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MOTIVATION Spatial transcriptomics (ST) enables profiling of the expression of hundreds of genes in tis-
sue sections down to the level of single cells in their tissue environment. The gradient structure of ST data is
particularly interesting for tissue biology because spatial gene expression gradients often represent tissue
compartment edges, whereas in the single-cell transcriptomic domain, gene expression gradients may
represent cell-type differences and smooth phenotypic transitions. Various computational approaches
have been developed to extract information from either the spatial domain or the gene expression domain
individually. However, integrative biological interpretation of expression gradients in single-cell and ST data
spaces remains challenging. Many prior ST analysis pipelines are script based, lack interactive exploration
facilities, and do not have specific facilities for automatic identification of localized expression gradients.
SUMMARY
In spatial transcriptomics (ST) data, biologically relevant features such as tissue compartments or cell-state
transitions are reflected by gene expression gradients. Here, we present SpaceWalker, a visual analytics tool
for exploring the local gradient structure of 2D and 3D ST data. The user can be guided by the local intrinsic
dimensionality of the high-dimensional data to define seed locations, from which a flood-fill algorithm iden-
tifies transcriptomically similar cells on the fly, based on the high-dimensional data topology. In several use
cases, we demonstrate that the spatial projection of these flooded cells highlights tissue architectural fea-
tures and that interactive retrieval of gene expression gradients in the spatial and transcriptomic domains
confirms known biology. We also show that SpaceWalker generalizes to several different ST protocols
and scales well to large, multi-slice, 3D whole-brain ST data while maintaining real-time interaction perfor-
mance.
INTRODUCTION

Spatial transcriptomics (ST) enables profiling the expression of

hundreds of genes at the level of single cells in tissue sections,

thus providing new opportunities to understand tissue biology

by combining single-cell gene expression profiles and their cor-

responding spatial context in the tissue.1 For single cells, these

high-dimensional (HD) gene expression profiles enable detailed

characterization of cell types, cell states, and cell maturation.2

Data visualization methods, and specifically dimensionality

reduction (DR) techniques, are extensively used to help under-

stand complex HD data by giving a meaningful low-dimensional

(LD) representation of these HD spaces. This typically consists of

generating and visualizing an LDmap inwhich distances, similar-

ities, or neighborhood relations from the HD data space are pre-
Cell Report
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served in the LD space.3 DR embeddings give insight into the

structure of the data, showing clusters and generic trends in

the data. Besides analysis of which cell types are present in a

sample, trajectory inference approaches aim to computationally

derive transitions between cell types and states and order cells

along a trajectory topology. This allows investigating cellular dy-

namics, where expression gradients in one or more genes

encode biologically relevant state transitions and cell variability.4

DR techniques are typically applied to reduce data complexity,

and algorithms like k-nearest neighbor (kNN) graph construction

and clustering techniques are used to extract the topological

structure of the data.2

As single-cell RNA sequencing (scRNA-seq) does not support

characterizing the spatial organization and interactions between

cells, ST adds a spatial dimension to single-cell analysis,
s Methods 3, 100645, December 18, 2023 ª 2023 The Author(s). 1
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enabling the study of cell-cell interactions, tissue architecture,

and coupled cell development and migration trajectories in the

tissue.5 Understanding the structure of the spatial map or non-

linear DR embeddings often requires localized methods to visu-

alize the features driving themap structure at that particular loca-

tion.6 Coloring the cells in these 2D maps with gene expression

values is commonly used in single-cell analysis to visualize the

underlying expression patterns, but genes of interest have to

be manually selected, and it is not possible to reveal how cells

are connected in HD space.

Various computational approaches have been developed to

extract information from either the spatial domain or the gene

expression domain. For instance, hidden Markov random fields

were used to integrate scRNA-seq data and spatial neighbor-

hood information.7–9 In addition, several methods exist for

spatial gene expression analysis. SpatialDE10 applied a

Gaussian process regression to identify genes with correlated

expression levels in the spatial domain. Trendsceek11 detected

spatial dependency of gene expressions using a marked point

process. Although these approaches enable the identification

of spatial gene expression variation, localized gene expression

analysis methods are lacking. Furthermore, these computational

strategies are script based and lack interactive data exploration

facilities with a direct feedback loop to the user.

Explorative analysis and visualization of ST data allow for

generating hypotheses on tissue biology. Integrative toolboxes

such asGiotto12 and Squidpy13 allow researchers to interactively

visualize and analyze spatial data. Cytosplore14 is software that

uses t-distributed stochastic neighbor embedding (t-SNE)15 pro-

jection as the main view for real-time interactive visual explora-

tion in the single-cell analysis domain. In addition to efficiently

processing large-scale mass cytometry data, it also provides

clustering techniques and supports multiple linked views be-

tween the map structure and the feature space. Based on

Cytosplore, Cytosplore Transcriptomics16 provides interactive

analysis for scRNA-seq data. CELLxGENE17 is a web-based

interface aimed at interactive exploration of HD single-cell data-

sets. It enables collaborative analysis between experimentalists

and bioinformaticians. Despite the active development of inter-

active visualization tools, interactive biological interpretation of

single-cell HD and spatial data remains challenging. The rela-

tionship between HD single-cell data and 2D maps has not

been fully explored.

In this work, we present SpaceWalker, a visual analytics tool

for exploring the gradient structure of ST data. Specifically, we

focus on interactive exploration of localized gene expression

gradients: these are particularly interesting for tissue biology,

as spatial gene expression gradients often represent tissue

compartment edges, whereas in the HD single-cell transcrip-

tomic domain, they represent cell-type differences and smooth

phenotypic transitions between them. In SpaceWalker, the

user can be guided by the local intrinsic dimensionality of the

HD data to interactively pick seed locations for a series of neigh-

borhood searches on the kNN graph. The results of these

searches, i.e., localized HD neighborhood ‘‘flood fills,’’ are then

projected onto the 2D spatial map in real time, revealing the

spatial topology of the HD kNN graph. These localized HD topol-

ogy approximations then serve as input for gradient detection
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filters, which prioritize genes with a localized (spatial or HD)

expression patterns. The genes that exhibit a localized spatial

or HD gradient are visualized in real time in the spatial domain,

along with a number of options to enable user-tailored data

exploration paths. This offers the user real-time querying of the

gradient structure of ST data. In several use cases, we demon-

strate that the spatial projection of these local kNN subgraphs

highlights tissue architectural features and that interactive

retrieval of gene expression gradients in the spatial and tran-

scriptomic domains confirms known biology and provides addi-

tional insights into tissue architecture. We also show that

SpaceWalker generalizes to several different ST protocols and

scales well to large, multi-slice, 3D whole-brain ST data while

maintaining real-time interaction performance.

RESULTS

SpaceWalker overview
The goal of SpaceWalker is to provide the user with an interactive

interface for exploring localized expression gradients in ST data-

sets. By offering highly responsive global and local linked views

of cells and genes, SpaceWalker aims to help users identify tis-

sue architecture as well as locally variable genes and to gain in-

sights that would be difficult to uncover using script-based

methods. An overview of the proposed methodology is shown

in Figure 1. The input of SpaceWalker is a cell-by-gene expres-

sion matrix, with spatial coordinates assigned to the single-cell

gene expression vector.18 A user’s exploration can optionally

be guided by a global overview of local intrinsic dimensionality

at each cell location (Figure 1A). This view can inform the user

of potential transcriptomically complex locations in the spatial

data. From a user-selected seed cell, the local HD structure is

estimated and highlighted in the spatial map in real time, i.e.,

cells with similar transcriptomic profiles to the seed cell are pre-

sented to the user (Figure 1B). Genes with spatially localized

expression peaks in the area around the selected cell are de-

tected using a spatial filter kernel (Figure 1E) that ranks genes

by localized expression variation. Alternatively, a filter for local-

ized expression peaks in the HD space (Figure 1F) can be

selected. These filters effectively serve as real-time gene image

retrieval based on localized expression variability. Since multiple

genes can exhibit similar filter responses, we also provide a line

chart of all genes, showing sorted gene expressions in the local

neighborhood (Figure 1C). This offers a complementary view to

the filter gene rankings. The user can click on a gene of interest

in the chart and inspect the gene expression of the chosen gene

in a separate gene view (Figure 1D). This allows them to not only

inspect the genes automatically selected by the filter but to also

manually explore genes with interesting expression values in the

local neighborhood.

Real-time projection of the flood fill in the spatial domain
reveals tissue architectural features
First, we investigated whether local tissue architectural features

are reflected and preserved by projecting the localized HD

neighborhoods on the spatial data. To this end, we used two

publicly available ST datasets of the mouse visual cortex that

were acquired in the context of the SpaceTx consortium.19 We



Figure 1. Overview of SpaceWalker

The user interacts with a 2D scatterplot (A), where the spatial map is color-codedwith the local intrinsic dimensionality of theHD data to highlight areas of potential

interest. A flood-fill algorithm approximates the local topology of the HD space at the selected cell node and projects it back on the spatial map (B), displaying the

HD structure and therefore transcriptomically similar cells. Genes with localized expression peaks are ranked automatically via a spatial (E) or HD filter kernel (F),

and all genes are presented in a line chart (C) with their sorted expression values in the local neighborhood. The user can inspect the gene expression (D) of top-

ranked genes (automatic selection) and can alsomanually select different genes of interest from the gene expression line chart (manual selection). Each line in the

chart (C) represents a gene, and genes ranked the highest by the filter are highlighted in orange, and the manually selected gene is highlighted in red.
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selected these datasets (single-molecular fluorescence in situ

hybridization [smFISH] andmultiplexed error-robust FISH [MER-

FISH]) because of the abundance of literature on the laminar

spatial architecture of the mouse visual cortex.20 The SpaceTx

datasets contain manual annotation of the cortical layers, which

enables investigating the robustness of SpaceWalker against ST

protocols applied to the same tissue sample (smFISH and

MERFISH).

To quantitatively assess correspondence of the local neigh-

borhood geometry with local tissue architecture, we defined a

reference standard based on the known laminar structure of

the mouse visual cortex. We defined the layer percentage (LP)

as the percentage of flooded cells that have the same layer anno-

tation as the seed cell: this assumes that transcriptomically

similar cells are organized in spatial layers, which is the case

for excitatory neurons in the visual cortex. For any selected

cell, the projection of the local HD neighborhood reveals the

spatial organization of cells with similar expression profiles
(Video S1). Flooded neighborhood projections for every cell in

the tissue clearly reveal that the flood-fill neighborhood search-

ing recovers the laminar tissue architecture (Figure 2). Cells

that are not located near the layer boundary on the spatial map

show a high LP value, demonstrating that the local HD neighbor-

hood projection accurately reveals the manually annotated

laminar architecture of cells with similar expression profiles.

Cells located near the boundary of the spatial layer are less likely

to be in the same layer as the manual seed cell annotation and

thus show a lower LP value. Another explanation for the lower

LP values could be due to the fact that transcriptomically similar

cells may appear in multiple layers.20 This cell-type cross-talk

across cortical layer boundaries explains why flood-fill neighbor-

hood searching seeded close to the manually annotated layer

boundaries may span across the manually annotated layer

boundaries. MERFISH shows overall lower LP values than

smFISH due to factors such as scattered distribution of glutama-

tergic neurons and difference of gene counts.20 However, the
Cell Reports Methods 3, 100645, December 18, 2023 3



Figure 2. Spatial tissue maps color-coded

by LP at each cell location and the manual

layer annotation

(A) smFISH dataset.

(B) MERFISH dataset.

LP is defined as the percentage of flooded cells

with the same layer annotation as the seed cell.

Note that the manual annotations are not used by

SpaceWalker but only serve as a manual reference

standard to compute the evaluation metric LP.
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SpaceWalker results obtained from the independently acquired

smFISH and MERFISH datasets exhibit very similar layer

patterning, as shown in Figure 2, indicating the robustness of

SpaceWalker against the ST protocol and reproducible tissue ar-

chitecture recovery across datasets.

To investigate whether SpaceWalker neighborhoods also

reflect more complex spatial geometries accurately, we applied

SpaceWalker to the HybISS data of the developing mouse

brain.21 When projecting the local HD neighborhood back to

the 2D spatial map, the cells are colored by their flood-fill

step index, which represents a measure for the HD geodesic

distance to the seed point. The neighborhood mapping pre-

sents similar patterns to the gold-standard region labels that

were imputed from single-cell transcriptomics data22 (Fig-

ure 3A). For example, HD neighborhood projections highlighted

the structure of the hindbrain floor plate and mesenchyme,

even if the two starting cells of the flood-fill algorithm were

located next to each other in the spatial map (Figures 3B and

3C). HD neighborhood projection also highlighted the similarity

between ventral hindbrain cells that are not located close by in

the spatial map (Figure 3D).

Real-time gene filtering reveals localized gene
expression peaks and gradients in the spatial domain
and HD domain
To quantitatively evaluate to what extent the top-ranked genes

detected by the spatial and HD filters corresponded to known

layer-specific marker genes in the mouse visual cortex,20 we

calculated a frequency count for filtered genes by counting

how often genes end up in the top two ranks at different seed

cell locations per cortical layer. It is important to note that the fre-

quency counts by the filters are computed without using the

layer annotations.
4 Cell Reports Methods 3, 100645, December 18, 2023
Apart from detection capacity for

knownmarker genes, we aimed to assess

whether SpaceWalker can also detect

previously unreported genes that exhibit

clear laminar expression patterns. As

such, we defined a quantitative metric

for the layer specificity of all genes by

computing the correlation between gene

expression images and the manual layer

annotations. For each cortical layer, a

layer mask was constructed based on

the manual layer annotations, with cells

within a specific layer encoded as 1 and
all other cells encoded as 0. The correlation scores between all

genes and the gold-standard layer masks are used as bench-

mark reference for the evaluation of filters. Finally, to assess

robustness with respect to the ST protocol, we computed both

metrics for the smFISH as well as the MERFISH data from the

SpaceTx consortium. By comparing results of these twometrics,

we aim to assess whether SpaceWalker can identify genes with

layer patterns without any prior annotation and compare these

results to the gold-standard manual layer annotation.

The SpaceTx smFISH dataset consists of 2,360 cells and 314

genes. To reduce the impact of genes with noisy patterns, we

refined this dataset by filtering down to 100 top high-variance

genes (HVGs). The 100 top HVGs formed the basis for the anal-

ysis presented in Figure 4. The variance-sorting function is also

integrated in SpaceWalker, allowing the user to conveniently fil-

ter genes according to variance. Figure 4 shows a side-by-side

comparison of the heatmaps of the correlation scores and the

frequency counts of the filtered genes of the smFISH data (re-

sults of the MERFISH data are given in Figure S1). All layer-spe-

cific marker genes have a high correlation score with their cor-

responding layer annotation, proving that the correlation metric

identifies genes with contrasting patterns within a specific

layer. Known marker genes as reported20 are presented at

the top of the heatmaps, and the other genes are grouped

based on layer and correlation score. Genes with a high fre-

quency count in a specific layer also exhibit a high correlation

score with the manually annotated layer masks, demonstrating

the ability of the filters to capture local spatial variability. Some

genes with a high ranking in our filters are not mentioned in the

literature as known layer markers even though they were highly

correlated with the manually annotated layer masks. Visual in-

spection of these genes revealed clear laminar expression

patterns.



Figure 3. HD neighborhood projections by

flood filling agree with subclass annotation

in the HybISS data

(A) Spatial map color-coded with cell subclass

annotation. Note that the annotations are not used

by SpaceWalker but only serve as a manual

reference standard.

(B) Magnified view of (A) showing two neighboring

cells in the spatial map belonging to the hindbrain

floor plate and mesenchyme, respectively.

(C) HD neighborhood projections seeded from the

two marked cells in (B), highlighting distinct spatial

patterns that coincide with the region labels of

hindbrain floor plate and mesenchyme.

(D) HD neighborhood projections starting from two

ventral hindbrain cells that are located in two

different regions in the spatial map, highlighting the

transcriptomic similarity between the two different

ventral hindbrain regions.

The selected seed cell in (C) and (D) is located in

the center of the red circle, and the red circle

represents the radius of the spatial filter. The coloring in (C) and (D) indicates the step index of flood fill, beginning with red points (initial steps) and endingwith light

blue points (late steps). Dark blue points represent the background, i.e., the cells that are not visited in flood fill.
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It is important to note that the filter results do not perfectly align

with layer-specific analysis results, as the spatial filter is de-

signed to be universal in its use and to identify genes with local

variability within the filter kernel, while layer-specific analysis is

contrasting the expression vectors inside and outside of a layer.

The filter size used in the comparison with layer-specific analysis

is approximately equal to the spatial size of the layer, providing a

basis for comparison. However, the user can adjust the filter size

based on their interests to define the locality of the gene expres-

sion patterns (Video S3).

As the filters only take cells within the filter kernel size into ac-

count, it is possible that layer-structured genes are detected that

are also highly expressed in other locations. It can also be seen in

the heatmaps in Figures 4 and S1 that a gene can be ranked as

top two in multiple layers if it has high correlation scores with

multiple layers.

Color-coding the spatial map with localized HD features
provides visual cues for guidance of exploration
Figures 5A and 5B give examples of spatial maps in the

SpaceTx datasets, color-coded by HD intrinsic dimensionality

and flood-fill size. The laminar structure clearly emerges from

the intrinsic-dimensionality coloring (consistent in both smFISH

and MERFISH datasets), indicating that local intrinsic dimen-

sionality provides visual cues for spatial tissue partitioning.

The local intrinsic dimensionality of layer 6 (L6) is found to be

higher than other layers, while the locally explained variance

of L6 is lower. This suggests that the cells in L6 are less homo-

geneous than cells in other layers. L5 has a relatively dense HD

structure compared to other layers, where the flood fill is

confined within a dense cluster. In contrast, the flood fill pro-

gresses further in layers with relatively sparse HD structures,

leading to a larger neighborhood size. This can be confirmed

by t-SNE maps also color-coded by flood-fill size where cells

in L5 are divided into multiple smaller clusters, while the cells

in the other layers form distinct and well-separated clusters

(Figure 5B).
Figure 5C shows how the intrinsic dimensionality can serve to

guide the user to anatomically distinct regions in the HybISS

data, demonstrating that changes in local intrinsic dimension-

ality, in many cases, mirror transitions between cell subclasses.

Color-coding of the flood-fill cells by flood-fill step index (Fig-

ure 5D1) reveals the local HD topology on the spatial map,

whereas color-coding by gene expression of the top-ranked

Shh gene (Figure 5D3) reveals spatially localized gene

expression.

SpaceWalker scales to 3Dwhole-mouse brain STat real-
time interaction speeds
In the above sections, we have used two SpaceTx datasets and

a HybISS dataset to validate the functionality of SpaceWalker.

The samples of the mouse visual cortex in the SpaceTx datasets

have a well-characterized tissue architecture and feature struc-

ture, demonstrating real-time performance on these datasets

on consumer-grade computing platforms. These datasets are

relatively small in scale (Table S1). Scalability in biological data

analysis is considered of significant importance due to the

increasing complexity of data13,17,18 as laboratory technologies

continue to evolve. ST protocols such as enhanced electric

(EEL) FISH18 now scale toward large field of view (FoV) whole-or-

gan tissue patches. Alternatively, through stitching of multiple

patches, large tissue surface areas can now be compounded

to a large FoV.

To investigate whether SpaceWalker still facilitates real-time

exploration at such large patches, we deployed it to a sagittal

whole-brain slice acquired with EEL FISH.18 This dataset con-

sists of 127,591 cells and 440 genes. The user can then start in-

teracting smoothly with the interface based on real-time compu-

tation. An overview of computation times and memory footprints

for all experiments in this article are given in Table S1.

Next, we investigated whether SpaceWalker exploration of

this large dataset maintained similar tissue architecture retrieval

and feature detection performance as with the smaller datasets

reported above. Figure 6 gives examples of local intrinsic
Cell Reports Methods 3, 100645, December 18, 2023 5
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Figure 5. Spatial maps color-coded by localized HD features

(A) Spatial maps color-coded by local intrinsic dimensionality of smFISH and MERFISH datasets.

(B) Spatial maps color-coded by flooded neighborhood size (left) and t-SNEmaps color-coded by flooded neighborhood size (middle) and layer annotation (right)

of smFISH and MERFISH datasets.

(C) Spatial maps of the HybISS dataset, color-coded by local intrinsic dimensionality and cell subclass annotations.

(D1–D3) Color-coding of flooded HD neighbors by flood-fill index (D1) and Shh expression (D3), where Shh was ranked as the top gene by spatial filtering at the

defined location. The selected seed cell is located in the center of the red circle, and the red circle represents the radius of the spatial filter. The entire spatial map

colored by Shh expression is shown in (D2) as a reference.
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dimensionality based on two different kNN graphs, local flood-fill

reprojections, and identification of genes with localized expres-

sion patterns detected by the spatial filter. Cells in the cere-

bellum, corpus callosum, and olfactory bulb exhibit lower

intrinsic dimensionality than other tissue areas, delineating
Figure 4. Heatmaps comparing the frequency counts by the spatial fil

masks of the smFISH dataset

Left: Heatmap of the correlation scores between genes and layer annotationmask

as reported20 are highlighted in the red box. Genes with a high correlation with a

spatial filter. Filter-detected genes that express in multiple layers are highlighted

known layer markers but are frequently ranked as top two by the filter are shown

Results for the HD filter showed similar correspondence between correlation sco
anatomical region boundaries (Figure 6B). The local neighbor-

hood projections (Figure 6C) highlighted the anatomical regions

in EEL FISH and identified genes whose spatial expression pro-

files resembled the flood-fill geometry (Figure 6D). Also, several

of the filter-ranked genes were detected that corresponded to
ter with the correlation scores between genes and layer annotation

s. Right: Heatmap of frequency counts by the spatial filter. Knownmarker genes

manually annotated layer mask were also often ranked in the top two by the

in yellow boxes. Examples of genes that are not reported in the literature as

in blue dashed boxes. Results of the MERFISH dataset are given in Figure S1.

res and frequency counts and are given in Figures S2 and S3.

Cell Reports Methods 3, 100645, December 18, 2023 7



Figure 6. Exploration results of the EEL

FISH dataset revealing tissue structure and

local gene patterns

(A) Reference annotation, in which 30 selected

genes highlight anatomical structures of a sagittal

mouse brain section.18

(B) Spatial maps color-coded with local intrinsic

dimensionality with k = 300 and 1,000, indicating

that local intrinsic dimensionality provides visual

cues about region boundaries.

(C) Examples of local neighborhood reprojections.

Flood-fill cells are colored by flood-fill step index

from red to light color and background cells with

dark blue. The selected seed cell is located in the

center of the red circle, and the red circle repre-

sents the radius of the spatial filter.

(D) Top two genes selected by spatial filtering at

the location of the seed cell in (C), each highlighting

spatial gene expression that is similar to the flood-

fill geometry.
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genes reported18 (Mbp and Plp1 in the corpus callosum; Drd2 in

the striatum; KI and Otx2 in the choroid plexus; Ramp3 and

Synpo2 in the thalamus; and Cbln1 and Fam107a in the cere-

bellum). These results demonstrate that SpaceWalker scales to

large, whole-slide ST data while maintaining interactive speed

(Video S2) and still retrieves genes that confirm known local tis-

sue biology.

As we demonstrate above, SpaceWalker is capable of

exploring large-scale ST tissue sections at interactive perfor-

mance. SpaceWalker is not restricted to handling one single

spatial slice; it also supports multi-slice exploration. With the

recent emergence of whole-brain ST atlases,23 ST data can be

visualized and explored in a multi-slice manner and in a whole-

brain 3D common coordinate frame. To investigate the scalabil-

ity of SpaceWalker toward 3Dwhole-brain ST data, we deployed

SpaceWalker on the Allen Brain Cell (ABC) Atlas23: a 3D-anno-
8 Cell Reports Methods 3, 100645, December 18, 2023
tated whole-brain ST dataset of the

mouse brain consisting of�4million cells,

all mapped to a common 3D coordinate

frame.

For this specific 3D dataset, we imple-

mented a dedicated 3D volume renderer

view to visualize the flood-fill geometry

and gene filtering results in 3D, as well

as a multi-slice browser view that allows

smooth scrolling through the slices and

applies the localized gene filtering. The

flood fill is performed on all cells in the

3D atlas. The flood-fill results can then

be viewed on multiple slices by scrolling,

as well as in the 3D common coordinate

frame. Gene filtering is performed on indi-

vidual slices, and the user can simply

scroll through the 2D slices while inspect-

ing the detected gradient genes in 3D.

We applied SpaceWalker to 3.7 million

cells labeled as high quality in the ABC
Atlas and to the full feature set (550 genes). SpaceWalker is

capable of identifying 3D tissue structures as well as localized

gene expression patterns while remaining performant and fully

interactive. Symmetric tissue structures are highlighted by flood

filling when the seed cell located in one part of the spatial map

and related tissue structures across slices are highlighted in

3D during exploration on one single slice. Examples of the explo-

ration results are given in Figures 7, S4, and S5. The 3D viewing

feature and the interactive performance are demonstrated in

Video S4.

DISCUSSION

Interpretation and analysis of ST datasets is often limited to

script-based tooling with limited interactivity. However, hypoth-

esis generation from complex biological data benefits from



Figure 7. Results of 3D whole-brain multi-

slice exploration of the ABC Atlas dataset

(A) Local neighborhood reprojections. Flooded cells

are colored by the expression of the top gene

identified by spatial filtering at the specified loca-

tion. Selected seed cell is marked with a red dot in

the center of a red circle representing the outer

radius of the spatial filter.

(B) Spatial maps of the brain slice, colored by the

expression of the top gene, as a reference.

(C) 3D views of flooded cells, colored by the

expression of the top gene. The results are derived

from brain sections 25 (top and middle row) and

0 (bottom row). A red-blue color map is used to

indicate gene expression levels, with red repre-

senting a high expression value and blue repre-

senting a low expression value. More examples are

given in Figures S4 and S5 and Video S4.
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interactive, on-the-fly querying of the data, especially for ST

data, since genes can exhibit different functions at different loca-

tions in the tissue. This also holds for localized spatial or tran-

scriptomic expression gradients: spatial expression gradients

are important indicators for tissue boundaries, migration trajec-

tories, and spatially evolving cell phenotypes, whereas transcrip-

tomic gradients reflect cell states, differentiation, and cell-type

boundaries.

Here, we present SpaceWalker, an interactive visual analytics

tool for exploration of large patches of ST data. SpaceWalker

consists of two key innovations: an interactive, real-time flood

fill and spatial projection of the local topology of the HD space,

and a gradient gene detector for on-the-fly retrieval of locally var-

iable genes from the full gene set. We complement this with a

suite of user-defined visualization options to inspect and query

the data and to project analysis results on the spatial data.

Compared with existing approaches, SpaceWalker is more

flexible for data exploration, especially when no prior knowledge

regarding the tissue structure and gene expression patterns is

available. First, SpaceWalker introduces an interactive, real-

time flood-fill algorithm to reveal tissue structures. This differs

from existing approaches, such as HMRF,7 SC-MEB,8 and
Cell Report
BayesSpace,9 which focus on cell

clustering within the entire dataset.

Instead, SpaceWalker focuses on a user-

defined, size-adjustable local neighbor-

hood, providing a more flexible exploration

of the tissue structure. Secondly,

SpaceWalker features on-the-fly gene fil-

ters for locally variable genes. Unlike these

existing clustering approaches, where

differential expression analysis is often

followed to identify marker genes related

to the identified clusters, SpaceWalker

does not require prior clustering for

gene retrieval. The gene retrieval in

SpaceWalker is based on user-defined

local neighborhoods, and the selection of

the neighborhood is easy to adjust and is
interactive. Other spatial analysis algorithms, such as

SpatialDE10 and Trendsceek,11 are capable of identifying genes

with spatial expression patterns. However, these techniques are

script based and lack the capacity to detect localized gene

expression patterns at user-defined cell locations—a feature

that SpaceWalker incorporates. Toolboxes like Giotto,12

squidpy,13 CELLxGENE,17 and stLearn,24 provide interactive

viewers for data exploration, but their integrated analysis algo-

rithms suffer from similar limitations due to their script-based na-

ture. Unlike the aforementioned tools and algorithms, which are

designed to identify gene expression patterns based on the

entire input dataset, SpaceWalker is capable of identifying genes

with localized gene expression patterns during interactive explo-

ration. In summary, we propose a novel exploration tool for

spatial neighborhood projection and real-time retrieval for gene

expression patterns. The comparison between existing ap-

proaches and SpaceWalker is given in Table S2.

We quantitatively validated SpaceWalker results on public da-

tasets of varying data sizes, demonstrating that SpaceWalker

accurately captures tissue architectural features while at the

same time retrieving locally expressed genes, inmany cases coin-

cidingwith knownmarker genes. SpaceWalker scales very well to
s Methods 3, 100645, December 18, 2023 9
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large datasets: only the pre-processing time increased, while on-

the-fly exploration speed remained near constant for datasets

ranging from 4,628 cells 3 117 features to 3.7 million cells 3

550 features. Taken together, these results demonstrate that

SpaceWalker enables linked visual exploration of tissue architec-

ture and (spatial and HD) gene expression gradients in 2D and 3D.

It faithfully recapitulates known tissue architecture and biology in

an interactive manner in 2D ST datasets but also offers interactive

facilities to recover localized expression gradients in 3D whole-

brain ST data, for instance in the midbrain, where cell-type distri-

butions have been shown to exhibit gradient patterns.

Limitations of the study
The use of distance metrics to compute neighborhoods in HD

space in SpaceWalker may present a challenge, known as the

curse of dimensionality, when the dimensionality of the datasets

reaches a certain size. We tested SpaceWalker with a feature

depth of maximum 550 genes in ABC Atlas data. Datasets with

a higher dimensionality may have less clear separation between

the data points due to this challenge. In such datasets (for

instance where the spatial data are imputed with transcrip-

tome-wide gene expression from scRNA-seq data), the HD near-

est neighbors could be computed based on a principal compo-

nent analysis (PCA) projection of the full data. The spatial gene

filtering could still be performed over the full imputed feature

set, enabling transcriptome-wide exploration of gradients over

all genes.

As previously mentioned, SpaceWalker can also be applied to

data of the developing brain and revealed tissue-structure-

related patterns. Though out of scope for this work, it would be

interesting to further investigate SpaceWalker’s performance

on multi-time point developmental datasets as well as extend

SpaceWalker for exploring developmental trajectories. More-

over, while we have focused on the spatial map, the spatial filters

can also be applied to any 2D maps, such as t-SNE and uniform

manifold approximation and projection (UMAP)25 embeddings.

For example, the spatial filters can be applied to a t-SNE map

with a size approximately corresponding to the spatial size of

subclass clusters to identify subclass-specific genes or expres-

sion gradients within or between clusters in t-SNE and UMAP

scatterplots.

Overall, SpaceWalker offers a novel and interactive visual

interface for exploring ST data. By visually presenting the HD

neighborhood structure of cells and genes with localized expres-

sion patterns, SpaceWalker helps study the tissue structure and

identify potential genes of interest. SpaceWalker focuses on

retrieving expression gradients and HD geometry on the fly,

which differentiates it from the current state of the art in script-

based ST tooling and is therefore complementary in its applica-

tion and not a suggested replacement.
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Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

SpaceTx Long et al.19 https://viewer.cytosplore.org

HybISS La Manno et al.21 http://mousebrain.org/development/downloads.html

EEL FISH (the Mouse 440 gene RNA data) Borm et al.18 http://mousebrain.org/adult/downloads.html

Allen Brain Cell Atlas Yao et al.23 https://github.com/AllenInstitute/abc_atlas_access/blob/main/

descriptions/MERFISH-C57BL6J-638850.md

Software and algorithms

SpaceWalker This paper https://zenodo.org/records/10017490
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Boudewijn

Lelieveldt (b.p.f.lelieveldt@lumc.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. Links for the datasets are listed in the key resources table.

d SpaceWalker is implemented in C++ as a plugin of the ManiVault plugin system26 for visual analytics application building. All

original code has been deposited at https://github.com/ManiVaultStudio/SpaceWalker and is publicly available as of the date

of publication. DOIs are listed in the key resources table. The Windows installer for SpaceWalker and system state files con-

taining the data, plugins and GUI configurations are available at https://github.com/ManiVaultStudio/SpaceWalker. Installers

for MacOS and Linux will be made available at www.cytosplore.org in the future.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Data
All data was standardized and subsequently scaled to a range between 0 and 1 using min-max normalization when loaded into

SpaceWalker.

SpaceTx datasets were downloaded from https://viewer.cytosplore.org. We used the imputed dataset, where smFISH and

MERFISH datasets have the same number of genes. Genes were prefiltered to top 100 highly variable genes before SpaceWalker

analysis in Figures 4 and S1–S3. All 314 genes were used in other analyses presented in this paper (Figure 2; Table S1).

HybISS data was downloaded from http://mousebrain.org/development/downloads.html. The original HybISS data was prepro-

cessed and imputed, and the annotations were transferred from single-cell transcriptomics to the spatial SIRV data by Abdelaal

et al.22 EEL FISH data was downloaded from http://mousebrain.org/adult/downloads.html (the Mouse 440 gene RNA data). ABC Atlas

data was downloaded from https://github.com/AllenInstitute/abc_atlas_access/blob/main/descriptions/MERFISH-C57BL6J-638850.

md. The sizes of the utilized datasets are shown in Table S1.

Flood-fill projection
Before interactive exploration of the spatial map with flood-fill projections, an HD neighborhood graph is either computed (using

FAISS27) or loaded from a file, which stores the exact nearest neighbors of every data point. Multiple metrics can be used when

computing this graph, including Manhattan distance, angular distance, as well as secondary similarity measures28 to improve quality

on higher-dimensional datasets.

During exploration, when the user selects a seed cell in the spatial map, its k direct neighbors are added to the flood-fill. Then, for n

steps, the k direct neighbors of the cells added in the previous step are added to the flood-fill. Neighbors that have already been
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added are not added again. Both k and n are interactive user-defined parameters that change respectively how broad and how deep

the flood-fill goes. Importantly, this process differs from simply computing the seed cell’s nearest neighbors with a higher k value, as

each wave of the flood is restricted to a local neighborhood graph. This makes it improbable that a flood-fill wave spreads to dissim-

ilar cells as those are unlikely to be part of the local neighborhood. On the other hand, computing the cell’s nearest neighbors with a

large k value can easily cross to dissimilar clusters in the HD space if the size of k exceeds that of the local cluster. Therefore, the

flood-fill algorithm more closely approximates the neighborhood of similar cells and extinguishes itself when it reaches the bound-

aries of that neighborhood.

Figure S6 uses a simplified example to demonstrate the difference between the neighbors selected by the flood-fill algorithm and

direct nearest neighbors. The flood-fill only proceeds within the cluster, while the direct nearest neighbors also include nodes from a

separate cluster.

Whole-slide visualization of local HD intrinsic dimensionality
The visual exploration in SpaceWalker can be guided by the number of features that express the local variance of the HD gene

expression space, as a proxy for biological variability (Figure 1A). For every cell, we compute the local intrinsic dimensionality in a

defined HD neighborhood, which is then used to color-code the spatial map.

The term ’local intrinsic dimensionality’ refers to the minimum number of dimensions required to represent a pre-set fraction of the

data variance. Considering that certain genes can be highly correlated, the data can be represented using fewer dimensions without

losingmuch information. Therefore, we define ’local intrinsic dimensionality’ as the number of dimensions needed to account for 85%

of variance within the local subset of data. This subset of data corresponds to the neighborhood of a specific cell. More specifically,

we apply PCA29 on an n-by-m matrix at each cell location, where n is the number of neighbors of a specific cell and m is the total

number of genes. Every cell point is color-coded by the number of principal components required to model 85% of the total local

variance.

By presenting the local intrinsic dimensionality at each cell location, our intention is to provide an overview of local data complexity

at each cell location in the tissue. This provides a global overview of region boundaries to guide the spatial exploration by transcrip-

tomic variability.

In addition to features expressing local variance, we also provide exploration guidance in the form of ametric for local density of the

HD space. The flood-fill algorithm used to identify the nearest neighbors of a seed cell is controlled by a fixed number of steps, re-

sulting in varying flood-fill sizes at each seed cell location. The flood-fill size reflects the HD density of the dataset, with a larger neigh-

borhood indicating a sparser HD structure and a smaller neighborhood indicating a denser structure.

Localized gene filtering and selection
ST data is often used to explore boundaries between transcriptomically distinct tissue regions and cell mixtures, differentiation tra-

jectories or cell migration paths. Such patterns are typically characterized by localized changes in the expression of one or more

genes. To enable the study of such localized gene expression gradients, we developed an exploration mode that enables the

user to interact on the 2D map, while at the same time genes with significant localized expression patterns are ranked by three fil-

ters: 1) a spatial peak filter (Figure 1E), representing differential expression between the average gene expression vectors of two 2D

circular spatial neighborhoods with different radii: such filters contrasting two different spatial neighborhood sizes are common in

classical image processing30; 2) an HD filter (Figure 1F), contrasting the average gene expression vectors within two flooded HD

neighborhoods of different number of steps; 3) the third option is to apply the spatial peak filter only on the (transcriptomically similar)

flooded cells or on cell subtypes selected from a cell-type taxonomy, this enables the exploration of spatial expression gradients

within isolated cell subtypes (e.g., glutamatergic neurons) without mixing of cell types in the gene filter region of interest. We opted

for peak filtering by computing differential expression between a small and a large (spatial or HD) neighborhood due to its low compu-

tational complexity and rotational invariance in the spatial domain. Additionally, peak filtering has the capacity to detect both peaks

and gradients with the same filter, since the gradient is often near the peak, reflecting the transition from high to low values. The filter

neighborhood sizes can be modified through interactive sliders on the user interface, where the ratio between neighborhoods shifts

the filter properties between peaks and gradients.

The aforementioned filters enable an automated detection of genes with localized expression patterns by sorting genes according

to filter response. The top-ranked genes are presented in linked panels for their spatial expression patterns, and can be inspected by

clicking on the gene panel of interest (Videos S1 andS2). However, co-expressing genesmay have slightly lower filter ranks, therefore

we enable the user to interactively deviate from the automated gene selection based on ranks. In a line chart, we plot a series of lines,

where each line represents the sorted (low-to-high) gene expressions of that particular gene over the flooded cells (Figure 1C). Genes

with a high-ranked filter response are highlighted in orange on the chart. While the user explores different cell locations on the map,

gene expression values of the flooded cells are updated in the line chart, providing an overview of local gene expression patterns. The

user can interactively select a line in this chart to see the spatial gene expression map of the corresponding gene. This enables the

user to investigate other genes of interest based on their gene expression profiles or prior knowledge. For example, a gene showing

high expression values throughout all of the cells within the flood-fill might indicate a large contribution to the flooded neighborhood.

Alternatively, a gene showing a gradual change in gene expression could point to cell maturation trajectories.
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Coloring flood-fills by localized features
Flooded cells can be colored with different features, i.e., foreground cells are highlighted, and colored with a different feature than the

background cells (Figure 5 (d1) (d3)). These localized color-coding options assist the user in exploring the local subspace properties

in the context of HD geodesic distances and expression gradients. The user can then interact with the map and explore local data

properties by selecting one of the following flood-fill color-codings.

d HD geodesic distance approximation: Flooded cells are color-coded by their flood-fill step index to indicate their proximity to

the seed cell in HD space, hence reflecting local HD kNN graph geometry. The user can interactively define the number of flood-

fill steps to inspect the HD topology.

d Gene expression: Flooded cells are coloredwith the expression of the top ranked gene, and all other cells with a constant back-

ground color. The user can also manually select other genes of interest from the gene expression line chart for coloring the

flooded cells. The localized view of gene expression enables the user to visually evaluate the spatial geometry of the flood-

fill in combination with the gene expression pattern.

Parameter selection
SpaceWalker offers a highly interactive user interface, allowing easy modification of parameters throughout the exploration process,

and on-the-fly visual inspection of the effect of parameter changes. However, it should be noted that variations in parameter selection

may yield different results.

For the choice of distance metrics for computing local intrinsic dimensionality and flood-fill, we suggest using a combination of

Manhattan distance with shared distances28 for smaller-depth datasets (containing fewer than 200 genes), as it tends to provide

more accurate neighborhood results but it is computationally expensive. For datasets with larger feature depth, angular distance

is a default and suitable choice. In SpaceWalker, the default distance metric depends on the number of dimensions of the dataset.

The choice of neighborhood size affects how localized the local intrinsic dimensionality plot shows and the default is set as 30.

The flood-fill is controlled by the number of cells added at each floodwave (k) and the number of flood steps. A small k will result in a

less branching exploration of the HD space, while a large k will branch out more. A small number of steps corresponds to amore local

neighborhood, while a large number of steps will explore a larger neighborhood. The optimal parameters depend on the desired level

of localization that the user expects for the revealed patterns.

The choice of filtersmay result in different top genes. The spatial filter without restriction to the flooded nodes is purely based on the

spatial map and thus identifies the spatial expression patterns. The spatial filter with restriction to the flooded nodes reduces the ef-

fect of mixed cell types in the spatial region and identifies the spatial expression patterns in the transcriptomically similar cells. The

HD filter is not restricted by the spatial coordinates, thus it identifies the gene expression patterns in the HD space.

For the spatial filter, the radii depend on both the size of the spatial map and the specific local patterns that the user expects to

explore. Employing a small inner radius is beneficial for exploring more localized gene expression patterns, while larger inner and

outer radii can identify larger expression patterns. For instance, in our study, we used a small spatial filter size for EEL FISH (Figure 6

and Video S2) to identify genes expressed within small anatomical structures. Conversely, larger radii were applied for SpaceTx data-

sets to identify genes that correspond to large layer structures (Video S1). The parameter for the HD filter follows a similar principle.

In summary, parameter selection with SpaceWalker depends on the dataset and the expected level of localization during explo-

ration. However, the strong point of SpaceWalker is that the effect of parameter changes can be visually inspected and assessed on

the fly, in contrast to script-based methods. An example scenario of interactive parameter selection and the difference of results is

demonstrated in Video S3 using the HybISS data.

The default parameters and the specific parameters utilized in the analysis across all datasets in this work are given in Table S3.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used Pearson correlation as a reference for evaluation of marker gene identification in Figures 4 and S1.
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