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Towards model predictive control of a prosthetic leg actuated by a
momentum exchange device

Jesper Kreuk

Abstract—Some above the knee amputees take a smaller step
with their prosthetic leg. A momentum exchange device (MED)
can increase the step length by exchanging angular momentum
between the device and the leg. However, there are no controllers
for MEDs during regular gait. The goal of this study is to build
a model predictive controller (MPC) that controls an MED to
help the amputees achieve a certain step length. The MPC uses a
model of an unimpaired walking human to predict its movement.
Two different models are evaluated, a compass-gait biped (CGB)
model and a neuromusculoskeletal (NMS) model. The parameters
of the CGB model are estimated with a grey-box estimation
method. An NMS model of an unimpaired human is used to
simulate the controllers as well. For control, both linear and
nonlinear hybrid model predictive control methods are used. By
evaluating the behaviour of the controllers, insights are gained
in whether the chosen models and control methods are suitable
to achieve the goal. It is concluded that the prediction of the
CGB model is insufficient for the control algorithm used. The
model is capable of approximating the swing of the leg, but
it is unable to accurately predict the future states. The NMS
model may be more accurate, but is at this moment in time not
practical for control. The model is computationally expensive,
observing all its states is difficult and the model can currently
not be initiated in any desired state, which is required for control.
The results indicate that the chosen combinations of models and
control methods are not well suitable to achieve the goal. Control
with an unimpaired human model unfolded many difficulties and
control of an impaired human is even more difficult. A control
method that does not rely on an accurate step length prediction
might be more suitable. However, the identified CGB model and
the control methods contribute to further research on the subject
or other applications within the field.

I. INTRODUCTION

Transfemoral amputees, patients who are amputated above
the knee, can have an asymmetric gait due to their prosthetic
leg. For example, the step length can be either larger [1]], [2]] or
shorter [3|] on the prosthetic side. A prosthetic leg actuated by
a momentum exchange device (MED), like a control moment
gyroscope (CMGQG) [4]], [5] or a reaction wheel (RW) [6], can
help patients take a larger step. These devices can exchange
angular momentum such that a torque is experienced on one
ligament instead of two. Conventional actuators provide a
torque on two ligaments due to the reaction torque [7]. MEDs
are of interest because torques on one ligament show superior
performance in increasing the step length [7]. Appendix [A]
gives more details and a visual representation of a CMG.
The use of MEDs for walking applications is an active
research area in both human (e.g. [S], [8]) and robotic (e.g.
[O, [10]) applications. Recently controllers were built that
assist human leg movement [11]], [12]. However, both studies
focus on fall prevention. Unfortunately, many people abandon
their prosthesis due to a lack of need [13[], [[14]. To make

the prosthesis more desirable in practice, the MED on the
prosthesis should have a function while walking as well.

A model predictive controller (MPC) is used to control
the MED. An MPC uses a model, called the internal model,
to predict the future. First, a cost function is designed. The
cost function penalises states and control actions over a time
horizon. At each time step, the MPC searches for the control
sequence that minimises the cost function. The resulting con-
trol sequence contains the optimal control input for each time
step of the horizon. Only the first control input is executed, the
control input corresponding to the current time step. The next
time step the process is repeated. MPC is an attractive control
technique for the intended application because it can deal with
actuator constraints and is predictive [15]]. Both CMGs and
RWs have actuator states where they can provide no torque
in the desired direction. Actuator constraints can help avoid
these states. Additionally, the predictive capabilities of the
MPC can predict the future trajectory of the human and adjust
accordingly. MPC is not a popular controller for prosthetic
devices, but it is widely used across industries in general, in-
cluding biped robotics [[16]—[19]. Hybrid and nonlinear aspects
of MPCs are of special interest. A hybrid system is a system
with both continuous and discrete dynamical components [[19].
A walking human is a hybrid system because the continuous
nonlinear dynamics change at discrete time events, when a foot
hits or leaves the ground. Nonlinear model predictive control
(NMPC) can deal with hybrid nonlinear systems, but this can
result in non-convex optimisation problems that are hard to
solve [20]. The algorithm may not find the optimal solution.
Mixed logical dynamical (MLD) systems do have algorithms
that find the optimal solution, but use linearised dynamics.
However, they can switch between multiple linearisations that
can approximate the nonlinear dynamics [19], [21]. Switching
logic is implemented with the use of binary auxiliary variables.

This paper attempts to design an MPC to reach a certain step
length in the swing phase. The controller controls the torque
output of the MED on the right leg of a simulated unimpaired
walking human. The paper is split into two parts, a modelling
and a control part. In the modelling part, two different internal
models are described and prepared for MPC, a compass-
gait biped (CGB) model and a neuromusculoskeletal (NMS)
model. In the control part, controllers are designed for both
models. For the CGB model, an MLD-MPC and an NMPC
are designed. The NMS model is controlled by an NMPC as
well. Simulations are done to evaluate whether the controllers
show desirable behaviour. Insights from this study are useful
to eventually design a controller for a prosthetic leg actuated
by an MED. In the process, MLD-MPC is introduced to the
field of prosthetics. All the developed code and data files are
available on Github [22].



II. METHODS 1: MODELLING

A. Objectives and assumptions

The objective of the modelling part is to describe and
prepare the models for MPC. A compass-gait biped (CGB)
model and a 2D neuromusculoskeletal (NMS) model are used
for prediction. For simulation a 3D NMS model is used.
The CGB model is chosen because of its simplicity [23].
A simple model reduces the computational power required
by the controller such that it may be implementable in real-
time. If the computation is too slow, the prosthetic device may
not perform as desired and can consequently compromise the
patient’s safety. The NMS models are chosen because they can
replicate human movement quite well and are implemented in
the practical MATLAB-Simulink environment [24]], [25]]. This
model is likely too slow for a real-time optimisation of the
control input, but there are workarounds to circumvent this
(see [subsection VI-C).

The reader may not be familiar with some of the terminol-
ogy associated with human walking used in this paper. The
term “heel strike” is used for the event where the swinging
foot hits the ground and “toe off” for the event where the
foot lifts off the ground. When both feet are on the ground,
the human is in the double stance phase. The sagittal plane
is the plane that splits the body into a left and a right part.
When walking, the plane is spanned by the walking direction
and the vertical direction. This plane is where most of the leg
movement occurs. Therefore, all positions are projected on
and evaluated in this plane. The step length is measured from
one point of the foot at initial contact to the same point at the
other foot at the next moment of contact with the ground [26].

The measure is visualised in
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Fig. 1: The definition of the step length.

In this paper, only the swing phase of the actuated leg is
controlled. However, control is required in the other phases as
well. For example, a CMG has singularities where it cannot
provide torque in the desired direction (see Appendix [A). The
controller in the other phases should ensure that the CMG at
the beginning of the swing is far from the singularity. This will
result in undesirable torques on the leg during the non-swing
phases as well, but these are not considered.

It is assumed that the positions of all body positions are
exactly known. Advanced optic setups (e.g. [27]) can measure
these positions in a lab environment. However, the prosthesis
should work in any environment. Encoders or potentiometers
can measure some angles directly [28]], and inertial measure-
ment units (IMUs) can measure the acceleration of the limbs
[29]]. Tt is assumed that some combination of these sensors can

compute the exact position. The controller uses these positions
for state calculation.

The controller will eventually be used to help amputees
above the knee, but this research simulates the effects of an
MED on an unimpaired human. The purpose is to gain insights
into challenges in controlling an MED with a human in the
loop. The patient’s adaptation to the MED is not modelled
because this is not exactly known how the patient adapts
and attempting to model the adaptation will add a lot of
complexity. However, torques from the MED cause the patient
to reach different states, and the patient’s torques are state-
dependent, so the model is responsive to torques of the MED.
The added mass from the MED is ignored because the MED
is eventually placed on a prosthetic leg. The total mass of the
ligaments are thus adjustable.

B. Basics of the CGB model

A compass-gait biped (CGB) model is selected as a candi-
date internal model for the MPC because it is simple and can
describe a human-like gait [23]]. The CGB model has two legs
of mass m and a hip mass my. The centre of mass (CoM)
of the leg is at a distance a from the foot. The total length of
the leg

L=a+b, 6]

where b is the distance from the CoM of the leg to the hip.
The leg angles are 6; and 65 for left and the right leg, in this
case the stance and swing leg, respectively. The hip and the
ankle are modelled as hinges. A visual representation of the
CGB model is shown in

The model does not have a double stance phase but an
instantaneous transition between swing phases. This transition
happens at heel strike when 6; = —6,. Because both legs of
the model are the same length, the foot of the swinging leg
scuffs the ground mid-swing. Under the assumption that the
human has enough ground clearance with its swinging foot,
any forces due to the scuffing of the feet are ignored.

To predict of the future states of the model, the joint torques
are estimated. The ankle torque u,, applies to the stance leg
and the hip torque uy;p applies to both the legs. The torques
are estimated with the concept of virtual gravity [23[], [30],
based on passive dynamic walking. A CGB can walk down a
slope in a stable human-like gait without any actuation besides
gravity; this is called passive dynamic walking [31]. With
virtual gravity, the model walks on a flat surface, but the
gravity vector is angled by angle ¢ to actuate the system.
In this paper, multiple virtual gravity angles are used for the
different segments to improve the fit [23]]. The virtual gravity
forces on the CGB are replaced by the joint torques u,,x and
Upip. Both torques are a function of the state

7= |2 2)
=4,
0

i 91
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where



The torque induced by the MED is modelled as a torque on
the swinging leg u. The equations of motions are detailed in

appendix

Fig. 2: The compass-gait biped model. The left side shows
physical parameters. The right side the torques on the legs
and the gravity and virtual gravity vector.

C. Position tracking of the CGB model

There are multiple ways to fit the low order CGB model on
the human. Because of this, it is not clear what coordinates
and formulas are to be used to calculate the state of the CGB
model. The following reasoning is used: the stance leg should
be on the ground, at the position of the stance foot. The CGB
model then has two remaining degrees of freedom, the two
angles §. The horizontal coordinates in the walking direction
D of the hip (py nip) and the swinging foot (pg foor) are used
to define these angles. The subscript L and R describe the
left and right leg, respectively. These variables are visualised
in The horizontal coordinates are chosen over the
vertical coordinates as the objective is to achieve a certain step
length in the horizontal direction.. The hip coordinate of the
CGB model is offset by a constant cy;p such that heel strike
is synchronised in time with the NMS model considering a
standard gait of 1.2 m/s. In mathematical terms, the angle of
the stance leg and swing leg are

01 = arCSin (W) (4)
and
0 = arcsin (W) , (5)

respectively. Where

Pz hip.L T Pz hip.R
Da hip = % — Chip- (6)
Here py nip is the hip position of the CGB model, and p; pip,L
and p, pipr are the positions of the left and right hip of the
NMS model, respectively.

—6— NMS model
—6— CGB model

Dz foot,R Pz.hip Pz foot,L

Ugn Fig. 3: An example of how the CGB model can fit the more

complex NMS model.

The best position on the foot to calculate the p,-coordinates
is yet unclear. Some logical positions are the toe, ankle and
heel because at these positions there is either a point of contact
or a joint. The trajectories of angles g are obtained from the
NMS model for all three positions and compared in the results.
The position that results in the smoothest trajectories is chosen
as a spike can cause the prediction to fluctuate due to the
sudden change in the initial condition.

D. Grey-box estimation of the CGB model

The CGB model aims to predict the human trajectory
as accurate as possible. Therefore, a parameter estimation
technique is used to optimise the parameters of the CGB
model. Instead of actual human data, data generated by the 3D
NMS model (described in is used. The CGB
model is thus a reduced NMS model, but rather than using
more typical model reduction techniques [32] the problem is
treated as a grey-box estimation problem. An advantage of
the grey-box estimation technique is that it can be used for
actual human data as well, such that personal parameters are
obtained. A benefit of the grey-box estimation method is that
the parameters are physically meaningful and can therefore
be valid over a wide range of states [33]. In this case, the
model incorporates the knowledge that the CGB model can
approximate the full swing.

The parameters are optimised to fit the trajectories of leg
angles . The CGB model is optimised for the parameters
m, myg,a, ¢, and ¢o. Where ¢1 and ¢ are the angles between
the gravity and the virtual gravity vector. The parameters
m, my and a have an initial guess based on physiological
data. They are allowed a maximum deviation of 30 % such that
the model stays close to the actual physical values. The initial
guesses and bounds are in [Table 1| The total leg length is fixed
to L = 1 m. This length is chosen because this approximates
the length from the foot to the hip in stance (see [Figure 3).

The optimisation is performed by the nonlinear grey-box
estimation function 'nlgreyest’ in MATLAB 2019a [34]. The



Parameter ‘ minkg mpginkg ainm ¢p;inrad ¢2 in rad
Initial guess 13.25 53.50 0.55 0.17 0.17
Lower bound 9.28 37.45 0.38 0.052 0.052
Upper bound 17.23 69.55 0.71 0.44 0.44

TABLE I: The initial guess and bounds of parameters for the
grey-box parameter estimation of the CGB model.

normalised root mean square error (NRMSE) between the data
and the model is minimised, this is the default of the function.

H?jref_ml

NRMSE(Y, Gref) = 1 — — = ,
‘ |yref - mean(yref) | ‘

)

where || indicates the 2-norm, ¥ is the signal that is compared
with a reference signal ¢.r. The NRMSE values range from
—oo to 1, where 1 is a perfect fit and O as good as a line on the
mean of ¥ [35]]. This results in a continuous-time model. For
MPC, the model is discretised with a time step dt = 0.01s,
details are in Appendix [B] A validation set is used to analyse
how well the CGB model describes the data. This validation
data set is from a later swing of the same simulation used for
the identification data set. For analysis the NRMSE is used
as well. The CGB model is simulated from multiple initial
conditions to observe how this affects the NRMSE between
the data and the predictions of the CGB model. These initial
conditions are data points of the validation set.

The MLD-MPC method (see uses linear
dynamic equations. Two linearisation points are compared for
the CGB model. One linearisation point is the current state,
similar to what is done for the MPC for fall prevention [12].
The other linearisation point is the middle of the current state
and the state at heel strike. In general any convex combination
between those two states is a valid linearisation point, such that

®)

where state xj;, is the linearisation point, x,0y the current state,
xps the state at heel strike and A € [0, 1]. Linearisation points
at A =0 and A = 0.5 are tested. In Appendix [C| more values
for A are evaluated. How well the linearised dynamics fit the
data is also tested against the validation set and based on the
NRMSE. The linearised models are initialised from multiple
initial conditions corresponding to data points of the validation
set as well.

a_flin = fnow(l - )\) + fhs)\v

E. Basics of the NMS model

Both a 2D [24] and a 3D NMS model [25]] are considered
in this paper. The latter is an extension of the 2D model and
its use in this paper is to validate the controller based on the
CGB model and generating the data for the aforementioned
parameter estimation method. This model is suitable because
it resembles a walking human and is able to react to torques
provided by controller. The 2D model is used as an internal
model for MPC. The 2D model is chosen over the 3D model
because it is computationally more efficient due to its reduced
degrees of freedom, but the 3D model is suitable as well when
sufficient computational power is available.

The working principle of the 3D NMS model is visualised in
the diagram of The skeleton is actuated by muscles.

The forces of these muscles depend on stimulation signals
from the reflex modules. The supraspinal control layer can
adjust the foot’s target position and can select which reflex
modules to use. The 2D version works quite similar, but has no
supraspinal control layer. Both models have seven segments,
but the 3D model has more muscles and more mobility in the
hip. Further details of the model are in the papers from Song,
Geyer and Herr and references therein [24]], [25].

Unfortunately, no method is found to initialise the model
from any configuration. The main issue is that the model does
not only depend on joint angles and velocities, but depends
on internal signals like the muscle stimulation signals as well.
If these signals are initialised with value zero, the model will
collapse. It is difficult to initialise these signals in the complex
model even if the desired values are known. Another issue
with the model is that it uses the first generation Simscape
library. Unfortunately that library is becoming obsolete, which
gives some practical limitations. One limitation is that the
newer versions of MATLAB no longer support this library,
therefore an older release (2019a) is used. Another limitation
is that it is not possible to save the state of the simulation and
continue from there. The simulation must be initialised from
the beginning. Besides the unsolved initiation issue, the model
is ready for control [36]. More details about the initialisation
issue are in Appendix [D]

III. RESULTS 1: MODELLING

A. Position tracking of the CGB model

As described in three positions are considered
from which the leg angles 6 are computed: the heels, the ankles
and the toes. shows the resulting angles for the three
different positions, the angles are calculated by Equations [
and [5] The ankle has the least spikes and is thus chosen as
the best option. The remaining results use the position of the
ankles to calculate leg angles 6.
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Fig. 5: The angles and angular velocity of the stance and
swing leg calculated from different positions on the foot. The
stance leg is described by 6; and the swing leg by 6. Time
is normalised to a percentage of swing.
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Fig 4: A schematic representation of the NMS model. The signals described are the target leg angles @, the muscle stimulations
Sm, the muscle torques 7, the joint angles 4, the lengths, velocities and forces of the contractile muscle elements lce, Uecand
Fce, the distances and velocities of the CoM with respect to the stance leg d and ¥, the trunk angles ¢ and the leg angles a.
More details on the definitions and working principles are in the paper of Song [25].

. . Model \ 01 at0% 01 at 50% 02 at 0% 602 at 50%
B. Grey-box estimation of the CGB model Tm =0 036 0 044 075
The optimised parameters of the CGB model are given lin A =0.5 091 0.75 0.86 0.74
nonlin 0.92 0.76 0.89 0.57

in [Table TI] [Figure 6] visualises how well the CGB models,
the linear models and the nonlinear model, fit the data. The
NRMSE between the predictions and the data are given in
This table only shows the values from two initial
conditions, at 0 and 50 % swing. These results are typical for
all initial conditions. Both choices for linearisation points have
similar NRMSE, but the linearisation point with A = 0.5 tends

TABLE III: The NRMSE between the prediction of the models
and the data the model attempts to predict.

IV. METHODS 2: CONTROL

to be higher at the start of the swing. Later in the swing both
options have nearly the same performance. The NRMSE of
the nonlinear model is typically higher than the linear model.
However, there are (regions of) initial conditions where these

typical results do not hold.

0.4

0.2

0, in rad

-0.2

0, in rad
o
N

-0.8

Fig. 6: A visualisation of how well the CGB model describes
the data. The two linear and the nonlinear CGB models are
compared. The percentage shows at which point of the swing
the model was initiated. Time is normalised to a percentage

of swing.
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Value

TABLE 1II: The optimal parameters found by the grey-box

method.

928 377

0.68

0.098

0.0524

A. Objectives and assumptions

The main objective is to reach a certain step length by
controlling an MED with an MPC. This controller can be
subdivided into a high-level, mid-level and low-level controller
[17]. The high-level controller detects the intention. The mid-
level controller translates the intent to a reference for the
low-level controller. The latter computes the optimal control
to track or reach the reference. For example, the high-level
controller detects that the human tries to walk at a speed of
1.2m/s. The mid-level controller than computes that the step
length should be 0.7 m. The low-level controller, for example
a feedback controller like an MPC, than computes the optimal
control to reach the step length.

The focus will be on the low-level controller. It is assumed
that a combination of a high- and a mid-level controller
provides a reference to be tracked by the low-level controller.
Such a reference can for example be obtained by the capture
point method [37], [38] or by neural networks [39]]. The low-
level controller will be an MPC. Both the CGB model and
the 2D NMS model are evaluated as internal models for the
MPC.

It is assumed that any torque within the lower and upper
bound is executable, there is no delay and the state of the
MED is not considered. As mentioned before, the state can
have influence on the torques the MED can provide. Appendix
[A] shows a way to implement the dynamics and the state
dependency of a CMG. The torque of the MED is limited
between 0 and 5 Nm. The lower bound is set to zero because
an MED is used is to enable reaching a larger step length,
for which a positive torque is required. A maximum torque of
5 Nm seems realistic as well [11f], [12].

The step length is not a suitable control reference. As
mentioned before, the step length is measured from one point



of the foot at initial contact to the same point at the other foot
at the next moment of contact with the ground. An unfortunate
consequence is that the position of that point at initial contact
should be remembered. Additionally, if a model is initiated
in mid-swing it does not have a clearly defined step length.
For control it is more practical to have a measure that only
depends on the current configuration. Therefore, the distance
from one ankle to the other z is controlled to the reference
Zwet- The letter z is chosen to indicate that this value is not a
sensor output (see [subsection II-A)), commonly denoted by .

For the CGB controllers the diagram of holds. The
controller uses the state & and the reference z.; to calculate
the torque u of the MED. This torque is applied on the human
and a new state is obtained. This in the loop structure is not
used for the NMS controller, because the current state of the
human can not be used by the controller, see

u T
H Human

Fig. 7: A block diagram of how the controller implemented in
the loop.

Zref
—_—

Controller

B. Hybrid MLD-MPC based on the CGB model

As mentioned in the introduction, MLD models are suitable
for MPC [19], [21]]. Other hybrid models are suitable as
well, like piecewise affine functions or max-min-plus-scaling
systems. These models are equivalent to MLD systems under
mild assumptions [40]. MLDs are chosen because the binary
variables are intuitive to use.

One difficulty is that the reference, the distance from one
ankle to the other, is only well defined in space. The time it
takes to reach the reference is not of importance. This issue
is solved with hybrid dynamics, the state is fixed after heel
strike occurs. If a sufficiently large horizon N is chosen, the
feet are fixed in the configuration where heel strike occurred
at the end of the horizon. The controller should control z such
that it close to the reference z.¢ at the end of the horizon. The
dynamics are

Fh+1) = {f(;;gk) + B,u(k) + Bar  in prosthetic swing
T

after heel strike,
. ©)
where matrices A, B, and vector B, are obtained by dis-
cretisation and linearisation of the CGB model, see Appendix
[Bl These dynamics are written as an MLD system in Appendix
[El

The cost function J; penalises the distance between Z and
its reference z.r as well as the torque. The latter is to use less
torque if possible, but the focus should be on reaching the
reference. In mathematical terms

T(Z(R), i, N) = Q,(3(N) — 2r)* + @' Q,0,  (10)

where (), and @, contain weights, Z is the estimated value
of z and
u(k)
: (11)
u(N —1)
The controller uses Algorithm 1 when simulated on the
3D NMS model. To minimise J; the optimisation problem
is written as a mixed integer quadratic programming problem
(MIQP), which is solved with Gurobi [41]]. Details on how
the MIQP formulation is obtained are in Appendix [F A
sufficiently large N is chosen by trail and error. Another
way to find N is to estimate when heel strike occurs and
add some time steps to make sure heel strike is reached
within the horizon. Such an estimation is possible with e.g.
forward simulation or with a ballistic approximation [42]. As
mentioned before, the controllers main objective is to reach
the reference. Therefore, the parameter (), is chosen much
larger than the elements of @Q,,. The weights on @ are used to
favor solutions that use little torque.

Algorithm 1:

Result: Optimal actuator torque Uop

while walking do

if prosthetic swing then
Set a sufficiently large N
minz J; (Z(k), @, N)
Uopr = U(1)

else

| Uopt = 0Nm
end

end

C. NMPC based on the CGB model

The NMPC is designed similar to the MLD-MPC. Both
use Algorithm 1, cost function J; and the values of the
parameters from the CGB model and cost function are the
same. However, the NMPC uses the nonlinear dynamics of
the CGB model are instead of the linearised dynamics. These
equations of motion are integrated with the fourth-order Runge
Kutta method. Similar to the linear case, once the foot hits the
ground, the state is fixed as well. Fixing the state was achieved
by an if-else statement in the dynamics.

For optimisation of J;, the Matlab function ’fmincon’ is
used [43]. This function requires a starting point, in this
case a control sequence . The optimisation algorithm then
uses a gradient descent method to find a better control se-
quence. Unfortunately, the algorithm can converge to a sub-
optimal local minima [44]]. Different starting points can lead
to different local minima and thus to different solutions that
are sub-optimal. However, in this case the same optimum is
found from all tested initial guesses. The tested initial states
are the zero initial condition, several multisines and random
distributions. This indicates that the model is not sensitive to
local minima, although this is not proven. It is assumed that
the optimisation algorithm is not sensitive to local minima and
that the algorithm will converge to the global minimum.



D. NMPC based on the NMS model

The 2D NMS model is used as an model for MPC as well.
The NMS model is much more complex than the CGB model
(see[section TI). Consequently, a single simulation with a given
actuator torque is much more computationally expensive. To
reduce the complexity, a constant actuator torque U, 1S
chosen for the entire horizon. The controller thus optimises
a single variable instead of a control sequence. However, an
MPC calculates a new constant torque each time step, so the
executed torque is not necessarily constant over the whole
swing.

As mentioned before, the objective is to reach a certain
distance between the stance and the swing foot. The time it
takes is irrelevant. Therefore, the 2D NMS model is simulated
until heel strike. The cost function is slightly different to
J1 as well. It is assumed that only one constant torque can
reach the desired reference. Therefore there is no need to
differentiate between multiple solutions, no penalty on the
torque is included in the cost function. The cost function

T2 (F(k), teon) = (2(2(k), tcon) — Zref) -

Evaluations of Jy with different wu.,, showed that J5 is ap-
proximately a quadratic function, but not completely smooth,
see Appendix |G} Parabolic interpolation is chosen as a suitable
algorithm, because this algorithm can use the quadratic shape
to quickly converge to the optimum [44]. The optimisation
algorithm is described in Algorithm 2. The optimisation stops
when J5 < 1078, such that the foot is placed within 1 mm of
the reference.

To test the controller a reference test and a disturbance test
are performed. Unfortunately the controller cannot be tested
on a more complex model, because it cannot be initiated from
a desired state (see [subsection II-E). Instead, the model is
simulated for 3 swings, where tests are done in the third swing.
In the reference test the controller tries to reach a range of
references, from 0.75m to 0.95 m. In this test no disturbances
are added and the MED is placed on either the shank and
the thigh. The location that uses the least torque to reach
a reference is chosen for the rest of the disturbance test as
well. In the disturbance test a the disturbance is applied for
a short duration (0.01s) at the beginning of the swing phase
and controlled to the reference z, = 0.8 m.
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E. Controller comparison

The time it takes for the controller to calculate the optimal
torque is compared between all controllers. The computations
are performed on a HP ZBook Studio x360 G5 with an
Intel Core 17-9750H processor. The computation time depends
on the initial condition as the horizon is not the same for
each initial condition. Additionally, the optimisation algorithm
might need more iterations from a certain initial condition. The
computation time should not exceed the step time, therefore
the maximum required computation time is most interesting.
The longest horizon is just after toe off, therefore the first state
of the swing is used to compare the speed of the controllers.

Three controllers based on the CGB model are tested on the
3D NMS model. Two are MLD-MPC, where one is linearised

Algorithm 2:

Result: Optimal actuator torque
while walking do

if prosthetic swing then
Choose 3 inputs u1, us and ug
Evaluate J(u;, k) for i =1,2,3
while Jo(u, k) > 10~% do
Fit a quadratic function through the last 3
evaluated points of .J,
Minimise the quadratic function to find new
input Upey
Evaluate J(tnew, k)
end
Ugpy is the input where Jo(u, k) < 1075,
If ugp is out of bounds, go to the nearest
bound.

else
| Uopt = 0Nm
end

end

in the current state (A = 0) and the other is linearised in the
middle of the remaining swing (A = 0.5). The third controller
is an NMPC. The controllers activate at the start of the sixth
swing with the right foot of the 3D NMS model. Without
any control zys = 0.5882m, where zys is the ankle to ankle
distance at heel strike. When using the maximum 5Nm of
torque for the full swing zps = 0.7903 m. With this in mind,
the parameters of are chosen for all three controllers.
The torques are applied on either the shank or the thigh, both
options are tried. Because the NMPC based on the 2D NMS
model still has initialisation issues, it is not used as a controller
in a simulation environment.

Parameter | Q, Q, Zref
Value [ 105 I  0.7m

TABLE IV: The parameters of cost function .J;, where I is
the identity matrix.

V. RESULTS 2: CONTROL

A. Control using the CGB model

The performance of the three CGB-controllers are compared
in All three controllers do not reach the reference of
0.7 m, instead zps is between 0.60 and 0.61 m. For all three
simulations the torque is applied on the shank. When applying
the torque on the thigh instead of the shank the optimal torques
are close to the trajectories shown in but zs is
slightly lower, approximately half a centimeter.

The computation time of the controllers are in
The computation time of both MLD-MPCs are similar and
therefore grouped.
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Fig. 8: The results of all control algorithms using the CGB
model. Time is normalised to a percentage of swing.

B. Control using the NMS model
The results of the reference tests are visualised in [Figure 9|

Because applying the torque on the shank is more effective,
this is done for the remaining results.
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Fig. 9: The results of the reference tests for the NMS con-
troller.

The results of the disturbance tests are shown in
and [Figure T1] The torque and push disturbances in the figure
are applied to the shank and thigh of the swinging leg, as well
as the HAT. The disturbances are tested on the other ligaments
as well, but the closer the disturbance to the stance foot, the
less it affected the optimal torque.

The parabolic interpolation algorithm uses four to ten eval-
uations of J> to find a suitable solution. Ten evaluations take
approximately 35s, which is the number shown in

NMPC CGB NMPC NMS
0.06 35

Controller | MLD-MPC CGB
Time in's | 0.2

TABLE V: The computation time of the different control
algorithms from the start of the swing.
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Fig. 10: The results of the disturbance tests with torque
disturbances for the NMS controller.
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Fig. 11: The results of the disturbance tests with push distur-

bances for the NMS controller.

VI. DISCUSSION

A. Modelling

The results of [subsection [II-Bl show how a nonlinear CGB
model can be fitted on human like data. The fit, made from
the beginning of the swing, describes the angles #; and 6, of
the CGB model quite well with a NRMSE of 0.92 and 0.89 on
a validation set respectively. However, when initialised from
another initial condition than the start of the swing phase the
performance deteriorates. This makes sense because the fit was
optimised for the initial conditions at the start of the swing
phase.

Linearisation of the nonlinear CGB model should reduce
the quality of the fit, because it is an approximation of the
nonlinear model. This is also noticeable in the results. When
comparing the NRMSE values from the start of the swing,
the nonlinear model has the best fit (see [Table III). The
linearisation with A = 0.5 is better than the linearisation with
A = 0 at the start of the swing. For example, the prediction
of the linear model with A = 0 that starts from 0% swing
has a NRMSE of only 0.44 when predicting #5. The other



linearisation option with A\ = 0.5 is more accurate in that
case with an NRMSE of 0.86. However, starting from 50 %
of the swing the model with A = 0.5 performs similar to if
not slightly worse than the model with A = 0. Generally, the
NRMSE is slightly higher when A = 0.5 if more initial points
are evaluated, but there are exceptions. These exceptions could
be coincidental.

Pre-processing data before system identification can help
achieving a better fit [45]. The data in this paper was not
pre-processed, because the data is exact. There is no bias or
disturbance from sensors. However, filtering the data anyway
may reduce the spikes of the controller. A better result may
also be achieved by splitting the swing into multiple segments
and fitting a (non)linear model through each segment [46].
Another limitation is that the model is only tested on data
from a regular walking gait simulated by a model. A disturbed
gait or actual human data could reduce the quality of the
prediction due to unmodeled dynamics and noise respectively.
Furthermore, no MED was used in generating the data for
grey-box estimation. How the MED effects the states was
based on mechanics. Finally, the leg length can be optimised
as well, it was now set to the length of 1 m based on visual
inspection.

Overall, the angle prediction of the CGB models seem
reasonable if only an approximation is required. However,
the model and the identification technique make many (afore-
mentioned) rough assumptions. Therefore the models are not
suitable for an accurate prediction. Whether the models are
accurate enough or not, they are usable as an internal model
for MPC.

B. Control using the CGB model

Unfortunately, none of the controllers based on the CGB
model are able to reach the reference. The main reason the
controllers fail is because the prediction of the state at heel
strike is not accurate enough. If the model incorrectly predicts
that the foot will reach the reference or further, the controller
will provide no torque even though torque is required. This
is the case for part of the swing phase (e.g. between 45 %
and 65 % of the swing phase). Around 65 % of the swing the
internal model realises that it can no longer reach the reference
and consequently the controller provides maximum torque for
the remainder of the swing.

The computation of the optimal torque is quite efficient,
with computational times not larger than 0.2s at the start
of the swing for any of the CGB controllers. In the current
implementation the NMPC is even faster. The reasonable
computation times give confidence in that the controllers are
implementable in real-time if the controllers are optimised for
computation time. There are ways to increase the efficiency.
For example, the step size is now set to 0.01 s. If the step size
is increased, the size of the optimisation problem is reduced
because it reduces the number of variables. There are other
options for reducing computation time as well, like different
optimisation algorithms or only evaluating likely solutions
[21]], [44], [47].

Before a CGB controller is usable in a practical application,
at least the following steps must be taken. First, the dynamics

of the MED must be implemented. Appendix [A] gives some
options on how the dynamics can be implemented. Secondly,
the controller must reset the MED to the optimal configuration
such that it can again be used in the prosthetic swing phase.
While resetting the MED provides torques on the leg. There-
fore, the full gait cycle should be analysed. Finally, a good
observer must be made to estimate the states of the CGB, this
can be especially challenging because the exact position of
body parts are hard to obtain, as discussed in

The analysis of the controller in simulation indicated that the
predictive performance of the CGB mode as an internal model
for MPC is, at least in the current form, insufficient. However,
the approximation may be good enough for certain applica-
tions, especially if some of the aforementioned limitations of
the grey-box estimation method are addressed. The proposed
control method is strongly dependent on the predicted state
at heel strike. As this is the final point of the prediction,
this state is the most uncertain. The MLD-MPC and NMPC
control method may be interesting for other control approaches
as well, for example, where a reference trajectory is tracked
instead of a reference point [48].

C. Control using the NMS model

Compared to the thigh, a torque on the shank seems more
effective when increasing the step length, because the same
reference is reached with less torque. Placement on the shank
is also easier from a practical point of view, because the shank
of transfemoral amputees is fully amputated while the stump
of the thigh limits space. In a study where free torques, the
torques provided by MEDs, were tested for their performance
on both the shank and the thigh, the shank was more effective
as well, but the difference was small [7]. The authors of that
study considered more control flexibility than the constant
torque for the full swing cycle used in this study. However
their results and the results of this paper are from simulations
and can thus differ in practice. There are other factors to
keep in mind as well, like comfort. Even if the MED is more
effective on the shank, placement on the thigh could be more
comfortable for the user and still be effective enough. Another
benefit of placement on the thigh is that free torques on the
thigh are more effective for toe clearance [7]]. Placing the CMG
on the shank can cause the foot to hit the ground when used for
fall prevention [11]], so an increase in toe clearance is desired.

The disturbance tests show that the optimisation algorithm
is robust in the sense that slight deviations to the nominal
gait do not result in excessive control spikes. Moreover, the
relation between the optimal torque and the disturbance are
of an affine nature even though the model is highly nonlinear.
These affine relations in combination with the affine relation
between the optimal torque and the step length reference may
somehow be exploitable by a controller.

The biggest limitation of the NMS controller is that the
NMS model cannot be initiated in a desired state, as explained
in Consequently, the controller can not be
tested in a simulation environment. However, it is likely that
the prediction is more accurate and therefore results in better
control performance because the 2D NMS model is much



more complex than the CGB model. On the downside, the
NMS controller takes approximately 35s to find the optimal
control. The NMS model therefore seems to complex for a
real-time application. Additionally, a more complex function
than a constant torque for the full swing might be desired,
which can increase the number of variables to be optimised.
To reduce computation time the model can be upgraded such
that it can run from any initial state. This will severely reduce
the computational cost as the 2 strides do not have to be
simulated every evaluation of the cost function Jy. Other
options like precompiling the model, better initial guesses and
the relaxation of the stopping condition can also reduce the
computation time.

In order to use the 2D NMS model in a practical application,
at least the same steps covered in and the
following two should be made. Firstly, the software must be
upgraded such that the NMS model can be initialised from
any position. Secondly, instead of doing the optimisation in
real-time, the controller should uses a function that maps the
current state to (an approximation of) the optimal torque.
Suitable functions are e.g. a neural network [49] or a PWA
function [50]], [51]. This function can be computed offline,
such that only the function has to be evaluated in real-time.

D. Future research

There is currently no sufficient MPC algorithm that can
reach a set step length by using an MED on a leg, and this is
only the first step before an MPC can be build for an actual
prosthesis. For an actual prosthesis, the control approach of
this paper might be too complex because in this approach the
controller must accurately predict the desired reference and
the pathological gait. If one of these predictions is off, the
controller may show fluctuations, like the CGB controllers in
Measuring intent and modelling pathological gait are
both difficult to do at this point in time [11]], [17]]. The attempt
to model and control a healthy human unfolded many practical
challenges. Therefore, another control method for controlling
MEDs is advised. The controller method may however be
good enough for fall prevention, because in that case an exact
prediction of the future is not required [[12].

Instead of predicting the shortcoming of the human and
using the MED to fill up the gap, a shared control approach
could be interesting [52]. A major difference between this
approach with respect to the control approach used in this
paper is that the goal of the controller is not to reach a certain
step length, but to reduce the required work of the human such
that he or she is capable of placing his or her foot as desired.
Shared control schemes may still use MPC and models to
predict the future and provide torques accordingly [53].

Besides further development of control techniques, clinical
trials with MEDs should be conducted as well. These trials
could answer open questions on how humans respond to
MEDs. For example, how does the human adapt to torques
of the MED? Or, how obtrusive are torques in undesired di-
rections caused by CMGs [35]]? Finally, it should be researched
whether an MED is a desirable solution to step asymmetry and
whether gait symmetry should be the objective of the controller
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in the first place. Maybe another objective, like reducing the
required work of the human, is better. It is advised to first
answer some of these fundamental questions before further
developing the MPC, because the control approach depends
on the answers.

VII. CONCLUSION

As of now, there is no suitable controller that controls a
momentum exchange device to achieve a certain step length
during a normal walking gait. For model predictive control, the
compass-gait biped model found with the nonlinear grey-box
parameter estimation method is insufficient in predicting the
step length. However, the model can roughly predict the swing
phase of a walking human. The use of a neuromusculoskeletal
model for prediction has other issues. The controller’s perfor-
mance based on this model is not verified because it could not
be initiated. Additionally, observability and a high computation
time remain an issue. Simulations of this model do indicate
that a momentum exchange device to control the step length
is more effective on the shank than on the thigh.

This research shows that finding an accurate and practical
model for the model predictive control problem is challenging.
Therefore it is suggested to find a control approach that does
not depend on an accurate actual and desired step length
prediction, unlike the controllers in this paper.
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APPENDIX



Appendix A: Actuator dynamics

As mentioned in the introduction, MEDs can have saturation and singularity issues. Additionally, the maximum torque of
the MED can also be state dependent. Tracking the actuator state and modelling the dynamics can be helpful when dealing
with these issues. Moreover, the ability of an MPC to deal with actuator constraints is one of the main reasons the control
approach is chosen for this case. This section discusses how the dynamics of the actuator can be included. Attention is focused
on CMGs, but similar approaches can be used for RWs. An advantage of a CMG is that the torque experienced on the leg can
be much larger than the torque used to turn the CMG. A CMG is visualised in The wheel spins fast around the g
axis with a constant angular velocity of Q2. The CMG can rotate around the gimbal axis gy, this induces a torque around the
gi axis. The amplitude of the torque

T = Iy A4, 13)

where Iy, is the moment of inertia of the wheel and 4 the angular velocity around the gimbal axis. For this equation to be
true components from other rotations like the rotation of the CMG structure itself are neglected because the spinning velocity
should be much larger than the other velocities.

The direction of the torque changes as the CMG rotates around its gimbal axis. The torque is desired in the sagittal plane,
therefore a scissor-pair of CMGs can be used, see The torques from the two CMGs cancel each other out such that
the torque is only in the b, direction with amplitude

Tooi = 201w, 2 cos(y)7. (14)

However, both a single CMG and a scissor-pair of CMGs can induce no torque in the l;t direction if v = 7/2rad. This is the
singularity of the CMG, this configuration should be avoided by the controller.

Fig. 13: A scissor-pair of control moment gyroscopes. The
numerical subscripts denote the corresponding control moment
gyroscope.

Fig. 12: A control moment gyroscope.

The state of the CMG can be tracked by augmenting the state Z with the angle  and assuming ~ can be directly controlled
[12]:

Y = Ucmg (15)
If a scissor pair of CMGs is used, can then be changed to
Uank
- 1 1 0 a
S'ticgy = { 0 -1 -1 } Unip (16)
21w, Q cos(7y)Uemg

The state «y can is then obtained by integrating the input tcp,.

Unfortunately the amplitude of the torque has a nonlinear relation with angle . For MPCs that use linear dynamics, the
dynamics can be linearised in the current state [[12]]. This does have the disadvantage that the controller may think it can provide
more torque than is actually possible. This should not be an issue for the nonlinear controllers because they can implement
the nonlinear dynamics.
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One way to check whether the control sequence is realistic, is with angular momentum. The maximum amount of angular
momentum that can be exchanged from v = Orad to v = w/2rad for a scissor-pair of CMGs
Hpax = 21w, Q. 17)
The remaining amount of angular momentum that can be exchanged is
Hiem = 21w Q(1 — sin(y)). (18)

The optimal control sequence calculated by the MPC will correspond to an optimal torque sequence Tip(k), whether the CMG
can provide this torque if

N
> Top(k)dt < Hyem, (19)
k=0

where N is the prediction horizon, k the time step and dt the step size.
Instead of a single linearisation point, can be approximated by multiple linear functions, each active in a certain
region. The MLD-MPC control approach can handle multiple linearisation points [54].



Appendix B: Dynamics of the CGB model

The dynamics of the CGB model are expressed in the literature [30]. Definitions of the variables are in |[subsection II-Bj
note that clockwise rotation is positive for angles g. The concept of virtual gravity is used to predict the torques in the legs.
The gravity vector does not point straight down, but acts under an angle ¢; with ¢ = 1, 2. The virtual gravitational forces are
replaced by a torque in the ankle u., and the torques in the hip up, with formulas

Uank = (Mpl + ml 4+ ma)g cos(0;) tan(¢p1) — mbg cos(f2) tan(pz) (20)

and
Unip = mbg cos(f2) tan(¢ps), (21)

respectively [23[]. All torques applied on the system are gathered in .. The third entry of g, is added to represent the
torque of the momentum exchange device wu, this torque is only applied on the swinging leg, described by 65 and defined such
that a positive torque results in an increase in step length. The resulting dynamics are

—

M (6)F + C(0,0)0 + F(0) = Sticg, (22)
where
& [ myl? +ma® +ml®> —mblcos (0; — 65)
M(9) = | —mbl cos (6, — 02) mb? ’ (23)
= [ 0 —mbl sin (01 — 02) 92
) = : 24
C( ’ ) L mbl sin (91 — 92) 91 0 :| ’ ( )
= [ —(mpgl+ma+ml)sin6,
g0) = I mbsin 0 g (25)
and

Uank
- 1 1 0 a
S'ticgy = |: 0 -1 —1 :l Uhip | - (26)
u

For dynamics are linearised and discretised such that they fit the MLD-MPC framework. First the system is written in state
space form where state Z and angles 6 are as defined in Equations [2| and [3| respectively. In state space form the derivative of
the state

fl B o . Hl_}(f,u). 27)
(M (0))~" (Stcgs — C(0,0)0 — §(0))
The function can be linearised around the a linearisation point (xy,, u;,) by the first order Taylor approximation where
Z 2 f(Zyin, win) + W _ (T — Zin) + W iy (u — win) (28)
S AT+ Bt B 29)
The linearised equations are discretised with a zero order hold.
2k +1) ~ Z(k) + dt Z(k) (30)
~ Z(k) + dtAZ + dtBy cu+ dt By, (31)
= AZ(k) + B,i(k) + B (32)

With time step k, step size dt and constant matrices A, B, and B.



Appendix C: Optimal linearisation point

The nonlinear equations of the CGB walker are linearised for the MLD-MPC (see [Equation 8). In the paper two linearisation
points are compared, one where A = 0 and one where A = 0.5. The linearisation where A\ = 0 is used because this does not
depend on a prediction of the future and is thus easier to use. The linearisation where A = 0.5 is used because this is in the
middle of the current state and the expected end state and does thus not favor one point over the other. This appendix attempts
to find the optimal choice for A.

The trajectories predicted by the linearised dynamics are compared with two different references. One set of references are
the trajectories of the nonlinear dynamics, the other set of references are from data of the simulation of the 3D NMS model,
called the data set. The latter trajectories are the same as the green trajectories in The models are initialised as
follows: first a point from the data set is chosen, this is the initial condition. From this initial condition the nonlinear CGB
model is simulated. Then, from the same initial condition, the linear CGB model is simulated for a range of A. The trajectories
9~1 and ég from the linear models, called él,lin and 9~2,lin respectively, are compared to corresponding references él’ref and ég}ref.
Two tests are done with one with the reference trajectories from the the nonlinear model and one from the data set. The
comparison is based on the NRMSE (see [Equation 7). The NRMSE of #; and 6, are added and the sum is maximised. This
is the same as minimizing the cost function

J3=— (NRMSE(él,nmél,ref) + NRMSE(2 jin, ézref)) (33)

The A that minimises J3 is the optimal value Aqp.

This test gives a rough idea of what A is best to use. The optimisation algorithm is a grid search because only a rough
estimation is needed and cost function J3 is sometimes concave. The range of A is from 0 to 1 with steps of 0.01. For each
A two values of J3 are found, corresponding to the two references. The values of Ay are plotted in
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Fig. 14: Optimal value of A based on cost function .Js3. Two different sets of references are used and compared. One is from
simulation of the nonlinear CGB model, the other is from the data set obtained by simulating the 3D NMS model.

The results of this test show that A = 0.5 is indeed a good choice if the goal is to approximate the nonlinear CGB model
because A is approximately 0.5 for most of the swing. However, if the goal is to approximate the data set the optimal value
for X is not clear. The large fluctuations in Ao are probably due to modelling errors. As mentioned in the paper, the CGB
model is unable to accurately model the swing data. Consequently the prediction of the CGB model tends to diverge from the
data. Depending on how the linear model diverges, another Aoy is found that best compensates the deviation.



Appendix D: Initialisation and the model of Timmers

In the paper the 2D NMS model from Geyer and Herr and the 3D NMS model from Song are used [24], [25]. As mentioned
there, these model use the first generation Simscape library, which is becoming obsolete. Newer versions of MATLAB (2019b+)
no longer support this library. Timmers updated the model to the second generation of Simscape with minimal modifications
[11]], both are able to achieve a steady walking gait with approximately the same parameters. This section shows an interesting
difference between the model of Timmers and Song and details attempts to initialise the model of Timmers. The 2D NMS
model showed difficulties with initialisation, as discussed in This model could however be replaced with any
of the 3D models. This was not done in the paper because the 3D models are slower than the 2D models and no initialisation
solution is found for either of the 3D models. Because the model from Timmers is the most recent and updated to the second
generation of Simscape, the attempts to initialise that model are detailed.

Firstly, a difference between the model from Timmers and Song is covered. Interestingly, the two models do show different

quite trajectories for 6 and 9 as shown in The trajectories of the figure are obtained from measurements on the

ankle using Equations 4| and I Especially the angular velocities 0 are different. Because the models are nearly the same,
the difference in trajectories may be quite different from person to person as well, or worse, within the same person but for
different swings. The latter is at least not the case in simulation, all swings are approximately the same.
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Fig. 15: Comparison of the state trajectories between the model of Timmers and Song.

Secondly, attempts to initialise the model of Timmers are covered as a reference for future research. The model needs to be
initialised at a certain state, but many internal signals, like the muscle stimulation signals, are hard to determine and initialise.
The idea is to simulate the human walker for some time and save the signals of the simulation. To initialise from a certain
state a simulation state close to the desired initial state is chosen and the joint angles and velocities are changed. All other
signals, like the muscle stimulation signals, remain the same. Three different features were used in the attempt. The first feature
can to save the operating point [36]]. This is not possible in the first generation of Simscape, but it is possible in the second
generation, like the generation used in the model of Timmers. With this feature the simulation is paused and saved at a certain
point, the operating point. The model is able to continue from the saved operating point, but unfortunately it appears to be
impossible to change the joint angles and velocities. The second and third feature have another issue, which is the same for
both. The second feature uses the Simscape log [55]] and the third the ’getlnitialState’ function [56[]. Both are able to save
and adjust the joint angles and velocities, but are unable to save all signals. When initiated without all signals the simulated
human falls to its knees.
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Appendix E: Writing the CGB model as an MLD system

The goal of this section rewrite the dynamics as presented in as an MLD system. HYSDEL is a language that can
build MLD systems from coded logic rules [57]. This language works well in combination with the hybrid toolbox for MPC
[58]. However, the latter is not suitable for the control law in question, because the software requires a reference trajectory
for each time step and can not have a reference for only the end state. The HYSDEL language was not used because defining
the MLD by hand gave more insight in debugging the control law.

The state & is augmented with the binary state variable

vy = 1 during prosthetic swing . (34)
0 else
The augmented state
- (k) ]
z(k) = . 35
(k) [xp(k) 5>)

The system should switch between dynamics when heel strike occurs. At heel strike 6; + 6> = 0. However, some steps are
taken to ensure that a heel strike occurred. This is done with the by introducing the binary variables Giyp, ds and dy. These
variables represent whether the swinging foot is on or in the ground (imp from impact), whether the CGB is in late swing (ls)
and whether the dynamics of the systems should switch (sw) respectively. First of all, because the system is sampled at certain
time steps, it is unlikely that the exact moment of impact where 6, + 62 = 0 is sampled. Therefore, it is checked whether the
threshold is crossed. The binary variable

[6imp = 1] = [91 + 6y > 0} (36)

Additionally, the CGB model should be in late swing before the switch occurs, meaning it should have crossed the half way
point of the swing. At the half way point both legs of the CGB model are close to the ground because the model has no knees,
therefore there is a high risk of a false impact trigger. Therefore, a constant is added to ensure the system does not see the
scuffing of the feet as a step at the point where the legs overlap. This is done with the binary variable

[(S]S = 1] = [01 > C], (37)

where c is set to 0.001. The binary variable is thus equal to one once the CGB has crossed the half way point of the swing.
Finally, the dynamics should switch (sw) if the CGB model is in late swing, an impact has occurred and the system is still in
the state prosthetic swing (x, = 1), so

[Bow = 1] < [Bimp + 615 + 2 > 2.5]. (38)
The value 2.5 is chosen instead of 3 to make sure the condition is triggered if there are small numerical issues.
The dynamics from are written in a single dynamic equation:
- #(k+1) Iixa Bag| | Z(k) Oax1 A—1Isxs Byl |zZi(k)
1 = = — - .
.Z‘(]{i T ) |:£Cp(k + 1):| |:01><4 1 xp(k) T -1 5gw(k) + 01><4 0 Zg(k‘) (39)
Where
21(k) = Z(k)zp (k) (40)
and
zo(k) = u(k)zp(k) (41)

are real valued auxiliary variables. The auxiliary variables are gathered in the vector
. = T
W(k) = [ (k) 22(k) 6s(k) Simp(k) Ssw(k)] . (42)

Using this vector, the dynamics of the MLD system are rewritten:

- Iyxa Bar| | Z(k) A—TI,4 By 041 Opa Oaxa] -
1) =% - 4
wk+1) [Om 1 ] [xp(k) Gou 0 0 o 1% )
= AZ(k) + B (k). (44)

The controller should reach a certain distance between the feet z. As mentioned in [subsection II-Af it is assumed that the
positions of the body parts are perfectly known from some observer and 6 is thus perfectly computed. In that case the distance
between the feet

2(k) = Lsin(61) + Lsin(—6y) ~ Lo, — Lo, = [L —L 0 0 0] Z(k) = CZ(k). (45)
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So the dynamics are described by and the controlled variable is estimated by However, the system

is also subjected to constraints. First of all binary variables from Equations [36] [37] and [38] introduce constraints to ensure the
logic is valid [21]]. Constraints appear as follows:

f(z) < M(1-9)
flx)<—e—(m—¢)d

where M = max(f(x)), m = min(f(z)) and f(x) is a function that should be less or equal than zero for the binary variable
0 to be equal to one. For example, has the corresponding function f(x) = —6#; — 2. The machine precision ¢ is
introduced to make all inequalities non strict. For example, if f(z) < a, where a is a constant, then f(z) + ¢ < a.

The minimum and maximum of ¢; and ¢ are set to —3 and 7 for both variables. Equations and [38] give the following
constraints

[ﬂ@<OR¢M=1hﬁ{ (46)

0+ 50, <5 —c (47a)

0, + <_g —e)ds < —e+e, (47b)

—01 — 03 + Thimp < T, 47¢)

01 + 0z 4 (—7 — €)Gimp < —¢, (47d)
—Zp — Gimp — Ols + 465y < 1.5, (47e)

Tp + Gimp + 015 — (1 + €)dsw < 2.5 — €. (471)

The real valued auxiliary variables from Equations [A0] and 1] also introduce constraints. The real valued auxiliary variable
z can be enforced equal to the product between a binary variable § and a real valued variable £ with the following conditions:

z(k) < Me6(k)
—z(k) < —mgd(k)

() = ORI 4 k) < e(k) — me(1 - ok) s
—2(k) < —&(k) + Me(1 - 6(1))

where m¢ = min(§) and M, = max(§). This leads to the constraints
— Mz, (k) + 21 (k) <0, (49a)
Mgz, (k) — 21 (k) <0, (49b)
—Z(k) — myxy(k) + Z21(k) < —my, (49¢)
Z(k) + Mywy(k) — 21(k) < M,, (49d)
—Myzp(k) + z2(k) <0, (49e)
myp(k) — z2(k) <0, (491)
—u(k) — myxp(k) + 22(k) < —my, (49g)
u(k) + Myx, (k) — 22(k) < M, (49h)

All constraints from Equations [£7] and [A9] can be written as

E,i(k) + Eyii(k) + Eyii(k) < Euy. (50)

Where E., E,, E, and Eaff are constant matrices or vectors. Other constraints can be added as well, for example bounds on
the states Z and inputs # can be added within the same structure. This is used to constrain the torques of the MED between
ON and 5N. Additionally, the angles g were constrained between +7. This makes sure there are no solutions where a leg
does a full rotation around a hinge.
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Appendix F: Formulating the MIQP problem

The quadratic cost function from is used for control and should be minimised. This cost function can be written
as a mixed integer quadratic programming problem, the equation can be solved by Gurobi. The desired from is

ming VTHV + FV

Vv 51
st Awn¥ < beon G5

where

—

V=T[uk) wk+1) ... wdN) @"(k) @T(k+1) ... d"(N)] (52)

is the vector of variables to be optimised. The goal of this section is to find H, Ao, gcnn and f, which are all constant matrices
or vectors.

is repeated here for clarity:
Ji(@(K), @, N) = Qu(2(N) — zer)” + 0 Qi (W)

The tilde represents a sequence, like control input sequence from [Equation 11} The sequence of auxiliary variables @ and the
sequence of states & are similarly defined:

w(k)
W= : ; (53)
[W(N —1)
[ Z(k)
i= : (54)
Z(N —1)

Note that Z contains the sequence of augmented states 7, the bar is removed for simplicity of the notation. Additionally, the
current state Z(k) is assumed to be known, denoted by Zy.
The function J; is written as a function of V. The estimation of the distance between the two feet

#%(N) = CZ(N) (55)

is substituted. The hats indicate that the variable is estimated. In this appendix the dynamics from |Equation 44| are used.
However, the code is made for a more general case, where the dynamics also include an affine term B, and an input term
B, u [22]. However, these terms are not required in this case, therefore the final state

FN)= A%, +[AY'B, ... AB, B,|® (56)
= R, + Ry 57
The final state is substituted in the function of .J;, such that
J1 = Q,(CR,&), + CRyT — 71)* + 01 Q, 1 (58)
_ @@ %u . chZ . RJ L%] +2[0 (FTR'C" - 7)Q,CR.) [Zﬂ (59)
+ ZRYCTQ,C R, ), + 254Qu et — 2TL RECT Qe (60)
—VTHV + "V +C 1)

The constant C' is not required for the optimisation problem, because this is no function of V. The optimal value of V is does
not depend on C.

The constraints from should hold each time step, such that
E, 0 ... 0 E, 0 ... 0 E, 0 ... 0 Eu
0 E, ... 0|_ o E, ... o|l_. |0 E, ... 0o|_. |Bg
S ) lu+ | o< (62)
0o 0 .. E, o 0 .. E, 0o 0 .. E, B

€27 + €411 + €01 < Entr (63)



The sequence of states can be estimated with the dynamics, such that

I g g g
fg B, 0 0
i=| A |+ | ABuw B, 0
AN71 ANﬁsz AN73Bw AN74 —w

i=T,% + Tyt

By substituting this in the following inequality constraints are obtained:

€T, Tk + €T + €,0 + €W < Eyg.

By rewriting the desired form is found.

22

(64)

(65)

(66)

(67)

(68)
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Appendix G: Quadratic relation J; and e

As described in the cost function Jo (see was evaluated for multiple values of uco, to
evaluate the behaviour of the model and the sensitivity to local minima. The model was initiated from its default initial state
and simulated for three swings. From the start of the third swing a constant external torque uco, iS applied to the shank of the
swinging leg. Upon heel strike the distance from the stance ankle and the swinging ankle z is extracted and used to evaluate

Jo. shows the results of this experiment.
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Fig. 16: The relation between cost function .J; and the constant torque u.,, when this torque is applied to the shank from toe
off to heel strike.

The relation between Jo and wu,, is approximately parabolic. However, the curve is not completely smooth, so there are
local minima. Because the shape is close to a parabolic, it is concluded that the parabolic interpolation optimisation method
is a suitable optimisation method to find the optimal .o, that minimises Jy [44].
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