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Towards Faster Solution of
Large Power Flow Problems

Reijer IdemaMember, IEEE, Georgios Papaefthymioi¥lember, |EEE,
Domenico Lahaye, Cornelis Vuik, and Lou van der Sl@aior Member, |IEEE

Abstract—Current and future developments in the power the above-mentioned developments—translates into thd nee
system industry demand fast power flow solvers for larger powr  for analysis and simulation of very large networks.

flow problems. The established methods are no longer viabl@lf Typically, operational security assessment involveslio-
such problems, as they are not scalable in the problem size. '

In this paper, the use of Newton-Krylov power flow methods is contin_gency_ analysis [2]' res“'““,g in a large numb_er of gow
proposed, and a multitude of preconditioning techniques fosuch ~ flow simulations for slightly modified network configuratin
methods are discussed and compared. It is shown that incomgte  In the new competitive environment, system security assess
factorizations can perform very well as preconditioner, resulting ment has to be performed as close as possible to real tinte, wit

in a solver that scales in the problem size. It is further show - ; ; ; :
that using a preconditioned inner-outer Krylov method has ro sufficient speed to either trigger an automatic controloacti

significant advantage over applying the preconditioner diectly to Pr to aIIovy time for the operator to react _[3]' Further, the
the outer iterations. Finally, Algebraic Multigrid is demonstrated ~ incorporation of variable renewable generation createemun
as a preconditioner for Newton-Krylov power flow and argued tainty in the expected infeeds, and thus in the conditioms fo
to be the method of choice in some scenarios. the chosen network configurations. To include this uncetyai
Index Terms—power flow analysis, Newton-Krylov methods, Monte-Carlo techniques can be employed, which consist of
preconditioning, incomplete factorizations, flexible inrer-outer the sampling of stochastic infeeds and the simulation of a
Krylov methods, Algebraic Multigrid. large number of system states [4]. For all these tasks the
main computational burden lies in the repetitive simulatio
of slightly modified versions of a power flow problem.
N recent years the power systems industry is experiencingror the typical size of networks analyzed in control rooms
a radical change, driven by the imperative to shift to ®@day, classic power flow solvers offer good performance.
more competitive and less carbon intensive energy system. Aowever, these solvers are not so efficient when the problem
the penetration of variable renewables and distributedggnessize is increasing, and they become extremely slow for very
sources increases, and power markets get more integratgghe networks. An approach in dealing with the computation
existing infrastructures are expected to evolve in two majpurden of operational tasks, is to distribute computations
directions [1]: among multiple servers [5].
1) Supergrids: much longer and higher rated transmission Taking into account the size of future networks, new solvers
lines are needed to transport renewable energy from dise needed that are scalable in the problem size. In thisr pape
tant areas, and to enable the coupling of power marketge propose the use of Newton-Krylov power flow methods,
This increased interconnection dictates the integratadd analyze a multitude of preconditioning techniques to
management of power systems of continental scale. optimize performance. The good results of incomplete LU
2) Smartgrids: ICT technologies and local energy storagéactorizations [6] are explained, and extended with incletep
will allow the integration of intelligence in the demandCholesky factorizations. Further, inner-outer Krylov hmds
and enable large scale demand response actions in &ne investigated, with proper attention to the accuracyhef t
system. Distribution networks will be transformed intanner solves. And finally, Algebraic Multigrid is introdudes
active network clusters (smartgrids), consisting of loads preconditioner for Newton-Krylov power flow methods.
and local generation and storage, which will assume aThe presented methods perform much better than classic
significant role in the management of the power systetmethods for large network sizes, and are better suited for
In the light of this system transformation, new compueperational tasks as they allow more information to be réuse
tational algorithms are needed that allow the simulation ®fhen solving similar problems [6]. Algebraic Multigrid issa
continental wide systems in short time, for operational- puwell-suited for a parallel computing environment.
poses. The integrated operation of transmission and laistri The paper is structured as follows. Section Il introduces th
tion systems, spanning vast geographic areas—as dictgitedsetting of the power flow problem. Then, Section IlI discssse
. . , _ inexact Newton methods, and Section IV presents the theory
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I. INTRODUCTION



Il. THE POWER FLOW PROBLEM thus the robustness of the method. Provided that the linear

The power flow equations, are equations that relate tR@IVEr is robust, an inexact Newton method with correctly
power to the voltage in each bus in the power system. Lgosen forcing terms is as robust as the Newton-Raphson

Vi| be the voltage magnitud@; the voltage anglep; the Method with a direct solver. _
active power,Q; the reactive power, and = G + jB the Further note that the exact Newton step is generally not

admittance matrix. Further, defin; = 6; — §;. The power the best of all the steps that satisfy equation (5). An inexac
flow equations in bus can then be written as solution of the Jacobian system may lead to a slightly worse

iterate than the exact solution; however, it may also verlf we
S Vil [Vie| (Gig cos i, + Busind) = P, (1) lead to a better iterate. If the convergence of two Newton
SN IVl Vel (G sin 631, — Big cos i) = Qi (2) methods differs a lot for the same nonlinear problem, then

either one of the methods got lucky with the iterates, or one

Combining the power flow equations (1), (2) in all busesf the methods is using forcing terms that are too large.
yields a nonlinear system of equations

F(z) =0, (3) IV. KRYLOV METHODS AND PRECONDITIONING

Krylov subspace methods are iterative linear solvers that
enerate iterates within Krylov subspaces based on tharline
@ stem of equations [15]. For a linear systetw = b with
iven initial iteratex, the initial residual isry = b — Az,
Ad the Krylov subspace of dimensigris defined as

where F' is known as the power mismatch function.

Given the supply and demand in the power system, t
power flow problem (3) can be solved to reveal the stead
state voltages in the power system. For more information
power systems and power flow, see for example [7].

Traditionally, the power flow problem is solved using the K (A,7ro) = span{ro,Aro, AT g, } (6)
Newton-Raphson method with a direct solver [8], [9], or, .
using the fast decoupled load flow (FDLF) method [10]A Krylov method produces iterates such that
[12]. In [6] we showed that the LU factorization—which is x; € o+ Kj (A, 7). (7)
used by both these traditional methods—is not viable foy ver ) o
large power flow problems. As an alternative, we proposed theKrylov methods _that calculate the best_nerate within the
use of Newton-Krylov methods: inexact Newton methods thfYlov subspace—in the sense that the residyak- b — Ax;

incorporate Krylov methods to solve the linear problems. is minimized—are referred to as minimal residual methods.
Another desirable property for Krylov methods is that of gho

recurrences. An algorithm is said to have short recurrerites

in each iteration only data of a fixed low number of previous
The Newton-Raphson method, for the solution of nonline@grations is needed. It has been proven that Krylov methods

systems of equations, is an iterative method that updages gan not have both the minimal residual property and short

iterate ; in each iteration by adding a Newton step. Theacurrences [16], [17]. Bi-CGSTAB [18], [19] and IDR([20]

Newton steps; is calculated by solving the linearized systemyre examples of methods that have short recurrences, but not

Il. I NEXACT NEWTONMETHODS

in the current iterate, i.e., the minimal residual property. GMRES [21] is a minimal
J(z;)si = —F (x;), (4) reS|du_aI me_thod, _but the_amount of data and work grows with
every iteration. It is possible to restart GMRES after aaiart
where J is the Jacobian matrix of the power mismatEh amount of iterations to reset the amount of data and work, but

Inexact Newton methods use the same principle, except tht@én the minimal residual property is lost.
the linear system (4) is not solved to full accuracy. Instead Preconditioning is a technique that changes the Krylov
solution is calculated that satisfies subspace, and thus the iterates produced by a Krylov method.

Good preconditioning is essential for the performance of
1 (i) i + F (23 | < il ¥ ®)  Krylov methods [15]. In the numerical experiments presénte
The values); € (0,1) are called the forcing terms. in this paper, we use right preconditioning. This means that

It has been proven that—if the forcing terms are chosétstead of solving the original linear systerw = b, the
correctly—inexact Newton methods exhibit the same quidrapreconditioned system
convergence as the Newton-Raphson method [13]. Too large 1, _
forci . AP 'y=b (8)
orcing terms lead to slower convergence, whereas choosing
the forcing terms too small leads to oversolving. Espegialls solved, after which the solution to the original system
in early iterations, the forcing terms can be chosen quite calculated by solvingPx = y. The advantage of right
large without compromising convergence. In the numericpteconditioning is that the residual of the preconditioned
experiments presented in this paper, the forcing terms astem is the same as that of the original system, which is
chosen using the method by Eisenstat and Walker [14].  not the case for left or split preconditioning.

It is important to note that the choice of linear solver does The closer the preconditioner matri resembles the coef-
not fundamentally influence the convergence of the inexdatient matrix A, the faster Krylov methods can be expected to
Newton method. It is the accuracy up to which the Jacobiaonverge. However, a linear system of the fofta = v has
system is solved that mainly determines the convergenck, da be solved in every iteration, and one more such system



at the end to obtain the solution of the original problem. The LU decomposition is a factorizatioR = LU, where
Thus it is imperative that such systems can be solved wiifle matrixL is lower triangular and’ is upper triangular. Such
relatively little computational effort. Note that i = A, then a factorization exists for every invertible matri®, provided
the preconditioned Krylov system is simply solved $y= b, that row permutations are allowed. The Cholesky factoomat
but the step to get the original solution from the precondiid is a decompositiol® = CC”, whereC is a lower triangular
one is exactly equal to solving the original problem. matrix. Only symmetric positive definite matrices allow a
Krylov methods usually expect the preconditiorferto be Cholesky factorization. The Cholesky factorization is mor
the same in each linear iteration. However, so-called flexiomemory efficient, as only a single factor needs to be stored.
Krylov methods allow the preconditioner to vary. Examplés o For large matrices, calculating the factorization is cotapu

such methods are GMRESR [22] and FGMRES [23]. tionally very expensive. Also, for sparse matrices thedesct
generally contain many more nonzero entries than the aligin
V. PRECONDITIONING THE POWER FLOW PROBLEM matrix. This not only increases memory usage, but also the

computational cost of the forward and backward substitutio
operations. Smart reordering of the rows and columns of the
matrix can significantly reduce the fill-in.

Jinlzi =—-F;, 9 Incomplete factorizations [31], [32] are factorizatiofeat
merely approximate the original matrix. The aim is to reduce
computational time needed to calculate the factors, angced
Ps; = z;. (10) the fill-in, while retaining a good approximation. When used
as a preconditioner for a Krylov method, an incomplete

In this paper we investigate LU and Cholesky factorizef(orization generally leads to slower convergence coga
matrices as preconditioner, preconditioned Krylov methasl , the fy|l factorization. However, for large problems thera

preconditioner (also known as inner-outer Krylov methods}erations of the linear solver are generally much cheapen t
and Algebraic Multigrid as preconditioner. Newton-Krylouhe extra computational cost of a full factorization.

power flow with factorized preconditioners was previously A, incomplete LU (ILU) factorization of a matrix) is
explored in [6], [24]-[26]. In [27] GMRES as preconditioner, product P = LU that approximates). Similarly, an

for Newton-Krylov power flow was investigated. incomplete Cholesky (ICC) factorizatio® = CCT also
All treated methods of preconditioning are based on one Qf o oximates). ILU(k) and ICCE) factorizations use the
three matrices: the coefficient matrik, the initial Jacobian  ,mper of levels: to determine the approximation quality:

Jo, or the matrix #*, a special symmetric positive definitenjgher 1 gives a better approximation, but takes longer to
M-matrix derived from the fast decoupled load flow method.5|culate and also leads to more fill-in.

The FDLF matrix®* is constructed as follows. Shunt_s are |n (6] we showed the following:
removed from the power system model, transformer ratios are o :
. e o LU factorizations (and thus also direct solvers) are not
set to 1, and the phase shift of phase-shifting transformers viable for large power flow problems, but ILEY factor-
are set ta). For this modified model the fast decoupled load ge p P '

: , " . izations scale very well in the problem size.
zg\r,]vemim'?ﬁ?: and B are calculated, according to the BX o The Approximate Minimum Degree (AMD) [33] reorder-

ing should be used for all factorizations. It reduces the
P — { B0 } (11) fill-in for both complete and incomplete factorizations,
0 B” and improves the quality of incomplete factorizations.

In the absence of negative reactances, the result is a syiomet * A single factorization of a well-chosen preconditioner
positive definite M-matrix (see also [28]). matrix should be used throughout all Newton iterations.
The special structure of the matrik* allows the use of  Therefore, in this paper we consider ILL)factorizations of

a Cholesky factorization, the Conjugate Gradient (CG) [29]), and ICCg) factorizations of¢*, with AMD reordering, as

method, and Algebraic Multigrid. If the power system modgireconditioners. Complete LU factorizations, also with BM

contains negative reactances, some extra adaptations enaydordering, are only used as a reference.

needed to use these methods. These methods can not be ushdte that both the calculation of a factorization, and the

with the J; and J, base matrices. forward and backward substitution operations, are inkren
Factorizations of matrices similar ®* were already shown sequential. A block diagonal approximation of the matrir ca

to be good preconditioners in [6], [24], [30]. Tests showeatt be used to parallelize factorizations, at the cost of sontbef

preconditioning withd* was not noticeably worse than withquality of the preconditioner.

the unmodified version that was used in [6].

In each Newton iteration, a preconditionris needed for
the Jacobian system (4). This gives the linear system

from which the Newton step; is calculated by solving

B. Krylov Methods as Preconditioner

A. Factorizations The application of any number of iterations of a Krylov
Preconditioner® in the form of a triangular factorization— method can be written as a linear operation, and can thus be
like the LU factorization or Cholesky factorization—aregue used as a preconditioner. The iterations of the method wsed t
lar because systenf3u = v can be solved with just a forward solve the Jacobian system are called the outer iteratidmite w
and backward substitution, which is very fast. the iterations of the method that is used as preconditioreer a



called the inner iterations. Note that it is usually dedealo smootherS},:
use preconditioning on the inner Krylov method also.

Most Krylov methods are nonstationary, meaning that the
linear operation that results from a fixed number of itersio
is generally not the same for all right-hand side vectorselvh
using a nonstationary iterative method as preconditiather,
outer Krylov method needs to be flexible, like FGMRES. il =1} (b _ Ahj-}jl) ’ (13)

This type of preconditioning is often used when a high
quality factorization is unavailable, for example if it isot Where it is used to solve the defect equation
costly too calculate, if parallelization does not allowat, if Avel — i

o . S : HEY =T (14)

the matrix is only available implicitly as an operation on a
vector and not explicitly as a given matrix. Next, the coarse grid erref,, is brought to the fine grid using

In general it does not make sense to only do a single inngt interpolation operatal”, and the smoothed itera), is
iteration, or to solve the inner problem to such high acoura@pdated by
that the outer method converges in a single iteration. Ag lon i b
as the accuracy of the inner solve is somewhere well between Ty, =Ty, + Iyey (15)
these extremes, the overall speed of the outer solve isI;asu@Jina”y, a post-smoothesS, is used to smooth any high
not very sensitive to the precise inner accuracy. frequency errors that may have been introduced by the in-

Special care should be taken if the inner iterative solverpolated coarse grid error:
operates on a different coefficient matrix than the outeddtry ‘ _ _
method, e.g., if the Jacobian system is solved using FGMRES o =F) + 571 (b — Ah.fiﬁl) (16)
preconditioned with CG on the* matrix. This causes a

similar situation to that of Newton-Krylov methods, where \Ote that the smoothers should be stationary iterativersebe
full accuracy linear solve leads to oversolving. There ityon!iKe Jacobi or Gauss-Seidel, but that the pre-smoother and

a certain amount of convergence that can be achieved in eROt-Smoother do not necessarily have to be the same.
outer iteration, when the preconditioner is based on e  1ne above process describes a single cycle of a two grid

matrix. Solving the inner problem up to an accuracy highérlmethod. When more grids are used, there are several methods
than that, is a waste of computational effort. of traversing through the finer and coarser grids. The sistple

In this paper we consider GMRES oh and CG ond* as method is to smooth and restrict all the way down to the
preconditioners, with FGMRES to solve the Jacobian systen‘fgarSESt grid, ﬂ?”d then_mterpolatg and smooth all the way
The GMRES preconditioner is in turn preconditioned wit ack up to the finest. This method is referred to as a V-cycle.
ILU(k) factorizations ofJ,, and the CG preconditioner is rovided that smoothers and a coarse grid solver are used tha
preconditioned with 1C) ;‘actorizations ofd*. The results allow effective parallelization, multigrid cycles are yewell-

are compared with using incomplete factorizations as pvreccisul'\t/?dI _for. dparallsl com(;:)utlng. . ve i | but als
ditioner on the outer iterations directly. ultigrid can be used as an iterative linear solver, but also

a preconditioner. If a stationary solver is used on the @sars
grid, then multigrid is a stationary solver itself. Thenefpif

C. Algebraic Multigrid a fixed number of (_:ycles is used as preconditioner, there is no
need to use a flexible Krylov solver.

Multigrid methods [34] are iterative methods that origiat In Geometric Multigrid methods, the grids and the corre-
from the field of solving discretized differential equatson sponding restriction and interpolation operatdfé and 1%
Multigrid methods are optimal in the sense that the convefre constructed based on the geometry of the problem. For
gence is independent of the number of grid points. The basieuctured grids such operators are readily available fdaut
idea is to combine cheap methods on grids with varying sizggstructured grids the construction may be very challemgin
into an update for the iterate. In Algebraic Multigrid (AMG) methods, the construction

Basic iterative methods, like Jacobi (diagonal scaling) af the grids and restriction and interpolation operators is
Gauss-Seidel (forward substitution using the lower tridag automated, based on the properties of the coefficient matrix
part of the coefficient matrix), generally smooth the errerww  The classical Ruge-Stiiben approach to AMG needs a symmet-
quickly, without necessarily making the error much smalleric positive definite M-matrix as coefficient matrix. Howeye
Thus, high frequency errors disappear, but low frequenayodern implementations of this approach often show some
errors remain. On a coarser grid, these low frequency err¢ggiency regarding this requirement.
show up as high frequency errors, and can be smoothed agaithe power flow problem is not a discretized differential
cheaply using a basic iterative method. When the grid issebaequation, but has a similar structure. It is not immediatéar
enough, the linear system on that grid can be solved efflgienhow to construct restriction and interpolation operatcaseul
with any method, usually a direct solver. on the geometry of the problem, thus Algebraic Multigrid is

More formally, letA,x; = b, be a fine grid discretization, a logical choice. The Jacobian matrices are generally éam fr
and Agxzg = by a coarse grid discretization of the sameymmetric positive definite M-matrices, so AMG can not be
problem. First, the current iterate/ is smoothed using a pre-used directly as a solver for the Jacobian systems. Instead,

=)+ 5" (b- Ana]) (12)

Then, using a restriction operatdf’, the residual is brought
to the coarse grid



we solve these systems using GMRES, preconditioned with aFig. 1 and 2 show the solution time in seconds, when using
fixed number of AMG cycles on the modified FDLF matriXLU(k) factorizations ofJ, and ICC{) factorizations ofd*,

¢*. Note that the tolerance of modern solvers, regarding thespectively. In both figures the results are compared with
structure of the matrix, may be useful to deal with powedewton power flow with a direct linear solver.

system models that contain some negative reactances. All of the presented incomplete factorizations are scalabl
in the problem size. The factorizations witl2 levels give
VI. NUMERICAL EXPERIMENTS the best results, with those with levels right behind. The

In this section, numerical experiments with the discuss&Periments clearly illustrate that a direct solver is niable
preconditioning techniques are treated. These experamel® very large problems.
are presented in subsections ordered and named identical to
Section V. 100
The test cases used are based on the UCTE winter 2008 | |- direct solver )
study modef. The model has been copied and interconnected ~ go | | ¢" ELCSES,‘STAIE‘(J'(;U(E?]"“ Jo |
to create larger test cases. Table | shows the number of busgs —m— GMRES, ILU(L2) of 30 |
and branches in the test problems, as well as the numbﬁf -
of nonzeros in the Jacobian matrix ndy( The naming g 60 ;
convention used is uctewXXX, where XXX is the number of ¢ - : 1

I 1

times the model is copied and interconnected. -% 401 : |
TABLE | ? i :
POWER FLOW TEST PROBLEMS 20 u
buses branches nng( |
uctew001 | 4.25k 7.19k 62.7k ===
uctew002 | 8.51k 14.4k 125k 0 ‘ ‘ ‘
uctew004 | 17.0k  28.8k 251k 0 200k 400k 600k 800k 1M
uctew008 | 34.0k 57.6k 502k buses
uctew016 | 68.0k 115k 1.00M
uctew032 | 136k 231k 2.01M
uctew064 | 272k 462k 4.02M Fig. 1.  Comparison of Newton-Krylov power flow preconditish with
uctew128| 544k 924k 8.05M ILU(k) factorizations ofJp, and Newton power flow with a direct solver.
uctew256 | 1.09M 1.85M 16.1M

The power flow solver is implemented in C++ using PETSc
(Portable, Extensible Toolkit for Scientific Computati¢8%].
All experiments were performed on a single core of a machine - direct solver . il
with Intel Core i5 3.33GHz CPU and 4Gb memory, running 80| | | EI;ACSESST/TEQ'(SL)Uéf);I ¢ i
a Slackware 13 64-bit Linux distribution. The problems wereg ’

100 T 7

In this section, experiments are presented with RU(
factorizations ofJ, and ICCg) factorizations of®* as pre- :
conditioner, as discussed in Section V-A. For the facttidna 20 - --4
levels k, the numberst, 8, and12 are demonstrated. Lower o
levels led to significantly slower solution times, due to the § ===
reduced speed of convergence of the linear solver. Higher 0 - ;

: o e 0 200k 400k
levels led to more expensive factorizations, and morerfill-i
without improving convergence significantly.

Bi-CGSTAB is used when preconditioning with factoriza- _ o
tions with 4 levels. With these preconditioners, a significarf . 2 . Somparison of Newton-Krylov power flow preconditiah with
: . - . p - > 9 r]E:C(k) factorizations of®*, and Newton power flow with a direct solver.
amount of linear iterations (30+) is needed in some Newton
steps. The short recurrences property of Bi-CGSTAB makes it . ,
outperform GMRES for these cases. For factorizations with 12ble Il shows a breakdown of the computation times for
and12 levels, less iterations are needed per Newton step, df§ 'argest test case. The reported times are for the cétmula
GMRES outperforms Bi-CGSTAB. of_ fa_ctonzatlon_s (PCSetUp), the forward_and backward_ sub-

stitution operations (PCApply), the total time spent oredén

LUCTE is a former association of transmission system operatoEurope.  solves (KSPSolve), and the total time to solve the problem.
As of July 2009, the European Network of Transmission Sys@perators The total time is made up for the better part of linear solves.

for Electricity (ENTSO-E), a newly formed association of #Z50s from Th . . . | h lculati f
34 countries in Europe, has taken over all operational taskbe existing e remaining time Is mostly spent on the calculation o

European TSO associations, including UCTE. See http:/Aewtsoe.eu/ the power mismatch function and Jacobian matrix. The linear

L I | —m— GMRES, ILU(12) of ¢* .
solved from a flat start, up to an accuracyl®f p.u. ° .

E = |
A. Factorizations s I )

E 40 |- 4

o

(%]

| |
600k 800k 1M

buses



solves are made up from factorizations, forward and baatkwar 40 T T T
substitution, and other operations of the GMRES algorithm. | | —m— Bi-CGSTAB, ILU(4) of Jo
Note that direct linear solves only consist of a factorizati - x- FGMRES, GMRES on/;, ILU(4) of Jo
and a forward and backward substitution. —~ 30| BI-CGSTAB, ICCH) of &
The results show thafl, leads to a slightly better pre- < FGMRES, CG on”, ICC() of ¢~
conditioner, in the sense that less overall GMRES iteration GE)
are needed to solve the problem. On the other hand, th& o4 |
factorization of@* is faster, and8 applications are still faster .S
than 58 applications of the factorization ofy. g r
Overall, the ICC{(2) factorization of¢* leads to a slightly @
faster solution of the uctew256 problem. However, this is ‘
mostly due to converging i Newton iterations, where the L / y
ILU(12) factorization of.J, leads to8 Newton iterations. This | A | | | | |
can be assumed to more be a matter of some luck, than a 0()’ 200k 400k 600k 800k M
fundamental property of Newton-Krylov power flow.

buses
TABLE 1l
COMPUTATION TIMES FOR THE UCTEV256TEST CASE Fig. 3. Comparison of Newton-Krylov power flow witk-level incomplete
direct ILU(12) of Jo | ICC(12) of &* factorizations as preconditioner, and with Krylov methadspreconditioner
count time| count time | count time that are preconditioned with the same incomplete factbos.
PCSetUp 8 2359 1 5.84 1 3.07
PCApply 8 2 58  5.59 68 481
KSPSolve 8 2361 8 16.3 6 14.3
Total 2367 22:5 19.5 C. Algebraic Multigrid
B. Krylov Methods as Preconditioner This section reports on experiments with Algebraic Multi-

In this section, experiments with a preconditioned Krylo@fd on ¢* as preconditioner for Newton-Krylov power flow,

method as preconditioner—as discussed in Section V-A—dte discussed in Section V-C.

presented. To support this type of preconditioning, FGMRES Similar to when using preconditioned CG @t as precon-

is used as outer Krylov method. GMRES dnand CG ond* ditioner (Section VI-B), setting up t_he AMG preconqhuoner

are both tested as inner Krylov methods. As preconditioner {2 {00 good only leads to oversolving. In our experiments, th
the inner iterations, incomplete factorizations witlevels are Pest results were attained using a single V-cycle with a full
used. With higher level factorizations, convergence isfamn Gauss-Seidel sweep as both pre-smoother and post-smoother

to have both inner and outer iterations perform a meaningfdl the coarsest grid a direct solver was used, so that the
amount of iterations. Lower level factorizations were alstgSulting AMG method is stationary. The coarse grid sofutio
tested, and yielded similar results. is only a minor part of computational time of each V-cycle.
When using GMRES or; as preconditioner, the Jacobian Fig. 4 compares AMG with the ICQP) factorization of

system can be solved in one outer iteration by solving to high® as preconditioner. The AMG preconditioner scales very
accuracy in the inner iterations. However, since the desir@ell in the problem size. This is to be expected, because the
accuracies for the outer iterations, i.e., the forcing twerare defining operations of a V-cycle scale linearly in the number
generally betweed0~! and10~6 it makes no sense to solveOf nonzeros in the coefficient matrix, (which is approxinate
the inner iterations beyond an accuracy(of. The method linear in the problem size), and multigrid convergence is
proved insensitive to the inner iteration accuracy betw@sn independent of the problem size. However, preconditioning
and 0.1, as this ensures that a meaningful amount of inn#fith the ICC(12) factorization was still significantly faster than
iterations was executed without ever oversolving the aamur using the AMG preconditioner. Both methods needed about the

desired in the outer iterations. The results presented i; t§ame amount of linear iterations to converge, but—provided
section are for an inner tolerance @B that the fill-in is low—forward and backward substitution
When using CG ond* as preconditioner, the convergenc@perations are much faster than an AMG V-cycle. AMG cycles
of one outer iteration can never be better than when applyifte easier to parallelize than a factorization, though, rangt
an LU factorization of¢* as preconditioner directly. Solving therefore be preferred in parallel computing environments
the inner iterations beyond that convergence factor waedd | including GPU computing.
to oversolving. In our experiments this factor was foundéo b Multigrid solvers are known to be the best available method
around0.6, and the best results were attained using this vefgr some problems. For example, for Poisson equations dis-
value as tolerance for the inner iterations. cretized on a structured grid. The reason that AMG precondi-
Fig. 3 shows the solution times for these two techniques, #gning here is slower than preconditioning with an incoetel
well as the solution times when applying the used incompléigctorization, is likely due to the structure of the network
factorizations as preconditioner for the outer iteratidmsctly. If a power system network consists of many smaller clusters
For these test cases, preconditioned Krylov methods asiprecof buses, that may be tightly connected within the clustér bu
ditioner do not give significantly better results than apmly only have a few branches between clusters, then the Jacobian
the incomplete factorization as preconditioner directly. matrix can be reordered to a near block diagonal structure.



Such a structure is very beneficial for factorizations, dsatls Algebraic Multigrid is, further, much better suited for pHel

to little fill-in. Thus for power systems networks of this gjp computing than factorizations.

incomplete factorizations are expected to perform verya&l  From the results of our research on the solution of large

preconditioner. power flow problems, the following recommendations can be
If, on the other hand, the entire network is tightly conndctemade. In a sequential computing environment, use a Newton-

then factorizations generally lead to a lot of fill-in, whigbts Krylov method, preconditioned with incomplete factorinats

worse the larger the problem becomes. AMG does not sha® detailed in this paper. The fill-in ratio of the factoriaat

this issue, and can be expected to perform much better &rould be kept track of, and if it grows too large Algebraic

such networks, especially for very large problems. Multigrid can be used as an alternative. In a parallel coimgut
Our test cases are based on a model of the Europesvironment, we recommend using Algebraic Multigrid on the

grid. Since different countries are generally only conedct modified FDLF matrix®* as preconditioner.

by very few branches, the structure of our test cases is of

the type that favors factorizations. For more tightly cortad ACKNOWLEDGMENT
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Fig. 4. Comparison of Newton-Krylov power flow precondigmhwith the [4]

ICC(12) factorization of * and with AMG on &*.

[5]
VII. CONCLUSIONS

In this paper, preconditioning techniques for Newton-kwyl [e]
power flow solvers have been investigated. Preconditioning
based on factorizations, preconditioned Krylov methodsl a 1
Algebraic Multigrid were tested and compared.

For the available set of test problems, the best resulig]
were attained when using incomplete LU (ILU) factorization
of the initial JacobianJ,, or incomplete Cholesky (ICC) (9]
factorizations of the modified FDLF matri¥*, with 8—12
levels. Using an inner Krylov method—preconditioned witr[1lo]
an incomplete factorization—as preconditioner for theeout
Krylov iterations, did not provide a fundamental improvearne [11]
over applying that incomplete factorization as precoodiir
to the outer iterations directly. 12]

Algebraic Multigrid on the modified FDLF matrix¢*
performed very well as preconditioner, but was slower tingn t
best performing incomplete factorizations. It was argueat t
the used test cases favor factorizations because theystorisi]
of a number of loosely connected subnetworks. For more
densely connected networks factorizations may suffer fr
much higher fill-in, and AMG is expected to perform better.

[13]

] VY. Saad,Iterative methods for sparse linear systems, 2nd ed.
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