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Abstract

Due to the ever growing demand for more efficient aircraft novel aircraft concepts have
to be explored. By improving design tools the potential of unconventional configurations
can be further studied. This requires improvement of conceptual design tools such that
more knowledge can be gathered on alternative solutions as early in the design process
as possible. Multidisciplinary design optimization (MDO) can support this process by
providing an environment in which the various disciplines can be designed and optimized
concurrently, while a certain level of consistency is maintained.

An optimization design tool has been created to assess the potential performance gains
of novel aircraft configurations. It connects with the Initiator design tool, which is a
conceptual design framework. As such, it can also be used as a means to expose any
analysis or design issues that may exist in the Initiator.

With the optimizer tool the following four case studies were performed: a conventional
Airbus A320, a forward-swept canard aircraft, a three-surface aircraft and an oval-fuselage
aircraft. For this purpose the genetic algorithm, sequential quadratic programming al-
gorithm and a hybrid genetic algorithm were used. From the case studies followed that
large improvements can be obtained with unconventional aircraft configurations when
compared to the initial aircraft design proposed by the Initiator design tool. Up to 20%
improvement was found with the three-surface and canard aircraft. The oval-fuselage
aircraft could be improved by a solid 10%, while the lowest improvement was attained
with the conventional A320.

Among all cases the most contributing factors were the wing longitudinal position, sweep
angle and wing aspect ratio. There is a tendency towards lower sweep angles due to the
positive effect on the weight of the wing and an underestimation of the drag rise. With
the forward-swept canard relatively high sweep angles were found, which contradicts
the findings of the aft-swept wings. Therefore, the aerodynamics routine needs further
investigation. From the highly swept, high aspect ratio wings of the forward-swept canard
aircraft followed that the weight penalty of forward swept wings is underestimated.
In three cases the fuselage fineness ratio was involved in the optimization. The results
showed that changing the fineness ratio offered some reduction in fuselage weight due to
a more favourable structural loading.
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The sizing routine of the control surfaces is found to be inadequate, since the Initiator
derives most parameters directly from the wing and does not properly take into account
control and stability requirements. Results have shown that this mainly regards the sweep
and dihedral angle. Especially, the sweep angle is of concern, since it changes the lift-
curve slope and therefore also stall characteristics. These sizing issues also affect the static
margin. It was found that class II design information was not fed back to the control
surface sizing.

Other discrepancies were found with the wing dihedral. Due to a lack of lateral stability
analysis of the Initiator the dihedral was driven by the lift-to-drag ratio rather than its
stabilizing effect. As a result a lower dihedral was observed among the cases.

From the used optimization algorithms can be concluded that the gradient algorithm was
the least effective. It had difficulties with the uncertainties in the computed results of the
Initiator. It sometimes stopped prematurely or started oscillating. This was alleviated
by increasing the step size of the algorithm, but at the expense of accuracy. The genetic
algorithm was found to be the best option since it proved to be very robust. It is far
less sensitivity to noise, because it does not use gradient information. Its computational
cost could be significantly reduced by applying parallel optimization and using a caching
mechanism. The hybrid algorithm was found to be too computational expensive. The
obtained increase in objective value did not outweigh the added cost.
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Chapter 1

Introduction

Due to the ever growing demand for more efficient aircraft novel aircraft concepts have
to be explored. By improving design tools the potential of unconventional configurations
can be further studied. The quest for more efficient aircraft requires improvement of
conceptual design tools such that more knowledge can be gathered on alternative solutions
as early in the design process as possible.

Since in aircraft design many disciplines are involved, obtaining the optimal design that
satisfies the requirements is not an easy task. At the conceptual design level multidis-
ciplinary design optimization (MDO) can support this process by providing an efficient
methodology in which the various disciplines can be designed and optimized concurrently,
while a certain level of consistency is maintained. As such, MDO plays an important role
in the coordination and optimization of the various disciplines.

As the fidelity of the disciplines increases and the coupling between the disciplines grows,
the more difficult and costly it becomes to develop and maintain an efficient MDO frame-
work. Progress has been made in the field of MDO by the development of more advanced
architectures, which use system decomposition, approximation models and concurrent
optimization to reduce the computational expenses, cost and required interdisciplinary
communication in large-scale systems. For this reason implementing an efficient MDO
strategy for the advanced preliminary and detailed design phases remains a complex mat-
ter.

Currently, a conceptual design framework is being developed and maintained by the Flight
Performance and Propulsion (FPP) group at Delft University of Technology. This frame-
work uses a multidisciplinary design approach to support the conceptual design, analysis
and evaluation of conventional and novel aircraft configurations. Based on a set of top
level requirements a first aircraft design can be generated, which can serve as input for
higher fidelity analysis tools.
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4 Introduction

1.1 Research question and thesis goal

As has been previously discussed, the use of a multidisciplinary optimization framework
in the conceptual design phase can give valuable insights in the potential of novel aircraft
configurations. Therefore, the research presented in this thesis is aimed at assessing the
potential performance gain of unconventional aircraft configurations through the use of
an optimization tool. This leads to the following research question:

What effect has the developed optimization strategy on the key performance indica-
tors of unconventional aircraft configurations?

In order to answer the research question subquestions have to be established. They are
formulated as follows:

� How can the sensitivity of the design variables be determined efficiently in order to
reduce the computational cost of the optimization?

� Which optimization strategies and algorithms are most suitable for implementation
in the Initiator design tool?

� What is the impact of the optimization on the design of the aircraft configurations?

In order to answer the subquestions and subsequently the main research question an
optimization tool has to be developed, which will be connected to the Initiator design
framework. Therefore the thesis goal can be formulated as follows:

The development of an optimization tool for the conceptual design of conventional
and unconventional aircraft that connects with the Initiator design tool.

1.2 Report outline

This report is dived into two parts. In the first part of the report the content with respect
to the thesis is presented. In the second part the implementation details of the optimizer
tool are described.

In Chapter 2 background information is given regarding the role of multidisciplinary
optimization in aircraft design and various optimization strategies. Also, a brief overview
of the Initiator design tool is given. The used sensitivity analysis methodology is explained
in Chapter 3. It provides a screening technique, which is used to find the most important
design variables. Chapter 4 elaborates on the implemented algorithms in the optimizer
tool. The weak and strong points of the algorithms are discussed. The optimizer tool
is described in Chapter 5. It involves the optimizer workflow, implemented optimization
strategy and parallel optimization. In Chapter 6 the results of the optimizer are evaluated
by means of four case studies. The chapter also present some key performance indicators,
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which are used to compare the obtained designs. The conclusions and recommendations
are given in Chapter 7. This chapter concludes the thesis part of this report.

The second part of the report starts with the program structure of the optimizer in
Chapter 8. It provides descriptions for the tool methods and properties. The user manual
is described in Chapter 9. It explains how the optimizer tool should be operated.



6 Introduction



Chapter 2

Background information

This chapter contains background information regarding the thesis, which has been col-
lected as part of the preliminary research. In the first section the multidisciplinary de-
sign optimization process is explained with respect to aircraft design. In Section 2.2 an
overview of MDO strategies is given. In Section 2.3 a brief description of the Initiator
design tool is presented.

2.1 MDO in aircraft design

Aircraft design involves many disciplines such as aerodynamics, propulsion, structure
and cost. The disciplines often dependent on each other, which results in a complex
and iterative design process. For instance, the required strength and thus weight of
the wing depends on the aerodynamic loads and total weight of the aircraft, while the
latter depend on the weight of the wing. Therefore the coordination between the various
disciplines plays an important role. Multidisciplinary design optimization supports this
design process by providing an efficient methodology in which the various disciplines can
be designed concurrently while a certain level of consistency is maintained. Decomposition
of large coupled problems into smaller subproblems may positively benefit the design time
by reducing the computational complexity and design groups no longer have to wait for
the results of other groups [29].

The aircraft design process can be divided into three phases: conceptual design, prelimi-
nary design and detailed design. In the conceptual design the requirements are established
and an initial aircraft design is created. In the preliminary design phase the concept is
further developed. At this stage calculations are done using high-fidelity models and tests
are performed. Based on this information the design is refined. If the decision is made
to manufacture the aircraft the detailed design phase is entered. In this last phase the
fabrication details of the aircraft are determined like the placement of rivets, spars and
other structural elements.

7
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These design processes are depicted in Figure 2.1. As can be seen the goal is to gather
as much knowledge on the design as possible in the early design stages, while keeping
a high level of freedom in the design. This can be realized by the application of MDO
techniques.

Figure 2.1: Aircraft design process [2]

2.2 Optimization strategies

The design of aircraft requires collaboration between many disciplines as described in the
previous section. Because of the coupling between the various disciplines an optimization
strategy has to be developed to ensure that all constraints are satisfied and that the
interdisciplinary coupling variables have converged.

The MDO strategies can be categorized in two groups: the monolithic and distributed
architectures [17]. The monolithic architecture uses a single optimization problem to solve
the system. In the distributed approach the optimization problem is divided into smaller
subproblems. Though an optimization problem can be solved by many optimization
strategies, a suitable choice has to be made such that the most efficient strategy is used
for the problem at hand.

2.2.1 Multidisciplinary feasible (MDF)

The multidisciplinary feasible strategy is a monolithic architecture. In this strategy the
optimizer only controls the design variables an global design constraints. At the sys-
tem level a multidisciplinary analysis (MDA) is performed to solve the coupling between
the various disciplines. A representation of the strategy is shown in Figure 2.2. The
optimization problem at the system level is as follows:

min
x

f(x)

subject to g(x) ≤ 0
(2.1)
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The main advantage of MDF is that it always results in a consistent system at every
design point. A second benefit is that complexity at the optimizer is reduced. A key
disadvantage is that at each every evaluation of a design point a full MDA has to be
performed. When using a gradient-based algorithm, the computation of the gradient
requires a complete MDA run, which can be rather expensive in large problems [20].
Another downside is the high degree of coupling between the disciplines. Disciplines are
likely to vary in computational difficulty, but they are run the same number of times.

Optimizer

Discipline 1

Discipline 3

Discipline 2

xf, g

System analyzer

Figure 2.2: Multidisciplinary feasible strategy

2.2.2 Individual discipline feasible (IDF)

The individual discipline feasible strategy uses the optimizer to enforce compatibility
between the disciplines. Like MDF, IDF is also a monolithic architecture. The optimizer
provides a guess for the coupling variables to each discipline. Based on the guess the
disciplines are solved individually. Convergence of the system is obtained by putting an
equality constraint on the actual and guessed values of the coupling variables. A schematic
representation of the IDF strategy is given in Figure 2.3. The optimization problem can
be formulated as follows:

min
x,y,y′

f(x, y(x, y′))

subject to g(x, y(x, y′)) ≤ 0

y′ − y = 0

(2.2)

In Equation 2.2 the coupling variables are denoted by y and the optimizer guess by y′.
The IDF strategy allows the individual disciplines to be solved in parallel, since each
discipline is supplied with a guess for the coupling variables. This can speed up the
analysis. Generally, the strategy works well for relatively small problems. When the size
of the problem grows, the number of coupling variables can become large which adversely
affects its performance.
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Optimizer

Discipline 1 Discipline 3Discipline 2

x, y’f, g, y

Figure 2.3: Individual discipline feasible strategy

2.2.3 All-at-once (AAO)

The all-at-once strategy is also known by the name simultaneous analysis and design
(SAND). It belongs to the same category as MDF and IDF. The AAO approach further
decomposes the system by simultaneously solving the state equations and the optimization
problem. The state equations are formulated as equality constraints in the optimization
problem. The optimization problem for AAO can be defined as follows [17]:

min
x,y

f(x, y)

subject to g(x, y) ≤ 0

Ri(x0, xi, y, ŷi) = 0 for i = 1, .., N

(2.3)

In Equation 2.3 R refers to the residuals of the state equations and N denotes the number
of disciplines. A major disadvantage of the AAO strategy is that it quickly becomes
impractical, because it requires all state equations and variables to be combined in the
problem statement.

2.2.4 Collaborative optimization (CO)

Collaborative optimization is a distributed architecture. The optimization problem is
solved at the system level and at the discipline level. For each discipline a optimization
subproblem is formulated in which the discipline governs its own design variables and
local constraints. This reduces the communication requirements in the system [1]. The
role of the system-level optimizer is to minimize the design objective and the discipline-
level optimizers are responsible for minimizing interdisciplinary inconsistency. The CO
system-level problem can be formulated as follows:

min
x0,x̂,ŷ

f(x0, x̂i, .., x̂N , ŷ)

subject to g(x0, x̂i, .., x̂N , ŷ) ≤ 0

J∗i (x0, x̂i, .., x̂N , ŷ) = 0 for i = 1, .., N

(2.4)
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In Equation 2.4 J∗ symbolizes the interdisciplinary inconsistency of the system. The local
design variables are denoted by x̂ and the target values for the coupling variables by ŷ.
The subproblem for each discipline is defined in Equation 2.5.

min
x0,x̂i,ŷi

Ji(x0, xi, yi(x0, xi, ŷ))

subject to c(x0, xi, yi(x0, xi, ŷ)) ≤ 0
(2.5)

The advantage of the CO approach follows from its fully separated disciplines. This
strategy is useful for problems which have a low degree of coupling, since a high number
of coupling variables leads to an increase in complexity and computational effort at the
system level.

2.2.5 Concurrent subspace optimization (CSSO)

Concurrent subspace optimization belongs to the category of distributed architectures
and decomposes the system into several independent subproblems, typically one for each
discipline. Each subproblem tries to minimize the global objective with respect to its
local design variables, while keeping the coupling variables constant.

The strategy starts with a full MDA of the system to obtain a consistent design. Using
this design point the subspace optimizations are carried out concurrently. Each subsystem
optimization results in a different design. These designs are used to generate an approx-
imation model of the objective function, which is used by the system-level optimizer to
solve the coordination problem and obtain convergence among the disciplines. After each
iteration the approximation model is updated. The system-level problem can be defined
as follows:

min
x,ỹ

f(x, ỹ)

subject to g(x, ỹ) ≤ 0
(2.6)

In Equation 2.6 ỹ denotes the state of the coupling variables of the other subspaces. Each
subspace optimization can be formulated using Equation 2.7.

min
x,yi,ỹ

f(x, yi, ỹj 6=i)

subject to g(x, yi, ỹj 6=i) ≤ 0
(2.7)

The main advantage of CSSO is the separation of the disciplines into subspace optimiza-
tion problems, which can be evaluated in parallel. A downside is that the accuracy of the
approximation models needs to be checked and validated [7]. Also, extensive tuning may
be required in order to run CSSO efficiently, especially on large non-linear problems [17].
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2.3 Initiator

The optimizer tool that is designed for the purpose of this thesis uses the Initiator design
tool. It is a conceptual aircraft design tool and is mainly written in Matlab . It uses
a modular structure to represent the components and disciplines of the system. The
advantage this approach is that the components and analysis routines can be easily added
or changed. The tool is driven by top level requirements, which are specified through a
configuration file.

A simplified workflow of the Initiator is shown in Figure 2.4. As can be seen in this
diagram the Initiator starts with the top level requirements. Using these requirements
the sizing modules are called, which execute the class I design methods. At this point
the initial geometry of the aircraft is generated and rough estimates for the weight and
performance are obtained.

Next, the Initiator advances to the analysis modules which calculate the properties and
characteristics of the aircraft in more detail by using class II and class II.V design meth-
ods. Amongst these modules is EMWET, which estimates the weight of the wing. The
method has been developed by Elham as part of his PhD thesis [13]. The fuselage weight
estimation module is designed by Schmidt for his Master’s thesis [25], which can handle
both conventional and novel fuselage shapes. The aerodynamics module is based on AVL,
which is a vortex-lattice method developed by Drela [11].

Read top level requirements 

and settings

Run preliminary sizing 

modules

Run analysis modules

Class II to II.V not converged?

Class I to II.V not converged?

Return converged aircraft

Figure 2.4: High-level activity diagram of the Initiator
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When all analysis modules have been run, the results of the class II.V weight estimation
are checked against the class II method. If the error is too large an iteration is performed
until the results converge. Next, the results of the class II.V methods are compared to
the class I estimates. An iteration of the design is performed when the results are too far
off. At the end a fully converged aircraft is obtained for the specified requirements.

Besides the sizing and analysis modules, there are also design and workflow modules. The
design modules involve the more detailed design of some part of the aircraft. They are
placed outside the analysis workflow. Examples are the design of the cabin, the design
of control surfaces like ailerons and elevators or the design of the landing gear. The
workflow modules are used for tools or routines that control the Initiator workflow or to
process module results. The optimizer tool will be part of this category. For an in-depth
description of the Initiator design tool the reader is referred to Elmendorp [14].
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Chapter 3

Sensitivity analysis

Aircraft design is a multidisciplinary design process which involves many design param-
eters. Due to the complex nature of the analysis routines and the couplings between the
various disciplines it is often difficult to predict what impact each design variable has on
the aircraft characteristics. This is where sensitivity analysis comes into play. In Sec-
tion 3.1 variable screening is explained and in Section 3.2 a description of the elementary
effects method is given.

3.1 Variable screening

Variable screening is a subcategory in the area of sensitivity analysis and is used to identify
the contribution of input variables to the outputs of a model. This way the most influential
parameters can be selected, such that optimization complexity and computational cost
can be reduced.

In screening the aim is to qualify the measure of importance of the input factors rather
than quantifying the exact sensitivity values. As such, screening is a useful addition to a
design optimization strategy.

Once the sensitivity data has been obtained, the input factors can be ranked based on their
importance. By selecting only the most important design variables, the dimensionality of
the optimization problem can be reduced leading to faster optimization.

3.2 Elementary effects method

One of the most commonly used screening approaches is the elementary effects (EE)
method. It employs the one-factor-at-a-time (OFAT) principle and provides a global
sensitivity analysis. The computational cost of this approach is relatively low compared
to other screening methods [8], which makes it a prime candidate when computationally
expensive models are involved, like in the Initiator.

15
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The elementary effects method is based on the work of Morris [18]. His method provides
two sensitivity measures to determine the importance of input variables based on a series
of experiments: the mean µ, which signifies the overall importance of an input factor,
and the standard deviation σ, which indicates non-linear effects and interactions. These
sensitivity measures are obtained by conducting a series of experiments in which the
inputs are changed one at a time.

The sensitivity measures are obtained by changing the k-dimensional input vector x one
component at a time in random order. This creates a so-called trajectory through the
input space. The more trajectories are used the more reliable the sensitivity measures
become as more input space is sampled. An example of a trajectory in 3-dimensional
space is shown in Figure 3.1.

x(0) x(1)

x(2)

k

j

i

x(3)

Figure 3.1: Example trajectory in 3-dimensional space using a five-level grid

In the example it can be seen that in each subsequent step only one input is changed.
The start of the trajectory x(0) is obtained by selecting a random point in the input
space [0, 1]k, which is discretized into a p-level grid Ω. The next point x(1) is acquired by
increasing or decreasing one component from x(0) with ∆ such that x(1) is still in Ω. This
is done until all components of x have been displaced with ∆. It follows that k+1 model
runs are required to compute a single trajectory. So, for each input xi the elementary
effect di can be defined as follows:

di(x) =
y(x1, .., xi−1, xi + ∆, xi+1, .., xk)− y(x)

∆
(3.1)

The step size ∆ must be a predefined multiple of 1/(p−1). Though different combinations
of p and ∆ can be chosen, there exists some values for p and ∆ for which the grid points
have equal probability of being sampled. This occurs when p is an even number and ∆ is
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calculated using Equation 3.2.

∆ =
p

2(p− 1)
(3.2)

The effect of choosing different combinations of p and ∆ is illustrated using the examples
in Figure 3.2. Figure 3.2a shows that for p = 4 and ∆ = 1/3 the two outer points are less
likely to be sampled. When ∆ is changed to 2/3 in Figure 3.2b, it can be seen that the
sampling probability is equal for all grid points. Using p = 5 and ∆ = 1/4 as shown in
Figure 3.2c the same problem arises as with example 3.2a. The two outer points have a
lower sampling probability. Example 3.2d uses p = 5 and ∆ = 3/4. Here the center grid
point is never sampled.

0 1/3 2/3 1

(a) p = 4 and ∆ = 1/3

0 1/3 2/3 1

(b) p = 4 and ∆ = 2/3

0 1/4 2/4 13/4

(c) p = 5 and ∆ = 1/4

0 1/4 2/4 13/4

(d) p = 5 and ∆ = 3/4

Figure 3.2: Sampling probability using different values for p and ∆

The choice of p is also related to the number of trajectories r. When a high-level grid is
used more trajectories are required to make sure that all possible levels are explored. In
this thesis a four-level grid (p = 4) is used with a ∆ of 2/3 and a total of 4 trajectories.
According to Morris [18] a sample size of at least 4 is needed to obtain a reasonably
reliable result.

With the calculated elementary effects the sensitivity measures can be determined. The
mean µi of each input parameter follows from Equation 3.3.

µi =
1

r

r∑
j=1

di(x) (3.3)

In this equation the parameter r refers to the number of trajectories. The corresponding
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standard deviation σi is given by Equation 3.4.

σi =

√√√√ 1

r − 1

r∑
j=1

(di(x)− µi)2 (3.4)

An improved version was developed by Campolongo et al.[9], who added a modified mean
µ∗. It uses the absolute values of the elementary effects to avoid cancellation effects when
the function is non-monotonic. The formula is displayed in Equation 3.5.

µ∗i =
1

r

r∑
j=1

|di(x)| (3.5)

In order to rank the input parameters by importance the Euclidean distance with respect
to modified mean µ∗ and standard deviation σ is used. Though the value of µ∗ alone
would suffice to rank the parameters, results show that inputs with a high value for µ∗

generally have a high value for σ as well [24].

si =
√
σ2
i + (µ∗i )

2 (3.6)

The elementary effects method is demonstrated in Chapter 6. In this chapter four case
studies are presented for which the screening method is used to reduce the number of
design variables.



Chapter 4

Optimization algorithms

In this chapter the algorithms used in the optimizer tool are presented. Multidisciplinary
optimization problems are generally very costly in terms of computation time, so it is
important to find a suitable algorithm that offers the most gain while keeping the com-
putational effort as low as possible. Since each optimization problem has different re-
quirements and characteristics, there is no algorithm that fits every case. Aspects like
the available resources, required accuracy, model noise and chosen optimization strategy
may affect the selection of an algorithm.

For this thesis a gradient-based algorithm, a genetic algorithm and a genetic hybrid
algorithm is used. In the first section a formulation of the general optimization problem
is given. In Section 4.2 gradient-based algorithms are discussed. This is followed by a
description of the genetic algorithm in Section 4.3. The hybrid algorithm is explained in
Section 4.4.

4.1 Problem description

The general non-linear optimization problem (NLP) can be defined as follows:

min
x
f(x)

x ∈ Rn

subject to gi(x) ≤ 0, i = 1, .., j

hi(x) = 0, i = 1, .., k

xl ≤ x ≤ xu

(4.1)

In Equation 4.1 f(x) is the objective function, which is a measure for the optimality of
the design. An example of an objective function could be the payload-range efficiency or
the lift-to-drag ratio. The problem is subject to inequality constraints gi(x) and equality

19
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constraints hi(x). Examples of constraints could be noise restrictions, emission regulations
or coupling variables. Furthermore, the design vector x is restricted by an upper and lower
bound.

4.2 Gradient-based algorithms

Gradient-based methods rely on first and second-order derivatives of the objective func-
tion to compute the search directions. One of the primary advantages of gradient-based
algorithms is that tthey tend to convergence rather rapidly, especially near the optimum.
In general the computational cost scales linearly with the number of design variables [30].
Another advantage is that they have a straightforward termination criterion. When the
step size has been reduced by a certain order of magnitude it can be said with certainty
that at least a local minimum has been found.

A disadvantage of gradient methods is its intolerance towards noise in the objective func-
tion. The algorithm might get stuck and stop prematurely or start to oscillate around a
certain point. Also, there is no guarantee that a global minimum is found. Furthermore,
the starting point may influence the outcome, because a different starting location might
direct the algorithm towards another basin of attraction yielding a different optimum.

For this thesis the sequential quadratic programming (SQP) method is used. It is one of
the more popular gradient methods and it is quite robust [15]. The idea behind SQP is
that an approximation is made for the Hessian using a quasi-Newton updating method.
Therefore this method can be seen as an extension to the Newton methods to the field
of constraint optimization. SQP solves the non-linear problem by creating a quadratic
programming (QP) subproblem at each iteration. The results of each QP subproblem are
used to approximate the next search step. The QP subproblem can be set up using a
Taylor expansion [6]:

min
d

f(xk) +∇f(xk)
Td+

1

2
dT∇2L(xk, λk, µk)d

subject to g(xk) +∇g(xk)
Td = 0

h(xk) +∇h(xk)
Td ≤ 0

where d = x− xk

(4.2)

In Equation 4.2 xk is the approximation at the current iteration and L denotes the
Lagrangian function of the problem. This function is given in Equation 4.3. Here λ and
µ are the Lagrange multipliers.

L(xk, λk, µk) = f(x) + λT g(x) + µTh(x) (4.3)

The optimizer tool that is designed for the purpose of this thesis uses the built-in SQP
algorithm from Matlab by means of the fmincon function. This function uses the pop-
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ular Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to approximate the Hessian
H = ∇2L. This approximation is shown in Equation 4.4.

Hk+1 = Hk +
qkq

T
k

qTk sk
−
Hksks

T
kH

T
k

sTkHksk

where sk = xk+1 − xk
and qk = ∇L(xk+1, λk+1)−∇L(xk, λk)

(4.4)

When the QP subproblem is solved the new iterate xk+1 can be computed:

xk+1 = xk + akxk (4.5)

The step length parameter ak in Equation 4.5 follows from a line search to determine an
appropriate step size. Finally, the algorithm advances to the new iterate xk+1 and a new
QP subproblem is generated. This procedure is repeated until a termination criterion
halts the algorithm. For more information regarding the algorithm implementation the
reader is referred to Matlab manual [4].

4.3 Genetic algorithm

The genetic algorithm (GA) is an evolutionary algorithm. Instead of relying on derivative
information like gradient-based methods, it uses the principle of natural selection. The
algorithm uses a population of individual solutions. Usually, the algorithm starts by
initializing a randomly generated population. At each iteration all individuals of the
current generation are ranked according to their fitness value, which follows from the
objective function. Then the following selection rules are applied to create the next
generation:

� Crossover : children are created by combining the design vectors of a pair of parents

� Mutation: children are created by making random changes to a single parent

� Elite: individuals with the best fitness values survive to the next generation

In Figure 4.1 these operations are visualized. Fitter solutions are more likely to be
selected to create children. As the algorithm progresses the average fitness value of the
population will increase, because only the best solutions survive to the next generation.
The algorithm terminates when the best fitness value is not increasing anymore for a
number of generations.

Compared to gradient-based methods, the genetic algorithm is more robust [28]. It can
operate in noisy environments and is able to solve non-smooth optimization problems. The
algorithm is less likely to be trapped in a local optimum, since multiple solutions are used
to explore the design space. However, there is no guarantee that the global optimum is
found. The algorithm may suffer from early convergence leading to a suboptimal solution
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Figure 4.1: The crossover, mutation and elite selection procedures of the genetic algorithm

[26]. Increasing the mutation rate may alleviate the problem. Another disadvantage
of the genetic algorithm is that convergence tends to be slow near the optimum [30].
Furthermore, the algorithm requires many function evaluations, because each individual
within the population has to be computed every generation. This can be overcome by
caching all individual solutions, which is explained in Section 5.3. The process can be
further speed up by computing individual solutions in parallel as is described in Section
5.4.

In the optimizer tool the built-in function ga from Matlab is employed. It uses the
augmented Lagrangian genetic algorithm (ALGA) and is based on the work of Conn et
al.[10]. The ALGA algorithm treats the bounds and linear constraints separately from
the non-linear constraints. The non-linear constraints and the fitness function f(x) are
combined into a subproblem, which is shown in Equation 4.6

Φ(x, λ, s, ρ) = f(x)−
m∑
i=1

[λisi log (si − ci(x))]−
mt∑

i=m+1

[λi log ceqi(x)]

+
ρ

2

mt∑
i=m+1

[λiceqi(x)2]

(4.6)

In this equation λ are Lagrange multiplier estimates, s is a vector containing non-negative
shifts and ρ is a positive penalty parameter. Each subproblem uses fixed values for λ, s
and ρ. The Lagrangian estimates are updated when the subproblem converges to feasible
conditions. When the constraints cannot be satisfied the penalty parameter is increased.
In both cases this leads to a new subproblem formulation. This procedure is repeated
until the termination criteria are reached. Examples of termination criteria for the genetic
algorithm are: no improvement in fitness value over a specified number of generations,
exceeding the maximum number of generations or an imposed time limit.

4.4 Hybrid algorithm

A hybrid algorithm combines two or more distinct optimization routines to solve the same
optimization problem. The idea behind this approach is to use the strong points of each
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method such that the combined algorithm is better than the individual algorithms.

A well-known example is the hybrid genetic algorithm in which the genetic algorithm is
paired with a more fine-grained solver, which is often gradient-based. This type is also
used for the optimizer tool. It uses the previously discussed genetic and SQP algorithm
to form a hybrid algorithm.

The primary role of the genetic algorithm in this setup is to explore the design space in
order to find the region with the most promising optimum, which is the global optimum
in the ideal case. The region discovered by the genetic algorithm can then be used by the
gradient method to hit the exact optimum in that region. The difficulty of the hybrid
algorithm lies in determining the decision criterion that dictates when the algorithm must
switch to the local solver. Studies showed that there are multiple criteria that can be used
for this purpose, but the effectiveness of these criteria depends on the type of problem
and requires tuning of the termination parameters [12].
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Chapter 5

Optimizer tool description

Since many disciplines are involved in aircraft design a multidisciplinary design optimiza-
tion (MDO) tool is required. The interactions between the disciplines greatly increase
the complexity of the system. Since analysis routines can be computationally expensive,
finding a feasible design within a reasonable amount of time can be more valuable than
finding the optimal design from a mathematical point of view.

The optimizer tool has been written in Matlab . It is implemented as a workflow module
in the Initiator framework, which has previously been described in Section 2.3. This way
the optimizer can be operated through the established routes in the Initiator and it also
facilitates easier implementation and linking with the design tool.

In this chapter first the workflow of the optimizer is explained. This is followed by a
description of the implemented optimization strategy. In Section 5.3 the caching technique
is discussed. In the final section the application of parallel optimization is presented.

5.1 Optimizer workflow

The high-level workflow of the optimizer tool is illustrated in Figure 5.1 and can be de-
scribed as follows. When the optimizer the tool starts with reading the optimization
problem and settings. The optimization problem contains information regarding the ob-
jective function, design variables, constraints and selected optimization algorithm. Next,
the optimizer uses the Initiator to compute the initial design point. The analysis results
of this baseline aircraft and its geometry data are saved for later use. Then the number
of design variables is checked. If this number exceeds the specified maximum number of
design variables, a sensitivity analysis is performed first. The sensitivity analysis routine
uses the elementary effects method described in Chapter 3. When the analysis has com-
pleted, the design variables are ranked according to their computed sensitivity value and
the most important variables are selected. By default the top 5 variables are taken. Using
the selected variables the optimization problem is set up. After the provided objective,
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constraints and algorithm options have been set, the specified algorithm is called. De-
pending on the options a parallel Matlab session may be started. Once the algorithm
has completed, the resulting optimum design vector is used to compute the final aircraft.
Its properties and analysis results are saved to disk, along with the optimization and
baseline aircraft data.

Run optimization

Run sensitivity analysis

Load settings and problem 

description

Save data to disk

Too many design variables?

Select most important 

design variables

Calculate properties of 

baseline aircraft

Calculate properties of final  

aircraft

Figure 5.1: High-level activity diagram of the optimizer

A more detailed description of the routines and functions can be found in Chapter 8. In
this chapter flowcharts are given of the sensitivity routine and the optimization functions.

5.2 Optimization strategy

For the optimizer tool the multidisciplinary feasible optimization strategy was chosen.
Due to the existing structure of the Initiator, which already featured a design convergence
module that performs the multidisciplinary analysis, the MDF architecture was adopted.
It is a traditional MDO strategy in which the optimizer is in charge of the design variables
and global design constraints.

Figure 5.2 shows the MDF implementation of the optimizer tool. Here it can be seen
that the optimizer passes the design vector x to the cache layer (see Section 5.3). If
there are already results for the passed design vector the cache immediately returns the
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corresponding objective and constraint values. Otherwise the design vector is forwarded
to the Initiator and a full MDA is done. The MDA is performed by the Initiator’s design
convergence module. This module takes care of obtaining consistency across all disciplines
and compliance with system constraints.

Optimizer tool

Design convergence 

module

Module 1

Module 2

Module N

f, g

Cache

x

xf, g

Figure 5.2: Multidisciplinary feasible implementation of the optimizer tool

As already has been discussed in Chapter 2, the major advantage of MDF is that it always
returns a consistent system for a given design vector. Another benefit is that when changes
are made in the Initiator, which require adjustments in the MDA routine, the optimizer
does not have to be modified. The loose coupling promotes maximum flexibility. When a
strategy like IDF, CO or CSSO was chosen the optimizer would have to be updated every
time someone decides to make a change to a particular module. This requires knowledge
of the whole optimization structure, which is an undesirable situation. For the same
reason approximation models or response surface techniques are not incorporated in the
implementation. Since the Initiator is subject to changes maintaining and updating such
models would be too costly. As such MDF is a robust and intuitive strategy, which is
most suitable for this environment.

5.3 Caching results

In order to speed up the optimization the effect of adding a caching mechanism at the
system level has been investigated. The caching mechanism allows to quickly retrieve
the results of design points that have already been processed. This way an expensive
recalculation is avoided.

This technique is only beneficial for algorithms that may re-examine prior results. A
perfect example is the genetic algorithm. In each generation part of the population
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survives to the next generation. Therefore the results of the surviving design vectors will
be needed again. The effect of caching using the genetic algorithm is shown in Figure 5.3.
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Figure 5.3: Effect of caching on the genetic algorithm

In this figure it can be seen that with caching the algorithm is able to evaluate much
more solutions in the same period of time. The steps in the line indicate that a match
in the cache has been found. The big steps can be explained by the adjustment of the
Lagrangian estimates of the genetic algorithm. The Lagrangian multipliers are used to
solve the fitness function with respect to the nonlinear constraints and are updated after
every couple of optimization steps, as was described in Section 4.3. When this happens
previous solutions are checked against the new multiplier estimates. The results can
immediately be pulled from the cache, which saves a lot of time.

Generally, gradient methods do not benefit from caching, because along its gradient-based
search path it is unlikely that the same point will be requested again. Nevertheless, the
caching layer is always on by default, because the overhead of this mechanism is very
small compared to a full MDA computation.

5.4 Parallel optimization

Since multidisciplinary analysis can be very expensive, the use of parallel computing has
been researched. In order for parallelization to be effective, there should be multiple tasks
that can be performed simultaneously and have to be of sufficient workload. If the tasks
are too small, the communication overhead will become too large resulting in parallel
slowdown. Also, attention must be paid to race conditions, because two processes may
request the same resource at the same time.

Not all algorithms are suitable for this technique. Algorithms at which the next solution
depends on previous iterate, the solutions can only be computed one at a time. Some-
times only particular subroutines of an algorithm may be suitable for parallelization. An
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example is a gradient-based algorithm which estimates the gradients simultaneously, but
can only evaluate one design point at a time.

The multi-solution approach of the genetic algorithm makes it an excellent candidate
for parallel optimization. Each individual solution of a particular generation can be
computed independently. A benchmark has been performed to determine how well the
genetic algorithm scales with the number of workers. The test has been performed on
a modern quadcore processor, which allows up to four parallel workers. The population
size is set to 12 to ensure that the workload is equally distributed across the available
workers in each test case. The caching layer has been disabled for benchmark to test the
raw performance. The results of this benchmark are shown in Figure 5.4. A trend line
has been fitted through each set of data points.
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Figure 5.4: Scaling the genetic algorithm using parallel computing

From the results it can be seen that the algorithm scales linearly up to three parallel
workers. By using a single worker about 0.76 function evaluations per minute are per-
formed. By adding a second and third worker this number increases to 1.53 and 2.39
respectively. The performance gain diminishes when the system’s maximum of four work-
ers is used. Because the system processes also require processor time, the fourth available
thread cannot be fully utilized. A maximum of 2.68 function evaluations per minute is
reached, which is 2.5 times more than with a single worker. So parallelization of the
genetic algorithm proves to be very beneficial.
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Chapter 6

Optimization case studies

In this chapter four aircraft configurations are evaluated to assess the effect of the opti-
mization on their performance and characteristics. For this purpose the following aircraft
configurations are selected: a conventional Airbus A320, a canard aircraft with forward
swept wings, a three-surface aircraft and an oval-fuselage aircraft.

In Section 6.1 the key performance indicators are established. Next, the optimization
procedure is explained in Section 6.2. Using this procedure the case studies are performed.
Their results can be found in Section 6.3 through 6.6. In the final section the cases are
compared and an evaluation of the algorithms is done.

6.1 Key performance indicators

The performance of an aircraft can be expressed in many ways. The key performance
indicators (KPI) are likely to vary depending on the perspective. Aircraft manufacturers,
consumers, airline companies and legislators all have different opinions with respect to
performance and efficiency parameters. For commercial airliners fuel efficiency and oper-
ating cost are very important factors. Also, environmental issues like noise and emissions
are becoming more and more important, which put constraints on the design space.

The selection of a key performance indicator is very important as it defines which objective
has to be considered for optimization. This choice will have consequences for the entire
design of the aircraft, so a sensible parameter must be used. A suitable measure of aircraft
performance is the payload-range efficiency (PRE) [19]. It is defined as follows:

PRE =
Wp ·R
Wfb

(6.1)

In Equation 6.1 Wp is the payload mass, R is the harmonic range and Wfb is the block
fuel load. The block fuel is the total fuel minus any reserve fuel. The harmonic range is

31
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the furthest distance the aircraft can fly with maximum payload. Other ranges are the
maximum fuel range and ferry range and they are typically indicated in a payload-range
diagram. An example of such a diagram is given in Figure 6.1, which is based on the
Airbus A320 from the first test case.
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Figure 6.1: An example of a payload-range diagram

Another important performance indicator is the range parameter X shown in Equation
6.2. The range parameter follows from the first part of the Breguet range equation. It
denotes the aerodynamic and propulsion efficiency of an aircraft.

X =
V · L/D
cT

(6.2)

In this equation L/D is the lift-to-drag ratio and cT is the specific fuel consumption.

6.2 Optimization procedure

In this section the optimization procedure is laid out. It consists of two main steps. The
first step is running the sensitivity analysis. This is explained in Section 6.2.1 and is
conducted once for each aircraft case. Next, the actual optimization is performed. This
is done three times, once for each algorithm. It is described in Section 6.2.2. In the last
section the used Initiator and aircraft settings are given.

6.2.1 Sensitivity analysis

For each case a sensitivity analysis is performed to identify the most important design
variables. This is done using the elementary effects method described in Chapter 3.
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According to Morris [18] a sample size of at least 4 is needed to obtain a reliable result.
Therefore the number of trajectories is set to 4, which is a fair trade-off with respect to
the computational cost. Each design variable is varied across four levels on the grid.

After the screening has been performed the most influential parameters are selected based
on their sensitivity value. Therefore a maximum of 5 design variables is established. The
sensitivity value s that is used in this chapter is the normalized version of Equation 3.6:

ŝi =
si
smax

· 100 (6.3)

6.2.2 Optimization

The top 5 design variables that follow from the sensitivity analysis are used in the op-
timization routine. Three runs will be done per aircraft, each time using a different
optimization algorithm. For this purpose the genetic algorithm, gradient-based SQP al-
gorithm and the genetic–SQP hybrid algorithm are used. The results of the optimization
are evaluated afterwards.

As already explained earlier in the key performance indicators section, the payload-range
efficiency is used as the optimization objective. The following objective function has been
set up:

min f(x) = − PRE

1000
(6.4)

As can be seen in Equation 6.4 a minus sign is added and a scaling factor is introduced
to normalize its value. Though most constraints are handled by the Initiator itself, the
nose loading constraint is not forced. To solve this problem the following two inequality
constraints are defined:

g1(x) = − x̂cgmin − x̂fwd
MAC

≤ 0 (6.5)

g2(x) = − x̂aft − x̂cgmax
MAC

≤ 0 (6.6)

Equation 6.5 denotes the maximum nose loading constraint and Equation 6.6 the mini-
mum nose loading constraint. Note that x̂, which refers to the longitudinal position, is
not the same as the design vector x. Both constraints are expressed in terms of the MAC.

A maximum runtime of two hours is maintained for the genetic and gradient algorithm.
From running the design tool multiple times it followed that after two hours there was no
significant gain in objective value. In some cases the algorithms even stopped before the
two hour limit. In Figure 6.2 the improvement in objective value against the computation
time is shown.
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Figure 6.2: Improvement in objective value against computation time

The hybrid method is given a maximum of three hours. The run time of the first stage,
the genetic algorithm, is limited to two hours. Then the local solver is run, which is
limited to 1 hour.

For the genetic and gradient-based SQP algorithm most options were left at their default
values. The population size of the genetic algorithm was adjusted to 12 with an elite
count of 2. Though a higher population count yields more diverse individuals, it takes
considerable more time to compute a single generation and therefore less generations can
be evaluated in the same amount of time. It was found that 12 individuals is a fair
trade-off. This way it takes about 5 to 10 minutes per generation depending on the
computational difficulty of the aircraft configuration. The algorithm stops when there is
no improvement in best fitness value after 4 generations.
The minimal step length of the SQP algorithm has been set to 10−3 to overcome the
output noise of the design tool. The default objective tolerance of 10−6 is maintained.

Design variables

The next step is to establish a set of design variables. The selected variables are gathered
in Table 6.1. Most parameters are related to the wing geometry, since it is expected that
they have the most influence on the objective value. Also, the longitudinal position of
the wing and the diameter of the fuselage are added.

The wing reference area must be kept constant when setting its geometry after a design
point has been chosen in the preliminary sizing. Therefore the root chord of the wing is
treated as a dependent variable and is calculated based on the given aspect ratio, taper
ratio and sweep angle. Changes in wing area due to twist, dihedral and thickness ratio
are assumed to be small. The wing position is selected because of its important role in
the longitudinal stability of the aircraft. It influences the size of the control surfaces and
the position of the landing gear. It is expressed in terms of the fuselage length. For the
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same reasons the canard position is added, but it is only used for the three-surface aircraft
case.

Variable Symbol Min. Max.

Aspect ratio A 8.0 15.0
Sweep angle1 Λ 0.0◦ 35.0◦

Taper ratio λ 0.0 1.0
Root thickness ratio ( tc)r −25% +25%
Kink thickness ratio2 ( tc)k −25% +25%
Tip thickness ratio ( tc)t −25% +25%
Dihedral angle Γ −5◦ +5◦

Root twist angle εr −5◦ +5◦

Kink twist angle2 εk −5◦ +5◦

Tip twist angle εt −5◦ +5◦

Wing longitudinal position fxw −0.15 +0.15
Canard longitudinal position3 fxc 0.05 0.20
Fuselage diameter df −25% +25%

Table 6.1: List of design variables
1For a forward swept wing the bounds are inversed

2Not applicable to the canard aircraft due to its forward swept wing
3Three-surface aircraft only

The fuselage diameter is added due to its effect on its structural weight and moment
arm with respect to the control surfaces. Based on the given diameter the design tool
calculates the required length to make sure that enough seats can be placed to carry the
required number of passengers. In case of the oval-fuselage aircraft the width is controlled
instead of the diameter.

6.2.3 Initiator and aircraft settings

The Initiator settings are mostly kept at their default values. The most important settings
are mentioned here. The allowed convergence error between the class II and II.V weight
estimation is kept at 1%. The weight error between the class I and II.V estimation is
0.5%. The minimum nose gear loading is set to 5% and the maximum nose loading is set
to 20%. The passenger mass is 80 kg and the luggage mass per passenger is 25 kg.

For all cases the Boeing 737 airfoils are used for the main wing. The airfoil shown in
Figure 6.3a is used for the root section, while the airfoil from 6.3b is placed at the kink
and tip section. The kink location is fixed at 30% of the wing semi-span.
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(a) Boeing 737-based root
section airfoil

(b) Boeing 737-based kink
and tip section airfoil

(c) NACA0012 airfoil

Figure 6.3: Airfoils used in the case studies

The horizontal tails have an aspect ratio of 5.0 and a taper ratio of 0.35. The other
properties are automatically sized by the Initiator.

The vertical tail has an aspect ratio of 1.0 and a taper ratio of 0.35. In case of a T-tail
configuration the values are 1.6 and 0.7 respectively. For the canard an aspect ratio of 5
and taper ratio of 0.60 is used. The sweep and dihedral are derived from the main wing
as well. For all control surfaces the NACA0012 airfoil is used, which is shown in Figure
6.3c.
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6.3 Case 1: Airbus A320

The first case that is considered is an aircraft which has similar requirements as the Airbus
A320-family. It is a conventional aircraft for short to medium range. It must be able to
carry 150 passengers over a range of 2870 km at a cruise speed of Mach 0.78. All top level
requirements are gathered in Table 6.2.

Pax. Payload mass MC Altitude Range sTO sL

150 20.5 tons 0.78 11.3 km 2870 km 2180 m 1440 m

Table 6.2: Airbus A320 top level requirements

The Initiator uses this information to create an aircraft that fulfils these requirements.
The resulting aircraft properties are shown in Table 6.3. A 3-dimensional model of the
aircraft is illustrated in Figure 6.4.

A 9.4 − Γ 6.0 ◦
Ah 4.9 − MTOM 58.9 tons

S 126 m2 fxw 0.45 − Sh 25 m2 OEM 30.8 tons
b 34.5 m ( tc)r 0.151 − bh 11.1 m FM 7.6 tons
Λ 26.2 ◦ ( tc)k 0.104 − Av 1.6 − Rh 2900 km
cr 7.6 m ( tc)t 0.104 − Sv 18 m2 PRE 7880 km
λ 0.16 − lf 40.6 m bv 5.2 m L/D 17.6 −
ε 0 ◦ df 4.2 m CLmax,clean 1.24 −

Table 6.3: Airbus A320 properties using the Initiator

Figure 6.4: Airbus A320 model

First a sensitivity analysis is performed using the design variables mentioned in Table
6.1. In total 52 runs had to be performed, which took 62 minutes to complete. The
resulting mean and standard deviation of each parameter are shown in Figure 6.5a and
the sensitivity index is given in Figure 6.5b. The variables are numbered according to
their importance.
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Figure 6.5: Airbus A320 sensitivity analysis results

In the graphs it can be seen that two parameters stand out, which are the wing position
and the sweep angle. The other variables are grouped in the left bottom corner. The
section twist angles have the least impact on the payload-range efficiency. The top 5
design variables are selected for optimization.

The optimizer is run for the genetic, gradient-based and hybrid algorithm. The resulting
optimum design vector of each algorithm is shown in Table 6.4. A detailed overview of
the changes in geometry and performance with respect to the initial design are given in
Table 6.5.

A fxw Λ ( tc)t Γ PRE ∆PRE t

Initiator 9.4 0.45 26.2◦ 0.104 6.0◦ 7880 km − −
Genetic 11.6 0.53 0.1◦ 0.081 1.9◦ 8240 km +4.6% 108 min

Gradient 14.4 0.48 6.2◦ 0.078 6.0◦ 8250 km +4.6% 101 min
Hybrid 13.1 0.45 14.5◦ 0.079 1.5◦ 8400 km +6.6% 169 min

Table 6.4: Optimum design vectors for the Airbus A320

In Table 6.4 it can be seen that the hybrid algorithm obtained the best payload-range
efficiency. It improved by 6.6% with respect to the reference aircraft, but it also took the
most time. The payload-range found by the genetic and gradient algorithm is about 2%
less, but both completed within 2 hours. They all agree on a slightly thinner wing tip
section, but there are significant differences when comparing the other design parameters.

Looking at the genetically optimized A320 in Figure 6.9 the very low sweep angle of
the wing immediately stands out. At a cruise speed of Mach 0.78 one expects a higher
sweep angle to reduce the drag rise due to compressibility effects. Therefore it seems
that the drag is underestimated. In Figure 6.6a it can be seen that up to Mach 0.80 a
low sweep angle is beneficial for the lift-to-drag ratio. The optimizer takes advantage
of this by trading sweep angle for a higher aspect ratio. From Figure 6.6b follows that
at lower sweep angles the aspect ratio has less impact on the operational empty mass.
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Though the structural weight increases at higher aspect ratios, it is compensated by a
better lift-to-drag ratio due to lower induced drag. This in turn benefits the payload-range
efficiency.
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Figure 6.6: Airbus A320 lift-to-drag ratio and operational empty mass

The wing position of the genetic solution is a bit more aft than the other designs. The
very low sweep angle causes the wing to shift a bit aft. This effect is shown in Figure
6.7a. There is a strong correlation between the sweep angle, wing position and lift-to-drag
ratio. With increasing sweep angle the wing has to shift forward to attain a better L/D,
but nose loading constraints limit this movement.
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Figure 6.7: Airbus A320 lift-to-drag ratio for varying parameters

The hybrid algorithm improved on the genetic solution by a few percent. Though it started
at the optimum design vector of the genetic algorithm, it came up with a rather different
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combination of aspect ratio, sweep angle and wing position. The resulting aircraft is shown
in Figure 6.11. The aspect ratio increased from 11.6 to 13.1 and the sweep angle increased
to 14.5◦. Up to about 15◦ sweep the aspect ratio weight penalty remains roughly the same
when observing Figure 6.6b. In combination with the more forward wing position a better
optimum was found with these parameters.

Both the genetic and hybrid solution have a lower wing dihedral angle. A lower dihedral
angle yields a higher effective planform area, which leads to a slight increase in lift [23].
This is also in accordance with Figure 6.7b. The dihedral angle largely depends on the
trade-off between lateral stability and roll control. Especially low-wing aircraft like the
A320 require some dihedral due to the wing-fuselage interaction, which is usually in the
range of 5◦ to 7◦ [27]. The dihedral angle is also constraint by the engine ground clearance
requirement and tip clearance during take-off rotation and landing. The Initiator does not
yet cover lateral stability and therefore the dihedral is entirely driven by the lift-to-drag
ratio.

The gradient-based solution resulted in the heaviest aircraft. It is depicted in Figure 6.10.
The operational empty weight increased by almost 12%. This can be mainly attributed
to wing as can be observed in Figure 6.8. The aspect ratio of 14.4 allowed it to reach a
lift-to-drag ratio of 20.3 at the cost of a significant increase in wing weight. Therefore it
does not outperform the genetic solution with an L/D of 19.1.
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Figure 6.8: Airbus A320 change in part mass after optimization

When looking at the tail surfaces of each design it can be observed that their sweep
and dihedral angles are coupled to the main wing. The sweep angle alters the lift curve
slope, which has consequences for the stall angle of attack and maximum lift coefficient.
Therefore the shape of the tail surfaces are likely to be far from optimal with respect to
the control and stability of the aircraft. Also, the high trailing edge sweep angle of the
genetic and hybrid solution create an unfavourable condition for the placement of elevator
and rudder control surfaces.

All solutions show a rather high static margin. This means that the center of gravity of
the aircraft is relatively far ahead of the neutral point. A lower static margin allows a
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reduction in tail size and requires a lower download from the tail. A smaller tail could
reduce the static margin. The design tool does not use the class II design information to
update the tail size, so this may be a point of improvement. Another option is to move
the wing more aft. However, the constraint on minimum nose loading limits its position.

Parameter Description Unit Initiator Genetic Gradient Hybrid
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PRE Payload-range efficiency km 7880 8240 8240 8400

X Range parameter km 7060 7630 8140 8050

Rh Harmonic range km 2900 2890 2890 2890

Rmax.fuel Max. fuel range km 9560 6440 6710 7420

MTOM Maximum take-off mass tons 58.9 59.3 62.2 60.5

OEM Operational empty mass tons 30.8 31.6 34.5 32.9

FM Fuel mass tons 7.6 7.2 7.2 7.0

L/D Lift-to-drag ratio − 17.6 19.1 20.3 20.1

CLmax,clean Max. lift coefficient − 1.24 1.39 1.37 1.30

Vsclean Stall speed clean m/s 77.7 73.2 73.7 75.5

W/S Wing loading kg/m2 466 465 464 464

T/W Thrust loading − 0.27 0.24 0.23 0.23

SM Static margin %MAC 68 69 59 56

c.g. travel Center of gravity travel %MAC 34 37 37 38

W
in

g

A Aspect ratio − 9.4 11.6 14.4 13.1

S Planform area m2 126 127 134 130

b Span m 34.5 38.5 43.9 41.4

cr Root chord m 7.6 4.1 4.6 5.7

MAC Mean aerodynamic chord m 4.5 3.5 3.3 3.6

λ Taper ratio − 0.16 0.45 0.36 0.26

Λ Sweep angle ◦ 26.2 0.1 6.2 14.5

Γ Dihedral angle ◦ 6.0 1.9 6.0 1.5

fxw Wing position fraction − 0.45 0.53 0.48 0.45

F
u

se
la

g
e lf Fuselage length m 40.6 40.6 40.6 40.6

df Fuselage width m 4.2 4.2 4.2 4.2

λf Fineness ratio − 9.6 9.6 9.6 9.6

H
T

Ah Aspect ratio − 4.9 4.9 4.8 4.9

Sh Planform area m2 25 20 20 20

bh Span m 11.1 9.9 9.8 10.0

crh Root chord m 3.3 2.9 2.9 3.0

Λh Sweep angle ◦ 29.3 0.1 6.9 16.2

Γh Dihedral angle ◦ 6.0 1.9 6.0 1.5

V
T

Av Aspect ratio − 1.6 1.6 1.6 1.6

Sv Planform area m2 18 20 24 21

bv Span m 5.2 5.6 6.1 5.8

crv Root chord m 4.8 5.2 5.6 5.3

Λv Sweep angle ◦ 39.2 0.1 9.3 21.7

Table 6.5: Airbus A320 optimization results

The results of this optimization case can also be viewed with respect to the actual Airbus
A320-200. Its specifications are given in Table 6.6. The aircraft has a harmonic range
of 2870 km and a maximum payload of 20.5 tons, which is the same as the top-level
requirements of this case. At maximum payload the fuel mass is 12.5 tons, which yields
a payload-range efficiency of approximately 4700 km. This value is significantly lower
than the Initiator reference aircraft and the three optimizations. This stems from the
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lower estimated aircraft mass and the underestimated drag penalty due to the onset of
compressibility effects. Both affect the lift-to-drag ratio, which plays a major role in this
key performance indicator.

A 9.5 − lf 37.6 m Av 1.8 − MTOM 73.5 tons
S 122 m2 df 4.1 m Sv 22 m2 OEM 39.7 tons
b 34.1 m λf 9.1 − bv 6.3 m PM 20.5 tons
Λ 25.0 ◦

Ah 5 − Λv 35 ◦ Rh 2870 km
cr 6.1 m Sh 31 m2 W/S 600 kg/m2 PRE 4710 km
λ 0.24 − bh 12.5 m T/W 0.31 −
Γ 5.0 ◦ Λh 28 ◦

Table 6.6: Airbus A320-200 specifications [21, 22]

The geometry of the A320-200 has most resemblance with the Initiator reference design.
For all obtained designs the horizontal tail planform area is considerably smaller than the
actual A320. This also indicates that the sizing routine of the tail surfaces needs further
investigation.

It can be concluded that with the conventional A320 only relatively small improvements
can be found with respect to the reference aircraft. It seems that the drag rise is underes-
timated, which followed from analyzing the optimizations and comparing the results with
the actual A320-200. The beneficial weight effect of lower sweep angles outweighs the
drag penalty. Also, the sizing method of the tail surfaces could use some improvement.
The sizing should be based on stability and control requirements, rather than only using
the main wing as reference. Purely looking at the objective value the hybrid algorithm
found the best aircraft. Its computational time is a bit higher, but in this case it can be
justified.
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(a) Top view (b) Front view (c) Side view

Figure 6.9: Airbus A320 geometry after genetic optimization

(a) Top view (b) Front view (c) Side view

Figure 6.10: Airbus A320 geometry after gradient-based optimization

(a) Top view (b) Front view (c) Side view

Figure 6.11: Airbus A320 geometry after hybrid optimization
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6.4 Case 2: Canard aircraft

The canard aircraft shares its top level requirements with the Airbus A320, which are
repeated in Table 6.7. It has a forward swept wing and a canard instead of a horizontal
tail. The engines are mounted to the rear of fuselage.

Pax. Payload mass MC Altitude Range sTO sL

150 20.5 tons 0.78 11.3 km 2870 km 2180 m 1440 m

Table 6.7: Canard aircraft top level requirements

For this aircraft the control-canard is used. The primary role of a control-canard is to
provide longitudinal control for the aircraft. The other variant is the lifting-canard, which
also carries part of the lift during normal flight. This type of canard usually has a higher
aspect ratio to reduce its lift-induced drag.
The canard generates an upward force to control the aircraft, while a horizontal tail
produces negative lift that must be compensated by the wing. This seems to make the
canard configuration the better choice due to the improved lift capability. However, the
downwash of the canard affects the airflow over the main wing which may worsen its
aerodynamic performance. Also, the canard must always stall first to ensure that the
aircraft pitches down during such event. Therefore the main wing can never reach its
maximum lift coefficient.

The forward swept wing has some advantages over an aft swept wing. It generally requires
a lower leading edge sweep angle to cope with the compressibility effects at high Mach
numbers. The aerodynamics model is not capable of fully computing these effects [11], so
this will not be reflected in the results. The downside is that the structure must be rigid
enough to withstand bending and torsion, especially at high sweep angles. This may lead
to a serious weight penalty. In addition, aeroelasticity effects can be problematic as the
tip may have flutter tendencies. The design tool does not evaluate the aeroelasticity, so
these effects are not taken into account.

Using the aforementioned requirements the canard aircraft is generated using the Initiator.
The resulting aircraft properties and performance figures are listed in Table 6.8. A 3-
dimensional representation of the model is shown in Figure 6.12.

Figure 6.12: Canard aircraft model
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A 9.4 − Γ 6.0 ◦
Av 1.6 − MTOM 57.1 tons

S 121 m2 fxw 0.60 − Sv 17 m2 OEM 28.5 tons
b 33.7 m ( tc)r 0.151 − bv 5.3 m FM 8.0 tons
Λ -26.2 ◦ ( tc)t 0.104 − Ac 5.1 − Rh 2900 km
cr 5.4 m lf 40.6 m Sc 14 m2 PRE 7420 km
λ 0.16 − df 4.2 m bc 8.5 m L/D 15.6 −
ε 0 ◦ CLmax,clean 1.84 −

Table 6.8: Canard aircraft properties using the Initiator

Next, a sensitivity analysis is conducted to reduce the number of design variables. Since
the wing is swept forward there is no kink section. So from the design variables listed
Table 6.1 the thickness ratio and twist angle at the kink are left out. Furthermore the
sweep angle boundaries are inversed, giving it a lower bound of −35◦ and an upper bound
of 0◦. In total 10 design variables are sampled, requiring 44 analysis runs. The sensitivity
analysis took 54 minutes to complete.

The results of the sensitivity analysis are shown in Figure 6.13. The top 5 variables are
indicated in the graph. It can be seen that the wing position, sweep angle and fuselage
diameter have the most influence on the objective when observing their µ∗ and σ values.
This is also reflected in the sensitivity index in Figure 6.13b.
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Figure 6.13: Canard aircraft sensitivity analysis results

Using all three optimization algorithms the results shown in Table 6.9 and 6.10 are ob-
tained. The latter gives a more extensive overview the aircraft properties. It can be seen
that the payload-range efficiency has been greatly improved, especially for the genetic and
hybrid algorithm. The gradient algorithm performed the worst as it attained the lowest
payload-range efficiency using the same amount of time as the genetic algorithm.
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A fxw Λ ( tc)r df PRE ∆PRE t

Initiator 9.4 0.60 −26.2◦ 0.151 4.2 m 7420 km − −
Genetic 10.0 0.56 −19.2◦ 0.118 4.3 m 8590 km +15.8% 124 min

Gradient 10.1 0.59 −31.9◦ 0.119 4.8 m 8260 km +11.3% 129 min
Hybrid 12.3 0.59 −23.4◦ 0.116 4.7 m 8850 km +19.3% 170 min

Table 6.9: Optimum design vectors for the canard aircraft

All algorithms remain close to the initial wing position of 0.60. In contrast to the aft-swept
A320 where the sweep was drastically reduced among all optimizations, the algorithms
maintained a higher sweep angle with a forward swept wing in canard configuration,
which is curious. The relation between the sweep angle, aspect ratio and operational
empty mass becomes clear when viewing Figure 6.14a. From this graph follows that a
moderate sweep angle of 20◦ to 25◦ results in the lowest aircraft weight. The wing mass
seems to be underestimated at high aspect ratios and sweep angles as their is no severe
increase in structural mass required to resists the large bending stresses of a forward swept
wing.
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(b) Lift-over-drag ratio for varying aspect ra-
tio and sweep angle

Figure 6.14: Effect of aspect ratio and sweep angle on the canard aircraft

The gain in lift-to-drag ratio with respect to aspect ratio and sweep angle is depicted in
Figure 6.14b. From this graph can be observed that their relation with lift-to-drag ratio
is much stronger than witnessed in the A320 case. Also, with increasing sweep angle the
effect on the lift-to-drag ratio becomes more pronounced. Results showed that this effect
mainly stems from a decrease in drag from the vortex-lattice based AVLVLM module.
This contradicts the findings with the aft-swept wing of the A320. Therefore further
investigation is required in the aerodynamics routines.
As such, the algorithms tried to find a compromise between a higher lift-to-drag by in-
creasing the sweep angle and aspect ratio, while keeping the weight increase to a minimum
such that the fuel consumption is kept as low as possible.
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Looking at Figure 6.15 there are significant differences in the aircraft part masses between
the four designs. The heaviest design follows from the hybrid solution, which has an
operational empty mass of 31.1 metric tons. The largest contributor is the main wing as
it gained over 3 tons in mass. Due to its relatively large aspect ratio a heavier structure
is required.
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Figure 6.15: Canard aircraft change in part mass after optimization

The gradient and hybrid algorithm tried to save weight on the fuselage by decreasing
its fineness ratio. This is visualized in Figure 6.18 and 6.19. The genetic algorithm
maintained roughly the same ratio (Figure 6.17). Due to the shorter moment arm a slight
increase in empenage weight is observed. The improved aerodynamic efficiency allowed
for a better thrust-to-weight ratio, thereby saving on engine weight.

The three optimization solutions all show a negative static margin. For a canard aircraft
to be longitudinally stable the static margin must be positive. In order to get a positive
static margin the wing or canard can be moved aft, or the canard size can be decreased
for example. The static margin as a function of sweep angle and wing position is given in
Figure 6.16. Here it can be seen that the margin becomes less with increasing sweep and
a more forward wing position. So for the moderate sweep angles of the optimized designs
a wing position fraction of around 0.65 is required to reach the feasible static margin
region. However, at such aft position the minimum nose loading constraint is violated.
The location of the canard is fixed, so the option that remains is reducing its size. After
investigating the sizing method of the canard it followed that it is linearly scaled with
the main wing’s planform area, MAC and position from the class I design methods. To
obtain a better static margin the information from the class II methods should be used
to adjust the canard size.

Like in the A320 case, the same tail–wing sizing relation is found. The vertical tail sweep
is heavily affected by the main wing sweep. Also, the sweep angle of the canard is sized
according to the main wing. As mentioned earlier, the control surface sizing should be
improvement in order to meet stability and control requirements instead of depending on
empirical geometric functions.
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Figure 6.16: Canard aircraft static margin vs. sweep angle and wing position (A = 9.4)

From the optimization of the canard aircraft it can be concluded that a large improve-
ment in objective value can be obtained. A slightly higher wing aspect ratio and lower
sweep angle resulted in a nearly 20% higher payload-range efficiency, at the cost of a
5% to 10% heavier aircraft. Some weight savings are achieved with the engine and fuse-
lage. Improvements with respect to the static margin could be done by feeding class
II design information back into the canard sizing. Compared to the A320, the baseline
canard aircraft performed worse than the conventional aircraft, but after optimization
the canard configuration obtained a superior payload-range efficiency. Lastly, it must be
noted that some characteristics of the forward swept wing, as mentioned earlier in the
case description, could not been taken into account as it is not covered in the design tool.
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Parameter Description Unit Initiator Genetic Gradient Hybrid
K

ey
p

er
fo

rm
a
n
ce

in
d

ic
a
to

rs
PRE Payload-range efficiency km 7420 8590 8260 8850

X Range parameter km 6250 7700 7520 8240

Rh Harmonic range km 2900 2900 2890 2890

Rmax.fuel Max. fuel range km 7310 6470 6670 6230

MTOM Maximum take-off mass tons 57.1 57.4 58.7 58.4

OEM Operational empty mass tons 28.5 29.9 31.0 31.1

FM Fuel mass tons 8.0 6.9 7.2 6.7

L/D Lift-to-drag ratio − 15.6 19.2 18.8 20.6

CLmax,clean Max. lift coefficient − 1.84 1.22 0.77 1.25

Vsclean Stall speed clean m/s 64.1 78.1 98.4 77.0

W/S Wing loading kg/m2 471 464 465 462

T/W Thrust loading − 0.30 0.25 0.25 0.23

SM Static margin %MAC 33 -57 -76 -47

c.g. travel Center of gravity travel %MAC 67 53 55 43

W
in

g

A Aspect ratio − 9.4 10.0 10.1 12.3

S Planform area m2 121 124 126 126

b Span m 33.7 35.2 35.7 39.4

cr Root chord m 5.4 5.1 5.4 4.8

MAC Mean aerodynamic chord m 3.7 3.6 3.7 3.3

λ Taper ratio − 0.16 0.22 0.13 0.18

Λ Sweep angle ◦ -26.2 -19.2 -31.9 -23.4

Γ Dihedral angle ◦ 6.0 6.0 6.0 6.0

fxw Wing position fraction − 0.60 0.56 0.59 0.59

F
u

se
la

g
e lf Fuselage length m 40.6 40.2 35.9 36.3

df Fuselage width m 4.2 4.3 4.8 4.7

λf Fineness ratio − 9.6 9.5 7.5 7.7

C
a
n

a
rd

Ac Aspect ratio − 5.1 5.1 5.1 5.1

Sc Planform area m2 14 18 20 18

bc Span m 8.5 9.7 10.1 9.6

crc Root chord m 2.1 2.4 2.5 2.4

Λc Sweep angle ◦ 23.5 17.3 28.7 21.0

Γc Dihedral angle ◦ -3.0 -3.0 -3.0 -3.0

V
T

Av Aspect ratio − 1.6 1.6 1.6 1.6

Sv Planform area m2 17 15 16 19

bv Span m 5.3 4.9 5.1 5.5

crv Root chord m 4.9 4.5 4.7 5.1

Λv Sweep angle ◦ 39.2 28.8 47.8 35.1

Table 6.10: Canard aircraft optimization results
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(a) Top view (b) Front view (c) Side view

Figure 6.17: Canard aircraft geometry after genetic optimization

(a) Top view (b) Front view (c) Side view

Figure 6.18: Canard aircraft geometry after gradient optimization

(a) Top view (b) Front view (c) Side view

Figure 6.19: Canard aircraft geometry after hybrid optimization
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6.5 Case 3: Three-surface aircraft

The three-surface aircraft features three horizontal surfaces: a canard, main wing and
horizontal tail. A well-known example is the Piaggio P.180 Avanti, which achieved lower
weight and drag thanks to its three-surface configuration [3].
Traditional aircraft with only a horizontal tail rely on the tailplane to balance and control
the aircraft. The tailplane provides a negative lift to counteract the moment due to the
lift of the wing which. This in turn must be compensated by additional lift of the wing.
By adding a canard the required counteracting moment can be shared with the horizontal
tail. Because the canard provides an upward force, the wing loading becomes lower and
therefore the wing size can be reduced. A schematic overview of the equilibrium of a
three-surface aircraft is shown in Figure 6.20.

   

90% W

W

5% W

15% W

Figure 6.20: Three-surface equilibrium

The three-surface aircraft has similar requirements as the A320 and the canard aircraft.
It has a high-wing configuration, low canard and a T-tail, such that the surfaces are not
in each other’s wake. The requirements are shown in Table 6.11.

Pax. Payload mass MC Altitude Range sTO sL

150 20.5 tons 0.78 11.3 km 2870 km 2180 m 1440 m

Table 6.11: Three-surface aircraft top level requirements

From these requirements an aircraft is generated using the Initiator. The resulting design
is depicted in Figure 6.21. The aircraft properties are listed in Table 6.12.

Figure 6.21: Three-surface aircraft model
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A 9.4 − fxw 0.60 − Sc 19 m2 MTOM 64.5 tons
S 136 m2 ( tc)r 0.151 − bc 9.7 m OEM 34.5 tons
b 35.8 m ( tc)k 0.104 − Ah 4.9 − FM 9.5 tons
Λ 26.2 ◦ ( tc)t 0.104 − Sh 30 m2 Rh 2900 km
cr 7.1 m lf 40.6 m bh 12.1 m PRE 6270 km
λ 0.16 − df 4.2 m Av 1.0 − L/D 14.7 −
ε 0 ◦ fxc 0.10 − Sv 24 m2 CLmax,clean 1.02 −
Γ 0.0 ◦

Ac 4.9 − bv 4.8 m

Table 6.12: Three-surface aircraft properties using the Initiator

The sensitivity analysis was done using all 13 design variables from Table 6.1. It took
89 minutes to perform all 56 runs. The results from the sensitivity analysis are shown in
Figure 6.22a in which the top 5 variables are indicated. Using the mean and standard
deviation of the parameters the sensitivity index is composed. This index is given in
Figure 6.22b.
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Figure 6.22: Three-surface aircraft sensitivity analysis results

It can be observed that the wing position is by far the most influential parameter. The
objective is also very sensitive to the sweep angle. The top 5 is concluded by the aspect
ratio, fuselage diameter and dihedral angle. The longitudinal position of the canard did
not make it to the selection. It was a near tie with the dihedral angle. Apparently, canard
sizing benefits due to better positioning with respect to the wing and tail surfaces does
not change the payload-range efficiency very much.

The selected design variables are used for optimization of which the results are displayed
in Table 6.13. A more detailed overview of the aircraft properties is gathered in Table
6.14. For the gradient optimized three-surface aircraft also an example report is generated
by the Initiator. This report is shown in Appendix A.
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A fxw Λ Γ df PRE ∆PRE t

Initiator 9.4 0.60 26.2◦ 0.3◦ 4.2 m 6270 km − −
Genetic 11.4 0.50 11.1◦ −0.7◦ 4.1 m 7550 km +20.4% 114 min

Gradient 11.7 0.47 12.9◦ −3.6◦ 4.7 m 7570 km +20.7% 152 min
Hybrid 11.5 0.50 11.5◦ −0.8◦ 4.1 m 7550 km +20.4% 172 min

Table 6.13: Optimum design parameters for the three-surface aircraft

A large gain in payload-range efficiency is obtained through optimization. The best
objective value is achieved by the gradient-based algorithm, but the other two algorithms
are not far behind. The initial value of 6270 is increased by roughly 20% for all algorithms.
When the computation time is taken into account, it can be said that the genetic algorithm
performed best. Looking at the design vectors there is a trend towards a slightly higher
aspect ratio and a more forward wing position. These notable differences in geometry are
clearly visible in the top views of Figure 6.26, 6.27 and 6.28. There are also some notable
differences with respect to the fuselage diameter and sweep angle.

The weight decreased for all solutions with respect to the baseline version. Weight savings
were mainly achieved by smaller engines and lighter wing structures as can be seen in
Figure 6.23.
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Figure 6.23: Three-surface aircraft change in part mass after optimization

Most weight was saved by the gradient-based algorithm. This follows from its low fuselage
fineness ratio. The difference with respect to the baseline geometry can be clearly noticed
in Figure 6.27. A shorter fuselage has less bending stresses and therefore the structure
can be lighter. This is also reflected in the system components mass. The high-wing
configuration resulted in a high fuselage mass when compared to the low-wing aircraft
from the first two cases.

The weight of the wing is largely influenced by the sweep angle and aspect ratio. At large
sweep angles this effect becomes more pronounced. This is shown in Figure 6.24a. The
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lift-to-drag ratio, which plays an important role in the payload-range efficiency, benefits
from a larger aspect ratio. This is depicted in Figure 6.24b. At larger sweep angles the
L/D decreases a bit, which is likely caused by an increase in lift-dependent drag. So a
trade-off arises between weight and aerodynamic efficiency.
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(b) Lift-over-drag ratio vs. aspect ratio and
sweep angle

Figure 6.24: Three-surface aircraft with varying aspect ratio and sweep angle (fxw
= 0.5)

Clearly, when observing these graphs an unswept wing would be the best choice. This
conclusion does not match with the sweep angle obtained from the optimizations. As can
be seen in Figure 6.25a the optimum sweep angle is also dictated by the position of the
wing. The optimum sweep angle becomes higher as the wing is located further aft.
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(b) Lift-over-drag ratio vs. aspect ratio and
dihedral angle

Figure 6.25: Three-surface aircraft lift-to-drag for varying parameters

The dihedral angle became lower for all three solutions. As can be seen in Figure 6.25b
the L/D improves with decreasing dihedral. A higher aspect ratio slightly enhances this
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effect. A similar effect has been witnessed in the A320 case. The high-wing nature
of the three-surface aircraft makes it more laterally stable with respect to the dihedral
effect. Therefore the obtained dihedral angles are not very unrealistic. However, since the
Initiator does not compute the lateral stability yet, the lower dihedral is purely driven by
the beneficial L/D instead of taking into account the dihedral effect.

Again, the same control surface sizing discrepancies are witnessed. The sweep of the
horizontal tail, vertical tail and canard are based on the main wing. The same can be
said of the dihedral angle.

From this case it can be concluded that a large improvement in payload-range efficiency
can be attained with the three-surface aircraft. The initial wing position of 0.60 is too aft.
A better initial guess would be a value 0.50. The optimization resulted in two distinct
fuselage designs, but with similar payload-range efficiency. The gradient algorithm found
the highest optimum, but the genetic algorithm resulted in the most gain in the shortest
amount of time. Comparing to the Airbus A320 and canard aircraft, which have the
same top level requirements, the three-surface configuration has the worst payload-range
efficiency. Even after the optimization the aircraft is no match for the conventional A320.
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Parameter Description Unit Initiator Genetic Gradient Hybrid
K

ey
p

er
fo

rm
a
n

ce
in

d
ic

a
to

rs
PRE Payload-range efficiency km 6270 7550 7570 7550

X Range parameter km 5890 7100 6920 7120

Rh Harmonic range km 2900 2900 2890 2900

Rmax.fuel Max. fuel range km 6170 5450 5050 5470

MTOM Maximum take-off mass tons 64.5 61.1 59.7 61.3

OEM Operational empty mass tons 34.5 32.7 31.3 32.8

FM Fuel mass tons 9.5 7.9 7.9 7.9

L/D Lift-to-drag ratio − 14.7 17.7 17.3 17.8

CLmax,clean Max. lift coefficient − 1.02 1.41 1.44 1.40

Vsclean Stall speed clean m/s 86.1 72.8 72.2 73.1

W/S Wing loading kg/m2 473 466 468 466

T/W Thrust loading − 0.32 0.25 0.25 0.25

SM Static margin %MAC 119 34 15 38

c.g. travel Center of gravity travel %MAC 69 28 23 30

W
in

g

A Aspect ratio − 9.4 11.4 11.7 11.5

S Planform area m2 136 131 128 132

b Span m 35.8 38.8 38.6 38.9

cr Root chord m 7.1 5.0 5.1 5.0

MAC Mean aerodynamic chord m 4.1 3.3 3.2 3.3

λ Taper ratio − 0.16 0.29 0.27 0.29

Λ Sweep angle ◦ 26.2 11.1 12.9 11.5

Γ Dihedral angle ◦ 0.3 -0.7 -3.6 -0.8

fxw Wing position fraction − 0.60 0.50 0.47 0.50

F
u

se
la

g
e lf Fuselage length m 40.6 42.0 36.4 42.1

df Fuselage width m 4.2 4.1 4.7 4.1

λf Fineness ratio − 9.6 10.3 7.7 10.4

C
a
n

a
rd

Ac Aspect ratio − 4.9 5.0 5.0 5.0

Sc Planform area m2 19 18 21 18

bc Span m 9.7 9.6 10.3 9.6

crc Root chord m 2.4 2.4 2.6 2.4

Λc Sweep angle ◦ 23.5 10.0 11.6 10.3

Γc Dihedral angle ◦ -0.2 0.4 1.8 0.4

H
T

Ah Aspect ratio − 4.9 5.0 5.1 5.1

Sh Planform area m2 30 17 18 17

bh Span m 12.1 9.2 9.5 9.3

crh Root chord m 3.6 2.7 2.8 2.8

Λh Sweep angle ◦ 29.3 12.5 14.4 12.8

Γh Dihedral angle ◦ 0.3 -0.7 -3.6 -0.8

V
T

Av Aspect ratio − 1.0 1.0 1.0 1.0

Sv Planform area m2 24 18 19 18

bv Span m 4.8 4.2 4.4 4.3

crv Root chord m 5.7 5.0 5.2 5.0

Λv Sweep angle ◦ 39.2 16.7 19.4 17.2

Table 6.14: Thee-surface aircraft optimization results
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(a) Top view (b) Front view (c) Side view

Figure 6.26: Thee-surface aircraft geometry after genetic optimization

(a) Top view (b) Front view (c) Side view

Figure 6.27: Thee-surface aircraft geometry after gradient optimization

(a) Top view (b) Front view (c) Side view

Figure 6.28: Thee-surface aircraft geometry after hybrid optimization
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6.6 Case 4: Oval-fuselage aircraft

The oval-fuselage aircraft has an ellipsoidal shaped fuselage cross-section. The wider
fuselage allows more passengers seats abreast. So for the same fuselage length more
passengers can be carried. Conventional aircraft have circular shaped fuselages, which
are structurally more efficient with respect to pressurization loads. For more information
regarding oval fuselages in conventional and novel aircraft configurations the reader is
referred to Schmidt [25].

The design requirements are somewhat different from the previous cases. The first three
cases concerned short-range aircraft. In this fourth case an aircraft for medium to long
range is considered. It must have a harmonic range of 5900 km at a cruise speed of Mach
0.78. The maximum payload is established at 42 metric tons and it must be able to carry
400 passengers. All top level requirements are gathered in Table 6.15.

Pax. Payload mass MC Altitude Range sTO sL

400 42 tons 0.78 11.3 km 5900 km 1960 m 1490 m

Table 6.15: Oval fuselage aircraft top level requirements

The Initiator uses this information to create an aircraft that fulfils these requirements. A
model of the oval-fuselage aircraft is displayed in Figure 6.29. The corresponding aircraft
properties are shown in Table 6.16. From these properties it can be observed that the
fuselage width is 8 meters, which is about 23% larger than its height due to its oval shape.

Figure 6.29: Oval-fuselage aircraft model

A 9.5 − Γ 6.0 ◦ hf 6.8 m MTOM 159 tons
S 291 m2 fxw 0.45 − Ah 5.1 − OEM 78.2 tons
b 52.5 m ( tc)r 0.151 − Sh 57.0 m2 FM 38.9 tons
Λ 26.2 ◦ ( tc)k 0.104 − bh 17.0 m Rh 5960 km
cr 11.5 m ( tc)t 0.104 − Av 1.6 − PRE 6430 km
λ 0.16 − lf 60.1 m Sv 40.1 m2 L/D 16.5 −
ε 0 ◦ df 8.0 m bv 8.0 m CLmax,clean 1.25 −

Table 6.16: Oval-fuselage properties using the Initiator
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The design variables from Table 6.1 are used to perform the sensitivity analysis with.
The required 52 runs were completed in 96 minutes. The results are shown in Figure
6.30. The variables are numbered according to their sensitivity value. It can be seen that
two parameters stand out, which are the wing position and the sweep angle. The other
variables have much less impact. They are grouped on the left side of the plot due to
their low overall importance.
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Figure 6.30: Oval-fuselage aircraft sensitivity analysis results

The 5 most sensitive parameters from Figure 6.30b were selected for optimization. The
optimization results for the genetic, gradient-based and hybrid algorithm are given in
Table 6.17. A more extensive overview of the changes in geometry and performance with
respect to the initial design are given in Table 6.18.

A fxw Λ ( tc)k df PRE ∆PRE t

Initiator 9.5 0.45 26.2◦ 0.104 8.0 m 6430 km − −
Genetic 12.3 0.48 5.2◦ 0.106 7.4 m 7040 km +9.5% 121 min

Gradient 9.4 0.43 24.1◦ 0.108 8.4 m 6720 km +4.5% 129 min
Hybrid 12.6 0.47 5.1◦ 0.108 7.5 m 7070 km +10.0% 183 min

Table 6.17: Optimum design parameters for the oval-fuselage aircraft

The hybrid algorithm achieved the best payload-range efficiency, but it remains very close
to the genetic solution. An improvement of about 10% is obtained. The gradient-based
solution did not go beyond a meager 4.5% increase in objective value. Looking at the
computation time the genetic algorithm clearly wins. The hybrid algorithm managed to
find a sightly more optimal solution, but at higher computational expense.

The kink thickness ratio increased slightly in all optimizations. A thicker section increases
the stiffness of the structure, but negatively affects the lift-to-drag ratio. The differences
over the baseline are rather small. Another trend that follows from the optimized design
vectors is the low sweep angle. This was also seen at the Airbus A320 and three-surface
aircraft cases.
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Significant differences in weight can be found when comparing the designs. An overview of
the weight components is given in Figure 6.31. The largest differences can be found in the
wing. The gradient-based solution obtained the lightest wing structure. The genetic and
hybrid optimized designs have the heaviest wing, but saved on engine weight by having
better thrust-to-weight ratios due to an increase in L/D.
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Figure 6.31: Oval-fuselage aircraft change in part mass after optimization

The weight of the wing and thus the aircraft increases with aspect ratio. The weight
penalty becomes even higher at sweep angles beyond 20◦ as can be seen in Figure 6.32a.
The choice for a low sweep angle of the genetic and hybrid algorithm allowed for a larger
aspect ratio to further improve the lift-to-drag ratio at a reduced weight penalty.
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Figure 6.32: Oval-fuselage aircraft operational empty mass and lift-to-drag ratio

The low sweep angle is also driven by the wing position as is shown in Figure 6.32b.
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This relation has already been explained in the A320 case. The L/D deteriorates with
higher sweep angle at more aft wing positions due to an increasing tail size. This effect
is stronger for the oval-fuselage aircraft than for the A320.

The gradient-based solution saved on fuselage and systems weight thanks to its shorter
fuselage. Its lower fuselage slenderness ratio is clearly distinguishable in the top view of
Figure 6.35. The effect of the fuselage slenderness on the operational empty weight is
depicted in Figure 6.33a. Here it can be observed that the weight decreases with lower
slenderness ratios. This follows from the lower forces in the fuselage structure, leading to
a less heavy design. The benefit decreases a bit as the sweep angle becomes larger.
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Figure 6.33: Oval-fuselage aircraft fuselage slenderness ratio effects (A = 9.5)

The slenderness ratio has some effect on the lift-to-drag ratio. Less slender fuselages result
in lower L/D values, which is illustrated in Figure 6.33b. Due to the lower moment arm of
the horizontal tail it must increase in size to provide a sufficient counterbalancing moment
leading to an increase in drag and weight. When comparing the gradient-based design to
the genetic and hybrid designs, it has a 30% to 35% higher horizontal tail planform area
due to its shorter fuselage. Also, the drag of the fuselage changes with slenderness ratio.
A lower ratio resulted in a higher drag coefficient.

It can be concluded that quite some improvement in payload-range efficiency can be
achieved over the baseline design. Most benefit can be gained by lowering the sweep
angle and increasing the aspect ratio. The parameters are closely related to the wing
position. By adjusting the width of the fuselage the weight and lift-to-drag ratio can be
further tuned. Improvements in L/D also yield in better thrust-to-weight ratios leading
to smaller and lighter engines.

When comparing the algorithms, the genetic showed most gain in the shortest amount
of time. The additional gradient-based step of the hybrid algorithm only improvement
marginally on the genetic solution. The gradient algorithm got stuck on a local opti-
mum as its objective is only increased by 4.5%, which is only half as much as the other
algorithms.
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Parameter Description Unit Initiator Genetic Gradient Hybrid
K

ey
p

er
fo

rm
a
n

ce
in

d
ic

a
to

rs
PRE Payload-range efficiency km 6430 7040 6720 7070

X Range parameter km 6620 7390 6610 7420

Rh Harmonic range km 5960 5950 5960 5940

Rmax.fuel Max. fuel range km 12080 8720 11620 8750

MTOM Maximum take-off mass tons 159 155 151 155

OEM Operational empty mass tons 78.2 77.7 72.2 77.6

FM Fuel mass tons 38.9 35.5 37.3 35.3

L/D Lift-to-drag ratio − 16.5 18.5 16.5 18.5

CLmax,clean Max. lift coefficient − 1.25 1.51 1.32 1.53

Vsclean Stall speed clean m/s 83.7 75.7 81.5 75.0

W/S Wing loading kg/m2 547 539 547 538

T/W Thrust loading − 0.30 0.26 0.30 0.26

SM Static margin %MAC 67 50 50 50

c.g. travel Center of gravity travel %MAC 22 26 21 26

W
in

g

A Aspect ratio − 9.5 12.3 9.4 12.6

S Planform area m2 291 288 277 288

b Span m 52.5 59.6 50.9 60.2

cr Root chord m 11.5 6.9 10.8 6.8

MAC Mean aerodynamic chord m 6.7 5.2 6.5 5.1

λ Taper ratio − 0.16 0.37 0.18 0.37

Λ Sweep angle ◦ 26.2 5.2 24.1 5.1

Γ Dihedral angle ◦ 6.0 6.0 6.0 6.0

fxwing Wing position fraction − 0.45 0.48 0.43 0.47

F
u

s.

lf Fuselage length m 60.1 59.7 52.9 59.3

df Fuselage width m 8.0 7.4 8.4 7.5

hf Fuselage height m 6.8 6.3 7.1 6.4

λf Fineness ratio − 7.5 8.0 6.3 7.9

H
T

Ah Aspect ratio − 5.1 5.1 5.1 5.1

Sh Planform area m2 57 43 56 42

bh Span m 17.0 14.7 16.9 14.5

crh Root chord m 5.0 4.4 5.0 4.3

Λh Sweep angle ◦ 29.3 5.8 26.9 5.7

Γh Dihedral angle ◦ 6.0 6.0 6.0 6.0

V
T

Av Aspect ratio − 1.6 1.6 1.6 1.6

Sv Planform area m2 40 44 40 44

bv Span m 8.0 8.5 8.0 8.4

crv Root chord m 7.5 7.8 7.4 7.8

Λv Sweep angle ◦ 39.2 7.8 36.1 7.7

Table 6.18: Oval-fuselage aircraft optimization results
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(a) Top view (b) Front view (c) Side view

Figure 6.34: Oval-fuselage aircraft geometry after genetic optimization

(a) Top view (b) Front view (c) Side view

Figure 6.35: Oval-fuselage aircraft geometry after gradient-based optimization

(a) Top view (b) Front view (c) Side view

Figure 6.36: Oval-fuselage aircraft geometry after hybrid optimization
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6.7 A comparison of the obtained aircraft designs

In order to be able to compare the designs that have been obtained from the four case
studies, first some parameters have to be defined on which the comparison can be based.
For this purpose the value efficiency parameters defined by Nangia [19] are used. These
parameters are based on the payload-range efficiency, but are normalized with respect
to the weight of the aircraft. The first parameter is the value efficiency parameter with
respect to the maximum take-off mass, which is abbreviated to VEM. It is defined as
follows:

VEM =
PRE

WTO
(6.7)

The second parameter is the value efficiency with respect to the operational empty mass
and is denoted as VEO. It is shown in Equation 6.8.

VEO =
PRE

WOEM
(6.8)

The above efficiency parameters values are determined for each design and these results
are shown in Table 6.19 for the VEM parameter and in Table 6.20 for the VEO parameter.

Initiator Genetic Gradient Hybrid
[km/kN] [km/kN] [km/kN] [km/kN]

1. Airbus A320 13.6 14.2 13.5 14.2
2. Canard aircraft 13.2 15.2 14.3 15.4
3. Three-surface aircraft 9.9 12.6 12.9 12.5
4. Oval-fuselage aircraft 4.1 4.6 4.5 4.6

Table 6.19: Comparison of the case studies using the VEM parameter

Initiator Genetic Gradient Hybrid
[km/kN] [km/kN] [km/kN] [km/kN]

1. Airbus A320 26.1 26.6 24.4 26.0
2. Canard aircraft 26.5 29.2 27.2 29.0
3. Three-surface aircraft 18.5 23.5 24.6 23.4
4. Oval-fuselage aircraft 8.4 9.2 9.5 9.3

Table 6.20: Comparison of the case studies using the VEO parameter

When comparing the efficiency values of the first three cases, which all have the same
top level requirements, if follows that the canard aircraft is the most efficient design.
The canard aircraft designs obtained from the genetic and hybrid algorithm show the
best results. The three-surface aircraft designs perform significantly less compared to the
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A320 and canard aircraft. Although the baseline TSA can be improved a lot through
optimization, it is no match against the other configurations. The conventional Airbus
A320 showed the least improvement after optimization. When looking at the VEM and
VEO values of the gradient optimized A320, it has an even worse efficiency value compared
to the initial design although it has a better payload-range efficiency. This is caused by
the relatively large increase in weight. The OEM and MTOM increased by 5.6% and
11.9% respectively, while its payload-range efficiency only increased by 4.6%.

All oval-fuselage aircraft solutions have much lower efficiency values with respect to the
first three cases. This follows from its higher range and payload requirements, which
causes the weight of the aircraft to increase more rapidly than the payload-range efficiency.
This trend is in accordance with the results obtained by Nangia [19].

6.8 Evaluation of the algorithms

For the case studies three optimization algorithms have been used: the genetic algo-
rithm, the SQP gradient algorithm and the hybrid genetic–SQP algorithm. Based on
the obtained results and experience with the optimizer tool it was found that the genetic
algorithm worked best. The main arguments for choosing the genetic algorithm over
the other methods are its robustness and tolerance towards noise in the model outputs.
The computation time can be reduced significantly by using parallel optimization, which
eliminates one of the weak points of the algorithm.

The output noise of the Initiator proved to be troublesome for the gradient algorithm.
It may cause the gradient algorithm to start oscillating around a certain point in the
design space due improper gradient information. It often required tuning of the algorithm
settings like the minimum step size to overcome the noise.

In Figure 6.37 the presence of noise is demonstrated by plotting the aspect ratio against
the obtained payload-range efficiency. The aspect ratio was increased from 9 to 14 with
increments of 0.1 for the Airbus A320 aircraft. In this figure it can be seen that a small
increase in aspect ratio may result in lower payload-range efficiency, while a higher value
is expected or vice versa. In other words, the change in results due to a small change in
the design may contradict the global trend, which causes the gradient algorithm to take
a search step in the wrong direction.

The hybrid algorithm produced slightly better results in some cases, but at higher com-
putational cost. The added benefit of the local gradient-based solver does not seem to
outweigh the required computation time. Also, the noise adversely affects the capabil-
ity of gradient-based algorithm to find the exact optimum in the region provided by the
genetic algorithm.
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Figure 6.37: Payload-range efficiency for increasing aspect ratio using the Initiator



Chapter 7

Conclusions and recommendations

7.1 Conclusions

The goal of the thesis was to develop an optimization tool for the conceptual design
of conventional and unconventional aircraft. This optimization tool is used to answer
the research question: What effect has the developed optimization strategy on the key
performance indicators of unconventional aircraft configurations?.

Through the years lots of data has been gathered on conventional aircraft and therefore
design rules and estimates for such aircraft became fairly accurate. However, this does not
apply to unconventional and novel configurations, for which far less data is available and
design approaches are sometimes rather crude. If certain edge cases are not covered well,
the optimizer might exploit this loophole in an attempt to find even better solutions. This
may result in strange or unrealistic designs. Therefore, the outcome of the optimization
strongly depends on the behaviour and flexibility of the analysis routines. Similarly,
limitations of analysis modules put constraints on the design space.

From the case studies it followed that large improvements can be obtained with uncon-
ventional aircraft configurations with respect to the reference aircraft proposed by the
Initiator design tool. The highest payload-range efficiency was obtained with the hybrid
optimized canard aircraft. Most improvement was found with the three-surface aircraft.
All three optimizations showed an increase of over 20% compared to the initial design.
The oval-fuselage aircraft could be improved by a solid 10%, while the lowest improvement
was obtained with the conventional A320.

When comparing the results of the first three cases, which share the same top level
requirements, it is clear that the canard aircraft is the best concept with respect to the
objective. It obtained the highest payload-range efficiency. It yielded a 5% higher payload-
range efficiency compared to the best solution from the A320 case. The three-surface
aircraft showed the least promising results. However, these statements are only valid with
respect to the output provided by the Initiator. Due to several discrepancies in the sizing
and analysis routines the actual performance of the considered aircraft configurations
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might be very different. Therefore the results should be interpreted with caution and
should be mainly used as an indication of the maturity and validity of the Initiator design
tool.

Among all cases the most contributing factors were the wing longitudinal position, sweep
angle and wing aspect ratio. There is a tendency towards lower sweep angles due to the
positive effect on the weight of the wing. The drag rise penalty due to the lower sweep
seems to be underestimated, which is exploited by the optimizer by trading sweep for
a higher aspect ratio to minimize the weight penalty of the latter. In the canard case
relatively high sweep angles were found. From this result followed that the weight penalty
of forward swept wings due to sweep is underestimated. It also contradicts the findings of
the aft-swept wing cases in which a lower sweep was actually more beneficial. This can be
traced back to an error in the drag estimation, especially with respect to compressibility
effects.

In three cases the fuselage fineness ratio was involved in the optimization. The results
showed that changing the ratio offered some reduction in fuselage weight due to a more
favourable structural loading at the expensive of more drag.

The uncertainties in the computed results of the Initiator were not handled well by the
gradient-based algorithm. The gradient algorithm either stopped prematurely or started
oscillating around a certain design point when too much noise was present. This was
alleviated by increasing the step size of the algorithm, but at the expense of accuracy.
Also, determining the starting point of the gradient algorithm remains difficult. Not
every starting point yields a feasible design and a change in start location might lead to
a different basin of attraction.

The genetic algorithm was found to be very robust. It is far less sensitivity to noise,
because it does not use gradient information. Its multi-solution approach allows the al-
gorithm to explore multiple sites at the same time, which allows it to continue searching
in other sites when an infeasible region is encountered. Its computational cost was signif-
icantly reduced by applying parallel optimization and using a caching mechanism. The
hybrid algorithm was found to be too computational expensive. The obtained increase in
objective value did not outweigh the added cost.

7.2 Recommendations

The following recommendations and considerations can be made for further improvement
on the developed optimizer tool.

In order to further investigate unconventional aircraft configurations improvements in
the analysis tools are required. For instance, the current aerodynamics implementation
underestimates the compressibility effects which has consequences for the drag estimates
and therefore the overall aircraft design. This heavily affects the sweep angle. Through
the use of a better aerodynamic solver the potential of novel aircraft configurations can
be studied more accurately and different optimization solutions might be obtained.

The sizing routine of the control surfaces is found to be inadequate, since the Initiator
derives most parameters directly from the wing and does not properly take into account
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control and stability requirements. Results have shown that this mainly regards the sweep
and dihedral angle. Especially, the sweep angle is of concern, since it changes the lift-
curve slope and therefore also stall characteristics. These sizing issues also affect the static
margin. It was found that class II design information was not fed back to the control
surface sizing.

A related concern is the static margin. Mainly due to changes in sweep angle, the optimizer
moved the wing to make sure that the nose loading constraints were satisfied. This
effect outweighs the weight savings due to smaller control surfaces that would have been
obtained with a lower static margin. This could be solved by imposing a constraint on
the allowed static margin. In order to do this reliably, the Initiator’s control surface sizing
routine should be improved first.

The dihedral angle is driven by the lift-to-drag ratio, while it should also take into account
lateral effects. Currently, the Initiator does not compute the lateral stability yet, which
affected the outcome of the dihedral angles of the optimizations.

Another issue that currently affects the design space is the EMWET weight estimation
module. Wings with a high aspect ratio or unconventional shape are found to be prob-
lematic. It also seems to underestimate the weight penalty of forward swept wings. For
a better evaluation of the aircraft designs this module should be improved.

The design variables could be expanded by including, for instance, the engine location.
In this thesis their positions were fixed with respect to the wing span or fuselage. The
current set of design variables exposed some large discrepancies, which should be solved
first.

The Initiator has rather limited support for the blending-wing body concept and the
Prandtlplane. When the analysis with respect to these concepts have matured, optimiza-
tions of these concepts could be performed with the developed tool to discover any further
issues. At the time of this thesis the maturity level was found to be too inadequate and
therefore they were not included in the case study.
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Code documentation
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Chapter 8

Program structure

In this chapter the program structure of the optimizer is described. The optimizer tool is
written in Matlab . It is part of the workflow modules. In the first section the optimizer
class, its properties and its methods are explained. In Section 8.2 the sensitivity routine
is described. Section 8.3 elaborates the optimization routine.

8.1 Optimizer class

The optimization routines and properties are housed in a single module class. As has been
explained in Section 2.3, this class inherits from the WorkflowModule class. Workflow
modules are placed outside the analysis chain and are used to control the workflow of the
Initiator. The relationship is shown in the UML diagram of figure 8.1.

Optimiser

Problem

Options

...

run()

optimise()

sensitivity()

...

WorkflowModule

run()

...

WorkerObjWrapper

Value

...

InitiatorController

...

Figure 8.1: UML class diagram of the optimizer

The optimizer class depends on the InitiatorController and the WorkerObjWrapper

classes. The Initiator controller is the main class of the Initiator. The optimizer uses
this controller to control the workflow and to communicate with the modules. The
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WorkerObjWrapper class has been developed by MathWorks [5] and is used during parallel
optimization. Normally, data is destroyed and recreated when a parallel worker advances
to the next iteration. This class allows to retain the data of the parallel worker, such that
expensive recreation of the Initiator instance is not required.

The optimizer class has several public properties that can be accessed. These properties
are listed in Table 8.1. The Debug property triggers debug mode when set to true. In this
mode the optimizer will output debug information to the command window. The Problem
property holds the problem structure in which the optimization problem is described. The
Options property contains the sensitivity analysis and optimization options.

Property Description

Debug Debug mode
Problem Problem description
Options Structure containing all options
Results Structure with sensitivity and optimization results
ResultsDirectory Directory in which the results are saved

Table 8.1: Public properties of the optimizer class

The Problem property that holds the optimization problem, which is required to perform
a sensitivity analysis or an optimization. The available fields are shown in Table 8.2.

Field Description

ObjFcn Cell array with one or more objective functions
ObjScaling Cell array containing objective scaling parameters
AssignFcn Cell array with an assign function per parameter
DesignVarScaling Cell array with scaling parameters for design variables
ConFcn Cell array with constrain functions
ModuleList List of modules to run
Algorithm Optimization algorithm
LowerBound Lower bound of the design variables
UpperBound Upper bound of the design variables
Start Starting point
Selected Selected design variables
Labels Contains labels used for plotting

Table 8.2: Problem structure fields

The module list contains the modules that are executed during the sensitivity analysis
and optimization. By default this is the DesignConvergence module, but any module
can be used. The Algorithm field currently accepts the following three algorithms: gra-
dient, genetic and hybrid. Through the Selected field the design variables can be easily
activated or deactivated. This is especially useful when there are many design variables.
The Label field can be used to provide names for the objective, assign and constraint
functions. This is for plotting purposes only.
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The exposed optimizer methods are listed in Table 8.3. Normally, the optimizer is run
through the Initiator controller, but by obtaining its module handle these methods can
be called. This may offer some more fine-grained control over the optimizer. The usage
of these methods is explained in Chapter 9.

Method Description

addConstraint Adds a constraint to the optimization problem
addDesignVar Adds a design variable to the optimization problem
addObjective Adds an objective to the optimization problem
elemEffects Elementary effects routine
listFiles Lists all available results files
loadData Loads the problem, option and result data from disk
optimise Starts the optimization
resetOptions Resets all options to default
resetProblem Resets the problem description
resetResults Clears the results
resume Resumes optimization from a previous run
run Performs sensitivity analysis and optimization
saveData Saves the problem, option en result data to disk
showOptimPlots Shows the optimization plots
showProblem Shows the problem description in command window
showSensPlot Shows the sensitivity analysis plots

Table 8.3: Public methods of the optimizer class

8.2 Sensitivity Analysis

The optimizer module contains a sensitivity analysis routine to screen the design variables.
It can be called by using the method sensitivity. The screening procedure is able to
identify the design variables which have the most impact on the objective function. This
way the most influential parameters can be selected for the optimization phase, which
reduces its complexity and decreases computation time.

The screening is performed by using the elementary effects method. This method consists
of individually randomised one-at-a-time experiments. Each time a factor is changed its
impact is measured.

A flowchart of the sensitivity analysis process is shown in Figure 8.2. After initializa-
tion a copy of the Initiator controller is made. This is done such that the state of the
current session is not altered. Next, the routine calculates the elementary effect of each
variable. This is repeated for the specified number of trajectories. During this process
an estimate for the remaining time is given based on the average computation time of
previous iterations. Then, the sensitivity values are calculated. Based on these values the
optimizer automatically selects the most important design variables. The other variables
are disabled. The results are stored in the property Results.Sensitivity. A description
of the sensitivity results structure can be found in Table 8.4. The available sensitivity
analysis options are listed in Chapter 9.
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and sensitivity options

Create copy of Initiator 
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Calculate elementary effect
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Next input change?

Trajectory < max?

Select top X design variables

yes

no

yesno

Figure 8.2: Flowchart of the sensitivity analysis

Field Description

ObjValues Objective values of each iteration
DesignVars Design vectors of each iteration
Method Sensitivity method name
Mu Mean µ
Mu s Improved mean µ∗

Sigma Corrected standard deviation σ
Sigma n Uncorrected standard deviation σn
Euclidean Euclidean distance for ranking the variables
Ranks Design vector ranks based on the Euclidean
Labels Labels for plotting

Table 8.4: Sensitivity analysis results structure

8.3 Optimization

The actual optimization is governed by the optimise method. It currently supports
the genetic algorithm, gradient algorithms and a genetic–gradient hybrid algorithm. All
algorithms rely on Matlab implementations. The genetic algorithm is based on ga,
the gradient on fmincon and the hybrid on both ga and fmincon. Because the Matlab
optimization functions have different input and output formats, each algorithm is wrapped
inside a separate class method. This allows a uniform approach.

The optimizer offers the possibility to perform parallel optimization. This only applies to
the genetic and hybrid algorithm, since the gradient method cannot compute the objec-
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tive function in parallel. Parallel mode is turned on by setting Options.<Algorithm>.

UseParallel to always, or off by setting it to never. All other available optimization
options can be found in Section 9.3.1 of Chapter 9.

The top-level flowchart of the optimization process is shown in Figure 8.3. It starts with
running the Initiator with default values. After the initial design has been computed,
its results are saved. Then, a parallel Matlab session may be opened depending on
the aforementioned setting. Next, multiple copies of the current Initiator instance are
created. This prevents polluting the state of the current Initiator instance and avoids
race conditions during parallel optimization. In single-threaded mode a single copy will
be created. For parallel optimization this depends on the configured number of parallel
workers.

Run Initiator for initial design 

point and save results

Open parallel Matlab session

Create multiple Initiator 

instance copies

Run optimization algorithm

Close parallel Matlab session

Run Initiator for final design 

point and save results

Parallel optimization?

Parallel optimization?

Initialize optimization problem 

and options

yes

no

yes

no

Figure 8.3: Top-level flowchart of the optimization process

At this point the optimization algorithm is started. For the objective function and non-
linear constraint function internal class methods are assigned. These methods use the
initiatorRunner routine to obtain the objective and constraint values. The flowchart
of this routine is shown in Figure 8.4.

The initiatorRunner function starts with obtaining a copy of the Initiator instance
using the task number assigned by Matlab . Next, a cache lookup is performed for the
requested design vector. When it is a cache hit, the results are gathered and returned
immediately. A cache miss leads to a full multidisciplinary analysis. It begins with
resetting all modules and rescaling the design vector to the actual values. These design
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values are assigned to the modules and then the design convergence module is run.

Retrieve cached dataCache hit?

Get Initiator instance copy

yes

no

Reset all Initiator modules

Apply design variables

Run Initiator modules

Retrieve objective, constraints, 

module results

Save results to cache

Return results

Rescale design variables

Mark design point as infeasible

Construct empty results set

no

yes
Infeasible 

design point?

Figure 8.4: Flowchart of the initiatorRunner method

When the design point is feasible, the results are collected. In case of an infeasible
design the results an empty results set is created. After storing the data corresponding
to the requested design vector, the results are returned to the calling function. Once the
optimization algorithm has finished, the parallel session is closed and the Initiator is run
for the final design point.

The results of the optimization are stored in the Results.Optimisation property. The
data is also automatically stored to a mat-file. Besides the results it also includes the
optimization problem and options structs, which allows the user to restore the current
optimizer state at a later point in time. A description of the results structure can be
found in Table 8.5.
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Field Description

Algorithm Algorithm specific output data
ConEvals Array containing constraint function evaluations
Final Final aircraft data
Labels Labels used for plotting
ObjEvals Array containing objective function evaluations
Original Baseline aircraft data
StateData Array containing algorithm state data

Table 8.5: Optimization results structure
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Chapter 9

User manual

This chapter serves as the user manual of the optimizer. This guide assumes that the
reader is already familiar with the Initiator. For more information on using the Initiator
the reader is referred to Elmendorp [14].

9.1 Requirements

The requirements for the optimizer are as follows:

� The Initiator design tool

� Matlab 2012a; version 2013b or higher is recommended

� Windows 7 or higher, Mac OS X 10.71 or higher, Linux1

� At least 8 GB memory is recommended for parallel optimization

In addition to these requirements Subversion may be useful to retrieve the latest version
from the repository.

9.2 Setting up a problem description

In order to use the optimizer module a problem description must be set up first. This
description contains the information that is required to perform a sensitivity analysis
and an optimization. A default problem statement is loaded automatically when no user
input is specified. The standard objective is the payload-range efficiency and the default
algorithm is the genetic algorithm. The default design variables are as follows:

1Compatibility with these operating systems depends on the installed libraries [14].

81



82 User manual

1. Aspect ratio

2. Wing x-position

3. Fuselage diameter

4. Sweep angle

5. Taper ratio

6. Dihedral angle

7. Twist angle per wing section

8. Thickness-over-chord ratio per wing
section

The problem description can be changed by means of module inputs. These module inputs
can be specified in the aircraft input file. A description of the available inputs is given in
Section 9.3.1

9.3 Operating the optimizer

Once the problem description has been set up the optimizer can be run. When the
Initiator calls its run method, first the number of design variables will be checked. If this
number exceeds the configured maximum, a sensitivity analysis will be done first.

Depending on the number of design variables the sensitivity analysis may take some time.
Using the default design variables the analysis takes one to two hours. The optimizer
will show a remaining time estimate. When the sensitivity values have been obtained the
most important design variables will be selected to perform the optimization with.

The optimization starts with storing the state of the initial aircraft. Then the selected
algorithm is called. Depending on the settings and chosen algorithm a parallel Matlab
session may be opened. When the algorithm has found an optimum, the corresponding
design vector is used to compute the final aircraft. Finally, the optimization data is saved
to a mat-file and the results are shown.

9.3.1 Module input

The default problem setup can be changed by providing module inputs in the aircraft
configuration file. The user is not required to specify all elements in order for the optimizer
to work. The supplied input will simply overwrite the default values. When for instance
design variables are supplied, they will only replace the standard design variable list. An
example is given in Listing 9.1.
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1 <moduleInputs>
2 <input module="Optimiser">
3 <problem>
4 <objectives>
5 ..
6 </objectives>
7 <designVars>
8 ..
9 </designVars>

10 <constraints>
11 ..
12 </constraints>
13 <algorithm>genetic</algorithm>
14 <moduleList>GeometryEstimation,DesignConvergence</moduleList>
15 </problem>
16 </input>
17 </moduleInputs>

Listing 9.1: Module inputs example for optimizer module

Inside the input section of the optimizer module there must be a main element called
problem. This element holds the entire problem description.

The objectives, design variables and constraints can be provided with the objectives,
designVars and constraints elements respectively. They are explained in the following
subsections.

The algorithm field can be used to provide the algorithm. Currently, there are three
algorithms available: genetic, gradient and hybrid. By default the genetic algorithm is
loaded.

The modules that need to be run in the sensitivity analysis and optimization can be
changed with the moduleList field. The module names must be separated by a comma.
By default the geometry estimation and design convergence modules are called.

Objective functions

The objective can be specified with an objectives element. It requires a label, module
and value element. The label is used for plotting and can be any string. An example is
given in Listing 9.2.

1 <problem>
2 <objectives>
3 <label>PRE</label>
4 <module>PerformanceEstimation</module>
5 <value> − KPI.PRE</value>
6 <scaling>0.001</scaling>
7 </objectives>
8 </problem>

Listing 9.2: Module input example for objective functions
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The module field refers to a module from the Initiator, which is the performance estima-
tion module in this case. The value field specifies which result value must be used from
the module. In the example the payload-range efficiency result from the key performance
indicators is used. A minus sign can be added in front of the value field if necessary. A
scale factor can be added to change the order of magnitude of the objective value.

There can be multiple objectives elements. Note that only the first objective is con-
sidered during optimization. Multiple entries may be useful when a sensitivity analysis
must be performed for several objectives.

Design variables

The design variables can be specified with the designVars element. There are two vari-
ants, which are given in Listing 9.3.

1 <problem>
2 <designVars>
3 <label>Wing x−position</label>
4 <module>GeometryEstimation</module>
5 <value>MainWingXPosition</value>
6 <lowerBound>0.30</lowerBound>
7 <upperBound>0.60</upperBound>
8 <start>0.45</start>
9 </designVars>

10 <designVars>
11 <label>Aspect ratio</label>
12 <type>ConfigurationParameter</type>
13 <value>WingAspectRatio</value>
14 <lowerBound>8</lowerBound>
15 <upperBound>15</upperBound>
16 <start>10</start>
17 <scaling>0.1</scaling>
18 </designVars>
19 </problem>

Listing 9.3: Module input example for design variables

The first design variable in the code example sets the longitudinal position of the wing.
Here the geometry estimation module is used to set the value of MainWingXPosition.
The lower bound and upper bound are set to 0.30 and 0.60 respectively. Optionally a
starting position can be provided. By default the mean between the bounds is used.

The second design variable controls an aircraft configuration parameter by means of the
type field. In the example the wing aspect ratio is controlled through the WingAspectRatio
value. Again, a lower bound and upper bound must be provided. A scale factor can be
added to change the order of the design variable. It also accepts the value auto, which
transforms the parameter such that it has a range of [−1, 1] [16]. The governing equation
is as follows:

x̄ =
2x

xu − xl
− xu + xl
xu − xl

(9.1)
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In Equation 9.1 x̄ is the scaled variable, xl represents the lower bound and xu denotes
the upper bound.

Constraint functions

The constrain functions can be specified with the constraints element. It requires a
label and function. An example is given in Listing 9.4.

1 <problem>
2 <constraints>
3 <label>Nose loading</label>
4 <function>myNoseLoadingConstraint</function>
5 </constraints>
6 </problem>

Listing 9.4: Module input example for constraints

As can be seen in the code example a Matlab function name must be supplied to the
function field. Since constraints can involve extensive code, it has been chosen to keep
the actual constraint logic in Matlab . When a custom function is built, one must
sure that it takes the main Initiator controller, worker controller and design vector as
input arguments. The output must be two vectors containing the inequality and equality
constraints.

Optimizer settings

The settings of the optimizer can be changed through the settings file of the Initiator.
Settings that are provided by the user will overwrite the default values of the optimizer.
An example is given in Listing 9.5.

1 <settings>
2 <setting>
3 <name>Optimiser−General−MaxTime</name>
4 <value>8000</value>
5 </setting>
6 <setting>
7 <name>Optimiser−ElemEffects−Trajectories</name>
8 <value>4</value>
9 </setting>

10 <setting>
11 <name>Optimiser−Genetic−PopulationSize</name>
12 <value>10</value>
13 </setting>
14 </settings>

Listing 9.5: Optimizer settings example

As can be seen in this example each setting has a name and value element. The name of
each setting consists of three parts, which are separated by hyphens. First the name of
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the optimizer module is provided, followed by the category and the name of the setting.
Currently there are five categories: General, Genetic, Gradient, Hybrid and ElemEffects.

The settings available in the general category are listed in Table 9.1 and control the global
parameters of the optimizer.

Setting Description Default

Debug Enable or disable debug mode true
MaxDesignVars1 Maximum number of design variables 5
MaxTime2 Optimization time limit in seconds 7200
PoolSize1 Number of parallel workers -3

ResultsDir Directory to write the results data to /Data/Optimiser
SensScaleFactor1 Factor reducing the range of design vectors 0.5
ShowPlots Enable or disable plots true
TolCache2 Cache tolerance for matching design vectors eps()

UseCache2 Enable or disable results cache true

Table 9.1: General optimizer settings
1Sensitivity analysis only 2Optimization only 3System dependent

The options of the elementary effects method are given in Table 9.2. The genetic, gradient
and hybrid algorithms use the options specified in the Matlab manual [4].

Setting Description Default

Grid Grid sizing parameter 4
Retries Number of trajectory retries after an error 5
Trajectories Number of trajectories 4

Table 9.2: Elementary effects method settings

9.3.2 Using the module handle

To get more fine-grained control one can obtain the optimizer module handle from the
Initiator. This way the sensitivity analysis and optimization can be run individually and
additional functions are available. The sensitivity analysis can be started separately by
calling the sensitivity method. To only start the optimization the optimise method
can be used.

There is also the possibility to resume a previous optimization run. This is dony by run-
ning the resume method, which expects a results file name as parameter. The optimizer
will continue at the previously found optimum.

At any point in time the state of the optimizer can be saved to disk. This can be done
by calling the saveData method. It will automatically generate a file name if none is
provided. The save data includes the problem statement, options and results. By default
the data is stored in /Data/Optimiser.
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The data can be loaded through the loadData method. It restores the problem statement,
options and results to its previous state. A list of available files can be retrieved by calling
listFiles.

An overview of the problem statement can be printed in the command window by using
the showProblem method. This may give some extra insight in the problem setup. Plots
can be shown using the showSensPlots and showOptimPlots methods for the sensitivity
and optimization results respectively.



88 User manual



References

[1] Allison, J. Complex system optimization: A review of analytical target cascading,
collaborative optimization, and other formulations. Master’s thesis, University of
Michigan, 2004.

[2] Anon. White paper on industrial experience with mdo, 1999. AIAA Technical
Committee on Multidisiplinary Design Optimization.

[3] Anon. Piaggio P180 Avanti II Specification and Description. Piaggio Aero Industries
SpA, Januari 2005.

[4] Anon. Matlab r2013b (8.2.0.701). The MathWorks Inc., Natick, Massachusetts,
August 2013.

[5] Anon. Worker Object Wrapper. The MathWorks Inc., Natick, Massachusetts,
November 2013. http://www.mathworks.com/matlabcentral/fileexchange/31972.

[6] Boggs, P., and Tolle, J. Sequential quadratic programming. Acta Numerica
(1996).

[7] Breitkopf, P., and Coelho, R., Eds. Design Optimization in Computational
Mechanics. Wiley, 2010.

[8] Campolongo, F., and Cariboni, J. Sensitivity analysis: how to detect important
factors in large models. Tech. Rep. JRC37120, European Comission, Directorate-
General Join Research Centre, 2007.

[9] Campolongo, F., Cariboni, J., Saltelli, A., and Schoutens, W. Enhancing
the morris method. In Sensitivity Analysis of Model Output (2005).

[10] Conn, A., Gould, N., and Toint, P. A globally convergent augmented lagrangian
algorithm for optimization with general constraints and simple boundsle. SIAM
Journal on Numerical Analysis 28 (1991), 545–572.

[11] Drela, M. Athena Vortex Lattice (AVL). Massachusetts Institute of Technology,
http://web.mit.edu/drela/Public/web/avl/avl doc.txt. Last accessed: 16/4/2014.

89



90 References

[12] El-Mihoub, T., Hopgood, A., Nolle, L., and Battersby, A. Hybrid genetic
algorithms: A review. Engineering Letters, 2006.

[13] Elham, A. Weight Indexing for Multidisciplinary Design Optimization of Liing
Surfaces. PhD thesis, Delft University of Technology, 2013.

[14] Elmendorp, R. Synthesis of novel aircraft concepts for future air travel. Master’s
thesis, Delft University of Technology, January 2014.

[15] Gill, P., Murray, W., and Saunders, M. Snopt: An sqp algorithm for large-
scale constrained optimization. SIAM Journal on Optimization 12 (2002), 979–1006.

[16] Gill, P., Murray, W., and Wright, M. Practical Optimization. Emerald Group,
January 1982.

[17] Martins, J., and Lambe, A. Multidisciplinary design optimization: A survey of
architectures. AIAA Journal 51 (2013), 2049–2075.

[18] Morris, M. Factorial sampling plans for preliminary computational experiments.
In Technometrics (May 1991), vol. 33 No. 2, pp. 161–174.

[19] Nangia, R. Efficiency parameters for modern commercial aircraft. The Aeronautical
Journal (August 2006).

[20] Parte, Y., Auroux, D., Clément, J., Masmoudi, M., and Hermetz, J. Col-
laborative optimization. Multidisciplinary design optimization in computational me-
chanics. Wiley-ISTE, April 2010, pp. 321–368.

[21] Rhodes, D., Jenkinson, L., and Simpkin, P. Civil Jet Aircraft Design. Elsevier,
1999.
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Appendix A

Example three-surface aircraft report
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Figure A.1: Aircraft geometry (all dimensions in meters)

A.1 General Characteristics

Aircraft “TSA” generated by the Initiator version . The aircraft is a three-surface aircraft
with a high wing and an aspect ratio of 11.7. The aircraft is designed to transport 150
passengers with a total payload mass of 20536kg over 2870km.
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A.2 Specification

Table A.1: Max payload

Pax 150 -
Payload Mass 20536 kg
Cruise Mach 0.78 -
Altitude 11278 m
Range 2870 km
Take Off Distance 2180 m
Landing Distance 1440 m

A.3 Optimiser

Table A.2: Optimiser results

Algorithm Gradient
Objective value PRE 7570 km
Design variable 1 Aspect ratio 11.7 -
Design variable 2 Wing x-position 0.47 -
Design variable 3 Sweep angle 12.9 ◦

Design variable 4 Dihedral angle -3.6 ◦

Design variable 5 Fuselage diameter 4.7 m
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Figure A.2: Objective value history
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(a) Top view (b) Front view (c) Side view

Figure A.3: Aircraft geometry changes

A.4 Operational Performance
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Figure A.4: Loading Diagram

Result: Wing loading at MTOM: 4597 N/m2

Thrust-to-weight ratio: 0.251 -

Table A.3: Performance results

L/Dcruise 17.3 -
Cruise altitude 11278 m
Maximum take-off mass 59640 kg
Operational empty mass 31280 kg
Payload mass 20540 kg
Fuel mass 7830 kg
Harmonic range 2890 km
Ferry range 5730 km
Maximum fuel range 5050 km
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A.5 Weight estimation

Table A.4: Mass summary

Pax 12000 kg
Cargo 8540 kg
DLM 53040 kg
Diversion FM 0 kg
End Cruise Mass 53570 kg
Extension FM 0 kg
FM 7830 kg
Initial Cruise Mass 58160 kg
Loiter FM 0 kg
MLM 54880 kg
MRM 60860 kg
MTOM 59640 kg
Max FM 11280 kg
Mission FM 6610 kg
OEM 31280 kg
PLM 20540 kg
Reserve FM 0 kg
ZFM 51810 kg

MainWing (11%)

HorizontalStabiliser (1%)FrontStabiliser (1%)VerticalStabiliser (1%)

Fuselage (12%)

Engine1 (4%)

Engine2 (4%)

MainGear1 (2%)

MainGear2 (2%)
NoseGear (1%)

Systems (11%)

Furnishing (1%)OperationalItems (3%)

Pax (20%)

Cargo (14%)

Extra fuel (2%)

Mission fuel (11%)

Figure A.7: Mass distribution
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Table A.5: Component masses

Engine1 1974 kg
Engine2 1974 kg
Front Stabiliser 457 kg
Furnishing 830 kg
Fuselage 6914 kg
Horizontal Stabiliser 403 kg
Main Gear1 990 kg
Main Gear2 990 kg
Main Wing 6523 kg
Nose Gear 317 kg
Vertical Stabiliser 375 kg
APU 1837 kg
Air Conditioning 1166 kg
Anti Ice 119 kg
Avionics 766 kg
Electrical 395 kg
Flight Controls 242 kg
Fuel System 79 kg
Handling Gear 18 kg
Hydraulics 1804 kg
Instruments 111 kg
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Figure A.8: Loading diagram
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Figure A.9: CG location

Table A.6: Centre-of-gravity locations

Xcg (MTOM) 16.4 m
Xcg (OEM) 16.2 m
Xcg (ZFM) 16.3 m
Xnp 16.9 m
SM 15 %

A.6 Aerodynamics

Table A.7: Aerodynamic properties at cruise

CL,cruise 0.5 -
CD,cruise 288 cts
L/Dcruise 17.3 -
CD0 (Clean) 204 cts
CD0 (Take-Off) 549 cts
CD0 (Landing) 1049 cts
Oswald factor (e) (Clean) 0.799 -
Oswald factor (e) (Take-Off) 0.849 -
Oswald factor (e) (Landing) 0.899 -
CLα 5.42 rad−1

Cmα -0.828 rad−1

CLmax,clean
1.44 -

CLmax,take-off
2.2 -

CLmax,landing
2.8 -
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Figure A.10: Drag Polars

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20

C
L
 [−]

L/
D

 [−
]

 

 
Clean cruise
Take−off, flaps & gear
Landing, flaps & gear

Figure A.11: Aerodynamic efficiency of the aircraft

A.7 Propulsion

Table A.8: Propulsion

Number of engines 2 -
SFCcruise 0.575 h−1

Bypass Ratio 6 -
Diameter 1.6 m
Length 3.13 m
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A.8 Aircraft Geometry

Table A.9: Main Wing dimensions

Span 38.6 m
Planform area 111 m2

MAC 3.24 m
Root Chord 4.37 m
Root t/c 0.151 -
Tip Chord 1.39 m
Tip t/c 0.103 -
Sections (root to tip) boeing-a, boeing-b, boeing-c
Sweep 0.25c 12.9 ◦

Taper ratio 0.318 -
Twist 3.9e-15 ◦

Dihedral -3.6 ◦

Table A.10: Horizontal Stabiliser dimensions

Span 9.44 m
Planform area 17.65 m2

MAC 2.03 m
Root Chord 2.76 m
Root t/c 0.118 -
Tip Chord 0.979 m
Tip t/c 0.118 -
Sections (root to tip) N0012, N0012
Sweep 0.25c 14.4 ◦

Taper ratio 0.355 -
Twist 0 ◦

Dihedral -3.6 ◦

Table A.11: Front Stabiliser dimensions

Span 10.3 m
Planform area 20.99 m2

MAC 2.1 m
Root Chord 2.54 m
Root t/c 0.118 -
Tip Chord 1.54 m
Tip t/c 0.118 -
Sections (root to tip) N0012, N0012
Sweep 0.25c 11.6 ◦

Taper ratio 0.606 -
Twist 6.1e-15 ◦

Dihedral 1.8 ◦
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Table A.12: Vertical Stabiliser dimensions

Span 4.37 m
Planform area 18.93 m2

MAC 4.42 m
Root Chord 5.06 m
Root t/c 0.118 -
Tip Chord 3.6 m
Tip t/c 0.118 -
Sections (root to tip) N0012, N0012
Sweep 0.25c 19.4 ◦

Taper ratio 0.713 -
Twist 0 ◦

Dihedral 0 ◦

Table A.13: Fuselage dimensions

Length 36.4 m
Floor Position -57 % of fuselage height
Diameter 4.7 m
Nose Fineness Ratio 0.18 -
Aft Fineness Ratio 0.55 -
Cabin Height 1.54 m
Nose Length 4.56 m
Aft Cutoff 0.8 -
Aft Ratio 0.05 -
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Figure A.12: Fuel tank layout
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Figure A.13: Fuselage geometry; (blue = cargo ULDs, purple = floors)
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