steady temperature is equal to the quantity of energy exiting the system. 

 

𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜  𝑜𝑜𝑜𝑜  𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 = 0 
 

In the context of stationary heat balances, it can be stated that equilibrium in a system is 
achieved when the total heat flow amounts to zero. In stationary heat transfer scenarios, 
temperatures and heat fluxes remain constant over time. Within a stationary system, the 
combination of heat flows from both the interior and exterior must adhere to the 
conservation law by the result being zero. The equation of this looks like this : 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 

Where:  

● 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = the heat flows due transmission 
● 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = the heat flows due to infiltration 
● 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = the heat flows due to ventilation  
● 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 = the  heat flows due solar gains 
● 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = the heat flows due to internal heat gains  
● Qadded = the heat flows from any additional source placed to cool or heat the 

room  
o If Qadded < 0: Qadded = Qcooling 
o If Qadded = 0: no heating or cooling required. 
o If Qadded > 0: Qadded = Qheating 

Heat flows appear positive when they enter the building system and negative when they 
leave it(Van Unen, 2019).   
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Transmission  

 

In transmission, the heat will transfer through 
the building envelop from the hottest point to 
the coldest due to the differences between 
interior temperature and the exterior. The heat 
will transfer though the walls, glazing, roof, and 
floors in a combination of conduction, 
convection and radiation.  

 

 

 

 

 

The total heat transfer due to transmission can be defined from the equation:  

 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 +  𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  

 

Where :  

● 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  the transmission of heat happening through a construction, in Watts (W)6   
● 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  = the transmissions happening due to thermal bridges7.   

 

The heat transmission (losses or gains) through a construction can be found through the 
equation: 

 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 = 𝑈𝑈 ×  𝐴𝐴 ×  (𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑖𝑖) 

Where :  

 

 
6 W stands for watts, which is the unit of power. It quantifies the rate at which energy is 
transferred or converted. In the context of heat transfer, watts indicate how quickly heat 
flows through a material (such as walls, windows, or roofs) from one side to another. 
7 Thermal bridges, also known as thermal leakages, arise when insulation is not properly 
positioned or when there is a structural element such as a column, beam, or balcony that 
connects the interior with the exterior.  

Figure 21 illustrates the transmission losses occurring 
through walls, windows, floors, and roofs [31]. 
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𝑈𝑈 : The total heat transfer coefficient (W/m2K, W= Watts)8 

● 𝐴𝐴 : The surface area of the construction wall(m2)   
● 𝑇𝑇𝑒𝑒 : The outdoor temperature ( Kelvin) 
● 𝑇𝑇𝑖𝑖 : the indoor temperature ( Kelvin) 

 

The thermal transmittance is calculated through the equation: 

 

𝑈𝑈 =  
1

1
𝑎𝑎𝑖𝑖

+ 𝑅𝑅𝑐𝑐 + 1
𝑎𝑎0

 

Where :  

● 𝑎𝑎𝑖𝑖  : The coefficience of radiation9   
● ao : The coefficience of convection 
● 𝑅𝑅𝑐𝑐: the thermal insulance , meaning the ‘ ability of a material to resist heat flow’10 

 

The total thermal resistance of a component can be determined by the equation  

𝑅𝑅𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑅𝑅𝑐𝑐,1 + 𝑅𝑅𝑐𝑐,2 + 𝑅𝑅𝑐𝑐,3 =  
𝑑𝑑1
𝜆𝜆1

+
𝑑𝑑2
𝜆𝜆2

+
𝑑𝑑3
𝜆𝜆3

 

 

Where  

• Rc, 1,2,3 is the thermal resistance of the materials 1,2,3 that consist the component. 
To put it simply, In a wall, they would be the layers that consist the wall.  

● d : the thickness of each construction layer 
● λ : the thermal conductivity of the material (W/mK) 

 

 
8 The U-value of the entire window construction is typically employed for windows, and dirt, rather than ambient air, 
serves as the transmission medium for ground-level signals.  
9 The ai is often assumed (when the building's air speed is comparatively low) and for αo the value 

strongly depends on the wind speed, but a yearly average value of 25 W/m2K is often applied. 
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These equations are fundamental for estimating heat losses 
through the envelope of a house. By accurately determining the 
U-value and surface area of the building envelope, along with the 
temperature difference across the envelope, you can calculate the 
rate of heat loss and, subsequently, the energy demand required 
for heating the house.(Van Bueren Hein Van Bohemen et al., n.d.) 

 

 

 
Figure 22 Wall construction depicting 
the thermal transmittance rom [31]. 



42 | Page 

 

 

3.3. Building Performance degradation 

3.3.1. Factors influencing the performance of the 
building  

 
 

The thermal performance of the envelope might vary from one structure to another. 
Different factors might play a role in affecting the physical condition of the building and 
thus also the envelope’s performance. If the envelope’s performance is affected by these 
factors, it might affect the overall building. According to (Faqih et al., 2020), it is possible 
that a component of the building might influence the overall performance.   

Mechanical factors like mechanical and kinetic loads (e.g. gravity, earthquake, man-made 
vibrations etc.), can cause structural defects affecting the functionality and safety of the 

Figure 23 Factor affecting a building's physical condition (Faqih et al., 2020) 
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building.  Electromagnetic factors such as solar and ultraviolet radiation as well as extreme 
temperature factors can influence the heating and degradation rate of the building causing 
loss of function. Even more, chemical factors like waters, acids from bird droppings, salts 
and others can also affect the degradation of the building materials. Last, animals like 
rodents, worms, birds, encountered in all environments, can affect the building materials 
and make them degrade by contaminating them.  

These factors can create defects, meaning deviations of the intended performance of 
building components. Even more, one defect can cause other defects to appear: moisture 
for example, can have a cascading effect causing discoloration, mold, corrosion and other 
problems in different building elements.    

Environmental factors, such as poor indoor air quality, thermal condition influenced by 
climate change and, inadequate lighting and poor acoustics can also contribute to building 
performance as people will try to adjust the systems for comfort. (Faqih et al., 2020) 

3.3.2. Simulations techniques and equations 
There are different ways to simulate building performance degradation. (Eleftheriadis & 
Hamdy, 2018) considered the degradation of envelope elements and heat supply systems.   
In order to determine the degradation percentage of the heating systems and the insulation, 
they used equations that relied one the age factors.  

The Energy Plus software was utilized to perform the annual heating demand of the 
building. The simulation perceived each floor as a thermal zone and accounted for 
mechanical ventilation(set as 0.33) and natural infiltration rates(0.17 air changes per hour). 
The results were then exported for post processing analysis in MATLAB to determine the 
amount of energy consumption deriving from heating, hot water , ventilation system and 
primary energy consumption. The equations then were used to  simulate the performance 
change of the HVAC and insulation components in order to calculate the change of the 
performance in the span of 20 years.  The authors simulated 4 separate scenarios with 
variations on the central heating system and maintenance quality for the analysis period. 
Based on the results they concluded that for their case study, the combined degradation of 

Figure 24 Energy consumption increase as result of heating system (boiler and heat pump ) and XPS insulation 
degradation(Eleftheriadis & Hamdy, 2018) 
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HVAC and component degradation can lead to up 47% additional primary energy 
consumption.  

Another case study of interest was conducted by Taki & Zakharanka (Taki & Zakharanka, 
2023)  where they simulated the building degradation by developing dynamic models of 
two different case study buildings and by conducting initial thermal dynamic simulations 
to establish baseline energy efficiency indicators, primarily focusing on heating energy 
requirements. Based on the analysis of existing data and additional research, probable 
scenarios for the performance deterioration of various building components were created. 
These scenarios included degradation in insulated glass units, increased thermal 
conductivity of insulation, reduced airtightness, contamination of heat recovery system 
filters, and performance drops in photovoltaics. 

 

 

Dynamic thermal simulations were then performed using DesignBuilder software based 
on the EnergyPlus engine. These simulations applied the degrading characteristics to the 
dynamic models to observe changes in energy performance, specifically heating energy 
consumption. A total of 268 simulations were conducted for individual component 
degradation, and 32 for combined degradation effects, with scenarios reflecting both 

Figure 25 In order to model building energy performance, 268 dynamic simulations were first run, taking into account the specific 
deterioration of each component. 32 simulations were then run to assess the cumulative deterioration effects of several components. 
The best-case (lowest degradation) and worst-case (highest degradation) scenarios, which are shown in Tables 4 and 5, were taken 
into consideration for simultaneous deterioration.(Taki & Zakharanka, 2023) 
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minimal and maximum degradation levels. The results were compared against initial 
performance indicators to identify patterns and assess the impact of degradation. The study 
concluded that more airtight and insulated buildings are more sensitive to component 
degradation, with faster increases in heating energy consumption observed in these 
buildings compared to less airtight ones. This methodology provides insights for improving 
building design and maintenance by accounting for degradation over time. 

 

3.3.3. Insulation Materials 
 

 
Figure 26 Types of Insulation materials (Pavel & Blagoeva, n.d.) 

Thermal insulation comprises materials or combinations thereof that slow down the rate 
of heat transfer through conduction, convection, and radiation when appropriately applied. 
Employing thermal insulation aids in diminishing reliance on HVAC systems. According 
to (Pavel & Blagoeva, n.d.), these insulation materials are utilized across various building 
components such as walls, roofs, ceilings, windows, and floors. The majority of available 
thermal insulation materials fall into four general categories:  

Inorganic Materials: 

Mineral wool encompasses various inorganic insulation materials such as rock wool, glass 
wool, and slag wool. These materials exhibit low thermal conductivity, are non-flammable, 
and highly resistant to moisture damage. However, they may pose health risks such as skin 
and lung irritation.(Hung Anh & Pásztory, 2021). 
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Organic Materials: 

Conventional materials like polyurethane (PUR), polyisocyanurate (PIR), extruded 
polystyrene (XPS), and expanded polystyrene (EPS) are widely preferred in many buildings 
and thermal energy storage applications due to their combination of low thermal 
conductivity and affordability.   

Natural-Based Organic Materials: 

Organic insulation materials are derived from natural resources and are increasingly utilized 
in buildings due to their appealing attributes, including renewability, recyclability, and 
environmental friendliness. (Hung Anh & Pásztory, 2021). 

Advanced Materials: 

Advanced insulation materials include vacuum insulation panels (VIPs), gas-filled panels 
(GFPs), aerogels, and phase change materials (PCM). VIPs, exhibit exceptionally low 
thermal conductivity values, have a long lifespan exceeding 50 years (Hung Anh & 
Pásztory, 2021). 

 

Inorganic materials like glass wool and rock wool, which constitute 60% of the market, 
while organic materials make up 27%. Conventional materials like polyurethane (PUR), 
polyisocyanurate (PIR), extruded polystyrene (XPS), and expanded polystyrene (EPS) are 
favored in many constructions due to their low thermal conductivity. 

 
 

Glass and stone wool collectively constitute 58% of the European thermal insulation 
market. Expanded polystyrene (EPS) foam stands out as the preferred material for external 
wall insulation due to its affordability and superior performance characteristics. 
Polyurethanes (PU and PIR) offer distinct advantages, particularly in scenarios demanding 
higher thermal insulation requirements, as they can achieve the same insulation efficiency 
with thinner layers compared to other insulation materials(Pavel & Blagoeva, n.d.). 

 

Figure 27 European market demand of thermal insulation 
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3.3.4. Influential Factors on Insulation Material 
Conductivity: 

Most of commonly used building insulation materials considerable influenced by the 
environmental conditions due to their porous structure and the proportional of air or other 
gas filling up the cells. The heat conduction of an insulator is strongly influenced by several 
factors: temperature, moisture content, density, aging time, along with secondary factors 
such as raw material, cell gases, nature and microstructural of solid component, air surface 
velocity, pressing, and sample thickness(Hung Anh & Pásztory, 2021). 

Temperature: 

 

Due to the fact that molecule 
movements is the basis of heat 
conduction, the temperature has a 
huge impact on thermal conductivity 
of insulation materials 

Fibrous insulation materials such as 
fiberglass, hemp fibers, flax fibers, 
cellulose fibers, sheep wool are more 

affected by temperature than other insulation materials. 

Moisture Content: 

 

Excessive moisture contributes to deteriorating 
habitation quality, reduced thermal resistance, 
additional mechanical stresses, salt transport, and 
material decay. Moisture can compromise the 
effective thermal properties of building envelopes, 
insulated walls, and roofs. Since water conducts heat 
about 20 times more effectively than stationary air, 
water absorption invariably leads to increased 
thermal conductivity. The ability of moisture to 
penetrate into the internal open pore system at 
increased relative humidity significantly affects the 
temperature distribution as well as the thermal 

Figure 28 Thermal conductivity change of different insulations based on 
temperature changes (Hung Anh & Pásztory, 2021) 

Figure 29 Thermal conductivity change in aerogel 
insulation based on the moisture amount (Hung Anh 
& Pásztory, 2021) 
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conductivity. The rate of change in thermal conductivity with moisture content is higher at 
higher initial moisture content. The lower the density of open-cell insulation materials, the 
higher the effect of moisture content on the thermal conductivity.  

Density: 

Density can impact the conductivity of certain 
materials. Increasing foam material density reduces air 
content and the size of air inclusions, leading to a 
decrease in air convection and conduction, resulting in 
decreased thermal conductivity. Generally, higher 
density yields lower thermal conductivity, with 
specimens of lower densities experiencing faster 
increases in thermal conductivity. 

 

 

 

Thickness: 

While it's commonly believed that thicker insulation reduces heat transfer, it's important to 
note that thermal conductivity isn't thickness-dependent; rather, thickness affects thermal 
resistance. 

Aging: 

According to (Choi et al., 2018) and 
(British Standards Institution. & 
British Standards Institution., 1999) , 
aging alters material performance over 
time, with different mechanisms 
influencing the aging process of 
various insulations.  

Figure 30 Insulation conductivity changes 
because of density changes [36]. 

Figure 31 Normalized thermal resistance of two thicknesses of a rigid closed-
cell plastic foam after application of the scaling factor [37] 
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Foam materials typically undergo 
three aging stages. Closed-cell 
materials exhibit lower thermal 
conductivity at higher densities, with 
EPS, XPS, and PUR insulation 
materials showing a decreasing trend 
in thermal conductivity as density 
increases from 20 to 40 kg/m³. This 
is because higher density implies 
smaller pores and less air volume, 
causing heat flow primarily through 
solid particle conduction, rendering 
convection and radiation effects 
insignificant. The variation in thermal 
conductivity values of EPS and PUR 

is attributed to differences in microstructure, porosity, and pore dimensions.  

The aging process of foam materials can be approximated by separate linear fits to primary 
and secondary stages, with a transition zone playing a crucial role in analyzing thermal 
performance. The primary stage involves rapid diffusion of atmospheric gases into the 
foam, leading to a rapid decrease in thermal resistance. In the secondary stage, the blowing 
agent diffuses out of the foam at a slower rate, further decreasing thermal resistance, albeit 
at a slower pace than the primary stage. The final stage represents equilibrium, where the 
gas composition stabilizes, maintaining relatively constant thermal resistance. The duration 
of each stage depends on factors such as foam type, blowing agent, cell size, density, and 
environmental conditions.(British Standards Institution. & British Standards Institution., 
1999). 

Available data 

The most typical way of testing the performance material over time is through slicing.  The 
reason is to accelerate the aging process for testing purposes. By slicing the foam into thin 
pieces, the diffusion path for the gas is shortened, which speeds up this aging process 
significantly. This allows researchers to simulate long-term performance in a much shorter 
timeframe. Even though these are the standardized tests there is a lack of field  

Another way of checking the material’s performance is by measuring their performances 
over time. A study in Korea examined the long-term aging variation of building insulation 
materials, specifically expanded polystyrene and rigid polyurethane providing valuable 
insights into their durability and performance. It was found that the thermal resistance of 
these materials decreases over time, falling below Korean Standards (KS) performance 
standards within 50-150 days for polystyrene and about 1000 days for polyurethane. 
Expanded polystyrene showed a decrease in thermal resistance by 25.7% to 42.7%, and 
rigid polyurethane by 22.5% to 27.4%, over a period of approximately 5000 days.(Choi et 
al., 2018) 

Figure 32 Relative thermal resistance of three thicknesses of cellular plastic 
foam after application of a scaling factor [37] 
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Figure 33 Samples of insulation degradation taken by the paper(Bae et al., 2022) 
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PART 2 

5. IMPLEMENTATION METHODOLOGY 

Throughout the literature review, the theoretical background needed to start with the 
development of this thesis was presented.  

In the first part, the basic theory of renovation techniques was investigated, and the 
conclusions showed that the exterior envelope insulation, together with the windows, 
constitute an important factor to the overall energy performance of the building. The 
change of the building’s performance was also investigated through research of the factors 
that affect the conductivity performance of the plastic foam insulations. It was determined 
that even though there are various reasons why the conductivity can change, one important 
aspect was the aging of the material. By assuming that the insulation material properties 
are the only thing that will change through time, it is possible to speculate how the 
building’s performance will change as a relation with time. However, the other aspects 
should also be considered and implemented in later research.  

Additionally, the theoretical foundations of Markov Decision Process and Planning 
algorithms were examined.  

Building upon these theoretical frameworks, the subsequent sections will integrate these 
theories to develop a workflow aimed at determining the optimal timing for retrofitting a 
building. 

Value iteration serves as a foundational concept in reinforcement learning without being 
categorized as a RL method but as a predecessor. It was chosen as the algorithm to be used 
in the optimization process as it was easy to use, required less hyperparameters and since 
it was a model-based approach provided a more direct understanding of the dynamics of 
the environment and the expected results.   

Given the investigative nature of this project, various techniques were employed to conduct 
energy calculations, alongside the iterative development and testing of the Markov 
Decision Process (MDP) environment. While the outcomes of the initial stages may not 
directly impact the final results, they offer valuable insights into the methodological 
challenges encountered, which can inform future research endeavours. 

To ensure coherence, the project's development was structured into two distinct stages. 
The first stage encapsulates the genesis of the project, beginning with the conceptualization 
of the initial idea, which was presented at P3. Subsequently, the second stage marked the 
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development and refinement of this idea, leading to the creation of the final version which 
was utilized for testing the environment dynamics. 

In the following chapters the final version of the methodology will be presented. However, 
in case that it is needed, the methodology of stage one placed in the appendix, providing 
further information of the process that was followed for the development of the project.   

 

4.1. General Workflow  
To start solving the problem, the most important aspect was to define it in a way easy for 
everyone to understand and follow. Even more, from there, the basic workflow needed to 
solve the problem can be developed. The original question of the thesis was “how to 
optimize the planning of a retrofitting to be cost optimal in the span of the 
building’s lifetime that was assumed to be 60 years”.  
Based on the literature review, it was revealed that there are a lot of different factors that 
have to be considered like the house typology, the retrofitting measure, the energy bills and 
the method of solving the problem. Based on those facts the problem was formulated in a 
simple way that could be addressed.  

Toy problem formulation:  

 

Figure 35 Toy problem formulation (Own work) 

Figure 34 Interaction of the agent with the environment according to the problem formulation (own work) 
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We have a residential building case study. In this building, 3 main components are 
degrading over time with uncertain rates. With every degradation percentage, the energy 
consumption of the building will increase. If the energy performance decreases, the amount 
spent on electrical bill increases.  The owner of the house is trying to spend as little money 
as possible. By changing the envelop components to new ones, the performance of the 
house can better. The goal is to choose when to renew and what in order to spend the least 
amount of money and have the greatest house quality possible.   

Objective function 
In this case, the objective function must describe the minimization of costs that can 
accumulate over 60 years. This is based on the investment costs of actions (including labour 
and other types of costs) and the running energy costs following each retrofitting action. 
The objective function can be represented as: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  �(𝐼𝐼𝐼𝐼𝑡𝑡 + 𝐸𝐸𝐸𝐸𝑡𝑡)
60

𝑡𝑡=0

 

where 𝐼𝐼𝐼𝐼𝑡𝑡 are the investment costs at time t (including labour and other types of costs) and 
𝐸𝐸𝐸𝐸𝑡𝑡are the running energy costs after each retrofitting action. 

Based on this definition of the problem, the MDP that defined the problem was created as 
a tuple of (S,A,P,R,γ) where.  

• States S are all the possible states of deterioration the different components of the 
building can reach. The state space will be described as the tuple of time, 
components’ degradation states, age of each component.  

• Actions A are described as the actions of changing the insulation of each 
component or the combination of actions, in order to bring the building in a better 
state of degradation.  

• Probabilities P were defined as all the possible states of degradation that the 
building would reach given that it was in a certain state and a certain action was 
taken.  

• Rewards R was defined as the costs that could be expected given the state of 
degradation and the action. Basically, that meant that the state of degradation would 
result to a certain energy demand which would result in energy bills, and the action 
would be connected to the investment costs of taking an action.  

• The discount factor γ was decided to describe the growth rate of the economy and 
the depreciation of the costs that could be expected in the future.    
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Based on observations of different stages of trial and error the final methodology was 
created. The final script workflow, as presented in the figure above was divided into two 
major parts: The data generation needed to simulate the environment and the optimization.  
Based on the EPS degradation data that was found during the literature review, the 
transition probabilities were generated in a separate script and imported into the 
environment to calculate the state transition matrices. The house typology was also created 
using Grasshopper and Ladybug, exported to IDF format. Eppy library was used in Python 
in order to run the different scenarios of degradation. The results were exported in csv 
format and imported in the environment to calculate the rewards of each state. In order to 
gain time, the environment pre-generated the states, rewards, transitions into NumPy 
arrays that were then used to run the value iteration and the episodes scripts. A final script 
was created to plot the policies and the results of the different episodes in order to be 
analysed.   

4.2. Case study 
In order to generate the energy demand, a building case study was needed. The building 
was a detached residence built in 1971 in Riel. 

According (Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, 2022) detached 
houses built from 1965 to 1974 represent 1.7% of the Dutch housing stock with 128,500 
houses. Homes from this period are all owner-occupied. The homes are often traditionally 
built with sand-lime brick bearing walls and concrete floors. 

Since 1965 there have been requirements for the energy quality of homes. Yet by today's 
new construction standards, the houses were not very well insulated. Natural ventilation 
was used to ventilate these houses. Central heating was used more and more extensively in 
this type of home over the years.  

Figure 36 Final workflow (own work) 
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The original envelope values for the exterior walls were taken from(Ministerie van 
Binnenlandse Zaken en Koninkrijksrelaties, 2022). Even though it was stated that some 
kind of insulation might have been used, it was assumed that the construction details and 
their thermal resistance didn’t contain any insulation.   

 

 

 

Figure 40 Aspects of the house typology as taken from(Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, 2022) 

 

Table 8 : Case study’s 2 construction details 

Aspect Details 
Area (m2) R values 

(m2K/W) 

Wall  Not stated 267.52 0.43*   

Figure 39 Ground floor layout  [40] 
Figure 38 First floor layout [40] 

Figure 37 Second floor layout [40] 
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Roof  Pitched roof 89.41 0.86*  

Ground Floor 
 

Crawl space ground floor without insulation 75.40 0.17* 

Windows U-value Single glazing 37.6 2.90 

*non insulated surface values 

 

Table 9 :EPS Insulation Properties 

Conductivity (W/mK) Sp. Heat Capacity (J/kgK) Density (kg/m3) 

0.035  1400  25  

 

4.3. Energy simulations 
The energy simulation was done using Ladybug plug-ins for Grasshopper. The process 
followed the workflow as provided by Philipp Galvan  (Honeybee “ENERGY” Part 1 | 
Setting the Scene | Ladybug Tools 1.4.0 - YouTube, n.d.) 

The building information was exported as an idf file which  was then imported in python. 
The Eppy library in conjunction with the EnergyPlus software  was used in order to run 
iteratively thought all the  possible 27 scenarios of  different degradation states (0, 20% and 
40%) of the roof, facade and ground floor insulation. The results were saved in a csv 
dataframe and imported in the environment code for the rewards to be calculated.  With 
this technique, the amount of time required to run through all the scenarios amounted to 
total execution time of 201.91 seconds and to 118.69 seconds to read and store the results 
into the csv file.  
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Figure 41 Model of the house developed in Grasshopper (own work) 

According to the simulations, the household’s difference of energy consumption between 
the best-case scenario and the worst case scenario amounted to increase of about 5.59% in 
energy consumption The changes reflected on the financial costs which amounted to 816 
euros difference. The small changes in the energy performance can be explained over the 
fact that the windows and infiltration rate didn’t change. Those parameters amounted also 
on the degradation simulation scenarios observed in literature. The different degradation 
scenarios can be found in table 10 of the appendix. 
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4.4. State space 

 
Figure 42 Graph depicting the workflow of creating the state space 

The newly constructed state space was delineated as: 

[time] x [roof degradation percentage]x [facade degradation percentage] x [ground floor 
degradation percentage] x [roof age] x [facade age] x [ground floor age] 

In a more mathematical way this can be represented as :  

𝑆𝑆 =  ��𝑡𝑡, 𝑟𝑟,𝑓𝑓,𝑔𝑔, 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎�|𝑡𝑡 ∈ [0,5,10, … ,60], 𝑟𝑟,𝑓𝑓,𝑔𝑔

∈ �0%, 20%, 50% }, 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎 ∈ [0, 𝑡𝑡] ∩ {0,5,10, … ,60}� 

In this equation: 

•  𝑡𝑡 represents the elapsed years, constrained between 0 and 60, in 5 years time steps. 
•  𝑟𝑟, 𝑓𝑓,𝑔𝑔 denote the degradation levels of the roof, facade, and ground floor, 

respectively, each ranging from 0%, 20%, to 40%. 
• 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎 indicate the ages of the insulation material for the roof, facade, and 

ground floor, respectively. These ages range from 0 to tt, ensuring they are always 
equal to or smaller than the elapsed time, and they increase in steps of 5 years up to 
a maximum of 60 years. 
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The size of the state space fluctuated according with the defined time and time step 
parameters11.  

Time needed to be incorporated in order to avoid an infinite horizon problem12 and in 
order to be able to pinpoint the time that each action should be taken. Age needed to be 
incorporated because the transition probabilities were non-stationary (e.g. they changed 
with age). This meant that at the age 1 the Roof component for example had 15% 
probability of staying in a degradation state of 0%, however, at the age 10, this probability 
might have turned to be 60%.  In order to be able to connect the probabilities with the 
state space, it was important that the ages of each material would need to be incorporated 
in the state space. An example of the state space can be seen in table 11 of the appendix.  

A logical argument was used to diminish the state spaces: Since the original states would 
only be described as states where the building is new or just retrofitted, the insulation 
material ages could not be greater than the elapsed time. Equally for all the future states, 
the ages of each material could only be equal or smaller than the time. Based on this 
argument, all the states that had ages bigger than the year-time were deleted from the state 
space. This diminished the state space to 223587 states13.  

 

 
11 Since it was not important to check the material each year, different time steps were tested to discretize the time 
and age states and make the state space smaller. Time steps of 10 years provided a quicker run of the code but allowed 
for a large time to be passed between actions. Time steps of 5 years allowed detailed interpretation of the actions 
needed to be taken in the span of 60 years. The maximum state space considered encompassed 559,872 states, 
determined by a 60-year lifespan and a 5-year time step. However, with the number of actions being also raised, this 
created problems for the value iteration to run. Traversing through more than 500,000 states times 8 actions led to 
4,478,976 iterations, demanding substantial computational resources and approximately 111 hours(taken that it would 
need 7 iterations to converge). 
12 Essentially, the infinite horizon problem arises when the model fails to account for time, making it challenging to 
adapt to changing environments or unforeseen events. In this scenario, a state initially classified as favorable may 
deteriorate over time upon reassessment, causing disparities between expected and actual outcomes. 
13 Further arguments could be made that a material could not be in 10% degradation when it had exceeded a certain 
threshold, however, since there was a probability involved, it was decided to let the states as they were and not diminish 
them further.  
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4.5. Actions 

 

In total 8 actions could be done in each state. Still all the actions just amounted to changing 
the insulation materials. The ‘do nothing’ action meant that the building was left to 
deteriorate based on the transition probabilities which described the degradation curve of 
the materials.  The prices for the materials were taken from (Kostenkentallen | RVO, n.d.)  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Labor costs plus , costs of installation and costs of the materials were included in the 
investment costs of each action. Since no EPS insulation was provided for pitched roofs, 

Table 13 : Actions and their costs 

Action Interpretation Costs (euros) 

0 Do nothing 0 

1 Change Roof Insulation 13407 

2 Change Façade Insulation 43533 

3 Change Cellar Floor Insulation 2614 

4 Change Roof and Cellar 16021 

5 Change Facade and Cellar 46147 

6 Change Roof and Facade 56940 

7 Change All 59554 

Figure 43 Details of insulation placement on roof, exterior wall and ground floor , taken from (Sewnath, 2024) 
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the costs of PIR14 insulation were taken into account instead. The measures can be seen 
below: 

 

Table 12 : Chosen measures of retrofitting 

Name Info Placement Width 
(mm) 

Rd value RC value 

(m2 K/W) 

Price euros per 
m2 

Roof insulation 

WB212b – PIR 
renovatie 
dakplaten 

 Pitched roof 175 6.45 8.3 149.96 

Ground floor insulation 

WB003b -EPS  Crawl space 
floor 

300 - 2.6 34.68 

Façade insulation 

WB008b -EPS 
isolation 

Decorative 
plaster 

finishing 

Exterior wall 100 - 2.6 162.73 

 

4.6. Transition probabilities  
 

Nonstationary probabilities are necessary to accurately model the time-dependent and 
evolving nature of material degradation, such as the deterioration of insulation in buildings. 
Traditional stationary models assume that the transition probabilities between states remain 
constant over time. However, factors like age, heat, moisture, and other environmental 
conditions significantly influence the degradation process. For instance, a piece of 
insulation might degrade at different rates depending on its current age and the specific 
conditions it has been exposed to. By using nonstationary probabilities, we can account for 
these varying rates and more accurately predict future states of material degradation.  

 

 

 
14 PIR is also plastic foam insulation. In this thesis it is assumed that the material is degrading with the same rate as 
the EPS. However, a separate research should be conducted for its exact properties.  
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Since the state space is defined as:      

[time]×[roof degradation percentage]×[facade degradation percentage]×[ground floor degradation percent
age]×[roof age]×[facade age]×[ground floor age] 
We can define the transition from one state to the will be dependent on the state that we 
are in , the action that will be taken, and the ages of the insulation materials at the current 
time step. It can be expressed as the joint probability of the state (t, d𝑟𝑟 , d𝑓𝑓, d𝑔𝑔 
, a𝑟𝑟 , a𝑓𝑓, a𝑔𝑔) transitioning to (t + Δt, d′𝑟𝑟 , d′𝑓𝑓,d′𝑔𝑔, a𝑟𝑟 + Δt, a𝑓𝑓 + Δt, a𝑔𝑔 + Δt ): 

P((t, d𝑟𝑟 , d𝑓𝑓, d𝑔𝑔 , a𝑟𝑟 , a𝑓𝑓, a𝑔𝑔)  → (t + Δt,d′𝑟𝑟 ,d′𝑓𝑓, d′𝑔𝑔, a𝑟𝑟 + Δt, a𝑓𝑓 + Δt, a𝑔𝑔 + Δt ) 

 

• 𝑡𝑡 as the current time 
• d𝑟𝑟 , d𝑓𝑓, d𝑔𝑔  as the current degradation percentages of the roof, facade, and ground 

floor respectively 
• a𝑟𝑟 , a𝑓𝑓, a𝑔𝑔 as the current ages of the roof, facade, and ground floor respectively 
• t + Δt as the next time step 
• a𝑟𝑟 + Δt, a𝑓𝑓 + Δt, a𝑔𝑔 + Δt as the ages at the next time step 
• d′𝑟𝑟 , d′𝑓𝑓,d′𝑔𝑔 as the degradation percentages at the next time step 

Nonstationary probabilities generation methodology 

To achieve this, the methodology proposed by (Saifullah et al., n.d.) was employed, which 
involves using a gamma process to derive these nonstationary probabilities.  

Nonstationary transition probabilities account for the fact that deterioration rates are not 
constant but vary based on the material’s age. They improve the ability to plan maintenance 
and rehabilitation activities by providing a more realistic forecast of the envelope’s 
performance over time. Based on (Saifullah et al., n.d.),   nonstationary transition 
probabilities can be created using a gamma process model. More information about the 
gamma process can be found in the appendix.  
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4.6.1. Data analysis  

To accurately model the degradation probabilities of insulation materials over time existing 
data on insulation materials were gathered and analyzed. Long-term data spanning 5000 
days from EPS and XPS insulation samples placed on walls and windows showed that EPS 
exhibited a significant decrease in thermal resistance, between 25.7% and 42.7%(Choi et 
al., 2018). Based on the material’s popularity in the European market  led to the selection 
of EPS for the study.  

Further analysis indicated that the degradation of EPS insulation did not significantly differ 
based on placement (wall or window), but the sample size was too small to draw definitive 
conclusions.  

The degradation data was then fitted to a logarithmic curve, which allowed for the 
extrapolation of mean degradation over extended periods. Based on the extrapolation, the 
mean degradation of the material in 60 years was found to be 43% 

Figure 44 Graph depicting the thermal resistance performance 
degradation of the different material samples. WN means the material 
was placed on a window surface, internal side and WL on the internal 
side of the wall. (Own work) 

Figure 45 Graph depicting the initial thermal resistance values and their 
end values in m2K/W (Own work).  

Figure 47 Graph depicting the mean degradation curves for XPS (black) and 
EPS (red) insulations over 5000 days span (Own work) 

Figure 46 Fitted logarithmic curve of the EPS thermal resistance 
degradation over 140 years span.(own work)  



64 | Page 

 

 

4.6.2. Transition probability generation using the 
custom gamma function 

In order to generate the transition probabilities the a new script was created which 
generated random degradation curves based on a gamma distribution curve. This meant 
that a lot of different samples were generated that followed a certain degradation curvature 

but with some randomness. 

A  custom gamma curve function provided by Charalampos Andriotis was manually fitted 
to match the shape of the logarithmic curve. The below parameters were used to fit the 
gamma distribution to the material degradation data.  
def custom_gamma(a, b, t, beta): 

        x = np.random.gamma(shape=a * t**beta - a * (t - 1)**beta, scale = 
b) 

        return x 

Figure 49 custom gamma function that was based in the MATLAB script provided by Charalampos Andriotis and translated into 
python. , where ‘a’ represents the shape parameter and ‘b’ represents the scale parameter. The beta parameter influences the curvature 
of the degradation process over time, and T represents the total time period for which the degradation is modeled. 

 

Table 14 : Initial  parameters of the gamma distribution script 

Parameter Value Description 

mean 0.4343905423150753 Describes the final degradation that the material will have at the end of 
the time period T 

Figure 48 Plot of the  sample degradation curves generated using the gamma function. The thick red line depicts the mean degradation 
curve of the material (own work) 
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Beta  0.15 Describes the curvature and direction of the degradation curve. For a 
steeper curve, β should be lower than 1 

std 0.15 * mean Standard deviation, representing the dispersion of the degradation 
values 

T 60 Number of years (time period) 

N 1000000 Number of realizations (simulations) 

variance std * std Variance, representing the square of the standard deviation 

b variance / mean Scale parameter of the gamma distribution 

a (mean * mean / variance) / 
(T^beta) 

Shape parameter of the gamma distribution, adjusted by Tβ 

 

The methodology continued with generating 10 degradation states, each representing a 
10% degradation over 50 years. However, for practical purposes, the model was adjusted 
to explore three states of material degradation with larger time steps (5 or 10 years). The 
random sampling generated degradation percentage and insulation age pairs, with a million 
sequences created to determine transition probabilities. The sampled data were categorized 
into 3 degradation states of <5%,<20% and 100%  , and matrices were created to represent 
transition probabilities for each year.  

Based on the 60 years with 5 time step increments twelve 3 x 3 probability matrices were 
created.  The graph depicting the methodology of generating transition matrices can be 
found in the appendix.  

 

The calculation of state transition probabilities was carried out through a structured three-
step approach: 

 

Figure 50 Examples of the NumPy arrays depicting the transition probabilities for the year 0 and 5 respectively 
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Figure 51 Workflow of generating the state to state transition matrices (own work)  

1. The initial step involved importing the pre-generated transition probabilities into 
the computational environment. These probabilities were stored as NumPy arrays, 
enabling efficient manipulation and computation. 

2. Transition matrices were constructed to represent the probabilities of degradation 
percentage and age state pairs transitioning to other states. Each matrix element 𝑃𝑃𝑖𝑖𝑖𝑖 
represented the probability of transitioning from state i to state j. The states in this 
context are defined by a combination of degradation percentage and age. 

3. Using the transition matrices, the probability of each state pair transitioning to any 
other state pair was computed. This process was iteratively applied to all states in 
the environment.  The matrices stored as separate transition matrices for each action 
into sparse matrices to be used during the training phase. 

4. The process of calculating first the degradation – age pairs and then the state-to-
state transition plus the use sparse matrices spead up considerably the process. By 
pre-calculating the transition probabilities, also sped up the value iteration 
considerably.  

4.7. Discount factor 
By applying a discount factor of 0.97 per time step, the MDP framework can account for 
the time value of money, ensuring that future rewards are appropriately discounted and 
aligned with real-world financial considerations. 

However, since states do not align precisely with each year but occur according to discrete 
time steps, the discount factor was adjusted accordingly. The final discount factor for each 
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time step was calculated using the equation, based in the idea that the growth rate would 
be 3% each year: 

 

𝛾𝛾 = 0.97𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

4.8. Environment 

 
Figure 52 Graph depicting the dynamic relation between the environment and the rest of the scripts 

Based on the above-mentioned elements that described the problem as an MDP, a 
environment was created that simulated the world dynamics. Based on time, time step, beta 
values and amount of sample inputs from the environment, the transition probabilities 
were generated and outputted in the form of NumPy arrays. 

The building model, exported in idf format was placed as input in a script that run 
iteratively to create the different degradation scenarios using the Eppy library.  

The VI optimization algorithm received as NumPy arrays all the possible states, actions 
and rewards and calculated the optimal policy before exporting it to the final script that 
used the policy to run episodes and plot the results.  

4.9. Value Iteration 
 

In a computational context, as the state space grows larger, computational complexity 
increases, affecting the efficiency of algorithms like value iteration. To address the 
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challenges posed by a significant state space, the delta threshold was adjusted, transitioning 
from e-20 to e-10, to control the precision of value iteration. Additionally, rewards for each 
state space were precalculated, reducing the computational load by combining calculations 
within the q-value and value function computation loop, thus optimizing time efficiency. 
Despite these optimizations, further analysis is deemed necessary to identify and mitigate 
other bottlenecks hindering the process.  

For example, with approximately 230,000 states and 8 actions, the mean time for finding 
the optimal policy exceeded 96 hours, illustrating the computational demands of the task. 

Regarding episodes, their size was augmented to 1000000 to ensure a closer variance 
between the optimal policy and the benchmarking policy (Do-nothing policy). This 
adjustment allowed for more accurate evaluation and comparison of policies but added to 
the computational demand. 

Different reward and house model scenarios were simulated to determine the parameters 
that affect the problem formulation dynamics.  
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6. TESTS 

Based on the definition of the environment, a series of tests were conducted to understand 
the dynamics and understand the optimal policies that were given. In the beginning the 
initial results were analysed in order to draw conclusions. However, since the simulation 
was quite computationally demanding, the state was diminished. If the initial results of the 
bigger state space can be found in the appendix. Below, the results of the diminished state 
space can be found, together with tests run to determine different dynamics of the 
environment. 

6.1. Initial test  
Since the algorithm required a very big amount of time to run through all the state and 
action space, creating a bottleneck of conducting more experiments and analyzing the 
results, the state space was diminished by increasing the time step to 10 years and the 
episodes were rerun.  In order to understand better the dynamics of the environment, the 
return of the episodes was given without discount. 

As result, the algorithm gave as an optimal policy a do-nothing policy with non discounted 
return of  775.935 euros for a 60 year period. This of course meant that the costs of 
retrofitting the building overpassed by far the costs of gains that could be expected from 
the energy performance betterment.  In the following diagram the plotted policy provided 
the actions the percentages of actions to be expected in every time step, with in this case 
amounted to 100% ‘Do nothing’ in the span of the observed period.    
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One thing that 
could be observed 
is the actions that 
are recommended 
at the end of the 

optimization 
period (year 60). 
These states, which 
are called absorbing 
states since the 
agent cannot 
transition to 
anywhere from 
there, receive zero 
rewards, positive or 
negative and signify 
the end of the 

optimization 
period.  The actions 
that are 
recommended by 

the algorithm in those states are not valid but are one indication that the value iteration is 
working correctly.  

In order to 
understand what 
the do nothing 
policy meant and 
compare it with an 
optimal policy , a 
histogram depicting 
the Return of the 
generated episodes 
was created. The 
plot showed the 
frequency that the 
returned costs at 
the end of the 
optimization period 
would appear. In 
this case, since both 
policies where the 
same, the return of 
the optimal and the 
do  nothing policy 

closely overlapped.    

Figure 53 Plot depicting the optimal policy. On the horizontal axis we have the time steps. On the 
vertical axis we have the occurrence of a specific action given all possible states for that time step. We 
visualize this for all possible actions per time step. (Own work) 

 

Figure 54 Histogram comparison between do nothing policy an optimal policy depicting the return amount 
frequency of one million episodes. As the optimal policy matches the do nothing policy, the histograms 
overlap. (Own work) 
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The do nothing policy meant that the house was let to deteriorate over time. Based on 
samples from the episodes that were run, it can be observed that the building’s energy 
demand would reach the 174 kWh/m2 right in the first ten years and require to pay around 
150.000 euros for each decade of taking no action15.  Two points can be observed that do 
not match the rest: The initial state of 165 kWh/m2  energy demand, which starts from a 
much lower expenditure point. This is happening because the costs of the initial state 
amount only for the first year of expenses. In the rest of the states, the rewards amount for 
the energy demand that the owner had to pay, assuming that his house would jump the 
next exact year to the next state. In the last state, the rewards are becoming null, and so the 
costs are dropped to 0.   

 

 

 
15 One thing that was not considered on the costs are the different taxations and government policies that might place 
a cap on the amount of expenses that the house hold might have to pay. For that reason, the costs of energy bill 
expenses that can be observed here might not be reflecting realistic amount that the residents will be called to pay.  

Figure 55 Episode depicting the energy demand states visited by the algorithm 
(Own work) Figure 56 Episode depicting the costs accumulated from every state visited by 

the algorithm (Own work) 
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The steep rise of the energy 
demand could be traced back to 
the steep curvature of EPS 
insulation’s degradation. As seen 
on the graph of the generated 
samples of different degradation 
scenarios of the material, in mean, 
the material was expected to reach 
around 30% degradation in the 
first 10 years of its lifespan and 
before settling in a very much 
flatter degradation curve for the 
rest of the time.  

From the below graph, the median 
rise of energy demand per square 
meter based on one million 
episodes can be observed.  The 
building is expected to reach the 
state of max energy demand  at 
second time step  (year 10) and 
from there a small rise can be 
expected in year 40.   

 

 

 

The distribution of values 
depicted underneath also points 
out that in most cases  the building 
is reaching the ultimate state of 
degradation however because of 

the distribution of the scenarios, the graph indicates a lower median energy demand, 
especially in the second time step. The energy demand of the building is matching the 
degradation probability plot quite closely. This indicated that 

1) the environment was behaving correctly, matching the building energy 
demand with the probabilities of material degradation 2 

2) based on the given data, the building would degrade its performance quite 
fast if only the insulation was to account for the annual energy demand.   

Figure 57 Mean degradation curve and different scenarios of material degradation 

Figure 58 Median energy demand of the building in every time step 
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3) The expected energy demand was quite small compared to the prices of 
retrofitting actions.  

6.2. Test Comparisons  
Since the environment seemed to be working correctly and the policy according to the set 
problem formulation was proving to be same with the benchmark policy, a series of tests 
were conducted to explore the policies that would be given if the transition probabilities 
or the rewards were changed. This would allow to not only get a better understanding of 
the environment and the policies given by the algorithm but also draw conclusions of 
future changes that should be done in the project.  

  

Figure 63 Distribution of energy demand in 
time step 1 Figure 62 Distribution of energy demand in 

time step 2 
Figure 61 Distribution of energy demand in time 
step 3 

Figure 64Distribution of energy demand in time step 
4 

Figure 60 Distribution of energy demand in 
time step 5 

Figure 59 Distribution of energy demand in time step 
6 
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6.2.1. Comparison 1: Penalty vs No penalty policies 
The initial test involved the introduction of a penalty in the case that a certain state of 
energy demand was reached. This test was based around the idea that different stakeholders 
are involved in the problem of building degradation. In the beginning of the thesis, the 
goals of EU trying to better the CO2 production of the union were explored. In order to 
reach those goals, EU is introducing policies and incentives requiring the energy demand 
of the building stock to be recorder and the buildings to be retrofitted to be thermally more 
efficient by covering a part of the investing costs through different programs. In the case 
of office buildings, the Dutch government has already set a requirement that the building 
energy label should be equal or above energy label C. Based on this information, an 
arbitrary policy was introduced to test the algorithm’s results. The policy indicated that the 
energy bills would double each time that the building would reach energy demand of 174 
kWh/m2. 

Table 15: Comparison between pernalty and no penalty policies 

No penalty scenario 

  

Material degradation  curve, 

β = 0,15 

Median energy demand change over each time step under do 
nothing policy 
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Optimal policy when reaching a certain state of energy demand doesn’t result in a penalty  

Penalty Scenario 

  

Median energy demand change over each time step under do 
nothing policy. State of 174 kWh per m2 are reached in the 

first 10 years 

Median energy demand change over each time step under do 
nothing policy. The penalty prevents any state equal or bigger that 

174 kWh per m2 to be reached 
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Optimal policy when reaching a certain state of energy demand results in a penalty (doubling of energy bills)  

In this case optimal policy indicated changing the roof insulation right from the start of the 
optimization period as measure. The retrofitting actions were then diminished as the time 
closer to the end of the simulation period was closing in. This was something that could 
be expected as nearing the end, there was less of a reason for an action to be taken, since 
the episodes would finish. The action taken right in the beginning of the analysis period 
could be explained based on the degradation diagrams of the material degradation and the 
overall system degradation: since the degradation curve of the materials was so steep, the 
material was probable to degrade on mean more than 20% in the first 10 years. Based on 
that, it was expected that the simulation of the building degradation scenarios would reach 
one of the worst building degradation scenarios in the first-time step after the beginning 
point.  

For that reason, the algorithm chose to take action right from the beginning, to avoid 
reaching a state of degradation in the next step.  

One question that was brought was “why actions were taken since the system is as good as 
new at time step 0?”.  

More tests were conducted to see if this behaviour would remain or change in different 
scenarios.  
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6.2.2. Comparison 2: Introducing higher energy 
demand 

Trying to understand how different parameters changed the results, the test was rerun, with 
the transition probabilities having been returned to their original form.  This time, the 
building energy demand simulation was transformed. A simple rule was integrated: change 
the infiltration rate by one point whenever a degradation percentage was raised by 20%.   

 

As the buildings go through cycles of temperature fluctuations and come in contact with 
different factors that can increase their degradation rate, cracks and other types of 
infiltration points can appear. These cracks can carry moisture, air and other components 
in the internal layers of the envelop and affect the performance. In this case, the 
degradation of the envelop components meant that the insulation performance would drop 
because of the cracks that would appear in the envelop. With each rise of insulation 
degradation, the infiltration was assumed to also rise.  

The results were a new set of scenarios where the energy demand difference reached 60% 
from the initial state (initial state 165 kWh/m2, worst case 265 kWh/m2). The table 10 
with all the new degradation scenarios can be found in the appendix.  

 

Table 16: Comparison between original degradation and degradation with rise of infiltration 

     
    P.Flow_Rate_per_Exterior_Surface_Area = 0.0007 
    # Sum the conductivity values 
    sum_conductivity = roof_conductivity_percentage +    
 wall_conductivity_percentage + floor_conductivity_percentage 
 
    # Check the conditions in descending order 
    if sum_conductivity >= 1.2: 
        P.Flow_Rate_per_Exterior_Surface_Area = 0.0013 
    elif sum_conductivity >= 1: 
        P.Flow_Rate_per_Exterior_Surface_Area = 0.0012 
    elif sum_conductivity >= 0.8: 
        P.Flow_Rate_per_Exterior_Surface_Area = 0.0011     
    elif sum_conductivity >= 0.6: 
        P.Flow_Rate_per_Exterior_Surface_Area = 0.0010 
    elif sum_conductivity >= 0.4: 
        P.Flow_Rate_per_Exterior_Surface_Area = 0.0009 
    elif sum_conductivity >= 0.2: 
        P.Flow_Rate_per_Exterior_Surface_Area = 0.0008 
 

Figure 65 Code snippet depicting the rules of infiltration increase in the code 
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Original simulation with 5.6% change in energy demand from best to worst case   

  

Material degradation curve, 

β = 0,15 

Median energy demand change over each time step under do nothing 
policy 

 

Optimal policy given with  5.6% change in the energy demand between initial and worst case scenario 

New simulation with 60% change in energy demand from best to worst case 



79 | Page 

 

 

 

 

Material degradation curve, 

β = 0,15 

Median energy demand change over each time step under do nothing 
policy 

 

Optimal policy given with  5.6% change in the energy demand between initial and worst case scenario 
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Comparison between median energy demand change over each time step under do nothing policy (left) and optimal policy (right). In the do 
nothing policy, the energy demand will rise to 265kWh/m2 while in the optimal policy , the algorithm will try to keep the buidlign demand 

from raising above 210 kWh/m2 

The results from the second test showed a new policy being introduced. The algorithm 
tried to keep the building from reaching above 210 kWh/m2. This probably meant that at 
that point , the energy bills for the next 10 years would overpass the costs of taking an 
action. The action change roof and ground floor insulation appeared most prominently 
throughout the optimization period. The reason of that happening could be reflected to 
three factors:  

1) the costs of changing any of those two components was quite below the costs of 
changing the exterior wall insulation. The changing of roof insulation amounted to 
13.407 euros and the changing floor insulation to 2.614 euros. The combination of 
the two actions would still be quite cheaper (by 27.512 euros) than changing the 
wall insulation.  

2) The degradation model in this case changed the infiltration rate when the 
degradation of any component was raised by 20%. That prompted the algorithm to 
try to change as many components as possible in order to keep the infiltration in 
lower levels. In real life, the raise of the infiltration rate might correlate to the total 
surface area of the component. In that case, the energy demand might be higher 
when the wall component (assuming is the biggest surface area) is degrading.   

3) Even though a policy is given , it appears quite deterministic with only two actions 
allowed to be taken, with great frequency from the beginning and almost to the end 
of the buidling’s lifespan. This is assumed to be connected to the steep degradation 
that can be expected. Basically , the steepness enforced an action to be taken in 
every time step in order for the building to not reach a state of close to total 
degradation in the next time step.  
 



81 | Page 

 

 

6.2.3. Comparison 3: Different transition probabilities 
Based on the results of the previous tests, another set of tests was conducted to see the 
influence of transition probabilities to the policies.  Even though both the initial and  the 
higher energy demand scenarios were simulated, only the later where chosen to be depicted 
here as they present bigger interest. Plots of all the simulations can be found in the 
appendix.  

The change in the transition probabilities of the material degradation brought also a change 
in the optimal policy. When the β (beta) value that described the curvature of the 
degradation was changed from the initial 0.15 to 0.5, making the degradation less steep, the 
policy proved to be more “rich” in actions than before. Even though the actions “change 
roof and ground floor” and “change ground floor” still prevailed especially in years 30 and 
40 they were becoming less apparent in the initial years.  

What is interesting to see is that the policy, with small number differences is quite similar 
in both cases with beta 0.5 and 1.2. This could give some pointers that the median policy 
could be expected in cases were a more stable model of degradation was introduced.  

 

Table 17 : Comparison between different transition probabilities  

Case 1 

 

 

Material degradation curve, 

β = 0,15 

Median energy demand change over each time step under do 
nothing policy 
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Generated optimal policy Median energy demand change over each time step under optimal  
policy 

Case 2 

  
 

Material degradation curve, 

β = 0,5 

Median energy demand change over each time step under do 
nothing policy 
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Case 3 

 Generated optimal policy  Median energy demand change over each time step under optimal  
policy 

 
 

Material degradation curve, 

β = 1,2 

Median energy demand change over each time step under do 
nothing policy 

 

 

Generated optimal policy Median energy demand change over each time step under optimal  
policy 
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7. CONCLUSIONS 

In this chapter the overall conclusions derived from the methodology and results of this 
study are presented and commented. The conclusions are divided into two parts: the first 
part covers the general methodology, its bottlenecks, and insights for future researchers; 
the second part delves into the conclusions from the value iteration trials, addressing 
specific issues and proposing future researches.  

6.3. Methodology and Literature review 
The project progressed in two main phases. Initially, an extensive literature review was 
conducted to establish a theoretical foundation. This review covered the theory of heat 
balances to understand the energy behavior of buildings due to changes in the envelope 
and the behavior of insulative materials. It also explored different methodologies for 
simulating building degradation over time. Additionally, different MDP methods were 
analysed, particularly focusing on Dynamic Programming’s Value Iteration and RL’s Q-
learning. Even though thorough, the literature review didn’t cover all the important aspects. 
The case studies (Ferreira et al., 2023) and (Mavromatidis & Petkov, 2021) that worked 
also with different approaches on building stock maintenance were not depicted in the case 
studies of the literature review. Even more, the exploration of the reinforcement learning 
methods remained in analysing only two methods of optimization and didn’t explore more 
options.  

Based on the literature, a basic methodology was developed. Key references included the 
works of (Maia et al., 2021, 2023) and (Ferreira et al., 2023) which provided a framework 
for retrofitting actions and objective function theory. Despite limited access to complete 
data and documentation, these works guided the problem's construction. The development 
of the optimization technique to represent the problem as a Markov Decision Process, and 
the basic theory of the Reinforcement Learning principles relied heavily on (Sutton & 
Barto, 2018) and online tutorials .  

A significant challenge was the lack of actual data regarding building degradation, 
necessitating considerable time to gather or generate necessary information. Research on 
the thermal resistance and conductivity changes in insulation materials provided insights 
into one mechanism affecting building behavior, though future studies should also consider 
moisture, heat, and airflow, especially given climate change impacts. This study focused on 
plastic foam insulation, but future research should compare various insulation types. 



85 | Page 

 

 

6.4. Literature Review Conclusions 
The Energy Performance of Buildings Directive (EPBD) is an important framework 
established by the European Union (EU) to reduce energy consumption in buildings and 
promote environmental sustainability. Buildings account for 40% of energy usage in the 
EU, and the EPBD aims to ensure that by 2050, all buildings in Europe will use significantly 
less energy. To achieve this, the EPBD collaborates with other directives, such as the 
Energy Efficiency Directive, to enhance energy efficiency across the continent. 

Despite the potential for significant energy savings, many buildings in the EU were 
constructed before 2000 and exhibit poor energy performance. Renovation rates remain 
low, which hampers progress towards energy efficiency goals. To address this, the EPBD 
emphasizes the need to increase renovation rates, particularly for buildings with poor 
energy performance.  

By proactively addressing potential issues and implementing modern technologies, 
retrofitting ensures that buildings remain functional, efficient, and compliant with current 
regulations, thus maintaining their overall integrity and value.  

Maintenance policies can be broadly categorized into planned and unplanned types. 
Planned maintenance involves scheduled activities to prevent failures and improve 
performance, while unplanned maintenance is reactive, addressing issues only when they 
occur, often leading to prolonged downtimes and user dissatisfaction. Planned 
maintenance can be further divided into preventive, corrective, and improvement 
strategies, with preventive maintenance focusing on addressing potential issues before they 
cause failures, thereby enhancing the reliability and lifespan of building components 
(Ferreira et al., 2023).  

Preventive maintenance includes several sub-strategies: predetermined, condition-based, 
opportunistic, and predictive maintenance. Predetermined maintenance schedules tasks at 
regular intervals regardless of the condition of components. Condition-based maintenance 
relies on regular inspections and specific criteria to decide when maintenance should be 
performed. Opportunistic maintenance takes advantage of planned downtimes to conduct 
additional tasks, minimizing disruptions. Predictive maintenance is the most advanced 
form, using data analysis to predict failures and schedule maintenance accordingly. This 
approach is especially relevant for retrofitting buildings. Unlike traditional corrective 
maintenance, which reacts to failures, predictive maintenance anticipates potential issues 
and addresses them proactively, reducing downtime and overall maintenance costs while 
extending the operational life of building components  (Ferreira et al., 2023). 

Concerning the planning of retrofitting, existing methodological frameworks such as 
EnerPHit(Jan Steiger & Eva Vahalova, 2019), iBroad(IBROAD - European Commission, n.d.), 
and ALDREN (Sesana et al., 2020) offer general roadmaps for building retrofitting and fall 
under the planned and condition based types.  

However, these types of roadamps are not trying to find an optimal plan but offer generic 
methodologies of actions that should be taken to improve building performance. Even 
thought there are a lot optimization tools involving genetic algorithms that provide the 
optimal retrofitting packages, only a few were detected that involved time and planning 
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optimization of the maintenance and improvement actions. Optimization models have 
been proposed to determine the best timing and sequence of retrofitting steps, considering 
budget constraints and the interdependencies between measures, while other approaches 
tried to consider the physical degradation of the materials in order to determine the optimal 
timing for maintenance actions(Ferreira et al., 2023). 

Based on the literature research on building performance, heat losses through the envelop 
can greatly affect the energy performance of the building. There are different components 
that might affect the building energy demand as well as different factors that might 
contribute to how fast this loss of performance may occur. Among them, the ageing factor 
can contribute to the loss of themal performance. Even though this has become apparent, 
there seems to be a lack of (especially of field) data regarding how much the U-values of 
the building might change over time.  

However, based on the above findings it has become apparent that uncertainties play a 
crucial role in the formulation of the problem- something that should be taken into account 
for any future works.  

 

To address these kinds of problems , algorithms able to work with predictive maintenance 
should be used in order to  reduce unexpected failures and associated costs. By leveraging 
predictive maintenance, building managers can enhance the performance and longevity of 
their assets, making it a key strategy in modern building management and retrofitting 
efforts.  

Planning algorithms that fall under a broader category of algorithms known as "Sequential 
Decision Making" algorithms, which handle problems involving a sequence of 
actions(Littman, 1996) are emerging as probable ways to work with predictive maintenance 
problems. Reinforcement Learning (RL), a data-driven optimization algorithm, has gained 

Figure 66 Taxonomy of different maintenance policies (Ferreira et al., 2023) 
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popularity for its ability to develop effective maintenance policies and address predictive 
maintenance challenges (Ogunfowora & Najjaran, 2023). 

Several conclusions became apparent throughout the literature review: 

 

1. Limited Research on Time-Factor Building Maintenance and Renovation 
Optimizations: 
   There is a notable gap in research focused on optimizing building maintenance and 
renovation plans that consider the time factor. Most existing studies offer optimizations 
based on genetic algorithms in order to offer retrofitting packages. Throughout the 
literature review, only a very few papers were discovered that took into account the time 
factor in their optimization methodologies. The absence of comprehensive time-based 
optimization models means that opportunities to extend the lifespan of building 
components and achieve cost savings through strategic, long-term planning are often 
missed. Future research should prioritize developing methodologies that incorporate time 
as a critical variable in maintenance planning to enhance both efficiency and effectiveness. 

 

2. Lack of Consistent Methodology in Existing Bibliographies: 
   Current bibliographies reveal a fragmented approach to building maintenance and 
retrofitting optimization. There is no consistent methodology that comprehensively 
addresses all major factors necessary for developing robust models. This inconsistency 
hampers the ability to compare results across different studies or to build on previous work 
effectively. To advance the field, a unified framework that integrates economic, technical, 
and environmental considerations is needed. Such a framework should include 
standardized metrics and methodologies for assessing building performance, predicting 
maintenance needs, and evaluating the long-term impacts of various retrofitting strategies 
in both physical and function level on the building. 

 

3. Neglect of Correlation Between Physical and Thermal Degradation: 
   No existing research has adequately explored the correlation between the physical 
degradation of building components and their thermal degradation. This is a critical 
oversight, as physical wear and tear can significantly affect a building's thermal performance 
and energy efficiency. Ignoring this correlation may lead to suboptimal maintenance and 
retrofitting decisions. Incorporating an understanding of how physical deterioration 
impacts thermal properties into maintenance algorithms could lead to more accurate 
predictions and better-informed policy recommendations. This integrated approach would 
help in developing maintenance strategies that more effectively balance cost, performance, 
and longevity. 

 

4. Underutilization of Reinforcement Learning in Retrofitting Planning: 
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   Despite the known potential of Reinforcement Learning (RL) algorithms to solve 
complex planning problems, there has been no significant application of these algorithms 
in the context of retrofitting planning. RL's ability to learn and adapt from interactions 
makes it particularly suitable for dynamic and uncertain environments like building 
maintenance and retrofitting. Its absence in current methodologies represents a missed 
opportunity to harness advanced computational techniques for optimizing retrofitting 
schedules and strategies. Future research should explore the integration of RL into 
retrofitting planning to take advantage of its capabilities in handling sequential decision-
making and uncertainty, potentially leading to more efficient and effective retrofitting 
processes. 

By addressing these gaps, future research can significantly improve the strategies for 
maintaining and retrofitting buildings, ultimately contributing to more sustainable and 
energy-efficient building management practices. 

6.5. Development and Implementation: 
The second phase involved iteratively realizing the methodology workflow, transitioning 
from experimental approaches to more concrete solutions. Various methodologies were 
employed to simulate building energy demand, progressively incorporating non-stationary 
transition probabilities and additional actions into the environment. Value iteration was 
chosen as the solver method, to test the environment’s dynamics. Different techniques 
were tried to expedite the convergence process, like utilizing NumPy libraries to pre-
calculate states, actions, and rewards. However, the large state space rendered unable to 
test in detail a 60-year planning, as it required enormous computational power.  

Sensitivity analysis tested different scenarios, providing conclusions on the performance of 
value iteration and decision-making results, which identified optimal retrofitting plans over 
a 60-year building lifespan for two different scenarios of rewards, concluding the fluent 
behavior of the environment. 
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6.6. Methodology conclusions and discussion 

6.6.1.1. ENERGY DEMAND SIMULATION: 

 

Three methodologies were employed to simulate the building's energy demand: 

Geomeppy: This method allowed for embedding within a Python file, enabling iterative 
simulations across different building degradation scenarios. Although each simulation ran 
in 3-5 seconds, overall results from the TBL files took approximately 400 seconds. The 
basic geometry produced by Geomeppy was prone to bugs, and limited community 
support hampered problem-solving. If the community grows, Geomeppy could facilitate 
faster simulations. However, users must have substantial experience with EnergyPlus and 
handling IDF files, as this process is time-consuming. 

Design Builder: Design builder modelling software is broadly used to model and simulate 
the energy performance of buildings. Even though it is quite known and broadly used, it 
lacks a user friendly interface. Even more , the software was susceptible to bugs and errors 
which hindered the generation of multiple scenarios iteratively. Even more,  the idf files 
exported by the software appeared corrupted and unable to be further edited by the Eppy 
library commands.  

Grasshopper: This tool provided more robust support for developing a building model, 
but each basic simulation took around 1 minute. Running numerous simulations could 
significantly extend the overall time required. Grasshopper's scripting components often 
slow down due to data piping complexities, though they simplify scripting for casual users. 

One thing that must be noted though was the amount of time needed to set up the building 
model. While the Geomeppy geometry required more than two weeks to get familiar with 

Figure 67 Comparison of results of different methodologies of building modelling and simulation 
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the commands and set up a simple geometry, creating and manipulating the building data 
in this case amounted to 3 days, with a limited already knowledge of the grasshopper 
interface and the ladybug plug in commands.  

Combining both tools, generating a basic IDF file in Grasshopper and simulating scenarios 
using the Eppy library , allowed for more accurate building modeling results in a total of 
400 seconds for multiple files. On average, simulating and storing 27 different degradation 
scenarios took about 14 seconds per simulation. Large-scale simulations can slow down 
the value iteration or RL method if scenarios are simulated in every episode. Therefore, 
pre-simulating all energy performance scenarios is recommended for efficiency. 

Even more the current simulation still lacked more realistic interpretation of the building 
energy degradation. Based on the methodologies of (Taki & Zakharanka, 
2023)(Eleftheriadis & Hamdy, 2018) airtightness should also be considered in the building 
degradation together with fenestration gas loss and HVAC system’s loss of Coefficience 
of Performance in order to simulate more accurately the building’s behaviour through time.  

6.6.1.2. ENVIRONMENT AND MDP PROBLEM FORMULATION  
The environment for this study was based on the Markov Decision Process (MDP) 
framework provided by Prateek Bhustali. However, it is not compatible with OpenAI's 
Gym framework, which is commonly used for Reinforcement Learning (RL) experiments. 
Calculating transition probabilities was complex process to code and computationally time-
consuming, taking up to 45 minutes to compute and store all state transition matrices for 

8 actions. Future research should consider 
developing a more user-friendly environment 
that is compatible with Gym documentation. 
This would facilitate the use of RL methods and 
potentially streamline the process.  

The tests results also provided some insights and 
errors with the problem formulation. The way 
that the problem was formulated allowed for an 
action to be taken and the outcome of that action 
would amount to the negative rewards (energy 
bills) that would be expected in the next 10 years. 
However , no degradation was expected to 
happen on the mean time. A future model of the 
problem should reformulate the problem and 
take those elements in account for the transition 
probability matrix and the rewards.  

 

 

Figure 68  Graph depicting the energy demand in every 
time step (above) and how it should become (below) in 
future interpretations for more correct rewards calculations 
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States 
The thesis formulated the states as the degradation percentages of three major envelop 
components and incorporated the ages and time in the state space. A more complete 
environment would incorporate also the window and HVAC degradation states and 
possibly their ages , the budget restrictions of the owner , the climate scenarios. Since the 
components might not actually have the same materials , or different factors might affect 
their performance,  they should be treated separately and different degradation curves 
should be exploited for each case.  

Even more, since there was no clear correlation between the material physical degradation 
and the energy demand, a maybe more correct state space should be created. The new state 
space would reflect the different stages of a component’s physical degradation (in classes 
that indicate when it is close to a point that it has to be changed) , and the possible states 
of energy demand.  

New state space  [component physical degradation]x [expected energy demand]x[budget]x[climate] 

Actions 
This study focused on eight binary actions. 
Typically, predictive maintenance problems 
include actions such as 'Inspection', 'Minor 
Maintenance', 'Major Maintenance', and 
'Change Component'. However, this 
research only examined the 'Change 
Component' action. Future studies should 
include these additional actions and define 
what 'Major Maintenance' entails in the 
context of retrofitting. Understanding how 
major maintenance translates to changes in 
the building environment is crucial. Ferreira 
et al., (2023)offer some suggestions on 
addressing these issues. 

A more comprehensive investigation should 
explore how different combinations of 
measures impact long-term policies. This 
thesis provided preliminary measures based 
on recommendations from (Kostenkentallen | 
RVO, n.d.), but a more detailed approach is 
necessary. 

 

 

Figure 69 Graph depicting how actions could affect the 
degradation process in a more realistic model (Ferreira et al., 2023) 
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Moreover, this study assumed perfect installation of retrofitting measures, leading to 
specific changes in building performance. Future research should investigate how building 
performance evolves over time with different retrofitting techniques. 

 

Rewards 
The reward structure in this study was based on the objective function of Maia et al., (2021) 
. Maia et al., (2023) and adjusted to work with the problem formulation, however, suggests 
incorporating additional objective functions such as CO2 emissions and global costs, which 
should be examined in future research. If taxation of CO2 emissions significantly increase, 
it might affect the energy bills, more actions may be recommended by the policy. 
Conversely, newer and more natural materials, which have lower lifecycle CO2 emissions, 
might be preferable. 

According to the above-mentioned papers, retrofitting building components in the correct 
order can lead to significant cost savings by avoiding oversized heating systems for 
extended periods. This study did not fully explore the 'lock-in effect' due to insufficient 
data, but this remains an important area for future research. Assuming there is an optimal 
sequence for changing building components, simulations should be redone with adjusted 
rewards to encourage the correct order of actions.  Maia et al. noted that changes in 
buildings are often circular, with boilers being replaced more frequently than other 
components. Future studies should address this by adjusting simulations to reward correct 
sequences of retrofitting actions. In reinforcement learning, this process can be modeled 
with periodic checks, recommending changes at intervals (e.g., every 10-20 years), and 
positive rewards for the correct sequence of actions. 

6.6.1.3. VALUE ITERATION 
Value Iteration was chosen as the optimization algorithm. Being a model based method 
with no hyperparameters, like Reinforcement Learning methods, allowed for a closer look 
at the dynamics of the environment and the produced policies. In that sense it is believed 
that it was a good starting point to understand the complexities of the problem and draw 
conclusions for future works to take into account.  

However, as the model will become more realistic with additional data (e.g., degradation 
of boilers and windows), the state and action spaces expand significantly. This increase in 
complexity causes both Dynamic Programming and basic Q-learning to struggle in finding 
solutions. One technique that was considered in order to optimize the process is state 
aggregation based on (Duan et al., n.d.) . State aggregation is a technique that clusters states 
with similar transitions and rewards and treats them as a single state in value iteration.  
Based on the fact that a lot of states are similar, if the time factor is excluded, this technique 
would help mitigate the problem. However, even then, it can be argued that the more 
realistic the problem becomes the more the state space will expand until it will reach a point 
that DP and shallow learning will not be able to handle it.   Therefore, advanced deep 
learning techniques should be considered to handle the increasing complexity of the state 
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and action spaces in this study. Deep Reinforcement Learning utilizes neural networks to 
search through high dimensional spaces. However as stated in (Bhustali, 2023) : “Single 
Agent Deep Reinforcement Learning approaches do not scale well under practical 
computational constraints because the joint space of states, observations and action spaces 
grow exponentially with the number of agents”. In their paper, they propose to work on 
Inspection and maintenance problems by using  multiple agents. Each agent, they propose 
would have the task to handle one component of a system. Based on this paper, the 
recommendation would be for the problem to be reformulated and solved again using 
MADRL methods.  

 

6.7. Test results 
The tests conducted also indicated that the environment responded accurately to the 
dynamics of material degradation and energy demand. The correlation between the steep 
initial degradation of EPS insulation and the corresponding rapid increase in energy 
demand validated the simulation’s alignment with the data taken from the real-world. 
Additionally, the algorithm's adjustments to the optimal policy in response to varying 
economic factors, penalties, and transition probabilities demonstrate its robustness and 
sensitivity. This responsiveness confirms that the environment is effectively modeling the 
complex interactions between material degradation and energy efficiency, providing 
reliable insights for optimizing retrofitting strategies. 

Overall, the tests demonstrated that the optimal retrofitting policy is highly sensitive to 
various factors, particularly economic considerations, the imposition of penalties, and the 
specific model of material degradation employed. Initially, the value iteration algorithm 
identified a do-nothing policy as optimal in scenarios without penalties, indicating that the 
retrofitting costs far exceeded the benefits derived from improved energy efficiency. 
However, this scenario changed dramatically with the introduction of penalties. When 
penalties were imposed for high energy demand states, the optimal policy shifted towards 
proactive retrofitting measures. This change underscores the significant impact that 
economic incentives and penalties can have on decision-making processes related to 
building maintenance and energy efficiency. 

Moreover, the tests underscored the necessity of devising cost-effective retrofitting 
strategies. When higher energy demand scenarios were introduced, the optimal policy 
involved frequent and targeted actions, such as changing roof and ground floor insulation. 
These components were selected due to their lower retrofitting costs compared to other 
parts of the building, like wall insulation. This approach allowed for managing the overall 
energy demand more efficiently while keeping costs under control.  It also illustrated the 
importance of prioritizing retrofitting actions based on their cost-effectiveness and impact 
on overall energy efficiency. One thing that has to be noted in that the simulation of the 
model’s performance degradation didn’t follow any indicated data. That meant that there 
was no correlation between which component was degrading and the expected infiltration. 
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If the simulation was redone with more detail and observations from real world data,  the 
policies that might be provided will be different from those in this thesis. One expectation 
will be that components with greater influence on the energy demand will be chosen above 
others to be retrofitted.  

In conclusion, the tests highlighted that optimal retrofitting policies are highly context-
dependent, requiring careful consideration of economic factors, potential penalties, and the 
characteristics of material degradation. Introducing penalties for high energy demand can 
shift policies from inaction to proactive retrofitting, emphasizing the role of economic 
incentives in driving maintenance decisions. Additionally, early interventions are crucial in 
cases of steep material degradation to avoid higher future costs. Finally, adopting cost-
effective retrofitting strategies, focusing on components with the highest impact and lowest 
cost, is essential for managing energy demand efficiently and sustainably. These insights 
are vital for policymakers, building managers, and homeowners aiming to balance cost, 
efficiency, and sustainability in building maintenance and energy management. 

 

6.8. Future works Proposals 
Several important aspects were not addressed in this research but should be considered for 
future investigations to provide a more comprehensive understanding of the retrofitting 
process. These aspects include: 

1. Reformulation of the problem and the environment to be solved with Deep 
Learning, probably mutli-agents approaches.  

2. More detailed Building  Degradation simulation by incorporating more components 
of the building, such as windows, airtightness, and HVAC systems, should be 
considered in the degradation scenarios. Even more , future studies should 
investigate the potential degradation of PV panels and other sources of energy 
generation and how those affect the energy demand at the end of the process.   

3. More detailed problem formulation with bigger state spaces and more actions. In 
the new problem formulation other than only the components, budget restrictions 
of different income groups, climate scenarios and tenant behaviour should also be 
incorporated in the state space. Even more, the actions for each component should 
be expanded including minor repairs, retrofitting and renovation packages with more 
options of measures. The rewards should equally be adjusted to count for life cycle 
costs, penalties if the owner’s budget reaches a certain limit of expenditure and/or 
if the building drops underneath a performance requirements. Even more,  
incorporating POMDPs (Partially Observable MDP’s 16) could enhance the 

 

 
16 In POMDP’s the real state of the environment might not be known. In that case we are working with the probability 
of the state being in certain condition.  



95 | Page 

 

 

modeling of uncertainties in the retrofitting process, such as incomplete information 
about the state of the building or the exact impact of interventions. 

By addressing these areas, future research can provide a more detailed and practical 
framework for optimizing retrofitting strategies, ultimately leading to more sustainable and 
cost-effective building practices. 

Another area of interest is for the models to be used for reverse engineering purposes. 
Reverse engineering can be instrumental in optimizing building retrofitting strategies by 
dissecting the key factors influencing energy demand and retrofitting costs, such as material 
degradation rates and economic penalties. By understanding these influences, predictive 
models can be developed to accurately forecast future states of a building, enabling precise 
planning of retrofitting actions. This approach can also optimize economic incentives, 
guiding policymakers to design effective programs that encourage timely retrofitting while 
balancing costs. Furthermore, reverse engineering can improve material selection and 
maintenance practices by identifying materials that offer better long-term performance, 
thus reducing the frequency and cost of retrofitting. Tailoring retrofitting schedules to align 
with material degradation patterns ensures timely interventions, preventing significant 
energy losses and cost increases. Additionally, the continuous feedback loop established 
through reverse engineering can enhance algorithm accuracy and policy robustness, leading 
to more sustainable and efficient building maintenance strategies. 

Last but not least, if a more detailed model is realised, it can be possible to be used to aid 
in the formulation of more focused European policies, tailored to the cases on each 
country, building and owner target group. These policies then , is believed, that will greatly 
affect the rate and efficiency of the retrofitting of the building stock.  

 

 

  



96 | Page 

 

 

Initial Questions and Responses 

6.9. Main Question 
“How can we optimize staged retrofitting planning using Reinforcement Learning?” 

To optimize staged retrofitting planning using Reinforcement Learning (RL), we need to 
develop a comprehensive RL-based framework that integrates building energy 
performance simulations, economic analysis, and policy constraints. The framework 
should involve the following steps: 

i. Problem Formulation: Define the retrofitting problem as a Markov Decision Process 
(MDP) to systematically evaluate different retrofitting actions over time. The 
formulation of the environment will define the overall process that will be followed to 
find the results. In that sense it is quite important to understand the mechanics of the 
various Reinforcement learning methods before hand. This will allow more correct 
interpretation of the environment.  

 
ii. Simulation Environment: In the absence of data on retrofitting actions for certain 

building typologies, create a detailed simulation environment that models the building's 
energy demand.  A sensitivity analysis should be conducted to determine the most 
important factors that affect the particular building’s energy performance. Those 
factors must be take into account. For typical single-family houses, these factors usually 
include windows, roof, façade, ground floor, and HVAC systems, however each 
building typology might bring forth different major influences. The simulation should 
also account for airtightness loss over time. Consider usign a energy simulation tool 
that you are familiar with and /or has a big community to help in case of things not 
working.  Use existing case studies to test how well the generated model behaves against 
the case study data. 

 

iii. Transition probabilities creation: In case that no available data exist of the probability 
of failure or degradation of a component, an extra step will be to create transition 
probabilities to simulate environmental uncertainties. Depending on the material in 
question and its degradation process based on the factors influencing this degradation, 
different probability distributions will need to be modeled. Even though in this case 
Gamma distribution was used, insulations usually require Weibull distribution. This 
step involves understanding and incorporating the equations that describe the overall 
degradation curve and the probability distribution.  Available data of component 
behaviour should be analyzed and fitted in order to create the mean curve. The general 
process can be found in the appendix.  

 
iv. Optimization tips: Optimize the environment before going any further. Consider if you 

can diminish the state space somehow, and use numpy arrays which accelerate the 
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computational process. Precalculate , if possible the rewards and the transitions if 
needed and store them in sparse matrices to save space. Even if deep learning is not 
going to visit all the states and actions, it will require a lot of computational power. By 
assuring that the environment has optimized performance , the code will run much 
faster and the convergence might happen even earlier. Even more, develop the 
environment, the simulations , the probability generation and other codes in separate 
scripts and as functions which can be incorporated into the main script. This will allow 
debugging to happen more easily.  

 
v. Reinforcement Learning Algorithms:  Given the increasing complexity of the problem 

formulation and the expansion of the state space, consider employing Deep 
Reinforcement Learning algorithms from the beginning. A multi agent approach might 
be recommended as it is able to handle with more ease and less complexity the different 
component states.  

vi. Evaluate the environment and the policy by conducting  a sensitivity analysis and testing 
different rewards to see if the problem as has been formulated through the environment 
is performing correctly. 

6.10. Sub-Questions 
 

“How do we formulate the staged retrofitting as an MDP (Markov Decision 
Process) problem?” 
Since there wasn’t an actual case of literature to base the answer the formulation of the 
MDP was based on different approaches and using a basic understanding of how Markov 
Decision Processes work. Inspiration was drowned from the examples of (Ferreira et al., 
2023) ,  (van den Boomen et al., 2020)  and the online tutorials of Prateek Bhustali.  

To formulate the staged retrofitting problem as an MDP, we need to define: 

1. States: Represent the condition of the building, and might include the current state 
of components (e.g., insulation, windows, heating systems).  Incorporate the time 
in the state space I order to be able to determine the time of each retrofitting action 
and avoid infinite horizon problems.  
 

2. Actions: Define possible retrofitting actions such as installing insulation, replacing 
windows, changing heating systems, or conducting maintenance.  Those actions 
must reflect somehow to the state space’s possible changes. Define also how the 
actions will change the status of the environment and what is the cost of each action. 
Major maintenance might keep the house environment in the same energy 
performance state for a bit more time.  
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3. Transition Probabilities: Decide if transitioning from one state to the next will 
happen deterministically or not stochastically. If stochasticity is involved calculate 
and incorporate the probabilities of moving from one state to another after taking 
a specific action.  
 

4. Observability: Define if the states are observable or not. That means , define if the 
states are completely known to the agent or not.  
 

5. Rewards: Define the rewards associated with each state-action pair, which could 
include costs, energy costs or savings, budgets etc . Remember that the goal of the 
optimizers is to find the max reward, and so the rewards should be shaped in a way 
that reflect the objective function that will be tried to be achieved.  
 

6. Policy: Develop a policy that specifies the best action to take in each state to 
maximize the cumulative reward over time. For example, in the case that certain 
threshold over energy performance degradation shouldn’t be reached, introduce a 
big penalty like doubling the energy bills or enforcing a retrofitting action with 
higher costs that normal.  

 

“Which reinforcement learning algorithm should we consider for solving this 
problem?” 
Even thought there wasn’t enough time to delve deeper into the different reinforcement 
learning methods it has become apparent that the methods that should be considered will 
require to be able to handle big state spaces.  Given the complexity and size of the state 
and action spaces in the retrofitting problem and based on the points made in  (Bhustali, 
2023),  it is possible that  Multi-agent Deep reinforcement learning methods should be 
considered that can efficiently handle the complexity of instepction and maintenance 
problems. 

 

“How can we simulate the scenario of the building components (energy) 
degradation?” 
To simulate the degradation of building components and their impact on energy 
performance  tools like EnergyPlus can be used. The use of Grasshopper visual 
programming and the Ladybug plug in can simulate with quite good accuracy the building 
performance while provide extensive community support. Eppy can be used to generate 
different scenarios based on the exported idf file however there is a speculation that the 
process can be done directly through Grasshopper and the simulation results stored 
directly in CSV files.   

The models have to simulate the different R values or conductivity values degradation 
scenarios of the different major components that affect the most the performance of the 
building. These components usually are : the windows, façade, roof, ground floor , HVAC 
systems and airtightness.  
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“How do we validate the model?” 
Theoretically, after the environment is created, we can do sensitivity analysis to test the 
behaviour of the algorithm. In this case, the problem formulation was tested by comparing 
the policies against the do- nothing policy. By changing the rewards, discount factor and 
the costs of actions, the dynamics of the environment can be assessed.  

However, in order to be able to assess the policies correctly, the results of the optimization 
should be compared against real life scenarios.  

 

6.11. Assumptions  
The list of assumptions that were taken in order to work on this problem can be found 
here: 

• Economy is in a stable 3% growth.  
• Building’s performance changes only through ageing factors of the insulation and 

doesn’t depend on other factors.  
• The actions will return the component and the system in an original state without 

any loss of functionality or possible worst state 
• All actions can be taken from all states 
• The policy in deterministic 
• No government policies exist that might affect the investment costs. 
• PIR is also plastic foam insulation. In this thesis it is assumed that the material is 

degrading with the same rate as the EPS. However, separate research should be 
conducted for its exact properties. 

• The energy, retrofitting, material and other prices are certain and will not be 
changed 
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8. REFLECTION 

Embarking on this project centered on retrofitting planning optimizations using Dynamic 
Programming (DP) and Reinforcement Learning (RL) techniques had a primary objective: 
to create a foundation for future projects in this domain. However, navigating this novel 
terrain was not without its challenges. 

A significant issue encountered was the fragmented nature of existing knowledge and 
terminology. The terms "retrofitting" and "renovation" often overlapped, and a 
fundamental theory of building degradation proved elusive. Instead, various disparate 
equations and techniques describing the degradation process of different components were 
uncovered. A particularly concerning gap was the lack of comprehensive data on the 
behavior of building envelopes over time, highlighting a crucial area for future research. 
More extensive data on the evolving behavior of buildings would undoubtedly enhance the 
accuracy of results obtained through solvers. 

 

 

Throughout my master's program, I engaged with different scientific domains. Working 
with RL theories proved particularly challenging due to my lack of prior knowledge in the 
domain. Understanding the theoretical equations in the literature was one of the most 
demanding aspects. Expanding my knowledge across such diverse areas stretched my focus 
thin, preventing deeper exploration in many areas. My biggest regret was not being able to 
develop a deeper undersanding of Deep Reinforcement Learning approaches. However, 
the challenges faced with Value Iteration helped me expand my knowledge of optimization 
techniques and explore additional methods to improve algorithm performance. 

Despite rigorous efforts, the development of reinforcement learning algorithms and the 
environment remained in an early stage due to time constraints. It is clear that further work 
is needed in these areas to realize their full potential. 

Figure 70 Areas of exploration 
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Given the nascent nature of the domain, numerous assumptions had to be made, affording 
considerable autonomy in decision-making. This latitude allowed the project to evolve 

based on prioritized aspects of the process. Emphasis was placed on early methodology, 
such as building degradation simulations, generating transition probabilities, and 
formulating the problem as a Markov Decision Process (MDP). Focusing on these basics 
allowed for realistic goal-setting. 

 

Engaging in this process not only honed my coding skills but also deepened my 
understanding of sequential decision-making theories and reinforcement learning. This 
endeavor was a lesson in learning how to learn and develop projects from scratch, relying 
on logical arguments and resource gathering to make informed decisions. 

While the project did not reach full maturity, it established essential guidelines for future 
research. Exploring different degradation techniques underscored the utility of tools like 
Geomeppy and affirmed Grasshopper's user-friendly approach to data simulation. 
Developing the environment from scratch, though challenging, provided valuable insights 
into its inherent bottlenecks. Furthermore, Value Iteration yielded a comprehensive 
understanding of the environmental variables that influence optimal policy, guiding future 
efforts. 

In writing this report, I incorporated as much literature, detail, and explanation as possible 
to facilitate future research in this area. The lack of more equations that might have made 
this easier to understand stems from my own challenges in formulating them correctly. 

In conclusion, this experience was enriching both personally and scientifically. It 
underscored the importance of perseverance in tackling complex challenges and the value 
of collaborative mentorship in navigating uncharted territories. 

Figure 71 Graph expressing what I did throughout the process 
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10. APPENDIX 

15.1. Further Explanations  

15.1.1. Transitions example 
To give an example, imagine a house with three states of energy demand:  Good, Medium, 
Bad. There is some uncertainty if in the next state the house will have reached ‘Medium’ 
energy demand or will have stayed in ‘Good’. More accurately it has 60% probability 
reaching the ‘Medium’ energy demand state based on the fact that no action is performed 
to prevent that of happening, and 40% of staying in ‘Good’ state.  

 
 

A transition matrix represents the probabilities of each state reaching any other state. In 
the matrix, the rows signify the now while the columns signify the next state transition. 
For example, this matrix maps the probabilities of jumping from each state to another if 
no action is taken based on the above graph.  

 

𝑃𝑃(if no action is taken) =  
0.4 0.6 0
0 0.𝟒𝟒 0.6
0 0 1

 

If we want to find the what is the probability of being in each state after two transitions, 
say from Good to Bad, passing from an intermediate state, Medium, we can multiply the 
rows of the matrix with the corresponding columns and then add them up.  Matrix 
multiplication works by multiplying the elements of each row of the first matrix by the 
corresponding elements of each column of the second matrix, and then adding them up.  

Figure 72 Transition probabilities between states (by author) 
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Figure 73 Matrix multiplication graph17 

 

 

15.1.2. Objective function cost equation analysis 
The objective function presented in the literature involved a number of different 
parameters that had to be calculated.  Some of them are analyzed below however, for better 
understanding, reference  the paper provided by (Maia et al., 2021) . 

 

𝐴𝐴𝑡𝑡 = (𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 ∙ 𝑠𝑠) + 𝐴𝐴𝑡𝑡−1 
 

● 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 = household income (EUR) 
● 𝑠𝑠 = allocation factor of total annual incomen on energy related expenses (%) 

 

 

𝐵𝐵𝑡𝑡 ≥ 𝐼𝐼𝐼𝐼𝑡𝑡 + 𝐸𝐸𝐸𝐸𝑡𝑡 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡  ,  

with  𝐵𝐵𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 ∙ (1 + 𝑙𝑙) 

Where: 

● 𝐵𝐵𝑡𝑡 = budget restriction [B] 
● 𝐼𝐼𝐼𝐼𝑡𝑡 = investment cost of retrofitting measures [EUR];  
● 𝐸𝐸𝐸𝐸𝑡𝑡  = annual running energy costs [EUR/a] 
● 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 = annual running operation and maintenance costs [EUR/a]; 
● l = loan [%]. 

 

Investment costs for retrofitting steps, such as improving the building envelope or 
installing active systems, were determined by considering energy-related investment costs, 

 

 
17 https://www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf 
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maintenance investment costs, the probability of material aging, and a binary control 
variable indicating whether the measure is performed each year. 

 

𝐼𝐼𝐼𝐼𝑡𝑡 = �[(1 − 𝑝𝑝𝑡𝑡,𝑖𝑖) ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡,𝑖𝑖 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡,𝑖𝑖] ∙ 𝑥𝑥𝑡𝑡,𝑖𝑖
𝑡𝑡

 

where 𝑥𝑥𝑡𝑡,𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 0  and  𝑝𝑝𝑡𝑡,𝑖𝑖 > 0.05 

 

● 𝐼𝐼𝐼𝐼𝑡𝑡 = total investment costs [EUR] 
● 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡,𝑖𝑖 = energy-related investment costs, for each retrofittig step (i) [EUR] 
● 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡,𝑖𝑖n = maintenance investment cost, for each retrofitting step (i) [EUR] 
● 𝑥𝑥𝑡𝑡,𝑖𝑖 = binary variable (1 or 0) [-], if the step i is performed in the time t 
● 𝑝𝑝𝑡𝑡,𝑖𝑖= ageing process probability of building materials or technical system of step i  

 

In this study, the energy costs were calculated based on final energy demand and energy 
prices of the corresponding sources. Retrofitting measures lead to reductions in final 
energy demand, resulting in energy savings that depended on energy-related investment 
costs. 

 

𝐸𝐸𝐸𝐸𝑡𝑡 = �𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡,𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑡𝑡,𝑖𝑖
𝑡𝑡

 

Where: 

● 𝐸𝐸𝐸𝐸𝑡𝑡, energy costs [EUR/a] 
● 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡,𝑖𝑖 , final energy demand [kWh/a]; 
● 𝑝𝑝𝑝𝑝𝑡𝑡,𝑖𝑖, energy price [EUR/kWh].  

 

Operation and maintenance costs for active systems were related to investment costs and 
an operation and maintenance factor. 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 = �𝐼𝐼𝐼𝐼𝑡𝑡,𝑖𝑖 ∙ 𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖
𝑖𝑖

 

 

Where:  

● 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 = operation and maintenance costs [EUR/a];  
● 𝐼𝐼𝐼𝐼𝑡𝑡,𝑖𝑖 = investment costs of active system [EUR];  
● 𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖=operation and maintenance factor [%] 
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● Below, the table of the 27 separate states and their energy prices can be seen.  

 

 

15.1.3. Gamma distribution basics 
The gamma distribution is flexible and can model a wide range of shapes depending on the 
values of (f) and (g). It is particularly useful for modelling processes where the event rate 
is not constant, which makes it suitable for various applications including modelling waiting 
times or the time until a certain number of events occur(Scipy.Stats.Gamma — SciPy v1.13.1 
Manual, n.d.). 

 

 
Figure 74 Gamma distribution with different shape parameters(Deep Variational Inference. Studying Variational Inference Using DL… 
| by Natan Katz | Towards Data Science, n.d.) 

 

Probability Density Function (PDF) 
The probability density function (PDF) of a gamma distribution for a variable x is given by 
the equation 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥|𝛼𝛼,𝛽𝛽) = 𝛽𝛽𝛼𝛼

𝛤𝛤(𝛼𝛼)
𝑥𝑥𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑥𝑥 

Where  

•  x is the variable of interest (e.g., time until failure, amount of damage). 

•  α is the shape parameter which determines the shape of the distribution. 

•  β is the scale parameter determines the scale (spread) of the distribution. 

The gamma function, symbolized as Γ(α), plays a crucial role in enabling the gamma 
distribution to effectively represent continuous events, such as degradation rates that 
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evolve over time. By incorporating time-dependent parameters, this function empowers 
the model to adapt to changing circumstances, resulting in a more precise depiction of real-
world processes. The gamma function is defined as: 

𝛤𝛤(𝛼𝛼)  =  � 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
 

Where  

t is a variable that goes from 0 to infinity. 

𝑡𝑡𝛼𝛼−1 raises t to a power based on α. 

𝑒𝑒−𝑡𝑡 is an exponential decay function that ensures the integral converges (the sum doesn't 
go to infinity). 

 

15.1.3.1. GAMMA DISTRIBUTION , DEGRADATION AND TIME 
RELATION 

The gamma process is a type of stochastic process where each time increment follows a 
gamma distribution. A gamma process can be used to model the deterioration of the 
insulation over time. A nonstationary gamma process allows the parameters of the gamma 
distribution to change over time, which better captures the real-world dynamics of the 
material’s deterioration.  

The gamma distribution is a continuous probability distribution that is generally used to 
model the time until when an event occurs. It is greatly used in medicine and engineering 
to determine the probability of death or failure of a system.  

The gamma distribution's Probability Density Function (PDF) at any time t is given by the 
equation: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐷𝐷𝐷𝐷|𝑓𝑓(𝑡𝑡),𝑔𝑔(𝑡𝑡))  =  
𝑔𝑔(𝑡𝑡)𝑓𝑓(𝑡𝑡)

𝛤𝛤(𝑓𝑓(𝑡𝑡))
𝐷𝐷𝐷𝐷𝑓𝑓(𝑡𝑡)−1𝑒𝑒−𝑔𝑔(𝑡𝑡)𝐷𝐷𝐷𝐷 

where DI is the damage index at time t, and g(t) is a non-negative time-varying scale 
parameter function, and f(t)), a non-negative time-varying shape parameter function. Those 
functions reflect how a material’s deterioration rate changes as it ages. The gamma function 
𝛤𝛤(𝑓𝑓(𝑡𝑡)) is used to define the distribution.  

The parameters f(t) and g(t) can be estimated based on analyzed condition data. This 
involves fitting a regression model to the observed values to predict the mean and variance 
of the material degradation over time.  The mean damage μDI(t)) at time t is defined as the 
product of f(t) and g(t), while the standard deviation σs(t)) is the square root of the product 
of f(t) and g(t). 
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𝜇𝜇𝐷𝐷𝐷𝐷(𝑡𝑡) =
𝑓𝑓(𝑡𝑡)
𝑔𝑔(𝑡𝑡)

 ,𝜎𝜎𝑠𝑠(𝑡𝑡) =
�𝑓𝑓(𝑡𝑡)
𝑔𝑔(𝑡𝑡)

 

As explained by (Saifullah et al., n.d.) for any given time, say,  t1 and t2 where t1<t2, the 
increase in the damage index DI(t2)−DI(t1)) follows a gamma distribution with parameters 
f(t2)−f(t1) and g(t2)’ .  
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15.1.4. Workflow Overview – Stage 1 
The process of formulating the methodology passed through various stages. The stages 
were then summarized in two parts. In the thesis, the final methodology is described. In 
order to keep consistency, stage 1 that described the summary of the initial tests and all the 
results that led to stage 2 were moved to the appendix. You can reference them here in 
order to understand how the methodology evolved to the final version.  

 

The initial idea pointed on the translation of the problem into an MDP problem. An 
environment needed to be build in order for the problem to be solved with a chosen 
Reinforcement Learning method.  As the actions would reflect to the energy performance 
of the building and the Return, energy simulations of the building’s model needed to run 
to generate all the possible scenarios.  After the completion environment , a series of 
episodes are run to test the model’s behaviour by checking the optimal policy against the 
benchmark criteria.  If proved to be correct, the optimal policy could be extracted and 
assessed.  

In this first stage of project development, the initial idea of the Markovian representation 
of the environment was developed. To simulate changes in energy demand, a case study 
was chosen, and a model was created using the geomeppy library in Python. 

In this investigative stage, for the sake of simplicity, stationary transition probabilities were 
used with arbitrary numbers. The focus of this stage was to investigate the general 
methodology needed to address the problem at hand and to decide which techniques 
needed to be reevaluated. 

15.1.4.1. THE PHYSICAL PROBLEM 
The physical problem addressed in this study revolves around existing building stock, 
which is unlikely to undergo significant changes by 2050. Thus, an existing house was 
chosen rather than a new construction. A pre-1945 Terraced house was selected as the 

Figure 75 Workflow of the first stage. The problem is defined as an MDP in the environment script. The model and the simulation o fthe buidling 
degradations are done in separate scripts and imported. The problem is then  solved wih a dynamic programming method called value iteration in a 
separate script. The extracted policy is used to run a series of episodes that compare the behaviour of the policy against a benchmark. The results are 
then plotted in a separate script.  
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initial case study, with careful consideration given to the chronology of construction due 
to variations in construction properties such as window to wall ratios and space for 
insulation. 

The characteristics of these terraced houses were derived from information provided by 
the Dutch Ministry of the Interior and Kingdom Relations regarding typical Dutch home 
typologies (Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, 2022).Notably, 
terraced houses from this period were often built without insulation, with those predating 
the 1930s lacking cavity walls. Typically, window frames were constructed from steel or 
softwood and featured a single glass layer. These houses constitute 4.5% of the Dutch 
building stock, with 73% being owner-occupied. 

Construction details obtained were utilized for the development of a digital model of the 
house for energy performance analysis, with the building layout and other characteristics 
being drawn from the thesis of Naeem Kantawala (Kantawala, n.d.). 

Roof insulation was represented by 200 mm EPS insulation plates, while the ground floor 
was insulated with 300 mm EPS sheets. Since the existence or not of a cavity wall depended 
on the actual chronology of the house, it was assumed that the house dated pre 1930s. 
These walls were modelled as two layers of 100 mm with no cavity, resulting to an R value 
of 0.35 without insulation. This allowed to assume a retrofitting measure of placing the 
insulation on the interior side of the wall. The thickness of the insulation was assumed to 
be 100 mm.  

Windows were assigned a U value of 2.90, and the window to wall ratio was set at 35%. 
The thermal conductivity of EPS insulation was derived from available data found at the 
site of IES18 entailing detailed information of thermal conductivity, specific heat capacity, 
and density. 

 

 

 
18https://help.iesve.com/ve2021/table_6_thermal_conductivity__specific_heat_capacity_and_density.htm# 

Figure 76 Ground floor layout(Kantawala, 
n.d.) Figure 78  First floor layout(Kantawala, n.d.) 

Figure 77 Second floor layout (Kantawala, 
n.d.) 
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Table 1: House model construction aspects (Own work) 

Aspect Details Area (m2) R 
values Measure 

Wall  Two layers of 100 mm bricks 
with no cavity.. 

63.8 (non-
adiabatic area) 0.35*   100 mm EPS 

Roof  Flat roof 44.4 0.35*  200 mm EPS (Expanded Polystyrene) 
insulation plates 

Ground Floor 
 

Crawl space ceiling insulation 44.4 0.15* 100 mm EPS sheets. 

Windows U-
value Single glazing,  35% WWR 2.90 - 

*Non insulated surface values 

 

Table 2: EPS Insulation Properties 

Conductivity (W/mK) Sp. Heat Capacity (J/kgK) Density (kg/m3) 

0.035  1400  25  

15.1.4.2. ENERGY DEMAND SIMULATION  
To determine the change in energy bills due to retrofitting insulation, it was necessary to 
analyse a house model and simulate various scenarios of thermal resistance or material 
conductivity degradation. EnergyPlus, an open-source software widely utilized for building 
energy simulations, was selected as the primary tool for this analysis. 

The simulations needed to consider various states of thermal conductivity degradation for 
different components. Three modelling tools were initially evaluated for developing the 
house model: 

1. DesignBuilder: This tool integrates a user-friendly environment for designing 3D 
models with EnergyPlus operating in the background. Despite its widespread use, 
DesignBuilder was deemed unsuitable due to its limited community support, non-intuitive 
interface, and the requirement for manual execution of simulations since the parametric 
tools kept crashing.  

2. Ladybug with Grasshopper: Ladybug offers extensive community support and ample 
documentation, facilitating the resolution of various modelling issues. However, each 
simulation run with Ladybug took approximately 15 seconds. Even though it is possible to 
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connect Grasshopper scripts with Python using Hops components, the cumulative time 
required to run numerous simulations across various episodes was deemed impractical in 
that stage.  

3. Geomeppy: This Python library extends Eppy, a scripting language for EnergyPlus, to 
enhance capabilities for geometry manipulation. Geomeppy allows the creation of 3D 
models, and manipulation of the idf.files , incorporating all the building model information, 
that are executable by EnergyPlus. Geomeppy was considered advantageous due to its 
speed, with each simulation running in approximately 5 seconds, and the ability to automate 
simulations through Python scripting. 

 

Table 3: Pros and cons of energy modelling tools  

Modeling Tool Pros Cons 

DesignBuilder Intuitive 3D modeling environment Limited community support, manual simulations, unstable 
parametric tool 

Ladybug with 
Grasshopper 

Extensive documentation, strong 
community support 

Slow simulation time, impractical for numerous episodes 

Geomeppy Fast simulation time, automated 
through Python 

Initial learning curve, requires scripting knowledge and 
good understanding of Energy plus dynamics 

 

Using Geomeppy was considered to be the most efficient approach due to its automation 
capabilities and faster simulation times., while allowing to work directly through python 
for the whole workflow.   

Following the online documentation, a simple geometry was modeled using parameters 
from the existing case study. The constructed model was then encapsulated in a function 
to iteratively run simulations across all possible combinations of insulation degradation 
scenarios. With this approach 27 distinct deagradation scenarios were simulated and 
exported in csv form into the environment script. 

 
Figure 79 Examples of the simple geometry of a house that was developped using geomeppy library in python (own work) 
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15.1.4.3. STATE SPACE (S) 
In the context of the retrofitting problem, the states of the Markov Decision Process 
(MDP) represent snapshots of a house's condition, focusing on key envelope elements: 
windows, external walls, ground floor, and roof. These states can be either fully observable 
or partially observable. For simplicity, deterministic states were used where the observed 
states accurately reflect the actual conditions. 

To model this, the three-step renovation strategy was adopted as proposed by (Maia et al., 
2023), which targets significant components such as the roof, facade, and ground floor or 
cellar ceiling surfaces due to their substantial impact on a building's performance and 
extensive coverage of the envelop. Each decision variable in the MILP model 
corresponded to a renovation stage occurring in a specific year. In a similar manner, states 
were defined as combinations of the current statuses of the three major components: roof, 
facade, and ground floor, reflecting the discrete stages of renovation and binary decisions 
over time. 

Inspired by Ferreira et al., (2023),who proposed uneven discrete degradation stages to 
quantify performance loss in building components, the degradation of the components 
(roof, facade, ground floor) in three stages: 0%, 20%, and 50% was defined. The separation 
was based on the mean degradation of plastic insulation at each degradation stage. 

 

 
Figure 81 Relationship of quantitative degradation as was assumed based on the available degradation graphs (own work) 

With three degradation stages per component, a total of 27 possible state combinations 
were derived . Each state  represented by a tuple indicating the degradation stage of each 

Figure 80 Relationship between the qualitative and quantitative scale(Ferreira et al., 2023) 
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component, providing a comprehensive overview of the house's condition for effective 
decision-making in the retrofitting process. For example, a state can be represented as: 

 

(Roof degradation, Façade degradation, Ground floor degradation) 

 

where each component degradation can be 0% (no degradation), 20% degradation, or 50% 
degradation.  

In a more mathematical way this can be represented as :  

𝑆𝑆 =  {(𝑟𝑟, 𝑓𝑓,𝑔𝑔)|𝑟𝑟, 𝑓𝑓,𝑔𝑔 ∈ {0%, 20%, 50%}} 
 

Table 4: States example 

State number Roof Degradation (%) Façade Degradation (%) Ground floor degradation (%) 

0 0 0 0 

1 0 0 20 

2 0 0 50 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

25 20 50 50 

26 50 50 50 

 

15.1.4.4. ACTION SPACE (A) 
The initial action space in the model was defined as a discrete action space comprising four 
possible actions: 

• Action 0: Do nothing 
• Action 1: Change Roof Insulation 
• Action 2: Change Façade Insulation 
• Action 3: Change Ground Floor Insulation 

The process of changing insulation is influenced by several factors, including the type and 
thickness of the insulation material, the method of installation, and the specific surface 
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being insulated. Numerous retrofitting measures are available, often detailed on 
government websites, offering guidance and support for energy efficiency improvements. 

For this initial approach, the retrofitting actions19 involved replacing the existing EPS 
(Expanded Polystyrene) insulation with a new, intact version. The following assumptions 
were made for simplicity and to facilitate a better understanding of the Markov Decision 
Process (MDP) model: 

• Perfect Installation: It was assumed that the retrofitting actions were carried out 
perfectly, with no imperfections that could degrade performance. 

• Restored Performance: It was assumed that the building's thermal performance 
would be fully restored to its original state post-retrofitting, implying that the 
building would function as efficiently as when it was new. 

These assumptions, while not entirely realistic, helped streamline the model and provided 
a clearer perspective on the potential benefits of retrofitting actions 

Table 5 : Retrofitting measures for house typology of stage 1 

Name Info Placement Width 
(mm) 

RC value 
(m2.K/W) 

Price euros per 
m2 

WB374 – Bio EPS  Flat roof 200 6.5 303.35 

WB002d - EPS  Crawl space 
ceiling 100 2.9 28.91 

WB008b -EPS 
isolation 

Decorative plaster 
finishing Exterior wall 100 2.6 162.73 

 

Table 6 : Actions of problem formulation in stage 1 

Action Interpretation Costs (Euros) 

0 Do nothing 0 

1 Change Roof Insulation 13.468,74 

2 Change Façade Insulation 10.382,174 

3 Change Cellar Ceiling Insulation 1.283,604 

 

 
19 In a lot of predictive maintenance problems, the actions include major , minor  maintenance actions. As there is 
ambiguity about how retrofitting should be categorized , the assumption was made that renovation is major 
maintenance, retrofitting is considered medium maintenance , minor maintenance being superficial fixes in the envelop 
skin.   
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15.1.4.5. REWARDS  (R) 
 

 

 

Based on the developed house typology and the different scenarios of energy demand , 27 
variations of energy consumed per square meter were created. The simulated energy 
demand was multiplied by 0.35, the mean value of euros per kWh in the Netherlands, based 
on the average provided by GlobalPetrolPrices.com (September 2023)20. In summary, our 
rewards reflect the financial impact of investment costs and energy bills, allowing us to 
assess the effectiveness of different retrofitting strategies in minimizing expenses over time. 
The table with all the degradation scenarios can be found in the appendix. Discount Factor 

In the context of a Markov Decision Process (MDP), the discount factor is crucial. It 
correlates to the concept of valuing future rewards relative to immediate ones. In an MDP, 
decisions are made at each state to maximize the cumulative reward over time. The 

 

 
20 According to the information from the official Dutch government , in 2023, the 
maximum tariff for electricity was €0.40 per kWh for up to 2,900 kWh of electricity used1. 
This price cap was introduced to protect households and other small-scale users from 
soaring energy prices(Netherlands Electricity Prices, September 2023 | GlobalPetrolPrices.Com, 
n.d.) 
 

Figure 82  Workflow graph of the calculate rewards function of the script (own) 
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discount factor, denoted by γ reduces the value of future rewards, reflecting the principle 
that immediate rewards are typically more valuable than future rewards. 

15.1.4.6. DISCOUNT FACTOR 
To maintain consistency in the analysis, a stable interest rate of 3% was assumed. This 
interest rate influences the discount factor, which is used to adjust the value of future cash 
flows to their present value. For a 3% interest rate, the discount factor is calculated as 0.97, 
indicating that future cash flows are discounted by 3% each year.  

𝛾𝛾 = 0.97 
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15.1.4.7. TRANSITION PROBABILITIES (T) 
 

 

To begin with, at an early stage of the analysis, constant transition probabilities were 
assumed, and a stationary probability was employed for initial testing. However, due to the 
state being defined as a discrete tuple representing the states of three components, it 
became necessary to articulate the transition from one state to the next as the joint 
probability of each component transitioning to a specific next state as outlined in the 
subsequent state tuple. 

𝑃𝑃 = 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∪ 𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∪ 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

Thus, the joint probability of transitioning from one state to another can be expressed as 
the product of the individual transition probabilities for each component though the 
equation :  

𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) =  𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ×  𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

This necessitated the formalization of a stationary transition probability matrix P, where 
each entry denoted the probability of transitioning from one state to another.  

Figure 83 State transitions graph. Each state reaches 27 other states based on the joint probability 
of each material reaching another state of deterioration (Own work) 
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𝑃𝑃 =
0.8 0.2 0
0 0.8 0.2
0 0 1

 

In this matrix, each row corresponds to the current state, while each column represents the 
probability of transitioning to the next state. 

In the same manner, the transition matrix for the actions was denoted as:  

𝑃𝑃 =
1 0 0
1 0 0
1 0 0

 

To compute these probabilities across the entire state space, one hot encoding was 
employed. This method allowed for the iteration through different transition matrices for 
each action. Depending on whether a particular component was to be changed or not, the 
relevant transition matrix was selected. The resulting probabilities of transitioning from 
one state to another were then multiplied to obtain the joint probability of the entire state 
transition. 

Ensuring the accuracy of the new transition matrix involved summing each row to verify 
that the probabilities totaled to 1, with a small margin of error accounted for due to 
numerical precision limitations in Python. This validation process ensured that the 
probabilities accurately reflected the transitions between different states based on the 
actions taken. 
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One hot encoding was employed to represent the various actions taken concerning each 
component's transition within the state space.  

Example: 

 

We start with a state tuple where all components are in perfect condition, denoted as 
State1=(0,0,0). The subsequent state we aim to determine the probabilities of reaching is 
State2=(0,1,1). Using this encoding scheme, each action corresponds to a specific binary 
vector: 

• Action 0: [0,0,0] 
• Action 1: [1,0,0] 
• Action 2: [0,1,0] 
• Action 3: [0,0,1] 

In this case, action 1 is selected. We examine the probability of transitioning from the 
current state to the next state for each component: 

• Roof state: 0, Future Roof state: 0, Action: 1 → Probability: 1 
• Facade state: 0, Future Facade state: 1, Action: 0 → Probability: 0.2 
• Floor state: 0, Future Floor state: 1, Action: 0 → Probability: 0.2 

Figure 84 The workflow of the script to calculate the state transition probabilities using one hot 
encoding (own) 
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The joint probability is computed as the product of these individual probabilities, resulting 
in 1×0.2×0.21×0.2×0.2. These binary vectors serve as indices to select the relevant 
transition probabilities from the transition model matrix. By utilizing this one hot encoding 
scheme for each component and action, efficient computation of joint probabilities for 
transitioning between states across the entire state space is achieved. 

Bottom of Form 

 

15.1.4.8. ENVIRONMENT CREATION  

 
Figure 85 Workflow depicting the initial  environment with its functions and the creation of the states (own work) 

Initially, an environment was constructed based on a toy environment outlined by Prateek 
Bustali. However, since Gymnasium libraries, which are typically utilized for running Deep 
Reinforcement Learning agents, did not support value iteration, adjustments to the 
environment were necessary. 

The environment simulated represented a house undergoing degradation over time, with 
the goal of minimizing renovation costs and energy bills. This flowchart illustrates how the 
environment functions, from initialization to episode termination, and how actions 
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influence state transitions and rewards. The basis code for the environment and the value 
iteration method was created by Prateek Bhustali 21.  

Inspiration for the environment was also  drown from  Bechir Trabelsi22 

Initialization parameters: The environment is initialized with parameters such as house 
size, number of damage states, and action space. These include actions like fixing the roof, 
wall, or facade, or doing nothing. 

 State Space Generation: The state space of the house is generated based on the number 
of damage states for each component (roof, wall, cellar). This creates a discrete set of 
possible states for the house. 

Transition Model Creation: A transition model is built to determine the probabilities of 
transitioning from one state to another based on actions taken. This is done by calculating 
joint probabilities for each component's transition using a one-hot encoding scheme. 

Reward Calculation: When an action is taken, the environment calculates the associated 
reward. This includes renovation costs and energy bills, which are influenced by the 
degradation of house components. 

State Transition: Upon taking an action, the environment transitions to a new state based 
on the transition probabilities calculated earlier. The next state is chosen randomly 
according to these probabilities. 

Episode Termination: The episode continues until a certain time limit is reached, when 
the lifespan of the house ends. At this point, the episode terminates. 

15.1.4.9. OPTIMIZATION METHODOLOGY  
Different Reinforcement Learning methodologies were considered based on the 
formulation of the problem. Reinforcement learning involves exploring potential scenarios 
and devising an optimal policy based on the mean return. Value iteration, on the other 
hand, is not a dynamic learning method but rather falls under dynamic programming. 
Dynamic programming serves as the foundation of reinforcement learning. Unlike the 
reinforcement learning approach, which is model-free, value iteration is a model-based 
approach: The agent must examine all possible states and actions to create the optimal 

 

 
21(https://gitlab.tudelft.nl/pbhustali/mdp_tutorials//blob/main/Inspection_Maintenanc
e_Example/MDP.ipynb?ref_type=heads) 
22 (https://bechirtr97.medium.com/finding-the-optimal-mainteance-policy-via-markov-
decision-process-and-policy-iteration-algorithm-c7b604d16fb1) 
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policy to follow. Value iteration was deemed a suitable starting point for two primary 
reasons:  

1. due to the manageable size of the state space at the time 
2.  because it provided a clear understanding of the outcomes. 

The value iteration process was segmented into three distinct parts.The first part involved 
the creation of the environment as described above.  

 
Figure 86  Workflow depicting the value iteration funtion and its relation to the environment 

The second part of the process involved the actual implementation of the value iteration 
algorithm. In this script, the value iteration was set with a convergence delta of e-20 to 
ensure precise results. This script was responsible for iterating through all states and 
actions, updating the value function until convergence was achieved, thus determining the 
optimal policy. 

The third part consisted of running a series of episodes to test the efficacy of the value 
iteration-derived policy. This script was designed to execute 1000000 episodes, where the 
performance of the optimal policy was benchmarked against the do-nothing policy. By 
comparing the mean return of the optimal policy with that of the do-nothing policy, it was 
possible to evaluate the effectiveness of the value iteration approach in addressing the 
problem. 
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Figure 87  Workflow depicting the relationship between the scripts used for the optimization process (own work) 

This three-part methodology ensured a systematic and comprehensive approach to 
implementing and validating the value iteration technique. By separating the environment 
creation, value iteration code, and episode simulations into distinct scripts, clarity and 
modularity were maintained, facilitating easier debugging and refinement of each 
component. 

15.1.4.10. RESULTS  
The value iteration algorithm was executed over 700 iterations. The building's lifespan was 
assumed to span 60 years, with time steps of 5 years each. Initial observations suggested 
that the optimal policy matched  the benchmark policy. However, upon conducting various 
tests with the prices, it became apparent that the results were not as expected. The problem 
was detected to lie with formulation of the problem as it will be analyzed below.  

Figure 88 Histograms depicting the optimal policy and the best policy 
using different action costs . The red parts signify the costs 
accumulated in the different episodes by the optimal policy while the 
blue signify the do nothing policy. 
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15.1.4.11. CONCLUSIONS 
Value iteration 
The absence of time within the state space was identified during problem formulation, 
leading to the emergence of the infinite horizon problem. This issue stemmed from 
overlooking the temporal dimension of the problem, resulting in unrealistic outcomes.  

It became evident that the exclusion of time from the state space led to flawed predictions 
and unreliable results. Despite initial attempts to model the problem without temporal 
considerations, the outcomes did not align with reality. This discrepancy was attributed to 
the model's inability to capture the evolving nature of the problem over time, resulting in 
unrealistic mean returns. The infinite horizon problem exacerbated this situation by 
assuming a consistent framework indefinitely, impeding the model's adaptability to 
changing circumstances. 

To address this issue, it was crucial to integrate time into the state space, as suggested by  
(Morato et al., n.d.) to account for the dynamic nature of the problem. By introducing time 
as a variable, each state could be evaluated within its temporal context, providing a more 
accurate representation of the problem. Additionally, adjusting transition probabilities to 
reflect material states' evolution over time was necessary to ensure the model's validity. 
Furthermore, refining the modeling approach to emphasize temporal dynamics and fine-
tuning transition matrices were essential steps in mitigating the infinite horizon problem 
and enhancing the model's predictive accuracy. This is particularly significant as the 
problem was framed with a finite horizon (60 years). 

Energy modeling 
The underperformance of the building model created using Geomeppy was mostly 
attributed to the lack of comprehensive documentation regarding its modeling capabilities. 
This led to a simplistic representation of the building geometry, resulting in unrealistic 
simulations. Moreover, the absence of consistent documentation made it challenging to 
incorporate crucial details such as infiltration rates, heating system specifications, further 
diminishing the accuracy of the simulations. Geomeppy, akin to Eppy scripting language, 
operates as a parametric tool, necessitating specific parameters and data connections for 
generating desired results. For instance, integrating a boiler into the heating system might 
require additional output files. While resources like the documentation provided by Big 
Ladder Software23 offer extensive information, the absence of a step-by-step approach can 
be daunting, particularly for new users. Despite the fact that it can be usable by experienced 
EnergyPlus users, the current lack of documentation and community support poses 
significant challenges to its widespread adoption and further development. 

 

 
23 (https://bigladdersoftware.com/epx/docs/22-1/essentials/essentials.html) 
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As a result of these shortcomings, the initial version of the problem formulation had to be 
revised. New transition matrices incorporating updated probabilities needed to be 
generated, and a more accurate building model had to be employed. Furthermore, the 
minimal impact of facade insulation changes on the terraced house's performance 
emphasized the need for nuanced adjustments in the simulation approach. 

 

 

 

15.1.5. Results from original state space 
 

In the first test, the Reward function was used without a ‘penalty’, in the sense of restricting 
a certain state to be reached. This was done to determine the policy over a 60-year period, 
as there was speculation that energy bills might eventually become more expensive than 
retrofitting the house. 

The value iteration ran for more than 96 hours, completing 13 iterations across all possible 
scenarios. The results showed the optimal policy matched the "do nothing" policy, where 
no action is taken to change anything. Based on this policy and various episode simulations, 
the expected costs over the next 60 years (excluding the final year) were analyzed. 

Figure 89 Examples of modelling problems with geomeppy. The house models when underground storey is incorporated resulting to 
the roof reaching the middle of the upper floor. 
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Figure 90 Plot of the optimal policy for the problem formulation without penalty. Year 60 shows all actions being considered. This is 
happening because the rewards at year 60 are zero. These are considered absorbing states , meaning that once reached there , there is 
nowhere else you might go. 

The "do nothing" policy yielded a mean expected cost of 854,242 euros over 60 years, 
which was very close to the optimal policy's return of 854,240 euros. The variance between 
the different return outcomes across the episodes amounted to 4,420 euros. This variance 
and the minor differences in costs are expected due to the randomness involved in 
transitioning from state to state. The use of 1,000,000 episodes ensured that the variances 
between the policies would not differ significantly. 

In the following schemes, the plots of the "do nothing" policy are shown. The initial state 
starts with a reward representing the first year's energy cost, amounting to 14,501 euros 
based on an energy requirement of 41,500 kWh for the house model. The house area is 
250 m², and the total energy demand is multiplied by the price per kWh of 0.35 euros. In 
the next time step there is a sudden increase in costs, where the rewards start accounting 
for the five-year lapse between states. In the final time step, the rewards return to zero as 
that state signifies the end of the episode. The building does not reach the final state of 
degradation but remains in a state of Roof degradation 40%, Façade 20%, and Groundfloor 
40% from year 20, as shown in the right diagram representing kWh per m² per state. 
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Similarly, the simulated episode for the optimal policy shows the house degrading over 
time and reaching the worst degradation stage by year 40.  

 

 

The histogram comparison of the total return per episode showed that in most scenarios, 
the total return amounted to 855,000 euros, indicating that the building would likely reach 
the worst case of degradation quite early. 

Figure 91  Episode samples depicting the costs of each time step (left) and the energy demand (right) under do nothing policy (own work) 

Figure 92 Episode samples of optimal policy (same with do nothing policy) depicting the costs (left) and the energy demand (right) in each time 
step 
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The variances between the mean return of the optimal policy (4424) and the mean return 
of the do nothing policy(4420) were quite similar thanks to the large amount of generated 
episodes with their difference being only an integer of 4 which can be considered 
acceptable difference in this case.  

 
 

Based on the results and analysis, several key conclusions can be drawn: 

First of all, the fact that the optimal policy matched the "do nothing" policy suggests that, 
under the current model and assumptions, no retrofitting actions provide a significant 
advantage. This implies that the costs of potential interventions are not justified by the 
savings in energy bills over the 60-year period considered (something that was anticipated 
since the difference in prices between the best and worst case scenario amounted to only 
5.6% increase in energy demand). 

However, it must be noted that the close match between the return indicates that the model 
is stable and consistent in predicting long-term costs. 

Figure 93 Return comparison between do nothing policy and optimal policy (own work) 

Figure 94 Snippet of mean return over one million episodes for both policies 
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Even more, the uncertainty emphasized both in the variance outcomes and the different 
degradation scenarios that the episodes simulated showed that the model that was 
formulated was reliable. This can be assumed based on the histogram comparison and the 
graphs simulating the energy demand per time step , both of which point that the building 
is likely to experience early degradation to its worst state, driving up costs quickly.  

The value iteration algorithm effectively converged after 13 iterations, despite the high 
computational demand requiring over 96 hours, indicating its reliability in optimizing 
expected cumulative rewards over a 60-year period. However, the significant 
computational resources required suggest potential scalability issues for larger models. For 
future optimization efforts, incorporating penalties and incentives within the reward 
structure could provide a more nuanced evaluation of policies, particularly for retrofitting 
or other proactive measures. Given the possibility of future policies mandating buildings 
to maintain certain energy performance standards, such as the label C requirement for 
office buildings in the Netherlands24, repeating the experiment with an introduced penalty 
was essential to simulate these scenarios accurately and inform long-term decision-making 
effectively. 

  

 

 
24 (https://natlawreview.com/article/energy-label-c-obligation-all-office-buildings-
netherlands-2023-few-exceptions). 
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15.2. Tables  
 

Table 11: States example 

State 
number 

Time 
(years) 

Roof 
Degradation 

(%) 

Façade 
Degradation 

(%) 

Ground floor 
degradation 

(%) 

Age 

Roof  

Insulation 
(years) 

Age 

Façade 

Insulation 

(years) 

Age Ground 
floor 

Insulation 

(years) 

1 0 0 0 0 0 0 0 

2 0 0 0 1 0 0 0 

3 0 0 0 2 0 0 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

27 5 0 0 0 0 0 0 

28 5 0 0 0 0 0 5 

29 5 0 0 0 0 5 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

78304 45 2 1 2 30 10 45 

78305 45 2 1 2 30 15 0 

78306 45 2 1 2 30 15 5 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

223584 60 2 2 2 60 60 50 

223585 60 2 2 2 60 60 55 

223586 60 2 2 2 60 60 60 
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Table 7: Degradation scenarios and their costs in energy bills of building simulated in Geomeppy, Stage 1 

state description energy[kWh/m2] energy[kWh] Energy bills 

1 (0, 0, 0) 183,3 24500 8575,1 

2 (0, 0, 0.2) 185,1 24734 8656,8 

3 (0, 0,0.4) 186,7 24956 8734,6 

4 (0,0.2, 0) 183,6 24536 8587,5 

5 (0, 0.2, 0.2) 185,3 24769 8669,2 

6 (0, 0.2, 0.4) 187 24991 8746,9 

7 (0, 0.4, 0) 183,9 24573 86006 

8 (0, 0.4, 0.2) 185,6 24806 8682,2 

9 (0, 0.4, 0.4) 187,3 25027 8759,6 

10 (0.4, 0, 0) 184 24586 8604,9 

11 (0.2, 0,0.2) 185,7 24818 8686,3 

12 (0.2, ,0 , 0.4) 187,3 25039 8763,7 

13 (0.2,0.2, 0) 184,2 24621 8617,4 

14 (0.2, 0.2, 0.2) 186 24853 8698,6 

15 (0.2, 0.2, 0.4) 187,6 25074 8775,9 

16 (0.2, 0.4, 0) 184,5 24658 8630,3 

17 (0.2, 0.4, 0.2) 186,2 24890 8711,5 

18 (0.2, 0.4, 0.4) 187,9 25110 8788,6 

19 (0.4, 0, 0) 184,6 24669 8634,1 

20 (0.4, 0, 0.2) 186,3 24900 8715,1 

21 (0.4, 0, 0.4) 188 25120 8792,1 

22 (0.4, 0.2, 0) 184,8 24704 8646,3 

23 (0.4, 0.2, 0.2) 186,6 24935 8727,3 

24 (0.4, 0.2, 0.4) 188,2 25155 8804,1 

25 (0.4, 0.4, 0) 185,1 24741 8659,3 

26 (0.4, 0.4, 0.2) 186,8 24971 8740 
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27 (0.4, 0.4, 0.4) 188,5 25191 8816,7 

 

Table 10: Degradation scenarios of  model generated in stage 2 without infiltration and their costs 
in energy bills 

description energy[kWh/m2] energy[kWh] Energy bills 

(0, 0, 0) 165.72 41772.9 14620.5 

(0, 0, 0.2) 166.13 41876.0 14656.6 

(0, 0,0.4) 166.54 41978.3 14692.4 

(0,0.2, 0) 169.17 42641.0 14924.4 

(0, 0.2, 0.2) 169.57 42742.7 14960.0 

(0, 0.2, 0.4) 169.97 42844.3 14995.5 

(0, 0.4, 0) 172.80 43556.4 15244.8 

(0, 0.4, 0.2) 173.19 43656.6 15279.8 

(0, 0.4, 0.4) 173.59 43756.9 15314.9 

(0.4, 0, 0) 166.39 41941.6 14679.6 

(0.2, 0,0.2) 166.80 42044.7 14715.7 

(0.2, ,0 , 0.4) 167.21 42147.0 14751.5 

(0.2,0.2, 0) 169.83 42809.0 14983.2 

(0.2, 0.2, 0.2) 170.23 42909.9 15018.5 

(0.2, 0.2, 0.4) 170.64 43011.6 15054.1 

(0.2, 0.4, 0) 173.46 43723.0 15303.1 

(0.2, 0.4, 0.2) 173.86 43823.2 15338.1 

(0.2, 0.4, 0.4) 174.25 43923.4 15373.2 

(0.4, 0, 0) 167.12 42126.5 14744.3 

(0.4, 0, 0.2) 167.53 42228.9 14780.1 

(0.4, 0, 0.4) 167.94 42331.2 14815.9 

(0.4, 0.2, 0) 170.56 42992.5 15047.4 

(0.4, 0.2, 0.2) 170.96 43093.4 15082.7 
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(0.4, 0.2, 0.4) 171.36 43195.1 15118.3 

(0.4, 0.4, 0) 174.18 43905.8 15367.0 

(0.4, 0.4, 0.2) 174.58 44006.0 15402.1 

(0.4, 0.4, 0.4) 174.98 44105.5 15436.9 

 

 

 

 

All possible measures involving plastic foam insulation  

Roof insulation 

Name Info  Placement Width 
(mm) 

Rd 
value 

RC 
value 

Price 
euros 

per m2 

WB373 – Bio EPS  Flat roof 160 
mm 

5.0 5.2 295.67 

WB374 – Bio EPS  Flat roof 200 6.3 6.5 303.35 

WB375 – Bio EPS  Flat roof 250 7.9 8.1 305.82 

WB006a – EPS 
isolatie 

 Flat roof 100 - 3.2 231.63 

WB007a – EPS 
isolatie 

 Flat roof 100 - 3.1 287.04 

WB004 – PIR 
renovatie 
dakplaten 

 Pitched roof 81 3.6 3.9 132.49 

WB212a– PIR 
renovatie 
dakplaten 

 Pitched roof 142 6.45 6.8 145.06 

WB212b – PIR 
renovatie 
dakplaten 

 Pitched roof 175 6.45 8.3 149.96 

Ground floor insulation 

WB003b -EPS  Crawl space floor 300 - 2.6 34.68 

WB002d - EPS  Crawl space ceiling 100 2.8 2.9 28.91 

Façade insulation 
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WB009c – EPS 
beads 

 Cavity wall 50 - 1.6 21.96 

WB008b -EPS 
isolation 

Decorative plaster 
finishing 

Exterior wall 100 - 2.6 162.73 

WB224 – EPS 
isolation 

Decorative plaster 
finishing 

Exterior wall 220 - 6.3 175.25 

WB270 – EPS100 Façade insulation 
and walls 

Exterior wall 120 3.5 3.9 210,17 

       

 

 

 

Table 10: Degradation scenarios and their costs in energy bills 

description energy[kWh/m2] energy[kWh] Energy bills 

0%, 0%, 0% 165.73 41773.00 14.620,55 

0%, 0%, 20% 181.06 45638.49 15.973,47 

0%, 0%, 40% 196.48 49525.86 17.334,05 

0%, 20%, 0% 184.08 46400.01 16.240,00 

0%, 20%, 20% 199.49 50282.44 17.598,85 

0%, 20%, 40% 214.96 54182.52 18.963,88 

0%, 40%, 0% 202.68 51088.43 17.880,95 

0%, 40%, 20% 218.14 54983.56 19.244,25 

0%, 40%, 40% 233.64 58892.10 20.612,24 

20%, 0%, 0% 181.31 45700.60 15.995,21 

20%, 0%, 20% 196.72 49585.85 17.355,05 

20%, 0%, 40% 212.20 53487.33 18.720,57 

20%, 20%, 0% 199.72 50342.43 17.619,85 

20%, 20%, 20% 215.19 54240.39 18.984,14 

20%, 20%, 40% 230.70 58151.05 20.352,87 

20%, 40%, 0% 218.37 55041.43 19.264,50 
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20%, 40%, 20% 233.86 58947.86 20.631,75 

20%, 40%, 40% 249.41 62866.28 22.003,20 

40%, 0%, 0% 197.02 49661.37 17.381,48 

40%, 0%, 20% 212.49 53560.03 18.746,01 

40%, 0%, 40% 228.02 57473.51 20.115,73 

40%, 20%, 0% 215.48 54313.79 19.009,83 

40%, 20%, 20% 230.99 58222.33 20.377,82 

40%, 20%, 40% 246.54 62142.87 21.750,00 

40%, 40%, 0% 234.15 59019.85 20.656,95 

40%, 40%, 20% 249.68 62935.45 22.027,41 

40%, 40%, 40% 265.26 66860.93 23.401,33 

 

 

 

 

 

 

15.3. Plots and Diagrams 

Simulation 1:  No penalty, no infiltration simulation, beta 0.15 

Optimal policy plot 
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Material degradation scenarios , 1000000 realizations   

 

Histogram comparison of return between do nothing policy and optimal policy 



139 | Page 

 

 

 

Do nothing policy: Sample Episode 1 Costs Do nothing policy:  Sample Episode 1 States of energy demand  

 

 

Do nothing policy: Sample Episode 2 Costs Do nothing policy:  Sample Episode 2 States of energy demand  
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Do nothing policy: Sample Episode 3 Costs Do nothing policy:  Sample Episode 3 States of energy demand  

 

 

Optimal policy: Sample Episode 1 Costs Optimal policy:  Sample Episode 1 States of energy demand  
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Optimal policy: Sample Episode 2 Costs Optimal policy:  Sample Episode 2 States of energy demand  

  

Optimal policy: Sample Episode 3 Costs Optimal policy:  Sample Episode 3 States of energy demand  

  

Median energy demand change with do nothing policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 2 over million 
episodes with do nothing policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 4 over million 
episodes with do nothing policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 6 over million 
episodes with do nothing policy 

  

Median energy demand change with optimal policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 2 over million 
episodes with optimal policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 4 over million 
episodes with optimal policy 



145 | Page 

 

 

 

 

  

Distribution of possible energy demand at time step 5 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 6 over million 
episodes with optimal policy 

  

Simulation 2:  Penalty, no infiltration simulation, beta 0.15 

Optimal policy plot 
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Material degradation scenarios , 1000000 realizations   
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Histogram comparison of return between do nothing policy and optimal policy 

 

Do nothing policy: Sample Episode 1 Costs Do nothing policy:  Sample Episode 1 States of energy demand  

  

Do nothing policy: Sample Episode 2 Costs Do nothing policy:  Sample Episode 2 States of energy demand  
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Do nothing policy: Sample Episode 3 Costs Do nothing policy:  Sample Episode 3 States of energy demand  

  

Optimal policy: Sample Episode 1 Costs Optimal policy:  Sample Episode 1 States of energy demand  

  

Optimal policy: Sample Episode 2 Costs Optimal policy:  Sample Episode 2 States of energy demand  



149 | Page 

 

 

  

Optimal policy: Sample Episode 3 Costs Optimal policy:  Sample Episode 3 States of energy demand  

  

Median energy demand change with do nothing policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 2 over million 
episodes with do nothing policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 4 over million 
episodes with do nothing policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 6 over million 
episodes with do nothing policy 

  

Median energy demand change with optimal policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 2 over million 
episodes with optimal policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 4 over million 
episodes with optimal policy 
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\ 

  

Distribution of possible energy demand at time step 5 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 6 over million 
episodes with optimal policy 

  

Simulation 3:  No penalty, no infiltration simulation, beta 0.5 

Optimal policy plot 

 

Material degradation scenarios , 1000000 realizations   
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Histogram comparison of return between do nothing policy and optimal policy 
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Do nothing policy: Sample Episode 1 Costs Do nothing policy:  Sample Episode 1 States of energy demand  

  

Do nothing policy: Sample Episode 2 Costs Do nothing policy:  Sample Episode 2 States of energy demand  
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Do nothing policy: Sample Episode 3 Costs Do nothing policy:  Sample Episode 3 States of energy demand  

  

Optimal policy: Sample Episode 1 Costs Optimal policy:  Sample Episode 1 States of energy demand  

  

Optimal policy: Sample Episode 2 Costs Optimal policy:  Sample Episode 2 States of energy demand  
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Optimal policy: Sample Episode 3 Costs Optimal policy:  Sample Episode 3 States of energy demand  

  

Median energy demand change with do nothing policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 2 over million 
episodes with do nothing policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 4 over million 
episodes with do nothing policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 6 over million 
episodes with do nothing policy 

  

Simulation 4:  No penalty, no infiltration simulation, beta 1.2 

Optimal policy plot 
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Material degradation scenarios , 1000000 realizations   
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Histogram comparison of return between do nothing policy and optimal policy 
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Do nothing policy: Sample Episode 1 Costs Do nothing policy:  Sample Episode 1 States of energy demand  

  

Do nothing policy: Sample Episode 2 Costs Do nothing policy:  Sample Episode 2 States of energy demand  
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Do nothing policy: Sample Episode 3 Costs Do nothing policy:  Sample Episode 3 States of energy demand  

  

Optimal policy: Sample Episode 1 Costs Optimal policy:  Sample Episode 1 States of energy demand  

  

Optimal policy: Sample Episode 2 Costs Optimal policy:  Sample Episode 2 States of energy demand  
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Optimal policy: Sample Episode 3 Costs Optimal policy:  Sample Episode 3 States of energy demand  

  

Median energy demand change with do nothing policy from one million episodes 



165 | Page 

 

 

 

Distribution of possible energy demand at time step 1 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 2 over million 
episodes with do nothing policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 4 over million 
episodes with do nothing policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 6 over million 
episodes with do nothing policy 

  

Simulation 5:  No penalty, infiltration simulation, beta 0.15 

Optimal policy plot 
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Material degradation scenarios , 1000000 realizations   
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Histogram comparison of return between do nothing policy and optimal policy 
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Do nothing policy: Sample Episode 1 Costs Do nothing policy:  Sample Episode 1 States of energy demand  

  

Do nothing policy: Sample Episode 2 Costs Do nothing policy:  Sample Episode 2 States of energy demand  
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Do nothing policy: Sample Episode 3 Costs Do nothing policy:  Sample Episode 3 States of energy demand  

  

Optimal policy: Sample Episode 1 Costs Optimal policy:  Sample Episode 1 States of energy demand  

  

Optimal policy: Sample Episode 2 Costs Optimal policy:  Sample Episode 2 States of energy demand  
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Optimal policy: Sample Episode 3 Costs Optimal policy:  Sample Episode 3 States of energy demand  

  

Median energy demand change with do nothing policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 2 over million 
episodes with do nothing policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 4 over million 
episodes with do nothing policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 6 over million 
episodes with do nothing policy 

  

Median energy demand change with optimal policy from one million episodes 



174 | Page 

 

 

 

Distribution of possible energy demand at time step 1 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 2 over million 
episodes with optimal policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 4 over million 
episodes with optimal policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 6 over million 
episodes with optimal policy 

  

Simulation 6:  No penalty, infiltration simulation, beta 0.5 

Optimal policy plot 
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Material degradation scenarios , 1000000 realizations   
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Histogram comparison of return between do nothing policy and optimal policy 
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Do nothing policy: Sample Episode 1 Costs Do nothing policy:  Sample Episode 1 States of energy demand  

  

Do nothing policy: Sample Episode 2 Costs Do nothing policy:  Sample Episode 2 States of energy demand  
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Do nothing policy: Sample Episode 3 Costs Do nothing policy:  Sample Episode 3 States of energy demand  

  

Optimal policy: Sample Episode 1 Costs Optimal policy:  Sample Episode 1 States of energy demand  

  

Optimal policy: Sample Episode 2 Costs Optimal policy:  Sample Episode 2 States of energy demand  



180 | Page 

 

 

  

Optimal policy: Sample Episode 3 Costs Optimal policy:  Sample Episode 3 States of energy demand  

  

Median energy demand change with do nothing policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 2 over million 
episodes with do nothing policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 4 over million 
episodes with do nothing policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 6 over million 
episodes with do nothing policy 

  

Median energy demand change with optimal policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 2 over million 
episodes with optimal policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 4 over million 
episodes with optimal policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 6 over million 
episodes with optimal policy 

  

Simulation 7:  No penalty, infiltration simulation, beta 1.2 

Optimal policy plot 
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Material degradation scenarios , 1000000 realizations   
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Histogram comparison of return between do nothing policy and optimal policy 
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Do nothing policy: Sample Episode 1 Costs Do nothing policy:  Sample Episode 1 States of energy demand  

  

Do nothing policy: Sample Episode 2 Costs Do nothing policy:  Sample Episode 2 States of energy demand  
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Do nothing policy: Sample Episode 3 Costs Do nothing policy:  Sample Episode 3 States of energy demand  

  

Optimal policy: Sample Episode 1 Costs Optimal policy:  Sample Episode 1 States of energy demand  

  

Optimal policy: Sample Episode 2 Costs Optimal policy:  Sample Episode 2 States of energy demand  
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Optimal policy: Sample Episode 3 Costs Optimal policy:  Sample Episode 3 States of energy demand  

  

Median energy demand change with do nothing policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 2 over million 
episodes with do nothing policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 4 over million 
episodes with do nothing policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with do nothing policy 

Distribution of possible energy demand at time step 6 over million 
episodes with do nothing policy 

  

Median energy demand change with optimal policy from one million episodes 
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Distribution of possible energy demand at time step 1 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 2 over million 
episodes with optimal policy 

  

Distribution of possible energy demand at time step 3 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 4 over million 
episodes with optimal policy 
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Distribution of possible energy demand at time step 5 over million 
episodes with optimal policy 

Distribution of possible energy demand at time step 6 over million 
episodes with optimal policy 
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