
Analyzing the Criticality of Apache Maven Packages Through a Temporal
Dependency Graph

Denis Corlade
Supervisor(s): Georgios Gousios, Diomidis Spinellis

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
Developers rely on different software to improve
their efficiency as to reuse parts of code and be
able to maintain it with ease, which is why open
source software libraries have gained much pop-
ularity over the past years. This paper analyzes
what are the most used packages from Apache
Maven, which is a build automation tool used
primarily for Java projects. In order to do an
accurate analysis, it is necessary to collect all
the packages and their dependencies from the
Maven Central Repository. But, as of 5th of May
2022, analyzing the whole repository proves to
be an extreme challenge, as the repository has
9M of indexed artifacts, which contain metadata
such as the version and a list of dependencies.
Besides, there are many more other repositories
that also contain such artifacts. Thus, this pa-
per examines only a small subset of artifacts and
provides a data structure that is able to take into
consideration the time dependency between li-
braries, which can be also scaled to suit a much
bigger input. The paper concludes with the most
used software on given time-frames, but with-
out specifying any time frames, the popular junit
package comes out first.

I INTRODUCTION

Maven1 Central Repository is one of the biggest repositories
of Java Virtual Machine (JVM) artifacts, which consists of
information about the name of the package, the date of up-
load, the exact version that the package uses and a list of de-
pendencies on other artifacts. Maven provides tools to allow
software engineers to reuse code and "to allow a developer
to comprehend the complete state of a development effort in
the shortest period of time", as the developers of Maven have
stated. As Mohagheghi et al. also stated [15], there exists
significant evidence on apparent productivity gains from us-
ing such automation tools. It is for these reasons that such
tools have been adopted by many people, and thus, they are
also keen on knowing which are the most used libraries of a
specific language, such as Java. In this work, an analysis on
some packages from Maven Central repository will be per-
formed by taking into account the timestamps at which the
packages were released. Therefore, it will allow for an accu-
rate dataset which will be further analyzed to find any intrigu-
ing correlations.

Besides simply analyzing packages to find the most used
ones, it is of extreme importance to do analysis of the soft-
ware, as simply pulling software without any examination
done might have unfortunate effects. For instance, a few cases
of such a misfortune are:

- Java library Apache Log4j. Log4j2 was a widely used
software which provided logging utility. In 2021, it was

1https://maven.apache.org/
2https://logging.apache.org/log4j/2.x/

discovered that Log4j posed a vulnerability that could al-
low a threatening user to take remote control of the cus-
tomer. It is mentioned in this paper [9] that 17,000 pack-
ages were affected by this malware, which amounted to
4% back of the Maven Central Repository at the time of
the analysis.

- Equifax3 incident. The incident can be briefly de-
scribed as a major cybersecurity breach that should
never have happened. The cause of it was a package
named Apache Struts, a package which Equifax’s soft-
ware depended on, which suffered from a vulnerabil-
ity. A patch for the mentioned vulnerability was re-
leased months before the incident happened, but because
Equifax did not update the vulnerable software, it re-
sulted into a data breach that affected roughly 148 mil-
lion customers [19].

Mostly, it is because of transitive dependencies that such mis-
fortunes happen, as they often lead to adding fragile packages
unintentionally [10].

Moreover, in 2014, an empirical study [20] was conducted
on 26 million builds, including some from Java. It is stated
that developers build 6.98 times a day and out of those, 29.8%
fail. The most common cause of these fails was found to be
in the dependencies between packages. Besides, this work
found out that developers with either very low failure rates or
very high failure rates tend to rarely build, and thus, it shows
that inexperienced developers could use a helping hand on
knowing the packages they work with.

Previous research has been conducted on this topic, but it
is incomplete, as it suffers from one major issue, which is
not allowing the user to query at a specific moment in time,
and thus not allowing developers to check for any backwards
compatibility between dependencies. It is analyzing packages
by linking them together, which shows the data is imprecise
due to missing the time component. Therefore, the data it
provides cannot be fully relied upon.

To give a brief overview of the problem at hand, which is
something that is not taken care of in the research explained
above, an example like the following would suffice:

- Library A releases a version at time 1, named A-1.1

- Library B, which depends on library A’s latest version at
the current time, is releasing a version at time 2. There-
fore, library B depends on the node A-1.1

- Library A releases a version at time 3, named A-1.2

- Library C, which depends on library B, releases a ver-
sion at time 4. Therefore, it also depends on library A.
Library C should depend on the latest version of library
A, which is A-1.2, even though library B depends on
version A-1.1

Thus, querying on T2 will show package B-1.1 depend on
A-1.1, while querying on T4 will show package C-1.1 de-
pending on package B-1.1 and transitively depend on A-1.2
instead of A-1.1.

3https://www.equifax.co.uk/

Figure 1: Graph representation of the above problem

The final goal is to measure the number of packages to
present an overview of the most used software in Java, tak-
ing the above example into account. If that is accomplished,
a number of aspects can be concluded, such as if criticality
has any correlation to the number of downloads of a package.
Thus, finding answers for the research question "What are
the most widely used Java packages at a given time?" will
provide a quantitative and qualitative analysis which consid-
ers the time component. To achieve the goal and answer the
research question, three sub-questions have been constructed
to divide the problem into smaller pieces which need solu-
tions:
RQ1: What would a graph data structure for package depen-
dencies that contain a time component look like?
RQ2: Does the introduction of time increase precision?
RQ3: What are the most widely used Java packages?
Therefore, this work is set out to resolve these questions as
they will provide evidence that the data is well analyzed and
precise, thus giving users a genuine and reliable overview of
the most used packages.

Structure. Section II contains important terms that are
commonly used throughout this paper under subsection A,
while it also contains related work that provide as background
to this work in subsection B. Afterwards, section III describes
the methodology and presents a brief overview of the research
sub-questions. Results are presented in section IV. Further-
more, responsible research and reproducibility are discussed
in section V. A discussion of the results is showcased in sec-
tion VI, while also going over the threats to validity and limi-
tations of the paper. Lastly, section VII summarizes the work
done in this paper and proposes further possible improve-
ments.

II BACKGROUND

This section contains brief explanations in regards to some
terminology terms while also covering more in depth the re-
lated work already done on this subject.

A Terminology

The main subject of this paper is to analyse the packages of
Maven along with their dependencies. Packages (artifacts), as
explained briefly in the above section, provide reusable code
for developers to use in their applications and can be added to
the projects by using dependency management tools, such as

Maven. In Maven terminology, these artifacts are a product
that is generated after a Maven project build. Packages can
have multiple versions and are always available in reposito-
ries.

• Dependency. Packages can depend on other packages
and thus form a dependency. A dependency is defined
as link to a particular package that needs to be built on
in order to run the project, thus, something that you rely
on. When package A depends on another package B,
it means that A has a dependency on B. On the con-
trary, it can also be defined that B has a reverse depen-
dency, meaning that B has some package depending on
it. Moreover, dependencies are defined in 2 ways: di-
rect dependencies and transitive dependencies. Direct
dependencies are dependencies that are clearly specified
in the package’s metadata, and which they need to build
themselves. The latter, transitive dependencies, are de-
pendencies of another dependency that the initial pack-
age relies on.

• PDN, TDPN. Packages and dependencies, when put to-
gether, create a package dependency network (PDN),
with the packages being the nodes and the dependencies
being the edges that connect the nodes. When adding the
time component in the equation, these become tempo-
ral package dependency networks (TDPN). TDPNs al-
low for an extension with the possibility of filtering on a
specific time frame.

• Exclusions. Besides the information stated above,
which applies to mostly all packages despite the lan-
guage, Maven also contains exclusions in the packages’
metadata. Exclusions are generally dependencies that
come from transitive dependencies but are not wanted in
the project. Hence, by using exclusions, Maven allows
protecting projects from vulnerable software as men-
tioned in the previous section.

• POM (Project Object Model) files are XML files that
contain the metadata of an artifact, meaning, informa-
tion that is necessary to build the project. Each pack-
age has its own POM file. What defines a package to
be unique is the 3-tuple ’GroupID:ArtifactID:Version’
that can be found in the POM file. GroupID combined
with the ArtifactID represent the name of the library. Ef-
fective POM is a file generated from the simple POM
(POM) file + the super POM file, which is the parent
POM file. The effective POM combines all the configu-
ration needed and specifies exactly all the dependencies
of the artifact.

• PageRank is an algorithm used by Google Search to
rank web pages by finding out how important a page is in
addition to how relevant it is. It does that by calculating
the links between nodes and sorting them by the highest
scorer. Similarly, as Gleich et al. [8] also pointed out,
this algorithm can be applied to any graph or network
domain, including calculating the most linked packages
in this research.

B Related Work

This section will contain relevant information on previous
work that relates to this paper. It will briefly analyze the time-
dependent graph structure, while also targeting some other
work on the Maven ecosystem. Thus, going over related work
and other conclusions in this field of study help to provide
some answers to the work this paper covers and allow for a
broader understanding of the problem at hand.

Time dependent graphs. Even though there have been
multiple papers in regards to simple graph data structures, not
much work has been put in acknowledging the possibilities of
a time dependent graph data structure. As stated in this paper
[22], static graphs have been extensively studied, but there is
still far from having a concrete set of structures and algorithm
frameworks for time-dependent graphs. Therefore, it is up to
us to discover whether, for example, the design of this struc-
ture could support scalability. Furthermore, the paper goes
on to explaining different models of possible TDPNs. One
of those models is a snapshot-based system, which goals per-
fectly suit the work needed for the success of this project. To
briefly summarize this model, it manages to divide the TDPN
into multiple static graphs (snapshots) over time, that when
put together, give the impression of a dynamic graph. How-
ever, the system also has its limitations. When faced to gen-
erate snapshots for a relatively large input, it consumes large
storage space and takes plenty of time for querying. There-
fore, the authors’ work can provide important wisdom in cre-
ating the network’s evolution and observing how the packages
influence themselves transitively. In conclusion, as this work
puts emphasis on creating a scalable data structure, it remains
to be seen in section III how this problem is tackled.

Similar work. A study that analyzed the project from
Maven Central repository in September 2018 [6], found that
in order do complete this task, a huge dataset has to be ana-
lyzed, as the numbers of JVM artifacts was around 2.8 mil-
lion back then, now increasing to 9M 4 artifacts. Besides
this problem, the paper also stated that "dependency relation-
ships among artifacts are not modeled explicitly and cannot
be queried". Despite these limitations, the work provided a
custom Neo4j5 Docker image with the entire dataset that was
analyzed by them. Although the dataset in question focuses
only on artifacts from Maven Central repository and also ex-
cludes low-level metadata such as dependency exclusions, it
can be adequate to this paper as it can be used as a compari-
son between snapshots, in order to measure the accuracy and
precision of the final results.

Moreover, there exists another work that has analyzed
packages of popular programming languages, which is Li-
braries.io [1]. This work collects and analyzes packages from
multiple dependency managers, including Maven. While it
takes care of collecting the packages and their dependencies,
it does not resolve the problem mentioned in Figure 1. With
that in mind, it is hard to track the history of dependencies
of a package or query at a specific time. Thus, although the
work can indeed be helpful to the community, it is incom-

4https://search.maven.org/stats
5https://neo4j.com/

plete. This paper adds what is missing to a particular part of
that work and will compare the accuracy of the final data to
the dataset provided from Libraries.io.

To add to the list of previous work on the Maven Central
repository, Kula et al. created a graph [11] to showcase the
evolution of software systems and their library dependencies
over time. Although the dataset analyzed is quite small, com-
posed of only 6,437 artifacts, the work provides a model that
allows to visualize some packages’ popularity from the su-
per repository. However, the paper does not consider transi-
tive dependencies and thus the data provided cannot be fully
trusted. Nonetheless, it provides useful insight on querying
and representing artifacts over time.

Ecosystem. Panichella et al. in reference [4, p. 38] ana-
lyze the project dependencies in the Apache ecosystem and
conclude that "the dependency phenomenon has an exponen-
tial growth and should therefore carefully be considered by
developers contributing to the ecosystem". In another pa-
per [5], the authors analyzed project inter-dependencies in the
Apache ecosystem and deduced that whenever a new release
of a project comes out, in 69% of the cases, developers do not
update it, as they prefer updating only when major upgrades
come out. In similar fashion, German et al. in reference [12]
show that 81.5% of the projects they studied contained out-
dated dependencies. Moreover, Pashchenko et al. [16] intro-
duced the term of halted dependencies, and when analyzing
a sample of data, they found out that 14% of the dependen-
cies are halted and 1% of them contain known security vul-
nerabilities. The authors also added that these halted depen-
dencies could introduce even more bugs when adding transi-
tive dependencies, and thus expose the root library instance
to bugs. On another note, Soto-Valero et al. discovered in
reference [21] that more than 90% of the most used libraries
are not the latest releases, when they analyzed a majority of
the Maven Central repository. Thus, it is of even more impor-
tance to analyze the packages before pulling them into your
project. There have been multiple works that have analyzed
of ecosystem being exposed to vulnerabilities and this paper
aims to provide a solution and raise awareness to developers.
By always having an analysis of upgrades of dependencies,
you minimize the risk of getting into a position similar to the
one mentioned in section I regarding the Equifax incident and
risking a major exploit happening because of not triggering an
update to the newest release version.

Although there have been many works on analyzing the
Maven Central repository and its packages, not many have
allowed querying at a specific time on the dataset they pro-
duced. Besides, many of the works did not go in depth on
taking all the metadata into consideration, such as transitive
dependencies or exclusions. The writings take into consid-
eration only the transitive dependencies of packages at their
latest release version and disregard the possibility of drastic
changes over time.

III METHODOLOGY

In this section, particular attention will be paid to describe
the data gathering process, structuring the temporal graph and

thus creating the TDPN. Moreover, answers to the research
questions mentioned in section I will be provided in order to
reach the goal of the paper.

A Overview

This work studies the ecosystem of Java as it is one of the
most used languages in 2022 [2]. Additionally, this language
also hosts a central repository, as mentioned previously in this
paper, the Maven Central Repository, which contains a very
large number of the most commonly used packages available
to date. Maven Central updates the packages by updating a
weekly index, constantly adding to the dataset of the already
9 million packages. This work will gather packages from this
weekly index. Packages provide source code that can be of
use to some developers, which can request these by using the
dependency manager, Maven.

To obtain the required information needed for each pack-
age, we access the effective POM file of each package. Each
package’s information is put into a single JSON file, which
is given input to a graph network. The network is then opti-
mized to allow algorithms such as PageRank to be performed
on it. Querying is also implemented on the network, such
data all dependencies of a package can be seen at any point in
time, and thus see an evolution of the ecosystem.

Research Questions. Research questions provide a path
through the research and serve as an evaluation method.
Thus, finding answers to them is crucial for achieving the goal
of the paper, answers that can be found throughout this sec-
tion and also section IV. Furthermore, an explanation of why
these 3 sub questions were chosen is given:

RQ1 (Structure) Not much is known about time depen-
dent graphs or TDPNs, and especially in this field of work,
there were not many attempts on using a time structure.
Therefore, it is up to us to discover whether, for example,
the design of this structure could support scalability. Thus,
answering this question provides an understanding of the cur-
rent state of time dependent data structures.

RQ2 (Precision). As the time introduction provides more
cases to test, we have to be sure that the preciseness of the
data matches the ground truth. Therefore, a comparison of
resolutions of the ground truth with a resolution of a simple
non-time dependent graph structure will be constructed. Fi-
nally, a comparison of those results with a time dependent
graph structure can be performed. Our goal is to have a preci-
sion that matches the ground truth, and if introduction of time
makes backwards resolution precise.

RQ3 (Criticality). Once the data from the structure has
been verified for precision, a list of the most used packages
can be drawn out. Consequently, it is time to analyse it to
check for any correlations. It is important to check if there
is any resemblance between the number of download counts
and the importance of a library. That is possible by using
the PageRank6 algorithm. Further algorithms will be tested
on the dataset to find any similarities between packages and
dependencies.

6https://neo4j.com/docs/graph-data-
science/current/algorithms/page-rank/

B Data gathering

The dataset is composed of circa 40K different package ver-
sions. The source for these packages was a Zenodo7 dataset
containing 2.4M unique artifacts, which were all the artifacts
that the Maven Central Repository contained as of Septem-
ber 2018. The CSV8 containing the names of these artifacts
was loaded in and for each of these packages, a script using
mvn dependency:get9 command was performed to get each
artifact’s POM file. The list of names was shuffled such that
the artifacts downloaded would not be from the same sphere,
although at the cost of a more sparse graph. The metadata is
parsed first by parsing the effective POMs of the POM files
generated, except for their release date, which was scraped
from the Maven Central Repository HTML webpage. Some
timestamps are missing, mostly from ancient package ver-
sions. As the dataset gathered is already on the low number, a
decision to assign a constant value (0001-01-01T00:00:00Z)
to them was taken, and thus, they do not impact the other data.
Exclusions are also taken into account, as it would be inaccu-
rate to count transitive dependencies that are not wanted by
the authors of the library.

New packages are released every week as an incremental
to the index10 that the Maven Central Repository holds. The
incremental can be downloaded and indexed, upon which the
same procedures can be performed to collect the data and add
it to the final JSON file that the graph needs to be fed, such
that the work is not limited to the time of its creation.

C Graph Structure

When deciding to model data with a network, it is essential of
thinking what nodes and edges represent. When it comes to
this field of work, an effortless approach is to consider pack-
ages as nodes, and all the dependencies as the edges that link
them. Each package version is treated as an individual node
such that there is no deceiving information about the analysis
of the graph. Thanks to this work [10] that studied differ-
ent network constructions, if it were to construct a network
with an aggregated approach of having nodes per name of
package, it would give a false image of the data. Another
similar idea was considered, but instead to add attributes on
the edges, such as timestamps and versions. These 2 latter
ideas were discarded as one main requirement of the graph is
to be as fast as possible to be able to handle big amounts of
data, and thus a decision was taken on having simple edges
without attributes and simple nodes with a unique id. Thus,
even though the number of nodes would be bigger, it would
still be more efficient than storing other unnecessary infor-
mation in the graph, and it also proved to be easier to main-
tain. Furthermore, to prioritize the efficiency, Go (Golang)
was chosen as the language for implementation, as it is sim-
ple to use and provides quick compilation, while also allow-
ing for easy upkeep with its tools for automatic code mainte-

7https://zenodo.org/record/1489120
8https://en.wikipedia.org/wiki/Comma-separated_values
9https://maven.apache.org/plugins/maven-dependency-

plugin/get-mojo.html
10https://repo.maven.apache.org/maven2/.index/

nance [7]. Thus, the project uses one of Go’s popular pack-
ages, gonum11. Gonum contains a generalized graph (net-
work) package for Go language, which sped up the process
for creating the graph-like data structure.

By using the above approach, when answering what are the
most used packages on a specific time range, all project ver-
sions are considered and the result is accurate. Although this
likely will create a more dissociate graph, it is the best way of
assuring the integrity of the result. In regard to querying, the
graph was created static such that it would be more efficient
when generating the graph (compared to a dynamic one),
even for much larger input. The structure uses the snapshot-
based approach mentioned in B such that it allows querying
by converting the TDPN into multiple static graphs.

However, the approach chosen in regard to modelling the
graph structure makes it hard to compare the results to some
other existing work, for example, Libraries.io [1], as they use
the aggregated nodes approach. The other existing work per-
formed by Benelallam et al.[6] uses a similar approach and
can be used as a ground truth to compare whether the time
component made had an impact in improving the accuracy.

To add more to the graph construction, a decision was taken
to only create nodes for artifacts that are specified in the input
file, and not when new dependencies come in. For example,
if package A depends on package B, but package B is not
found in the JSON file outside of it being mentioned as a
dependency, then package B does not have a node created
and thus the edge from A to B does not exist. This approach
was chosen as it heavily adds to the efficiency of the graph
creation, although it misses data when smaller datasets are
used.

D Resolving dependencies constraints

The challenge that arose with this is that many packages state
their dependencies under a constraint. This is required be-
cause of the huge number of dependencies that exist nowa-
days, and thus the appearance of the popular term "Depen-
dency hell" [3]. Therefore, a convention exists in the soft-
ware development ecosystem surrounding constraints and
version names. That is, SemVer [17], which consists of
a set of rules and requirements that specify how versions
should be named and how constraints are specified. Con-
sequently, versions name should follow the structure of MA-
JOR.MINOR.PATCH, with optional extensions labels for pre-
release and build metadata. Furthermore, a constraint de-
notes what versions of packages the artifact in question de-
pends on. The general syntax rule in place for those is speci-
fying a version that is preceded by one of the following char-
acters: [<,>,=, <=, >=, ! =]. An example of how a con-
straint would be treated can be found in Figure 2. The im-
plementation made use of a parsing library12 from Go that
simplified the process. It is also assumed that unstable re-
leased are taken into account when querying only when the
constraint specifically mentions an unstable constraint. This
decision was taken after different developers argued [14] that

11https://www.gonum.org/
12https://github.com/Masterminds/semver

unstable releases should not be included if the author did not
specify them in the constraint. However, not all languages
use the general convention when it comes to constraints, as
Maven uses ranges, such as (, 2.1.3] . As a consequence,
the ranges that Maven uses for constraints had to be trans-
lated to the characters that SemVer makes use of. Therefore, a
function that translated every version syntax range [13] from
Maven into the usual SemVer convention was built. Further-
more, one of the cases of these constraints was leaving the
version as it is, without any added parentheses, for instance,
1.3.2. Maven treats this as a soft constraint, meaning that it
would like to have this version, but if not, it will search for the
first version that came after 1.3.2. Thus, for the integrity of
the results, this case was treated as >= 1.3.2 , as theoretically,
any version after 1.3.2 could be considered a dependency.

Figure 2: Creating edges based on constraints

Furthermore, when it comes to data from specific time
ranges, a query can be performed on the graph, allowing the
user to select the edges (dependencies) that match the latest
available correct version while respecting the time interval.
The following example in Figure 3 would suffice to gain a
better understanding:

Figure 3: Graph query on a time interval

IV RESULTS

A Describing the data structure (RQ1)

In this subsection, a description of the graph data structure
will be given and how it can incorporate the time aspect.

Initially, a dataset of 100K POM files was collected but due
to technical limitations, only 40K were used. More exactly,
the graph contains 41671 nodes (artifacts) and 1587503 edges
(dependencies). Figure 4 shows a visualization of the graph
using a popular tool, Graphia13. A large connected subgraph
can be observed in the middle, while the outer lines either
contain small subgraphs with a few links or nodes that do
not depend on anything, nor do they have a reverse depen-
dency. Having this many nodes unrelated to the main con-
nected component is a side effect of having a smaller dataset
in use, as although there exist more packages that have depen-
dencies, if the dependencies packages are not nodes already,
there will not be any edges connecting them.

Figure 4: Visualization of the dataset in a graph

The graph is composed of as little information as possible
so that it supports larger input data. More information on how
the graph was thought out and built can be found in section
III. However, what is of interest is if adding the time compo-
nent in the graph retains the correctness of the data. There-
fore, it is useful to check whether dependencies of a random
artifact match the dependencies shown in the repository man-
ager. To get all dependencies of a package from the graph,
one can make use of a query "Find all possible dependencies
of a package", which performs a Breadth-First Search start-
ing from the node that is given as input. For instance, take the
widely popular testing package junit:junit:4.13.2 as an exam-
ple in table I

As explained in section III, if a version is provided as it
is without any ranges to specify its constraint, it is treated
as "bigger than". Thus, the dependencies selected satisfy the

13https://graphia.app/

TABLE I: Dependencies (direct and transitive (t)) of ju-
nit:junit:4.13.2

GroupID:ArtifactID (constraint) Versions
org.hamcrest:hamcrest-core (1.3) 2.1, 2.2
org.hamcrest:hamcrest-library (1.3) 2.1, 2.2
(t) org.hamcrest:hamcrest (2.1) 2.1, 2.2

requirement (>= 1.3) . A quick look on the repository14 can
show exactly that the above dependencies are correct.

B Precision when including time (RQ2)

Table I does not take time into consideration, and in case one
is to query for a specific interval, it would not provide the
wanted results. Thus, the TDPN created allows for querying
on the structure given a time range and will provide only the
dependencies that were released in that time frame. Table II
shows the results.

TABLE II: Dependencies (direct and transitive (t)) of ju-
nit:junit:4.13.2 after 2019

GroupID:ArtifactID (constraint) Versions
org.hamcrest:hamcrest-core (1.3) 2.2
org.hamcrest:hamcrest-library (1.3) 2.2
(t) org.hamcrest:hamcrest (2.1) 2.2

Compared to the previous table, it only shows the 2.2 ver-
sions, as the 2.1 versions appeared in 2018 and therefore are
not considered in the above query. Consequently, this also
proves as a definite answer that time indeed improves the
precision of the data structure. A TPDN is always going to
improve on the accuracy of data over a PDN at the expense
of some efficiency due to querying on snapshots. Moreover,
querying can also be used to find the latest dependencies of a
package on a given time interval by using the function "Find
the latest dependencies of a package", which again performs
a Breadth-First Search but which is followed afterwards by a
filtering to select only the latest artifact. Therefore, using this
method, one can easily replicate the results that are shown
when listing the dependencies of a package through Maven’s
dependency manager.

14https://mvnrepository.com/artifact/junit/junit/4.13.2

Let:
• A be the set of transitive dependencies resolved by the

package manager, Maven
• B be the set of transitive dependencies resolved using

the implemented TDPN
• E be the number of dependencies that have a correct

name but incorrect version
We calculate the accuracy of the algorithm by the following
formula [18]:

Acc =

{
1− |A|−|(B∩A)|+0.5∗E

|A| , if |A| ≠ 0

1, otherwise
(1)

Table III contains the accuracy values for the top 5 most
used packages as defined by the Maven repository, where
the data was manually downloaded as to not miss any nodes.
Although slf4j-api and scala-library do not have any depen-
dency, it is still beneficial to make sure that the graph does not
attribute any as well. However, there is on dependency that
was missing from the list received when calling for all the de-
pendencies of the artifact guava, as one of the versions could
not be resolved by the Maven translator, as the name was not
specified according to the SemVer conventions. Performing
the following formula on other parts of the dataset where de-
pendencies nodes are missing might result in low accuracy
values.

TABLE III: Accuracy value of a package’s dependencies

GroupID:ArtifactID:Version Value
junit:junit:4.13.2 1
org.slf4j:slf4j-api:1.7.36 1
org.scala-lang:scala-library:2.13.8 1
com.google.guava:guava:31.1-jre 0.833
org.mockito:mockito-core:4.6.1 1

C Analysis of packages (RQ3)

In this subsection, a few remarks are made regarding the most
used packages from the subset collected, while also applying
some metrics to measure criticality.

To obtain the most used packages from the dataset, the
PageRank algorithm is applied. To get a list of unique results,
such that an artifact’s versions do not appear multiple times, a
filter is applied on the graph that only keeps the latest package
versions. Figure 5 lists the 10 most used packages using the
PageRank algorithm. As the algorithm is non-deterministic,
the results can slightly vary. Thus, this list was taken by av-
eraging the results of the algorithm after 5 iterations.

Besides the PageRank algorithm, another metric to mea-

Figure 5: Top 10 most used packages ranked by PageRank

Figure 6: Top 10 most used packages ranked by Betweenness

sure the use of the package is Betweenness Centrality15. This
algorithm detects the amount of influence a node has over
the graph by measuring how often a node appears on shortest
paths. Figure 6 shows the 5 most used packages by applying
the above described algorithm.

Evidently, the results are quite different. Although some of
the packages can be found in both tables, such as "mockito-
core" or "otg.testng:testng", the 1st ranked package from Fig-
ure 6 cannot be found anywhere in the first 100 packages from
Figure 5. This is because betweenness centrality is not suit-
able for ranking the large scale networks, while it also fo-
cuses more on measuring how many shortest paths include
a certain node. PageRank, however, insists more on scoring
higher nodes that are linked by other high score nodes. Note
that there is also a difference in the distribution of the results.
In the PageRank calculation, the ranking drops much quicker

15https://neo4j.com/docs/graph-data-
science/current/algorithms/betweenness-centrality/

as the first few nodes have much more importance, while the
scores from the Betweeness Centrality algorithm do not have
such a sudden drop, indicating there are more packages that
are used in these shortest paths calculated.

D Analysis of packages depending on time ranges
(RQ)

Now that the previous research questions have been an-
swered, the initial research question this paper revolved
around can also be resolved, that is, What are the most used
packages on given time frames? Figure 7 can answer ex-
actly this. The figure plots PageRank’s ranking performed
on time ranges starting from 2005 up to 2022. For instance,
it computed the algorithm for the period 2005-2010, 2005-
2013, 2005-2016 and so on. The reason why 2005 was chosen
as a starting year is because before that, not many packages
are recorded. Many packages that are believed to be from
before that period did not have a release date and thus, were
not considered in the computation. Moreover, if a package’s
position is last in the graph, so ranked 20th, it means that the
package did not appear at all in the top 20 most used packages
on the specific time frame.

By analyzing Figure 7, a few interesting trends show up:

1. junit is once again top of the list, except for the 2005-
2019 period. That is because after 2015, not a single
other stable version was released until 2020. Thus, al-
though the graph still calculated the version released in
2014, it was still not popular enough to appear in the top
20 packages used over that period.

2. slf4j-api was the runner-up of most used artifacts up un-
til 2019. This decline is clearly due to the incident in-
volving log4j, which is explained briefly in section I.

3. mockito-core and easymock are packages that provide
mocking for testing. A clear trend can be seen here that
easymock was the preferred mocking package up until
2016, when mockito-core made its way around and be-
came more and more popular. After the rise of mockito-
core, easymock has slowly dropped outside the top 20
most used software.

4. hamcrest-core is probably the least expected software to
appear on the list, but with the rise of junit, hamcrest also
picked up places in the rankings, especially in the lat-
est years. Given the smaller dataset and how PageRank
looks ranks high nodes that are linked to other important
nodes, this is no surprise.

For these reasons alone, it is clear as to what the time di-
mension adds to the perspective, and although much of it re-
lates to the popularity of the simple "download count" metric,
it is more complex than that.

V RESPONSIBLE RESEARCH AND
REPRODUCIBILITY

A Ethics

The field that is covered by this paper generates minimal eth-
ical risk, except for a few points. Thus, all the sources from
which the data was acquired provide licensing agreements
which have been well respected. Some sources specified how
the data should be used and that has been done accordingly,
as well as citing the work used as required. AS the research
did not contain any human input or other sources that needed
consent, there are no other involvements that cause ethical
risk.

B Reproducibility

In regard to reproducibility, everything can be redone with
ease by following section III and IV. To obtain the same re-
sults, it is a requirement that the same dataset of unique arti-
facts needs to be used. The dataset of used packages can be
found here: https://zenodo.org/record/6653542. It contains a
JSON file that contains all packages that were put in the graph
and analyzed.

However, the first research sub-question can be interpreted
differently if one desires. The graph structure can be done fol-
lowing an aggregated nodes approach, while the querying can
be performed with using a different model from the snapshot-
based one. If the same approaches and models are used, then
the results gathered should be the same if you allow for a
very small margin of error. When answering the third re-
search sub-question, different algorithms can be applied and
thus different results can be obtained. If one is to reproduce
the work done here, it should use the same libraries, such that
algorithms like PageRank do not differ slightly. The source
code of the libraries used are publicly available online and
can be found in the footnotes that mention them.

All code used to obtain the data and process it for the
graph can be seen in the following repository: https://github.
com/DenisCorlade19/maven-package-metadata. For every-
thing related to the graph construction and algorithm, the
code can be found here: https://github.com/DenisCorlade19/
SoftwareThatMatters

VI DISCUSSION

In the following section, a more in depth explanation of
the results is given, highlighting their practical implications.
Moreover, a comparison between the results and other related
work’s results is showcased, and further possible improve-
ments are mentioned. Finally, the section will outline some
of the limitations that emerged.

A Results

Figure 5 provides an interesting finding when it comes to vul-
nerability, and that is the 8th package which comes as most
important, log4j . This package is the widely known artifact

https://zenodo.org/record/6653542
https://github.com/DenisCorlade19/maven-package-metadata
https://github.com/DenisCorlade19/maven-package-metadata
https://github.com/DenisCorlade19/SoftwareThatMatters
https://github.com/DenisCorlade19/SoftwareThatMatters

Figure 7: Pagerank ranking for some popular packages throughout different time periods

that was mentioned already in section I. It is the most criti-
cal, which might imply that it is very vulnerable. It shows
that it plays a big role in the network constructed, and the fact
that many packages depend on it should raise awareness to
developers that the package should be put in an exclusion tag.

Another important point to take out from the results is the
decline in usage of the package slf4j-api from around 2019
and afterwards, as seen in Figure 7. This is one clear im-
provement that the time component provides to the PDNs, as
with the use of such a tool, one can observe that something
is irregular for some reason and research the cause of it af-
terwards. Moreover, an interesting conclusion can also be
drawn from the change of usage from easymock package to
the mockito-core one. It highlights the change in the trend of
what developers use at a specific time.

B Limitations and Threats to Validity

Due to technical limitations, a larger dataset could not be
downloaded to be fed as input to the graph. To reproduce such
an event of analysing the whole of Maven Central Reposi-
tory would require enormous amounts of space and time, as
the whole dataset would be circa 5TiB or more. Even if one
would have the space and time for this, it is known that Maven
itself does not permit this for unknown reasons. Therefore,
it is possible that some metrics obtained from analysing the
most used software are not entirely accurate, as it would re-
quire all 9M unique artifacts to be gathered.

When using extremely big datasets that have hundreds of
millions of edges, the graph is not able to perform on a server
with 64GB RAM. This is a limitation of the language that we
use, more exactly, the graph network library that is gonum.

Furthermore, some packages cannot be analysed as they
do not specify any versions or are halted. In similar fashion,
there are some dependencies that do not follow a regular for-
mat and specifying the versions they depend on is not achiev-
able, thus leading to their exclusion.

Moreover, comparing the results to the download count
measure might not be of extreme interest, as the download
statistics do not represent how much an artifact is being used.
For instance, many companies are using repository managers,
which means that an artifact is being downloaded exactly
once but internally used a lot. On top of that, even though
some artifacts are counted as dependencies through transitiv-
ity, it might not mean that they are used for sure. Therefore,
some correlations between the results and the download count
might not represent the reality.

Finally, the dataset collected is strictly limited to Maven
Central repository, and thus the results should not be general-
ized over the whole ecosystem of Java, as there exist 32 other
repositories as of June 2022.

VII CONCLUSIONS AND FUTURE WORK

The paper has one major contribution which is adding the
possibility of querying on different time ranges in a package
dependency network, more precisely, a TDPN. Moreover, it
provides an insight into the ecosystem of Maven, its dimen-
sions, and how vulnerability can be observed as a potential
side-effect of showing software usage over time. Besides, the
work presented how an increasing number of transitive de-
pendencies might add on to the risk of becoming vulnerable
to a threat. Finally, the paper also goes over the increasing
growth of the Maven Central repository and the various trends
emerged from what developers use.

As this paper solves the most used software over time, it re-
flects that the top packages by download counts as of now still
have some correlation, as junit is also considered the most
used by the algorithm implemented. However, it shows inter-
esting trends and changes from one package to another, while
also showing periods where certain packages were not used
anymore due to not releasing new stable versions, or by sim-
ply becoming vulnerable.

There are multiple possibilities to extend this work. First

of all, efficiency of the graph could be improved. Brief anal-
ysis showed that perhaps Rust would prove to be more fitting
language for such an implementation, as the GoNum library
has its limitations when reaching bigger input. Moreover, no
comparison could be done between the graph implemented
in this paper and other previous work. The grounds of in-
formation are already laid out in section B, but it would re-
main to be seen this comparison would actually result in much
more accurate results by the graph implemented here. The pa-
per proves the correctness by comparing to the ground truth
which is the repository manager, but it does not fully cover the
whole scope. Another improvement would be for the graph
to be able to take data based on different scopes. Maven has 6
different types of scopes, and their uses are to limit the transi-
tivity of the dependencies. The current implementation does
not filter on any scope, and thus shows all the transitive de-
pendencies that there can be.

REFERENCES

[1] Libraries.io - the open source discovery service.
https://libraries.io/.

[2] Stack overflow developer survey 2021.
https://insights.stackoverflow.com/survey/2021.

[3] What is software dependency hell.
https://www.boldare.com/blog/
software-dependency-hell-what-is-it-and-how-to-avoid-it/,
nov 26 2019. [Online; accessed 2022-06-15].

[4] Gabriele Bavota, Gerardo Canfora, Massimiliano
Di Penta, Rocco Oliveto, and Sebastiano Panichella.
How the apache community upgrades dependencies:
An evolutionary study. Empirical Softw. Engg.,
20(5):1275–1317, oct 2015.

[5] Gabriele Bavota, Gerardo Canfora, Massimiliano Di
Penta, Rocco Oliveto, and Sebastiano Panichella. The
evolution of project inter-dependencies in a software
ecosystem: The case of apache. In Proceedings of the
2013 IEEE International Conference on Software
Maintenance, ICSM ’13, page 280–289, USA, 2013.
IEEE Computer Society.

[6] Amine Benelallam, Nicolas Harrand, César
Soto-Valero, Benoit Baudry, and Olivier Barais. The
maven dependency graph: A temporal graph-based
representation of maven central. In 2019 IEEE/ACM
16th International Conference on Mining Software
Repositories (MSR), pages 344–348, 2019.

[7] John Biggs and Ben Popper. What’s so great about go?
https://stackoverflow.blog/2020/11/02/
go-golang-learn-fast-programming-languages/, Nov
2020.

[8] David F. Gleich. Pagerank beyond the web. SIAM
Review, 57(3):321–363, 2015.

[9] Raphael Hiesgen, Marcin Nawrocki, Thomas C
Schmidt, and Matthias Wählisch. The race to the
vulnerable: Measuring the log4j shell incident. arXiv
preprint arXiv:2205.02544, 2022.

[10] Riivo Kikas, Georgios Gousios, Marlon Dumas, and
Dietmar Pfahl. Structure and evolution of package
dependency networks. In 2017 IEEE/ACM 14th
International Conference on Mining Software
Repositories (MSR), pages 102–112, 2017.

[11] Raula Gaikovina Kula, Coen De Roover, Daniel M.
German, Takashi Ishio, and Katsuro Inoue. A
generalized model for visualizing library popularity,
adoption, and diffusion within a software ecosystem.
In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering
(SANER), pages 288–299, 2018.

[12] Raula Gaikovina Kula, Daniel M. German, Ali Ouni,
Takashi Ishio, and Katsuro Inoue. Do developers
update their library dependencies? Empirical Software
Engineering, 23(1):384–417, May 2017.

[13] Andrea Ligios. Use the latest version of a dependency
in Maven. https://www.baeldung.com/
maven-dependency-latest-version, oct 11 2018.

[14] Masterminds. v3 - Constraints don’t appear to work as
expected · Issue 150 · Masterminds/semver.
https://github.com/Masterminds/semver/issues/150.
[Online; accessed 2022-06-08].

[15] Parastoo Mohagheghi and Reidar Conradi. Quality,
productivity and economic benefits of software reuse: a
review of industrial studies. Empirical Software
Engineering, 12(5):471–516, Oct 2007.

[16] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta,
Antonino Sabetta, and Fabio Massacci. Vulnerable
open source dependencies: Counting those that matter.
In Proceedings of the 12th International Symposium on
Empirical Software Engineering and Measurement
(ESEM), Oct 2018.

[17] Tom Preston-Werner. Semantic versioning 2.0.0.
https://semver.org/spec/v2.0.0.html.

[18] Andrei Purcaru. Analyzing the effect of introducing
time as a component in python dependency graphs,
2022.

[19] Consumer Reports. Equifax data breach affected 2.4
million more consumers, Mar 2018.

[20] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum,
Edward Aftandilian, and Robert Bowdidge.
Programmers’ build errors: A case study (at google).
In International Conference on Software Engineering
(ICSE), 2014.

[21] César Soto-Valero, Amine Benelallam, Nicolas
Harrand, Olivier Barais, and Benoit Baudry. The
emergence of software diversity in maven central. In
Proceedings of the 16th International Conference on
Mining Software Repositories, MSR ’19, page
333–343. IEEE Press, 2019.

[22] Yishu Wang, Ye Yuan, Yuliang Ma, and Guoren Wang.
Time-dependent graphs: Definitions, applications, and
algorithms. Data Science and Engineering, 4:1–15, 12
2019.

https://libraries.io/
https://insights.stackoverflow.com/survey/2021
https://www.boldare.com/blog/software-dependency-hell-what-is-it-and-how-to-avoid-it/
https://www.boldare.com/blog/software-dependency-hell-what-is-it-and-how-to-avoid-it/
https://stackoverflow.blog/2020/11/02/go-golang-learn-fast-programming-languages/
https://stackoverflow.blog/2020/11/02/go-golang-learn-fast-programming-languages/
https://www.baeldung.com/maven-dependency-latest-version
https://www.baeldung.com/maven-dependency-latest-version
https://semver.org/spec/v2.0.0.html

	Introduction
	Background
	Terminology
	Related Work

	Methodology
	Overview
	Data gathering
	Graph Structure
	Resolving dependencies constraints

	Results
	Describing the data structure (RQ1)
	Precision when including time (RQ2)
	Analysis of packages (RQ3)
	Analysis of packages depending on time ranges (RQ)

	Responsible Research and Reproducibility
	Ethics
	Reproducibility

	Discussion
	Results
	Limitations and Threats to Validity

	Conclusions and Future Work

