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Towards Faster Solution of
Large Power Flow Problems

Reijer Idema,Member, IEEE, Georgios Papaefthymiou,Member, IEEE,
Domenico Lahaye, Cornelis Vuik, and Lou van der Sluis,Senior Member, IEEE

Abstract—Current and future developments in the power
system industry demand fast power flow solvers for larger power
flow problems. The established methods are no longer viable for
such problems, as they are not scalable in the problem size.

In this paper, the use of Newton-Krylov power flow methods is
proposed, and a multitude of preconditioning techniques for such
methods are discussed and compared. It is shown that incomplete
factorizations can perform very well as preconditioner, resulting
in a solver that scales in the problem size. It is further shown
that using a preconditioned inner-outer Krylov method has no
significant advantage over applying the preconditioner directly to
the outer iterations. Finally, Algebraic Multigrid is demo nstrated
as a preconditioner for Newton-Krylov power flow and argued
to be the method of choice in some scenarios.

Index Terms—power flow analysis, Newton-Krylov methods,
preconditioning, incomplete factorizations, flexible inner-outer
Krylov methods, Algebraic Multigrid.

I. I NTRODUCTION

I N recent years the power systems industry is experiencing
a radical change, driven by the imperative to shift to a

more competitive and less carbon intensive energy system. As
the penetration of variable renewables and distributed energy
sources increases, and power markets get more integrated,
existing infrastructures are expected to evolve in two major
directions [1]:

1) Supergrids: much longer and higher rated transmission
lines are needed to transport renewable energy from dis-
tant areas, and to enable the coupling of power markets.
This increased interconnection dictates the integrated
management of power systems of continental scale.

2) Smartgrids: ICT technologies and local energy storage
will allow the integration of intelligence in the demand,
and enable large scale demand response actions in the
system. Distribution networks will be transformed into
active network clusters (smartgrids), consisting of loads
and local generation and storage, which will assume a
significant role in the management of the power system.

In the light of this system transformation, new compu-
tational algorithms are needed that allow the simulation of
continental wide systems in short time, for operational pur-
poses. The integrated operation of transmission and distribu-
tion systems, spanning vast geographic areas—as dictated by
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the above-mentioned developments—translates into the need
for analysis and simulation of very large networks.

Typically, operational security assessment involves off-line
contingency analysis [2], resulting in a large number of power
flow simulations for slightly modified network configurations.
In the new competitive environment, system security assess-
ment has to be performed as close as possible to real time, with
sufficient speed to either trigger an automatic control action,
or to allow time for the operator to react [3]. Further, the
incorporation of variable renewable generation creates uncer-
tainty in the expected infeeds, and thus in the conditions for
the chosen network configurations. To include this uncertainty,
Monte-Carlo techniques can be employed, which consist of
the sampling of stochastic infeeds and the simulation of a
large number of system states [4]. For all these tasks the
main computational burden lies in the repetitive simulation
of slightly modified versions of a power flow problem.

For the typical size of networks analyzed in control rooms
today, classic power flow solvers offer good performance.
However, these solvers are not so efficient when the problem
size is increasing, and they become extremely slow for very
large networks. An approach in dealing with the computational
burden of operational tasks, is to distribute computations
among multiple servers [5].

Taking into account the size of future networks, new solvers
are needed that are scalable in the problem size. In this paper
we propose the use of Newton-Krylov power flow methods,
and analyze a multitude of preconditioning techniques to
optimize performance. The good results of incomplete LU
factorizations [6] are explained, and extended with incomplete
Cholesky factorizations. Further, inner-outer Krylov methods
are investigated, with proper attention to the accuracy of the
inner solves. And finally, Algebraic Multigrid is introduced as
a preconditioner for Newton-Krylov power flow methods.

The presented methods perform much better than classic
methods for large network sizes, and are better suited for
operational tasks as they allow more information to be reused
when solving similar problems [6]. Algebraic Multigrid is also
well-suited for a parallel computing environment.

The paper is structured as follows. Section II introduces the
setting of the power flow problem. Then, Section III discusses
inexact Newton methods, and Section IV presents the theory
of Krylov subspace methods and preconditioning. Section V
discusses the preconditioning of the power flow problem,
followed by the presentation and analysis of the results of
numerical experiments in Section VI. Finally, the conclusions
are presented in Section VII.
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II. T HE POWER FLOW PROBLEM

The power flow equations, are equations that relate the
power to the voltage in each bus in the power system. Let
|Vi| be the voltage magnitude,δi the voltage angle,Pi the
active power,Qi the reactive power, andY = G + jB the
admittance matrix. Further, defineδij = δi − δj. The power
flow equations in busi can then be written as

∑N

k=1
|Vi| |Vk| (Gik cos δik + Bik sin δik) = Pi, (1)

∑N

k=1
|Vi| |Vk| (Gik sin δik − Bik cos δik) = Qi, (2)

Combining the power flow equations (1), (2) in all buses,
yields a nonlinear system of equations

F (x) = 0, (3)

whereF is known as the power mismatch function.
Given the supply and demand in the power system, the

power flow problem (3) can be solved to reveal the steady-
state voltages in the power system. For more information on
power systems and power flow, see for example [7].

Traditionally, the power flow problem is solved using the
Newton-Raphson method with a direct solver [8], [9], or
using the fast decoupled load flow (FDLF) method [10]–
[12]. In [6] we showed that the LU factorization—which is
used by both these traditional methods—is not viable for very
large power flow problems. As an alternative, we proposed the
use of Newton-Krylov methods: inexact Newton methods that
incorporate Krylov methods to solve the linear problems.

III. I NEXACT NEWTON METHODS

The Newton-Raphson method, for the solution of nonlinear
systems of equations, is an iterative method that updates the
iterate xi in each iteration by adding a Newton step. The
Newton stepsi is calculated by solving the linearized system
in the current iterate, i.e.,

J (xi) si = −F (xi) , (4)

whereJ is the Jacobian matrix of the power mismatchF .
Inexact Newton methods use the same principle, except that

the linear system (4) is not solved to full accuracy. Instead, a
solution is calculated that satisfies

‖J (xi) si + F (xi) ‖ ≤ ηi‖F i‖. (5)

The valuesηi ∈ (0, 1) are called the forcing terms.
It has been proven that—if the forcing terms are chosen

correctly—inexact Newton methods exhibit the same quadratic
convergence as the Newton-Raphson method [13]. Too large
forcing terms lead to slower convergence, whereas choosing
the forcing terms too small leads to oversolving. Especially
in early iterations, the forcing terms can be chosen quite
large without compromising convergence. In the numerical
experiments presented in this paper, the forcing terms are
chosen using the method by Eisenstat and Walker [14].

It is important to note that the choice of linear solver does
not fundamentally influence the convergence of the inexact
Newton method. It is the accuracy up to which the Jacobian
system is solved that mainly determines the convergence, and

thus the robustness of the method. Provided that the linear
solver is robust, an inexact Newton method with correctly
chosen forcing terms is as robust as the Newton-Raphson
method with a direct solver.

Further note that the exact Newton step is generally not
the best of all the steps that satisfy equation (5). An inexact
solution of the Jacobian system may lead to a slightly worse
iterate than the exact solution; however, it may also very well
lead to a better iterate. If the convergence of two Newton
methods differs a lot for the same nonlinear problem, then
either one of the methods got lucky with the iterates, or one
of the methods is using forcing terms that are too large.

IV. K RYLOV METHODS AND PRECONDITIONING

Krylov subspace methods are iterative linear solvers that
generate iterates within Krylov subspaces based on the linear
system of equations [15]. For a linear systemAx = b with
given initial iteratex0, the initial residual isr0 = b − Ax0,
and the Krylov subspace of dimensionj is defined as

Kj (A, r0) = span
{

r0, Ar0, . . . , A
j−1r0,

}

. (6)

A Krylov method produces iterates such that

xj ∈ x0 + Kj (A, r0) . (7)

Krylov methods that calculate the best iterate within the
Krylov subspace—in the sense that the residualrj = b−Axj

is minimized—are referred to as minimal residual methods.
Another desirable property for Krylov methods is that of short
recurrences. An algorithm is said to have short recurrences, if
in each iteration only data of a fixed low number of previous
iterations is needed. It has been proven that Krylov methods
can not have both the minimal residual property and short
recurrences [16], [17]. Bi-CGSTAB [18], [19] and IDR(s) [20]
are examples of methods that have short recurrences, but not
the minimal residual property. GMRES [21] is a minimal
residual method, but the amount of data and work grows with
every iteration. It is possible to restart GMRES after a certain
amount of iterations to reset the amount of data and work, but
then the minimal residual property is lost.

Preconditioning is a technique that changes the Krylov
subspace, and thus the iterates produced by a Krylov method.
Good preconditioning is essential for the performance of
Krylov methods [15]. In the numerical experiments presented
in this paper, we use right preconditioning. This means that
instead of solving the original linear systemAx = b, the
preconditioned system

AP−1y = b (8)

is solved, after which the solution to the original system
is calculated by solvingPx = y. The advantage of right
preconditioning is that the residual of the preconditioned
system is the same as that of the original system, which is
not the case for left or split preconditioning.

The closer the preconditioner matrixP resembles the coef-
ficient matrixA, the faster Krylov methods can be expected to
converge. However, a linear system of the formPu = v has
to be solved in every iteration, and one more such system
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at the end to obtain the solution of the original problem.
Thus it is imperative that such systems can be solved with
relatively little computational effort. Note that ifP = A, then
the preconditioned Krylov system is simply solved byy = b,
but the step to get the original solution from the preconditioned
one is exactly equal to solving the original problem.

Krylov methods usually expect the preconditionerP to be
the same in each linear iteration. However, so-called flexible
Krylov methods allow the preconditioner to vary. Examples of
such methods are GMRESR [22] and FGMRES [23].

V. PRECONDITIONING THEPOWER FLOW PROBLEM

In each Newton iteration, a preconditionerPi is needed for
the Jacobian system (4). This gives the linear system

JiP
−1

i zi = −F i, (9)

from which the Newton stepsi is calculated by solving

Pisi = zi. (10)

In this paper we investigate LU and Cholesky factorized
matrices as preconditioner, preconditioned Krylov methods as
preconditioner (also known as inner-outer Krylov methods),
and Algebraic Multigrid as preconditioner. Newton-Krylov
power flow with factorized preconditioners was previously
explored in [6], [24]–[26]. In [27] GMRES as preconditioner
for Newton-Krylov power flow was investigated.

All treated methods of preconditioning are based on one of
three matrices: the coefficient matrixJi, the initial Jacobian
J0, or the matrixΦ

∗, a special symmetric positive definite
M-matrix derived from the fast decoupled load flow method.

The FDLF matrixΦ∗ is constructed as follows. Shunts are
removed from the power system model, transformer ratios are
set to 1, and the phase shift of phase-shifting transformers
are set to0. For this modified model the fast decoupled load
flow matricesB′ andB′′ are calculated, according to the BX
scheme. Then

Φ
∗ =

[

B′ 0
0 B′′

]

. (11)

In the absence of negative reactances, the result is a symmetric
positive definite M-matrix (see also [28]).

The special structure of the matrixΦ∗ allows the use of
a Cholesky factorization, the Conjugate Gradient (CG) [29]
method, and Algebraic Multigrid. If the power system model
contains negative reactances, some extra adaptations may be
needed to use these methods. These methods can not be used
with the Ji andJ0 base matrices.

Factorizations of matrices similar toΦ∗ were already shown
to be good preconditioners in [6], [24], [30]. Tests showed that
preconditioning withΦ∗ was not noticeably worse than with
the unmodified version that was used in [6].

A. Factorizations

PreconditionersP in the form of a triangular factorization—
like the LU factorization or Cholesky factorization—are popu-
lar because systemsPu = v can be solved with just a forward
and backward substitution, which is very fast.

The LU decomposition is a factorizationP = LU , where
the matrixL is lower triangular andU is upper triangular. Such
a factorization exists for every invertible matrixP , provided
that row permutations are allowed. The Cholesky factorization
is a decompositionP = CCT , whereC is a lower triangular
matrix. Only symmetric positive definite matrices allow a
Cholesky factorization. The Cholesky factorization is more
memory efficient, as only a single factor needs to be stored.

For large matrices, calculating the factorization is computa-
tionally very expensive. Also, for sparse matrices the factors
generally contain many more nonzero entries than the original
matrix. This not only increases memory usage, but also the
computational cost of the forward and backward substitution
operations. Smart reordering of the rows and columns of the
matrix can significantly reduce the fill-in.

Incomplete factorizations [31], [32] are factorizations that
merely approximate the original matrix. The aim is to reduce
computational time needed to calculate the factors, and reduce
the fill-in, while retaining a good approximation. When used
as a preconditioner for a Krylov method, an incomplete
factorization generally leads to slower convergence compared
to the full factorization. However, for large problems the extra
iterations of the linear solver are generally much cheaper than
the extra computational cost of a full factorization.

An incomplete LU (ILU) factorization of a matrixQ is
a product P = LU that approximatesQ. Similarly, an
incomplete Cholesky (ICC) factorizationP = CCT also
approximatesQ. ILU(k) and ICC(k) factorizations use the
number of levelsk to determine the approximation quality;
higher k gives a better approximation, but takes longer to
calculate and also leads to more fill-in.

In [6] we showed the following:

• LU factorizations (and thus also direct solvers) are not
viable for large power flow problems, but ILU(k) factor-
izations scale very well in the problem size.

• The Approximate Minimum Degree (AMD) [33] reorder-
ing should be used for all factorizations. It reduces the
fill-in for both complete and incomplete factorizations,
and improves the quality of incomplete factorizations.

• A single factorization of a well-chosen preconditioner
matrix should be used throughout all Newton iterations.

Therefore, in this paper we consider ILU(k) factorizations of
J0, and ICC(k) factorizations ofΦ∗, with AMD reordering, as
preconditioners. Complete LU factorizations, also with AMD
reordering, are only used as a reference.

Note that both the calculation of a factorization, and the
forward and backward substitution operations, are inherently
sequential. A block diagonal approximation of the matrix can
be used to parallelize factorizations, at the cost of some ofthe
quality of the preconditioner.

B. Krylov Methods as Preconditioner

The application of any number of iterations of a Krylov
method can be written as a linear operation, and can thus be
used as a preconditioner. The iterations of the method used to
solve the Jacobian system are called the outer iterations, while
the iterations of the method that is used as preconditioner are
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called the inner iterations. Note that it is usually desirable to
use preconditioning on the inner Krylov method also.

Most Krylov methods are nonstationary, meaning that the
linear operation that results from a fixed number of iterations
is generally not the same for all right-hand side vectors. When
using a nonstationary iterative method as preconditioner,the
outer Krylov method needs to be flexible, like FGMRES.

This type of preconditioning is often used when a high
quality factorization is unavailable, for example if it is too
costly too calculate, if parallelization does not allow it,or if
the matrix is only available implicitly as an operation on a
vector and not explicitly as a given matrix.

In general it does not make sense to only do a single inner
iteration, or to solve the inner problem to such high accuracy
that the outer method converges in a single iteration. As long
as the accuracy of the inner solve is somewhere well between
these extremes, the overall speed of the outer solve is usually
not very sensitive to the precise inner accuracy.

Special care should be taken if the inner iterative solver
operates on a different coefficient matrix than the outer Krylov
method, e.g., if the Jacobian system is solved using FGMRES
preconditioned with CG on theΦ∗ matrix. This causes a
similar situation to that of Newton-Krylov methods, where a
full accuracy linear solve leads to oversolving. There is only
a certain amount of convergence that can be achieved in each
outer iteration, when the preconditioner is based on theΦ

∗

matrix. Solving the inner problem up to an accuracy higher
than that, is a waste of computational effort.

In this paper we consider GMRES onJi and CG onΦ∗ as
preconditioners, with FGMRES to solve the Jacobian systems.
The GMRES preconditioner is in turn preconditioned with
ILU(k) factorizations ofJ0, and the CG preconditioner is
preconditioned with ICC(k) factorizations ofΦ∗. The results
are compared with using incomplete factorizations as precon-
ditioner on the outer iterations directly.

C. Algebraic Multigrid

Multigrid methods [34] are iterative methods that originate
from the field of solving discretized differential equations.
Multigrid methods are optimal in the sense that the conver-
gence is independent of the number of grid points. The basic
idea is to combine cheap methods on grids with varying sizes
into an update for the iterate.

Basic iterative methods, like Jacobi (diagonal scaling) and
Gauss-Seidel (forward substitution using the lower triangular
part of the coefficient matrix), generally smooth the error very
quickly, without necessarily making the error much smaller.
Thus, high frequency errors disappear, but low frequency
errors remain. On a coarser grid, these low frequency errors
show up as high frequency errors, and can be smoothed again
cheaply using a basic iterative method. When the grid is coarse
enough, the linear system on that grid can be solved efficiently
with any method, usually a direct solver.

More formally, letAhxh = bh be a fine grid discretization,
and AHxH = bH a coarse grid discretization of the same
problem. First, the current iteratexj

h is smoothed using a pre-

smootherSh:

x̄
j
h = x

j
h + S−1

h

(

b − Ahx
j
h

)

(12)

Then, using a restriction operatorIH
h , the residual is brought

to the coarse grid

r
j
H = IH

h

(

b − Ahx̄
j
h

)

, (13)

where it is used to solve the defect equation

AHe
j
H = r

j
H . (14)

Next, the coarse grid errorej
H is brought to the fine grid using

an interpolation operatorIH
h , and the smoothed iteratēxj

h is
updated by

¯̄x
j
h = x̄

j
h + Ih

He
j
H (15)

Finally, a post-smootherSh is used to smooth any high
frequency errors that may have been introduced by the in-
terpolated coarse grid error:

x
j+1

h = ¯̄x
j
h + S−1

h

(

b − Ah ¯̄x
j
h

)

(16)

Note that the smoothers should be stationary iterative schemes
like Jacobi or Gauss-Seidel, but that the pre-smoother and
post-smoother do not necessarily have to be the same.

The above process describes a single cycle of a two grid
method. When more grids are used, there are several methods
of traversing through the finer and coarser grids. The simplest
method is to smooth and restrict all the way down to the
coarsest grid, and then interpolate and smooth all the way
back up to the finest. This method is referred to as a V-cycle.
Provided that smoothers and a coarse grid solver are used that
allow effective parallelization, multigrid cycles are very well-
suited for parallel computing.

Multigrid can be used as an iterative linear solver, but alsoas
a preconditioner. If a stationary solver is used on the coarsest
grid, then multigrid is a stationary solver itself. Therefore, if
a fixed number of cycles is used as preconditioner, there is no
need to use a flexible Krylov solver.

In Geometric Multigrid methods, the grids and the corre-
sponding restriction and interpolation operatorsIH

h and Ih
H

are constructed based on the geometry of the problem. For
structured grids such operators are readily available, butfor
unstructured grids the construction may be very challenging.

In Algebraic Multigrid (AMG) methods, the construction
of the grids and restriction and interpolation operators is
automated, based on the properties of the coefficient matrix.
The classical Ruge-Stüben approach to AMG needs a symmet-
ric positive definite M-matrix as coefficient matrix. However,
modern implementations of this approach often show some
leniency regarding this requirement.

The power flow problem is not a discretized differential
equation, but has a similar structure. It is not immediatelyclear
how to construct restriction and interpolation operators based
on the geometry of the problem, thus Algebraic Multigrid is
a logical choice. The Jacobian matrices are generally far from
symmetric positive definite M-matrices, so AMG can not be
used directly as a solver for the Jacobian systems. Instead,
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we solve these systems using GMRES, preconditioned with a
fixed number of AMG cycles on the modified FDLF matrix
Φ

∗. Note that the tolerance of modern solvers, regarding the
structure of the matrix, may be useful to deal with power
system models that contain some negative reactances.

VI. N UMERICAL EXPERIMENTS

In this section, numerical experiments with the discussed
preconditioning techniques are treated. These experiments
are presented in subsections ordered and named identical to
Section V.

The test cases used are based on the UCTE winter 2008
study model1. The model has been copied and interconnected
to create larger test cases. Table I shows the number of buses
and branches in the test problems, as well as the number
of nonzeros in the Jacobian matrix nnz(J). The naming
convention used is uctewXXX, where XXX is the number of
times the model is copied and interconnected.

TABLE I
POWER FLOW TEST PROBLEMS

buses branches nnz(J)
uctew001 4.25k 7.19k 62.7k
uctew002 8.51k 14.4k 125k
uctew004 17.0k 28.8k 251k
uctew008 34.0k 57.6k 502k
uctew016 68.0k 115k 1.00M
uctew032 136k 231k 2.01M
uctew064 272k 462k 4.02M
uctew128 544k 924k 8.05M
uctew256 1.09M 1.85M 16.1M

The power flow solver is implemented in C++ using PETSc
(Portable, Extensible Toolkit for Scientific Computation)[35].
All experiments were performed on a single core of a machine
with Intel Core i5 3.33GHz CPU and 4Gb memory, running
a Slackware 13 64-bit Linux distribution. The problems were
solved from a flat start, up to an accuracy of10−6 p.u.

A. Factorizations

In this section, experiments are presented with ILU(k)
factorizations ofJ0 and ICC(k) factorizations ofΦ∗ as pre-
conditioner, as discussed in Section V-A. For the factorization
levels k, the numbers4, 8, and12 are demonstrated. Lower
levels led to significantly slower solution times, due to the
reduced speed of convergence of the linear solver. Higher
levels led to more expensive factorizations, and more fill-in,
without improving convergence significantly.

Bi-CGSTAB is used when preconditioning with factoriza-
tions with 4 levels. With these preconditioners, a significant
amount of linear iterations (30+) is needed in some Newton
steps. The short recurrences property of Bi-CGSTAB makes it
outperform GMRES for these cases. For factorizations with8
and12 levels, less iterations are needed per Newton step, and
GMRES outperforms Bi-CGSTAB.

1UCTE is a former association of transmission system operators in Europe.
As of July 2009, the European Network of Transmission SystemOperators
for Electricity (ENTSO-E), a newly formed association of 42TSOs from
34 countries in Europe, has taken over all operational tasksof the existing
European TSO associations, including UCTE. See http://www.entsoe.eu/

Fig. 1 and 2 show the solution time in seconds, when using
ILU(k) factorizations ofJ0 and ICC(k) factorizations ofΦ∗,
respectively. In both figures the results are compared with
Newton power flow with a direct linear solver.

All of the presented incomplete factorizations are scalable
in the problem size. The factorizations with12 levels give
the best results, with those with8 levels right behind. The
experiments clearly illustrate that a direct solver is not viable
for very large problems.
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Fig. 1. Comparison of Newton-Krylov power flow preconditioned with
ILU(k) factorizations ofJ0, and Newton power flow with a direct solver.
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Fig. 2. Comparison of Newton-Krylov power flow preconditioned with
ICC(k) factorizations ofΦ∗, and Newton power flow with a direct solver.

Table II shows a breakdown of the computation times for
the largest test case. The reported times are for the calculation
of factorizations (PCSetUp), the forward and backward sub-
stitution operations (PCApply), the total time spent on linear
solves (KSPSolve), and the total time to solve the problem.

The total time is made up for the better part of linear solves.
The remaining time is mostly spent on the calculation of
the power mismatch function and Jacobian matrix. The linear
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solves are made up from factorizations, forward and backward
substitution, and other operations of the GMRES algorithm.
Note that direct linear solves only consist of a factorization
and a forward and backward substitution.

The results show thatJ0 leads to a slightly better pre-
conditioner, in the sense that less overall GMRES iterations
are needed to solve the problem. On the other hand, the
factorization ofΦ∗ is faster, and68 applications are still faster
than58 applications of the factorization ofJ0.

Overall, the ICC(12) factorization ofΦ∗ leads to a slightly
faster solution of the uctew256 problem. However, this is
mostly due to converging in6 Newton iterations, where the
ILU(12) factorization ofJ0 leads to8 Newton iterations. This
can be assumed to more be a matter of some luck, than a
fundamental property of Newton-Krylov power flow.

TABLE II
COMPUTATION TIMES FOR THE UCTEW256TEST CASE

direct ILU(12) of J0 ICC(12) of Φ
∗

count time count time count time
PCSetUp 8 2359 1 5.84 1 3.07
PCApply 8 2 58 5.59 68 4.81
KSPSolve 8 2361 8 16.3 6 14.3
Total 2367 22.5 19.5

B. Krylov Methods as Preconditioner

In this section, experiments with a preconditioned Krylov
method as preconditioner—as discussed in Section V-A—are
presented. To support this type of preconditioning, FGMRES
is used as outer Krylov method. GMRES onJi and CG onΦ∗

are both tested as inner Krylov methods. As preconditioner for
the inner iterations, incomplete factorizations with4 levels are
used. With higher level factorizations, convergence is toofast
to have both inner and outer iterations perform a meaningful
amount of iterations. Lower level factorizations were also
tested, and yielded similar results.

When using GMRES onJi as preconditioner, the Jacobian
system can be solved in one outer iteration by solving to high
accuracy in the inner iterations. However, since the desired
accuracies for the outer iterations, i.e., the forcing terms, are
generally between10−1 and10−6 it makes no sense to solve
the inner iterations beyond an accuracy of0.1. The method
proved insensitive to the inner iteration accuracy between0.5
and 0.1, as this ensures that a meaningful amount of inner
iterations was executed without ever oversolving the accuracy
desired in the outer iterations. The results presented in this
section are for an inner tolerance of0.3

When using CG onΦ∗ as preconditioner, the convergence
of one outer iteration can never be better than when applying
an LU factorization ofΦ∗ as preconditioner directly. Solving
the inner iterations beyond that convergence factor would lead
to oversolving. In our experiments this factor was found to be
around0.6, and the best results were attained using this very
value as tolerance for the inner iterations.

Fig. 3 shows the solution times for these two techniques, as
well as the solution times when applying the used incomplete
factorizations as preconditioner for the outer iterationsdirectly.
For these test cases, preconditioned Krylov methods as precon-
ditioner do not give significantly better results than applying
the incomplete factorization as preconditioner directly.
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Fig. 3. Comparison of Newton-Krylov power flow with4-level incomplete
factorizations as preconditioner, and with Krylov methodsas preconditioner
that are preconditioned with the same incomplete factorizations.

C. Algebraic Multigrid

This section reports on experiments with Algebraic Multi-
grid on Φ

∗ as preconditioner for Newton-Krylov power flow,
as discussed in Section V-C.

Similar to when using preconditioned CG onΦ
∗ as precon-

ditioner (Section VI-B), setting up the AMG preconditionerto
be too good only leads to oversolving. In our experiments, the
best results were attained using a single V-cycle with a full
Gauss-Seidel sweep as both pre-smoother and post-smoother.
On the coarsest grid a direct solver was used, so that the
resulting AMG method is stationary. The coarse grid solution
is only a minor part of computational time of each V-cycle.

Fig. 4 compares AMG with the ICC(12) factorization of
Φ

∗ as preconditioner. The AMG preconditioner scales very
well in the problem size. This is to be expected, because the
defining operations of a V-cycle scale linearly in the number
of nonzeros in the coefficient matrix, (which is approximately
linear in the problem size), and multigrid convergence is
independent of the problem size. However, preconditioning
with the ICC(12) factorization was still significantly faster than
using the AMG preconditioner. Both methods needed about the
same amount of linear iterations to converge, but—provided
that the fill-in is low—forward and backward substitution
operations are much faster than an AMG V-cycle. AMG cycles
are easier to parallelize than a factorization, though, andmay
therefore be preferred in parallel computing environments,
including GPU computing.

Multigrid solvers are known to be the best available method
for some problems. For example, for Poisson equations dis-
cretized on a structured grid. The reason that AMG precondi-
tioning here is slower than preconditioning with an incomplete
factorization, is likely due to the structure of the network.

If a power system network consists of many smaller clusters
of buses, that may be tightly connected within the cluster but
only have a few branches between clusters, then the Jacobian
matrix can be reordered to a near block diagonal structure.
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Such a structure is very beneficial for factorizations, as itleads
to little fill-in. Thus for power systems networks of this type,
incomplete factorizations are expected to perform very well as
preconditioner.

If, on the other hand, the entire network is tightly connected,
then factorizations generally lead to a lot of fill-in, whichgets
worse the larger the problem becomes. AMG does not share
this issue, and can be expected to perform much better for
such networks, especially for very large problems.

Our test cases are based on a model of the European
grid. Since different countries are generally only connected
by very few branches, the structure of our test cases is of
the type that favors factorizations. For more tightly connected
power systems, AMG is expected to outperform factorization
methods for large power flow problems.
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Fig. 4. Comparison of Newton-Krylov power flow preconditioned with the
ICC(12) factorization ofΦ∗ and with AMG onΦ

∗.

VII. C ONCLUSIONS

In this paper, preconditioning techniques for Newton-Krylov
power flow solvers have been investigated. Preconditioning
based on factorizations, preconditioned Krylov methods, and
Algebraic Multigrid were tested and compared.

For the available set of test problems, the best results
were attained when using incomplete LU (ILU) factorizations
of the initial JacobianJ0, or incomplete Cholesky (ICC)
factorizations of the modified FDLF matrixΦ∗, with 8–12
levels. Using an inner Krylov method—preconditioned with
an incomplete factorization—as preconditioner for the outer
Krylov iterations, did not provide a fundamental improvement
over applying that incomplete factorization as preconditioner
to the outer iterations directly.

Algebraic Multigrid on the modified FDLF matrixΦ∗

performed very well as preconditioner, but was slower than the
best performing incomplete factorizations. It was argued that
the used test cases favor factorizations because they consist
of a number of loosely connected subnetworks. For more
densely connected networks factorizations may suffer from
much higher fill-in, and AMG is expected to perform better.

Algebraic Multigrid is, further, much better suited for parallel
computing than factorizations.

From the results of our research on the solution of large
power flow problems, the following recommendations can be
made. In a sequential computing environment, use a Newton-
Krylov method, preconditioned with incomplete factorizations
as detailed in this paper. The fill-in ratio of the factorization
should be kept track of, and if it grows too large Algebraic
Multigrid can be used as an alternative. In a parallel computing
environment, we recommend using Algebraic Multigrid on the
modified FDLF matrixΦ∗ as preconditioner.
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