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1
INTRODUCTION

Low-thrust propulsion has nowadays found wide application as primary thrust in the near-Earth
environment for final orbit insertion, orbital transfers, station-keeping and satellite disposal. Elec-
tric propulsion entails considerable savings in the propellant mass thanks to the very high specific
impulse which they are able to generate. However, potential profits are always accompanied by cor-
responding complications. The mathematical problem of an orbital trajectory becomes very com-
plex when low-thrust propulsion is considered. Only in the last decades augmented computational
capabilities and progress in optimization techniques, as well as the development of more efficient
engines, made interplanetary trajectories affordable and optimally designable. Remarkable cases
are the pioneering NASA’s Deep Space 1, JAXA’s Hayabusa and ESA’s SMART-1 completed missions,
coupled with NASA’s Dawn and ESA’s BepiColombo currently ongoing and future missions [1]. How-
ever, this still represents a quite immature sector, when compared to other space disciplines, with a
prosperous research field aiming to extrapolate all of its potential.

In 2002, NASA founded a research team, namely the Low-Thrust Trajectory Tools Team (LTTT)
[1], to create a toolbox of optimization software with variable levels of final accuracy and compu-
tational load. However, the distribution of these tools is limited to the different NASA centers and
only the results of their application to a number of test scenarios were published. Several institu-
tions and space agencies have also developed their own tools, but again their availability typically
stops at the institution’s internal boundaries. In addition, various tools with a low-medium fidelity
level for low-thrust optimization have been created by university researchers and several of them
are open source.

The research goal of the present thesis work is the development of a novel multiple-shooting tool
for space trajectory optimization and the assessment of its performance and accuracy in a variety
of practical and challenging test cases, such as a CubeSat-asteroid rendezvous feasibility study, and
The Kessler Run, the 9th Global Trajectory Optimization Competition (GTOC9) problem. The main
novelty of this project consists in the variational approach for derivative computation. The theory
behind this technique, only outlined in a few references [2] [3], has not been described in detail, as
well as the performance of this method has not been widely investigated. Hence, this thesis aims to
help filling this gap in literature by developing the theory of the variational equations for optimiza-
tion problems, and by assessing the efficiency of this approach. This project will be carried out in
the Aerospace Centre of Excellence (ACE), space research laboratory of the University of Strathclyde.

The report is structured in seven chapters, including the present introduction, following a se-
quential flow of required concepts. Chapter 2 recalls fundamental concepts of celestial mechanics
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2 1. INTRODUCTION

needed for motivating subsequent implementation choices, given the tool’s specific purpose, and
for analyzing the test cases’ outcomes. Chapter 3 discusses optimal control theory and practical
methods to solve it, topics which represent the key background knowledge on top of which the
novel algorithm shall be developed. By comparing different transcription schemes, the selection of
a multiple-shooting algorithm will be justified. It will be shown why the classical derivative com-
putation technique is the bottleneck of this method, and the variational approach will be identified
as a potential alternative to improve this computational burden. In Chapter 4, this topic will be
examined in depth from a theoretical standpoint by deriving the equations of the variational dy-
namics. This central part of the report represents the key theoretical fulcrum of the novel approach
developed in this thesis. On the other hand, Chapter 5 represents the numerical counterpart of
the previous one, being concerned about the practical details of the tool implementation and its
verification and validation against a number of elementary test cases. In particular, the validation
phase will represent the first assessment of the variational approach performance in comparison
with the finite-difference routine. Once tested, the variational multiple shooting will be used to
solve two different complex test cases, as reported in Chapter 6. First, a single-phase low-thrust
CubeSat-asteroid rendezvous will be optimized and the results analyzed to evaluate the feasibility
of such a mission. Then, the tool will be employed as local optimizer in an optimization cascade
to solve the GTOC9 challenge with the Strathclyde++ team. For both applications, the performance
of the variational approach will be further examined. Finally, Chapter 7 will summarize and unify
the research outcomes discussed in the previous chapters, and introduce ideas for future research
developments.



2
ASTRODYNAMICS

The astrodynamics background theory developed in this chapter will represent the ground level of
knowledge on which the optimization tool, aimed for specific space applications, is built. The im-
plementation choices motivated in Chapter 5, and the test cases analyzed in Chapter 6, will often
take advantage of orbital mechanics concepts introduced in these sections, where both fundamen-
tal and well-known topics, such as reference frames and coordinate systems, and specific tools, such
as low-fidelity inverse methods, will be shortly outlined.

In particular, both interplanetary trajectories (see Section 6.1) and Earth transfer orbits (see Sec-
tion 6.2) will be studied as test cases, which employ different reference frames, i.e. inertial heliocen-
tric and Earth-centered respectively, as introduced in Section 2.1. Some basic orbital mechanics and
the principal perturbations in near-Earth environment will be briefly reported in Section 2.2, as they
are directly needed for the applications discussed in Chapter 6 as well. This discussion will prove
useful to understand why some perturbations shall not be neglected in the computation of specific
trajectories when a high-accuracy outcome is sought. Lastly, shaping methods will be introduced
in Section 2.3 as methods to generate first-guess solutions needed for any numerical optimization
tool, as pointed out in Section 3.2. A particular focus will be given to the spherical shaping as it will
generate the first guess for the CubeSat rendezvous test case.

2.1. REFERENCE FRAMES AND COORDINATE SYSTEMS

Reference frames and coordinate systems are milestone topics in any space-related study. In physics,
their definition is required to describe position and velocity of any general body, such as planets,
asteroids or spacecraft in the space scenario. Although completely equivalent by means of proper
transformations, the form of the equations governing their motion are dramatically dependent on
the selected frame and coordinate system, and selecting the right one is crucial to have a convenient
form for the problem in study. [4] dedicates an extensive chapter to reference frames and coordinate
systems, which will be used as main reference for the following section.

2.1.1. REFERENCE FRAMES

The fundamental and most precise celestial reference frame nowadays is the International Celestial
Reference System, which has been developed by the space community taking into account also rel-
ativity effects. The origin of this system is at the barycenter of the Solar System and the axes point
towards very distant celestial objects, such as quasars or nuclei of galaxies, with negligible relative
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4 2. ASTRODYNAMICS

angular motion to make it quasi-inertial (in practice it is impossible to select a perfectly inertial
frame). However, when simulating an interplanetary trajectory as a two-body motion around the
Sun, this is not the most convenient one because the origin does not precisely coincide with the
Sun’s center of mass and the motion of our star shall be taken into account.

In practical applications, a non-rotating heliocentric frame is used for interplanetary trajectories’
studies. The reference XY-plane of Sun-centered frames is the ecliptic plane, i.e. the plane coplanar
to Earth’s orbit around the Sun. Then, the +X-axis is chosen to point to the First Point of Aries, i.e.
the vernal equinox, at a chosen date. The most common choice is the position of the vernal equinox
at 12:00 of 01/01/2000 (J2000). The +Z-axis is chosen to form an acute angle with the direction of
the celestial Earth north pole. The +Y-axis then completes the right-hand frame within the reference
plane.

Earth-orbiting spacecraft are usually described in the non-rotating geocentric equatorial refer-
ence frame, or Earth-centered inertial frame (ECI). The reference frame is centered in Earth’s center
of mass and, as implied by the name, the XY-plane is coplanar with the equator. The +X-axis is
chosen again to point towards the vernal equinox (usually J2000), while the +Z-axis points towards
Earth’s celestial north pole. The +Y-axis lies in the equatorial plane and it forms a right-hand frame
with the already defined axes.

An often-employed reference frame for Earth’s satellites is the geocentric rotating reference frame,
also known as Earth-centered Earth-fixed (ECEF). The origin is still the Earth’s barycenter and the
+Z-axis again points towards the Earth’s celestial north pole, as well as the definition of the XY-plane
remains unaltered. Differently, the +X-axis always crosses the Greenwich meridian and therefore it
is rotating, while the +Y-axis completes the right-handed frame.

2.1.2. COORDINATE SYSTEMS

Two main types of coordinate systems are used in celestial mechanics. The Cartesian representation
uses the projections X ,Y , Z of the spacecraft position vector on the reference frame axes and their
time-derivatives. A drawback of this system is that all the coordinates are fast variables, i.e. they
change significantly and rapidly during orbital revolution. On the contrary, the orbital elements
representation takes advantage of the integrals of motion of the two-body problem to describe the
position and velocity of a spacecraft by means of unperturbed quantities plus only one fast variable.

Figure 2.1: Illustration of an orbital plane with focus on inclination, argument of periapsis and longitude of the ascending
node [5].
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The classical set of orbital elements is the Keplerian one, which is composed by a, e, i , ω, Ω and
θ, respectively the semi-major axis, eccentricity, inclination angle, argument of pericenter, right
ascension of the ascending node and true anomaly of the satellite within the orbit at a reference
epoch τ0.

2.2. DYNAMICAL MODELS

This section will serve as a brief recap of the dynamical equations governing the orbital motion and
which will be used for the tool applications in Chapter 6 .

2.2.1. PERTURBED TWO-BODY MOTION

[6] defines perturbations as the "forces acting on an object other than those forces that cause it to
move on some reference orbit". The reference trajectory typically considered in orbital mechanics
is the two-body motion of a spacecraft with negligible mass around a central body, modeled as a
uniform sphere. It results from the following differential equation:

d 2r

d t 2 =− µ

r 3 r (2.1)

where the vector r represents the relative position between the two bodies, r its modulus and µ is
the central body gravitational parameter [4]. This system can be analytically integrated as a function
of an angular quantity, usually the true anomaly θ. The resulting trajectory is the equation of a conic
as follows:

r = a(1−e2)

1+e cosθ
(2.2)

Every perturbation, regardless of its magnitude, can be plugged in the right-hand side of Equa-
tion (2.1), modifying it as follows:

d 2r

d t 2 =− µ

r 3 r+ fP (2.3)

The ratio between the perturbing acceleration and the local central gravitational acceleration values
shall be at least of order O (10−2) to properly apply the perturbative approaches. A similar order of
magnitude shall apply to consider the trajectory generated by a shaping method (see Section 2.3),
based only on the two-body pull, as a suitable initial guess for trajectory optimization with more
complex dynamics. A comparison of the magnitude of different perturbation sources in the near-
Earth environment is plotted in Figure 2.2.

For the present research project, the perturbations considered in the force model depend on the
test case specifics. Hence, the focus of this section will only be on the nature and representation of
perturbation forces which will later be employed in the tool’s test cases, and not on their effect on
the orbital elements, which strongly depends on the chosen reference trajectory characteristics.

2.2.2. GRAVITATIONAL OBLATENESS

The differential Equation (2.1) has been obtained by the approximation of the central body as a
uniform sphere. However, celestial bodies have neither a radially symmetric mass distribution nor
a perfect spherical shape. By solving Laplace’s equation in spherical coordinates imposed for the
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Figure 2.2: Magnitude of perturbing forces as a function of orbital radius [4].

gravitational potential of continuous mass distribution, as [7] explains, we can express the pertur-
bative gravitational potential of a celestial body in an inertial centered reference frame as a series of
Legendre polynomials Pn,m :

R̃ = µ

r

[ ∞∑
n=2

Jn

(
req

r

)n

Pn(sinφ)+
∞∑

n=2

n∑
m=1

Jn,m

(
req

r

)n

Pn,m(sinφ)
{

cosm(Λ−Λn,m)
}]

(2.4)

where req is the mean radius of the central body, φ and Λ the angular spherical coordinates, Jn,m

and Λn,m are model parameters. The main effect is given by the first perturbing term J2, the dis-
turbance considered in the test case in Section 6.2, while the other coefficients have much smaller
orders of magnitude. By taking the spatial gradient of the potential in Equation (2.4), the resulting
acceleration is modeled by the following dynamical equations [4]:

fPx =−3

2
µJ2

r 2
eq

r 5 x

(
1−5

z2

r 2

)
fPy =−3

2
µJ2

r 2
eq

r 5 y

(
1−5

z2

r 2

)
fPz =−3

2
µJ2

r 2
eq

r 5 z

(
3−5

z2

r 2

)
(2.5)

2.2.3. THIRD-BODY PERTURBATION

The third-body disturbance is caused by the gravitational interaction of a third celestial body with
the spacecraft. Perturbation’s resulting acceleration is derived in rectangular coordinates in an in-
ertial central body reference frame as [4]:
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fp =µ j

(
rD − ri

r 3
i D

− rD

r 3
D

)
(2.6)

where µD is the standard gravitational parameter of the third body, rD is the vector distance be-
tween the third and the central body, ri the vector distance from the central body to the spacecraft,
and ri D their difference, i.e. the position vector from the spacecraft to the perturbing body. This
acceleration model will be employed in Section 6.1, when the effect of the Earth and the Moon on
an interplanetary trajectory will be considered.

Figure 2.3: Illustration of third-body perturbation [4].

2.3. INVERSE SHAPING METHODS

The design of low-thrust trajectories has been historically treated as an optimization problem in lit-
erature (see Section 3.1). However, all methods developed nowadays are computationally expensive
due to the enormous number of degrees of freedom, and often require an initial estimate of the op-
timal trajectory. The multiple-shooting tool developed for the current research does no exception.
To compute first-guess solutions, the so-called shape-based methods model analytically the geom-
etry of the trajectory as well as its time evolution. The control profile is then obtained by inverting
the equations of motion, i.e. requiring the following equality to be satisfied all along the trajectory:

fT = r̈+ µ

r 3 r (2.7)

where fT is the thrust acceleration. The environmental perturbations have been left out from this
formulation in any of the developed shaping methods as the goal is to develop a first-order solution.
The parameters within the assumed shape shall be chosen such that the boundary conditions are
satisfied. If some degrees of freedom are left, an optimization of the remaining parameters could
be carried forward to minimize a performance index and/or impose constraints on the maximum
peak thrust and the time of flight (TOF) feasibility [8].

[9] developed the very first shaping method, named exposin as it was employing exponential si-
nusoidal functions to parameterize the radius. However, as major drawbacks, this method does not
satisfy the boundary conditions on velocity, often leading to unfeasible solutions, and the described
motion is only planar. Later developments of new shaping frameworks managed to overcome these
restrictions. In the current thesis, only the spherical shaping method, discussed in the reminder of
the section, have been employed for its advantageous characteristics as well as its availability within
the Aerospace Centre of Excellence, the research center where the project has been carried out.
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2.3.1. SPHERICAL SHAPING

[10] reformulated the state of the spacecraft as function of the spherical coordinates (r,θ,φ) to de-
scribe its 3D motion.

Figure 2.4: Spherical coordinate system [10].

To describe the trajectory, time is substituted by the angular variable θ as independent variable. The
state then becomes [r, t ,ϕ,r ′, t ′,ϕ′], where the prime ′ points out the derivative with respect to θ.
Inverting the equations of motion, the thrust control in tangential-normal-out-of-plane (et , en , eh)
frame assumes the form [10]:

fT =


fTt = µ

r 2 er ·et + θ̈ṽ ·et + θ̇2ã ·et

fTn = µ

r 2 er ·en + θ̇2ã ·en

fTh = θ̇2ã ·eh

(2.8)

where ṽ = dr/dθ and ã = d 2r/dθ2. The state vector is parameterized with a functional form as
[r = R(θ), t = T (θ),ϕ = Φ(θ)] such that the normal component of the control vector vanishes, i.e.
Equation (2.8-2). First, a shaping function for the time θ-derivative is given:

T ′ =
√

DR2

µ
(2.9)

where D = −r ′′+2 r ′2
r + r ′ϕ′ ϕ′′−sinϕcosϕ

ϕ′2+cos2ϕ
+ r (ϕ′2 + cos2ϕ) is a geometrical parameter. The choice of

shaping the derivative of time T ′ arises from the impossibility to obtain a near-optimum control
given an a priori shaping function T . In the latter case indeed, the control usually exceeds the low-
thrust limits to fulfill the prescribed path, while T ′ in Equation (2.9) has proven to ensure a feasible
thrust profile [10].

The shaping functions R and Φ are selected such that the parameters can satisfy the boundary
conditions through analytic non-iterative computations. There are four boundary conditions on R
and R ′, four onΦ andΦ′ and two on T ′. Given the expression of T ′, the last two boundary conditions
can be translated as conditions on R ′′ and Φ′′. Therefore, the shaping functions for the radius and
the elevation angles shall have at least ten free parameters.

R = 1

a0 +a1θ+a2θ2 + (a3 +a4θ)cosθ+ (a5 +a6θ)sinθ

Φ= (b0 +b1θ)cosθ+ (b2 +b3θ)sinθ
(2.10)

The eleventh parameter is used to satisfy an extra constraint on the time of flight.



2.3. INVERSE SHAPING METHODS 9

Novak developed a general formulation of the shaping methods in his PhD thesis, better formal-
izing the mathematical basis of the inverse methods, which can be used as mathematical reference.
The parameterization choice, in Equation (2.10), ensures that the minimum-thrust arc is the Keple-
rian one, a suitable choice for reproducing coasting arcs. According to several test cases described in
[10], this approach generates near-optimal solutions in terms of ∆V for interplanetary trajectories,
and therefore it is a convenient method for first-guess generation during the asteroid rendezvous
application which will be analyzed in Section 6.1.





3
OPTIMIZATION

The goal of the thesis project concerns the development of a numerical tool for space trajectory op-
timization employing a variational approach to enhance the computational performance of deriva-
tive computation. However, before starting to develop the variational theory and implement the
tool, we need to answer a few questions first. How shall a space trajectory optimization problem
be formulated? What is the theory behind continuous optimization? Which are the best practical
methods to solve space problems of interest for this thesis? How do numerical algorithms work? The
present chapter aims to introduce the key background knowledge needed for the current research
development, as well as the reasoning behind the choice of particular research paths.

The generic continuous control problem, with an objective function to minimize and constraints
to respect, will be framed under the general formulation of optimal control problem (OCP) theory
as described in Section 3.1. Here, the differences between direct and indirect methods to solve OCP
will be analyzed and a trade-off between them performed. Since these techniques lead to a closed-
form solution only for elementary cases, practical methods to find an approximated solution will be
treated in Section 3.2. Any of these converts the infinite-dimension optimization problem to a finite-
dimension one through a transcription method which dictates the parameters to optimize. It will
be shown that once the set of free parameters is selected, the transcribed optimal control method is
posed as a nonlinear programming (NLP) problem, of which different solution approaches will be
addressed in Section 3.3. Global optimization methods fall outside the optimal control theory and
are not strictly related to the main objectives of this thesis. However, they usually find applicability
as a previous step or on an outer optimization-loop level with respect to the local refinement algo-
rithms discussed above. For example, they can be employed to optimize static parameters such as
the departure date and time of flight of a rendezvous trajectory (see Section 6.1). Therefore, Sec-
tion 3.4 will give a brief mention to some of these techniques and discuss their applicability.

11
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3.1. OPTIMAL CONTROL THEORY

The general statement of an optimal control problem (OCP) requires the definition of [11]:

• The mathematical model of the dynamic system to control.
Usually it is described by a system of ordinary differential equations (ODEs) in the form ẋ =
f(t ,x(t ),u(t )). The independent variable has been indicated by t , usually appointed as time,
but there is no restriction on its choice. The variables xi in the vector of x are usually called
state variables, while u j in the vector u are the control variables.

• The performance index J to be minimized (or equivalently maximized).
The performance index in the general form is written as:

J =φ[t f ,x(t f )]+
∫ t f

t0

L[t ,x(t ),u(t )]d t (3.1)

The optimal control problem is in the Bolza form if both the end-cost and the integral terms
are present. If the end-cost term φ is zero, it is known as a Lagrange problem. On the con-
trary, if the integral term L is zero, the problem is referred as a Mayer one. Mathematically
these formulations are equivalent and convertible into each other. For example, a Lagrange
problem can be restated as a Mayer one simply adding one state variable of the form ẋn+1 =
L[t ,x(t ),u(t )], leading to J = xn+1(t f ). However, [3] states that, even if they are mathematically
equivalent, they are not numerically corresponding. The Lagrange form shall be preferred as
the Mayer form leads to an increased number of state variables, which are then discretized
in numerical methods, leading to a higher size of the NLP subproblem and a more time-
consuming algorithm. The most common choices for the performance index in low-thrust
problems are the total∆v of the trajectory (or equivalently the final mass) for electric engines,
and time of flight for solar sails, as the thrust is generated by an external source which is po-
tentially infinite in the latter.

• Specification of constraints.
They are divided into two different classes, i.e. fixed-event or path constraints. The first type

is described as an algebraic function of the state and control g f
L ≤ g f [(t̄ j ),y(t̄ j ),u(t̄ j )] ≤ g f

U

at a fixed time t̄ j . The initial and final boundary conditions fall into this form for g f
L = g f

U .
A path constraint is formulated as an algebraic function of the state and control variables
g p

L ≤ g p [(t ),x(t ),u(t )] ≤ g p
U over a trajectory’s phase. Bounds on the control magnitude fall

into this category as uL ≤ u(t ) ≤ uU . This general notation [3] deals with both equality and
inequality constraints, depending on the lower and upper boundary values.

Once the aforementioned statements have been formulated, the optimal control problem aims to
find the control profile u∗(t ), in the space of all admissible controls U , which minimizes the perfor-
mance criterion J while respecting the differential model ẋ = f(t ,x(t ),u(t )) and the specified physical
constraints. Briefly stated:

mi n J =φ[t f ,x(t f )]+
∫ t f

t0

L[t ,x(t ),u(t )]d t , u ∈U

sub j ect to : ẋ = f(t ,x(t ),u(t ))

gp
L ≤ gp [(t ),x(t ),u(t )] ≤ gp

U

g f
L ≤ g f [(t̄ j ),x(t̄ j ),u(t̄ j )] ≤ g f

U

(3.2)

where the Bolza formulation is used to obtain the necessary conditions in the most general case.
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3.1.1. INDIRECT METHODS

Indirect methods are based on Pontryagin’s maximum principle, adapting the sign convention for
minimization problem. This principle’s derivation employs calculus of variations techniques, of
which comprehensive references are [12] and [13]. The goal is to convert the optimal control prob-
lem as defined in the chapter’s introduction into a two-point boundary value problem through the
statement of the necessary conditions that a profile shall satisfy to be an optimal solution.

The process starts with the definition of an augmented performance index J̄ , in a fashion simi-
lar to equality-constrained static optimization problems, where Lagrange’s multipliers λ j multiply-
ing the dynamical constraints are summed to the objective function to form the augmented perfor-
mance index:

J̄ =Φ+
∫ t f

t0

[
L[t ,x(t ),u(t )]+λT (t )

{
f[t ,x(t ),u(t )]− ẋ

}]
d t (3.3)

According to calculus of variation, the necessary conditions for a stationary extremum is that the
first-order variation δ J̄ shall nullify at any instant of time for any constraint-allowed variation δu(t ).
The problem Hamiltonian is defined as:

H = L[t ,x(t ),u(t )]+λT (t )f[t ,x(t ),u(t )] (3.4)

When path constraints are present, the Hamiltonian shall be augmented with the constraints’ viola-
tion weighted by associated dual variables. After mathematical manipulation (see [11] for a detailed
derivation), the necessary conditions for a control profile u∗(t ) to be a stationary function of the
performance index are represented by the following Euler-Lagrange equations:

ẋ = f(t ,x(t ),u(t ))

λ̇=−
[∂H

∂x

]T

0 =
[∂H

∂u

]T

(3.5)

where the relations in Equation (3.5)-2 are labeled as adjoint equations and Equations (3.5)-3 as
control equations. These differential equations, which a control profile has to necessarily satisfy to
be a stationary solution, are coupled with a set of transversality conditions:

t0 g i ven ∨ H(t0) = 0

t f g i ven ∨ H(t f ) =−∂Φ
∂t

∣∣∣
t f

x(t0) g i ven ∨ λ(t0) = 0

x(t f ) g i ven ∨ λ(t f ) = ∂Φ

∂y

∣∣∣
t f

(3.6)

Hence, if any of the boundary conditions is a free parameter, either on time or state variables, the
above conditions complete the minimum required number of known conditions at the initial or
final time. In the matter of low-thrust, final conditions could be unspecified (but possibly still con-
strained) in many non-rendezvous trajectories such as orbit raising or decreasing, orbital escape
problems, gravity assists and so on. Up to this point, the process defined the necessary conditions
for a solution to be a stationary one. The Legendre-Clebsch condition about local convexity of the
Hamiltonian shall be satisfied to ensure that the solution is an actual local minimum:
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∂2H

∂u2

∣∣∣
u∗

≥ 0 (3.7)

The TPBVP defined by Equations (3.5), coupled with the conditions (3.6) and (3.7), has no an-
alytical closed-form solution for complex problems like low-thrust trajectories. Hence, numerical
methods shall be employed. However, further information can be obtained by exploitation of the
problem’s first integrals. If the functions L and f defined in the System (3.2) do not depend explicitly
on the independent variable t , then the Hamiltonian is a first integral of the TPBVP along an opti-
mal trajectory [2]. In general, if a first integral is found, the redundant information that it generates
can be exploited to eliminate one adjoint equation, formally transforming the original TPBVP into
another one of lower dimension, by following the procedure shown by [11].

3.1.2. DIRECT METHODS

A direct method does not require the derivation of the necessary conditions needed by indirect
methods. On the contrary, it aims to find a sequence of profiles which progressively reduce the
non-augmented performance index J and the constraint’s violation. Direct methods require a pa-
rameterization of the control functional form over trajectory’s arcs. This is generally achieved by
two conceptually different methods [2]:

• A grid at different times where the control parameters are to be found and the values within
an interval are computed through interpolation.

• A set of orthogonal basis of mathematical functions dependent on time. Usually Fourier se-
ries, Legendre polynomials or the Chebyshev ones.

The goal is then to determine the values of the specified free parameters, either control values at
fixed times in the grid form or the coefficients of the series in the second case, able to minimize
the objective index and to respect the constraints. In this passage, the number of free parameters is
reduced from infinite degrees of freedom to a finite number of parameters, depending on the cho-
sen parametrization. This passage could seem a limitation of the direct methods when compared
to the indirect ones. However, as already stated in the previous section, a numerical procedure is
necessary also for indirect methods when dealing with complex cases such as low-thrust trajectory
optimization. These numerical methods require a so-called transcription to convert the infinite-
dimension optimal problem into a solvable finite-dimension one. Hence, what seemed a limitation
of the direct methods is a required passage of any technique nonetheless.

A direct method’s solution is generally not an optimal solution itself, i.e. not a local minimum of
the performance index, but just an approximation as a consequence of the discretization or inter-
polation steps. Hence, the necessary conditions (3.5) and (3.7) can be used as an indicator of how
close the found solution is to the real local optimum [14].

3.1.3. COMPARISON OF DIRECT AND INDIRECT METHODS

Loosely comparing an optimal control problem to a static constrained optimization, the direct
method’s goal is to pinpoint a local minimum of the performance function, while an indirect method
aims to find a root of the necessary conditions. The latter shall be preferred when a closed-form so-
lution is aimed for. Indeed, indirect methods allow to extract the control in an analytical way [15]
[16]. However, this is possible only when several approximations are employed or simplified cases
are considered. When a complete low-thrust trajectory problem in a perturbed environment is stud-
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ied, a numerical approach is mandatory. In the latter case, a direct method results to be the simpler
choice due to several considerations [3]:

• The quantities
[
∂H
∂x

]T
and

[
∂H
∂u

]T
needed by indirect methods must be analytically computed

and changed when different models are employed, e.g. environmental perturbations. Fur-
thermore, when a problem is divided into phases, e.g. a patched-conic approach for an inter-
planetary trajectory, these quantities change along the trajectory. This requires an extensive
preliminary analytical stage for any different problem in the matter. On the contrary, a di-
rect method is a flexible approach, more suitable for black box implementations, and able to
handle a problem divided into different phases;

• Path inequalities, which are quite ordinary in low-thrust applications, represent a relevant is-
sue for indirect methods. Indeed, a first guess of the active-inactive sequence is needed for
practical methods as it changes the form of the Hamiltonian, by adding the Lagrange mul-
tipliers, the number of constrained arcs and the junction conditions. However, an a-priori
knowledge of the right series is quite hard to achieve;

• Another issue with first guesses emerges from the initial estimate of the adjoint variablesλ. As
remarked by [17], the extremal solutions can be very sensitive to small changes in the unspec-
ified boundary conditions. As usually the initial state variables are specified, the transversality
conditions (3.6) show that the initial values of the adjoint variables for the optimal trajectory
are not known. Further, these variables are not representing physical quantities. Hence, set-
ting the right initial conditions, or even reasonable ones, is very complex, and a bad initial-
ization often results in numerically ill-conditioned solutions. On the contrary, direct methods
disregard those variables and require only initial guesses on the physical state and control
variables.

3.2. PRACTICAL TECHNIQUES FOR OPTIMAL CONTROL

As stated in numerous occasions, in general the continuous optimal control problem does not have
a closed-form solution and practical numerical optimization methods come into play. Any numeri-
cal technique cannot handle an infinite-dimension problem, but it needs a discrete problem with a
finite set of variables and constraints to work with. This transition can be performed with conceptu-
ally different methods which will be investigated in the present section. It is important to emphasize
that the following techniques are applicable to both indirect and direct approaches. However, as the
current thesis work will revolve on a direct method, a major focus will be paid to the latter formula-
tion. This choice is further justified by the considerations made in Section 3.1.3. A complete review
of the common methods for low-thrust trajectory optimization has been compiled by [18], whereas
in this section two major classes will be addressed.

3.2.1. SINGLE SHOOTING

Typically, the single-shooting method does not actually find application in the field of low-thrust
optimal control. However, it is useful to introduce the notation and several concepts shared by its
extension, the Multiple Shooting method. The discretization grid is composed by only two points,
the initial and final times. Initially, the n free parameters in yT = [x̄1, . . . , ūnc ], composed by the initial
conditions and the control parameters, are guessed. Hence, the trajectory is propagated forward (or
equivalently backward) from the starting to the end time, leading to the final state:
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xp
f = x0 +

∫ t f

t0

f(t ,x,u)d t

In general the propagated state xp
f will not coincide with the required final one xF . Hence, the dif-

ference between these two quantities becomes a constraint to nullify. In literature, this constraint is
generally labeled as defect:

c(y) = xp
f −x f (3.8)

The numerical values of the violation of the boundary conditions can be exploited to iteratively
adjust the control parameters with the NLP algorithms presented in Section 3.3, in order to finally
solve the constrained minimization.

Figure 3.1: Single shooting method illustration [3].

The advantage of this basic method is that the NLP sub-problem has only a small number of vari-
ables to optimize, i.e. the initial state guess and control parameters. However, due to the usual long
time-span of a low-thrust maneuvers, even small changes in the parameters can result in very large
defects change, leading to hypersensitivity with respect to the free parameters.

3.2.2. MULTIPLE SHOOTING

In order to overcome the drawback of parameter sensitivity, it is possible to segment the overall
time interval into a set of m − 1 smaller steps discretizing the interval at m grid points t0 < t1 <
t2 < ·· · < t f . Then, each of the segments can be treated as an independent single-shooting method,
with continuity constraints added. Therefore, first guesses of the ns state variables for each in-
termediate segment are now needed. The first guess trajectory is usually found by fast and low-
fidelity methods, such as the shape-based techniques seen in Section 2.3 for space applications.
The state variables at intermediate grid points are now control variables to be optimized. Hence,
the number of control parameters in y increases with respect to the single shooting method, pre-
cisely ny = (m −1)(ns +nc ·np ), where ns is the number of state variables, nc the control compo-
nents and np the control parameters per each component. The defect equations can be expressed
in the general form as:

c(y) =


xp

2 −x2
...

xp
f −x f

 (3.9)

where again the goal is to nullify c(y).
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Figure 3.2: Multiple shooting method illustration [19].

The dimension that the NLP sub-problem shall solve, in order to link the different phases and min-
imize the objective function, dramatically increases with increasing number of steps. However, the
effects of changing a particular parameter are more intuitive for smaller steps, leading to an im-
provement of the convergence properties. In addition, the drawback of the single shooting is solved
as, when the number of steps is high enough, the variables in the first stages of the trajectory do
not influence the last phases. The segment decoupling mathematically translates into very sparse
Jacobian and Hessian matrices, later involved by the NLP algorithm. For example, the Jacobian gets
sparser and sparser as more phases are employed, because the percentage of non-zero elements is
proportional to 1/(m − 1). This sparsity can be exploited to construct a computationally efficient
nonlinear programming subroutine, making the multiple shooting method both robust and com-
petitive. While the general concept of a multiple shooting transcription scheme has been presented
in this section to introduce the discussion on the method selection of Section 3.2.4, it will be better
explained and examined in detail in Section 5.1 as it is the central topic of the present thesis.

3.2.3. COLLOCATION

The basic goal of collocation methods is to avoid repeated propagations over each segment. This is
achieved by partitioning again the whole trajectory into m −1 segments, leading to m grid points.
Hence, the trajectory is only represented by the set of state variables x(tk ) and their derivatives
f(tk ,x(tk ),u(tk )) at mesh points as well as the control profile nodes u(tk ). As these values are treated
as NLP variables, gathered in the vector y, the optimal control problem has been completely tran-
scribed into a finite-dimensional NLP. For this reason, also collocation methods need a first-guess
solution, which can be sought with the aforementioned approaches. The state, state-derivative and
control values within each interval are computed by interpolation through piecewise functions,
usually Hermite (third order), Chebyshev or Lagrange polynomials (see [3] for detailed schemes)
or Fourier series [20], whose coefficients depend on the adjacent grid points’ state and derivatives.
This a-priori shape replaces the numerical integration process of shooting techniques with a much
faster analytical propagation.

The differential equations ẋ = f(t ,x(t ),u(t )) are substituted by a discretized form, which for a
simple Euler scheme takes the following form:

ẋ = f(tk ,xk ,uk ) ≈ xk+1 −xk

h
(3.10)
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where h is the interval size tk+1−tk . This Euler form is then transformed into a set of NLP constraints
to be nullified:

ck (y) = ‖xk+1 −xk −hf(tk ,yk ,uk )‖ (3.11)

These constraints, which ensure the equation of motion to be approximately satisfied, are then cou-
pled with the fixed-event ones, to construct a continuous trajectory, and the path constraints, to
respect the requested bounds at the grid points.

In collocation methods the choice of the interval size is vital because it influences the accuracy
of the interpolated function in representing the true trajectory. An efficient procedure could be to
compute initial estimates with a sparse grid and then refine it progressively. This implementation
makes this technique very robust to imprecise initial guesses. Also in this method, the sparsity of
the matrix shall be exploited as much as possible to make the algorithm efficient.

The greater drawback of collocation methods is that for problems dominated by highly non-
linear dynamics, a very dense grid is needed to compute an accurate solution which, when inte-
grated forward for validation, leads to small errors in the final state. This problem arises from the
finite-difference approximation of the dynamics, as in Equation (3.10) for an Euler scheme, and
from the parametrization of the shape. However, a dense grid translates into a huge matrix inver-
sion during the NLP sub-problem (see Section 3.3), leading to a degradation of the computational
performance.

3.2.4. METHOD SELECTION

Generally the method selection is driven primarily by the nature of the problem in the matter. For
example, if the functional form of the state variables evolution is known it is more advisable to
choose a collocation method employing that particular functional form as interpolation function.
On the contrary, when the state evolution is unpredictable, multiple shooting methods ensure that
the correct functional form is achieved by appropriate numerical propagation, leading to more ac-
curate solutions.

Computational efficiency is another driving factor. From this point of view, the analytical propa-
gation makes the collocation methods much faster than the multiple shooting techniques. However,
as already explained in the previous section, when an accurate solution is sought, this difference is
reduced, if not reversed at all, due to the much denser grid needed by collocation methods. In-
deed, in practical applications, collocation methods could reach a limit in the final accuracy, when
the computed trajectory is integrated for validation, which cannot be improved if not with dramati-
cally dense grids which lead to unrealistic computational times. On the contrary, multiple shooting
techniques become more accurate as the grid becomes progressively denser.

For the aforementioned reasons, the multiple shooting method seems the best compromise be-
tween attractive computational times and very accurate solutions. On the other hand, the collo-
cation method can be employed as a very efficient and quite accurate method to compute first
guesses [20]. Indeed, for deep space missions, also [2] suggested as a good hybrid solution to start
the solution process with a collocation method employing a sparse grid, then to progressively make
it denser in order to improve the candidate solution accuracy, and finally refine the guess with a
multiple-shooting technique.

3.3. NONLINEAR PROGRAMMING

In the preceding sections it has been emphasized how an optimal control problem shall be con-
verted to a finite-dimensional constrained optimization to be actually solved by selecting the opti-
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mal combination of the control variables. This is achieved by an iterative process able to adjust the
optimizable parameters as function of the objective function value and constraints’ violation at the
previous iteration. Nonlinear programming (NLP) is a method, based on Newton’s secant method,
able to calculate the control increments allowing both quantities to be reduced.

Generally stated, the NLP problem aims to find the n-dimensional vector y such that the objec-
tive function F is minimized:

min F (y), y ∈Y⊆Rn (3.12)

while respecting m ≤ n equality constraints and l inequality constraints:

a(y) = 0, a ∈Rm

b(y) ≥ 0, b ∈Rl
(3.13)

For the purpose of procedure’s clarity, first the case with only equality constraints will be ad-
dressed. Then, in order to learn how to handle all the constraints individually, the case with only
inequality ones is presented. Hence, the method will be generalized to treat both constraints at the
same time within the example framework of quadratic programming. This reasoning is carried out
to introduce two algorithms for solving the general nonlinear problem, i.e. the sequential quadratic
programming (SQP) approach and the interior point (IP) technique. WORHP (Worhp Optimises
Really Huge Problems), the NLP solver interfaced with the multiple shooting tool, utilizes a combi-
nation of SQP and IP, as shortly outlined in the last part of the section.

3.3.1. EQUALITY CONSTRAINTS NLP

The condition in Equation (3.13)-1 on the number of independent equality constraints m to be
less than or equal to the number of free parameters n is required to guarantee enough degrees of
freedom in the selection of the solution. Otherwise, the space of admissible solutions X will be
empty.

The classical procedure is to construct the Lagrangian adjoining the equality constraints with
the objective function:

L (y,λ) = F (y)+λT a(y) (3.14)

where the λk coefficients are again known as Lagrange multipliers. From this step on, the problem
is formulated as an unconstrained optimization. The first-order necessary conditions for a local
optimum (y∗,λ∗) require the state-derivatives of the Lagrangian to be zero:

∇yL (y∗,λ∗) = 0

∇λL (y∗,λ∗) = 0
(3.15)

The unconstrained second-order necessary condition requires the curvature of the Lagrangian to be
positive along any perturbation δx with respect to the minimum. However, in the constrained case
not any perturbation direction is always feasible, i.e. there are increment directions which would
violate the constraint’s satisfaction. Hence, we shall require a positive curvature along any allowed
perturbation direction δv which lies in the constraint tangent space, i.e. those ones which respect
the constraints. Defining the Hessian as:

HL =∇2
y yL (3.16)

the necessary condition for a minimum become:

δvT HL δv ≥ 0 (3.17)
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while the sufficient condition just substitutes the ≥ operator with the > one. However, to check di-
rectly the second-order necessary condition in this form is non-trivial. On the other hand, methods
to assess if a matrix is positive definite for any perturbation direction have been extensively stud-
ied and general procedures exist. [11] explains how to convert the condition 3.17 on the Hessian
to the study of (semi)positive definiteness of another counterpart matrix. The constraint tangent
subspace has an (n −m) basis for the null-space. The feasible perturbations δv can therefore be
described as a linear combination of these basis. If they are gathered into a matrix Y as columns, it
is possible to write:

δv = Y η (3.18)

where η is a vector of coefficients. Now, the second-order necessary condition (or equivalently the
sufficient one) can be restated as:

ηT
[

Y T HL Y
]
η≥ 0 (3.19)

which is simply satisfied if the projected Hessian Y T HL Y is (semi)positive definite.

NEWTON METHOD

This method falls under the general class of Gradient techniques, which use a polynomial expan-
sion of the objective function and the contraints. Indeed, NLP algorithms rely on a Taylor-series
expansion at the second-order for the fitness function in Equation (3.12), and at the first-order for
the equality constraints in Equation (3.13)-1, in order to practically find a solution able to satisfy the
necessary conditions (3.15) and (3.19). The second-order series is necessary for the performance
function because linear functions have no local optima:

F (y) = F (yv)+gT (yv)(y−yv)+ 1

2
(y−yv)T H(yv)(y−yv)+O[(y−yv)3]

a(y) = a(yv)+GT (y−yv)+O[(y−yv)2]
(3.20)

where gT = ∇y F and H = ∇2
y y F are respectively the gradient and the Hessian of the objective func-

tion, while G = ∂a/∂y is the Jacobian of the constraints. Substituting the truncated expansions in
the necessary conditions (3.15), followed by simple mathematical rearrangement in a matrix form,
leads to the linear system: (

H GT

G 0

)
yv

[
y−yv

λ

]
=−

(
g
a

)
yv

(3.21)

These two equations are known as Karush-Kuhn-Tucker system (KKT). It defines the search direc-
tion p = y−yv from the previous iteration and the new value of the Lagrange multipliers λ, able
to locally reduce the objective function value and the constraints violation. The new candidate so-
lution is then (y,λ) where y = yv +αp with 0 < α ≤ 1. In line-search methods the step-size α is
iteratively adjusted to minimize the objective function and constraints’ violation.

IMPLEMENTATION OF NEWTON METHOD

The KKT system requires computation of the gradient g, the Jacobian matrix G and the Hessian
matrix H. Direct methods for general applications compute these quantities by finite-difference
approximations. The trajectory is evaluated again with perturbations in each of the control param-
eters and then numerical differencing is applied. For instance, the contents of the k-column of the
Jacobian matrix can be computed with a central difference method as:
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G(:,k) = c(y+δk ek )−c(y−δkek)

2δk
(3.22)

where ek is the optimal unit vector for k-column defined direction and δk the perturbation in that
direction (see [3] for full mathematical formulation). In principle, this step requires the integra-
tion of the equations of motion for each perturbation at every iteration. Although this is a general
approach working for every problem submitted to the algorithm, this passage turns out to be the
bottleneck of the whole process both in terms of computational speed, as gradient calculations for
multiple-shooting takes around 70 % of execution time [21], and derivative accuracy.

Since the goal of the thesis is to create an efficient tool for high-fidelity low-thrust trajectory op-
timization, this general approach will be replaced by an approach based on the integration of the
so-called variational equations. This new set of equations, which describe the exact evolution of
first and second-order control and state derivatives of the NLP variables (state, constraints, etc.),
is propagated as well during one phase granting lower computational times, as the number of it-
erations is dramatically reduced, and a more precise computation of the gradient, Jacobian and
Hessian quantities for NLP iterations [2]. Indeed, the derivatives’ accuracy will now only depend on
the chosen integrator and step-size because no other approximation is made in their computation.
The variational equations are problem-dependent and thus the generality can be compromised.

A detailed analysis of both approaches will be presented in Chapter 4, while the implementation
details of the variational approach will be discussed in Section 5.1.

3.3.2. INEQUALITY CONSTRAINTS NLP

The number l of inequality constraints can be greater than the number n of control parameters
because these constraints remove degrees of freedom only when they are active. An inequality con-
straint is labeled as active when it is satisfied as an equality, while if it is respected as a pure inequal-
ity, it is named inactive. The Lagrangian is similarly defined as:

L (y,λ) = F (y)+µT b(y) (3.23)

The necessary conditions are still the same as defined for the purely constrained problem. However,
a further condition on inequality Lagrange multipliers shall be satisfied at a local optimum:{

µi < 0 i f bi acti ve

µi = 0 i f bi i nacti ve
(3.24)

Following the notation of [3], at a generic point y the totality of active constraints is called the active
set, while the inactive constraints together form the inactive set. Clearly, once we know the set of
active constraints, the problem can be handled with the techniques seen in the previous section.
Thus, an active set strategy is needed to pinpoint which constraints are active and which are not. An
example will be given in the next section about the general quadratic programming formulation.

3.3.3. QUADRATIC PROGRAMMING

A quadratic programming problem is a particular form of the general NLP method with a quadratic
objective function and linear constraints.

minF (y) = gT y+ 1

2
yT Hy

Ay = a

By ≥ b

(3.25)
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Even if it is a simplified formulation, this method is exploited to illustrate the role of active set strat-
egy. Indeed, as the KKT system has been obtained by quadratic and linear approximations of the
objective and the constraints respectively, the Newton method would only need one iteration when
the right set of active constraints is selected. However, this is not a trivial problem as usually no
precise a-priori information is available and thus an active set strategy is required. The procedure
can be summarized as:

• First guesses of point yv and active set Bv are given.

Now, b̃ ⊂ b is the subset corresponding to active constraints, with B̃ the respective Jacobian
matrix.

• Solve the Karush-Kuhn-Tucker system considering the active set constraints as equalities and
neglecting the inactive ones. The KKT system can be re-arranged as follows [3]:H AT B̃

A 0 0
B̃ 0 0


yv

y−yv

λ

µ

=−
g

a
b̃


yv

(3.26)

• Increment of the control vector.

Using the computed direction the new point results from y = yv +α(y−yv), with the greater
0 ≤α≤ 1 not violating any inequalities.

• Check on the step-length.

By selecting the largest possible step not violating any inactive constraint, the active set strat-
egy comes into play and two alternatives are possible:

– if α < 1 it means that the new point is on the "border" of an inequality constraint that
was before considered as inactive. Hence the new constraint is included in the active set
Bv , the quantities b̃ and B̃ updated and the algorithm reiterates.

– if α = 1 and the conditions (3.24) are fulfilled, the optimum of the quadratic problem
is found, otherwise the equalities with positive multipliers shall be removed from the
active set and the algorithm reiterates.

This simple quadratic example illustrates just one of the possible active set strategies, on which
conceptual modifications in any step of the process are possible. Nonetheless, it is a clear illustra-
tion of the NLP process and the set of strengths and difficulties that this method implies. Detailed
discussions and examples can be found in [22].

3.3.4. SEQUENTIAL QUADRATIC PROGRAMMING

The Sequential Quadratic Programming (SQP) method is a widely used approach to solve general
nonlinear problems as in Equations (3.12) and (3.13). The basic algorithm is constructed as a de-
scent method employing line search, based on the following iterative steps once started at a given
initial point yv [3]:

1. Check termination criteria for current point yv . If criteria are satisfied, exit the iteration loop,
otherwise continue;

2. Approximate the nonlinear problem by a quadratic subproblem around yv ;



3.4. GENERAL OPTIMIZATION 23

3. Find a search direction p through a quadratic programming algorithm (see Section 3.3.3);

4. Determine the stepsize by means of a line search method;

5. Update the current point and return to point 1.

For a detailed discussion on SQP algorithms the references [23] and [24] can be consulted.

3.3.5. INTERIOR POINT

Another family of algorithms to solve nonlinear constrained optimization problems involves penalty
functions and it is labeled as penalty-barrier or interior point (IP). The basic idea is to translate the
constrained problem into an equivalent unconstrained optimization one. The new objective func-
tion can be written as [25]:

β= F (y)−µ∑
i

lnbi (y)+ 1

2µ

∑
j
‖a j (y)‖ (3.27)

where µ is a scaling factor, known as barrier parameter. The last term describes the penalty factor
for the equality constraints’ violation, while the logarithmic term handles the inequality constraints.
The latter becomes bigger when bi tends to zero, i.e. when the inequality constraint becomes active.
Therefore, the minimization routine of the new objective function will try to move away from the
barriers where the inequality constraints are active. Exhaustive information and several alternative
forms can be found in the extended review [25].

3.3.6. WORHP: EUROPEAN NLP SOLVER

WORHP [26] is a NLP solver designed to efficiently solve generic nonlinear constrained optimization
problems, spanning from small- to large-scale. It combines a SQP algorithm for the general nonlin-
ear level with an primal-dual IP method for its associated quadratic subproblem. The primal-dual IP
is an alternative of the basic IP algorithm, whose details, which are beyond the scope of the current
thesis, can be found in [25]. This method combination is used to find a series of search directions
which are scaled using a line search with the Augmented Lagrangian merit function.

The necessary derivative information can be automatically computed by finite-difference or
quasi-Newton updates (see Section 4.1), or supplied by the user, as it will be done in the current
thesis with the variational approach. WORHP is suitable for large-scale problems as it intrinsically
works with sparse matrices for computational performance and memory consumption reasons.
Thanks to this feature, the problem size is limited only by the working machine memory. Indeed,
WORHP performed efficiently on a variety of huge-dimension problems [27]. A more detailed dis-
cussion on the sparsity patterns generated by multiple shooting schemes and the way WORHP han-
dles sparse matrices is carried out in Section 5.1, in particular concerning practical implementation
details.

3.4. GENERAL OPTIMIZATION

All of the methods discussed so far in this chapter need a first-guess solution close enough to the
global optimum as they all only behave as local optimizers for the selection of the control parame-
ters, after that some design variables had already been selected. For example, also basic rendezvous
missions with no flybys usually present multi-modality with respect to the departure date with a pe-
riodicity given by the synodic period of the departure and arrival planets, as depicted in Figure 3.3.
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A local optimizer, even if using also departure date and time of flight as free parameters, cannot find
the real minimum if the local algorithm starts from a poor initial guess.

Figure 3.3: Illustration of typical multi-modal behavior of final spacecraft mass [1].

To quickly span the complete domain of possible combinations between the global variables (e.g.
departure date, time of flight, number of revolutions, selection and duration of flybys, et cetera)
computationally efficient techniques shall be employed in combination with global search meth-
ods. Indeed, as repeatedly stated, shape-based approaches or semi-analytical approximations have
proven to be computationally fast in assessing the physical characteristics of a low/medium-fidelity
low-thrust rendezvous. However, typically they are not able to describe maneuvers different from
the thrusted two-body problem. In a more realistic scenario, those methods are used to describe the
thrusted phases, e.g. between two successive gravity-assists, and they are then coupled with a global
optimizer able to handle the global variables selection [28] [29] [30], which will be now discussed.

3.4.1. SAMPLING METHODS

A sampling method simply picks values for the parameters’ vector within the complete domain of
possible combinations of the global variables following a prescribed procedure [31]. Because the
whole domain is usually too wide to be completely investigated, sampling methods aim to charac-
terize different areas’ performance by selecting only a few points inside them, and rely on the idea
that points near the investigated one would show similar characteristics. The main goal of this fam-
ily of techniques in low-thrust trajectories is to reduce the search space selecting the areas of greater
interest where to utilize smarter (see Section 3.4.2) or local optimizers.

This family of methods usually finds application in the optimization of the static parameters in-
volved in the low-thrust trajectory problem. Static parameters are those non-dynamic variables that
are constant along a trajectory and part of the aforementioned global variables. Usually, examples
of this parameters’ family are the departure date, the time of flight (or equivalently the arrival date),
the number of complete revolutions. Even the number of gravity-assists and their sequence belong
to this category but are rather optimized with Heuristic algorithms that will be explained in the next
section.

UNIFORM GRID SEARCH

Suppose that the parameters to be optimized are gathered in the vector x, constrained to be within
given bounds [xL,xU], which define the search space. For each parameter a step-size h j is se-
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lected and the interval [xL , xU ] j in which every parameter is bounded is divided into n j = (xU−xL ) j

h j

uniform intervals with n j + 1 grid points [31]. Hence, the total search space is discretized with
(n1+1)(n2+1) . . . (n j +1) . . . grid points. When three parameters are employed, the search grid can be
visualized as a rectangular parallelepiped with a vertex of coordinates [xL1 , xL2 , xL3 ] and the opposite
one [xU1 , xU2 , xU3 ], whose sides are representing the intervals [xL , xU ] j .

Figure 3.4: Illustration of a uniform spaced grid.

Usually this kind of search space discretization is employed to find convenient combinations of
departure dates and time of flight. Those parameters influence the relative phasing of the departure
and arrival orbits and are suitable for this type of analysis because a small change in the candidate
vector shall not change significantly the corresponding performance index value. Also the number
of complete revolutions is usually spanned with a uniform grid as this parameter can only assume
positive integral values, and is thus very suitable for it.

MONTECARLO METHOD

MonteCarlo is the purest form of random sampling. The algorithm generates a series of uncorre-
lated sampling vectors x within the domain of which the corresponding performance output will be
computed. As any other sampling method, its power is the ability to work regardless of the objec-
tive function derivatives. MonteCarlo analysis is not a robust method when the number of samples
is low as it relies on a random population. Unfortunately, there is not a general method to assess
a robust minimum number of samples but it shall be found by trial and error. This can be trans-
lated into a great and inefficient computational effort. Possible alternatives are the so-called quasi
MonteCarlo methods, which represent the compromise between pure random and systematic ap-
proaches. A detailed analysis of basic and advanced methods can be found in the book by [31].

QUASI MONTECARLO

Intermediate techniques generating near-random samples to cover a multi-dimensional distribu-
tion fall under the denomination of Quasi MonteCarlo methods. The samples can be generated
through low-discrepancy sequences like Sobol’s or Faure’s, which try to cover the less filled regions.
In detail, the samples, also called Low Discrepancy Points, are generated in the attempt to cleverly,
and not only randomly, fill an hypercube with unit hyper-edges. Latin hypercube sampling (LHS) is
a statistical method gathered in this general denomination, which on average yields slightly better
results than the pure MonteCarlo technique.
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3.4.2. HEURISTIC METHODS

Heuristic methods (HM) are a quite modern class of algorithms created to improve the robustness,
efficiency and multi-modality characteristics of a static optimization problem when compared to
traditional methods [1]. One advantage, as for sampling methods, is that they work regardless of
any knowledge of the function derivatives. A further one is the ability to deal with multi-objective
optimization. These methods have found application in the low-thrust case in the optimization
of the free parameters of shape-based methods [29], discussed in Section 2.3, or in finding good
combinations of coast arcs and thrusted phases with semi-analytical methods [20].

A huge realm of conceptually different algorithms lies under the denomination of heuristic meth-
ods, but there are some common passages and characteristics. HMs start with a variably random
generated population of global variables and iteratively produce new candidate points by following
a fixed evolution/generation scheme (usually mimicking some natural, social or scientific behav-
ior), based only on evaluation of the objective function outputs at previous iterate(s).

Among the infinite number of different algorithms, evolution based methods are the most fa-
mous and commonly implemented heuristic methods [31]. On the other hand, ant colony methods
are those ones that have introduced peculiar, interesting and innovative principles [32], and which
are then reproduced with several conceptual changes in other variants, e.g. particle swarm etc.

3.5. CONCLUSIONS

This chapter discussed the key background topic of the current thesis work. The general optimal
control theory has been presented in close contact with the practical methods to solve it. After a
survey of direct and indirect methods’ strengths and weaknesses, a comparison has explained why
a direct approach is more advisable for complex non-integrable problems and thus will be employed
for the tool development.

Subsequently, different techniques have been presented and again a selection has been con-
ducted looking for the best compromise between computational time and solution accuracy. This
leads to the selection of a multiple shooting approach. The bottleneck of common methods has
been identified and a practical method based on variational equations to overcome it has been in-
troduced. The background theory, given by the mathematical branch of calculus of variations, will
be presented in the next chapter. On the other hand, it has been explained how collocation can be
possibly employed for first estimates or hybrid methods.

In the middle part of the chapter, NLP fundamentals to solve the discretized optimization sub-
problem have been examined. Both SQP and IP algorithms’ bases have been outlined, as a combi-
nation of them is used in WORHP, the NLP solver which will be interfaced with the novel developed
tool.

Finally, general optimization methods have been presented with particular care on what appli-
cation they can find in the low-thrust case. Sampling techniques are used in the research to treat
static parameters as departure date, time of flight and number of revolutions, while heuristic meth-
ods can be executed to find good combinations of coast and thrust arcs, as well as convenient flybys
sequences in complex test cases.
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DERIVATIVE COMPUTATION

All local optimization algorithms, including the approach used by WORHP, require derivative in-
formation to investigate the hyper-dimensional neighbourhood of the nominal point in terms of
objective function improvement and constraint satisfaction. As discussed in the previous chapter,
three quantities shall be computed:

• Gradient of the objective function J:

∇J =
[
∂J
∂p1

∂J
∂p2

. . . ∂J
∂pny

]T
(4.1)

• Jacobian of the constraints

Jc =



∂g1

∂p1

∂g1

∂p2
. . . ∂g1

∂pny

∂g2

∂p1

∂g2

∂p2
. . . ∂g2

∂pny

...
...

...
...

∂gmc
∂p1

∂gmc
∂p2

. . .
∂gmc
∂gny


(4.2)

• Hessian of the augmented Lagrangian

HL =



∂2L
∂p2

1

∂2L
∂p1∂p2

. . . ∂2L
∂p1∂pny

∂2L
∂p2∂p1

∂2L
∂p2

2
. . . ∂2L

∂p2∂pny

...
...

...
...

∂2L
∂pny ∂p1

∂2L
∂pny ∂p2

. . . ∂2L
∂p2

ny


(4.3)

where ny is the number of free parameters p j in y, and mc the number of constraints g . Both
first- and second-order derivatives are needed to compute the new search direction with quadratic-
programming step (see Section 3.3.3). Sometimes ∇J , Jc and HL will be labeled respectively as DF,
DG and HM, following the nomenclature used in WORHP [26].

27
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The classic approach to approximate the derivatives by finite-differences will be introduced in
Section 4.1, describing both second-order finite-difference schemes and quasi-Newton methods to
construct this information recursively. These methods, implemented alternatives within WORHP,
will be used for internal validation of the supplied derivatives computed by a variational approach,
the main novelty of this thesis research, described in detail in Section 4.2. The variational approach
to compute the derivative information leads to an increased complexity in the problem setup. How-
ever, once the functional form of the partial derivatives has been established, the improvement in
computational performance is remarkable. Only the first-order derivatives variational computa-
tion leads to an improvement of a factor of 3 to 4 in computational times with respect to finite-
differences [2].

In order to avoid futile repetitions, where possible the equations will be derived for a generic
scalar function f , which can represent the objective function, a scalar constraint or the Lagrangian.
In the remainder of the chapter, time, state and control will be denoted as variables when their
continuous acceptation is involved, and as parameters when their transcribed and discrete coun-
terparts are intended.

4.1. FINITE-DIFFERENCE APPROACH

The matrices in Equations (4.1)-(4.3) are purely composed by objective function or constraint deriva-
tives, or their linear combination through dual variable coefficients (see Equation (3.14)). In order to
provide a simpler user-interface and to handle any dynamics, general-purpose optimization tools
often approximate these derivatives by finite-difference methods. To understand the procedure in
detail, let’s consider the Taylor expansion of a one-variable scalar function f (x), infinitely differen-
tiable about a nominal point x̄:

f (x̄ +δ) = f (x̄)+
∞∑

i=1

1

n!

∂n f (x̄)

∂xn δn (4.4)

where δ = x − x̄ is the independent variable perturbation around the nominal point. In this one-
dimensional case, the partial derivative coincides with the ordinary derivative. When multi-variable
functions are expanded, the partial derivative shall be used, hence the notation ∂ in Equation (4.4).
The function f (x) can represent either the objective or any constraint function indiscriminately.
Hence, the first- and second-order finite-difference approximations introduced in the next sections
hold for all of them.

4.1.1. FIRST-ORDER FINITE-DIFFERENCE

From Equation (4.4), the first-order derivative can be isolated as:

∂ f (x̄)

∂x
= f (x̄ +δ)− f (x̄)

δ
−

∞∑
i=2

1

n!

∂n f (x̄)

∂xn δn−1 = f (x̄ +δ)− f (x̄)

δ
+O (δ) (4.5)

When the terms of order δ are truncated, the first-order derivative is approximated by a forward-
difference:

∂ f (x̄)

∂x
≈ f (x̄ +δ)− f (x̄)

δ
(4.6)

with a truncation error of ε = O (δ) ≈ δ
2
∂2 f (x̄)
∂x2 . To reduce the truncation error (δ << 0, so higher

powers are smaller), a central-difference scheme can be used. It expands for f (x − δ), subtracts
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it by Equation (4.4), isolates the derivative and truncates the higher-order terms. The first-order
derivative is then computed as:

∂ f (x̄)

∂x
≈ f (x̄ +δ)− f (x̄ −δ)

2δ
(4.7)

with a truncation error of ε = O (δ2) ≈ δ2

6
∂3 f (x̄)
∂x3 . As it employs two different Taylor expansions, it is

also called second-order first-derivative approximation. The error can be further reduced by in-
creasing the order of the approximation, i.e. employing Taylor expansions for x̄ +−kδ. However, as
WORHP uses second-order approximations, these schemes will not be explicitly explained.

When multi-variable functions are to be differentiate, i.e. the number of optimizable parame-
ters p is bigger than one, the same procedure applies for the derivative with respect to p j by defining
the perturbation as δ j = [0,0, . . . ,δ, . . . ,0], where the j-th element is the only non-zero one. Hence,
to compute the objective gradient and the constraint Jacobian by second-order finite-difference
approximations, the objective function and constraints shall be evaluated 2ny times for dense ma-
trices. In aerospace application, when often dynamical equations needs to be numerical integrated,
this implicates 2ny propagation of vector functions. WORHP employs group methods to reduce the
number of function evaluations when the sparsity pattern of the derivative matrices is provided [26].

4.1.2. SECOND-ORDER FINITE-DIFFERENCE

The central finite-difference approximate of second derivatives is computed in a similar fashion as
the central first-derivative, but the expansion for f (x −δ) is summed to Equation (4.4) to obtain:

f (x̄ +δ)+ f (x̄ −δ) = 2 f (x̄)+
∞∑

i=1

1

n!

∂n f (x̄)

∂xn δn +
∞∑

i=1

1

n!

∂n f (x̄)

∂xn (−δ)n

f (x̄ +δ)+ f (x̄ −δ) = 2 f (x̄)+ ∂2 f (x̄)

∂x2 δ2 +O (δ4)

(4.8)

which, after truncation of terms of order O (δ2), reduces to:

∂2 f (x̄)

∂x2 = 1

δ2

[
f (x̄ +δ)−2 f (x̄)+ f (x̄ −δ)

]
(4.9)

Multi-variable functions require a multi-variable Taylor expansion. The computation of mixed
derivative terms is not straightforwardly generalizable from the single-variable expression as in the
case of first derivatives. A more detailed description can be found in [33]. When first derivatives are
provided by the user, the Hessian matrix can be regarded as the Jacobian of the first-order informa-
tion, simplifying the computation as outlined in Section 4.1.1.

4.1.3. BFGS METHOD

Computing the Hessian by second derivatives finite-difference approximation is extremely expen-
sive when the number of optimizable parameters is medium-high. To overcome this computational
burden, this information can be constructed by recursive updates (default option in WORHP). The
new estimation of the Hessian is computed by a low-rank modification from the previous one. As
this step shall preserve the symmetry and positive-definiteness properties, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) step is often used for unconstrained optimization problems:

Hk+1 = Hk +
∆(∇J )[∆(∇J )]T

[∆(∇J )]T∆y
− Hk∆y(∆y)T Hk

(∆y)T Hk∆y
(4.10)
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where ∆(∇J ) =∇Jk+1 −∇Jk and ∆y = yk+1 −yk , and the condition [∆(∇J )]T∆y > 0 is checked.

For constrained optimization, the recursive update term is much more complex. The back-
ground theory can be found in [24] [34], while an example of an algorithm for large-scale problems
can be found in [35].

4.2. VARIATIONAL APPROACH

The major advantage of finite-difference approximation is that the functional relation between con-
trol parameters and the derivative of the dependent function shall not be explicitly known. However,
for most applications in spaceflight, this relation can be analytically derived and exploited to reduce
the computational burden associated with the derivative calculation. In the general case, the objec-
tive function J , the constraints g, and consequently the Lagrangian L , will be regarded as explicit
functions of an independent variable t (here assumed to be the commonly-used time variable, al-
though there is no restriction on the choice), state x(t ,u) and control u(t ). This notation is illustrated
in the following equations, but some implicit dependencies will be hidden in the remainder of the
section.

J (t f ,x f ,u f ),u(t )) =Φ(t f ,x f )+
∫ t f

t0

L(t ,x(t ,u),u(t ))d t

gL ≤ g(t ,x(t ,u),u(t )) ≤ gU

L (t ,x(t ,u),u(t )) = J (t ,x(t ,u),u(t ))+
mc∑
i=1

µi gi (t ,x(t ,u),u(t ))

(4.11)

where gL = gU for equality constraints, and t = t̄ for fixed-time constraints. When the lower and
upper bounds are not constant, the constraint can be reformulated or split into two different ones
in order to have the functional form in Equation (4.11)-2.

Applying the chain rule, a generic term ∂ f /∂pi can be expressed as:

∂ f

∂pi
(t ,x,u) = ∂ f

∂t

∂t

∂pi
+

ns∑
k=1

∂ f

∂xk

∂xk

∂pi
+

nc∑
k=1

∂ f

∂uk

∂uk

∂pi
(4.12)

where ns is the number of state variables and nc the number of control variables. The functional
form of the terms ∂ f /∂t , ∂ f /∂xk and ∂ f /∂uk are assumed to be known relations, otherwise the
method is not applicable. The transition term ∂xk /∂pi is computed by numerical propagation of
the variational equations that will be introduced in Section 4.2.1, while the term ∂uk /∂pi depends
on the chosen control parameterization. This formulation can be directly applied to any constraints
derivatives within the Jacobian in Equation (4.2).

On the contrary, following the objective functional form in Equation (4.11)-1, the terms ∂J/∂pi of
the objective gradient involve an integral term. Hence, the chain rule results in [2]:

∂J (t )

∂pi
= ∂Φ(t f )

∂pi
δt ,t f +

∫ t

t0

∂L

∂pi
(τ,x,u)dτ+ ∂t

∂pi
L(t ,x,u)− ∂t0

∂pi
L(t0,x0,u0) (4.13)

where δt ,t f is the Kronecker delta of variables t and t f . The term ∂L/∂pi (τ,x,u) shall be further
decomposed as:

∂L

∂pi
(τ,x,u) = ∂L

∂τ

∂τ

∂pi
+

ns∑
k=1

∂L

∂xk

∂xk

∂pi
+

nc∑
k=1

∂L

∂uk

∂uk

∂pi
(4.14)

This formulation will involve the propagation of the Lagrange integral term in the objective func-
tion, as well as the propagation of the ny different dL/d pi terms as in Equation (4.14) for the first
derivative (and ny

2 terms for the second derivatives), increasing the computational load for each
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iteration of the NLP solver. In the continuous problem, this is equivalent to increase the state vector
dimension by adding one new variable defined as [3]:

ẋn+1 = L(t ,x(t ,u),u(t )), xn+1(t0) = 0 (4.15)

and redefine the objective function as:
J = xn+1(t f ) (4.16)

However, this one-variable dimension addition in the continuous problem results in a noteworthy
increase of free parameters ny , as well as additional defects constraints, in the transcribed problem.

An alternative consists in approximating the objective function integral by a quadrature formula:

J ≈
nodes∑

q=1
wq L(tq ,xq ,uq ) (4.17)

where wq are the weights associated to nodes tq , which depend on the chosen quadrature scheme
and number of nodes. The implemented Gauss-Legendre quadrature method and the formulae to
compute the node-weight pairs will be discussed in Section 5.1.1. Hence, the derivatives can be
applied directly to the quadrature approximation.

∂J

∂pi
≈

nodes∑
q=1

wq

[
∂L

∂t

∂t

∂pi
+

ns∑
k=1

∂L

∂xk

∂xk

∂pi
+

nc∑
k=1

∂L

∂uk

∂uk

∂pi

]
(tq ,xq ,uq )

(4.18)

This approximation avoids both the increase in the associated NLP sub-problem and additional nu-
merical propagations. In addition, in space trajectories applications the∆V or propellant consump-
tion profiles, usually used as objective functions, are smooth enough to use only a few quadrature
nodes per sub-interval. For these reasons, the latter approach is implemented in the new-developed
multiple-shooting tool. The introduced approximation error will be assessed empirically in Sec-
tion 5.2.

Applying the chain rule again on Equation (4.12), the second derivatives can be computed as:

∂2 f

∂p j∂pi
(t ,x,u) = ∂

∂p j

{
∂ f

∂t

∂t

∂pi
+

ns∑
k=1

∂ f

∂xk

∂xk

∂pi
+

nc∑
k=1

∂ f

∂uk

∂uk

∂pi

}
= ∂2 f

∂p j∂t

∂t

∂pi
+ ∂ f

∂t

∂2t

∂p j∂pi
+

+
ns∑

k=1

{
∂2 f

∂p j∂xk

∂xk

∂pi
+ ∂ f

∂xk

∂2xk

∂p j∂pi

}
+

+
nc∑

k=1

{
∂2 f

∂p j∂uk

∂uk

∂pi
+ ∂ f

∂uk

∂2uk

∂p j∂pi

}
(4.19)

Because the terms ∂2 f /∂p j∂t , ∂2 f /∂p j∂xk and ∂2 f /∂p j∂uk are mixed derivatives with respect to
one variable and one parameter, they need to be further expanded by recursively application of the
derivation chain rule.

∂2 f

∂p j∂pi
(t ,x,u) =

[
∂2 f

∂t 2

∂t

∂p j
+

ns∑
h=1

∂2 f

∂xh∂t

∂xh

∂p j
+

nc∑
h=1

∂2 f

∂uh∂t

∂uh

∂p j

]
∂t

∂pi
+ ∂ f

∂t

∂2t

∂p j∂pi
+

+
ns∑

k=1

[(
∂2 f

∂t∂xk

∂t

∂p j
+

ns∑
h=1

∂2 f

∂xh∂xk

∂xh

∂p j
+

nc∑
h=1

∂2 f

∂uh∂xk

∂uh

∂p j

)
∂xk

∂pi
+ ∂ f

∂xk

∂2xk

∂p j∂pi

]
+

+
nc∑

k=1

[(
∂2 f

∂t∂uk

∂t

∂p j
+

ns∑
h=1

∂2 f

∂xh∂uk

∂xh

∂p j
+

nc∑
h=1

∂2 f

∂uh∂uk

∂uh

∂p j

)
∂uk

∂pi
+ ∂ f

∂uk

∂2uk

∂p j∂pi

]
(4.20)
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The terms directly involving a derivative of f shall be known from its functional form, otherwise
the method cannot be applied. The derivatives of u are known from the chosen parameterization,
while the derivatives of x are computed by numerical propagation of the second-order variational
equations to be presented in Section 4.2.2. Equation (4.20) holds for both the constraints and the
quadrature approximation of the objective function. No acknowledgment of a second-order varia-
tional approach has been found in literature for optimization problems. Hence, Equations (4.19)-
(4.20) as introduced in this Section, and the ones proposed in the following Section 4.2.2, are the
outcome of an original analytical development by the thesis’ author.

4.2.1. FIRST-ORDER VARIATIONAL EQUATIONS

To compute the first derivative information, we shall be able to differentiate the dependent function
with respect to x at any time. Hence, the equations of motion for this first-order sensitivities can be

set. By defining Sk
pi

∆= ∂xk /∂pi , its time-derivative can be computed by differentiating the dynamical
equations ẋk = fk (t ,x,u) by pi [2] [36] [37]:

Ṡk
pi

= ∂ fk

∂t

∂t

∂pi
+

ns∑
k=1

∂ fk

∂xk
Sk

pi
+

nc∑
k=1

∂ fk

∂uk

∂uk

∂pi
(4.21)

These equations will now be specialized in detail for any parameter in a multiple-shooting tran-
scription scheme, i.e. the initial state, the parameters of the control acceleration, and possibly the
initial and final time in each sub-interval.

INITIAL STATE PARAMETER

In a generic sub-interval [td , td+1] of the discretized problem, the sensitivity with respect to the ini-

tial state guess xg
i = xi (td ) will be denoted as Sk

xg
i

∆= ∂xk (t )/∂xg
i . The different partial derivatives with

respect to xg
i are:

∂t
∂xg

i

= 0 A zero-term because the independent variable does not depend on the initial

state guess.

Sk
xg

i

(t ) = ∂xk (t )
∂xg

i

Transition term describing how the state at time t would change due to a

variation of the state initial guess. The initial condition is Sk
xg

i

(td ) = δk,i .

∂uk

∂xg
i

= 0 Zero-term because the control parameterization is independent of the initial

state.

Hence, removing the zero terms in Equation (4.21) and reformulating in a matrix structure, the
equations of motion for the state first sensitivities with respect to the state initial guess are:

Ṡx (t ) =


∂ẋ1

∂xg
1

. . . ∂ẋ1

∂xg
ns

...
...

...
∂ẋns

∂xg
1

. . .
∂ẋns

∂xg
ns

=


∂ f1

∂x1
. . . ∂ f1

∂xns
...

...
...

∂ fns
∂x1

. . .
∂ fns
∂xns




∂x1

∂xg
1

. . . ∂x1

∂xg
ns

...
...

...
∂xns

∂xg
1

. . .
∂xns

∂xg
ns

= ∂f

∂x
Sx (t ) (4.22)

with initial condition Sx (t ) = I , a (ns ×ns) identity matrix.
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CONTROL ACCELERATION PARAMETER

As will be explained in detail in Chapter 5, in the generic sub-interval [td , td+1] the control profile
uk (t ) is discretized as a p-order polynomial:

uk (t ) =
np−1∑
j=0

a j t j (4.23)

where np is the number of control parameters per each of the nc control components uk (t ). The
optimizable parameters up

k in the NLP sub-problem can be selected to be:

• The coefficients of the polynomial

• The control values at given nodes within the sub-interval, and the coefficients of the polyno-
mial are computed by a Lagrange interpolation rule.

This choice deeply influences the computation of the partial derivative ∂uk /∂up
k , whose functional

form is known. The partial derivative ∂t/∂up
k is again zero, while the sensitivity with respect to

the control parameters Sk
up

k

∆= ∂xk (t )/∂up
k describes how the state would vary due to a variation in

up
k . Equation (4.21) for the time-evolution of the first sensitivities with respect to these controllable

parameters can be written in a matrix notation as:

Ṡu(t ) =


∂ẋ1

∂u1
1

. . . ∂ẋ1

∂u
np
nc

...
...

...
∂ẋns

∂u1
1

. . .
∂ẋns

∂u
np
nc

=


∂ f1

∂x1
. . . ∂ f1

∂xns
...

...
...

∂ fns
∂x1

. . .
∂ fns
∂xns




∂x1

∂u1
1

. . . ∂x1

∂u
np
nc

...
...

...
∂xns

∂u1
1

. . .
∂xns

∂u
np
nc

+

+


∂ f1

∂u1
. . . ∂ f1

∂unc
...

...
...

∂ fns
∂u1

. . .
∂ fns
∂unc




∂u1

∂u1
1

. . . ∂u1

∂u
np
nc

...
...

...
∂unc

∂u1
1

. . .
∂unc

∂u
np
nc


Ṡu(t ) = ∂f

∂x
Su(t )+ ∂f

∂u

∂u

∂up

(4.24)

with initial condition Su(t ) = 0, a [ns × (nc ·np )] zero matrix, and up is the vector containing the
nc ·np control parameters.

INITIAL TIME PARAMETER

To derive the equations of motion for Sk
td
= ∂xk (t )/∂td , the sensitivity of the state with respect to the

initial time of an interval, it is better to reformulate Equation (4.21) in the integral form [2]:

∂xk (t )

∂td
= ∂

∂td

[
xk (td )+

∫ t

td

fk (τ,x,u)dτ

]
= ∂xk (td )

∂td
+

∫ t

td

∂ẋk (τ)

∂td
dτ+ ∂t

∂td
fk (t )− ∂td

∂td
fk (td ) (4.25)

It is clear that the transition term is now:
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Ṡtd (t ) =


∂ẋ1
∂td
...

∂ẋns
∂td

=


∂ f1

∂x1
. . . ∂ f1

∂xns
...

...
...

∂ fns
∂x1

. . .
∂ fns
∂xns




∂x1
∂td
...

∂xns
∂td

= ∂f

∂x
Std (t ) (4.26)

with initial conditions Sk
td

(t ) = (∂xk (td )/∂td − fk (td )), for k = 1, . . . ,ns . The term ∂xk (td )/∂td de-
scribes any explicit dependence of the initial state from initial time.

FINAL TIME PARAMETER

Rearranging Equation (4.25) for the final time derivative, the integral equation is:

∂xk (t )

∂td+1
= ∂

∂td+1

[
xk (td )+

∫ t

td

fk (τ,x,u)dτ

]
= ∂xk (td )

∂td+1
+

∫ t

td

∂ẋk (τ)

∂td+1
dτ+ ∂t

∂td+1
fk (t )− ∂td

∂td+1
fk (td )

(4.27)
This derivative has no transition term since the initial condition is zero, and the term under the
integral term stays zero strictly within the interval. At the final time, the derivative ∂t/∂td+1|t=td+1 =
1, therefore:

Sk
td+1

= ∂xk (t )

∂td+1
=

{
fk (td+1) , if t = td+1

0 , if t 6= td+1
(4.28)

4.2.2. SECOND-ORDER VARIATIONAL EQUATIONS

As already outlined in Section 4.1.2, the Hessian matrix can be seen as the Jacobian of the first-
order information. Therefore, to derive the equations of motion for the generic state second-order

derivative Sk
p j pi

∆= ∂2xk /∂p j∂pi , Equation (4.21) shall be differentiated by p j :

Ṡk
p j pi

= ∂

∂p j

[
∂ fk

∂t

∂t

∂pi
+

ns∑
k=1

∂ fk

∂xk

∂xk

∂pi
+

nc∑
k=1

∂ fk

∂uk

∂uk

∂pi

]
=

[(
∂2 fk

∂t 2

∂t

∂p j
+

ns∑
h=1

∂2 fk

∂xh∂t
Sh

p j
+

nc∑
h=1

∂2 fk

∂uh∂t

∂uh

∂p j

)
∂t

∂pi
+ ∂ fk

∂t

∂2t

∂p j∂pi

]
+

+
ns∑

k=1

[(
∂2 fk

∂t∂xk

∂t

∂p j
+

ns∑
h=1

∂2 fk

∂xh∂xk
Sh

p j
+

nc∑
h=1

∂2 fk

∂uh∂xk

∂uh

∂p j

)
Sk

pi
+ ∂ fk

∂xk
Sk

p j pi

]
+

+
nc∑

k=1

[(
∂2 fk

∂t∂uk

∂t

∂p j
+

ns∑
h=1

∂2 fk

∂xh∂uk
Sh

p j
+

nc∑
h=1

∂2 fk

∂uh∂uk

∂uh

∂p j

)
∂uk

∂pi
+ ∂ fk

∂uk

∂2uk

∂p j∂pi

]
(4.29)

where a middle step, similar to Equation (4.19), has not been displayed. The term ∂2t/∂p j∂pi is
zero for any p j and pi . The equations for the time-evolution of xk with respect to all the control
parameters can be gathered in a matrix notation.

Assuming fk to be at least C 2-continuous, the Schwarz’s theorem and the symmetric construc-
tion (Equation (4.29)) ensure the square (1+ns +nc ·np )× (1+ns +nc ·np ) matrix ṠH , defined in the
following expression, to be symmetric.
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Ṡk
H =



∂2 ẋk

∂t 2
d

∂2 ẋk

∂td∂xg
1

. . . ∂2 ẋk

∂td∂xg
ns

∂2 ẋk

∂td∂u1
1

. . . ∂2 ẋk

∂td∂u
np
nc

∂2 ẋk

∂xg
1 ∂td

∂2 ẋk

∂xg
1

2 . . . ∂2 ẋk

∂xg
1 ∂xg

ns

∂2 ẋk

∂xg
1 ∂u1

1
. . . ∂2 ẋk

∂xg
1 ∂u

np
nc

...
...

...
...

...
...

...
...

...
...

...
...

∂2 ẋk

∂u
np
nc ∂td

∂2 ẋk

∂u
np
nc ∂xg

1

. . . ∂2 ẋk

∂u
np
nc ∂xg

ns

∂2 ẋk

∂u
np
nc ∂u1

1

. . . ∂2 ẋk

∂u
np
nc

2


(4.30)

The first-order information can be gathered in a (1+ns +nc )× (1+ns +nc ·np ) Jacobian matrix SJ :

SJ =



δt ,td 0 0 0 0 0 0
∂x1
∂td

∂x1

∂xg
1

. . . ∂x1

∂xg
ns

∂x1

∂u1
1

. . . ∂x1

∂u
np
nc

...
...

...
...

...
...

...
∂xns
∂td

∂xns

∂xg
1

. . .
∂xns

∂xg
ns

∂xns

∂u1
1

. . .
∂xns

∂u
np
nc

0 0 . . . 0 ∂u1

∂u1
1

. . . ∂u1

∂u
np
nc

...
...

...
...

...
...

...

0 0 . . . 0
∂unc

∂u1
1

. . .
∂unc

∂u
np
nc



(4.31)

where δt ,td is the Kronecker delta for the variables t and td . The bottom-left block has only zero
elements because the control does not depend on the state or initial time. Given this notation,
rearranging Equation (4.29) in a matrix form, the time-evolution of the second-order sensitivities
can be written as:

Ṡk
H = ST

J H fk SJ +
ns∑

h=1

∂ fk

∂xh
Sh

H +
nc∑

h=1

∂ fk

∂uh
Huk , for k = 1, . . . ,ns (4.32)

with initial condition Sk
H = 0, a zero matrix. In Equation (4.32), the matrix H fk is the (1+ns +nc )×

(1+ns +nc ) Hessian of fk with respect to the variables time, state and control, while Huk is the
(1+ns +nc ·np )× (1+ns +nc ·np ) Hessian of uk with respect to the control parameters. Huk is zero
for a control defined as in Equation (4.23).

The second-order sensitivities involving the final time parameter can be derived by differenti-
ating Equation (4.27) again. Clearly, as the sensitivity with respect to td+1 has no transition term,
i.e. does not evolve with time, also this second derivative will be zero. Only at final time, when the
derivative ∂t/∂td+1|t=td+1 = 1, we could have a nonzero term:

Sk
p j td+1

= ∂2xk (t )

∂p j∂td+1
=

{∂ fk (td+1)
∂p j

, if t = td+1

0 , if t 6= td+1

(4.33)

4.2.3. TWO-BODY VARIATIONAL DYNAMICS

To illustrate an example of variational equations derivation, the classical not-thrusted two-body
problem model, as presented in Section 2.2.1, will be analyzed. To have a clear and quick overview
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of the dynamical system to differentiate, the equations of motion are repeated here:

ẋ = f(x) =
[

ṙ
v̇

]
=

[
v

− µ

‖r‖3 r

]
(4.34)

Equation (4.22) shows how the partial derivatives of the dynamical equations with respect to the
state are necessary ingredients to compute the objective gradient and the Jacobian of the con-
straints. The most complex term is the derivative of the velocity component with respect to a posi-
tion variable, computed as follows:

∂ fvk

∂ri
= ∂

∂ri

[
− µ

‖r‖3 rk

]
=−

(
− 3

2

µ

‖r‖5 2ri rk

)
− µ

‖r‖3δi k = 3
µ

‖r‖5 ri rk −
µ

‖r‖3δi k (4.35)

Given these relations, it is straightforward to derive the Jabobian of f(x) needed for the first-order
variational equation:

∂f(x)

∂x
=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

µ
2r 2

x−r 2
y−r 2

z

‖r‖5 µ
3rx ry

‖r‖5 µ3rx rz

‖r‖5 0 0 0

µ
3rx ry

‖r‖5 µ
2r 2

y−r 2
x−r 2

z

‖r‖5 µ
3ry rz

‖r‖5 0 0 0

µ3rx rz

‖r‖5 µ
3ry rz

‖r‖5 µ
2r 2

z −r 2
x−r 2

y

‖r‖5 0 0 0



(4.36)

Equation (4.32) describes the second-order variational equation in the general case. The first-
order terms ∂ fk /∂xh are easily derivable from the Jacobian in Equation (4.36), while the second-
order terms require the Hessian H fk for each of the six scalar equations of motion. The Hessian of
fk can be computed by partially differentiating the k-row of the Jacobian matrix with respect to all
the variables. Hence, the second-order partial derivatives associated to fx , fy and fz , the dynamical
equations of the position variables, are always zero since the first three rows of the Jacobian depend
only on constant terms.

H fx = H fy = H fz = 06×6 (4.37)

The Hessian of the velocity dynamical equations requires lengthy analytical manipulations. There-
fore, symbolic software is a convenient alternative to compute them and simplify to the shortest
notation. As an illustrative example, Maple 2016 calculates the functional form of H fvx

as:
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H fvx
= µ

‖r‖7



−3rx
(
2r 2

x −3r 2
y −3r 2

z

) −3ry
(
4r 2

x − r 2
y − r 2

z

) −3rz
(
4r 2

x − r 2
y − r 2

z

)
0 0 0

−3ry
(
4r 2

x − r 2
y − r 2

z

)
3rx

(
r 2

x −4r 2
y + r 2

z

) −15rx ry rz 0 0 0

−3rz
(
4r 2

x − r 2
y − r 2

z

) −15rx ry rz 3rx
(
r 2

x + r 2
y −4r 2

z

)
0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(4.38)

while similar expressions can be easily computed for H fvy
and H fvz

.





5
IMPLEMENTATION AND VALIDATION

An optimal control problem involves a continuous state and control profiles, x(t ) and u(t ). It is pos-
sible to consider it as the infinite-dimensional generalization of a non-linear programming prob-
lem, which involves a finite number of free control parameters y and constraints g, as discussed in
detail in Section 3.3. Since practical numerical methods can handle only a limited number of pa-
rameters, a transcription technique to convert the continuous problem into a finite-dimensional
approximation is needed.

The trajectory optimization tool developed for this thesis research employs a multiple-shooting
transcription scheme to discretize, and a hybrid NLP solver to optimize the free parameters. After
each NLP step, the accuracy of the finite-dimensional approximation is assessed by optimality and
feasibility checks, and the transcription and discrete optimization stages repeated if needed.

Figure 5.1: Flowchart of optimization tool

Several technical scenarios involve discontinuities in the state evolution. Examples in space ap-
plications can be impulsive maneuvers modelled as instantaneous velocity variations, lander mod-

39
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ule droppings causing an immediate mass change, et cetera. In optimization, such problems are
modelled as multi-phase, where a phase is defined as a trajectory segment in which the dynamical
equations do not change and the state evolution is continuous. In the multiple-shooting framework,
each phase is then divided into several sub-segments. In the remainder of the chapter, the discus-
sion will focus on a single phase without any loss of generality. The multi-phase linkage conditions
will be introduced in Section 5.1.5, while an exhaustive discussion can be found in [38].

Detailed principles for practical implementation of a multiple-shooting transcription scheme
will be discussed in Section 5.1. The tool and its different features have been extensively tested and
validated against a variety of test cases, and the process will be presented in Section 5.2.

5.1. MULTIPLE-SHOOTING IMPLEMENTATION

The multiple-shooting method requires an initial guess to start the transcription and the optimiza-
tion process. The drawbacks of this method, such as the sensitivity of the final state to initial guess
variations, lead to numerical problems when the initial guess is inaccurate. Furthermore, for practi-
cal applications the numerous numerical propagations and the method’s local nature make it time-
consuming when the initial guess is far from the optimum in the parameters’ domain. For this
reason, no random generation of the initial guess has been implemented, and it has to be provided
by the user, both on the state and on the control.

While the state is numerically propagated from a given initial guess, the control evolution is pa-
rameterized selecting appropriate functional terms. A common and reasonable choice for a generic
scalar k-component of the control is the univariate polynomial function as function of the indepen-
dent variable t (usually, but not necessarily, time):

uk (t ) =
np−1∑
j=0

a j t j (5.1)

where np is again the number of free parameters for each control component. As already outlined
in Section 4.2.1, there are different possible choices for the free control parameters up

k , from which
the coefficients a j are then computed. Two altervatives have been tested:

• The coefficients of the polynomial parameterization are the free parameters, therefore u
p j

k =
a j ;

• The free parameters are the control values at given nodes ti (see Section 5.1.1) within the
sub-interval u

p j

k = u(t j ). Using the Lagrange interpolation formula, the coefficients can be
computed imposing the following equality:

np−1∑
j=0

a j t j =
np∑

i=1

[
upi

k

np∏
w=1
w 6=i

t − tw

ti − tw

]
(5.2)

Although the first option is simple and does not require any intermediate passage, it is numerically
problematic. Indeed, coefficients of different order usually have different orders of magnitude, and
there is no straightforward way to select appropriate a priori scaling factors (see Section 5.1.4) for
each of them. On the other hand, whilst the second option employs several middle passages and it
is more difficult to differentiate, it requires a single scaling factor for all the free parameters, usually
the maximum control magnitude.
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5.1.1. PHASE DISCRETIZATION

The multiple-shooting transcription improves the stability of the overall optimization algorithms by
introducing middle steps where the numerical integration is re-started. This approach helps to cut
down the numerical round-off errors and the hypersensitivity to the initial guess. As already seen
in Section 3.2.2, this requires the introduction of additional state guesses and defect constraints to
ensure a continuous final trajectory.

Figure 5.2: Single-state Multiple-Shooting discretization [21].

On top of this discretization, each interval is divided into several nodes:

• Control grid, which defines the nodes where the control value is a free parameter used as
interpolating point;

• Path constraint grid, which defines nodes where to evaluate the path constraints as defined in
Equation (4.11)-2;

• Quadrature grid, whose nodes are used to compute the objective function by quadrature ap-
proximation, as explained in Section 4.2.

The union of these nodes results in the final integration grid, where the state and sensitivity values
are needed for the NLP step.

Figure 5.3: Different components of grid discretization

To compute the nodes’ position, and the associated weights for the control, path constraints and
quadrature grids, the Gauss-Legendre quadrature has been selected for its accuracy. Indeed, it
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yields exact results for polynomials of order 2n + 1 with only n nodes. The n nodes are the roots
of the Legendre polynomial of degree n, given by the relation:

Pn(x) = 2n
n∑

k=0
xk

(
n

k

)(
n+k−1

2

n

)
(5.3)

while the associated weights can be computed as: wi = 2
(1−x2

i )P ′
n (xi )2 .

5.1.2. SPARSE APPROACH FOR MULTIPLE-SHOOTING

Discretizing the trajectory causes non-subsequent segments to be directly independent, which math-
ematically translates into sparse Jacobian and Hessian matrices. In detail, the multiple-shooting
transcription discretizes the independent variable interval into (m−1) sub-segments. Consequently,
ns(m − 1) defect constraints are introduced to ensure continuity on the state variables evolution,
each of which depends only on the controllable parameters of a specific sub-interval and its suc-
cessive neighbor. Specifically, only [ns(ns +nc ·np )(m −1)+ns(m −2)] elements of the Jacobian are
nonzero out of [ns(ns+nc ·np )(m−1)2] elements in the matrix. Therefore, the percentage of nonzero
elements grows approximately as [1/(m−1)] as the number of discretization intervals increase, and
the enhanced sparsity computationally counteracts the increased number of variables for the asso-
ciated discretized problem. In particular, the ordering of free parameters and constraints is essential
to construct block-diagonal Jacobian and Hessian matrices, a pattern that highly speeds up the NLP
iteration.

For example, gathering the variables and constraints by segments, the sparsity pattern of the Ja-
cobian of a problem with ns = 4 state variables, and a single piece-wise constant control variable
nc ·np = 1, discretized in 10 sub-intervals, is depicted in Figure 5.4, resulting in 11.8% nonzero ele-
ments, where there are as many rows as constraints and columns as free parameters.

Figure 5.4: Sparsity pattern of defect constraints’ Jacobian.

For what concerns the second-order information, the various segments are completely indepen-
dent. Hence, only [(ns+nc ·np )2(m−1)] elements of the Hessian are nonzero out of [(ns+nc ·np )(m−
1)]2, leading to a sparsity percentage exactly equal to [1/(m −1)]. For the example above, this per-
centage is 10.0%, and the sparsity pattern is illustrated in Figure 5.5, where the number of rows and
columns coincides with the number of free parameters.
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Figure 5.5: Sparsity pattern of the augmented Lagrangian’s Hessian.

5.1.3. WORHP NLP SOLVER

Among the different interfaces offered by WORHP [26], the C++ library Full Feature Interface has
been used. It is the most flexible and powerful interface to the NLP solver as it employs the Reverse
communication paradigm, in contrast to the most simple and common Direct communication. With
the latter, the NLP solver requires pointers to functions computing the objective index and con-
straint’s violations, and then it computes the required information within the solver’s call. On the
contrary, in the reverse approach, the NLP solver is inserted in an outer loop where it performs an
NLP step and it instructs the user to update the required information for the successive iteration.
The iteration loop that usually runs inside a Direct Commnication solver has to be provided by the
caller. In short, the Full Interface requires the user to perform an action instead of doing it itself.
In this way, the caller directly modifies the values in the corresponding C++ structs. This choice al-
lows extreme flexibility, in particular when the sparsity pattern of the derivative matrices and their
nonzero values shall be provided.

Indeed, due to its fundamental suitability for large-scale problems, WORHP works properly on
sparse matrices, avoiding zero entries for memory and computational performance. The sparsity
pattern is characteristic of a problem and constant at each iteration, while the actual nonzero values
depend on the current point x. WORHP internally employs the Coordinate storage format to repre-
sent sparse matrices, denoting a nonzero element by the triplets ak =(val,row,col) for k = 1, . . . ,nnz .
These triplets shall be provided in a column-wise order. For what concerns the Hessian, only the
lower triangular part is saved, still following the column-major order for the strictly lower part,
followed by the diagonal elements. Whilst these rules improve the algorithm efficiency and com-
patibility with Fortran 95 structs, WORHP’s core language, they make the transcription-NLP solver
interface only specialized for this tool. Other solvers can be integrated within the variational multi-
ple shooting, but other interfaces shall be developed and a flag system designed to select the proper
one. While a comparison of different NLP solvers’ performance could be interesting for practical
problems, it is beyond the purpose of this thesis, aimed to analyze the variational approach on the
transcription side of the whole optimization tool.
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5.1.4. PARAMETER AND FUNCTION SCALING

For any numerical algorithm, scaling is a critical aspect. In optimization, it influences numerical
conditioning, convergence rate, termination tests, et cetera [2]. While a detailed discussion on scal-
ing can be found in [24], some general rules to have a well-conditioned associated NLP subproblem
are [2]:

• Free variables defined in the same range, usually −1 ≤ x ≤ 1;

• Dependent functions of the same order of magnitude, usually J ≈ g1 ≈ ·· · ≈ gm ≈ 1;

• Scale the dependent functions such that the Lagrange multipliers are close to one;

• The rows and columns of the Jacobian to be of the same order of magnitude;

• Scale the quantities such that the condition number of the Hessian is close to one;

• Scale the problem such that the condition number of the KKT matrix (Equation (3.21)) is close
to one.

These hints are often conflicting and not implementable in an automatic procedure. For example,
in a generic case it is not possible to simultaneously scale both the magnitude of the constraints and
the rows of the Jacobian, i.e. the constraints’ derivatives. WORHP already implements the rule on
the KKT condition number, and experimentally the scaling of the objective function and constraints
based on their gradients.

On top of that, in this novel multiple-shooting transcription tool the free variables and the de-
pendent functions are scaled accordingly to an associated characteristic magnitude optionally sup-
plied by the user. Consequently, the same quantity is used to scale the associated derivatives. Two
reasons have driven this implementation choice: variables and functions in the same range help the
optimizer convergence rate, as suggested from the hints outlined above; the user is able to manually
scale a particular problem based on its specific characteristics. For example, the orbital elements’
range for a specific trajectory is well known, with angular quantities spanning from 0 to π (inclina-
tion), from 0 to 2π (argument of pericenter, etc.), and length quantities spanning from 0 to 109−1010

km for interplanetary trajectories. Once having defined a scaling factor s j , the new scaled parameter
p̃ j is defined by a linear transformation as:

p̃ j = s j p j (5.4)

PARAMETER SCALING

From continuous state and control variables, the multiple shooting generates a multiple number of
associated free parameters to optimize, corresponding to the initial guess and control parameters
at each sub-interval. The same variable can assume a wide range of values along the time span,
and therefore different discretized parameters associated with the same continuous variable can be
of different orders of magnitude. Hence, the ideal situation would be to associate a different scale
to each discretized variable. All these scales cannot be supplied manually by the user, therefore an
automatic procedure would be necessary. A possibility is to define the scale as:

s j = 1

|pg
j |

(5.5)

where pg
j is the first initial guess of the parameter. However, this choice leads two major drawbacks:

• the user cannot directly supply a scale;
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• the parameters can highly deviate from the supplied initial guess and the scale be no longer
suitable.

For this reason, the alternative of a single scaling factor (usually its maximum magnitude) for each
continuous variable has been implemented. This choice preserves the user interface flexibility, al-
lowing to define each discretized parameter within unit bounds. Assuming that the scaling is the
same over all the sub-intervals, we can group the free parameters in the following matrix form:[

x̃
ũ

]
=

[
Wx 0

0 Wu

][
x
u

]
(5.6)

where Wx and Wu are diagonal scaling matrices for the state and control parameters.

CONSTRAINT SCALING

For what concerns the constraints, naming gd = 0 the defects and gp = 0 the discretized path con-
straints, their scaled form is:

g̃ =
[

Wgd 0
0 Wgp

][
gd

gp

]
(5.7)

where Wgd and Wgp are diagonal scaling matrices. Hence, the scaled Jacobian matrix results to be:

G̃ =
[

Wgd 0
0 Wgp

]
G

[
Wx 0

0 Wu

]−1

(5.8)

As shortly outlined in [2], the defect constraint can be written in the symbolic form:

gd = x−
∫ ti+1

ti

f d t (5.9)

The unscaled Jacobian follows as:

G =

I−∫ ti+1
ti

∂f
∂x d t −∫ ti+1

ti

∂f
∂u d t

∂gp

∂x
∂gp

∂u

 (5.10)

As the time step becomes smaller, i.e. (ti+1 − ti ) → 0, the Jacobian block corresponding to the con-
tinuity conditions tends to Ggd ∼ I, improving the conditioning of the original Jacobian. Hence,
to preserve this property, the defect constraint is scaled using the same scale of the corresponding
state variable:

Wgd = Wx (5.11)

For the path constraints, the user shall supply a suitable scale in order to well-scale their corre-
sponding rows, because no a priori information can be exploited in the general case.

OBJECTIVE FUNCTION SCALING

The objective function is scaled using a user-supplied characteristic value, such that its magnitude
is around one. WORHP has another scaling procedure for the objective function as [26]:

J̃ =
{

J , if J < ScaleFacObj

ScaleFacObj, otherwise
(5.12)
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where ScaleFacObj is 10 by default. This further justifies why it is convenient to scale J around one,
ensuring its value to remain below that threshold.

In addition, the optimality criterion, which usually requires a simple condition on the infinity
norm of the first derivative of the augmented objective as

‖∇x L‖∞ ≤ TolOpti, (5.13)

is substituted by a scaled version as

‖∇x L‖∞ ≤ TolOpti ·max(1, |J |)+‖µT g‖∞
‖d‖∞

(5.14)

where µ are the Lagrange multipliers associated to the constraints g, and d is the search direction
computed by the quadratic subproblem at the current point. This scaled version relaxes the condi-
tion in Equation (5.13), which can result too strict for numerical purposes and sometimes impossi-
ble to satisfy with computer arithmetic.

INDEPENDENT VARIABLE SCALING

As depicted in Figure 5.3, the full interval is subdivided into an integration grid, as a result of dif-
ferent discretizations. In order to keep the integration grid constant when the initial or final times
(or any other independent variable) are free, the phase is normalized between zero and one with
respect to a scaled variable defined as:

τ= t − t0

t f − t0
(5.15)

This independent-variable change requires a modification in the dynamical equations as:

dx

dτ
= dx

d t
· d t

dτ
= f(t ,x,u) · (t f − t0)∫ t f

t0

Ld t =
∫ 1

0
L

d t

dτ
dτ=

∫ 1

0
L · (t f − t0)dτ

(5.16)

In particular, this expedient is useful when the gradients with respect to a time parameter are to be
computed by finite-difference approximations, avoiding the time-perturbed trajectories to change
the integration grid several times and degrade the derivative accuracy.

5.1.5. MULTI-PHASE

The entire discussion presented in this chapter can be generalized for multi-phase problems. A
generic multi-phase problem is set as a collection of sequential single phases. Different phases can
have different discretization settings, scales and control parameterizations. The phases are then
connected by linking conditions which ensure time-continuity and, optionally, some state variables
continuity. For example, space trajectories with impulsive maneuvers are modelled as multi-phase
problems with position-continuity among the different phases, but not velocity-continuity condi-
tions (see Section 6.2). In Figure 5.6, the Jacobian matrix of a multi-phase problem is depicted. In
detail, the number of state variables ns = 4, and the control parameters nc ·np = 2, while the first
and third phase has been discretized in three sub-intervals, whereas the second in two segments.
The linking conditions ensure the continuity of the first two state variables, while the other two can
be discontinuous.
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Figure 5.6: Sparsity pattern of Jacobian matrix for a multi-phase problem.

5.1.6. TOOL CAPABILITIES

In the design and development process of the variational Multiple Shooting, the tool flexibility has
been one key aspect to ensure its applicability to the majority of continuous optimization problems.
To this end, the control acceleration has been set as optional, allowing the tool to be suitable for:

• Optimal control problems, with or without coasting arcs, e.g. low-thrust trajectories (see Sec-
tion 6.1);

• Multi-phase boundary-value-problems (BVP) with an objective index, e.g. impulsive maneu-
ver trajectories (see Section 6.2);

• Initial-value-problems (IVP) or boundary-value-problems (BVP) without objective function,
e.g. cannon-ball problem.

In the latter case, the automatic "trick" is to define a trivial objective function and switch WORHP
on feasibility-only mode.

Different flags allow to singularly disable the variational dynamics on the gradient, Jacobian or
Hessian. In this way, the variational approach on different components can be assessed, as well as
the finite-difference approximation can be used to compute derivative information when the partial
derivatives are not derivable for a specific quantity. Settable values allow the user to define optimal
parameters for the problem at hand, such as the number of shooting sub-intervals, control nodes
and control parameterization, path constraints nodes, integration steps, et cetera.

In addition to that, a plug-and-play approach has been employed to interface different blocks
with the transcription scheme. For example, without digging into the implementation details, this
approach allows the user to choose any numerical integrator (at least any available in the ACE soft-
ware repository SMART [39]), without limiting the choice to only a few embedded schemes. This ad-
vantageous characteristic is useful when a specific problem shall be solved. For example, adaptive-
stepsize integrators are not suitable when finite-different approximations are enabled because the
stepsize sequence of the reference trajectory integration would probably be different from the one
of the different perturbed trajectories, yielding a degradation of the derivative computation. On the
contrary, when the variational dynamics is enabled, these more efficient and sophisticated schemes
can be applied as all the quantities are propagated at once (sort of internal differentiation [40]), re-
sulting in a unique stepsize sequence. Detailed information on integration techniques suitable for
transcription schemes can be found in [41], [42] and [43].
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5.2. SOFTWARE VERIFICATION AND VALIDATION

All the theoretical and practical information discussed in the current and previous chapters led to
the development of a C++ software within the SMART repository [39]. Before the actual applica-
tion to practical cases, the tool needed extensive verification to ensure it to be error-free and well-
engineered. Indeed, several code refactoring and architecture rearrangements were driven by con-
siderations which emerged during the test phase. This section will introduce different test cases
with an analytical or well-known solution, useful to assess the software reliability and performance.
In particular, the latter is fundamental from a validation perspective as we shall ensure that the
built tool is actually more efficient than the typical finite-difference counterpart. To analyze these
characteristics, in this testing phase it is not crucial how big, stiff or complex the example is, but it
is important to know the optimal solution and to test different features. On the contrary, the next
chapter will introduce large-scale and complex optimization problems, and multiple-shooting will
be used as a completed algorithm, whose performance is to be further assessed.

With these goals in mind, the verification will be performed in two steps:

• Check the derivative computation with WORHP’s embedded feature for derivative verifica-
tion. Figure 5.7 shows the output of the derivative check, in specific the Hessian nonzero
elements. The second and third columns report the user-supplied derivatives and the finite-
difference values respectively. Two threshold are used to check the discrepancy, an absolute
and a relative one, both set to 10−3 by default. When the former is not respected, as checked
by the second-to-last column, the row is yellow coloured. When the relative error is above the
correspondent threshold, as checked by the last column, the row becomes red;

• Apply the tool to the test case and check similarity of the solution with the known one. When
only plots of the solution are available, a qualitative analysis shall be carried out.

Figure 5.7: Illustration of WORHP derivative check tool interface.

Along with the verification phase, the validation will be carried out by switching on and off the
variational dynamics and comparing the results and CPU-time performance of these alternatives.
When possible and meaningful, the variational approach performance will be compared with the
ones in literature as well. On the other hand, the number of function and constraint evaluations
would not be meaningful indicators as the finite-difference approximations call them numerous
times by construction (see Section 4.1) each iteration, while the variational approach calls them
only once.

5.2.1. VAN DER POL PROBLEM

The Van Der Pol example is the first test case solved with a multiple-shooting algorithm, as reported
in the paper by H. Bock and K. Plitt [44]:
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mi n J = 1

2

∫ 5

0
(x2

1 +x2
2 +u2)d t

s.t . : ẋ1 = x2, x1(0) = 1

ẋ2 =−x1 + (1−x2
1)x2 +u , x2(0) = 0

x1(5)−x2(5)+1 = 0

(5.17)

This relatively straightforward two-state optimal control problem is suitable for tool testing, vali-
dation and performance assessment. For comparison purposes, the same settings as by [44] are
employed. Hence, the time interval is discretized into m = 3,6,11,21 mesh points, and the control
is parameterized by a piecewise linear polynomial. The initial conditions are chosen as x1(0) = 1,
x2(0) = 0 and u(t ) = 0.5 for 0 ≤ t ≤ 5, following the specification in [44]. The results can be assessed
only by a qualitative point of view, comparing the original plots with the reproduced ones in Fig-
ure 5.8. The results are qualitatively well reproduced, and the final constraint is respected to 10−9,
below the set threshold.

The derivative computation has been checked against the numerical ones, computed by finite dif-
ferences, thanks to the tool discussed in Section 5.2, and the results are shown in Table 5.1.

Derivative type # Checked derivatives Differing absolutely Differing relatively Differing both
DF 80 0 0 0
DG 202 0 0 0
HM 200 5 0 0

Table 5.1: Van Der Pol derivative check.

The few second-order derivatives which differ absolutely are below the relative threshold, there-
fore the derivative check process is passed. Given the outcomes as above, the verification on this
example can be judged as positively terminated.

For what concerns the validation and performance assessment, we shall show that the varia-
tional approach actually improves the computational performance. [44] shows the evolution of the
objective index as a function of the number of discretization intervals. The results are reproduced
and compared in the table as follows.

Mesh J[44] J CPU [s][44] CPU [s]
3 1.8360 1.8360 0.174 0.019
6 1.6907 1.6869 0.241 0.022

11 1.6860 1.6859 0.305 0.041
21 1.6857 1.6857 0.813 0.064

Table 5.2: Van Der Pol result comparison.

Table 5.2 shows an improvement of a factor 10 with equal or better results for the same number
of mesh points. However, different NLP solvers and different computational resources have been
used to point out the variational approach as the sole cause of this improvement. To better analyze
the effect of the variational dynamics, Table 5.3 shows the relative computational times (rounded
average after several simulations), using the same computational desktop, when it is applied on
different derivative information.

As the relative computational time is always bigger than one in the third column, the full variational
approach (in line one DF-DG-HM notation points out that all the derivative quantities have been



50 5. IMPLEMENTATION AND VALIDATION

(a) VDP control profile from [44]. (b) VDP control profile, variational multiple-
shooting.

(c) VDP state x1 profile from [44]. (d) VDP state x1 profile, variational multiple-
shooting.

(e) VDP state x2 profile from [44]. (f) VDP state x2 profile, variational multiple-
shooting.

Figure 5.8: Van Der Pol example resulting profiles’ comparison.
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Variational Derivative J Rel. CPU [-] # NLP Iterations
DF-DG-HM 1.6857 - 7

(a)DF-DG 1.6857 1.5 28
(b)DF-DG 1.6857 6.0 7

DF-HM 1.6857 2.0 7
DG-HM 1.6857 3.0 7

DF 1.6857 3.0 28
DG 1.6857 4.0 28

HM 1.6857 4.5 7
none 1.6857 8.0 28

Table 5.3: Van Der Pol variational performance comparison. For explanation see text.

computed by variational approach) results to be the most efficient one. In line two, the second-order
derivatives for the Hessian HM are computed using the BFGS method, as explained in Section 4.1.3.
For this reason, the number of iterations is higher, while the performance does not worsen exces-
sively as the first-order information used for the recursive updates is still computed using the vari-
ational dynamics. On the contrary, row three uses the second-order finite-differences, as shown in
Section 4.1.2, and the performance gets considerably worse as 200 derivatives (see Table 5.1) shall
be computed by perturbation propagations. The same reasoning holds when only the first-order
derivatives DF-DG are computed by finite approximation (row eight), but with better performance
as the first-order finite differences are faster to compute. The single contribution of the first-order
information is investigated by switching off the variational approach individually on the objective’s
gradient DF, as in rows five and seven, or the constraints’ Jacobian DG, as in rows four and six. Even
though the number of nonzero elements of DG is more than double the ones in DF (see Table 5.1),
we can see that the variational dynamics is more influential on DG than on DF. This results from the
application of group methods, as explained in Section 4.1.1, to reduce the number of perturbations
to be propagated for the Jacobian matrix, methods that cannot be applied for the gradient vector.
Finally, the last line shows the performance deterioration when the full finite difference approach is
used. The objective function value has been reported for each variational-finite difference combi-
nation to verify that the optimization converges to the same minimum and that this element does
not corrupt the previous analysis.

5.2.2. 1D TEST CASE

[11] presents an elementary example with a unique analytical solution. The problem is formulated
as:

mi n J =
∫ 1

0

(
1

2
u2 +x

)
d t

s.t . : ẋ = u, x(0) = 0, x(1) = 1

(5.18)

The optimality solution can be derived from the optimality necessary conditions (see [11] for de-
tailed passages), as explained in Section 3.1.1, resulting in:

x∗(t ) = 1

2
(t 2 + t )

u∗(t ) = t + 1

2

J∗ = 23

24
≈ 0.9583

(5.19)
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The time interval is discretized with m = 6 mesh points, and the control is parameterized by a piece-
wise parabolic polynomial, not to impose the a priori knowledge on the optimal linear-control evo-
lution. Using a trivial zero-control as initial guess, the variational multiple shooting is able to repro-
duce the analytical optimal solution, as depicted in Figure 5.9, with a final constraint violation of
10−10.

(a) 1D Test case state profile. (b) 1D Test case control profile.

Figure 5.9: 1D test case optimal profiles.

Again, the derivative computation has been checked against the finite-difference approximations,
and the results are reported in Table 5.4. The derivative check is completely passed and the verifica-
tion phase on this example can be considered successfully completed.

Derivative type # Checked derivatives Differing absolutely Differing relatively Differing both
DF 24 0 0 0
DG 33 0 0 0
HM 60 0 0 0

Table 5.4: 1D test case derivative check.

The validation test, whose results are shown in Table 5.5, confirms again that the variational
approach leads to a remarkable improvement in terms of computational time. The considerations
on the contribution of the different derivative types made in Section 5.2.1 apply to this test case as
well.

Variational Derivative J Rel. CPU [-] # NLP Iterations
DF-DG-HM 0.983 - 6

(a)DF-DG 0.983 1.2 21
(b)DF-DG 0.983 8.5 6

DF-HM 0.983 2.0 6
DG-HM 0.983 3.0 6

DF 0.983 3.0 21
DG 0.983 4.0 21

HM 0.983 4.5 6
none 0.983 12.0 21

Table 5.5: 1D test case variational performance comparison.
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5.2.3. FREE FINAL TIME TEST CASE

In the first two test cases the tool proved to compute the derivative information properly and to
find the optimal solution accurately when a fixed-time controlled boundary-value-problem is in-
vestigated. This test case will verify the derivative computation and software implementation when
time is a free parameter as well.

The test is formulated as a minimum-time problem to drive the state to the origin from a devi-
ated condition:

mi n J =
∫ t f

0
d t

s.t . : ẋ1 = x2, x1(0) = 2, x1(t f ) = 0

ẋ2 = u, x2(0) = 2, x2(t f ) = 0

|u| ≤ 1

(5.20)

where the path constraint |u| ≤ 1 is another element to be tested. It is well known that the solution to
this problem is a bang-bang profile with only one switch point as it is a linear second-order system
[45]. The switch point is located at t = 4 s, and the final time, i.e. the objective index, results t f = 6 s.

Using 6 sub-intervals and a piecewise linear polynomial control, with trivial zero-control as ini-
tial condition, the solution found with the variational multiple shooting is able to perfectly catch
the bang-bang profile, as depicted in Figure 5.10, respecting the imposed path constraint.

(a) State profile. (b) Control profile.

Figure 5.10: Free final time test case optimal profiles.

The derivative computation is checked and verified using WORHP’s feature and the results are re-
ported in Table 5.6.

Derivative type # Checked derivatives Differing absolutely Differing relatively Differing both
DF 25 0 0 0
DG 198 0 0 0
HM 61 0 0 0

Table 5.6: Free final time test case derivative check.
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With the variational approach, the average computational time is approximately 0.15 s. By switching
on and off the variational dynamics on different components, we have a deterioration in relative
computational times as shown in Table 5.7.

Variational Derivative J Rel. CPU [-] # NLP Iterations
DF-DG-HM 6.0 - 11

(a)DF-DG 6.0 1.5 30
(b)DF-DG 6.0 7.5 11

DF-HM 6.0 3.5 11
DG-HM 6.0 3.5 11

DF 6.0 4.5 30
DG 6.0 4.0 30

HM 6.0 5.0 11
none 6.0 9.5 30

Table 5.7: Free final time test case variational performance comparison.

Most of the considerations introduced in Section 5.2.1 still hold for this example as well. However,
this test case introduces an interesting inversion in relative computational times between DF and
DG computation by finite-difference approximations. Indeed, despite the group methods applied
to computation of DG, the higher number of nonzero elements in the Jacobian (see Table 5.6) is
predominant in worsening the performance, as we can see from the comparison of rows four with
five and six with seven.

5.2.4. FREE FINAL STATE TEST CASE

The last test case run for verification is a free final state problem, a common scenario when multi-
phase problems with discontinuous state linking conditions are studied, e.g. impulsive-maneuver
trajectories. To analyze the behavior of the multiple-shooting implementation in this case, the ele-
mentary problem formulated as follows is studied.

mi n J =
∫ 1

0
(u −x)2d t

s.t . : ẋ = u, x(0) = 1, x(1) = free
(5.21)

As the final state is free, the optimal control profile is trivially u∗(t ) = x(t ). Substituting in the dy-
namical equation and solving the simple differential equation with the given initial condition, the
optimal state and control evolution is described by the exponential function:

u∗(t ) = x∗(t ) = e t (5.22)

Using 5 sub-intervals, a piecewise quadratic control parameterization, with the trivial zero-control
initial guess, the variational multiple shooting manages to find the optimal solution, as in Equa-
tion (5.22), in 4 iterations and an average computational time of 0.01 s. The final state, at time
t f = 1, coincides with the Euler’s number up to the 8th digit (final error of 10−8). The state and
control evolution profiles are depicted in Figure 5.11.

The variational derivatives coincide with the finite-difference approximations under the set thresh-
olds, as shown in Table 5.8.
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(a) State profile. (b) Control profile.

Figure 5.11: Free final state test case optimal profiles.

Derivative type # Checked derivatives Differing absolutely Differing relatively Differing both
DF 20 0 0 0
DG 24 0 0 0
HM 50 0 0 0

Table 5.8: Free final state test case derivative check.

As can be seen from Table 5.9, the full variational approach is always the most efficient alterna-
tive. In this case, the number of nonzero elements in the gradient vector and the Jacobian matrix is
really similar, while the Hessian matrix has more than double nonzero entries. For this reason, and
because the number of iterations increases by a factor of four, the computation of HM by variational
dynamics is the leading factor, rather than DF or DG, in this test-case.

Variational Derivative J Rel. CPU [-] # NLP Iterations
DF-DG-HM 0.0 - 4

(a)DF-DG 0.0 2.0 17
(b)DF-DG 0.0 7.5 4

DF-HM 0.0 2.0 4
DG-HM 0.0 2.5 4

DF 0.0 3.5 17
DG 0.0 4.5 17

HM 0.0 3.0 4
none 0.0 7.5 17

Table 5.9: Free final state test case variational performance comparison.

5.3. SUMMARY

This chapter discussed the key features of the implemented variational multiple-shooting tool from
a more practical point of view. The general flowchart has been explained and the different building
blocks highlighted to have a better overview on what elements belong to the transcription method
and what the interfaces are.
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Successively, in the first section different practical details have been explained and the imple-
mentation choices motivated, such as the control parameterization through optimizable interpolat-
ing nodes, quadrature formulae, scaling routines, et cetera. The sparsity of the transcribed deriva-
tive matrices and its consequence in improving the efficiency of the corresponding NLP step have
been explained. The next subsection showed how the employed NLP solver requires the sparsity in-
formation, and which communication logic of WORHP has been employed. Subsequently, scaling
procedures have been analyzed and implemented to enhance the numerical stability of the code in
the most generic case, still leaving enough flexibility to the user when the specific problem has to be
set up. The last part of the section pointed out what types of problems the tool can handle, ranging
from single to multi-phase problems (employing the linking conditions), from optimal continuous
controls to impulsive ones.

The second section regarded the verification and validation process of the implemented tool.
Initially, the strategies to verify and validate have been established and WORHP’s feature employed
for derivative comparison explained. Then, several elementary test-cases with different character-
istics have been employed to test the variational multiple-shooting’s functionality, confirming that
the tool behaves properly on both boundary value or free boundary problems, on fixed and free-
time cases, by managing to reproduce the known solution and checking the derivative computation.
The validation routine confirmed that the variational approach actually results extremely efficient,
leading to an improvement factor ranging from 7 to 12 with respect to the full finite-difference one.
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APPLICATIONS

The variational multiple-shooting tool has been implemented within the SMART repository [39]
to be part of the optimization toolbox for solving practical aerospace problems. This chapter will
present the algorithm application to two different test cases by employing other tools in SMART to
generate the first-guess solution. This approach will serve a variety of goals. First, the interface to
other software will be analyzed and improved. Second, the tool will be tested against large-scale
problems, assessing its performance when a realistic example is run. Lastly, the selected test cases
have a practical significance in the aerospace field and the variational multiple-shooting will be
applied as a completed tool to investigate them.

The first section will discuss the feasibility study of a CubeSat rendezvous with an asteroid. This
study involves the optimization of a low-thrust trajectory, a challenging and modern problem in
space engineering. Along with that, it will enhance the limited literature about CubeSat rendezvous
outside the Earth-Moon environment.

The second section will examine the application of the variational multiple-shooting tool to the
9th edition of the Global Trajectory Optimisation Competition (GTOC9) problem. First, the problem
statement will be shortly discussed and the global strategy of the team outlined. Subsequently, the
tool contribution to the proposed solution will be analyzed in detail.

6.1. CUBESAT RENDEZVOUS WITH ASTEROID

Several missions already proved that CubeSats can provide affordable access to space for research
centres, small or medium companies and universities as well. For the latter, successful examples are
Delfi-C3 [46] and Delfi-n3Xt [47], the CubeSats missions part of the Delfi Program of Delft University
of Technology [48].

Currently, the main research for CubeSats for deep space applications is carried out by big agen-
cies. NASA recently selected the proposal Near-Earth Asteroid (NEA) Scout, a low-cost mission aim-
ing to study a close asteroid and to demonstrate several technological innovations, such as being
the first CubeSat to rendezvous an asteroid [49]. Similarly, ESA called proposals for an Asteroid Im-
pact Mission (AIM) to the binary asteroid 65803 Didymos [50], having room for a total of six CubeSat
units, having currently selected five of them before the final choice. A detailed analysis of advan-
tages and technological difficulties of CubeSat’s interplanetary applications can be found in [51].

The study presented in this section aims to demonstrate the feasibility of a low-thrust CubeSat-

57
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asteroid rendezvous with the focus on orbital dynamics. The result of this analysis is of interest for
future studies within the Aerospace Centre of Excellence (ACE), where the research has been carried
out. The physical characteristics of the spacecraft and its low-thrust engine are summarized in the
following table:

Engine type CubeSat units Initial mass [kg] Specific impulse [s] Max Thrust [mN]
Low-thrust 6 12 750 5

Table 6.1: CubeSat characteristics.

6.1.1. TARGET ASTEROID AND FIRST-GUESS GENERATION

The selection process of a suitable target asteroid has been carried out considering three essential
factors:

• Time of flight (TOF) below 600 days;

• Departure date before year 2030;

• Limited propellant mass consumption.

As analyzing each NEA candidate singularly would have been time-consuming, the first selection
has been performed using the Center for Near Earth Object Studies (CNEOS) database, created by
the Jet Propulsion Laboratory (JPL) [52]. After restricting the choice to a handful of targets with
Earth-like orbital elements and favourable angular position in the period 2020-2030, the selection
continued running the spherical shaping tool (see Section 2.3.1). It was inserted in an outer loop
defining a 3D uniform sampling grid (see Section 3.4.1), where the above defined time of flight is
discretized using 8 days time steps, the departure date is discretized using 10 days time steps, and
the number of revolutions allowed are between 0 and 2.

This led to the final pick of the asteroid 2000SG344, a small Aten asteroid with a diameter of 40
m and mass of 7.1× 107 kg. It is among the top-10 near-Earth objects for impact likelihood with
Earth [52], and NASA has been considering it for a manned sample return mission in 2069 [53]. The
resulting pork-chop plot with the aforementioned time spans for 2000SG344 is depicted in Figure 6.1.

Figure 6.1: Pork-chop plot of Earth-2000SG344 rendezvous.
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Table 6.2 summarizes the most promising trajectories out of this analysis. In about 20 months the
CubeSat manages to reach the asteroid following the cheapest trajectory (trajectory A), requiring
only a reasonable portion of the initial mass as propellant. Further investigating the global search
results, there are options more convenient in terms of time of flight and with comparable ∆V (e.g.
trajectory B).

Traj. ID Tdep [date] TOF [days] ∆V [km/s] Final mass [kg] TOF violation [days]
A February 2027 595 0.976 10.509 0.5
B January 2028 392 0.978 10.505 0.4

Table 6.2: Earth-2000SG344 most promising rendezvous from Spherical Shaping.

The TOF violation represents the discrepancy between the imposed time of flight and the actual
one computed with the shaping. This would lead to a position and velocity mismatch between the
asteroid and the final spacecraft position and velocity. This constraint violation shall be overturned
by the multiple-shooting optimization.

6.1.2. CUBESAT RENDEZVOUS: MULTIPLE-SHOOTING OPTIMIZATION

The initial guess discussed in the previous section takes into account only the two-body pull caused
by the Sun. However, the spacecraft departures from the Earth environment, where the Earth and
Moon gravitational attraction is predominant. Thus, for the complete feasibility study, the gravity
effects of three bodies (Sun, Earth and Moon) will be considered, using a non-rotating heliocentric
frame. Therefore, the dynamical equations are:

ṙ = v

v̇ =−µs

r 3 r−µe
r− re

‖r− re‖3 −µm
r− rm

‖r− rm‖3 +u

ṁ =− m ·u

g0Isp

(6.1)

where µs , µe and µm are the standard gravitational parameters of the Sun, Earth and Moon respec-
tively, whereas re and rm are the position of the Earth and Moon with respect to the Sun, while u is
the control acceleration and u its magnitude.

The multiple shooting allows for any dynamical model, with the variational approach usable
when the acceleration equations are at least twice differentiable. For Equation (6.1), the third-body
variational dynamics can be derived in a similar fashion as was shown in Section 4.2.3. The vari-
ational multiple-shooting is initialized using the state evolution and linear approximation of the
control extrapolated from the spherical shaping. However, since the Earth attraction is now con-
sidered, the initial state shall be slightly shifted to avoid singularity. Thus, the imposed initial state
is the Earth-Moon Lagrangian point L2. Along with the constraint on maximum thrust, two path
constraints on minimum altitude over the Earth, i.e. he ≥ 400 km, and over the Moon, i.e. hm ≥ 50
km, have been added to continue neglecting the Earth atmosphere reasonably and to avoid colli-
sions with the ground. In order to keep using a linear parameterization of the control and still have a
good optimality, the time-span has been subdivided into 100 segments, using a fixed step-size RK 8
with 1-hour time-step as integration technique to compute a trajectory of high accuracy.

MINIMUM ∆V TRAJECTORY

The minimum ∆V trajectory (ID A in Table 6.2) optimized by the variational multiple shooting is
depicted in Figure 6.2, showing the Earth and asteroid orbits as well, while Figure 6.3 illustrates the
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resulting state evolution.

Figure 6.2: Optimal trajectory for CubeSat-Asteroid minimum ∆V rendezvous.

Figure 6.3: Optimal state profile for CubeSat-Asteroid minimum ∆V rendezvous.

As we can see from the trajectory evolution and the control profile shown in Figure 6.4, there are
two main maneuvers where the orbital plane is changed and the orbit deformed properly. The last
negligible adjustment, in the order of 10−5 N, corrects the velocity conditions to precisely match the
asteroid state, as better shown in Figure 6.3.

The optimal solution benefits of two main thrust segments, equally distributed in time among all
the control components, and three coasting periods. These arcs have been set to zero-thrust from
the variational multiple shooting, as the initial guess from the spherical shaping did not include any
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Figure 6.4: Optimal control profile for CubeSat-Asteroid minimum ∆V rendezvous.

coasting, as illustrated in Figure 6.5. Therefore, the refinement process transformed a continuous
and low-peak control into a discontinuous profile with higher peaks.

Figure 6.5: Initial control guess for CubeSat-Asteroid minimum ∆V rendezvous.

Reintegrating the equations of motion with the obtained optimal control, the final conditions are
met up to 10−8 discrepancy resulting in a high-accuracy trajectory. The final mass has been lowered
to 10.189 kg, i.e. 0.32 kg more of propellant mass with respect to the initial guess as discussed in
Section 6.1.1. Although this does not seem a good result for an optimization algorithm, we shall
keep in mind that the initial guess was generated neglecting the Earth and Moon attraction, and it
was not respecting the imposed boundary conditions properly. Indeed, when the optimization with
the variational multiple shooting is run with the Sun pull only, the final mass is 10.6 kg, resulting in
a propellant saving of 0.1 kg. As a consequence, Earth and Moon are a burden for the CubeSat to
escape the original orbit. This could be explained in two different ways: either the multiple shooting
is not able to catch a gravity assist manoeuvre starting from an initial guess generated using the Sun
attraction only, or the low level of thrust is not enough to enforce the necessary trajectory change
for a fly-by.
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MINIMUM TOF TRAJECTORY

The second trajectory, the minimum TOF one (ID B in Table 6.2), is shown in Figure 6.6, where it is
possible to notice that, in this case, the rendezvous is completed in just over one Earth revolution
(≈ 13 months).

Figure 6.6: Optimal trajectory for CubeSat-Asteroid minimum time rendezvous.

The initial thrust segment, lasting three days, helps the spacecraft to slightly deviate from the Earth
before the principal manoeuvre. From the control graph we can see a substantial difference with
the minimum ∆V case. Only one main manoeuvre, before the final adjustment, can be detected,
probably because the trajectory is shorter, while the final adjustment manoeuvre is more signifi-
cant. This is confirmed by the plot of the control profile, as shown in Figure 6.7. Two main coasting
arcs can be recognized, although some small thrust corrections are performed in the middle of the
second one.

Figure 6.7: Optimal state profile for CubeSat-Asteroid minimum time rendezvous.

Figure 6.8 depicts the state evolution of the CubeSat, as well as the Earth and asteroid position and
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velocity, and from this plot we can clearly see the effect of the final adjustment on the velocity com-
ponent.

Figure 6.8: Optimal state profile for CubeSat-Asteroid minimum time rendezvous.

Also in this case, from comparison of the optimal control with the guessed one in Figure 6.9, we
can see how the variational multiple shooting modifies the continuous profile from the shaping to
a discontinuous one with higher peaks.

Figure 6.9: Initial control guess for CubeSat-Asteroid minimum time rendezvous.

When the trajectory is reintegrated for validation with the optimal control profile, the final condi-
tions of the spacecraft and the asteroid coincides up to 10−8 again. The resulting final mass is 10.172
kg, i.e. 0.333 kg more of propellant mass with respect to the guessed one as reported in Section 6.1.1.
The reasoning of this outcome explained for the minimum ∆V case holds for this trajectory as well.
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6.1.3. CUBESAT RENDEZVOUS: CONCLUSIONS

For what concerns the discretized NLP sub-problems, associated to the cases discussed above, this
low-thrust optimization example can be considered large-scale as it involved 1300 optimization pa-
rameters and 3706 constraints (more constraints than parameters as there are multiple nodes per
interval to check the path constraints). Since the objective function does not depend on the position
and velocity of the spacecraft, the sparsity pattern of the objective gradient has been used as well.
The percentage of nonzero elements of the gradient vector is 53.85%, for the Jacobian matrix 1.01%,
and for the Hessian matrix 1.06%. Thanks to the sparsity of the derivative matrix and the variational
approach, the average computational time was lowered by an average factor of 6.0 with respect to
the full finite-difference approach for both the cases. This factor resulted lower than the ones of the
examples in Section 5.2 because, in this large-scale problem, a bigger share of the computational
time is employed for the NLP step, which is the same regardless of the approach used to compute
the derivatives.

The discussed analysis led to meaningful and interesting results, which are summarized in Ta-
ble 6.3.

Traj. ID Tdep [date] TOF [days] ∆V [km/s] Final mass [kg] Const. violation
A February 2027 595 1.204 10.189 10−8

B January 2028 392 1.216 10.172 10−8

Table 6.3: Earth-2000SG344 minimum ∆V and minimum TOF rendezvous after variational multiple-shooting.

The necessary propellant ratio is below a reasonable threshold, but this point shall be further as-
sessed when successive studies on other subsystems will be available. The trajectory of minimum
TOF seems the most convenient alternative, as it requires 200 days less than the other employing
only 0.017 kg of propellant more.

This feasibility study is the first investigation of a rendezvous with the asteroid 2000SG344 with
low-thrust propulsion. In fact, all the previous studies analyzed only a high-thrust engine scenario,
which involves bigger and more expensive spacecraft. As in the project presented in [53] NASA plans
to send a crewed mission to the asteroid in 2069, it would be advantageous and effective to visit the
asteroid with a low-cost CubeSat mission to perform reconnaissance and further studies well before
the set date.
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6.2. GTOC9

The Global Trajectory Optimisation Competition (GTOC) [54], also known as the America’s cup of
rocket science, is a worldwide month-long challenge initiated by the European Space Agency in
2005. The goal of the competition is to stimulate and advance research on optimization techniques
for space mission applications.

6.2.1. PROBLEM STATEMENT

Arrived at the 9th edition this year (GTOC9), the problem statement, named The Kessler run [55], re-
quires to design a series of missions to de-orbit 123 debris objects which are gravely compromising
the Sun-synchronous Low-Earth-Orbit (LEO) environment. A mission is modeled as a multiple-
rendezvous trajectory which removes N ≥ 1 debris thanks to de-orbit packages. The i − th mission
starts at a freely chosen debris and it ends when all the N de-orbit packages have been released.

Following a rendezvous with a debris object, the de-orbit package takes 5 days of waiting time at
the debris to complete its operations. After the debris remotion, the spacecraft can reach the next
one only by impulsive maneuvers, i.e. instantaneous changes of the spacecraft velocity. The on-
line validation system marks a rendezvous as valid if the final position and velocity of the spacecraft
coincide with that of the debris under the given tolerances of 100 m and 1 m/s respectively. Con-
straints on the maximum propellant mass of a spacecraft and maximum waiting time between two
rendezvous impose a multi-mission approach.

SPACECRAFT MASS

The mass m0i of the spacecraft at the beginning of the i th mission is m0i = mdr y +N mde +mp . It is
composed by a dry component, i.e. mdr y = 2000 kg, the de-orbit packages contribution, i.e. N mde

with mde = 30 kg, and the propellant mass mp needed to control the spacecraft. The maximum
propellant mass is 5000 kg.

DYNAMICS

Earth is modeled as an oblate planet up to the second spherical harmonics J2. Therefore, the dy-
namics equations can be written in the Earth-centered inertial frame (ECI), defined in Section 2.1.1,
as:

ẍ =−µx
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where µ is the Earth gravitational parameter, req the average equatorial radius of the Earth, and r is
the distance from Earth centre of mass, as already outlined in Section 2.2.2. To ensure this model
to be reasonably realistic, a constraint on the minimum osculating periapsis has been imposed as
rp ≥ 6600 km.

The mass evolves following the Tsiolkovsky rocket equation after each impulsive maneuver ∆V :

m f = mi ·exp
(
− ∆V

g0Isp

)
(6.3)
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where g0 is the Earth gravitational force per unit of mass at sea level, and Isp = 340 s the engine
specific impulse. A maximum of seven ∆V s are allowed per transfer, two for departure and arrival,
and five in-between two successive debris encounters.

OBJECTIVE FUNCTION

The cost function to be minimized is defined as follows:

J =
n∑

i=1

[
ci +α(m0i −mdr y )2

]
(6.4)

where ci is the base cost to launch the i -spacecraft in million of Euro (M€), m0i its initial mass and
α = 2 ·10−6 [M€/kg2] a scaling factor. The launcher cost increases linearly during the competition
month, starting from 45 M€ to a maximum of 55 M€. Therefore, the objective function is composed
by a linear term which favours complete campaigns with low number n of missions, and a quadratic
term preferring lighter spacecraft. The two terms represent conflicting goals, and the overall mini-
mum shall be a good balance between them.

6.2.2. SOLUTION APPROACH

The variational multiple shooting has been applied to the GTOC9 challenge as part of the tools
employed by the team Strathclyde++. The team approach was a three-step process (as depicted in
the flowchart in Figure 6.10) :

• A combinatorial optimization step to generate multi-launch campaigns, performed using a
Beam Search algorithm and a low-fidelity model for quick estimation of ∆V . Among the out-
put solutions generated with different heuristics, the most promising ones have been used as
initial population for a multi-objective evolutionary optimization able to shuffle the debris
sequence, the visiting times and the mass distribution between the launches;

• Global and local optimization of the impulses’ magnitude and time of application within the
single transfers using the differential evolution algorithm MP-AIDEA [56], which employs the
Matlab solver fmincon to refine the minima after a set number of iterations. In this phase, out
of the 1e6 function evaluations, 70% of them were using a non-expansive medium-fidelity
dynamical model, while the other 30% the complete model to ensure a good initial guess for
the next refinement step;

• Local optimization of multi-transfer launches, which was performed to respect the strict con-
straint tolerances and to further minimize the propellant mass of a mission. After a quick ad-
justment with a single shooting employing Matlab’s fmincon, this local step is performed us-
ing the variational multiple shooting developed in the present thesis, to exploit its advantages
in reducing the numerical integration errors and improve the convergence performance.

Figure 6.10: Flowchart of the solution approach [57].



6.2. GTOC9 67

The remainder of the section will focus on the variational multiple-shooting contribution to the
proposed solution. For a complete and detailed explanation of the full approach of the team to the
GTOC9, the paper [57] shall be consulted.

6.2.3. GTOC9: MULTIPLE-SHOOTING OPTIMIZATION

The optimization with the direct multiple-shooting has been set to handle a whole launch remov-
ing N debris. The goal was to locally refine the solution coming from upper levels in the optimiza-
tion cascade where either low-fidelity models, discrete time intervals or low/medium accuracy tools
were used. As a consequence, usually the initial guess was not respecting the required final toler-
ance or it could be optimized further in terms of propellant mass.

Calling y the vector of free parameters, t d
i and t a

i the departure and arrival time to the i -th de-
bris of the sequence, the constrained optimization problem for N consecutive transfers has been
formulated as:

min
L≤y≤U

J =
N−1∑
i=1

n∆V∑
j=1
∆Vi j

s.t. ẋ = f(x)

x(ti ) = xDi (ti ) i = 1, . . . , N

a(1−e) ≥ 6600km

t d
i ≥ t a

i +5 days

t a
i+1 ≤ t d

i +25 days

(6.5)

where xDi (ti ) is the state of the i -th debris at ti , and the last two constraints have been imposed
by the problem formulation to simulate some control operation requirements. Given the nature
of local refinement algorithms, this optimization step cannot handle the initial propellant mass
constraint. Indeed, the latter is just a consequence of the ∆V necessary to complete the given ren-
dezvous sequence, a quantity that cannot be lowered ad libitum.

Each transfer between two debris objects is modeled as a multi-phase problem with discontin-
uous linking conditions (see Section 5.1.5), i.e. the instantaneous velocity change ∆V . In the single
phase, there is no continuous control to optimize and also a single discretization interval could
be used. Nonetheless, m sub-intervals have been introduced to reduce the integration errors and
to enhance the numerical solution of the boundary value problem, restoring the original purpose
of shooting techniques [21]. In particular, this precaution was necessary because a single transfer
could last up to 25 days, which translates in hundreds of revolutions in the fast LEO dynamics un-
der the effect of the full J2 disturbance. Hence, the number of free parameters per transfer sums
up to nyi = 4n∆V +6(n∆V −1)(m −1), where the first term describes the time and three vector com-
ponents of the impulsive maneuvers, while the second term concerns the initial condition of each
sub-interval. Successively, each transfer is connected to the next one by means of a coasting stage,
i.e. the de-orbit phase at the debris, with continuous linking conditions.

To employ the variational approach, the dynamics discussed in Section 6.2.1 shall be enhanced
with the associated first- and second-order variational dynamics. Exploiting the distributive prop-
erty of derivatives, the variational dynamics associated to the term describing the central-body pull
in Equation (6.2) can be derived as shown in Section 4.2.3. On the contrary, the equations describing
the sensitivity evolution caused by the J2 effect shall be derived ex novo. Following the procedures
explained in Section 4.2, the variational equations are derived using the symbolic mathematical and
analytical software Maple 2016 (see Appendix A for J2 Jacobian and Hessian matrices).
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As settings, m = 11 grid discretization points per phase and an RK4 integrator with 120 s time-
step were used. This translates in about 400 free variables per transfer, while the number of com-
plete free parameters depends on how many rendezvous are performed in one mission. Throughout
the competition month, different solutions were optimized with the variational multiple shooting,
however only the final submitted one will be analyzed in this section as the considerations that will
be presented hold as a general rule for this kind of problem and settings.

Table 6.4 summarizes the improvement in initial mass for each mission in the final submitted
campaign when starting from the initial guess given by the previous single shooting step. The saved
mass is mainly related to the number of debris objects removed in a specific mission.

Launch N. debris Init. mass [kg] Opt. mass [kg] Saved mass [kg]
1 2 2527.54 2519.82 7.72
2 8 3640,16 3631,14 9.02
3 9 4988.12 4975.13 12.99
4 5 3163.28 3158.84 4.44
5 4 3330.31 3326.34 3.97
6 5 4500.42 4491.43 8.99
7 7 4753.69 4747.27 6.41
8 17 5322.51 5304.57 17.97
9 15 5208.94 5188.77 20.17

10 16 5601.07 5583.23 17.84
11 10 4304.23 4290.82 13.41
12 9 3486.32 3476.51 9.81
13 9 3649.43 3637.31 12.12
14 7 3481.65 3478.57 3.07

Total 123 57957.66 57809.75 147.25

Table 6.4: GTOC9 Strathclyde++ final solution improvement with variational multiple-shooting.

The variational multiple shooting enhanced significantly the campaign efficiency in terms of pro-
pellant consumption. This improvement reflected in a decrease of about 2 M€ for the total debris-
removal campaign cost. In a number of cases, the initial guess generated by the previous optimiza-
tion steps did not manage to pass the online validation check because of the final state threshold
and/or the minimum pericenter constraint. The multiple shooting, through the enforcement of
proper path and boundary constraints with low thresholds, managed to revert these constraint vio-
lations and produce high-accurate trajectory always able to pass the validation check.

For what concerns the discretized NLP associated problem, the scale ranges from medium to
large depending on the number of transfers for a given launch. For example, mission 1, which re-
moves only two debris objects, employs about 400 free parameters, while the discretization of mis-
sion 8, de-orbiting 17 debris, has a total of about 6400 optimizable variables. The number of sub-
intervals per phase, along with the high number of stages in the complete multi-phase problem,
led to very sparse derivative matrices. Indeed, both the Jacobian and Hessian nonzero elements’
percentages are under 0.1%, as it can be seen in Figure 6.11 where an illustrative and scaled pattern
of a single transfer has been depicted. The secondary diagonal on the right-hand side of the plot
represents the nonzero derivatives with respect to the time of the impulses. As the objective func-
tion depends only on the ∆V , the percentage of nonzero elements can be computed analytically as
DFnnz = 3n∆V /nyi = 3n∆V /[4n∆V +6(n∆V −1)(m−1)], approximately 5% given the settings as above.

The variational approach leads to an average gain of 6.5-7.0 in CPU-time, depending on the
number of rendezvous in the mission, which determines the number of phases. In this example,
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Figure 6.11: Scaled Jacobian sparsity pattern of single GTOC9 rendezvous transfer with 5 ∆V .

the variational approach results to be more effective than the case discussed in Section 6.1 because
the associated NLP subproblem is averagely smaller, and therefore it takes a lower percentage of the
total computational time. Indeed, it involves sparser Gradient, Jacobian and Hessian quantities for
comparable orders of free variables.

6.2.4. GTOC9: CONCLUSIONS

Thanks to the GTOC9, the variational multiple shooting has been validated against a novel problem
scenario which challenged 69 teams worldwide. As shown in the previous section, the algorithm
developed in this thesis proved to be crucial to make the solution satisfying the required constraints
within the set threshold, and as a consequence to make the final campaign valid for the online
check tool. By means of discussion on the GTOC forum [58] and at the GTOC special session at the
31st ISTS, 26th ISSFD & 8th NSAT Joint Conference in Japan, where the paper [57] was presented,
it emerged that teams using only a single shooting method had convergence issues and solutions
rejected from the validation tool. These debates further confirm the advantages of the employed
multiple shooting algorithm and its compatibility with the problem dynamics. Furthermore, the
tool resulted beneficial in terms of objective function optimization as well, as it manages to lower
the propellant mass considerably. The variational dynamics managed to speed-up the computation
burden dramatically, giving an additional validation of the usefulness of this technique.

Thanks to the solution approach discussed in Section 6.2.2, the team Strathclyde++ ranked 6th

in the competition, as it is reported in Figure 6.12 showing the score of the teams who submitted
valid solutions.
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Figure 6.12: Top 15 solution rankings for the GTOC9 [54].



7
CONCLUSIONS

This chapter, which concludes the thesis report, has the purpose to summarize and present the re-
search results from a broader picture, with a particular focus on the contributions yielded to the
related optimization literature. In addition, ideas for possible future improvements or research de-
velopments of the topic will be suggested.

7.1. RESEARCH OUTCOMES

The objective of this thesis research was the development of a numerical optimization tool using
the propagation of the associated variational dynamics to compute the derivative information. This
variational approach was the major novelty element, and therefore has been the center of theoreti-
cal development, analysis and assessment. In order to perform this investigation, theoretical back-
ground information about orbital mechanics and optimization theory were needed. The former,
analyzed in Chapter 2, constituted a useful summary of astrodynamics topics and tools which have
been used at later stages in the thesis. For example, the reported perturbation mathematical models
were beneficial for the examination of the space related examples’ dynamics and results, while the
discussed inverse method has been used for the first-guess generation of a low-thrust interplanetary
trajectory. On the other hand, the optimization theory, examined in Chapter 3, represented a cru-
cial study for the transcription method selection and for identifying the potential usefulness of the
variational approach. Once these background elements had been reviewed and critically examined,
three major novel contributions have been introduced in the central part of the thesis:

• In Chapter 4, the theory of variational equations for optimization applications has been for-
mulated in detail, expanding considerably the preceding concepts available in literature. In
particular, the second-order variational equations are a novel mathematical development, a
result of the author’s personal contribution;

• The analysis of the variational approach performance, another almost overlooked topic in
literature, has been carried out between Chapters 5 and 6. This novel technique proved to en-
hance dramatically the efficiency of multiple-shooting algorithms by speeding-up the deriva-
tive computation up to one order of magnitude less for some applications. Both elementary
test cases with known solutions and complex large-scale optimization problems have been
used for validation and performance assessment, and the results’ analyses have always sup-
ported the improved efficiency and the high-accuracy of the variational multiple shooting
tool;
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• The optimization applied to the complex test cases in Chapter 6 led to interesting and chal-
lenging results. For what concerns the CubeSat-asteroid rendezvous, this phase 0 study led
to a feasible trajectory with reasonable propellant mass consumption. Moreover, the 2028
trajectory to the NEA 2000SG344 could be of interest for an actual low-cost asteroid recon-
naissance mission preceding the proposed 2069 manned mission investigated by NASA. Re-
garding the Kessler Run application, the variational multiple shooting yields to the saving of
a huge portion of propellant mass, in particular if we consider that the initial guess was al-
ready generated using a single-shooting method. Furthermore, it managed to generate high-
accuracy trajectories able to respect the imposed strict constraint thresholds, where other
methods failed. The developed tool helped the team Strathclyde++ to finish 6th in a world-
wide renowned challenge as the GTOC.

7.2. FUTURE DEVELOPMENTS

The variational multiple shooting tool developed in this thesis still has room for improvements.
Interesting future developments could be the substitution of the multiple shooting with a parallel
shooting [3], an algorithm which propagates the quantities corresponding to independent shooting
sub-intervals on different processors of the desktop hardware. Although WORHP already employs
parallel routines for the nonlinear programming step, these parallel processes would not be in con-
flict as the propagation phase and the NLP sub-routines are consecutive non-simultaneous steps.

Another possible future study would be the characterization of the variational approach per-
formance with different NLP algorithms, to assess which solver is more suitable to be interfaced
with this technique. Indeed, different NLPs employ different heuristics, group methods for finite-
difference derivative computation, and different algorithms for the solution of the nonlinear con-
strained optimization problem.

Additionally, it would be beneficial to generalize the tool to work on non-sequential multi-phase
problems, while currently it is designed only for phases sequential in time. This generalization
would allow the optimization tool to take into account simultaneous dynamics and/or constraints.
For example, in launcher trajectory optimization the constraint on a stage impact point is concur-
rent with the other stages’ course optimization. For space applications, an interesting case could be
the simultaneous optimization of probe and lander trajectories after their separation.

Lastly, the development of a hybrid tool, as discussed in Section 3.2.4, would be an interesting
field of research, in order to exploit the advantages of both collocation and shooting techniques,
reduce the dependency on external tools to generate initial guesses and improve the computational
performance and numerical stability.
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A
J2 VARIATIONAL DYNAMICS

Jacobian and Hessian matrices associated to variational dynamics of the J2 oblateness perturbation.

Figure A.1: Jacobian Matrix of J2 dynamics computed using Maple 2016.

Figure A.2: Hessian Matrix of the velocity x-component of J2 dynamics computed using Maple 2016.

Figure A.3: Hessian Matrix of the velocity y-component of J2 dynamics computed using Maple 2016.
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Figure A.4: Hessian Matrix of the velocity z-component of J2 dynamics computed using Maple 2016.
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