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Lossless Matching Layer for Silicon Lens Arrays at 

500 GHz Using Laser Ablated Structures 
 

Juan Bueno, Sjoerd Bosma, Graduate Student Member, IEEE, Tobias Bußkamp-Alda, Maria Alonso-delPino, Senior 

Member, IEEE, Nuria Llombart, Fellow, IEEE

Abstract—We present the design, fabrication and 

characterization of a broadband lossless matching layer for silicon 

lens arrays. The proposed matching layer is based on silicon frusta 

(truncated pyramids) on top of the lens array fabricated by means 

of laser ablation. This matching layer is  advantageous over 

quarter-wavelength dielectric matching layers since it covers more 

than an octave of bandwidth. We compare the performance of this 

matching layer with the commonly-used parylene-C matching 

layer at the center of the targetted band (500 GHz) in a lens-

antenna integrated system. We measure a 1.6 dB higher 

transmission of the proposed silicon frusta matching compared to 

the parylene-C matching layer. 

 
Index Terms—matching layer, anti-reflection coating, dielectric 

lens antennas, submillimeter-wave. 

I. INTRODUCTION 

ILICON is widely used for submillimeter-wave integrated 

lens antennas [1]-[3]. However, the high permittivity of 

silicon (𝜀𝑟
𝑆𝑖 = 11.9) results in high reflection at the lens-

air interface. These reflections negatively impact the sidelobes 

[3], [4] decrease the gain [4] and have a strong impact on the 

input impedance [5].  

Numerous anti-reflection coatings (AR coatings, also known 

as matching layers) have been developed to limit these 

reflections [6]-[9]. Single-layer thin-films of parylene-C (𝜀𝑟 =
2.62) [6], SUEX (𝜀𝑟 = 2.86) [7], Cirlex (𝜀𝑟 = 3.37) [8] and a 

mixture of Stycast 1266 (𝜀𝑟 = 2.82) and Stycast 2850FTJ 
(𝜀𝑟 = 4.84) [9] were successfully used at these frequencies as 

quarter-wavelength impedance transformers, since their 

relative permittivity is close to that of an ideal quarter-

wavelength transformer √𝜀𝑟
𝑆𝑖 = 3.45. Multiple dielectric 

matching layers were used in [4], [10] to increase the 

transmission bandwidth.  

However, the coating materials themselves may incur 

additional dielectric losses, which may not be negligible at 

submillimeter wavelengths, and the deposition of the thin films 

is costly. Furthermore, the adhesion of the matching layers to 

the silicon lens can be difficult, especially for cryogenically 

cooled lenses.  

Periodic sub-wavelength structures imprinted in a dense 

material (silicon) have been also widely used as matching layers 
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[11]-[20]. Several fabrication techniques, such as deep-reactive 

ion etching [11]-[13], dicing technique [14]-[17] and laser 

ablation [18]-[19] have been proposed and used at THz 

frequencies. 

Deep-reactive ion etching (DRIE) was used in [11]-[13] to 

create an anti-reflective coating on flat silicon wafers but has, 

to our best knowledge, never been demonstrated on a curved 

surface (i.e. silicon lens), which might not be straightforward.  

A dicing saw technique was used in [14]-[17] to create 

impedance transformers on both flat silicon surfaces and silicon 

lenses. Reflection and/or transmission measurements were 

performed at frequencies up to 300 GHz but the authors 

conclude that this technique is not scalable to higher 

frequencies.  

The laser ablation technique has two main advantages over a 

dicing saw method: i) the smallest achievable dimension is set 

by the laser (~1-2 m) whereas the dicing blade width is ~20-

100 m; ii) the laser spot can be tuned, allowing a smooth taper 

of the frusta walls in comparison with the fixed width of 

available dicing saws. The combination of these two advantages 

allows a broader frequency transmittance coverage reaching 

frequencies up to a few THz, which is not possible with the 

dicing saw fabrication.  

In fact, laser ablation has been used to create continuous 

impedance on a flat silicon wafer [18] and on alumina lenses 

[19]. The authors reported the transmittance and/or reflectance 

with the Terahertz Sensing Group, Delft University of Technology, Delft, 2628 

CD, The Netherlands. Tobias Bußkamp-Alda is with Veld Laser Innovations 
B.V., ‘S-Heerenberg, 7041 GB, The Netherlands. 
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                   (a)                                                           (b) 

Fig. 1. Silicon lens arrays. (a) parylene-C (top) and assembled antenna 

(bottom). (b) Frusta matching layer (top) and assembled antenna (bottom). 
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of periodic sub-wavelength structures at frequencies up to 700 

GHz. However, a direct comparison between the radiation 

performance of a quarter-wavelength AR coating and a 

continuous impedance-transforming matching layer in an 

integrated silicon lens-antenna architecture has not been 

presented before at these high frequencies, where the beam 

pattern, the directivity and the gain are measured. 

Another potential advantage of the laser ablation is that, since 

the lens and the matching layer are made of the same material, 

the anti-reflective coating will not suffer from thermal stress 

when cryogenically cooled. Similar structures made on alumina 

have been successfully tested cryogenically [19], and there is 

no reason why the frusta matching layer presented in this paper 

could not be used as a broadband matching layer for 

cryogenically cooled lens arrays. 

In this work we compare the performance of the silicon 

leaky-wave lens antenna that was demonstrated in [20] with a 

quarter-wavelength AR coating to a continuous impedance-

transforming matching layer. We have fabricated and measured 

two otherwise identical silicon lens antennas (see Fig. 1) with 

different matching layers: a quarter-wavelength AR coating of 

parylene-C and a periodic structure consisting of flat-topped 

square pyramids (frusta) in silicon. We measure an improved 

gain of 1.4-2.0 dB at 450-500 GHz using the pyramid matching 

layer compared to the parylene-C AR coating. 

II. LENS MATCHING LAYER DESIGN 

We compare the simulated performance of two matching 

layers on the silicon lens antenna described in [20] in the 

operational bandwidth of this antenna of 450-650 GHz: a 

quarter-wavelength (94 𝜇𝑚) layer of parylene-C and a periodic 

arrangement of sub-wavelength flat-topped square pyramids 

(frusta) in silicon.  

The frusta are fabricated using laser ablation, which is 

performed by Veld Laser Innovations B.V. (www.veldlaser.nl). 

Laser ablation is the process in which material from a surface is 

removed by a pulsed laser beam. The material, in the case of 

this lens array silicon, is locally heated by the absorbed laser 

energy and evaporates or sublimates. The laser pulses are very 

short, of the order of a few tens of picoseconds, causing only 

minimal material damage during processing due to the 

ultrashort light-matter interaction making it suitable for micro-

fabrication.  

Due to the small dimensions of the pyramids, this micro-

fabrication technique has two constraints that need to be 

considered for the design: i) it is not possible to carve straight 

walls in the silicon. The minimum angle that can be obtained 

for these specific pyramid dimensions is 13 degrees. However, 

this is not a problem since the tapered walls increase the 

bandwidth; ii) it is very difficult to reliably manufacture the 

pyramid-ends in a sharp point at the top for the entire lens array. 

We therefore decided to truncate the top of the pyramids and 

make frusta instead.  

Considering these constraints, we thus design the frusta, as 

indicated in the inset of Fig. 2. These dimensions are given in 

[21] for a higher frequency design (2 THz) and have been scaled 

to 500 GHz to meet our frequency band. The design values can 

be found in Table I.  

The transmission at the interface between the silicon lens and 

free space is simulated for a frustum unit cell for broadside 

incidence using CST. The reflection coefficient at broadside is 

an accurate approximation for such very shallow silicon lens 

arrays. A full-wave periodic structure simulation is performed 

to obtain the transmission for the frusta structure; for the 

parylene-C matching layer, an equivalent transmission line was 

used, assuming lossless parylene-C. The simulated 

transmission is given in Fig. 2 and is better than -0.3 dB for both 

structures in the center of the band but the parylene-C matching 

layer transmission decays for lower and higher frequencies 

whereas the pyramid matching layer stays fairly constant for the 

full bandwidth. The radiation patterns of the lens antennas are 

simulated using the Fourier Optics methodology [22], which 

was also used in [20], assuming a quarter-wavelength matching 

 
 

Fig. 2. Simulated transmission of both the parylene-C and the periodic 
matching layer. The inset inside the figure is a sketch of the simulated periodic 

frusta used as the matching layer. 

 
(a) 

 
(b) 

Fig. 3. (a) Scale 2:1. 3D image of a lens and zoomed view of the frusta taken 
with a confocal microscope. (b) Scale 1:1. Measurement of the frusta 

dimensions using the cross section along the center of the lens array. 
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layer with 𝜀𝑟 = 2.62. The simulated radiation patterns are 

shown in Fig. 5b. 

III. FABRICATION AND CHARACTERIZATION OF THE 

PERIODIC FRUSTA MATCHING LAYER 

The  lens array with frusta matching layer is fabricated in two 

steps. These two fabrication steps are performed in the same 

laser setup but with two different settings. First, the entire lens 

array is manufactured thicker than the thickness of the nominal 

lens. This extra thickness corresponds exactly to the height of 

the frusta. The lens array geometry is made using an imported 

3D file. Second, this extra thickness is locally removed to form 

the frusta. For this step, a 2D file containing the grid from which 

the excess material will be removed from the lenses is loaded 

into the laser ablating setup. Dedicated optics move the focus 

of the laser along the shape of the lens and the frusta are carved 

by passing the laser several times over the lens surface to obtain 

the correct depth. The parameters used by the laser for the 

fabrication of the frusta are shown in Table I. Conformal 

carving is not possible at this point using our current setup since 

it can only move along three axis (x-, y- and z-axis) and the 

laser cannot follow the lens profile. This limits the application 

of the ablation fabrication technique to shallow lenses (i.e., 

lenses in which only the top part of the lens is illuminated). To 

apply this technique to more curved lenses, two routes could be 

investigated:  i) the current laser setup could be modified and 

the number of axes could be increased to five (x-, y-, z-, - 

and-axis) so the laser can follow the lens profile; ii) a new 

frusta design that takes the angle of incident along the profile of 

the lens surface into consideration. This new design would have 

to adjust vertically the length of the frusta (h) to ensure high 

transmission for non-broadside angles.  

After fabrication, the shape of the frusta is measured in 3D 

using a confocal microscope (Fig. 3a). The 3D image can be 

sliced and used to measure the profile of the frusta, and 

therefore obtain their period (Fig. 3b), dimension of the top flat 

part (Fig. 3c) and height (Fig. 3d). The shape of the frusta is 

measured at three different locations (left, middle and right) in 

the two perpendicular planes. The shape of each frustum along 

these cuts is measured and its average valued can be found in 

Table I, together with the fabrication accuracy and designed 

values. The small difference between the designed and 

fabricated frusta moves the center of the frequency band 

slightly (about 10%) but the design is so broadband that this 

shift does not affect the overall performance of the frusta 

matching layer. Furthermore, the accuracy in the fabrication 

process of the frusta matching layer is similar to the accuracy 

of the parylene-C thickness during its deposition process (5 to 

20% thickness variation depending on the location of the lens 

array in the deposition chamber). 
 

TABLE I 

FRUSTA DIMENSIONS AND LASER PARAMETERS  
 

Frusta dimensions 

 Designed Fabricated 

d  [m] 40 32 ± 5 

p  [m] 108 109 ± 5 

h  [m] 127 149 ± 10 

  [deg] 15 14 ± 2 

Laser fabrication parameters

Average power  7 W 

Spot size  25 m 

Pulse duration  <12 ps 

Repetition rate 200 kHz 

IV. ANTENNA ASSEMBLY AND MEASUREMENT SETUP 

The lens arrays with the two different matching layers are 

integrated and measured one-by-one in a lens antenna fed by a 

high-efficiency leaky-wave feed described in [20]. Although 

seven lenses are fabricated in each array, only the central 

element is excited. The antenna assembly is extensively 

explained in [20], and consists of a gold-plated waveguide split 

block with a WR-1.5 waveguide flange on the bottom and a 

waveguide transition to a square (362 m) aperture at the top. 

Next, two silicon wafers are placed on the block containing the 

leaky-wave cavity and transformer layer. The height of the lens 

is achieved with a solid cylindrical block of silicon placed on 

top of the wafers. Finally, either the lens array with the 

parylene-C or with the pyramid structures are placed on this 

silicon block. A piezo-electric motor is used to align the lens 

array with the feed as in [20]. A sketch of the assembled antenna 

     
                                    (a)                                                                                 (b)                                                                                    (c) 

Fig. 4. (a) Schematic of the antenna assembly. (b) Measurement setup. Either an open-ended waveguide flange with eccosorb around it (for pattern measurements) 
or a horn antenna (for gain measurements) are used on the second extender, as indicated by the arrow. (c) Measured gain of the waveguide flange with and without 

the eccosorb and the measured and simulated gain of the horn. 
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is shown in Fig. 4 and a photograph of the assembled antenna 

with the two different lens arrays is shown in Fig. 1.  

We measure the antenna at 450-500 GHz using a VNA and 

two WR-2.2 frequency extenders. The antenna under test is in 

a fixed position and the receiving antenna is placed in a 3-axis 

CNC stage, and they are both facing each other. The 2D antenna 

patterns are measured in an angle of 30 degrees around 

broadside in the far field at a distance of 10 cm distance. The 

patterns are measured using an open-ended waveguide flange 

with eccosorb material surrounding the waveguide aperture on 

the flange, similar to [23]. The absorber on the flange greatly 

reduces the oscillations that are measured due to the presence 

of the waveguide flange and can be interchanged with a horn 

antenna, as shown in Fig. 4b. The gain of the flange is measured 

with and without the absorber and is shown in Fig. 4c. The gain 

of the waveguide with the absorber is much less oscillatory. We 

use the horn antenna, with a gain of around 20 dB, to measure 

the gain of the antennas under test in the far field. The gain of 

this horn is separately measured to be in good agreement with 

the specified gain from the manufacturer (Flann Microwave), 

also shown in Fig. 4c. We later use this measured gain to 

characterized the gain of the antennas under test. 

V. MEASUREMENTS AND RESULTS 

We compare the simulated and measured reflection 

coefficient (S11) of both antennas in Fig. 5a. The antenna is 

well-matched above 425 GHz, the agreement with simulations 

is good, and the reflections in the S11 are not noticeably 

different for the two prototypes. The measured and simulated 

reflection coefficient do not match below 425 GHz because the 

leaky lens antenna that we use for the characterization of the 

frusta matching layer has a bandwidth between 450 and 650 

GHz, and the cut-off frequency of the waveguide is around 400 

GHz. The measured radiation patterns are compared to the 

simulated patterns at 480 GHz in Fig. 5b. The measurements 

are in reasonable agreement with the simulated patterns. The 

measured patterns from the parylene-C and frusta matching 

layer are very similar, indicating similar directivity. Indeed, the 

measured directivity, which is obtained by integrating the 2D 

patterns and shown in Fig. 5c, is nearly the same for both 

prototypes and is also in agreement with the simulated 

directivity. The array coupling or cross-polarization have not 

been measured but, although it cannot be directly extracted 

from the directivity measurements (Fig. 5c), the fact that the 

parylene-C and frusta directivities are nearly identical suggests 

that both matching layers are performing similarly in terms of 

array coupling and cross-polarization. Moreover, the fabricated 

frusta layer is symmetric, having same response for TE/TM 

polarization. Therefore, we expect not to have any impact on 

the cross-polarization. 

We use Friis’ equation to simulate the coupling between the 

antenna and horn (S21) at broadside at a distance of 10 cm. To 

remove the effect of multiple reflecting waves in the 

measurement setup, we apply a time gate to the measured S21 

that filters out these reflections after the first received time-

domain pulse. The simulated S21 takes into account the loss in 

 
(a)                                                                                (b)                                                                               (c) 

Fig. 6. (a) Simulated and measured S21 of the antenna with both matching layers. (b) Simulated loss of the parylene-C matching layer when dielectric loss is 
added. (c) Simulated and measured gain of the antenna with both matching layers. Note that the gain difference between the pyramids matching layer and the 

parylene-C matching layer is explained by the 1.6 dB dielectric loss of the parylene-C. 

    
(a)                                                                               (b)                                                                                   (c) 

Fig. 5. (a) Simulated and measured S11 of both antennas. (b) Simulated and measured beam patterns at a frequency of 480GHz. (c) Simulated and measured 

directivity of both antennas.  
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the gold-plated split block (𝜎 = 3.5 × 106) and the simulated 

gain. As shown in Fig. 6a, the simulated coupling is between -

27 dB and -23 dB at 450-500 GHz. The measured coupling is 

in very good agreement for the frusta matching layer but 

~1.6dB lower for the parylene-C matching layer. This 

difference can be explained by the dielectric loss present in the 

parylene-C (Fig. 6b), where we use an absorption coefficient of 

35cm-1 [24]-[26]. The measured gain is evaluated from the 

measured S21 (Fig. 6.a) and the measured horn gain (Fig. 4c) 

removing the loss in the waveguide block. The comparison 

between the simulated and measured gain is shown in Fig. 6c, 

and is above 26 dBi for the frusta matching layer and above 24 

dBi for the parylene-C matching layer. 

VI. DISCUSSION 

The fabricated lens arrays are the same, except for the 

matching layer on top. The measured results in Fig. 6c show 

that the gain of the periodic frusta matching layer is higher than 

for the parylene-C matching layer, suggesting a better 

performance as an AR coating of the periodic frusta structure. 

This difference in performance is not due to a difference in 

impedance match or directivity, as demonstrated in Fig. 4c. 

Both matching layers perform similarly in term of S11, and we 

thus associate the gain difference to the dielectric loss in the 

parylene-C. In fact, an absorption coefficient of 35 cm-1 

explains the difference in gain, as demonstrated in Fig. 6b. 

Although the reported values for absorption coefficient vary 

largely in the literature, our modeled absorption coefficient is 

within the reported values.. For example, an absorption 

coefficient of 27 cm-1 is reported in [24] at frequencies between 

1 and 3 THz for parylene-C whereas and the reported value 

above 6 THz was 75 cm-1 in [25] for parylene-N. These values 

are in line with the value that we assume in our analysis 

although lower values have also been found 2 cm-1 and 16 cm-1 

at 450 GHz and 2.8 THz, respectively [26]. 

Although different types of parylene with lower dieletric loss 

than the parylene-C are available [27] (measured at low RF 

frequencies), the frusta matching layer has significant 

advantages as it operates over more than an octave bandwidth 

and it is fabricated using the same process as the lens array 

itself. 

VII. CONCLUSIONS 

We compare the performance at submillimeter wavelengths 

of two different matching layers on the same silicon leaky-wave 

lens antenna arrays. The fabricated antennas are the same with 

the exception for the matching layer. The first is a quarter-

wavelength parylene-C anti-reflecting coating and the second a 

continuous impedance-transforming matching layer which is 

realized by periodic sub-wavelength frusta features laser-

ablated directly on the lens surface. We describe the laser 

machining process to manufacture the frusta suitable for silicon 

lens arrays. We characterize both antennas in terms of reflection 

coefficient, radiation patterns (directivity) and gain and 

compare these results to high-frequency simulations. The 

measured performance from both antennas is the same except 

for the measured gain. The measured gain of the frusta 

matching layer is in very good agreement with simulations and 

is ~1.6dB higher than for the parylene-C matching layer, which 

is explained by the dielectric loss in the parylene-C. 

Furthermore, the frusta matching layer has significant 

advantages as it operates over more than an octave bandwidth 

and it is fabricated using the same process as the lens array 

itself. 
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