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ABSTRACT

We accelerate volumetric obscurance, a variant of ambient occlusion, and solve undersam-
pling artifacts, such as banding, noise or blurring, that screen-space techniques tradition-
ally suffer from. We make use of an efficient statistical model to evaluate the occlusion
factor in screen-space using a single sample. Overestimations and halos are reduced by an
adaptive layering of the visible geometry. Bias at tilted surfaces is avoided by projecting
and evaluating the volumetric obscurance in tangent space of each surface point. We com-
pare our approach to several traditional screen-space volumetric obscurance techniques
and show its competitive qualitative and quantitative performance. Our algorithm maps
well to graphics hardware, does not require the traditional bilateral blur step of previous
approaches, and avoids typical screen-space related artifacts such as temporal instability
due to undersampling.
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PREFACE

This research is part of the proof competence for obtaining the Master of Science degree in
Computer Science at the Delft University of Technology.

My interest for the process of creating good software had initially led me to chose the Soft-
ware Technology (ST) track over the Media and Knowledge Engineering (MKE) track. This
caused me to miss out on many usefull courses relating to the field of Computer Graph-
ics. Fortunately, I was given the opportunity to make up for this loss by working on sev-
eral projects at the Computer Graphics & Visualizations group during my bachelor. In
my second year at the TU Delft I was given the opportunity to become acquainted with
the scientific process during my work on rendering real-time river networks. For my final
bachelor project I worked in a group of four students to develop a rendering engine for the
SketchaWorld program. This project first introduced me to the concept of Ambient Oc-
clusion (AO). In particular, I implemented some Screen-space Ambient Occlusion (SSAO)
techniques that were the predecessors of many recent SSAO approaches, including the one
presented in this thesis.

From a young age I have always been interested in the field of Computer Graphics. Re-
ceiving direct visual feedback while expressing your ideas through written code is a beauti-
ful ability that I believe few other fields in Computer Science can match. The never ending
search for smarter techniques that require less computational power to achieve better look-
ing images has always provided me with a challenging environment during my work on this
MSc thesis.

Q.J.A.M. Hendrickx
Delft, February 2015
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1
INTRODUCTION

Figure 1.1: Ambient Occlusion without shading. Images rendered with the method proposed in this report
(SVO). We can render at a resolution of 1280x720 pixels with 320 fps (294 MPixels/s) on an NVIDIA GTX 770
graphics card.

Efficient computation of global illumination is still one of the hardest problems in com-
puter graphics. In consequence, real-time approximations often make very simplifying as-
sumptions. Ambient Occlusion (AO) is an example and focuses on the evaluation of am-
bient light reaching a point on a surface [1] by considering only local geometry as occlud-
ers in the scene. Attenuating the ambient light term based on local occlusion generates
realistically looking shadows and creates important contact cues improving overall depth
perception (see Figure 1.1).

Historically, AO was first applied in static scenes where its effect could be baked into oc-
clusion maps [1]. However, because AO is a global effect, this approach does not work well
for dynamic scenes and would need to be recomputed per frame. In recent years, advances
in graphics hardware and the development of screen-space approximations have led to
real-time implementations of AO [2, 3]. These screen-space ambient occlusion (SSAO)
techniques compute the amount of occlusion as a postprocessing pass based on a depth
image from the camera’s point of view. Traditionally, the occlusion factor is approximately
estimated per pixel using a few samples and smoothed using a subsequent bilateral blur
step. Most current rendering engines incorporate such solutions.
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2 INTRODUCTION

1.1. INTEGRATION IN GRAPHICS DRIVERS
It’s worth noting that in 2009 NVIDIA started directly supporting (Horizon-Based) Ambient
Occlusion (HBAO) in theirs drivers [4], in 2013 this support was updated with a higher qual-
ity implementation (HBAO+). The specifics of these particular approaches are discussed in
more detail in Section 2.4. While most modern games have implemented native support
for AO themselves, NVIDIA allows users to enable AO on a driver level for those that do not.
This step from one of the leading manufactures of graphics hardware shows the importance
of AO in the computer graphics industry today.

1.2. EXAMPLE OF AO IN LIGHTING MODELS
To demonstrate how Ambient Occlusion effects the rendering of a scene we show how the
appearance of a simple 3D rendered scene changes when applying different lighting mod-
els (see Figure 1.2). The scene consists of a statue standing on a plane, all geometry has a
white diffuse material applied.

The shown light models in Figure 5.2 make a distinction between ambient light (i.e.
environment light, without any particular direction, Figure 1.2a and 1.2d) and directional
light (i.e. light coming from the direction of a particular light source, Figure 1.2b and 1.2e).
Typically, both light sources are used and combined based on an artist defined distribution.
In this case we have used 75% ambient light and 25% directional light for our combined
images shown in Figures 1.2c and 1.2f.

By comparing a constant ambient light source as shown in Figure 1.2a with an ambient
occlusion light source as shown in Figure 1.2d, it becomes clear that AO can increase our
depth perception of a 3D scene significantly. This improvement in realism and depth per-
ception also translates into the combined image. For example, in 1.2f we can see how the
creases in the gown are much more distinctive than in 1.2c.

1.3. PROBLEM STATEMENT
We aim at developing an approach that has reduced complexity of screen-space ambient
occlusion (SSAO) approaches, but avoids the usual drawbacks, such as banding, noise or
blurriness caused by undersampling. In order to eliminate these artifacts, we have to ac-
count for all of the local geometry visible in screen-space. To this extent, we reverse the
typical order of operations applied in existing SSAO approaches. Instead of taking samples
from the AO function and blurring the result afterwards, we compute a statistical model of
the surrounding geometry at a pixel’s world position and use this directly for AO compu-
tation. Because we do not use traditional sampling there is no need for randomization or
blurring of the result [2].

1.4. CONTRIBUTION
In particular, our contributions are as follows:

• A screen-space ambient-occlusion model, which can be evaluated using a single sam-
ple;

• An adaptive depth-slicing technique to efficiently compute this model;

• A GPU-friendly and highly-parallel implementation.
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We start by discussing previous work (Section 2) and providing some necessary background
information for readers less familiar with the field of computer graphics (Section 3). After
this, we describe our algorithm in gradual steps. First, we introduce an approximation for
volumetric obscurance, a variant of ambient occlusion, and how to compute it efficiently
(Section 4). We will then describe how to improve quality by using depth layering (Sec-
tion 4.3). For acceleration, we introduce an adaptive depth-slicing technique (Section 4.4)
and remove bias in the result by incorporating the surface normal into the computation
(Section 4.5). We introduce important optimizations for efficient implementation, like
approximate summed-area tables (SAT) and differential SAT computation (Section 4.6).
We evaluate and compare our approach to common screen-space ambient occlusion and
volumetric-obscurance techniques (Section 5), before concluding (Section 6).
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(a) ambient light (b) directional light (c) ambient + directional light

(d) ambient occlusion light (e) directional light (f) ambient occlusion +
directional light

Figure 1.2: The same scene shaded with different light models. In the upper row we see a traditional lighting
setup with an ambient term (a) and a directional light (b), by combining both components we get the result
shown in (c). A setup that incorporates the effect of ambient occlusion is shown in the bottom row. In (d)
we see the raw ambient occlusion output that is combined with a directional light (e) to achieve the output
shown in (f). Note how depth perception is noticeably improved in (f) as compared to (c).



2
RELATED WORK

The concept of ambient occlusion (AO) was first described by Landis [1], who showed the
importance of AO in improving depth perception through contact cues and soft shadows.
AO has since gathered a significant amount of interest and numerous new techniques were
developed over time. Most work can be divided in roughly two categories, geometry-based
ambient occlusion and screen-space ambient occlusion. Where geometry-based AO oper-
ates on a three dimensional description of the scene, screen-space AO uses the rasterized
depth buffer as input.

Because geometry-based methods incorporate all available geometry into the AO com-
putation they have the potential of generating more accurate results. However, their per-
formance usually depends heavily on the scene’s geometrical complexity. In today’s highly
complex scenes they usually do not scale as well as screen-space methods.

(a) Original geometry (b) Geometry represented
using disk elements

(c) Shadowing evaluation

Figure 2.1: Geometry-based AO method as described by Bunnel [5]. In (a) we see the original geometry, each
vertex is mapped to a proxy disk element as shown in (b). Occlusion shadows are then evaluated between
disks as can be see in (c).

2.1. GEOMETRY-BASED AMBIENT OCCLUSION
Bunnel [5] first presents a hardware accelerated geometry-based AO solution in 2005. Ge-
ometrical data is represented using surface elements in the form of disks. Each disk corre-
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6 RELATED WORK

sponds to a vertex in the original mesh, its size depends on the size of connected triangles.

Occlusion for each surface element is calculated by summing the contribution of each
other element. A straightforward implementation would have a time complexity of O(n2)
which is not practical for real-time applications. To solve this issue they propose grouping
surface elements together in a hierarchy based on their distance. This hierarchy is traversed
untill the desired level of detail is achieved, resulting in a much more manageable expected
running time of O(n logn).

Interestingly, Bunnel [5] also shows how his technique can be extended to account for
indirect illumination. The disk-to-disk evaluation function can be adapted to account for
diffuse lighting with only little extra cost. They further extend the realism of their approach
by evaluating light transfer over multiple iterations.

Because occlusion is evaluated per vertex the accuracy of this technique depends on the
tesselation level of the geometry. Pixels between vertices are interpolated linearly, which
can results in artifacts. Increasing the geometrical density can get rid of the interpolation
artifacts but gives rise to disk shaped artifacts instead [6].

Hoberock and Jia [6] improves upon the original method in 2007 by smoothing the re-
sult. While this significantly improves the quality of the result, its performance for even
moderately complex scenes remains an issue.

An alternative geometry-based approach was presented by McGuire in 2010 [7]. The
technique is inspired by Shadow Volumes [8] and evaluates AO through a scattering pro-
cess. The occlusion caused by each polygon is represented by an occlusion volume (see
Figure 2.2). These occlusion volumes are rasterized and their occlusion contribution is
weighted into the result.

While this approach achieves high quality results, its performance still depends heavily
on the geometrical complexity of the scene. Additionally, it is important to note that if a
large AO radius is chosen, the occlusion volumes will grow in size. Larger occlusion vol-
umes will cause an increasing amount of pixels that are rasterized and evaluated for AO,
this has a significant impact on performance.

Figure 2.2: In Ambient Occlusion Volumes [7] the occlusion shadows cast by each polygon are represented
with an occlusion volume. This volume is oriented with the surface normal and sized according to the occlu-
sion radius.
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2.2. SCREEN-SPACE AMBIENT OCCLUSION
Screen-space ambient occlusion (SSAO) techniques compute occlusion based on informa-
tion in the depth buffer making occlusion evaluations (almost) independent of geometrical
scene complexity.

The basic idea for SSAO was introduced by Crytek [2] in 2007. They were aware that the
depth buffer could be used to serve as a coarse approximation of the scene. This approxi-
mation will always contain less information than the original scene because a depth buffer
has a limited precision (usually 24 bits) and cannot store overlapping geometry. However, a
depth buffer is almost always readily available without any additional rendering cost, mak-
ing it a cheap resource to use. By evaluating AO based on this depth buffer it is no longer
depended on the geometrical complexity of the scene, instead it will only depend on the
chosen image resolution.

The method proposed by Crytek was based on a volumetric obscurance definition of
ambient occlusion. The assumption here is that if a volume around a sample point is dense
(i.e. it contains a high amount of geometry), it will be more occluded. While this definition
doesn’t directly relate to any physical process, it often produces similar results.

In particular, they define a sphere around the sample point. The geometrical density
inside this sphere is estimated by taking randomized samples wihtin this sphere from the
depth buffer (see Figure 4.1b). A simple depth comparison determines if each sample is
inside or outside of the geometry. By combining all samples they determine an average
density, this density is used as an indicator for occlusion.

Figure 2.3: SSAO as originally introduced by Cytek. Note how even flat surfaces without any occlusion
appear to be 50 % occluded (grey). [2]

As we can see in Figure 2.3 the overal result appears greyish, indicating a severe amount
of overocclusion. In reality, one would expect the flat surfaces (e.g. the ground and the walls
of the buildings) not to be occluded at all. This result can be traced back to the definition
of occlusion as a volumetric integral over a sphere (see Figure 4.1b). As we will see in the
following, more advanced methods, occlusion is better represented as a volumetric integral
over a normal oriented hemisphere [9] to eliminate this self occlusion.
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It is important to note that while the approach introduced by Crytek was relatively basic
it still required an aggressive amount of undersampling to achieve real-time performance.
In particular, it was not viable to take more than 8 samples per pixel with the GPUs of that
time. This restriction led to significant banding artifacts in the result.

By applying a randomization kernel to the sample positions, it is possible to trade the
banding artifacts for noise. For example, a 4x4 randomization kernel with 8 samples per
pixel would result in 128 unique sample positions within every block of 4x4 pixels.

To achieve a good looking effect it is necessary to apply a blur filter over the noisy result.
A simple gaussian blur filter is a relatively cheap solution but will blur occlusion over depth
edges. Instead, a more expensive cross-bilateral blur [10] [11] step is required that preserves
sharpness across depth and/or normal boundaries.

2.3. LINE AAMPLED AMBIENT OCCLUSION
Line sampling was introduced by Loos and Sloan in 2010 [12] and was in many ways a
direct improvement over Crytek’s SSAO. They identify the technique used by Crytek as a
point sampling algorithm for volumetric integration. By integrating over the volume of
the sphere using line segments instead of points (see Figure 4.1c), the algorithm is able to
achieve smoother results while using less samples.

The key observation to make here is that by evaluating line segments, it is possible to
extract more information from each sample. Whereas a point sample only evaluates into a
binary value (occluded or unoccluded), a line sample evalutes into a percentage of occlu-
sion along the line segment.

Loos and Sloan also state that if information about the normal is available (e.g. in a
normal buffer), it can be used to restrict the sphere to a normal-oriented hemisphere. This
method eliminates all self occlusion artifacts that were present in Crytek’s original SSAO
implementation. The additional cost of sampling a normal buffer is relatively low com-
pared to the quality improvement of the result.

(a) 33 Point samples at 156 fps (b) 9 Line samples at 210 fps

Figure 2.4: Loos and Sloan [12] show how their line sampling approaches achieves similar results using less
samples. While each line sample is slightly more expensive than a point sample, the overall performance
increase is considerable.
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2.4. HORIZON-BASED AMBIENT OCCLUSION
Horizon-based AO was proposed by Bavoil et al. in 2008 [4] and aims at finding the maxi-
mum horizon angle at which light can reach a sample point. It works by marching over rays
in randomized directions and keeping track of the maximum elevation angle (see Figure
4.1d).

Because we march over the rays with fixed step sizes, it is possible that we miss the
actual maximum horizon angle if the step size is too big. The authors suggest to introduce
a randomized jitter in the step sizes, this will avoid systematic noise in the result.

Compared to both approaches discussed before, Horizon-based AO is not based on vol-
umetric obscurance. Instead, it more closely resembles the original defintion of SSAO as
the percentage of rays that can escape the scene without colliding with geometry. As a con-
sequence, this technique has the potential of more closely resembling a physically correct
solution. Of course, the quality of the result also depends heavily on the number of rays,
the step size and the blur filter.

2.5. SCREEN-SPACE DIRECTIONAL OCCLUSION
Screen-space directional occlusion (SSDO) was introduced in 2009 by Ritschel et al. [13]
and shows how SSAO can be extended with an additional diffuse indirect bounce of light.
While the paper applies their ideas on a normal-oriented hemisphere point-sampling ap-
proach, the same ideas are also valid for many other screen-space methods.

The key observation that they describe is that for a relatively small cost, it is possible
to compute diffuse light for each (unoccluded) point sample. This effectively removes the
traditional decoupling between occlusion and illumination in a scene. They show how this
can significantly improve the result, especially in case of incoming illumination with differ-
ent colors from different directions.

Figure 2.5: SSDO as described by Ritschel et al. in 2009 [13]. Note how each sample contains light information
for directional light (left) and indirect light (right).
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2.6. STATISTICAL APPROACHES
Statistical approaches aim at improving undersampling issues (e.g. see Figure 5.4a), which
are still the primary problem when balancing performance and quality in SSAO-oriented
methods. The general idea is to utilize some form of data structure that allows for efficient
filtering over larger areas of the depth map.

As described by Slomp et al. in 2010 [14], Summed-area tables (SAT) are an efficient
data structure to compute local averages of depth values per pixel. This local depth average
can then be used as indicator for ambient occlusion. They show how the sampled area
can be shifted by incorporating the surface normal. Additionally, they discuss how depth
refinement can be used to subdivide the sampling area and achieve better looking results.
The paper does not mention how to handle depth discontinuities, i.e. depth values that are
out of range (either far in front or far behind) and significantly skew the average depth.

Around the same time Diaz et al. presented a similar technique [15]. They also utilize
SATs and are able to achieve smooth-looking results with high performance.

They acknowledge that naively applying SATs leads to strong artifacts at depth discon-
tinuities in the form of halos or overestimations. Because they operate on the statistical
mean of a group of depth values they are unable to exclude samples that are outside the
occlusion radius. These samples will strongly impact the mean value and result in overoc-
clusion.

Diaz et al. [15] show how the halos can be benificial for identification purposes in, for
example, medical applications. However, in most rendering scenarios that aim at achiev-
ing physically plausible results, the halos should be considered unwanted artifacts. In this
thesis, we build upon the previously discussed approaches and show how to remove such
artifacts using adaptive depth layers.

(a) AO with SATs (b) Stylized rendering of halos

Figure 2.6: As shown by Diaz [15], SATs can be used to efficiently evaluate smooth AO without the usual noise
artifacts. Halos caused by overestimation are clearly visible and are used to improve object identification.



3
BACKGROUND

3.1. GPU ARCHITECTURE OVERVIEW
A GPU (or graphics processing unit) is an electronic component specialized at rapidly pro-
cessing parallel work loads. Originally, the GPU was highly geared towards real-time ren-
dering of 3D scenes using a fixed-function pipeline. This pipeline consisted of multiple
stages that each performed a dedicated task, the most important once were vertex trans-
formation, primitive assembly, texturing, blending and writing the result to a framebuffer.

The last couple of years the GPU has become increasingly powerful and flexible. Through
the introduction of vertex and fragment shaders in 2001 the programmer has a much greater
amount of control over the types of computation a GPU can perform. This trend contin-
ued with the introduction of unified shader architectures in 2006 and is still ongoing today
while GPUs become increasingly capable of processing general purpose parallel workloads
(GPGPU computing).

In this thesis we will show how we can take advantage of the flexibility of modern GPUs
to efficiently evaluate the problem of Ambient Occlusion (AO). In order to do this we will
frequently utilize programmable shaders and GPGPU programming APIs.

3.2. DEFERRED SHADING AND SCREEN-SPACE ALGORITHMS
Before introduction of programmable shaders GPUs utilized a fixed-function pipeline. This
pipeline imposed the use of a forward rendering context. A forward renderer can be thought
of as a fairly linear process in wich each piece of geometry is transformed, rasterized and
shaded independently before being added to the result.

A deferred rendering context [16] [17] [18] works differently because it delays the shad-
ing untill the very end. After geometry is transformed and rasterized it is not shaded but
instead its properties are written to a Geometry-Buffer (G-Buffer). A G-Buffer usually con-
sists of at least depth, normal and color attributes. In a final step this G-Buffer is processed
in a lighting stage that combines all contributions with a lighting model to produce the final
shaded output.

Both forward- and deferred rendering are still in use today and each have their own re-
spective benefits and drawbacks. Deferred rendering usually achieves better performance
when there are many light sources but uses more memory because of the G-Buffer. For-
ward rendering combines better with existing fixed-function functionality such as built in

11



12 BACKGROUND

anti-aliasing support.

A big advantage of deferred rendering contexts is the seamless integration with many
screen-space techniques. Screen-space algorithms operate on rasterized images (such as
the G-Buffer) instead of the original 3D geometry.

(a) Depth (b) Normals (c) Diffuse (d) Final

Figure 3.1: A scene rendered in a deferred context with depth (a), normals (b) and diffuse (c) components.
The final results (d) is constructed from these inputs in the lighting phase.

In today’s increasingly complex scenes the benefits of screen-space algorithms are be-
coming more pronounced. If it is possible to implement a technique as a screen-space ef-
fect than the amount of vertices or geometrical detail is no longer relevant for determining
its performance.

Note that while screen-space algorithms are generally considered fast as compared to
traditional methods, for best performance it is important to consider cache coherency. A
GPUs processing power is most efficiently utilized if cache misses are minimized. Because
GPUs optimize texture memory for 2D spatial locality, this means that performance is best
when neighbouring pixels access texture memory from the same region. For many use
cases this is indeed true. Ambient Occlusion is a good example because it is primarily con-
cerned with data about local geometry.

3.3. MIP MAPS, N-BUFFERS AND Y-MAPS
One of the most common datastructures in computer graphics is the Mip (multum in parvo)
map [19]. A full mipmap chain consists of a full resolution main texture and a list of pro-
gressively lower resolution representations of the same image. Each image in the mipmap
chain is always half the width and height of the previous image. This results in a total mem-
ory requirement of 4

3 n2, where n equals the width and height of the image. As we can see
in Figure 3.2a the final image in the mip map chain consists of a single pixel that covers the
entire original image.

More recently the N-Buffer was proposed as an alternative datastructure by Décoret
[20]. Where a Mip map chain useses progressively lower resolution images, an N-Buffer re-
mains its original resolution throughout the chain. As we can see in Figure 3.2b this allows
us to query any rectangle with power of two dimensions with a single query. The obvious
downside is the higher memory consumption of n2 log2.

Y-maps [21] promise to offer the best of both worlds. They consist of one (or more) mip
map steps, followed by a full N-Buffer chain. While this somewhat limits the precision at
which we can sample, it also significantly reduces the amount of memory. This is illustrated
in the graph shown in Figure 3.3.
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(a) Mip map (b) N-Buffer

(c) Y-Map (d) SAT

Figure 3.2: Comparison of sampling patterns for constructing MipMaps, N-Buffers, Y-Maps and SATs. Areas
indicated in orange represent the same regions across levels in the data hierarchy.

Figure 3.3: Memory requirements for storing different datastructures. Memory usage on the vertical axis in
bytes, resolution in pixels on the horizontal axis.
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3.4. SUMMED AREA TABLES
Summed Area Tables (SAT) were first introduced in 1984 by Crow [22]. It is possible to think
of an SAT as an integral of a texture. Informally, every value in an SAT is equal to the sum of
all values in the original texture that are above and left of it. More formally, we can describe
an SAT as the result of a two dimensional prefix sum operation.

An SAT only requires a single n2 texture to store its result. However, it should be noted
that in practice an SAT is often stored in a higher precision format because it has to handle
a much higher range of values.

The real benefit in using SATs is that we can sample any rectangular area using only
four samples (see Figure 3.4). This makes SATs very usefull in applications where this kind
of flexibility is required.

- - +
A B

C D

=

AB

CD

Figure 3.4: Any rectangular region can be sampled with an SAT using only four samples. We start with A and
substract parts B and C , because the area where B and C is removed twice we correct this by adding D to the
result.

SATs are usually constructed in two passes, a horizontal pass and a vertical pass. In a se-
quential execution environment the optimal way for constructing an SAT is fairly straight-
forward. As shown in Algorithm 1, we iterate over all values from start to finish while keep-
ing track of the total sum. At every position we write the current sum value to construct the
SAT. For the vertical pass we simply translate our buffers and repeat the same process.

Algorithm 1 SAT Generation

1: Given: original input buffer I , creates the corresponding SAT S.
2: for x ← 0, x < n, x ++ do
3: sum ← 0
4: for y ← 0, y < n, y ++ do
5: sum ← sum + I [x, y]
6: S[x, y] ← sum
7: end for
8: end for
9: I ← I T ,S ← ST

10: Repeat once more for the vertical pass.

In a parallel environment the problem of finding the most efficient SAT generation algo-
rithm is more difficult. As we can see from Algorithm 1, it is possible to parallelize the outer
for-loop. However, we cannot parallelize the inner for loop because of the dependency on
sum.

Several approaches were proposed to accelerate SAT generation on a GPU [23]. One of
the first was a recursive doubling approach that used logn passes. In the first pass, each
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element is summed with the element to its left. During the second pass the value two ele-
ments to the left is added. This process is repeated, doubling the stride after each pass. We
can see how this results in a full SAT after logn passes in Figure 3.5.

Figure 3.5: SAT generation through recursive doubling algorithm.

More recently, a work-efficient parallel scan was proposed by Harris et al. in 2007 [24].
The presented method aims to achieve the work efficiency of the sequential approach while
still taking advantage of the parallel architecture of the GPU. They model the input data as
a balanced tree on which they perform an up-sweep and down-sweep phase.

(a) Up-sweep phase (b) Down-sweep phase

Figure 3.6: The work-efficient parallel scan proposed by Harris et al. in 2007 works by firsting performing an
up-sweep (a) followed by a down-sweep (b).

3.5. DATASTRUCTURE USE CASES
While all previosuly discussed datastructures have properties that make them applicable
in a wide range situations, most have seen frequent use in specific scenarios wich we will
quickly discuss.

Mip maps have seen a lot of use in (trilinear) texture filtering that is used to reduce
noise and moiré patterns caused by sampling scaled textures during rasterization. Other
use cases include LOD algorithms such as geometry mipmaps for efficient terrain render-
ing [25].

N-Buffers were introduced as a tool to efficiently perform culling operations directly on
depth buffers. By using N-Buffers to store minimum and maximum depth values they show
how objects can be culled in constant time with only four depth lookups [20].
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A prominent use case for SATs is an effect called Depth of Field [23]. This effect sim-
ulates the blurriness of objects that are not within a lenses focus. It is implemented by
varying the sampling size (i.e. blur radius) from the SATs based on an objects distance to
the focus depth. Note that usually, many pixel samples are necessary if sampling is per-
formed from arbitrarily-sized areas. A different scenario that benefits from SATs is glossy
reflections. For this effect the amount of blur depends on the distance between an object
and the reflector.

(a) Depth of Field (b) Glossy reflections

Figure 3.7: Examples of problems in the field of Computer Graphics where SATs are commonly applied [23].
In (a) we see how objects at the camera’s focus depth are sharp whereas objects in front or behind this depth
become increasingly blurry. Glossy reflections (b) show how objects reflected in a glossy surface become
more blurred as the distance to the surface increases.
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STATISTICAL VOLUMETRIC OBSCURANCE

4.1. BACKGROUND
The amount of Ambient Occlusion (AO) at a point x on a surface is related to the ratio of
outgoing rays that are able to escape the scene as opposed to rays that are being blocked by
surrounding geometry (Figure 4.1a) [12]. Essentially, AO improves upon standard ambient
terms in popular shading models and captures shadows caused by light coming equally
from all directions. Formally, we can define AO as:

AO(x,~n) = 1

π

∫
Ω
ρ(d(x,~ω))~n ·~ωd~ω ,

where x is the position in the scene, and ~n the normal at x. Here, Ω is the sample volume,
usually a surface aligned hemisphere, d is the distance to the first intersection. The fall
off function ρ is used to simulate rays with a limited extent, to model local occlusion. In
practice a constant, linear or quadratic fall-off function is used.

While an exact evaluation of AO based on this definition can be computationally costly,
different models exist that achieve similar results. In particular, Volumetric Obscurance
(VO) [12] determines the amount of occlusion by approximating the geometric density
within a surrounding sample sphere S:

V O(x) =
∫

S
ρ(d(x, s))O(s)ds , (4.1)

where O is an occupancy function that is defined to be 0 if s is inside of the geometry and 1
otherwise.

The general assumption used by the VO model is that if a large portion of the sample
sphere is filled with geometry, it will be harder for ambient light rays to reach x. While this
intuition does not directly relate to any physical process, it has proven to provide similar
results to AO in practice.

If accounting for the normal ~n, one can improve upon the VO model by restricting S
to the hemisphere in the direction of the normal, hereby eliminating self-occlusion effects
caused by geometry behind the sample.

17
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Z-bu�er

(a) Screen Space Ambient Occlusion
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S

a

e

fd

c

b
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(d) Horizon-based sampling

Figure 4.1: Screen Space Ambient Occlusion: (a) SSAO at a sample point is defined by the ratio of rays that
can escape the scene. Point sampling (b) and Line sampling (c) approximate local ambient occlusion with
a volumetric obscurance model that solves the volume integral with randomized samples. Horizon-based
sampling (d) marches in randomized directions to compute the maximum angle at which rays can escape
the scene.
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(a) Statistical Volumetric Obscurance
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Figure 4.2: Our statistical volumetric obscurance (a) approach computes the volume integral of a box as an
approximation of ambient occlusion. The graph at the right shows how occlusion increases as the average µ
rises, after the average leaves the sample box, occlusion falls-off back to zero.
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SCREEN-SPACE AMBIENT OCCLUSION

Screen-Space Ambient Occlusion techniques, such as the one presented in this paper, work
on the depth buffer of the rendered image instead of the original geometry. As such, the
input consists solely of the depth values given in view space and optionally a normal map of
the rendered scene. Computing VO on the depth map becomes algorithmically very simple
as the simplified geometry is readily available in the depth map and the integral in Equation
(4.1) can be solved using Monte-Carlo sampling techniques or other approximations.

4.2. OUR MODEL
Our method builds upon the VO model but introduces some important changes that make
it more suitable for current graphics hardware and avoids sampling artifacts. First, instead
of a sample sphere, we use a sample box (Figure 4.3a). The general assumption used by VO
stays the same, i.e. if we determine that our sample box is largely filled with geometry, we
assume that there will be a high amount of occlusion and vice versa. Second, we replace the
3D obscurance function in Equation 4.1 with a 2D version as follows. We assume the depth
values in our Z-Buffer form a continuous function G : R2 → R with G(x, y) = dx,y being the
depth value at pixel position x, y . The first mean value theorem for integration states that
the mean value µ of G over a domain Ω is exactly:

µ= 1

AΩ

∫
Ω

G(x)d x , (4.2)

where AΩ is the area of the integration domain. Applied to our case this means that the
occupancy within the sample box can be expressed as the mean value µ(x) over the rectan-
gular area of the bottom face of the sample box centered at x (Figure 4.3a) with respect to
its z-value. Let, zB (x) be the depth value of the bottom face of the sample box and zT (x) of
the top face, as we are only interested in the relative amount of occupancy we can cancel
AΩ out and define our statistical volumetric obscurance model as:

SV O(x) = ρ
(
µ(x)− zT (x)

zB (x)− zT (x)

)
. (4.3)

The extent of the sample box is directly given by the pixel coordinates and the according
depth value. Therefore, all we need for the evaluation of the obscurance is the mean value
µ(x). As the size of the sample box varies with the depth at each pixel we make use of
Summed-Area Tables [22] as they provide the flexibility to adjust the sample area per pixel
over which we compute the average.

Note that in Equation 4.3 geometry outside of the sample box influences µ as well.
To account for this fact, we would want to weigh the influence of each sample via a fall-off
function ρ(x), which is 1 (no occlusion) if x ≤ 0 and (1−x) if 0 < x < 1 and to rise to one with
a user-defined slope as the distance to our sample point increases further (Figure 4.3a). In
the next section, we explain how to incorporate this idea.

4.3. DEPTH LAYERING
Because we only posses information on the average depth of the geometry inside the sam-
ple area, we can no longer apply the fall-off function to every depth value within the sample
box separately. The result are visible artifacts around strong depth discontinuities in the
form of halos; overestimations of the true obscurance (Figure 4.5a).
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L 1

Ω

μ1

(a) single depth layer

L 2
L 1

Ω

μ1

μ2

(b) two seperate depth layers

Figure 4.3: Depth Layering: While a single layer will result in a single average over all geometry (a), we can
slice our scene in multiple depth layers to obtain averages for each layer seperately (b).

To counteract overestimation, we divide the depth map into m uniformly arranged lay-
ers orthogonal to the viewing direction based on the maximum and minimum view space
depth. Each depth pixel is assigned to the layer which overlaps with the according depth
value (Figure 4.3). Non-assigned pixels are set to 0. The depth buffer is processed and split
among these multiple layers. During the splitting operation, we use an additional (color)
channel to keep track, which samples/pixels are valid, i.e., the channel is one if a depth
sample was assigned to the according pixel and zero otherwise. We then generate SATs for
each layer and channel separately. Contributions from each layer Li overlapping with the
sample volume Ω are weighted by the according sample count ni (the number of samples
assigned to Li ), to account for the missing values, and combined into a total obscurance
value SV OLayered(x) as follows:

SV OLayered(x) = 1∑
i∈Ωni (x)

∑
i∈Ω SV Oi (x)ni (x) , (4.4)

where SV Oi is the statistical volumetric obscurance defined in Equation (4.3) computed
on layer Li .

With m →∞ Equation (4.4) converges to an accurate VO value. However, the computa-
tional effort is linear in the number of layers m and larger scenes require a high number of
depth layers so that computation times would no longer be competitive compared to other
real-time AO techniques. For example, we found that the Sibenik cathedral scene would
require around 64 layers for good results (Figure 4.5d).

4.4. ADAPTIVE DEPTH SLICING
To reduce the computational effort of the linear depth-slicing approach, we propose to
use depth layers which adapt to the local geometry. We drew inspiration from higher-
dimensional filtering approaches [26] as our technique also builds on a recursive process
that partitions the current depth map of a layer into two disjoint sets in each recursion.
The intuition behind this step is that as long as pixels with very different depth values are
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further apart than the screen-space size from the according sample area then they do not
influence each other during the obscurance computation.

Our algorithm, depicted in Figure 4.4, works as follows: Starting with the original depth
map, we create a smoothed version of this depth map using the according SAT. For this,
we determine the sample area at each pixel and compute the mean value µ from the con-
tained depth values as described in Section 4. Each depth value is then either assigned
to the upper or lower layer based on its relative depth value compared to µ, hereby, often
successfully separating far and near samples. As in the uniform depth slicing approach
(Section 4.3), we keep track of the active pixels using an additional channel. The process is
repeated for the newly created layers if desired.

During rendering we simply evaluate all layers using Equation 4.4. The fall-off func-
tion ρ automatically adjusts the influence of each layer correctly; reducing the influence of
samples outside the sample box.

The adaptive depth slicing dramatically reduces the number of required layers. As little
as four adaptive layers can achieve results that are comparable to the naive 64 uniform layer
implementation (Figure 4.5d and 4.5f).

L2

L1

smoothed Z-bu�er

Ω

μ1

μ2

Figure 4.4: Adaptive Depth Slicing: In each recursion a smoothed Z-buffer is constructed, each depth sample
is either assigned to the upper (red) or lower layer (green).

4.5. SURFACE NORMAL INCORPORATION
Up until now, we have not taken the surface normal into account. The sample box was
always aligned with the viewing direction.

With an increasingly sloped surface, however, (Figure 4.6a and 4.6b), a bias is intro-
duced if parts of this surface are hidden in the depth map by other objects closer to the
camera. In Figure 4.6a the mean value of layer L1 (green) is only slightly above the sample
position. In Figure 4.6b it is raised as the object in layer L2 hides a part of the surface under-
neath. Performing VO computation only for the positive half-space in the direction of the
surface normal can enhance the perception of finer scale details [12]. To benefit from these
advantages, we here extend our approach to 3D by orienting our sample box accordingly
(Figure 4.6c).

After the adaptive layer computation from Section 4.4, we reproject each depth value
in each layer into view space to acquire its 3D position. We save the results in RGB maps
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(a) 1 layer (b) 1 layer, 1 ms

(c) 64 layer (d) 64 layer, 55 ms

(e) 4 adaptive layer (f) 4 adaptive layer, 2-3 ms

Figure 4.5: Comparison: When using a single layer (a) we see that depth discontinuities result in dark halos
(b). This problem can be solved by splitting the scene in multiple layers (c) however, this has a big impact on
performance (d). By using adaptive slicing we only make use of additional layers at the depth discontinuities
itself (e), this allows us to eliminate halos and still achieve good performance (f).

and compute the according SATs for each. For the SVO computation we still use the same
samples inside the original sample area, but perform the computation in 3D now. We com-
pute the average position x̄ of all reprojected depth samples and project it onto the surface
normal ~n, which conveniently reveals the average height of all samples along the surface
normal:

∆µ= (x̄−x) ·~n , (4.5)

where x is the surface position. The oriented statistical surface obscurance SV Oi per layer
Li is then:

SV Oi = clamp

(
∆µ

h
,0,1

)
, (4.6)

where h is the height of the sample box. Equation 4.4 is used to compute the final obscu-
rance.
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(c) Rotated surface with projected samples, correct occlusion

Figure 4.6: Normal Integration: (a) and (b) Considering only the hemisphere/hemibox around a surface
point in the viewing direction leads to different occlusion results depending on the slope of the surface. (c)
Projection of the mean of all depth samples in 3D space onto the surface normal removes this bias.

4.6. OPTIMIZATIONS

We introduce two more important performance improvements for the presented technique;
approximate SATs and differential SAT computation.

4.6.1. APPROXIMATE SATS

The computationally most costly part of our algorithm is the SAT computation. While we
experimented with other prefiltering techniques such as Mipmaps, N-Buffers [20] or Y-
Maps [27], SATs provided the highest quality. It turns out that a simple trick reduces the
computation times by a factor of 4 to 16 with negligible impact on quality.

Instead of computing full-resolution SAT, we downsample the input by a factor of 2-4
in both width and height by averaging the depth values. We exploit that upscaling such
an SAT with linear interpolation results in a similar SAT as for the full resolution input.
Please note that our additional channel is important during downsampling to keep track
of the sample count. As linear interpolation is hardware-accelerated, it does not induce
an important performance hit. Figure 4.7 shows a quality comparison between using a
full-resolution SAT and downsampled versions. Further, downsampling results in visible
flickering artifacts during rendering.
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(a) Full resolution (b) Half resolution (c) Quarter resolution

Figure 4.7: Approximate SATs: Constructing lower resolution SATs has a minimal impact on quality.

4.6.2. DIFFERENTIAL SAT COMPUTATION
Let L0 be the (downsampled) original depth map, and L1,0 and L1,1 be the first two adaptive
sublayers resulting from partitioning L0. Each subdivision of a layer into its sublayers re-
quires the computation of a corresponding SAT S. An important observation is that while
the samples contained in L0 are distributed among the sublayers L1,0 and L1,1, their total
sum does not change. Thus, subtracting SAT S1,0 from S0 results in S1,1 (Figure 4.8).

For four adaptive layers, we save generating and storing three out of seven SATs (for
more layers the ratio approaches 1:2). During rendering, we compute them on-the-fly by
subtracting all ancestral and the sibling layer from the root SAT S0. The pseudo-code in
Alg.2 shows how to query the SAT for all four leaf layers S2,0,S2,1,S2,2 and S2,3 given only
S0,S1,0,S2,0 and S2,2.

L0

S0

SAT

1 2

1 2

1 3

2 6

L1,0 L1,1

1

1

2

2

S1,0

1 1

2 2

S1,1

0 2

0 4
- =

SAT

SAT

Figure 4.8: Differential SAT Computation: We can spare the computation of one SAT in each partitioning
step as S1,1 = S0 −S1,0.
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Algorithm 2 Adaptive Depth Slicing with Differential SAT Computation

1: Given: depth buffer Gd , and normal buffer Gn

2: L0 ← downsample(Gd )
3: S0 ← sat(L0)

4: L1,0 ← partition(L0,S0)
5: S1,0 ← sat

(
L1,0

)
6: L1,1 ← L0 −L1,0 // computed on-the-fly
7: S1,1 ← S0 −S1,0 // computed on-the-fly

8: L2,0 ← partition
(
L1,0,S1,0

)
9: L2,2 ← partition

(
L1,1,S1,1

)
10: S2,0 ← sat

(
L2,0

)
11: S2,2 ← sat

(
L2,2

)
12: S2,1 ← S1,0 −S2,0 // computed on-the-fly
13: S2,3 ← S0 −S1,0 −S2,2 // computed on-the-fly

14: SV O
(
Gd ,Gn ,S2,0,S2,1,S2,2,S2,3

)
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RESULTS

We have implemented our technique using OpenGL/C++. All statistics were measured for
an image resolution of 1280×720 pixels on an Intel Core i5 4590 with 8GB of RAM, equipped
with an NVIDIA GTX 770 graphics card. We implemented the SAT generation algorithm as
an OpenGL compute shader [28].

5.1. PERFORMANCE

In Table 5.1, we show a detailed performance analysis of our algorithm using full resolution
SATs and half resolution in width and height. The numbers refer to the according steps
in Alg. 2. As the SAT computation is the most costly part of our algorithm, performance
increases by a factor of four if width and height are halved. We found that in many scenes,
the overall quality loss was minimal even when reducing the resolution along each axis by
a factor of four (Figure 4.7). An even more aggressive downsampling results in temporal
flickering around depth discontinuities when the camera moves.

Step (see alg. 2) Tfull (ms) Thalf (ms) Speed-up

2 0.13 0.05 x2.6

3 1.40 0.32 x4.4

4 0.57 0.11 x5.2

5 1.39 0.32 x4.4

8, 9 0.92 0.21 x4.3

10, 11 2.80 0.63 x4.4

14 1.65 0.50 x3.3

Total 8.86 2.14 x4.1

Table 5.1: Performance Evaluation: Breakdown of computational cost of our al-
gorithm for full resolution SATs and half resolution SATs. The numbers refer to
Algorithm 2.
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5.2. MEMORY REQUIREMENTS

For our four final SATs, we use textures that contain four 32bit floating point channels. The
first three channels are used to store view-space coordinates and the last one is used as a
mask to mark valid samples in each layer. When computing SATs at half resolution in width
and height we require a total of 14MB of memory.

5.3. TECHNICAL IMPLEMENTATION

To be able to quickly compare different AO techniques we set up a deferred rendering
framework (OpenGL, C++) that allowed us to quickly prototype different implementations.
This framework was designed to have an interface that provided an abstraction layer for
the implementation details of different AO approaches.

While most SSAO approaches are relatively straightforward to implement, some of our
ideas were harder to evaluate efficiently on a GPU. In particular, a significant amount of
time was spend on finding the fastest SAT construction algorithm for current graphics hard-
ware.

Several different GPGPU APIs such as NVIDIA CUDA, OpenCL and OpenGL Compute
Shaders were studied and evaluated. By profiling several implementations we were able to
arrive at a solution that was both fast and did not introduce a significant amount of API
overhead (see Table 5.2).

Our original implementation used the standard OpenGL rasterization API with frag-
ment shaders and was relatively slow. By switching to a GPGPU language such as CUDA we
were able to achieve significantly better performance. As we can see in Table 5.1, the most
computationally intensive part of our method is the computation of the SATs. CUDA ex-
posed functionality that allowed us to implement more efficient algorithms for computing
these SATs on a GPU (see Section 3.4).

However, the relative slow interop between CUDA and OpenGL pushed us to switch to
OpenGL Compute Shaders. CUDA is generally known as being a more flexible and matured
environment as compared to OpenGL Compute Shaders. However, for our specific require-
ments we found that OpenGL Compute Shaders were sufficiently capable as well. Addition-
ally, because Compute Shaders can operate on the same OpenGL databuffers, there was no
need for API interop code. In our final implementation we are able to compute our 4 adap-
tive layers with SATs in under 8.9 ms.

API Performance API interop

OpenGL (Fragment Shaders) 65.4ms n/a

CUDA 9.7ms 3.5ms

OpenGL (Compute Shaders) 8.9ms n/a

Table 5.2: Performance Evaluation: Breakdown of computational cost of our al-
gorithm for full resolution SATs and half resolution SATs. The numbers refer to
Algorithm 2.
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5.4. COMPARISON TO OTHER TECHNIQUES
We compare our technique to the classic point and line sampling SSAO techniques, which
are the most commonly used [2, 12]. By choosing a very high sample count (256 point sam-
ples per pixel), we additionally generated a reference image for volumetric obscurance. In
Figure 5.2, we show that our technique can generate results that are comparable in quality.
In Figure 5.3 we compare our technique to point and line sampling. We chose the num-
ber of samples so that all approaches produce visually similar quality. Using an SAT with a
quarter of the width and height resolution our approach is slightly faster than both.

Increasing the AO radius our performance stays the same, whereas the performance of
line and point sampling decrease, due to an increase of the bilateral blur radius, which is
mandatory to diminish the increasing undersampling artifacts. That means, our algorithm
scales well to higher resolutions compared to point and line sampling.

If only few samples are computed for the point or line-sampling (e.g., for very high per-
formance), visible undersampling artifacts appear (Figure 5.4). Our approach does not suf-
fer from undersampling and leads to more details, e.g. at the wall.



30 RESULTS

(a) 11 line samples (1.47ms) (b) SVO (0.93ms)

Figure 5.1: Comparison to Line Sampling: Both figures evaluate the occlusion at full resolution of 1280x720.
Line sampling (a) using 8 samples with a 4x4 randomization kernel with an 8x8 bilateral blur applied. SVO (b)
with 4 adaptive layers with quarter resolution SATs.

(a) VO reference (b) SVO

Figure 5.2: Comparison to a Reference VO: (a) Reference from 256 point samples without a randomization
kernel or a blur filter. Our method (b) shows comparable results using 4 adaptive layers and full resolution
SATs.

(a) 17 point samples (2.0ms) (b) 12 line samples (1.7ms) (c) SVO (1.6ms)

Figure 5.3: Comparison to Point and Line Sampling: (a) uses a point sampling approach with 17 samples
and a 4x4 randomization kernel, occlusion is evaluated at half resolution and a bilateral upsampling with 7x7
blur kernel is applied. (b) achieves similar results but only uses 12 line samples. In (c) we evaluate occlusion
at the full resolution using 4 adaptive layers with quarter resolution SATs.
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(a) 16 point samples (0.77ms) (b) SVO (0.65 ms)

Figure 5.4: Comparison to Point Sampling: (a) shows a close-up view of typical point sampling configuration
were occlusion is evaluated at half resolution, using 16 samples with a 4x4 randomization kernel. The result
is upsampled and an 8x8 bilateral blur filter is applied. (b) SVO evaluated at full resolution with 4 adaptive
layers and quarter resolution SATs.





6
CONCLUSION

Statistical Volumetric Obscurance is an alternative to traditional screen-space ambient oc-
clusion, which does not rely on typical sampling techniques. Due to the approximation
of the sample sphere by a box function, the evaluation of the local obscurance is reduced
to a simple mean-value computation over the sample area, which is efficiently evaluated
on the GPU using specialized summed-area tables. Previous approaches in this direction
suffered from artifacts such as halos, or very approximate solutions. The adaptive depth
slicing avoids these and preserves fine-scale features, leading to a quality similar to previ-
ous approaches with many more samples.

6.1. LIMITATIONS
For best results the amount of nearby depth discontinuities should be limited. An extreme
case, like looking along a row of aligned pillars, breaks this assumption and small halos and
dark creases are introduced. Locally adaptive layering would be an interesting future work
to address such issues.

As with any screen-space ambient-occlusion technique, the depth map represents only
the visible geometry, whereas important information of the overall scene is lost. Rendering
the occluded geometry into the depth layers after they have been created would allow us to
incorporate even these occluded parts for more precise results beyond the capabilities of
traditional SSAO techniques.

6.2. FUTURE WORK
As a future exercise it might be interesting to examine the performance/quality tradeoff
when using less (2) or more (4+) adaptive manifold layers. Based on intuiton one would
expect the performance to scale linearly whereas performance benefits would show dimin-
ishing returns.

Moving forward, it would be interesting to investigate using a dynamic number of man-
ifolds based on the rendered scene. As more depth discontinuities are introduced into the
rendered scene the number of manifolds could rise for better quality, if there are less depth
discontinuities the number of manifolds could be lowered for better performance.

In a next step the idea of a dynamic number of layers could be extended by filtering
parts of the scene independently. This would allow us to use a low number of manifolds
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for the majority of the image. However, if needed, specifically identified parts of the scene
could use a high(er) number of manifolds. While this requires a preprocessing step that
identifies regions with many depth discontinuities, we have found that this can be achieved
relatively cheap by using an N-Buffer with min/max components.



7
PERSONAL REFLECTION

While the problem statement for this MSc thesis was well defined from the beginning, it has
taken a significant amount of exploration of different ideas before arriving at the solutions
presented in this report. In this section I will reflect on my work progress and provide an
overview of attempts that failed to achieve the desired results but have contributed in other
ways to arrive at the work presented in this report.

7.1. PROCESS
The first stage of the MSc thesis was dedicated to a literature study of the most notable pa-
pers on AO, Shadow Mapping and Global Illumination. This allowed me to become familiar
with existing approaches to AO, as well as positioning it within a wider context of GI.

Originally, the work in this paper was focussed on N-Buffers as the primary datastructure.
We experimented with using different pixel formats (integral, floating point) and varying
the precision (halfs/floats). Additionally, we looked at how different kernel sizes and the
amount of layers affected the performance and quality of the result. To reduce memory
requirements without impacting quality we investigated reducing the resolution of the first
layers of the N-Buffer (i.e. Y-maps).

The first efforts to eliminate the halos around depth discontinuities were focussed on detec-
tion. By extending our N-Buffers with channels for minimum and maximum depth values
we were able to detect and remove occlusion from the affected regions. However, this re-
sulted in under occlusion artifacts if halos were overlapping actually occluded areas. We
experimented with constructing a probabilistic model of the depth map by deriving the
variance. This turned out to be less effective than the simpler min/max approach.

In a next step, we experimented with sampling different shapes from our N-Buffer such
as lines (instead of squares or rings). Also, we tried several approaches were the depth map
was filtered to flatten depth discontinuities before constructing our N-Buffers. Unfortu-
nately, neither of these approaches were able to achieve smooth looking results without
introducing different artifacts.

A more promising approach we investigated was based on depth layering. While distribut-
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ing depth values between multiple layers caused some issues by itself, we were able to ar-
rive at a solution that would generate good looking results as longs as the number of layers
was high enough. Because, our solution should have competitive performance character-
istics compared to existing techniques we had to siginificantly reduce the required number
of layers. Here, we were inspired by the Adaptive-Manifolds paper [26]. While the ideas
presented in this paper were focussed on high dimensional filtering algorithms, we were
able to introduce some modifications that allowed us to apply them in our depth layering
scenario.
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A
CODE LISTING

A.1. SAT GENERATION (GLSL COMPUTE SHADER)

// ( defined at compile time )

// #define HALF_WIDTH
// #define WIDTH
// #define FORMAT_SOURCE
// #define FORMAT_OUTPUT
// #define TYPE
// #define LOAD( x )

layout (local_size_x = HALF_WIDTH ) in ;

layout (FORMAT_SOURCE ) readonly uniform image2D source ;
layout (FORMAT_OUTPUT ) writeonly uniform image2D result ;

shared TYPE shared_data [WIDTH ] ;

uniform vec2 cameraClippingPlanes ;
uniform vec2 cameraProjectionConstants ;

vec4 toVec4 ( vec4 x ) { return x ; }
vec4 toVec4 ( vec2 x ) { return vec4 (x , 0 , 0) ; }

void main ( void )
{

uint id = gl_LocalInvocationID . x ;

ivec2 P0 = ivec2 (id * 2 , gl_WorkGroupID . x ) ;
ivec2 P1 = ivec2 (id * 2 + 1 , gl_WorkGroupID . x ) ;

vec4 V0 = imageLoad (source , P0 ) ;
vec4 V1 = imageLoad (source , P1 ) ;

shared_data [P0 . x ] = LOAD (V0 ) ;
shared_data [P1 . x ] = LOAD (V1 ) ;

// (OpenGL SuperBible )
for ( uint step = 0 ; step < log2 (WIDTH ) ; step ++)
{

barrier ( ) ;

uint mask = (1 << step ) − 1 ;
uint rd_id = ( ( id >> step ) << ( step + 1) ) + mask ;
uint wr_id = rd_id + 1 + (id & mask ) ;
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shared_data [wr_id ] += shared_data [rd_id ] ;
}

barrier ( ) ;

imageStore (result , P0 . yx , toVec4 (shared_data [P0 . x ] ) ) ;
imageStore (result , P1 . yx , toVec4 (shared_data [P1 . x ] ) ) ;

} �
A.2. AMBIENT OCCLUSION EVALUATION (GLSL FRAGMENT SHADER)

in vec2 position ;
in vec3 viewRay ;

// Sources
uniform sampler2D sourceDepth ;
uniform sampler2D sourceNormals ;

// SAT ' s
uniform sampler2D sourceSAT ;
uniform sampler2D sourceSAT_1 ;
uniform sampler2D sourceSAT_11 ;
uniform sampler2D sourceSAT_21 ;

// Sample box , f a l l o f f
uniform f l o a t sampleBox_Size , sampleBox_Height ;
uniform f l o a t falloff_Range ;

//
uniform vec2 texelSize ;

// Camera
uniform vec2 cameraClippingPlanes ;
uniform vec2 cameraProjectionConstants ;

// Result
out f l o a t result ;

// Sample a SAT
vec4 sampleSAT ( sampler2D sampler , vec2 position , vec2 texel , f l o a t area ) {

vec4 sum ;

sum = texture (sampler , position + vec2 (+texel . x , +texel . y ) * area * 0 . 5 ) ;
sum += texture (sampler , position + vec2(−texel . x , −texel . y ) * area * 0 . 5 ) ;

sum −= texture (sampler , position + vec2 (+texel . x , −texel . y ) * area * 0 . 5 ) ;
sum −= texture (sampler , position + vec2(−texel . x , +texel . y ) * area * 0 . 5 ) ;

return sum ;
}

void main ( ) {

// SAT ambient occlusion
f l o a t viewDepth = texture (sourceDepth , position ) . x ;
vec3 viewPosition = viewDepth * viewRay . xyz ;
vec3 viewNormal = normalize ( texture (sourceNormals , position ) . xyz * 2.0 − 1 . 0 ) ;

// Sample the sat ' s
f l o a t sampleBoxSize = sampleBox_Size / viewDepth ;

vec4 sat = sampleSAT (sourceSAT , position , texelSize , sampleBoxSize ) ;
vec4 sat_1 = sampleSAT (sourceSAT_1 , position , texelSize , sampleBoxSize ) ;
vec4 sat_11 = sampleSAT (sourceSAT_11 , position , texelSize , sampleBoxSize ) ;
vec4 sat_21 = sampleSAT (sourceSAT_21 , position , texelSize , sampleBoxSize ) ;
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// Compute remaining sat ' s through substraction
vec4 sat_2 = sat − sat_1 ;
vec4 sat_12 = sat_1 − sat_11 ;
vec4 sat_22 = sat_2 − sat_21 ;

// Compute AO
vec2 aoNearNear = evaluateAO (sat_11 , viewDepth , viewPosition , viewNormal , radius ) ;
vec2 aoNearFar = evaluateAO (sat_12 , viewDepth , viewPosition , viewNormal , radius ) ;
vec2 aoFarNear = evaluateAO (sat_21 , viewDepth , viewPosition , viewNormal , radius ) ;
vec2 aoFarFar = evaluateAO (sat_22 , viewDepth , viewPosition , viewNormal , radius ) ;

result += (aoNearNear . x * aoNearNear . y +
aoNearFar . x * aoNearFar . y +
aoFarNear . x * aoFarNear . y +
aoFarFar . x * aoFarFar . y ) /

(aoNearNear . y + aoNearFar . y + aoFarNear . y + aoFarFar . y ) ;

result = 1.0 − result ;

return ;
}

// Evaluate ambient occlusion
vec2 evaluateAO ( vec4 sat , f l o a t viewDepth , vec3 viewPosition , vec3 viewNormal , f l o a t radius ) {

vec3 samplePosition = sat . xyz / sat . w ;

f l o a t height = dot (samplePosition − viewPosition , viewNormal ) ;

f l o a t occlusion = clamp (height / (sampleBox_Height ) , 0 . 0 , 1 . 0 ) ;

f l o a t minHeight = sampleBox_Height ;
f l o a t maxHeight = sampleBox_Height + falloff_Range ;

// F a l l o f f
i f (height > minHeight ) {

occlusion *= 1.0 − min( 1 . 0 , (height − minHeight ) / (maxHeight − minHeight ) ) ;
}

return vec2 (occlusion , sat . w ) ;
} �
A.3. AMBIENT OCCLUSION EVALUATION (C++/OPENGL)

void AdaptiveManifoldsAO : draw (DeferredFrameBuffer* frameBuffer , AmbientOcclusionBuffer* ←-
ambientOcclusionBuffer , Camera* camera ) {

// 1 . Compute sat of o r i g i n a l depth map
this−>sat−>dispatch (camera , frameBuffer−>getDepthTexture ( ) ) ;

// 2 . S p l i t upper part from depth map into new layer
this−>splitter1−>draw (camera , frameBuffer−>getDepthTexture ( ) , this−>sat−>getTexture ( ) ) ;

// 3 . Compute sat of upper layer
this−>sat_1−>dispatch (camera , this−>splitter1−>getTexture ( ) ) ;

// 4 . S p l i t upper part from upper and lower layer .
this−>splitter2−>draw (camera , frameBuffer−>getDepthTexture ( ) , this−>splitter1−>getTexture ( ) , this−>sat←-

−>getTexture ( ) , this−>sat_1−>getTexture ( ) ) ;

// 5 . Compute sat for upper l a y e r s
this−>sat_11−>dispatch (camera , this−>splitter2−>getTexture ( 0 ) ) ;
this−>sat_21−>dispatch (camera , this−>splitter2−>getTexture ( 1 ) ) ;

// Ambient occlusion evaluation
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glBindFramebuffer (GL_DRAW_FRAMEBUFFER , ambientOcclusionBuffer−>getIdentifier ( ) ) ;

glUseProgram ( this−>shader−>getIdentifier ( ) ) ;

i n t unit = 0 ;

this−>shader−>bindTexture ( "sourceDepth" , frameBuffer−>getDepthTexture ( ) , unit++) ;
this−>shader−>bindTexture ( "sourceNormals" , frameBuffer−>getNormalTexture ( ) , unit++) ;

this−>shader−>bindTexture ( "sourceSAT" , this−>sat−>getTexture ( ) , unit++) ;
this−>shader−>bindTexture ( "sourceSAT_1" , this−>sat_1−>getTexture ( ) , unit++) ;
this−>shader−>bindTexture ( "sourceSAT_11" , this−>sat_11−>getTexture ( ) , unit++) ;
this−>shader−>bindTexture ( "sourceSAT_21" , this−>sat_21−>getTexture ( ) , unit++) ;

this−>shader−>drawQuad ( ) ;
} �
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