
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://cas.tudelft.nl/

CAS-2023-516828

M.Sc. Thesis

Digital self-timed neuron design for
Spiking Neuron Networks

Tianyu Du

Abstract

Spiking Neural Networks(SNN) have been widely leveraged by
neuromorphic systems due to their ability to closely mimic biological
neural behavior, where information is exchanged and received between
neurons in the form of sparse events(spikes). Such neuromorphic sys-
tems are highly energy-efficient because the use of a global clock can be
avoided by asynchronous event-driven operations. Neurons, as the ba-
sic processing units of neuromorphic systems, are required to be low-
power and high-speed for the implementation of complex networks. In
this work, two fully event-driven digital Integrate-and-Fire(IF) neu-
ron design is presented. Both design exploits the hierarchical struc-
ture, which allows the synaptic weights can be accumulated by local
compute units in parallel. Instead of using handshake protocols, the
proposed design generates on-demand event pulses to drive the weight
accumulation, so we call it self-timed. Both neurons are designed by
SystemVerilog and synthesized in TSMC 28nm technology. According
to the synthesis results, both designs can finish the accumulation of
1024 6-bit weights within 100ns, with a power consumption of 0.055pJ
per spike and 0.23pJ per spike respectively.

Digital self-timed neuron design for Spiking Neuron
Networks

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Tianyu Du
born in Dalian, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2023 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Digital self-timed neuron design for Spiking Neuron Networks” by
Tianyu Du in partial fulfillment of the requirements for the degree of Master of
Science.

Dated: January 2023

Chairman:
prof.

Advisor:
prof.dr.ir. M.Y. Advisor

Committee Members:
dr.

dr.

iv

Abstract

Spiking Neural Networks(SNN) have been widely leveraged by neuromorphic systems
due to their ability to closely mimic biological neural behavior, where information is
exchanged and received between neurons in the form of sparse events(spikes). Such
neuromorphic systems are highly energy-efficient because the use of a global clock can
be avoided by asynchronous event-driven operations. Neurons, as the basic process-
ing units of neuromorphic systems, are required to be low-power and high-speed for
the implementation of complex networks. In this work, two fully event-driven digital
Integrate-and-Fire(IF) neuron design is presented. Both design exploits the hierarchi-
cal structure, which allows the synaptic weights can be accumulated by local compute
units in parallel. Instead of using handshake protocols, the proposed design generates
on-demand event pulses to drive the weight accumulation, so we call it self-timed. Both
neurons are designed by SystemVerilog and synthesized in TSMC 28nm technology. Ac-
cording to the synthesis results, both designs can finish the accumulation of 1024 6-bit
weights within 100ns, with a power consumption of 0.055pJ per spike and 0.23pJ per
spike respectively.

v

vi

Acknowledgments

By finishing this thesis, I am concluding an unforgettable journey in my life, for which
I shall thank many people that I have met along the way.

First of all, my sincere gratitude to Professor Rene van Leuken for providing me
with the opportunity to work on this fascinating topic and work with the brilliant
people in Innatera, thank you for all the helpful guidance and insights. I would also
like to express my great appreciation to Professor Alexander de Graaf for his support
and feedback throughout the internship.

I would like to express my deepest appreciation to Aditya Dalakoti, Kamlesh Kumar
Singh, and Jinbo Zhou, thank you for being so patient and offering me help whenever
I needed it, I’m so grateful for your trust and encouragement. Your knowledge and
experience also help me to become a better engineer. I would also like to thank everyone
in Innatera for their support and kindness, it has been a great fortune for me to work
with them.

Special thanks to my dear friends and colleagues Yichen and Jiongyu, it is so lucky
to have you by my side on this journey, I really miss the days when we worked together
in the same room.

Words cannot express my gratitude and love for my family, thank you for your
unconditional love, company and support. Finally, I want to say to my grandfather, I
miss you so much, I know you will always be there for me, giving me the courage and
strength to keep on the journey of my life.

Tianyu Du
Delft, The Netherlands
January 2023

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Problem statement . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Thesis outline . 2

2 Literature review 5

2.1 Spiking Neural Networks . 5

2.1.1 Neuromorphic systems . 5

2.1.2 Spiking Neural Networks . 5

2.1.3 Neurons . 6

2.1.4 AER . 8

2.1.5 State of the art . 9

2.2 Asynchronous design . 11

2.2.1 Muller-C element . 12

2.2.2 Classes of asynchronous circuits 12

2.2.3 Handshake protocols . 13

2.2.4 Data encoding . 13

2.2.5 Asynchronous pipeline . 14

3 Implementation 17

3.1 Architecture overview . 18

3.2 Accumulator design . 19

3.2.1 Adder tree based accumulator 20

3.2.2 Time-multiplexed accumulator 25

3.3 Summary . 37

4 Results 39

4.1 Post-synthesis simulation . 39

4.1.1 Post-synthesis simulation of the adder tree based neuron 40

4.1.2 Post-synthesis simulation of the time-multiplexed neuron 41

4.2 Synthesis results . 42

4.3 Performance of different hierarchical structures 44

4.4 Optimizations . 46

4.5 Summary . 47

ix

5 Conclusion and Future work 49
5.1 Conclusion . 49
5.2 Future work . 50

x

List of Figures

2.1 Overview of the neurons in the brain 6
2.2 Equivalent circuit model of the LIF neuron 7
2.3 Equivalent circuit model of the H-H neuron 8
2.4 Conceptual diagram of AER working as a bus for spiking events 9
2.5 Overview of the Neurogrid architecture 10
2.6 Overview of the TrueNorth architecture 10
2.7 Basic components for self-timed operations in µBrain 11
2.8 The symbol and truth table of the C-element 12
2.9 Basic asynchronous communication protocols 13
2.10 Bundled data encoding . 14
2.11 Dual-rail encoding . 15
2.12 Sutherland’s micropipeline . 15
2.13 PS0 pipeline . 16

3.1 The working process of the spiking neuron 17
3.2 Schematic of SNN neuromorphic array 18
3.3 Schematic of proposed self-timed IF neuron 19
3.4 Hierarchical architecture of the self-timed accumulator 20
3.5 The schematic of capture layer . 21
3.6 N-operand adder tree based on ripple carry adders 22
3.7 Adding seven k-bit operands with CSA-based adder tree 22
3.8 Asynchronous pipeline design without handshake protocols 23
3.9 Pre-synthesis simulation of the adder tree based neuron 24
3.10 The schematic of time-multiplexed compute unit 25
3.11 Data flow in the two-line structure . 26
3.12 Timing analysis of tred . 27
3.13 The state signal . 28
3.14 Handshake pipeline . 28
3.15 Req signal of level i . 29
3.16 Ack signal of level i . 29
3.17 The process of the pulse-mode handshake pipeline 30
3.18 Digital implementation of the first level 31
3.19 Input spike filter . 31
3.20 Pre-synthesis simulation of the first level 32
3.21 Digital implementation of the second level 33
3.22 The spike synchronizer . 33
3.23 Pre-synthesis simulation of the second level 34
3.24 Digital implementation of the third level 35
3.25 Pre-synthesis simulation of the third level 35
3.26 Shortest path in the compute unit in level3(one input spike received) . 36
3.27 Pre-synthesis simulation of the time-multiplexed neuron 37

xi

4.1 The critical path from the output port of the accumulator to the output
port of the comparator . 39

4.2 The critical path of the adder tree in the second level 40
4.3 The post-synthesis simulation of the adder tree based neuron 41
4.4 The critical path of the ripple carry adder in the third level 41
4.5 The post-synthesis simulation time-multiplexed compute unit 42
4.6 The post-synthesis simulation time-multiplexed neuron 42
4.7 The flow of the power estimation . 43
4.8 The gate reports of the two proposed designs 44
4.9 Hierarchical structure of the accumulator with N=32 45
4.10 Basic pulse hates . 47

xii

List of Tables

4.1 Sybthesis result of two proposed neurons 43
4.2 Performance comparison between N=16 and N=32 for time-multiplexed

neuron . 45
4.3 Performance comparison between N=16 and N=32 for adder tree based

neuron . 46

xiii

xiv

Introduction 1
1.1 Problem statement

The development of brain-like architecture has become a grand challenge in the re-
search of neuromorphic computation. The human brain has evolved over billions of
years and it is able to solve complex problems with massively parallel computation and
low-power consumption. As a result, neuromorphic engineering is seeking solutions
to build a system to execute brain-like computation and respective hardware imple-
mentation. Numerous neuromorphic processors have emerged recently. Unlike Von-
Neumann architecture-based computers, neuromorphic processors are highly energy-
efficient, parallel and distributed[1]. Thus, these neuromorphic processors have shown
better performance in many engineering applications such as signal processing and
pattern recognition[2].

Neuromorphic system design leverage Spiking Neural Network(SNN) processing due
to its ability to closely mimic biological neural behavior. Information is exchanged and
received between billions of neurons in the form of sparse asynchronous events(spikes).
Specifically, SNN consists of a large set of hardware neurons that replicate the behav-
ior of neurons in brains, neurons are connected by specialized functional units called
synapses[3]. Each synapse has an associated weight which represents the connection
strength. Time is incorporated as an explicit dependency in SNNs, at a particular
instant, neurons receive numerous spikes from connected synapses and start evaluation
and generate spikes via local variables.

Asynchronous logic design has long been seen as the optimized method for modeling
Spiking Neuron Networks because computation in biological neural networks is executed
by asynchronous event-driven operations. In SNNs, redundant operations are skipped
due to sparsity exploitation, so power is only dissipated when necessary[1]. Using
asynchronous event-driven design allows neurons to evaluate their membrane potential
against the threshold without the need for a global clock signal, which eliminates the
power which is consumed by the continuously running clock. Besides, parallel and
event-driven processing allow neurons to work independently of other neurons, which
significantly simplifies the back-end timing closure. In addition, asynchronous logic can
also eliminate the time margin and reduce the latency response[4].

Most asynchronous communication implemented in state-of-art neuromorphic pro-
cessors is based on handshake protocols such as Loihi[5] and TrueNorth[6]. However,
traditional handshake protocols require c-elements and control signals(req and ack) to
get correct behavior which causes extra area and latency. Besides, the performance of
handshake protocols depends on wire delay[4], as a result, the propagation delay and
signal integrity issue would become even worse in large-scale neuromorphic systems.
Another problem for the existing neuromorphic processors is that each spiking neuron

1

accumulates synapse weights sequentially, which leads to low time efficiency especially
when the network becomes more complex. [1]proposed a self-timed event-driven SNN
architecture, which relies on an oscillator and a novel delay cell to generate a local clock
so the use of the global clock or handshake can be avoided. Inspired by the work in [1],
this thesis presents two novel event-driven pulse-mode asynchronous architectures for
digital Integrate-and-Fire(IF) neuron design in SNN. The proposed design is able to
generate on-demand event pulses to drive the weight accumulation rather than using
a global clock. Instead of one-by-one accumulation, the proposed design offers a hier-
archical structure where weights are divided into multiple subgroups and accumulated
by local compute units in parallel. The proposed design allows digital spiking neurons
to evaluate with high speed and low power consumption.

1.2 Objectives

The objective of this work is to design high-speed Spiking Neural Network subcompo-
nents(neurons) in self-timed asynchronous logic. The components need to be connected
together in neuromorphic array structures to solve use case problems. The functionality
of the hardware design should be verified, and relevant design parameters should be
identified in order to perform trade-off analysis. The proposed design should be imple-
mented in ASIC technology and the performance on power, area and delay should be
analyzed. Finally, different connectivity patterns should be compared to determine the
one with better properties.

1.3 Contributions

The main contributions of this thesis include:

• Hardware implementation of the two proposed neuron designs by SystemVerilog,
the function is verified by Modelsim pre-synthesis simulation, critical timing anal-
ysis is given.

• The design of two novel pulse-based asynchronous pipelines that can be applied
to the hierarchical structure of the proposed neuron designs.

• The synthesis results of the two neuron design is presented and compared, the
post-synthesis simulation is given by the Xcelium simulator.

• Giving the trade-off analysis of different hierarchical structures and providing the
methods for optimizations.

1.4 Thesis outline

• Chapter2 first summarizes the basic background knowledge related to this work
and then some state-of-the-art design in the field is given.

2

• Chapter3 presents the design of two proposed self-timed neurons as well as their
combined asynchronous pipeline design, related timing constraints are discussed
and the pre-synthesis simulation results is given.

• Chapter4 provides the pos-synthesis simulation results of two neuron designs and
discusses their performance, trade-off analysis is given to explore the effect of the
hierarchical structure on the neuron’s performance.

• Chapter5 concludes the thesis and lays out the possible future work.

3

4

Literature review 2
This chapter will first give a basic background knowledge related to Spiking Neural
Networks, some state-of-the-art neuromorphic processors will be introduced. After
that, the method of asynchronous logic design will be discussed, which includes the
topic of self-timed logic and asynchronous pipeline design.

2.1 Spiking Neural Networks

2.1.1 Neuromorphic systems

The concept of neuromorphic computing was first proposed in 1989[7] and became
a milestone of brain-like system development. Neuromorphic computing, also known
as neuromorphic engineering, is the reverse engineering of the brain. It aims to use
semiconductor technology to construct the basic units of the brain’s nervous sys-
tem—neurons and synapses, and connect them in the way that they are organized
in the brain. The feasibility of neuromorphic engineering comes from the similar mas-
sively parallel structure of neural and neuromorphic networks, as well as the similarity
of the working process between neural and transistors. Neuromorphic system designs
based on analog, digital, and hybrid mixed-signal have emerged in recent years due to
their desirable features.

2.1.2 Spiking Neural Networks

Spiking Neural Networks(SNNs) are exploited by neuromorphic systems for data ex-
change due to their highly sparse processing[1]. SNN was first proposed by Alan Lloyd
Hodgkin and Andrew Huxley in 1952, where calculations are performed by using a
model that is highly similar to the biological neuron mechanism. The development
of SNN narrows the gap between the artificial neural network and the real biological
neural system. An SNN consists of spiking neurons as the basic processing units, in-
stead of using continuous values for data transmission as in conventional ANNs, data
is transmitted via the precise timing of spikes or a sequence of spikes in SNNs. Due to
the high sparsity of spiking events and the form of event-driven computation, SNN can
provide excellent energy efficiency and is the best choice for neuromorphic systems[8].

SNNs are considered to have more potential than ANNs in terms of integration
and energy consumption, this comes from three advantages brought about by the spike
mechanism. Firstly, the bandwidth and power consumption of transmitting binary
pulses are much lower than those of transmitting multi-bit continuous values. Secondly,
the weight accumulation in SNNs can be completed simply by adders since the pulses
are single-bit, while in ANNs multipliers are required which cost extra area. Thirdly,

5

since SNNs are event-driven, neurons are in an idle state when no input is received,
while neurons in ANNs need to be in a working state all the time.

2.1.3 Neurons

Biological neurons consist of a cell body, dendrites, and axons, as shown in Figure 2.1.
Information is transmitted between neurons in the form of electrical signals. The
cell body is the center of neuron operations, which is used to process the electrical
signals received from the dendrites and generate output. Dendrites are used to receive
electrical signals from pre-neurons. A neuron has a large number of dendrites, and each
dendrite can simultaneously receive electrical signals from other neurons. The spike
signals are transmitted through the axon to the synapses, then each synapse applies
its own weights to the spikes before they go to downstream neurons. A neuron has an
average of 15,000 synapses, which can be connected to multiple neurons and receive
electrical signals from multiple neurons simultaneously. The electrical signals received
by synapses can promote or inhibit the membrane potential of the neuron. When the
membrane potential overcomes the threshold, an output signal will be generated and
transmitted to other neurons.

Some neuron models are developed to imitate the actual activity of neurons, mainly
including the integrate-and-fire model, Hodgkin–Huxley model, and the Izhikevich
model.

Figure 2.1: Overview of the neurons in the brain
[9]

2.1.3.1 Integrate-and-fire model

Integrate-and-fire(IF) model is the simplest neuron model proposed by Lapicque in
1907[10]. In the IF model, the state of the neuron is defined by the membrane potential,
which receives excitation or inhibition from synaptic inputs. The IF model can be
regarded as an integrator, the input current of the neuron is integrated by a capacitor,

6

when the voltage over the capacitor reaches the threshold voltage, the capacitor is
discharged and a voltage spike is transmitted at the output of the neuron.

The limitation of IF neuron model is that it cannot model the leakage of the mem-
brane potential, so the Leaky Integrate-and-Fire(LIF) model is proposed to solve this
problem. In LIF model a register is added to provide the leakage circuit, as shown in
Figure 2.2. The LIF neuron model is one of the most widely used models for analyzing
the behavior of neural systems.

Figure 2.2: Equivalent circuit model of the LIF neuron
[11]

2.1.3.2 Hodgkin–Huxley model

The Hodgkin-Huxley (H-H) model is proposed by the quantitative study of ionic current
and conductance on the cell membrane of squid neurons[12]. It has a high degree of
biological similarity and is currently the closest model to biological neurons. Since
the cell membrane is selectively permeable and only specific ions are allowed to pass
through, so the ions flowing inside and outside the cell will affect the potential difference
of the cell membrane. The H-H model can accurately represent the dynamic behaviour
of the ion channels by a conductance-based model, but it needs to model sodium,
potassium ions and leakage channels separately which is complex and the calculation
process is cumbersome. The equivalent circuit of the H-H model is shown in Figure 2.3.

2.1.3.3 Izhikevich model

Izhikevich model was proposed in 2003, it is a simplified model which combines the
biological plausibility of Hodgskin-Huxley dynamics and the computational efficiency
of integrate-and-fire model[13]. The model uses second-order differential equations to
describe the dynamic properties of the cell membrane, as shown in equations 2.1, where
v represents the membrane potential of the neuron, u represents the inhibitory variable
of sodium ion and the activation variable of potassium ion, which provide negative

7

Figure 2.3: Equivalent circuit model of the H-H neuron
[12]

feedback to the neuron membrane potential v, and I represents the external input
current. If the neuronal membrane potential v exceeds the threshold of 30mV, then v
and u will be reset by equation 2.2.

dv
dt

= 0.04v2 + 5v + 140− u+ I,

du
dt

= a(bv − u),
(2.1)

 v → c
, ifv ≥ 30mV

u → u+ d,
(2.2)

a, b, c, and d are dimensionless parameters, where a represents the recovery speed
of the membrane potential; b represents the sensitivity of the recovery variable u to the
of the membrane potential; c determines the reset value after the neuron fires a pulse;
d determines the recovery variable u after the neuron fires a pulse. Different types of
firing patterns can be obtained by adjusting these parameters[13].

2.1.4 AER

The neuron firing rates in a Spiking Neural Network range from tens of Hz to hundreds
of HZ, even if there are thousands or even millions of neuron firing at the same time,
the firing rates of the network is between KHz and MHz, which can be easily met by
the digital system. Therefore, Address Event Representation (AER) is proposed for
spike transporting in SNNs. AER leverages the time-multiplexing method to transport
spikes between neuron arrays, spikes are encoded as addresses that indicate the source

8

neuron and destination synapses and sent over a bus(Figure 2.4). An arbiter is used to
order the spikes if multiple spikes arrive simultaneously. The addresses are decoded at
the input of the neuron array and then the spikes are sent to the destination neurons.

Figure 2.4: Conceptual diagram of AER working as a bus for spiking events
[3]

2.1.5 State of the art

The State-of-the-art implementations of SNN emulators are mainly based on full digital
and hybrid mixed-signal silicon technology[1]. Analog circuits can accurately simulate
the dynamic characteristics of neurons and realize relatively complex dynamic models,
but they are sensitive to temperature changes and have very weak programmability.
Besides, analog neuromorphic ICs also suffer from high design cost and low neuron
density. In contrast, digital neuromorphic ICs leverage logic gates to emulate neurons
and synapses and dense memory, so the design can be synthesized and integrated in
an SoC which results in high density and low cost. Neuromorphic ICs that are worth
mentioning will be discussed in this section.

• Neurogrid[14] is a hybrid mixed-signal multi-chip system used for large-scale
neural simulations, it consists of 16 neurocores and each core consists of 65k analog
neurons with digital routing. The neuron circuits model the soma, dendritic
trees, synapses, and axonal arbors. The neurocores are interconnected with a tree
topology and a 4KB memory is implemented in each core for spike transmitting.
A daughterboard with 256Mb RAM is applied to transmit the spikes to arbitrary
locations in multiple Neurocores.

• TrueNorth[6] is a fully digital SNN implementation proposed by IBM. It consists
of 4096 neurosynaptic cores and each core has 256 input axons and 256 neurons.
The cores exploit a crossbar structure where the 256 axons are shared by 256
neurons, so each neuron can have up to 256 inputs. The axons and neurons are
connected by the synapses on each cross-point(Figure 2.6). 4096 cores are dis-
tributed in a 64×64 array, the output spikes from one neuron can be transmitted
to any other cores in the form of packets. Truenorth is designed by a mixed asyn-
chronous–synchronous approach, handshake-based asynchronous design is used
for the communication and control circuits, while the synchronous design is used
for computations[15]. Truenorth is ideal for energy-efficient applications due to
its event-driven process, which only consumes 72mW of power, corresponding to
26 pJ per synaptic event.[2].

9

Figure 2.5: Overview of the Neurogrid architecture
[14]

Figure 2.6: Overview of the TrueNorth architecture
[16]

• Loihi[5] is a fully digital neuromorphic processor developed by Intel. The chip
consists of 128 neuromorphic cores and each core integrates 1024 neurons. Loihi
is implemented in an asynchronous bundled data design style which allows opera-
tions to be processed in an event-driven manner. A handshake-based hierarchical
mesh protocol is implemented to support the spike transmission between the neu-
romorphic cores[17], which allows spikes can proceed at any rate without waiting
for clock edges or consuming clock power during periods of idle.

• µBrain[1] is an asynchronous and fully-synthesizable digital neuromorphic pro-
cessor design with self-timed cores. µBrain core consists of three layers of 336
fully-connected integrate-and-fire neurons. All the neurons work independently(no
global clock) to accumulate the weighted incoming spikes and emit spikes when
the accumulator overflows. µBrain provides ultra-low-power consumption by

10

event-driven processing. Instead of using handshake protocols, it generates an
on-demand local clock by a lightweight oscillator to drive all the blocks, as shown
in Figure 2.7. The oscillator is triggered only when the input spikes are detected
by the input edge detector, low-power customized delay cells are implemented in
the oscillator to warrant the correct pacing of its phases for ordered propagation
of spikes. µBrain consumes around 26pJ per spike with 30% of static power[1].

Figure 2.7: Basic components for self-timed operations in µBrain
[1]

2.2 Asynchronous design

Most digital systems designs are based on synchronous logic. In recent years, with the
rapid development of integrated circuit manufacturing technology, the size of transis-
tors has been continuously reduced, which has increased the design scale and introduced
many unexpected problems, such as clock skew and electromagnetic interference. As
a result, asynchronous logic designs have shown many advantages compared with syn-
chronous design in many aspects due to the cancellation of the global clock, and a num-
ber of novel application areas based on asynchronous design have recently emerged[18].

The main advantages of the asynchronous design can be included as follows:

• Low power
Data transmission in an asynchronous circuit depends on the interaction of hand-
shake signals rather than the global clock. The handshake signal is sent out only
when the data is valid, and the circuit will stay idle if no valid is received, which
reduces unnecessary power consumption.

• Average case instead of worst-case performance
The speed of the synchronous circuit is determined by the clock frequency, and the
clock frequency is determined by the length of the critical path of the data path,
so the performance of the synchronous design is the worst-case performance. In
contrast, the communication in asynchronous circuits depends on the local control
signal, so the data can be sent out as long as they are valid rather than waiting

11

for the clock signal. Therefore, the performance of the asynchronous depends on
the average performance rather than the worst-case performance[19].

• No clock distribution and clock skew problems
In a synchronous system, the arrival time of the clock signal to each compo-
nent may be different, which results in a clock skew. As the scale of the digital
systems become larger, clock skew becomes a much greater concern. However,
asynchronous systems do not have a global clock, so there is no need to consider
the problem of clock skew.

• Less emission of electromagnetic noise
The working pace of components is consistent in synchronous systems, which
results in noise and electromagnetic interference[20]. However, the components
in the asynchronous system work independently and locally, thereby reducing
electromagnetic interference and noise.

2.2.1 Muller-C element

The Muller-C element is the fundamental element in asynchronous circuits, it is used as
a state-holding device that prevents hazards and races in the asynchronous circuit. The
logic function of the C-element is that when both inputs are ’0’, the output becomes ’0’;
when both inputs are ’1’, the output becomes ’1’; when the two inputs are different, the
output remains unchanged. The symbol and truth table of the C-element are shown in
Figure 2.8.

Figure 2.8: The symbol and truth table of the C-element
[21]

2.2.2 Classes of asynchronous circuits

Asynchronous circuits can be classified as delay-insensitive(DI), quasi-delay-
insensitive(QDI), speed-independent(SI), and bundled delay depending on their delay
assumptions[18].

In DI circuits, the delay of the gates and wires is assumed to be uncertain, only
circuits consisting of C-elements and inverters are DI circuits. Most DI circuits are
actually QDI, the only difference between DI and QDI is that all the wires in QSI
circuits are assumed to have equal delays at each fan-out point, which means signal

12

transitions on the same node occur simultaneously. SI circuits assume that the delay
of the gates is uncertain, but the delay of wires is zero, although it is unrealistic to
assume that the line delay is ideal, the circuit can still be regarded as SI design by
adding the wire delay to the gate delay[22]. Bundled delay design is also regarded
as the self-timed design[21], it assumes that the delay of gates and wires is fixed and
known. The bundled delay design is similar to the synchronous design, which requires
additional timing constraints, and data is considered to be valid after a long enough
delay.

2.2.3 Handshake protocols

The handshake protocol is an important concept in the asynchronous circuit, which
is used to perform data transmission between the internal blocks, there are two types
of protocols, as shown in Figure 2.9: four-phase handshake protocol and two-phase
handshake protocol. In the 4-phase handshake mode, the occurrence of a request or
acknowledgment is represented by the level of the handshake signals, the handshake
signals are reset in turn, in the return-to-zero(RTZ) phase. In contrast, the occurrence
of a request or acknowledge is represented by the transitions of the handshake signals,
handshakes signals don’t need to return to zero for each data transaction(NRZ), which
consumes less power and delay than the 4-phase handshake protocol, but may involve
more complex hardware design[18]

Figure 2.9: Basic asynchronous communication protocols
[19]

2.2.4 Data encoding

2.2.4.1 Bundled data

Bundled data is also called single-rail data, where the data signals use normal Boolean
levels to encode information[21], and where the request signal is bundled by the worst-
case delay to indicate the data validity, as shown in Figure 2.10. The set-up and hold

13

time constraints can be satisfied by adding delays to the matched delay cell. The
advantage of the single-rail data is that although it is a synchronous-style protocol, it
provides the average case performance because of localization of the delay matching[18].
The single-rail data can be implemented with both 2-phase handshake protocol and 4-
phase handshake protocol.

Figure 2.10: Bundled data encoding
[19]

2.2.4.2 Dual-rail codes

In dual-rail designs, data is encoded with two wires or rails X0 and X1, as shown in
Figure 2.11. In the 4-phase dual-rail protocols, the combination of x0 and x1 is regarded
as a codeword, and {X0, X1}={1, 0} and {X0, X1}={0, 1} respectively represent the
valid logic ’0’ and logic ’1’; the empty codeword {X0, X1}={0, 0} represents that the
data is invalid; the codeword{X0, X1}={1, 1} is not used. A transition from one valid
codeword to another valid codeword must go through an empty codeword. Since the
validity of data is included in the dual-rail lines, only one ack signal is needed to com-
plete the handshake between the blocks. Normally completion detectors (CD) are used
to identify if every bit is valid[23]. The dual-rail 2-phase handshake protocol is similar
to the above, the only difference is that the information is encoded as transitions[21].

2.2.5 Asynchronous pipeline

The pipeline is widely used in modern digital systems to increase parallelism and hence
improve the system throughput. In a synchronous pipeline, combinational logic is
divided into small blocks by registers all the registers are driven by the global clock.
While in an asynchronous pipeline, the interaction of neighboring blocks is coordinated
by the handshaking protocols. Asynchronous pipelines can be classified as static logic
pipelines and dynamic logic pipelines depending on their encoding methods[18].

Static logic pipelines use bundled data and operate on static logic data paths.
Sutherland’s micropipeline is a design of static logic pipeline[24], which uses a 2-

14

Figure 2.11: Dual-rail encoding
[19]

phase handshake protocol. The micropipeline consists of c-elements and capture-pass
latches(Figure 2.12), which allows data can be transported to the next stage at each
transition of the handshake signals. The mousetrap pipeline [25] is a variant of the
micropipeline, which is designed by only standard cells and has less complex signaling
and lower overhead.

Figure 2.12: Sutherland’s micropipeline
[18]

Dynamic logic pipelines use dual-rail encoding and operate on dynamic logic data
paths. PS0 pipeline is the most influential dynamic pipeline which uses a 4-phase
handshake protocol. The design only consists of function blocks and completion de-
tectors(CD), without any storage elements(Figure 2.13). Each block switches between
the evaluate state and the precharge state, and the state of the blocks is determined
by the CDs. The validity of data is verified by OR’ing the two rails for each individual
bit and then using a C-element to combine all the results[26].

The performance of the asynchronous pipeline is evaluated by two metrics, which
are the forward latency and the reverse latency [27]. The forward latency is the time
it takes a data item to flow forward through an empty pipeline stage, and the reverse

15

Figure 2.13: PS0 pipeline
[18]

latency is the time it takes the ack signal to flow back to the previous stage. The
throughput of the pipeline is measured at its maximum capacity and determined by
the cycle time, which consists of one forward latency and one reverse latency [18].

16

Implementation 3
In this chapter, two types of digital implementation of self-timed IF neurons will be
illustrated. This chapter begins with an introduction to the basic concept of the IF
neuron. Then there will be an overview of the proposed design. Next, the hardware
implementation of self-timed neurons based on two types of accumulators and the
corresponding pipeline design will be discussed. After that, the simulation result will
be presented to verify the functionality.

The proposed design imitates the actual activity of the integrate-and-fire model
neuron(IF neuron). The behavior of the IF neuron can be described as follows: the
neuron receives multiple input spikes, which represent the action potential, from the
pre-synaptic neurons, then the input spikes will be weighted and accumulated over time
as the membrane potential of the neuron, when the membrane potential overcomes the
threshold, the neuron will emit an action potential taking the form of a binary spike
to the downstream neurons. The working process of an IF neuron can be illustrated
in Figure 3.1. In this design, it is assumed that input spikes are fed into the neuron
simultaneously at each tn. The time interval between two groups of input spikes is
∆t. The length of ∆t depends on the speed of the neuron accumulation, a smaller ∆t
means a higher throughput that the neuron can achieve.

Figure 3.1: The working process of the spiking neuron

The proposed IF neurons will be implemented in an m×n SNN neuromorphic cross-
bar array, which is the most common structure for the SNN cores. The structure of
the array is shown in Figure 3.2. The input spikes are received by the array at each

17

row and sent to all neurons in parallel, thus reducing the communication volume m
times compared to a point-to-point approach. Each cross-point of the array is assigned
a synaptic weight, if the weight of a particular input-neuron pair is non-zero and the
input spike is fired, then the synaptic weight is activated. The neurons then accumulate
all the activated weights and compare the result with the threshold value. The output
spikes from the neurons will be transmitted to other arrays in the network.

Figure 3.2: Schematic of SNN neuromorphic array

3.1 Architecture overview

A 1024-input self-timed neuron is proposed in this work, the schematic is shown in
Figure 3.3. The accumulator is the most critical component in this design, which accu-
mulates all the weights activated by the input spikes, the result from the accumulator
will be accumulated again as the membrane potential. The accumulator will gener-
ate a finish spike when its accumulation is done, the finish spike is connected to the
clock port of the register to update the membrane potential. The membrane potential
will be reset to 0 when it overcomes the threshold. A delay cell is implemented to
propagate the finish spike, it is allowed to send out only when the membrane potential
overcomes the threshold. Some constraints should be followed to guarantee the neuron
works properly, first the time interval between two finish spikes tfinish should be long
enough to prevent the setup violation(inequality 3.1), besides, the delay of the delay
cell should be within a proper range to guarantee that the control signal of the mux
arrives before the finish spike, and the finish spike can be sent out before the next
finish spike comes(inequality 3.2). The synaptic weights are sent to the neuron from
the weight memory, a global reset signal is used to initialize all the registers inside the
neuron. The proposed design is fully event-driven, the neuron starts accumulation only

18

when it receives input spikes, otherwise it will stay idle.

Figure 3.3: Schematic of proposed self-timed IF neuron

tfinish > tcq + tadder + tcomparitor + tmux + tsetup (3.1)

tfinish > tdelay > tadder + tcomparitor (3.2)

3.2 Accumulator design

Two high-speed, self-timed hierarchical accumulator designs are proposed in this work.
Unlike other synchronous digital neuron implementations, it relies on delay cells to
support its asynchronous event-driven processing, which avoids using a global clock.
Since the activity in SNNs is highly sparse, the activity gating that comes with self-
timed flow control eliminates the power that would be consumed by a continuously
running clock. The hierarchical architecture of the proposed self-timed accumulator
for 1024 weight accumulation is shown in Figure 3.4. It consists of 3 levels, 1024
input spikes are captured in the first level and separated into 64 groups, 16 spikes in
each group. The synaptic weights activated in each group are accumulated by a local
compute unit. The compute units in the same level work independently and parallelly,
their output will be stored in the register as the input of the compute units in the next
level.

The total delay of this design is the sum of the delay of 3 levels, which is much faster
than one-by-one accumulation because of the parallel computing. The asynchronous
pipeline is implemented to break the combinational logic so that the neuron is able to
sample the input spikes with a higher frequency.

The compute unit is the core of the accumulator. In the rest part of this chapter,
two different accumulator designs based on two types of compute units will be described
as well as their corresponding pipeline design. The waveforms of the simulation will be
posted to verify the functionality of each part.

19

Figure 3.4: Hierarchical architecture of the self-timed accumulator

3.2.1 Adder tree based accumulator

In the first proposed design, the weight accumulation is done by the combinational logic,
adder trees are used for multi-operand addition. 16-input adder trees are implemented
in the first and second levels, a 4-input adder tree is implemented in the third level.
The output of the adder trees of each level will be stored in the registers. In the
absence of the global clock, the registers between the combinational logic of two levels
are driven by event pulses, which are generated by a pulse-based pipeline. The input
weights of the accumulator are determined by a capture layer which is implemented in
front of the adder trees in the first level, the schematic of the capture layer is shown
in Figure 3.5. The input spikes are sent to the clock port of registers, the data ports
of the registers are consistently sent to logic ’1’, so whenever a spike is received by the
register, the output of the register will be pulled up. The output of the register is used
as the control signal for a mux to determine whether the weight is activated. If at least
one input spike is detected, the or-gate tree will pull up the req signal and generate
a start pulse, the pulse with of the start pulse is determined by the delay cell. The
registers will be reset to 0 when the accumulation in the first level is done so that they
are able to capture the next group of spikes. The output of the muxes is separated into
64 groups, 16 6-bit input data in each group will be sent to the corresponding adder

20

tree and accumulated.

Figure 3.5: The schematic of capture layer

3.2.1.1 Compute unit design

Adder trees are widely used for fast multi-operand additions, most adder trees are
designed by connecting two-operand adders in a tree structure for parallel computing.
The delay, area and power consumption of the adder tree depends on the two-operand
adder inside. Different kinds of adders can be used to construct an adder tree such
as ripple carry adder(RCA), carry-select adder, carry-skip adder and carry-lookahead
adder. RCA has less area and power consumption compared with other fast adders,
so it is the most preferred choice for constructing an adder tree even though it has the
highest delay, however, the connection inside the tree structure will compensate for the
high latency of the single RCA. The structure of an N-operand RCA-based adder tree
is shown in Figure 3.6, it consists of log2N stages with N-1 RCAs in total.

The delay of the RCA-based adder tree TRCA−tree can be calculated by equation
3.3, TRCA,k bit represents the delay of a k-bit RCA and TFA represents the delay of full
adder. It can be seen from the equation that the total delay of the RCA-based adder
tree is not the sum of the RCA delay of each stage, except for the first stage, it takes
only two full adder delays at each stage.

TRCA−tree = TRCA,k bit + (log2N − 1)× 2TFA[28] (3.3)

In addition to the RCA-based adder tree, another adder tree scheme based on carry-
save adders(CSA) can also be used for weight accumulation. A CSA can reduce the

21

Figure 3.6: N-operand adder tree based on ripple carry adders

three operands to two by breaking the connections between the full adders in an RCA
[29], then the two operands are sent to CSA in the next level. The final two operands
of the adder tree are added by a two-operand adder. Figure 3.7 shows the CSA-based
adder tree for seven k-bit operands. Each CSA only introduces one full adder delay, so
the total delay of the CSA-based adder tree can be calculated by equation 3.4, where
TA represents the delay of the two-operand adder in the final stage and m represents
the number of stages of CSA in the adder tree.

TCSA−tree = TA +m× TFA[28] (3.4)

Figure 3.7: Adding seven k-bit operands with CSA-based adder tree
[29]

In the proposed neuron design, RCA-based adder trees are chosen for the weight
accumulation because of their parameterizable and regularity. Even though a CSA-

22

based adder tree has better delay performance than an RCA-based adder tree, the
design of the former one is more complex, because the structure of the CSA-based
adder tree is irregular, it depends on the number of operands. The connection between
CSAs needs to change for different numbers of operands.

3.2.1.2 Pipeline design

In the absence of the global clock, an asynchronous pipeline is implemented to break
the combinational logic and improve the throughput of the neuron. Most asynchronous
pipeline designs rely on the handshake protocol, which costs less power consumption
and latency compared with the synchronous pipeline. The drawback of the handshake-
based asynchronous pipeline is that it requires extra control logic to provide the control
signals, which consumes more area and power. Besides, commercial electronic design
automation (EDA) tools cannot fully support the timing analysis of the handshake
asynchronous design because of the existence of combinational loops. The above two
main reasons make asynchronous design still not fully accepted in the industry. In this
design, an asynchronous pipeline design without handshake protocols is proposed, the
control signal of each pipeline stage is propagated by the delay cells. The design of the
neuron based on the proposed asynchronous pipeline is shown in Figure 3.8.

Figure 3.8: Asynchronous pipeline design without handshake protocols

A start pulse is generated by the capture layer whenever an input spike is received,
then it is delayed until the output of the combinational logic is stable, the delayed pulse
is used to update the registers and trigger the downstream levels. In order to guarantee
that the pipeline works properly, some constraints should be given. First, the delay of
the delay cells of each level should match the critical path of the combinational logic
to prevent the setup violation, as shown in inequality 3.5. Second, the data of the
current level should not be propagated to the next level until the next level completes
its accumulation, which means the pulse should be delayed longer in the current level
than in the next level. The delay cells should be designed in a manner that is shown in
3.6, where the Tdelay l4 is the delay cell in Figure 3.3, which can be seen as the fourth
stage of the pipeline. Besides, the registers in the capture layer are reset by the pulse
signal propagated by the delay cell in the first level so that they can capture the next
group of input spikes, so the time interval between two groups of spikes ∆t should be

23

long enough to ensure that the registers are reset before the new spikes arrive, as shown
in 3.7, where Trecovery is the recovery time of the register.

Tcq + Tcomb + Tsetup ≤ Tdelay (3.5)

Tdelay level1 ≥ Tdelay level2 ≥ Tdelay level3 ≥ Tdelay level4 (3.6)

∆t ≥ Tdelay level1 + Trecovery (3.7)

3.2.1.3 Simulation of adder tree based neuron

The Modelsim pre-synthesis simulation of the adder tree based self-timed neuron is
shown in Figure 3.9. The input spikes are fed into the neuron every 10ns with random
distribution, then the req signal is pulled up and the start pulse is generated by the
capture layer, the pulse width of all the spikes is set to 100ps. The 1024-bit control
vector determines the input data sent to the adder trees in the first level. The start pulse
is propagated by the delay cells of each level which are set to 6ns, signal done l1, signal
done l2, signal finish show the start pulse arrives at different levels at different timings,
and the accumulation result of each level is sampled by these delayed start pulses.
The result of the third level is sent out with the finish pulse when the accumulation
is done. The result from the accumulator is accumulated again as the membrane
potential of the neuron which is stored in membrane temp. The threshold value in
this simulation is set to 10000, when the membrane potential overcomes the threshold
value, the membrane temp is reset to 0 and the finish pulse is allowed to send out as
the output spike.

Figure 3.9: Pre-synthesis simulation of the adder tree based neuron

There are two problems with the adder tree based neuron design. The first one is
the area consumption, plenty of adders are required for the adder trees, even though
RCA consumes less area than other adders, it still consumes a big amount of area.
Besides, big delay cells are needed to match the critical path of the adder trees, which
may cost timing uncertainties. Since the big delay cells are composed of small delay
cells in series, the variations of the small delay cells will be accumulated when the signal
is propagating through the delay chains and lead to more timing uncertainties. So the

24

big delay cells are more unpredictable and uncontrollable compared with small delay
cells. Both problems can be solved by the next type of design.

3.2.2 Time-multiplexed accumulator

In addition to using combinational logic to accumulate synaptic weights, an alternative
accumulator design with time-multiplexed method is proposed. In this design, time-
multiplexed compute units are used for weight accumulation instead of an adder tree.
In the time-multiplexed accumulator, there is only one adder in each compute unit, the
accumulation of weights is achieved by reusing this adder in time. In the absence of a
global clock, the time-multiplexed compute unit generates an on-demand local clock,
also called an event train, which warrants the correct pacing of adder accumulation.
Therefore, it is the key to the self-timed operation of the neuron design. The primary
component that enables this functionality is the two-line structure, where small delay
cells are implemented instead of big delay cells to prevent timing uncertainties.

3.2.2.1 Compute unit design

The architecture of the time-multiplex compute unit is depicted in Figure 3.10. The
whole process is triggered by the start pulse, the start pulse is obtained by ORing the
input spikes with an or-gate tree. Meanwhile, the input spikes are sent to the clock
ports of the registers, and the data ports of the registers are connected to logic ‘1’, so if
there is an input spike comes, the corresponding register will capture the spike and the
output of register will be toggled to ‘1’. The register output will then be sent to the
two demuxes in the corresponding stage of the two-line structure as the control signal.

Figure 3.10: The schematic of time-multiplexed compute unit

25

The two-line structure consists of a bypass line and a delay line, on the delay line
there are delay cells implemented to space the event pulses. The control signal of the
demuxes determines the data flow inside the two-line structure. Figure 3.11 shows an
example of data flow inside the two-line structure. Whenever start pulse is generated by
the or-gate tree, it will flow through the two-line structure via a specific path determined
by the input spike distribution, the demuxes on each stage will switch the path to the
delay line if the input spike is captured by the corresponding register of that stage, if
no input spike is captured, the path will be switched to the bypass line. As a result,
the two-line structure will generate the same number of event pulses as input spikes
during the start pulse flows through the two-line structure. Finally, another or-tree is
applied to merge all the event pulses into a serial event train, which can be seen as the
local self-generated clock signal for the compute unit.

Figure 3.11: Data flow in the two-line structure

Event pulses will be captured sequentially by registers, and the output of these
registers is connected to the input port of the priority encoder. The encoder will then
generate the address of the corresponding weight for each input spike and send them to
the outside weight memory. The self-generated clock will drive the weight memory to
pick the synaptic weights activated by the incoming spikes and accumulate them by the
adder. The time interval between two event pulses T is determined by the delay cells

26

on the delay line of the two-line structure, the delay of the delay cells should satisfy
the condition below to guarantee that the output of the adder is already stable before
the next data arrives. The left side of inequality 3.8 is the minimum time interval T
between two event pulses, the right side of the inequality is the time for the adder
output to be stable. If the delay of demuxes, logic gates and memory, set up time of
registers is ignored, the delay of the delay cells in the two-line structure equals T, and
it only depends on the critical path of the adder.

tdemux + tor + tdelay > tmemory + tadder + tsetup (3.8)

In addition to the delay cells on the two-line structure, two extra delay cells are
implemented, which are shown in the red box and blue box in Figure 3.10. The purpose
of the delay cell in the red box is to guarantee that the event train can capture the
address correctly, the rising edge of the event train should be located in the middle of
the address valid region, as shown in Figure 3.12. The delay of registers, encoder and
logic gates is ignored, so the delay in the red box tred is set to T/2. The pulse flows
through the two-line structure will finally be sent to the next level as the output spike
of the compute unit after propagating by the delay cell in the blue box. The output
spike is also a signal which indicates that the weight accumulation is completed, so the
delay in the blue box tblue should be calculated by equation 3.9 to synchronize with the
event train.

Figure 3.12: Timing analysis of tred

tblue = tred + tor tree + T ≈ 3T/2 (3.9)

The output spike of the compute unit is connected to the reset port of a register to
pull up the state signal. When the state signal is ‘1’ means the compute unit is idle,
‘0’ means the compute unit is busy. The clock port of the register is connected to the
start pulse of the compute unit, so the state signal will be pulled down by the start
pulse at the beginning of each accumulation as shown in Figure 3.13. The start pulse
of the next level is used to update the final result of the accumulation and reset the
registers and input data to 0 so that they can be ready for the next accumulation.

27

Figure 3.13: The state signal

3.2.2.2 Pipeline design and simulation

Based on the time-multiplexed compute unit design, another asynchronous pipeline
design is proposed. In the former pipeline design, the delay cells of each pipeline stage
should match the critical path delay, which is not suitable for the time-multiplexed
compute unit, since the delay of the time-multiplexed compute unit depends on the
number of input spikes, and the density of spikes is highly sparse in SNNs, so the
probability of the time-multiplexed compute unit triggering the worst-case delay is
very small(when all the input are fired), using the worst-case delay as the delay of each
pipeline stage is not time-efficient. Therefore, a pulse-mode 4-phase handshake protocol
for the interaction of neighboring levels is defined to reduce the unnecessary delay in
each pipeline stage. An overview of the proposed pipeline is shown in Figure 3.14, the
whole pipeline consists of 3 stages corresponding to the 3 levels in the accumulator,
each level can receive new data from the previous level only when two conditions hold:
the data from its previous level is ready(when req from the previous level is high);and
its next level has stored the data from the current level(when ack from next level is
high). The data transmitted between two levels come from the compute units, which
include the accumulation results and the output spikes. The delay of each pipeline
stage depends on the number of received spikes rather than the critical path delay,
which results in an average case performance of the pipeline design.

Figure 3.14: Handshake pipeline

The req and ack are the two key signals of the handshake protocols, both of them are
generated by the registers. As discussed in 3.2.2.1, the state signal indicates whether
the compute unit is accumulating or idle, in the proposed design, all the state signals
in the same level are connected to the input of an and-gate tree, the output of the
and-gate tree is the done signal of that level, so when all the state signal become ’1’,

28

the done signal will be pulled up, which indicates that the accumulation of the current
level is done. As shown in Figure 3.15, The done signal is connected to the clock port
of the register, the data port of the register is connected to ’1’, so whenever the register
detects the rising edge of the done signal, the req signal will be pulled up and received
by the next level. The start pulse of the next level is also used as the feedback signal
which connects to the reset port of the register, so the req signal will be reset to zero
when the next level starts the accumulation.

Figure 3.15: Req signal of level i

The ack signal is generated by a register with the start pulse of the previous level
and current level, as shown in Figure 3.16. The ack signal will be pulled down when
the rising edge of the start pulse of the previous level start Li−1 is detected, and it will
be pulled up by the start pulse of the current level start Li. Since the start pulse is
also used to update the result of the previous stage, the ack signal will be pulled up as
soon as the current level receives the data from the previous level.

Figure 3.16: Ack signal of level i

The handshake process between two neighbouring levels is shown in Figure 3.17.
When level i receives the input spikes from the previous level, the start pulse of level i
start Li will be generated and the ack signal from the next level will be pulled down.
When the accumulation of level i is finished, the req signal will be sent to the next
level, if level i+1 is ready to receive the data from the previous level, the start pulse of
level i+1 start Li+1 will be generated, it will reset the req signal and pull up the ack
signal. The data from level i will be captured at the rising edge of start Li+1 for the
accumulation of level i+1.

The schematic of the first level is shown in Figure 3.18. The 1024 bits input spikes
will be first sent to the input spike filter, the input spike filter will decide whether
the coming input spikes should be sent to the 64 compute units and generate the
respective start pulses(start l1[n]) for them. The proposed design is event-driven, only
the compute unit that receives the input spikes will be triggered by the start pulse.
If one of the 64 start pulses is fired, the start L1 will be fired, which indicates that

29

Figure 3.17: The process of the pulse-mode handshake pipeline

the accumulation of the first level has begun. In the worst case (all compute units are
triggered), the 64 compute units will generate 64 event trains and 64 4-bit addresses
to the corresponding weight memories, 64 6-bit signed weights are sent to the compute
units as their respective input data. The output spikes of the compute units will be
sent to the second level as the input spikes, a 10-bit signed result will be generated by
each compute and stored in the arrays as the input data for the second level.

The role of the input spike filter is to prevent the compute units in the first level
from receiving new spikes during the accumulation process. The schematic of the input
spike filter is shown in Figure 3.19, the input spikes are separated into 64 groups, they
can be sent to the compute units only when the ack signal from the second level is high.
The start pulse of each compute unit is generated by ORing the 16 input spikes. The
use of the delay cells is to guarantee that the input spikes arrive compute unit before
the start pulse, so that the path of the two-line structure is stable when the start pulse
comes.

The Modelsim simulation of the first level is shown in Figure 3.20. The signals in the
red box belong to one of the compute units in the first level, which provides the worst-
case delay, so the done l1 signal is pulled up with its state signal at the same time. In
this simulation, the pulse width of the spikes is 100ps, the time interval between two
events T is set to 2ns, the output of each accumulation is assumed to be stable after
1ns. The input spikes are captured by the registers and result in a 16-bit control signal
’0000000101011111’, which means 7 spikes are received by the compute unit. Then 7
event pulses will be generated by the two-line structure to drive the weight memory and
registers. The priority encoder will generate the corresponding addresses for the input
spikes and send them to the weight memory. The temporary result from the adder will
be stored in the register driven by event train. When the accumulation is finished, the
state signal will be pulled up by the output spike. The req l1 will be pulled up because

30

Figure 3.18: Digital implementation of the first level

Figure 3.19: Input spike filter

all the compute units in the first level will be idle by this time. The start pulse of the
second level start L2 will store the accumulation result and reset the registers to 0.

The schematic of the second level is shown in Figure 3.21, the start pulse signal

31

Figure 3.20: Pre-synthesis simulation of the first level

of the second level start L2 will be generated when req l1 and ack l3 are both ’1’,
then it will pull up the ack l2 and feedback to the previous level to reset the req l1
and update the accumulation results. The pulse width of the start L2 is determined
by the delay cell in the yellow box. Since the output spikes from the first level are
not synchronized, so a spike synchronizer is implemented to synchronize the incoming
spikes and generate the input spikes and start pulses start l2[n] to the compute units.
The delay cell in the green box provides the delay to the feedback loop so that the
register which generates req l1 is able to reset itself, it also guarantees that the last
output spike or spikes arrive at the spike synchronizer earlier than start L2, the delay in
the green box should be at least larger than the pulse width so that the start pulse can
be generated correctly(assumed that the pulse width is larger than removal time of the
register). Each compute unit reads the input data from the corresponding array, which
stores the results of the previous level. The four state signals of the compute units are
connected to the and tree, when all the state signals become ’1’, the request signal of
the second level req l2 will be pulled up. Each compute unit will send an output spike
and a 14-bit signed result to the next level when their accumulation is done.

The input spikes of the compute unit should be synchronized otherwise the compute
units cannot be driven correctly. The schematic of the spike synchronizer is shown in
Figure 3.22, the output spikes from the previous level are captured by registers, the
flag signal will be pulled up if an output spike is generated by the compute unit from
the previous level. If the flag is ’1’, then the start pulse of the second level is allowed to
pass the mux and sent to the compute units as the input spikes. The 64 input spikes
are separated into four groups, corresponding to the four compute units in the second
level. The start pulse of each compute unit is generated by ORing the 16 input spikes.
The flag signal will be reset by the start pulse of the first level.

Figure 3.23 shows the Modelsim simulation result of the second level, the signals in
the red box belong to one of the compute units in the second level, its input flag and

32

Figure 3.21: Digital implementation of the second level

Figure 3.22: The spike synchronizer

33

the input data array are shown in the blue box. There are five ’1’ in the flag signal,
which means five compute units in the previous level are driven by the input spikes,
their results ’48’, ’17’, ’31’, ’20’, ’15’ are stored in the array, then the compute unit
in the second level generates five events to read the input data from the array and
accumulate them. The request signal req l2 is pulled up when all the state signals of
the four compute units become ’1’, which means the accumulation of the second level
is done, the delay in the feedback loop is set to 1ns, so the req l2 is reset to ’0’ after
1ns.

Figure 3.23: Pre-synthesis simulation of the second level

The schematic of the third level is shown in Figure 3.24. There is only one compute
unit in this level, receiving the 4-bit output spike from the previous level. Since it
is the last level of the accumulator, there is no feedback signal from the next level,
so the state signal of the compute unit replaces the ack signal to generate the start
pulse start L3, the start pulse can be generated only when the compute unit is idle.
The output spike of the compute unit is sent out directly as the finish signal of the
accumulator, which indicates that the accumulation of the whole accumulator is done,
a 16-bit accumulation result will be added to the membrane potential. The ack signal
of the third level ack l3 will be sent back to the previous level as the feedback signal.
The simulation of the third level is shown in Figure 3.25

In order to guarantee that there is no timing violation in the membrane potential
accumulation logic, the minimum time interval between two finish spikes should meet
inequality 3.1. The minimum time interval occurs only when two conditions are met,
first, the data from the previous level should be ready, which means the req 2 signal
should be ’1’ when state l3 signal is pulled up by the finish spike, second, the third level
provides the shortest delay, which means the compute unit only receives one output
spike from the previous level, because the delay of the compute unit depends on the
number of received spikes. The shortest delay of the third level can be calculated by

34

Figure 3.24: Digital implementation of the third level

Figure 3.25: Pre-synthesis simulation of the third level

adding all the delays in the red path in Figure 3.24. In order to simplify the analysis,
only the delay in the compute unit is considered. The shortest data path in the compute
unit is shown in Figure 3.26, if we ignore the delay of the demuxes and or gates, the
shortest delay can be calculated by adding the delay of the two delay cells on the path,
which is 2.5T. We can replace the tfinish in inequality 3.1 with 2.5T, and combined
with inequality 3.8, then ignore the delay of registers, muxes, demuxes, memory and
logic gates, we can get two constraints for the delay cells on the two-line structure:

T > tadder cu (3.10)

T >
2

5
(tadder mp + tcomparator) (3.11)

35

Figure 3.26: Shortest path in the compute unit in level3(one input spike received)

tadder cu in inequality 3.10 represents the critical path delay of the adder in the
compute unit, tadder mp in inequality 3.11 represents the critical path delay of the adder
used for the membrane potential accumulation. T can be different in different levels,
inequality 3.11 only applies to the delay cells in the third level. It can be concluded
that in the first and second levels, the delay of the delay cells in the compute units
depends on the critical path of the adder in the compute unit, while in the third level,
the delay of the delay cells in the compute units not only depends on the critical path
of the adder in the compute unit, but also the adder for the membrane accumulation.

3.2.2.3 Simulation of time-multiplexed neuron

The Modelsim simulation of the time-multiplexed self-timed neuron is shown in Fig-
ure 3.27. The 1024-bit input spikes are fed into neuron every 40 ns, the compute units
that receive the input spikes are triggered and then start the accumulation. The result
of the first level is updated by the start L2 signal and stored in the array level1 sum,
same for the second and third levels. The result of the third level is sent out with
the finish spike when the accumulation of the input spikes is done. The result from
the accumulator is accumulated as the membrane potential which is stored in mem-
brane temp driven by the finish spike. The threshold value in this simulation is set to
3000, when the membrane potential overcomes the threshold, membrane temp is reset
to 0 and the finish spike is allowed to send out as the output spike.

36

Figure 3.27: Pre-synthesis simulation of the time-multiplexed neuron

3.3 Summary

In this chapter, the hardware implementation of the self-timed neuron based on two
types of accumulator is illustrated and some critical timing constraints are given, the
functionality has been verified by Modelsim pre-synthesis simulation. The synthesis
result of the self-timed neuron will be discussed in the next chapter.

37

38

Results 4
This chapter presents the synthesis result of the two proposed self-timed neurons. Both
designs are described by using SystemVerilog language and synthesized in TSMC 28nm
technology by Cadence genus, the power, area and delay performance of the two designs
will be evaluated and compared, trade-off analysis will be discussed as well.

4.1 Post-synthesis simulation

The post-synthesis simulation is done by Xcelium with the netlist and sdf file provided
by the synthesis tool. The functioning of the proposed self-timed neurons depends on
the delay cells providing the correct delay to ensure a sufficiently long interval between
pulses. In order to find the proper delay of the delay cells, the critical path delay of
the related combinational logic should be determined first. The virtual clock is used
to wrap the combinational logic so that the synthesis tool is able to analyze the timing
path of the constrained combinational logic. As the common part of both designs, the
delay of the delay cell which is used to propagate the finish pulse(Figure 3.3) is analyzed
first. A 17-bit ripple carry adder is implemented to accumulate the results from the
accumulator. The timing report below shows that the critical path delay from the
output port of the accumulator to the output port of the comparator is about 1.75ns,
so a 2ns delay is implemented to provide a safe margin. The delay cells are provided
by the TSMC 28nm standard cell library, set dont touch command is used to prevent
the delay cell from being optimized by the synthesis tool.

Figure 4.1: The critical path from the output port of the accumulator to the output port of
the comparator

39

Besides, the pulse width of all the pulse signals should be big enough so that they
can be propagated successfully. A pulse signal will be narrowed when it propagates
through the logic gates if the pulse width is not big enough, and the pulse will be
filtered by the delay cell if its pulse width is smaller than the inertial delay of the
delay cell[30]. In the proposed designs, the pulse width of the generated pulse signals is
about 700ps, which is big enough to propagate through the logic gates and delay cells
successfully.

4.1.1 Post-synthesis simulation of the adder tree based neuron

The delay of delay cells in the adder tree based accumulator is related to the critical
paths of the adder trees in each level. Among the three levels of the accumulator, the
adder trees in the second level have the longest critical path because they have the
most stages and larger ripple carry adders, the critical path delay of the second level is
about 1.9ns as shown in Figure 4.2, so the propagation delay of the delay cells in each
pipeline stage is set to about 2.5ns, which is also the cycle time of the pipeline.

Figure 4.2: The critical path of the adder tree in the second level

The post-synthesis simulation of the adder tree based neuron is shown in Figure 4.3,
input spikes are sent to the neuron every 5ns, the start pulse is generated when the
input spikes are detected and then propagated to the next level by the delay cells at
each level. The time interval between two markers is the total delay of the accumulator,
which is about 7.6ns. The output of the accumulator sum level3 is accumulated again
as the membrane potential, the finish pulse is propagated by a 2ns delay cell and is
allowed to send out as the output spike only when the membrane potential overcomes
the threshold(10000), so the total delay of the neuron is about 9.6ns.

40

Figure 4.3: The post-synthesis simulation of the adder tree based neuron

4.1.2 Post-synthesis simulation of the time-multiplexed neuron

In order to simplify the design, the delay cells with the same delay are implemented
in the compute units of all three levels, the delay of these delay cells is related to the
critical path delay of the adders in the third level, because they have the longest critical
path. Ripple carry adders are implemented in the compute units for the accumulation,
the critical path delay of the ripple carry adder in the third level is about 1.6ns as shown
in Figure 4.4, so the delay of the delay cells in the two-line structure is set to about
2ns. Figure 4.5 shows the post-synthesis simulation of the time-multiplexed compute
unit with the worst-case stimulus(all inputs are fired), 16 event pulses are generated.
The time interval between two markers is the worst-case cycle time of the pulse-mode
handshake pipeline, which is about 36.4ns. The synthesis doesn’t include the weight
memory, so the delay of the weight memory is not annotated in the sdf file.

Figure 4.4: The critical path of the ripple carry adder in the third level

The post-synthesis simulation of the time-multiplexed neuron is shown in Figure 4.6
The elasticity of the handshake asynchronous pipeline allows input spikes to arrive at
any time, but if the input rate is high, the time interval between two groups of input
spikes will be tight, which results in that the input spikes may be filtered by the input
spike filter as shown in Figure 4.6, the two groups of input spikes indicated by the
arrows are filtered and not able to sent to the compute units in the first level. The

41

Figure 4.5: The post-synthesis simulation time-multiplexed compute unit

total delay of the time-multiplexed neuron depends on the number and distribution
of the input spikes, it is smaller when the input spikes are few and dispersed. The
time between two markers in Figure 4.6 is the worst-case delay of the time-multiplexed
neuron, it starts from the moment input spikes arrive to the rising edge of the output
spike, which takes about 83.3ns. The output spike is allowed to send out only when
the membrane potential overcomes the threshold value(3000).

Figure 4.6: The post-synthesis simulation time-multiplexed neuron

4.2 Synthesis results

The proposed two neurons are synthesized using TSMC 28nm technology, the obtained
results depicted in table 4.1 show the comparison between two designs in terms of
area, power and latency performance. The area is reported in µm2 and kilo gate
equivalents(kGE), where a gate equivalent corresponds to the area of a nominal drive
strength 2-input NAND (or NOR) gate in the standard cell library.

The toggle count format(.tcf) file is used for accurate power estimation, it contains
switching activity in the form of toggle count information and static probability for the
specific stimulus. The .tcf file can be generated by running the testbench on the RTL
or synthesized gate-level netlist. The power performance of the proposed designs is
evaluated by giving the average dynamic energy consumption per spike of the neurons.

42

The process of the power estimation is shown in Figure 4.7, the gate-level netlist and the
sdf file generated by the synthesis tool are used for the input file for the post-synthesis
simulation, then the simulator runs the simulation and generates the tcf file with the
accurate switching activity of the input stimulus. Finally, the switching activity is
annotated back to the synthesis tool by loading the tcf file, the power report will give
the accurate power consumption of this simulation. The average energy consumption
per spike is obtained by multiplying the dynamic power with the runtime and then
dividing by the number of input spikes.

Figure 4.7: The flow of the power estimation

Adder tree based Time-multiplexed

Total area(µm2) 31514.83 38109.9

Total area(kGE) 83.37 100.82
Cell area 59.47 83.57
Net area 23.9 17.25

Leakage power(nW) 5414.65 8037.67

Average dynamic energy
consumption per spike(pJ)

0.055 0.23

Delay(ns) 9.6 83.1(worst-case)

Throughput(Gbps) 400 27.5

Operating voltage(V) 0.72 0.72

Table 4.1: Sybthesis result of two proposed neurons

It can be seen from table 4.1 that both designs can achieve competitive power
consumption and delay with a relatively large area. Since both designs are fully event-
driven, so they consume dynamic power only when input spikes are received. The

43

adder tree based neuron shows a better performance in power, area, and latency than
the time-multiplexed neuron. Although the purpose of the time-multiplexed neuron
is to reduce the number of adders to obtain a lower area, the area consumption of
the time-multiplexed neuron is larger than the adder tree based neuron. This is due
to the fact that the generation of the local clock requires plenty of delay cells which
consume even more area than the area saved from the adders. Figure 4.8 shows the
gate reports of two designs from the synthesis tool, the area consumption of the delay
cells is marked by red boxes. It can be seen from the report that the cell area of the
time-multiplexed neuron is dominated by buffers, which are the delay cells. Nearly
half of the area comes from the delay cells, only 22% of the area comes from the logic
gates. In contrast, the area is dominated by the logic gates in the adder tree based
design, only 0.3% of the cell area is delay cells, therefore, even though it consumes more
than twice the area of logic gates than the time-multiplexed design, its total cell area
is still smaller. Besides, time-multiplexed design requires more registers to store the
temporary data, which also brings extra area. Since the delay cells in the standard cell
library are energy-consuming, so the large amount of delay cells in the time-multiplexed
design also makes it consume more leakage power and dynamic power than the adder
tree based design. The throughput shows the maximum number of spikes that the
neuron can receive in one second, which is given in Gigabits per second(Gbps). Since
the pipeline design in the adder tree based neuron has a smaller cycle time, so it has
higher throughput than the time-multiplexed design.

(a) Time-multiplexed neuron

(b) Adder tree based neuron

Figure 4.8: The gate reports of the two proposed designs

4.3 Performance of different hierarchical structures

The compute units in the two neuron designs are parameterizable, which provides flex-
ibility and customizability for different accumulator hierarchy designs. The proposed
designs divide the input spikes into 64 subgroups, each 16 spikes are handled by a

44

16-input compute unit, which results in a 3-level hierarchical accumulator. In order
to explore the effect of the hierarchical structure on the neuron’s performance, this
work also provides a 2-level hierarchical accumulator consisting of multiple 32-input
compute units. 1024 input spikes are divided into 32 subgroups, with 32 spikes in each
subgroup. The overview structure of the 2-level accumulator is shown in Figure 4.9.
The comparison of the performance of two neuron designs at N=16 and N=32 is shown
in table 4.2 and table4.3, where N is the number of spikes in each subgroup.

Figure 4.9: Hierarchical structure of the accumulator with N=32

N=16 N=32

Total area(µm2) 38109.9 33456.36

Total area(kGE) 100.82 88.5
Cell area 83.57 72.99
Net area 17.25 15.51

Leakage power(nW) 8034.67 7069.37

Average dynamic energy
consumption per spike(pJ)

0.23 0.24

Throughput(Gbps) 27.5 14.6

Delay(ns) 83.1(worst-case) 135.6(worst-case)

Table 4.2: Performance comparison between N=16 and N=32 for time-multiplexed neuron

45

For the time-multiplexed neuron, the area is reduced by 12% at N=32, because
fewer delay cells and registers are required. The changing of the structure has little
effect on power consumption, however, it has a significant effect on the total delay.
Since the worst-case delay of the time-multiplexed compute unit is almost doubled
when the number of input spikes changes from 16 to 32, even with fewer levels in the
accumulator, the total delay is still increased. The throughput of the time-multiplexed
neuron when n=32 is only nearly half of that when n=16 because the cycle time of the
pipeline is doubled.

N=16 N=32

Total area(µm2) 31514.83 30626.31

Total area(kGE) 83.37 81.02
Cell area 59.47 57.35
Net area 23.9 23.67

Leakage power(nW) 5414.65 5165.95

Average dynamic energy
consumption per spike(pJ)

0.055 0.05

Throughput(Gbps) 400 333.3

Delay(ns) 9.6 7.6

Table 4.3: Performance comparison between N=16 and N=32 for adder tree based neuron

For the adder tree based neuron, the changing of the structure doesn’t show a
significant effect on the area and power but decreases the total delay. The critical path
delay of the adder tree doesn’t change a lot as input doubles, so fewer levels result in
a smaller total delay. The delay of the delay cells in the two levels is set to 3ns, which
is the cycle time of the pipeline. The throughput of the neuron is decreased because of
the longer cycle time.

4.4 Optimizations

Although the adder tree based neuron shows better performance than the time-
multiplexed neuron in many aspects, it has very limited room to optimize. In con-
trast, the performance of the time-multiplexed design can be optimized in different
ways. In this section, we mainly discuss some methods that can be applied to the
time-multiplexed to improve its performance.

As we discussed in the previous section, the area and power consumption of the
time-multiplexed neuron mainly come from the delay cells, so its performance can be
improved by applying delay cells with smaller area or power consumption to replace
the delay cells given by the standard cell library. A new type of delay cell is proposed
in [1], it is designed by two thyristors in a cross-coupled configuration to limit the
current in the delay cell so that it is able to provide considerable delays with low power

46

consumption. Besides, the delay cells proposed in [31] and [32] can also be considered
to be applied in the neuron designs.

The adders in the compute units also play a crucial role in the time-multiplexed
neuron, the critical path of the adder determines the time interval between two event
pulses(T), a smaller T can not only reduce the total delay and the pipeline cycle time
but also reduce the area consumed by the delay cells. In the proposed prototype, a
ripple carry adder is applied in the compute unit and it has the longest critical path
than any other types of adders, so T can be reduced by replacing the RCA with other
fast adders. However, normally fast adders consume more area than the RCAs, so the
trade-off between the area of adders and delay cells needs to be explored in the future
work.

Besides, pulse gates can be applied to the proposed neuron design to replace the
conventional logic gates for high-performance pulse propagation. Pulse gates are de-
signed by self-resetting CMOS, which is able to maintain stable, narrow pulse signals
by the reset loop inside[33]. The pulse gates family consists of pulse buffer, pulse OR,
pulse AND and pulse latch, the behavior of the pulse gates is shown in Figure 4.10. By
applying the pulse gates, the neuron is able to operate at a very high speed.

Figure 4.10: Basic pulse hates
[34]

4.5 Summary

In this chapter, the post-synthesis simulation of the two proposed neuron designs is
presented, then the synthesis results of the designs are discussed and compared, as well
as the trade-off analysis between two hierarchical structures. Finally, some methods to
optimize the time-multiplexed neuron are given.

47

48

Conclusion and Future work 5
5.1 Conclusion

Our human brains have evolved over billions of years to be very energy efficient to
handle massive information-processing as well as the tremendous metabolic energy
consumption inside, as a result, the Spiking Neural Networks are designed to mimic
the biological neural behaviour and have been widely applied to the neuromorphic
computing systems to obtain extremely low power consumption. The compute efficiency
of the brain-like neuromorphic systems can be achieved by asynchronous design and
event-driven operations, which abandon the global clock to save energy from redundant
operations. The neurons are the basic processing units of the SNNs, which accumulate
the synaptic weights and generate spikes to the neighbouring neurons. In this work,
two self-timed digital IF neuron designs are proposed, both designs are fully event-
driven and synthesizable. The two proposed neurons exploit the hierarchical structure
to achieve the high-speed, parallel accumulation for 1024 6-bit synaptic weights.

The accumulator is the core component of the self-timed neuron, which consists of
multiple parallel-processing compute units, the only difference between the two pro-
posed neurons is the design of the accumulator. In the adder tree based neuron design,
the weight accumulation is achieved by the combinational logic, the accumulator is
composed of multiple adder trees, the input of the accumulator is determined by the
existence of the input spikes. A pulse-based acyclic asynchronous pipeline is imple-
mented to increase the sample rate and the throughput of the neuron, the cycle time of
the pipeline is determined by the delay of the delay cells in each pipeline stage. While
in the time-multiplexed neuron design, the local weight accumulation is achieved by
the compute unit which generates an on-demand local clock. Delay cells are used to
provide sufficient spacing between the self-generated clock pulses. A pulse-mode hand-
shake asynchronous pipeline is applied to the time-multiplexed neuron to obtain better
time efficiency.

Both designs are implemented with SystemVerilog and synthesized by Cadence
genus in TSMC 28nm technology. The synthesis results show that the adder tree
based neuron consumes less area than the time-multiplexed design, and it is able to
accumulate 1024 synaptic weights with 9.6ns delay and energy consumption of 0.055pJ
per spike, better than the 83.3ns delay and 0.23pJ per spike of time-multiplexed de-
sign. However, since the performance of the time-multiplexed neuron is dominated by
the delay cells, so it can be significantly improved by applying delay cells with better
performance or reducing the number of delay cells, while the adder tree based neuron
has very limited room for optimization.

49

5.2 Future work

For the time-multiplexed neuron, different types of adders can be implemented in the
compute units to replace the ripple carry adder for a shorter critical path, which results
in less area consumed by the delay cells, but it comes with a cost that more area
consumed by the adders. As a result, the balance between the area of delay cells and
adders should be explored in future work.

Besides, the proposed neuron designs can be applied to an SNN array as one column.
Normally a group of input spikes is received by the array every few microseconds. Since
the proposed neuron designs are able to finish the accumulation within 100ns or even
10ns, which means most of the time the neurons are idle, so it is possible to time-
multiplex one column instead of implementing every column in the array, the output
spike generated by each accumulation can be captured first and send out parallelly
when each column completes their accumulations. By time-multiplexing one column,
the area consumption of the SNN array can be reduced tens or even hundreds of times.

50

Bibliography

[1] J. Stuijt, M. Sifalakis, A. Yousefzadeh, and F. Corradi, “µbrain: An event-driven
and fully synthesizable architecture for spiking neural networks,” Frontiers in neu-
roscience, vol. 15, p. 538, 2021.

[2] C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar, N. Qiao,
J. Schemmel, R. Wang, E. Chicca, J. Olson Hasler, et al., “Large-scale neuromor-
phic spiking array processors: A quest to mimic the brain,” Frontiers in neuro-
science, vol. 12, p. 891, 2018.

[3] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-based
neuromorphic systems. John Wiley & Sons, 2014.

[4] M. Chu, B. Kim, S. Park, H. Hwang, M. Jeon, B. H. Lee, and B.-G. Lee, “Neu-
romorphic hardware system for visual pattern recognition with memristor array
and cmos neuron,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4,
pp. 2410–2419, 2014.

[5] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic manycore processor
with on-chip learning,” Ieee Micro, vol. 38, no. 1, pp. 82–99, 2018.

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A mil-
lion spiking-neuron integrated circuit with a scalable communication network and
interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[7] L. S. Smith, “Neuromorphic systems: Past, present and future,” Brain Inspired
Cognitive Systems 2008, pp. 167–182, 2010.

[8] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” International journal
of neural systems, vol. 19, no. 04, pp. 295–308, 2009.

[9] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, and
E. Beigne, “Spiking neural networks hardware implementations and challenges: A
survey,” ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 15, no. 2, pp. 1–35, 2019.

[10] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. homogeneous
synaptic input,” Biological cybernetics, vol. 95, no. 1, pp. 1–19, 2006.

[11] S. Shafayet Chowdhury, C. Lee, and K. Roy, “Towards understanding the effect of
leak in spiking neural networks,” arXiv e-prints, pp. arXiv–2006, 2020.

[12] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve,” The Journal of
physiology, vol. 117, no. 4, p. 500, 1952.

51

[13] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on neural
networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[14] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M.
Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neuro-
grid: A mixed-analog-digital multichip system for large-scale neural simulations,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[15] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,
N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo,
J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic
chip,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 10, pp. 1537–1557, 2015.

[16] T. Hwu, J. Isbell, N. Oros, and J. Krichmar, “A self-driving robot using deep
convolutional neural networks on neuromorphic hardware,” in 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 635–641, 2017.

[17] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra, P. Joshi,
P. Plank, and S. R. Risbud, “Advancing neuromorphic computing with loihi: A
survey of results and outlook,” Proceedings of the IEEE, vol. 109, no. 5, pp. 911–
934, 2021.

[18] S. M. Nowick and M. Singh, “High-performance asynchronous pipelines: An
overview,” Ieee design & test of computers, vol. 28, no. 5, pp. 8–22, 2011.

[19] S. Hauck, “Asynchronous design methodologies: an overview,” Proceedings of the
IEEE, vol. 83, no. 1, pp. 69–93, 1995.

[20] J. Spars and S. Furber, Principles asynchronous circuit design. Springer, 2002.

[21] J. Sparsø and S. Furber, “Principles of asynchronous circuit designa systems per-
spective, 2001,” Google Scholar Google Scholar Digital Library Digital Library.

[22] M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou, and P. Beerel,
“A 72-port 10g ethernet switch/router using quasi-delay-insensitive asynchronous
design,” in 2014 20th IEEE International Symposium on Asynchronous Circuits
and Systems, pp. 103–104, IEEE, 2014.

[23] J. Spars and S. Furber, Principles asynchronous circuit design. Springer, 2002.

[24] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32, no. 6,
pp. 720–738, 1989.

[25] M. Singh and S. M. Nowick, “Mousetrap: High-speed transition-signaling asyn-
chronous pipelines,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 6, pp. 684–698, 2007.

52

[26] M. Singh and S. Nowick, “High-throughput asynchronous pipelines for fine-
grain dynamic datapaths,” in Proceedings Sixth International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems (ASYNC 2000) (Cat. No.
PR00586), pp. 198–209, 2000.

[27] T. E. Williams, Self-timed rings and their application to division. Stanford univer-
sity, 1991.

[28] S. K. Patel and S. K. Singhal, “Area–delay and energy efficient multi-operand
binary tree adder,” IET Circuits, Devices & Systems, vol. 14, no. 5, pp. 586–593,
2020.

[29] M. Vlăduţiu, Computer arithmetic: algorithms and hardware implementations.
Springer Science & Business Media, 2012.

[30] J. Juan-Chico, P. Ruiz de Clavijo, M. Bellido, A. Acosta, and M. Valenia, “Inertial
and degradation delay model for cmos logic gates,” in 2000 IEEE International
Symposium on Circuits and Systems (ISCAS), vol. 1, pp. 459–462 vol.1, 2000.

[31] M. Kurchuk and Y. Tsividis, “Energy-efficient asynchronous delay element with
wide controllability,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, pp. 3837–3840, 2010.

[32] D. Z. Turker, S. P. Khatri, and E. Sanchez-Sinencio, “A dcvsl delay cell for fast
low power frequency synthesis applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 58, no. 6, pp. 1225–1238, 2011.

[33] M. Miller, C. Segal, D. Mc Carthy, A. Dalakoti, P. Mukim, and F. Brewer, “Im-
polite high speed interfaces with asynchronous pulse logic,” in Proceedings of the
2018 on Great Lakes Symposium on VLSI, pp. 99–104, 2018.

[34] F. Brewer, D. McCarthy, and M. Miller, “Automated timing constraint generation
for pulse gate circuits,” 2021.

53

	Abstract
	Acknowledgments
	Introduction
	Problem statement
	Objectives
	Contributions
	Thesis outline

	Literature review
	Spiking Neural Networks
	Neuromorphic systems
	Spiking Neural Networks
	Neurons
	AER
	State of the art

	Asynchronous design
	Muller-C element
	Classes of asynchronous circuits
	Handshake protocols
	Data encoding
	Asynchronous pipeline

	Implementation
	Architecture overview
	Accumulator design
	Adder tree based accumulator
	Time-multiplexed accumulator

	Summary

	Results
	Post-synthesis simulation
	Post-synthesis simulation of the adder tree based neuron
	Post-synthesis simulation of the time-multiplexed neuron

	Synthesis results
	Performance of different hierarchical structures
	Optimizations
	Summary

	Conclusion and Future work
	Conclusion
	Future work

