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Abstract: Continuous implicit representations can flexibly describe complex 3D geometry and offer
excellent potential for 3D point cloud analysis. However, it remains challenging for existing point-
based deep learning architectures to leverage the implicit representations due to the discrepancy in
data structures between implicit fields and point clouds. In this work, we propose a new point cloud
representation by integrating the 3D Cartesian coordinates with the intrinsic geometric information
encapsulated in its implicit field. Specifically, we parameterize the continuous unsigned distance
field around each point into a low-dimensional feature vector that captures the local geometry. Then
we concatenate the 3D Cartesian coordinates of each point with its encoded implicit feature vector
as the network input. The proposed method can be plugged into an existing network architecture
as a module without trainable weights. We also introduce a novel local canonicalization approach
to ensure the transformation-invariance of encoded implicit features. With its local mechanism, our
implicit feature encoding module can be applied to not only point clouds of single objects but also
those of complex real-world scenes. We have validated the effectiveness of our approach using five
well-known point-based deep networks (i.e., PointNet, SuperPoint Graph, RandLA-Net, CurveNet,
and Point Structuring Net) on object-level classification and scene-level semantic segmentation tasks.
Extensive experiments on both synthetic and real-world datasets have demonstrated the effectiveness
of the proposed point representation.

Keywords: point cloud; semantic segmentation; object classification; implicit representation

1. Introduction

The rapid advances in LiDAR and photogrammetry techniques have made 3D point
clouds a popular data source for various remote sensing and computer vision applications,
e.g., urban reconstruction [1,2], heritage digitalization [3], autonomous driving [4], and
robot navigation [5]. As a point cloud is essentially a collection of unstructured points,
point cloud analysis is necessary before further applications can be developed.

Similar to image processing, 3D point cloud analysis has been dominated by deep
learning techniques recently [6]. PointNet [7] has set a new trend of directly learning
from point clouds by addressing the challenge of permutation invariance. Since then,
novel point-based network architectures [8–22] have been continuously developed and
have led to year-over-year accuracy improvements on benchmark datasets [23–25]. Most
existing work represents the shapes of objects by solely the point cloud coordinates. This
is insufficient to directly describe the local geometry due to the irregularity, randomness
(in the organization of the points), and inability to convey rich geometric details of point
clouds [26,27].

Apart from this explicit representation (i.e., point cloud), a shape can also be repre-
sented implicitly as a zero-level isosurface described by a continuous implicit function.
Such an implicit representation can express a shape at an arbitrary resolution and thus
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convey important geometric information. Therefore, it has gained attention from the re-
search community and demonstrated significant performance in reconstructing individual
objects [28–30] and indoor scenes [31,32]. Despite its effectiveness in reconstruction tasks,
its potential for 3D classification and segmentation tasks has not been fully explored. The
major challenge lies in that continuous implicit fields do not match the discrete and irreg-
ular data structure of point clouds and are thus incompatible with existing point-based
deep learning architectures designed for analysis purposes. A few existing studies [33,34]
address this issue by discretizing implicit fields using predefined grids or sampling posi-
tions. They cannot guarantee the transformation invariance of the locally captured shape
information, which prevents them from performing scene-level analysis tasks.

In this paper, we propose a more expressive point representation for 3D shapes and
scenes by enriching point clouds with local geometric information encapsulated in implicit
fields. We parameterize the unsigned distance field (UDF) around each point in the point
cloud into a unique, compact, and canonical feature vector. Then the point coordinates and
the feature vector are concatenated to obtain the new representation that combines both
positional and geometrical information and thus can better describe the underlying 3D
shape or scene. The proposed method can serve as a module without trainable weights
and can be plugged into existing deep networks. In addition, we propose a novel local
canonicalization approach to ensure that the encoded implicit features are invariant to
transformations. We investigate the benefits of the proposed point representation using
five well-known baseline architectures for 3D classification and segmentation tasks on
both synthetic and real-world datasets. Extensive experiments have demonstrated that
our method can deliver more accurate predictions than the baseline methods alone. Our
contributions are summarized as follows.

• A simple yet effective implicit feature encoding module that enriches point clouds
with local geometric information to improve 3D classification and segmentation. Our
implicit feature encoding is an efficient and compact solution that does not require
any training. This allows it to be integrated directly into deep networks to improve
both accuracy and efficiency.

• A novel local canonicalization approach to ensure the transformation-invariance of
implicit features. It projects sample spheres (rather than raw point clouds) to their
canonical poses, which can be applied to both individual objects and large-scale scenes.

2. Related Work

In this section, we present a brief overview of recent studies closely related to our
approach. As our work strives to exploit implicit representations of point cloud data for
better 3D analysis using deep networks, we review deep-learning techniques for point
cloud processing and commonly used implicit representations of 3D shapes. Since one
of the advantages of our method is the transformation invariance of the encoded implicit
features, we also discuss research that aims to achieve transformation invariance.

2.1. Deep Learning on Point Clouds

Neural networks for point cloud analysis have gained considerable attention and
have been rapidly developed over the past years. Based on the representation of the
data, these techniques can be divided into three categories: multiview-based [35–38],
voxel-based [23,39,40], and point-based [7–22] methods. Multiview-based and voxel-based
approaches represent unorganized point clouds using highly structured data structures,
namely 2D images and 3D voxels, respectively. 2D and 3D CNN architectures are then
exploited to analyze the structured data. Since the multiview-based approaches project
the 3D data into a set of 2D views, useful geometric information is inevitably lost during
the projection. The voxel-based 3D CNN architectures require subdividing the space into
regular 3D voxels; thus, their performance is limited by the resolution of the voxels.

Compared to the multiview-based and voxel-based approaches, the point-based meth-
ods can directly process raw point clouds without converting the data into a structured
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representation and are thus gaining increasing popularity. The seminal work of Point-
Net [7] achieves permutation-invariant representations via a symmetric function, which
paves the way for point-based deep learning. Since PointNet learns pointwise features
independently and then aggregates them into a global point cloud signature, it cannot
capture local geometric structures. The majority of its follow-up studies focus on design-
ing effective local aggregation operators (e.g., neighboring feature pooling [8–11], point
convolutions [12–15,41], and attention mechanisms [16–18]) to capture rich local geometric
information. Despite the accuracy improvements of these efforts, most of these works are
limited to small-scale data due to their high memory and computational demands. When
handling point clouds of large-scale scenes, the point clouds have to be split into small
blocks (e.g., 1 m × 1 m with 4096 points), which not only leads to overhead in computa-
tion but also limits contextual information to a small area. A few works [19,20] develop
lightweight frameworks that can consume a large number of points in a single pass. These
methods employ either over-segmentation or random downsampling, which often results
in the loss of local structural information. Following previous studies, our work also seeks
to capture the intrinsic local geometric information of point clouds, but we strive to avoid
involving computationally expensive aggregation operations [8–18]. We achieve this by
sampling the unsigned distance field around each point into a compact feature vector in an
unsupervised manner. The proposed approach can be integrated into existing networks as
a module without trainable weights.

2.2. Implicit Representations of 3D Shapes

Apart from explicit representations such as point clouds, meshes, and voxels, im-
plicit representations express 3D shapes as a zero-level isosurface of a continuous implicit
field. Because of their flexibility and compactness, implicit representations have demon-
strated effectiveness in the 3D reconstruction of both individual objects [28–30] and indoor
scenes [31,32] from sparse and noisy input. Few studies have also investigated implicit
representations to analyze 3D shapes. Juhl et al. [33] propose a novel implicit neural dis-
tance representation that captures the global information of a shape by embedding its UDF
into a low-dimensional latent space. The presented representation has been successfully
applied to cluster complex anatomical structures and to categorize the gender of human
faces. Fujiwara and Hashimoto [34] propose to transform a point cloud to a canonical shape
representation by embedding the local UDF of every point into the network weights of
an extreme learning machine (a specific type of neural network). These approaches have
demonstrated promising performance in the classification and segmentation of individual
objects. However, they rely on object-based canonicalization steps and are therefore not ap-
propriate for challenging segmentation tasks at the scene level. In this work, we generalize
the idea of utilizing implicit representations for 3D point cloud analysis from single objects
to complex real-world scenes.

2.3. Transformation-Invariant Analysis

For 3D point cloud processing, deep neural networks have to learn effective features
that are invariant to affine transformations applied. The effects of translation and scaling
can be eliminated effectively by centralization and normalization. Achieving rotation
invariance, however, is more challenging and remains an open problem [42].

An intuitive solution to achieve rotation invariance is to rotate the training data ran-
domly so that the trained model sees more data in different rotational poses. However, it is
impractical to cover all possible rotations, resulting in limited analysis performance. Along
with this data-augmentation strategy, spatial transformations [7,8] are employed to convert
point clouds to their optimal poses in a learning manner to increase the robustness against
random rotations. Unfortunately, these networks have limited capacity in processing 3D
point clouds because the learned features are sensitive to rotations [43]. An alternative
solution is to encode the raw point cloud data into rotation-invariant relative features (e.g.,
angles and distances [44–46]), which inevitably results in the loss of geometrical informa-
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tion. Compared to the direct use of point coordinates, using pure relative features as input
does not bring promising performance gains. Recent works [33,34,42,43,47–49] transform
the input point cloud into its intrinsic canonical pose for rotation-invariant analysis. Unlike
methods based on relative features, the canonicalization process preserves the intact shape
information of the input point clouds.

The existing studies canonicalize point clouds globally, which limits their application
scenarios to single objects only. Inspired by these studies, we propose a local canonicaliza-
tion mechanism to ensure rotation invariance of the encoded implicit features. Different
from existing object-based canonicalization methods, our approach transforms locally
sampled spheres rather than the entire raw points, making it suitable for processing both
individual objects and complex real-world scenes.

3. Methodology

Our goal is to improve the performance of existing point cloud-based deep networks
by exploiting the rich geometric information. To this end, the point coordinates and implicit
feature vectors derived from its distance field are concatenated and are fed into the network
(see Figure 1). In the following, we first describe how we compute the implicit features and
then explain how transformation invariance of the features is achieved.

implicit 
feature 
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major
network

xy
z

im
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cit
s

xy
z

im
pli
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s

Figure 1. The proposed implicit feature encoding. Given a point cloud as input, its unsigned distance
field (UDF) is sampled as pointwise canonical feature vectors and concatenated after the point
coordinates, forming a more expressive point cloud representation. The UDF is color-coded from
bright to dark in ascending order of the distance values of the points.

3.1. Implicit Feature Encoding

We choose UDF among shape implicit representations since it can represent both
closed objects and open scenes. Given the point cloud of a shape P = {p|p ∈ R3}, its UDF
is a continuous function dP (·) that specifies the magnitude of a position x ∈ R3 within the
field as the shortest distance between x and P , i.e.,

dP (x) = min
p∈P
‖x− p‖. (1)

This function returns a zero value when x is a point of P , and dP (x) = 0 defines the point
cloud P itself.

To obtain pointwise discrete implicit features from the continuous distance field given
by Equation (1), we sample the distance function around each point and concatenate their
values in a specific order (see Figure 2). In our implementation, we construct a sample
sphere S = {xi, 1 ≤ i ≤ M}with M positions distributed evenly inside a sphere centered at
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the origin and with a given radius r. When computing the implicit features of a query point
q, S is first placed on q by aligning the center of S with q: Sq = {xi + q, 1 ≤ i ≤ M}. Next,
Sq is transformed to its canonical pose considering the local geometry of q, which is used
to achieve rotation invariance of the computed features and will be detailed in Section 3.2.
Finally, the distance field values of the M sampled positions are concatenated sequentially
(in the same order as their sampled positions) to form the M-dimensional implicit feature
vector for q. For simplicity, we use one identical sample sphere for the entire dataset. This
way, the spatial relationships of the sampled positions remain consistent for every point in
different point clouds within the dataset, which ensures that the resulting implicit features
can be compared to differentiate different objects.

×

×

× ×
××

××
× ×
×

×

(a) Point cloud (b) Unsigned distance field (UDF)

Figure 2. Implementation of implicit feature encoding. For a query point q (yellow dot), the sample
sphere is aligned with q and projected to its canonical pose. q’s implicit feature vector is then
obtained by sequentially concatenating the UDF values of each sample position (black cross). The
UDF is color-coded from bright to dark in ascending order of the distance values of the points.

A straightforward way to compute an element of a distance field, i.e., the shortest
distance between a given position x and a point cloud P , is to first calculate distances
from x to all points in P and then find the minimum one. Despite the simplicity of this
brute-force algorithm, it can lead to prohibitively long times when processing large point
clouds. For efficiency, we cast the calculation of distance field elements as the nearest
neighbor search problem. By building a kd-tree from P , we retrieve the nearest point of x
to obtain its respective distance value. We normalize each shortest distance value to the
unit scale by dividing it by the radius of the sample sphere r. The process of our implicit
feature encoding is summarized in Algorithm 1.

Algorithm 1 Implicit feature encoding

Input: a point cloud P ∈ RN×3 and a sample sphere S ∈ RM×3 with a radius r
Output: an augmented point cloud P ′ ∈ RN×(3+M)

1: Initialization: build a kd-tree from P
2: for each p ∈ P do
3: place S on p
4: transform S to its canonical pose Scan considering the local geometry of p
5: for each x ∈ Scan do
6: calculate the shortest distance dP (x) using the kd-tree
7: concatenate the normalized distance dP (x)/r to p
8: end for
9: end for

3.2. Transformation Invariance

We expect the encoded implicit features to remain consistent concerning transforma-
tions, i.e., translating, scaling, or rotating a point cloud should not influence the calculated
features.
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Translation and scale invariance. Translation and scale invariance are relatively
easy to achieve. On the one hand, our encoded implicit features are already invariant to
translations because the positions are sampled from the UDF for each point. On the other
hand, we eliminate scaling effects for synthetic datasets by fitting point cloud instances
with different scales into a unit sphere before implicit feature encoding. For real-world
datasets, we can ignore the scaling issue on practical grounds. Point clouds in a real-world
dataset do not change in scale because the entire dataset is typically collected using a single
instrument (e.g., a depth camera or a LiDAR scanner).

Rotation invariance. To achieve rotation invariance, we propose to transform each
sample sphere Sq to its canonical pose based on the local geometry of the query point q.
First, we construct a spherical neighborhood Pq by searching points within the radius r
from q. Pq is zero-centered by subtracting q from every point in Pq. Then, we calculate the
intrinsic orthogonal bases, namely the three principal axes, of Pq via principal component
analysis (PCA) [50,51]. We implement PCA by performing singular value decomposition
(SVD) given its high numerical accuracy and stability [51]. Specifically, Pq, when viewed
as an Nq × 3 matrix (where Nq is the number of points in Pq), can be decomposed into two
orthogonal matrices U and V, and a diagonal matrix Σ, i.e.,

Pq = UΣVᵀ, (2)

where the columns of V are the three principal axes {v1, v2, v3}. To eliminate the possible
sign ambiguity, we orient every principal axis towards a predefined anchor point pa:

vi =

{
−vi, vi · (q− pa) < 0
vi, otherwise

. (3)

In our experiments, the anchor point is chosen as the farthest point from q in its spherical
neighborhood Pq. Finally, we obtain the canonical sample sphere Scan by aligning the three
principal axes of the initial sphere with the world coordinate system:

Scan = Sq ·Vᵀ. (4)

Scan is a rotation-equivariant representation, and it remains relatively stationary to the
point cloud under external rotations (please refer to Appendix A for a proof). This ensures
that encoded implicit features are invariant to rotations.

In real-world datasets, the Z axis of a point cloud typically points vertically upward.
We can exploit this a priori information by performing 2D PCA using only the x and y
coordinates of the points. In this case, the anchor point can be defined as the farthest
neighboring point from the query point in the vertical direction, e.g., the local highest point.

The presented local canonicalization differs significantly from conventional canonical-
ization methods in two respects.

• We calculate the canonical pose based on local neighborhoods rather than an entire
point cloud instance. Therefore, our approach can be applied to not individual objects
but also large scenes containing multiple objects.

• We transform sample spheres instead of raw points, which guarantees the continuity
of the encoded features (see Figure 3c). On the contrary, converting raw points of
local neighborhoods to their canonical poses will destroy the original geometry of
shapes and thus lead to inconsistent features (see Figure 3b). Moreover, canonicalizing
sample spheres allows us to employ the pre-built kd-tree structure to accelerate feature
encoding.
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Figure 3. The impact of canonicalization on the encoded implicit features. Here we visualize the same
randomly chosen dimension of the encoded implicit features under three different canonicalization
settings. The four red rectangles (i.e., 1–4) in subfigures highlight noticeable differences among
implicit features under different settings. (a) Without canonicalization, walls and chairs with the same
orientation (e.g., 1 and 2) share similar implicit features, whereas those with varying orientations
(e.g., 1 and 4) show different implicit features. (b) By transforming raw points of local neighborhoods
to their canonical poses, the encoded implicit features are inconsistent. (c) By transforming sample
spheres to their canonical poses, the implicit features become consistent and invariant to rotations
(i.e., each object class has similar implicit features).

4. Results and Evaluation
4.1. Implementation Details

We have implemented our implicit feature encoding algorithm in C++ based on the
Point Cloud Library [52]. For efficiency, we have parallelized implicit feature encoding
using OpenMP [53]. All experiments were carried out on a single NVIDIA GeForce RTX
2080 Ti graphics card.

4.2. Experiment Setup

The goal of our experiments is to validate if the proposed point representation can
improve the performance of a range of existing 3D deep neural networks rather than achieve
state-of-the-art performance on individual datasets. For this purpose, we have evaluated
our method on two classic point cloud analysis tasks: individual object classification and
scene-level semantic segmentation. The former aims to determine a category label for a
point cloud of a given object as a whole, while the latter intends to assign a category label
to each point in a point cloud of a given scene.

First, we employed PointNet [7], Point Structuring Net [22], and CurveNet [21] as our
backbones to classify point clouds of individual objects from the ModelNet dataset [23].
PointNet is the foremost deep network that can consume 3D points directly. Point Structur-
ing Net and CurveNet are up-to-date methods that improve point cloud geometry learning
through novel feature aggregation paradigms. We compared the results with and without
our implicit features in terms of overall accuracy (OA) and mean class accuracy (mAcc).
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We then validated our approach for the 3D semantic segmentation task. On the one
hand, we tested our method on the large-scale indoor scene dataset S3DIS [24] using three
baseline methods: PointNet [7], Superpoint Graph [19], and RandLA-Net [20]. The last two
networks are state-of-the-art architectures designed for processing large-scale point clouds.
On the other hand, we examined our method on the urban-scale outdoor scene dataset
SensatUrban [25] based on the RandLA-Net backbone [20]. Following previous studies,
we evaluated network performance quantitatively using three evaluation metrics, i.e., OA,
mAcc, and mean intersection over union (mIoU). We also reported per-class IoU for better
interpretation of the results.

Tables 1 and 2 summarize the experimental setting and evaluation metrics, respectively.
To ensure a fair comparison, we have trained two models for each baseline network, one
with and the other one without our implicit feature encoding. The hyperparameters and
training setups of all baselines remain the same as suggested in their original papers (or
code repositories [54]). For the RandLA-Net backbone, we have increased the dimension
of its first fully connected layer and corresponding decoder layer from 8 to 32 to preserve
more information from our implicit features.

Table 1. Experimental setting. PN: PointNet [7]. PSN: Point Structuring Net [22]. CN: CurveNet [21].
SPG: SuperPoint Graph [19]. RLN: RandLA-Net [20]. #Classes and #Points denote the number of
classes and points, respectively.

Task
Dataset

Baseline(s)
Name Scenario Data Source Area #Classes #Points RGB

Classification ModelNet [23] Objects Synthetic - 40 12 M No PN, PSN, CN

Segmentation
S3DIS [24] Indoor scenes Matterport 6.0 × 103 m2 13 273 M Yes PN, SPG, RLN

SensatUrban [25] Urban scenes UAV photogrammetry 7.6 × 106 m2 13 2847 M Yes RLN

Table 2. Evaluation metrics. C denotes the number of classes. TP, TN, FP, and FN are the true positive,
true negative, false positive, and false negative, separately.

Metric Formula Task (s)

Overall Accuracy OA =
TP + TN

TP + TN + FP + FN
Classification & Segmentation

Mean Class Accuracy mAcc =
1
C

C

∑
i=1

TPi

TPi + FNi

Classification & Segmentation

Mean Intersection Over Union mIoU =
1
C

C

∑
i=1

TPi

TPi + FPi + FNi

Segmentation

4.3. 3D Classification of Individual Objects

We first evaluated our method for the 3D object classification task by comparing the
performance of the PointNet [7], Point Structuring Net [22], and CurveNet [21] backbones
with and without our implicit features on the ModelNet dataset [23]. ModelNet is the most
widely used benchmark dataset for 3D point cloud classification. It contains 40 common
classes of CAD models with a total of 12,311 individual objects, of which 9843 and 2468 form
the training and test sets, respectively. Each point cloud instance consists of 10,000 points
sampled from its synthetic CAD model. Objects of the same category are pre-aligned to
a common upward and forward orientation. Before feeding each point cloud into the
networks, we uniformly sampled 1024 points from its original point cloud and normalized
the points into a unit sphere.

We have conducted two types of experiments to evaluate the effectiveness of our
implicit feature encoding and local canonicalization.
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• Pre-aligned. We utilized the a priori orientation information provided by the data in the
same way as in the previous studies [7,8,15,21,22,41,55], and we directly calculated
implicit features from the data without canonicalizing sample spheres.

• Randomly rotated. We intentionally introduced random 3D rotation to all point clouds
in both training and test sets, and we apply our local canonicalization before implicit
feature encoding. We used 3D random rotations as data augmentation for the training.

Table 3 reports the classification results. Our method consistently improved the
performance of all three baselines in both types of experiments. When classifying pre-
aligned objects, we have observed performance boosts of 2.5% in OA and 2.6% in mAcc for
PointNet, 1.1% in OA and 1.3% in mAcc for Point Structuring Net, and 1.0% in OA and
0.3% in mAcc for CurveNet, respectively. The performance gains are more significant for
the classification of objects with random poses, with increases of 15.3% in OA and 14.8%
in mAcc for PointNet, 6.4% in OA and 8.3% in mAcc for Point Structuring Net, and 2.3%
in both OA and mAcc for CurveNet, respectively. It is also worth noting that classifying
objects in arbitrary poses is more challenging, resulting in performance drops for both
baseline and our method. Nevertheless, our method effectively enriches point cloud data
with canonical geometric information, and it thus substantially improved the robustness of
the baseline network against unknown rotations. Compared to NerualEmbedding [34] that
exploits implicit representations for 3D object analysis, our method plugging the most basic
PointNet backbone yielded more accurate predictions with an approximate improvement
of 1.1% in terms of both OA and mAcc.

Table 3. Object classification results (%) on the ModelNet dataset [23].

Method
Pre-Aligned Randomly Rotated

OA mAcc OA mAcc

PointNet [7] 90.8 87.8 71.0 67.7
PointNet [7] + ours 93.3 90.4 86.3 82.5

Point Structuring Net [22] 92.3 89.2 81.9 76.0
Point Structuring

Net [22] + ours 93.4 90.5 88.3 84.3

CurveNet [21] 93.1 90.4 87.4 83.1
CurveNet [21] + ours 94.1 90.7 89.7 85.4

NeuralEmbedding [34] 92.2 89.3 - -

4.4. 3D Semantic Segmentation of Indoor Scenes

Next, we evaluated our method for the 3D semantic segmentation task using three
baseline methods, namely PointNet [7], SuperPoint Graph [19], and RandLA-Net [20],
on the S3DIS dataset [24]. S3DIS is a large-scale 3D indoor scene dataset that contains
six areas with 272 rooms covering approximately 6000 m2. The entire dataset comprises
273 million points captured by a Matterport scanner. Each point has its xyz coordinates
and several attributes, i.e., an RGB color and a label representing one of the 13 semantic
categories. Following the previous studies [7,9,11,15,16,19,20], we have conducted both
one-fold experiments using Area 5 as the test set and six-fold cross-validation experiments.

Figures 4 and 5 visualize some qualitative results, from which we can see that our
method has successfully corrected the erroneous predictions made by the baseline methods
for quite a few categories, such as chair, door, desk, column, sofa, bookcase, wall, and clutter.
Besides, the regions of tables in the second row of Figure 4 and those of chairs and clutter in
the second row of Figure 5 exemplify better continuity of the predictions generated using
our method. Note that Figures 4 and 5 only illustrate the major differences between our
predictions and those of the baselines. Due to the random nature of neural networks, our
method does not always outperform baselines at every single point prediction. For an
accurate comparison, we perform a detailed quantitative analysis.
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Table 4 presents the quantitative results of all methods tested on Area 5. We can see
that our approach has improved the performance of all three baseline methods in terms
of all three evaluation metrics. As PointNet is not designed to capture local information,
our implicit features complement this deficiency and thus have enhanced its performance
significantly, with increases of 4.1%, 10.5%, and 9.7% in OA, mAcc, and mIoU, respectively.
Though SuperPoint Graph and RandLA-Net both exploit local aggregation operations, us-
ing our implicit features can still improve their performance. Specifically, using our implicit
features has increased the OA, mAcc, and mIoU by 2.1%, 1.3%, and 3.3% for the SuperPoint
Graph baseline, and by 1.2%, 3.1%, and 2.7% for the RandLA-Net baseline, respectively.
In terms of per-class IoU, enhancing PointNet, SuperPoint Graph, and RandLA-Net by
our implicit features has enabled more accurate predictions in 12, 10, and 9 (out of 13)
categories, respectively.

Figure 4. Qualitative comparison between the semantic segmentation results of PointNet [7] and
ours on the S3DIS dataset [24]. The red rectangles highlight the major differences between the results
of PointNet and ours.
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Figure 5. Qualitative comparison between the semantic segmentation results of RandLA-Net [20]
and ours on the S3DIS dataset [24]. The red rectangles highlight the major differences between the
results of RandLA-Net and ours.

Table 4. Quantitative comparison between the semantic segmentation results of PointNet [7], Super-
Point Graph [19], RandLA-Net [20], and ours on Area 5 of the S3DIS dataset [24].

Method OA mAcc mIoU Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

PointNet [7] 77.9 51.3 40.9 87.3 97.8 69.0 0.5 5.9 35.9 4.4 57.4 42.1 8.0 48.5 38.3 36.0
PointNet [7] + ours 81.9 61.8 50.6 92.4 98.0 72.2 0.0 22.1 44.0 28.9 65.2 64.2 29.4 57.6 42.4 40.9

SPG [19] 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 75.4 84.7 52.6 69.8 2.1 52.2
SPG [19] + ours 88.5 67.8 61.3 93.0 96.8 79.2 0.0 34.4 52.2 65.9 77.8 87.3 72.9 73.1 7.7 56.2

RandLA-Net [20] 87.1 70.5 62.5 91.5 97.6 80.3 0.0 22.7 60.2 37.1 78.7 87.0 69.9 70.7 66.0 51.5
RandLA-Net [20] + ours 88.3 73.6 65.2 93.1 96.9 82.3 0.0 32.0 59.5 53.0 76.5 88.4 70.8 72.4 68.2 54.8

Table 5 provides a quantitative comparison of all methods using six-fold cross-validation.
Similarly, by feeding our implicit features, all three baseline methods have been improved
in all three evaluation metrics. Specific improvements regarding OA, mAcc, and mIoU are
5.2%, 11.0%, and 10.8% for PointNet, 1.4%, 1.7%, and 1.9% for SuperPoint Graph, and 0.5%,
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0.7%, and 1.3% for RandLA-Net, respectively. Using our implicit feature encoding, PointNet
predicted more accurately in all 13 categories, while SuperPoint Graph and RandLA-Net
improved in 10 (out of the 13) categories.

Table 5. Quantitative comparison between the semantic segmentation results of PointNet [7], Su-
perPoint Graph [19], RandLA-Net [20], and ours on the S3DIS dataset [24] using six-fold cross
validation.

Method OA mAcc mIoU Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

PointNet [7] 78.5 61.2 48.3 88.4 93.8 69.3 29.6 20.2 44.9 50.0 52.8 43.5 15.5 41.8 37.4 41.2
PointNet [7] + ours 83.7 72.2 59.1 92.3 94.3 75.5 38.7 40.2 46.4 61.3 61.3 64.7 42.4 51.9 48.3 51.0

SPG [19] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 69.2 73.5 45.9 63.2 8.7 52.9
SPG [19] + ours 86.9 74.7 64.0 92.0 95.6 76.6 44.5 50.4 55.7 72.5 68.9 79.0 59.8 63.1 14.6 58.9

RandLA-Net [20] 88.0 82.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1
RandLA-Net [20] + ours 88.5 82.7 71.3 94.0 96.4 81.2 60.7 53.4 63.2 72.5 70.9 77.1 68.8 65.1 62.3 61.2

4.5. 3D Semantic Segmentation of Outdoor Scenes

For the 3D semantic segmentation task, we further evaluated our approach on the
outdoor scenes from the SensatUrban dataset [25]. SensatUrban covers a total area of
7.6 km2 across Birmingham, Cambridge, and York. It consists of 37 training blocks and
6 test blocks, totaling approximately 2.8 billion points. Each point has seven dimensions
(i.e., xyz coordinates, RGB color, and a label with one of 13 semantic categories). Compared
to the indoor dataset S3DIS [24], SensatUrban has urban-scale spatial coverage, a greater
number of points, a severer imbalance between categories, and a larger number of missing
regions, posing more challenges for semantic segmentation tasks. Because of the large-scale
coverage, we used RandLA-Net as our backbone architecture.

Figure 6 visualizes some segmentation results (randomly chosen) of the test set. Due
to the unavailable ground-truth labels for the test set, we visually inspected and compared
the results by referring to the original-colored point clouds (see Figure 6a). To understand
the effect of our implicit features, we manually marked the areas where our predictions
differed from those of the baseline method. From these visual results, we can observe that
the rich local geometric information encoded by our implicit features enables segmentation
at a finer granularity. For example, in the first row of Figure 6, our method substantially
reduced the misclassification of points from the ground and roofs as bridges. In the second
row of Figure 6, some water segments have been misclassified by the baseline method,
while introducing our implicit features has greatly reduced the errors and resulted in more
accurate and continuous boundaries between the categories of ground and water. In the
third and fourth rows of Figure 6, the walls and street furniture are better separated.

We report the quantitative evaluation on the SensatUrban dataset in Table 6, from which
we can see that our segmentation results are superior to those produced by the baseline in
9 out of the 13 categories, leading to a total performance gain of 2.1% in mIoU. There are
particularly considerable improvements in IoU for the categories of walls, bridges, and
rails, with an increase of 7.1%, 23.1%, and 4.4%, respectively. These improvements are
consistent and meanwhile explain the superior quality of our visual results demonstrated
in Figure 6.
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Figure 6. Visual comparison of semantic segmentation results on the SensatUrban dataset [25]. The
red rectangles highlight the major differences in the results between the baseline method and ours.

Table 6. Quantitative comparison of semantic segmentation results on the SensatUrban dataset [25].

Method OA mIoU Ground Veg. Build. Wall Bridge Park. Rail Traff. Street. Car Foot. Bike Water

RandLA-Net [20] 91.2 54.2 83.9 98.2 93.9 54.5 37.7 50.3 11.3 53.1 39.3 79.0 36.1 0.0 67.9
RandLA-Net [20] + ours 91.3 56.3 84.2 98.1 94.6 61.6 60.8 44.2 15.7 49.4 37.2 79.1 37.8 0.1 68.7
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5. Discussion
5.1. Feature Visualization

In Section 4, we have demonstrated the effectiveness of our implicit features in both
classification and segmentation tasks. In this section, we visualize a few representative
dimensions of our implicit features to better understand their effect. Figure 7 shows
one (manually chosen) dimension of the implicit features of different persons from the
ModelNet dataset [23]. Despite the non-rigid transformations between the persons, this
dimension of implicit features captures the same prominent body parts (e.g., head, hands,
feet, knees, chest, etc.) highlighted by the brighter color.

Figure 7. Visualization of one (manually chosen) dimension of the implicit features for the person
category from the ModelNet dataset [23]. With this dimension of implicit features, the same prominent
body parts are highlighted by the brighter color regardless of their postures.

To understand how the implicit features distinguish object classes, we visualize in
Figure 8 two different dimensions of implicit features for six categories of objects from the
ModelNet dataset. From these visualizations, it is interesting that the two dimensions of
features capture corners and planar structures, respectively. Besides, the same dimension
of the features highlights similar patterns across objects from the same category, and it
differentiates objects of different classes.
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Figure 8. Visualization of two (manually chosen) dimensions of the implicit features for six categories
of point clouds from the ModelNet dataset [23].

5.2. Parameters

Our method involves several parameters related to the sample spheres, including the
radius of spheres and the number and distribution of the sample positions. The radius
of the sample spheres specifies the scale of the local region on which the implicit features
are defined, so it is the scale of the locally encoded geometric information. The value
of the radius depends on both the point density and the nature of tasks and thus varies
across datasets. For the semantic segmentation task, we empirically set the radius to five
times the average point density. For the object classification task, as the network treats an
entire point cloud instance as a whole, we found that it was beneficial to encode shape
information on a relatively larger scale. Specifically, we empirically set the radius to 35 cm
for ModelNet [23], 15 cm for S3DIS [24], and 1 m for SensatUrban [25] in our experiments.
The number of sample positions determines the dimensionality of our implicit features,
and the distribution of sample positions defines the relative spatial relationship among
feature dimensions. Figure 9 illustrates three different distributions of sample positions:
grid, random, and regular. In Table 7, we report the impact of different parameter settings
on the performance of classifying randomly rotated ModelNet objects using the PointNet
backbone [7]. For all experiments in this work, we empirically chose 32 regularly distributed
sample positions.

Table 7. The effect of the parameters of sample spheres on the classification of randomly-rotated
objects from the ModelNet dataset [23] using the PointNet backbone [7].

Parameter
Distribution Radius (cm) Dimension

Grid Random Regular 25 35 45 16 32 64

OA (%) 85.2 85.5 86.3 83.6 86.3 85.5 85.1 86.3 86.2
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Figure 9. Illustration of three different distributions of 64 sample positions (blue dots). The orange
edges in this figure are derived from the Delaunay triangulation of the sample positions, which are
intended for visualization purposes.

5.3. Efficiency

The proposed implicit features encoding does not involve additional networks or
training, and they can be efficiently computed from the point clouds. Table 8 reports the
running times of implicit feature embedding for the three test datasets. On average, it runs
at approximately 290,000 points/s.

In our experiments, we have also observed that involving the proposed implicit feature
encoder enables faster convergence of the baseline backbones. To demonstrate this effect,
we have trained more epochs for PointNet models both with and without the implicit
feature encoder in the task of classifying randomly rotated ModelNet objects. Curves of the
training loss and evaluation accuracy of the two models are plotted in Figure 10. The large
gap between the corresponding curves indicates that incorporating our implicit features
improved the network performance in terms throughout the entire training process. More
significantly, our training curves are steeper and converge faster than the corresponding
curves of the baseline method. Specifically, the baseline method only shows signs of
convergence after Epoch 250, whereas ours starts to converge at Epoch 125. It indicates that
our implicit feature encoding transforms point clouds into easier-to-learn representations,
thereby increasing the training efficiency.
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Figure 10. Training curves for 3D object classification using the PointNet backbone [7] on randomly
rotated objects from the ModelNet dataset [23].
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Table 8. Running times of the proposed implicit feature encoding. The SuperPoint Graph [19]
and RandLA-Net [20] backbones use voxel-based downsampling as a pre-processing step, so we
calculated implicit features on the downsampled point clouds. As the PointNet backbone [7] does
not follow such a procedure, we calculated implicit features on the original input point clouds. #Files
and #Points denote the number of files and points, respectively.

Dataset #Files Downsampled #Points Running Times

ModelNet [23] 12,311 objects - 123,110,000 8.7 min

S3DIS [24] 272 rooms - 273,546,487 23.8 min
4 cm 18,610,642 58 s

SensatUrban [25] 43 blocks 20 cm 220,671,929 12.6 min

5.4. Comparison with Point Convolution

Our implicit feature encoding shares the spirit of point convolution methods that
exploit local geometric information. Specifically, our method samples values from implicit
fields that convey the local geometry of shapes, whereas the point convolution methods
strive to enlarge the receptive fields of neurons. We have incorporated our implicit features
into the state-of-the-art point convolution method KPConv [15] and tested it in the semantic
segmentation task on S3DIS (Area 5). The results are reported in Table 9, from which our
implicit features slightly degrade the performance of KPConv. We believe this is due to that
the local information captured by point convolution largely overlaps with but is superior
to ours. However, it is worth noting that KPConv has high memory and computational
requirements, and thus it cannot scale up to large scenes directly. In contrast, our implicit
feature encoding is simple, efficient, and can be integrated into network architectures that
can directly process point clouds of large-scale scenes, improving both effectiveness and
efficiency.

Table 9. Comparison between the results of KPConv [15] and ours in the semantic segmentation task
on the S3DIS dataset [24] (Area 5).

Method mIoU Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

KPConv [15] 65.3 93.3 97.9 81.6 0.0 18.1 53.7 68.7 81.3 90.8 66.0 74.3 64.8 57.9
KPConv [15] + ours 65.3 93.2 98.0 80.8 0.0 17.5 54.5 69.4 80.8 91.6 71.3 74.2 60.8 56.3

6. Conclusions

We have presented implicit feature encoding, which parameterizes unsigned distance
fields into compact point-wise implicit features. Our idea is to transform a point cloud
into an easier-to-learn representation by enriching it with local geometric information. We
have also introduced a novel local canonicalization approach that ensures the encoded
implicit features are transformation-invariant. Our implicit feature encoding is efficient and
training-free, which is suitable for both classification of individual objects and the semantic
segmentation of large-scale scenes. Extensive experiments on various datasets and baseline
architectures have demonstrated the effectiveness of the proposed implicit features.

Our current implementation adopts traditional distance fields that are data-driven and
can only represent single-point cloud instances. By contrast, neural distance representations
learn to summarize the information of an entire category of point cloud instances, resulting
in more powerful descriptiveness and superior robustness against imperfections in the
data. In future work, we plan to explore joint implicit feature learning and point cloud
classification/segmentation using a multi-task learning framework.

Author Contributions: Z.Y. performed the study, implemented the algorithms, and drafted the
original manuscript. Q.Y. and J.S. provided constructive comments and suggestions. L.N. proposed
this topic, provided daily supervision, and revised the paper with Z.Y. All authors have read and
agreed to the published version of the manuscript.



Remote Sens. 2023, 15, 61 18 of 21

Funding: Zexin Yang was supported by the China Scholarship Council and International Exchange
Program for Graduate Students, Tongji University. Qin Ye was supported by the National Natural
Science Foundation of China (No. 41771480).

Data Availability Statement: The source code of our method is publicly available at https://github.
com/zexinyang/ImplicitFeatureEncoding, accessed on 23 November 2022. All three datasets used
in this study are publicly available. Please refer to ModelNet at https://modelnet.cs.princeton.edu,
accessed on 28 July 2022, S3DIS at http://buildingparser.stanford.edu/dataset.html, accessed on 1
March 2022, and SensatUrban at https://github.com/QingyongHu/SensatUrban, accessed on 17
May 2022.

Acknowledgments: We would like to thank Xufei Wang for proofreading the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LiDAR Light Detection And Ranging
UDF Unsigned Distance Field
CNN Convolutional Neural Network
PCA Principal Component Analysis
SVD Singular Value Decomposition
CAD Computer-Aided Design

Appendix A

Here we prove that our canonical sample sphere Scan is rotation-equivariant w.r.t. its
local neighborhood Pq.

Proof. By applying a random rotation R ∈ SO(3) on Pq, its rotated version P ′q can be
obtained as

P ′q = Pq · R. (A1)

Similarly to Equations (2) and (4), the SVD of P ′q can be derived as

P ′q = Pq · R = (UΣVᵀ) · R = UΣ(VᵀR) = UΣ(RᵀV)ᵀ, (A2)

where the three columns of RᵀV become the axes of the canonical coordinate system. Thus,
the canonical sphere S ′can for P ′q can be computed as

S ′can = Sq · (RᵀV)ᵀ = (SqVᵀ) · R = Scan · R. (A3)

According to Equations (A2) and (A3), we can obtain

S ′can
P ′q

=
ScanR
PqR

=
Scan

Pq
, (A4)

showing that the external rotation matrix R does not affect the relative spatial relationship
between a canonical sample sphere and its local neighborhood.
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