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Design of Fiber-steered Variable-stiffness Laminates
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Julien M.J.F. van Campen∗, Christos Kassapoglou†, Zafer Gürdal‡

Aerospace Structures, Delft University of Technology,

Kluyverweg 1, 2629 HS Delft, the Netherlands

Mechanical properties of fiber-reinforced laminated composite materials are direction-
ally dependent. Contemporary laminated composite design aims to make effective use
of these directional properties by means of stacking sequence design, selecting the fiber
orientation angle of each ply from a predefined set. Automated fiber-placement (AFP)
technology can be used to improve the efficacy of composite materials by means of fiber
steering. The variation of fiber orientation angles per ply of the laminate yields a variable
stiffness (VS) laminate. For optimization purposes it is attractive to design such laminates
in terms of lamination parameters (LP), as the number of design variables per point in the
structure can be reduced to as little as four dimensionless variables considering balanced
symmetric layups, and because many lay-up optimization problems can be made convex
by describing them in terms of LPs. VS laminate design in terms of LP requires the ob-
tained LP distribution to be converted into an actual fiber angle design. In a previous
study the authors proposed a method to convert VS laminate designs using LPs into fiber
angle designs. This method includes a constraint on in-plane curvature, a manufacturing
constraint related to AFP. Thickness build-up will occur due to fiber steering. The amount
of thickness build-up that results from the obtained fiber angle designs is discussed here as
a function of the constraint on fiber curvature. The streamline analogy is used to obtain
an estimate for thickness build-up and to determine fiber paths. A square plate loaded in
biaxial compression is used to demonstrate the effect of the in-plane curvature constraint
on thickness build-up, and several fiber angle designs, thickness distributions and fiber
paths are given for this structure.

Nomenclature

α = step size
β = penalty term
κ = in-plane curvature
V = lamination parameters
Φ = augmented objective
Ψ = stream function
ε = bonus term
C = constant
t = thickness
V A
i = lamination parameters for A-matrix

V D
i = lamination parameters for D-matrix
Γ = matrices of material invariants
g = gradient
n = normal vector
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s = tangent vector
θ = fiber angle
f = objective
g = constraint margin
n = number of layers in the laminate
nd = number of layers in the laminate for which the orientation is designed
S = reduced stiffness
Ui = material invariant
AFP = automated fiber placement
CLT = classical lamination theory
CS = constant stiffness
FPM = fiber placement machine
VS = variable stiffness

I. Introduction

In conventional composite laminate design the desire is to find the arrangement of material constituents
that best satisfies the posted requirements on , for instance, strength, stiffness and cost. Fiber orientation
angles are usually chosen from the set {0◦/+ 45◦/− 45◦/90◦} and remain constant throughout an entire ply.
Furthermore, laminate designs are limited to a fixed number of plies, n, and design rules like the 10%-rule.
This limits the scope of the optimization problem, and the directional properties of the composite material
cannot be used to their full extend, for there are only a limited number of possible combinations. Hence there
is room for improvement in terms of mechanical properties and/or weight of the structure. Such improvement
can be achieved by modification of the stacking sequence within the bounds of conventional design rules, i.e.
laminate tailoring. As defined by Jones1 laminate tailoring is the act of meeting ”. . . particular structural
requirements with little waste of material capability.”

The concept of laminate tailoring can be taken further by expanding the range of fiber orientation angles
used to design a structure and by allowing fiber angle variation within a ply. The latter form of composite
laminate tailoring is known as variable stiffness (VS) composite laminate design, and will form the focus of
this paper. It is posited by Jegley et al.2 that matching the spatial variation of the stress state in a structure
by varying the fiber orientation angle, exploits the direction material properties of fiber-reinforced composite
laminates more efficiently, for both strength and stiffness. The variation in fiber orientation angle will result
in stiffness properties being spatially variable, hence the term VS composite laminate.

A considerable amount of work on VS composite structures can be found in literature. VS design has
been applied to a range of design studies: buckling optimization,2–8 maximization of eigenfrequencies,9, 10

in-plane compliance11, 12 and strength.13, 14 Without exception significant improvements in performance over
constant stiffness (CS) designs are reported.

Allowing stiffness variation in composite design leads to a significant increase of the number of design
variables. Using fiber angles as design variables inevitably leads to an ill-behaved objective function with
many local minima.15 The number of variables describing the mechanical properties of a laminate can be
successfully reduced to twelve dimensionless variables by using lamination parameters (LP), as introduced
by Tsai and Hahn.16 Imposing balance and symmetry, the mechanical properties of a laminate can be
described by as little as four dimensionless variables. Most lay-up optimization problems can be made
convex by choosing LPs as design variables.17 This makes it attractive to design VS structures in terms of
LPs, see for instance the work by Setoodeh et al.6 and IJsselmuiden et al.8, 12, 18

A method to convert a VS laminate design in terms of LPs into a VS laminate design in terms of fiber
angles is proposed by Van Campen et al.19 This method includes a constraint on in-plane fiber radius for
production reasons. Automated fiber placement (AFP) is an enabling technology used for in-plane fiber
steering, and was the manufacturing technology of choice used in the work presented here. There is a
minimum to the in-plane steering radii that can be accomplished using AFP. Fiber steering also may result
in thickness-build up due to overlapping fiber paths,20 which is discussed in this paper.

The aforementioned method to convert VS designs in terms of LPs into fiber angle designs returns fiber
orientation angles at the nodes of the finite element model describing the structure being studied. Fiber
courses of specified width and starting location are required for a fiber placement machine (FPM) to be able
to manufacture fiber steered laminates. Hence the nodal fiber angle distribution needs to be converted into
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fiber paths, on the basis of which a discrete number of course locations can be determined. A method to do
so based on streamline analogy is posited by Blom et al.21

The main subject of this paper is the conversion of VS designs defined in terms of LPs into fiber-steered
VS composite laminate designs. Hereto, first the design of VS composite structures using LPs and the
subsequent conversion into a design in terms of fiber angles will be discussed. The reader will be familiarized
with the method to covert LPs into fiber angles posited by Van Campen and Gürdal.19 The effect of this
conversion method on the thickness build-up due to fiber steering is discussed in this paper. The streamline
analogy presented by Blom et al.21 will be used to obtain an estimate of the smeared thickness and to
determine fiber paths for each layer in the laminate, and it will be shown how this estimate can be used as
a constraint in the conversion process. The effect of in-plane fiber curvature on thickness build-up will be
demonstrated using a square plate under a biaxial compressive load for which the optimum LP distribution
is assumed to be known. The fiber angle distributions and fiber paths for a number of constraints on in-plane
curvature will be presented.

II. Two-Step Optimization of Variable Stiffness Laminates

A consequence of designing a laminate in terms of LPs is that the obtained optimum design must be
converted into a laminate configuration. The complete design process proposed for VS laminate design and
optimization is shown in figure 1. In the following both the continous design in terms of LPs and the discrete
optimization in terms of fiber angles will be discussed.

A. Optimization of VS composite laminates using LPs

Continuous optimisation Discrete optimisation

Optimum stiffness distribution
(Lamination parameters)

Output
Conceptual optimum &

Design sensitivities

Conervsion to bre angles
(Orientation & stacking sequence)

FEA

Re-evaluation
Update design sensitivities

Design for manufacturing
(Curvature & thickness build-up) repeat till 

convergedFEA

CA

GA

Figure 1. Proposed process flow for optimization of VS laminates.

Lamination parameters (LP), introduced
by Tsai and Pagano22 and Tsai and
Hahn,16 provide a convenient means to
describe the properties of any laminated
stack in a non-dimensional way based on
classical lamination theory (CLT). The
number of design variables involved in
the optimization can be reduced to twelve
for the case no assumptions are made
about the laminate’s build-up, and can
be as low as four in case balanced sym-
metric laminates are considered. A brief
overview of lamination parameters is pre-
sented in appendix A.

Using the work of Svanberg17 it can
be explained how changing to LPs as de-
sign variables helps conditioning the lay-
up optimization problem. IJsselmuiden
et al.8 exploit this trait to formulate a
reciprocal approximation scheme to determine the buckling load of composite panels; by expanding the
buckling load factor linearly in terms of the in-plane stiffness and in terms of inverse bending stiffness, they
obtain an approximation scheme that is convex in LP space. With this new scheme for a square plate loaded
in biaxial compression a buckling load 52% better than the best known constant stiffness design was found.
The optimized lamination parameters are plotted in figure 2.

B. Conversion from LPs to Fiber Angles

The relationship between LPs and stacking sequence is not always unique,23 there is no closed form solution
to convert a point in LP space into a balanced symmetric stacking sequence. Even more so, when prescribing
the number of layers in the laminate, certain points in LP space do not have a corresponding lay-up, and
the closest alternative must be found. In previous work19 the conversion process was formulated as an
optimization problem. Laminate design in terms of fiber angles in most cases is a non-convex optimization

3 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
M

ar
ch

 4
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

1-
18

94
 



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

(a) V A
1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

(b) V A
3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

(c) V D
1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

(d) V D
3

Figure 2. Optimal lamination parameters distribution for the square plate loaded in biaxial compression. The
plotted squares represent the square panel, the value of the lamination parameters is indicated by the shading
and ranges from -1 to 1.

problem.17 Therefore a hybrid method was applied in which a GA was used to seed a gradient-based
optimizer. The objective function that was used for this optimization was the least square distance of the
LPs to the desired optimum point:

f = |V∗ −V| with V =
{
V A
1 , V A

3 , V D
1 , V D

3

}
(1)

where ∗ denotes the given optimum lamination parameters.
Applied to a nodal distribution of LPs this conversion process results in a least-squares optimal nodal

distribution of stacking sequences, which was used as a starting point for further optimization using a cellular
automaton (CA) to include a constraint on in-plane curvature. The flow diagram of the CA is given in Fig. 3.
Jacobi iteration was used to conserve the symmetry of the results. In order to facilitate the implementation
of constraints in the CA an augmented objective function is proposed:

Φ =

{
f + εgmax if gmax ≤ 0

f + βgmax if gmax > 0
(2)

where Φ is to be minimized. Eq. 2 is an augmented objective function, in which f describes the actual
objective of the optimization problem, see Eq. 1, g are the constraint margins, g = 0.1 means a 10%
constraint violation, whereas g = −0.1 indicates a 10% constraint margin. They are multiplied by bonus
term ε, respectively penalty term β. The constraint margin for in-plane fiber angle curvature, defined as
κ = |∇θ|, can be defined as:

gκ =
κ

κall
− 1 (3)

An update rule following Newton’s method was proposed. At node k this update rule takes the form:

θ(k+1) = θ(k) − αkMkgk (4)

where αk is the allowed step size and:
Mk = (Hk + µkI)

−1 (5)

with µk chosen such that the matrix Mk is always positive definite. In the case where the Hessian is not
positive definite, Newton’s method will move to higher function values and might stall near singular points.
In such a case stabilization is required. Alternatively, when no Hessian is available, or expensive to compute,
one can switch to gradient descent, i.e. H = I and µk = 0.

Given the linearity of the augmented objective function, Eq. 2 its Jacobian and Hessian can be decom-
posed in the Jacobians and Hessians of its respective parts. This is a useful feature as more constraints are
imposed on the system.

The proposed update rule may not converge when an infeasible starting point is used. Therefore, the fiber
angle design that was used to seed the CA was first regularized until gmax was smaller than a predefined
value. Regularization took place using a simple averaging rule.
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III. Thickness Build-up

initial stacking 
sequence design

Estimate 
constraint values

satised? Analyse design Save
converged result

yes

update 
sensitivitiessensitivities

Design update

Store data

Count iteration

no

invalid

valid

Optimal LP 
distribution

Fibre angles

available

Genetic Algorithm Gradient-Based 
optimiser

m starting 
points

Augmented 
objective 
function

A

unavailable
A

Augmented 
objective 
function

Figure 3. Flow diagram of the proposed Jacobi iteration
scheme

Multiple tow courses are needed to con-
struct a fiber-placed laminate. Here one layer
of such a laminate is considered. Assuming the
tow courses in this layer are all derived from
one reference curve, there are multiple options
to fill the entire layer with tow courses two
of which will be considered here: (i) parallel
paths, or (ii) shifted paths.24

The advantage of parallel paths is, that
no gaps or overlaps between tows will occur,
which results in a structure of uniform thick-
ness and theoretically without any defects. A
disadvantage is that the steering radii of each
parallel tow are different, which at sufficient
distance from the reference path will result in
violation of the maximum allowable in-plane
curvature, as is demonstrated in Fig. 4(a).

The in-plane curvatures of each tow course
are equal when they are placed along a path
which has been shifted parallel to the refer-
ence tow-path, as is demonstrated in Fig. 4(b).
The parallel shift results in the combination
of the two most extreme cases: (i) tows fully
overlapping, or (ii) gaps between the tows with
no overlaps. These gaps and overlaps cause a
change in thickness of the layer under consid-
eration, and thus of the laminate as a whole.

As a first approximation of thickness build-
up due to fiber steering, gaps and overlaps can
be smeared out over the surface of the struc-
ture, since their exact locations are still unknown. The streamline analogy can be used to estimate the
smeared thickness of in-plane fiber angle distribution21 per ply:

− s∇ (ln t) = n∇θ (6)

where s is the tangent vector in the direction of the fiber and n is the vector in the plane of the lamina
normal to the direction of the fiber. By change of variable Eq. 6 can be written as:

− s∇τ = n∇θ (7)

where τ = ln t. For a fiber angle variation given on a nodal grid this results in a system of equations. Making
use of the linearity of all equations this system can be rearranged in the form:

Mτ = b (8)

Boundary conditions can enter this equation through vector b. Uniform thickness at the inflow boundaries
was assumed for the thickness distributions presented in this paper. The hyperbolic differential equation, Eq.
8, can be solved by a finite element scheme.25 For the work presented in this paper the QUADprog function
in MATLAB R© was used. The fiber course designs were optimized for smoothness, i.e. the differences in
thickness between nodes were minimized.

Once the thickness distribution is known, the streamline analogy can be used to determine fiber paths.
Mathematically a stream function is defined as:21

Ψ(x, y) = C (9)

which connects all points for which C is equal. The solution for the stream function depends on the provided
boundary conditions. Note, that the streamlines for +θ and −θ will be different.
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Figure 4. Tow paths derived from a reference curve.

IV. Results and Discussion

x

y

Nx Nx

Ny

Ny

Figure 5. Square panel loaded
by biaxial distributed compres-
sive load.

The square plate of 1 by 1 meter in dimension is shown in figure 5.
The plate is loaded in x-direction by a uniformly distributed compressive
load. The buckling load of the plate was maximized in a previous design
step using lamination parameters (LP) as design variables.8 For this opti-
mization a 1.524mm-thick (0.06in.-thick) laminate of the following mate-
rial properties was considered: E1 = 181GPa (26.25Msi), E2 = 10.3GPa
(1.49Msi), G12 = 7.17GPa (1.04Msi) and ν12 = 0.28. The optimized
LP-distribution is presented in figure 2.

The effect of the in-plane curvature constraint on the maximum thick-
ness build-up in the panel was studied. To this end, the allowable
maximum curvature was varied from 1m−1 to 100m−1 for the layup
[±θ1/± θ2/± θ3/± θ4]s. The step-size of the CA was set to 1 · 10−5,
and the optimization was considered to have converged after 50 iterations
with less than 0.1% improvement. Furthermore the fiber angle seed was
regularized until gmax ≤ −0.05.

The results obtained for maximum thickness, objective function value
and buckling load are plotted in Fig. 6. The curvature value on the x-axis

100 1011

2

3

4

maximum curvature [m 1]

t m
ax

 

 

100 1011

1.1

1.2

1.3

1.4

maximum curvature [m 1]

(P
cr

/P
cr

C
S)

 

 

Figure 6. Maximum smeared thickness normalized by the thickness of the original panel and buckling load as
function of the constraint on in-plane curvature.
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is the actual value attained by the structure, not the constrained value. The unconstrained design has a
buckling load that is 46% better than the best CS design. In comparison the optimized LP distribution,
shown in Fig. 2, has a buckling load 52% higher than the best CS design. These values were obtained
assuming constant thickness of the panel, i.e. thickness build-up due to fiber steering was ignored in the
buckling analysis.

The relationship between the curvature constraint and thickness build-up appears to be similar to that
between the curvature constraint and the buckling load of the panel, with one main exception: the thickness
build-up for the unconstrained design is smaller than for the design where fiber angle curvature is just
constrained. In general, both the buckling load and maximum thickness of the panel are reduced when κ
is restrained to smaller values. It is concluded that a constraint on maximum in-plane curvature helps to
constrain thickness build-up in the panel.

Fiber angle designs were obtained for the unconstrained case, and for the case where κall = 4.878m−1.
The results are plotted in Figs. 7 and 8. The buckling loads for these designs were respectively 46% and
31% better than the best known constant stiffness design.

The fiber paths for the unconstrained result, clearly showed the necessity fro a constraint on in-plane
curvature, the fiber paths appeared impossible to manufacture and thickness build-up was deemed unrealistic.
Large parts of the panel were not covered by any fiber paths, or only very few. The shading used in Fig. 7
to depict the thickness build indicates a smeared thickness of 0 at most locations in panel. This explains the
strongly reduced maximum thickness found for the unconstrained case for the study on the effect of in-plane
curvature on thickness build-up.

The obtained fiber paths for the constrained case, κall = 4.878m−1, appeared to be smooth. Thickness
build-up was found to be most dominant at the corners of the panel, the streamlines were closer together in
these areas. Note that the fiber paths for +θ and −θ are different.

V. Concluding Remarks

A design methodology for variable stiffness (VS) composite laminates was discussed in this paper. Part
of this methodology is the conversion from lamination parameters (LP) to fiber angles. A previous study
by the authors on the conversion of LPs into fiber angles was used for this step. A constraint on in-plane
fiber curvature, a manufacturing constraint for automated fiber placement (AFP), was already included in
this conversion method. In the work presented here the effect of this curvature constraint on the thickness
build-up that will occur due to fiber steering is considered. An estimate of the smeared thickness build-
up was obtained for each layer in the laminate by solving a hyperbolic differential equation. Using the
streamline analogy, fiber paths were determined for the obtained thickness distributions. Uniform inflow was
considered, and designs were maximized for smoothness. A square plate loaded in biaxial compression was
used to demonstrate the effect of the in-plane curvature constraint on thickness build-up, and several fiber
angle designs, thickness distributions and fiber paths were given for this structure.

The results showed, that thickness build-up due to fiber steering strongly depends on the maximum
in-plane curvature that is allowed. Study of an unconstrained fiber angle design and a fiber angle design
constrained in terms of curvature revealed the need for a curvature constraint if manufacturable designs are
to be obtained. In future research a constraint on thickness build-up due to fiber steering will be included
in the conversion process, and the effect of thickness build-up will be included in the buckling analysis.
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(a) θ1 (b) θ2 (c) θ3 (d) θ4

(e) +θ1 (f) +θ2 (g) +θ3 (h) +θ4

(i) −θ1 (j) −θ2 (k) −θ3 (l) −θ4

Figure 7. Fiber angles streamlines without constraint on in-plane curvature. Thickness build-up is indicated
by the shading.
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(a) θ1 (b) θ2 (c) θ3 (d) θ4

(e) +θ1 (f) +θ2 (g) +θ3 (h) +θ4

(i) −θ1 (j) −θ2 (k) −θ3 (l) −θ4

Figure 8. Fiber angles and streamlines for κall = 4.878m−1. Thickness build-up is indicated by the shading.
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A. Lamination Parameters

The in-plane and out-of-plane lamination parameters(LP), introduced by Tsai and Pagano22 and Tsai
and Hahn,16 are respectively defined as:

(
V A
1 , V A

2 , V A
3 , V A

4

)
=

∫ 1
2

− 1
2

(cos 2θ (z) , sin 2θ (z) , cos 4θ (z) , sin 4θ (z)) dz (10)

(
V D
1 , V D

2 , V D
3 , V D

4

)
= 12

∫ 1
2

− 1
2

z2 (cos 2θ (z) , sin 2θ (z) , cos 4θ (z) , sin 4θ (z)) dz (11)

where z = z
h is the normalized through-the-thickness coordinate of the layers, h is the total thickness of the

laminate, and θ (z) is the fiber angle at z. The in-plane laminate stiffness matrix A and the out-of-plane
laminate stiffness matrix D then become linear functions of the lamination parameters as follows:

A = h
(
Γ0 + V A

1 Γ1 + V A
2 Γ2 + V A

3 Γ3 + V A
4 Γ4

)
(12)

D =
3h3

12

(
Γ0 + V D

1 Γ1 + V D
2 Γ2 + V D

3 Γ3 + V D
4 Γ4

)
(13)

where the Γi (i = (1, . . . , 4) matrices in terms of the material invariants? are given by:

Γ0 =




U1 U4 0

U4 U1 0

0 0 U5



 ,Γ1 =




U2 0 0

0 −U2 0

0 0 0



 ,Γ2 =




0 0 1

2U2

0 0 1
2U2

1
2U2

1
2U2 0





Γ3 =




U3 −U3 0

−U3 U3 0

0 0 −U3



 ,Γ4 =




0 0 U3

0 0 −U3

U3 −U3 0





The material invariants, Ui (i = 1, . . . , 5), are defined in terms of lamina reduced stiffnesses by:?

U1 =
1

8
(3S11 + 3S22 + 2S12 + 4S66)

U2 =
1

2
(S11 − S22)

U3 =
1

8
(S11 + S22 − 2S12 − 4S66)

U4 =
1

8
(S11 + S22 + 6S12 − 4S66)

U5 =
1

8
(S11 + S22 − 2S12 + 4S66)
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