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Abstract

In this thesis we study a class of interacting particle systems sharing a duality
property. This class includes the Symmetric Inclusion Process (SIP(2k)), the
Symmetric Exclusion Process (SEP(2j)) and the Independent Random Walkers
(IRW). When these systems are in equilibrium (namely they are isolated from
the exterior) they admit stationary measures that are also reversible product
space-homogeneous measures. However when the systems are in contact with
reservoirs that keep them out of equilibrium, the reversibility is lost and the
stationary microscopic distributions are unknown with the exception for the
SEP(1) (the Symmetric Exclusion Process) and the IRW. In order to examine
the non-equilibrium stationary distributions for the whole class of processes, we
make use of duality between these processes and particle systems with absorb-
ing boundaries. Our first main results are in section 6, where we give explicit
formulas for the absorption probabilities for the dual systems with 1 and 2 par-
ticles. Then we use this result to compute an explicit formula for the variance
and covariance of the sites occupation numbers for the many-particles systems
with density reservoirs in the non-equilibrium stationary distribution in section
7. Then we identify three possible scaling regimes for the density field: a de-
terministic regime where the variance vanishes and particles are expected to
converge to independent Brownian motions; a sticky regime where the variance
is finite and particles are expected to converge to sticky Brownian motions;
and finally an absorbing regime where the variance is infinite and particles are
expected to converge to coalescing Brownian motions. In the last part of the
thesis (section 8) we start the analysis of the dynamics of the particle systems.
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1 Introduction

The world around us is made out of interacting particles. These particles differ
in their size and behaviour, and their behaviour ultimately determine the obser-
vations that we make in the real world. However, describing these behaviours
has been a though task within mathematics due to the complexity that arises
even from simple systems.
There have been attempts to describe the physical phenomena of the world
through the behaviour of fundamental particles, with specifically Leucippus and
Democritus talking about atomos in the 5th to 4th century BC. Ever since then,
many philosophers and scientist have proposed their own models about the be-
haviour of these particles, including Newton, Leibniz and Einstein. The latter of
which proposed a mathematical description of these particles which ultimately
served as enough evidence to suggest that atoms exist.
In this thesis, we deal with interacting particle systems. These are Markov pro-
cesses modeling the motion of particles in a lattice. Particles start interacting
when they are close to each other, according to some stochastic rule. These
models have been introduced originally in statistical mechanics where the pri-
mary interest was the derivation of the macroscopic laws of thermodynamics
starting from the underlying macroscopic structure of the matter. The main
interest is the understanding of the collective behaviour of a huge number of
interacting particles, and in the derivation of the crucial macroscopic properties
that do not depend on the microscopic details. Nowadays the interest for such
systems goes beyond statistical mechanics, as their relevance in various research
fields such as biology, ecology and social sciences, has come to light. Particles
indeed might model atoms, molecules, polymers, dust grains, but also individ-
uals in a population or economic agents. In this thesis I focus in particular
on out-of-equilibrium systems. A system is out of equilibrium when it is put
in contact with external reservoirs, which generate a current flow of particles
throughout the system. The current pushes the particles from the reservoir at
higher particle density towards the reservoir at lower density. Differently from
the equilibrium systems, in the case of the non-equilibrium systems there are
still many open questions. One of these is the understanding of the properties
of the non-equilibrium stationary distributions, for which, with the exception
of some particular models, there are no exact formulas known. This is one of
the main interests in this thesis. We will study the non-equilibrium stationary
distribution for a particular class of particles systems, that are particle systems
with duality property. This class includes three models: the symmetric inclu-
sion process (SIP) (introduced in [7]), the symmetric exclusion process (SEP)
(introduced in [12]) and independent random walkers (IRW) see figure 1. Dual-
ity is a property relating a system with many particles with a system composed
by a few particles.
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Figure 1: Visualization of the Independent Random Walkers through simulation.
Every blue dot represents a particle that is located on one of the 20 sites within
the interval. The red line approximates the average amount of particles at each
site for the last 8000 time-steps. The blue line approximates the average amount
of particles at each site for the last 100 time-steps.

We will make use of duality properties of these particle systems, which we
use to describe the behaviour of complex particle systems, by first examining
simpler systems. Specifically we will be looking at a simple system with one or
two particles with absorbing boundaries. Using absorption probabilities from
this simpler particle system, we will use duality to talk about the lower moments
of stationary solutions of the more complex systems. We will also be examining
limiting behaviours of the particle systems with respect to the space that they
occupy as well as their limiting behaviour with respect to their attracting or
repelling interaction. This leads us to the following question.

What is the behaviour of the stationary distribution of the IRW,
SIP and SEP out of equilibrium?
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To answer this question we will first go through the basic definitions and nota-
tions for probability theory and Markov Processes that we will use throughout
this thesis in section 2. We will then introduce the particle generators for the
particle systems out of equilibrium that we wish to analyze in section 3. After
that we will talk about the stationary measures that have been found for these
particle systems in equilibrium in section 4. We will then introduce simpler par-
ticle systems that we can analyze in order to study these complex systems by
linking them with a property called duality in section 5. We will then analyze
these simpler particle systems by in particular looking at a two particle system,
and we will analyze the absorption probabilities for this system in section 6.
We will then talk about the stationary distribution of the out of equilibrium
particle systems by making use of the previous results in section 7.1, 7.2 and
7.3. We will examine the stationary distribution of the density field in section
7.4. We will briefly talk about the dynamics of the particle systems in section
8. We will then restate all of the findings in the conclusion in section 9. Finally
we have a detailed proof for one of the absorption probabilities and the code for
our simulation in the appendix.
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2 Basic definitions and notations for probability
theory and Markov Processes

In order to describe particle systems and their behaviour we will first need to
describe the fundamental mathematics behind these models. In these sections
we will first give some general definitions and theorems of probability theory
and we will then talk about Markov Processes, which are fundamental to the
way particle systems are defined.

2.1 Random variables

Definition 2.1 (Random variable). A random variable X : Ω → D is a mea-
surable function defined on a probability space (Ω,F ,P) and a measurable space
(D,D).

Next we wish to define the expectation of a random variable.

Definition 2.2 (Expectation of a random variable). The expectation of a ran-
dom variable X on a probability space (Ω,F ,P) is defined by:

E[X] :=

∫
Ω

X dP

Where we take the Lebesque integral of the variable X over the domain Ω with
measure P.

The expectation can be viewed as average value you get from many iterations
of a random variable X. If X where to be a fair coin, which is a coin which has
an equal probability of heads or tails and is not influenced by previous throws.
And X = 1 would mean heads and X = 0 would mean tails, then E[X] = 0.5.
In order to say something about how much a random variable deviates from its
expectation we make use of the variance of a random variable.

Definition 2.3 (Variance of a random variable). The variance of a random
variable X on a probability space (Ω,F ,P) is defined by:

Var[X] := E
[
(X − E[X])2

]
=

∫
Ω

(X − E[X])2 dP

Next we make use of independence of two random variables.

Definition 2.4 (Independence of two random variables). We say that two vari-
ables X,Y : F → D on probability space (Ω,F ,P) and a measurable space
(D,D) are independent when ∀D1, D2 ∈ D we have:

P(X ∈ D1, Y ∈ D2) = P(X ∈ D1)P (Y ∈ D2)

We will also make use of the covariance of two random variables. The covari-
ance says something about how correlated two variables are. However, if two
variables have 0 covariance, then this does not mean that they are independent.
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Definition 2.5 (Covariance of two random variables). The covariance of the
random variables X,Y on a probability space (Ω,F ,P) is defined by:

Cov[X,Y ] := E
[
(X − E[X])(Y − E[Y ])

]
=

∫
Ω

(X − E[X])(Y − E[Y ]) dP

In particular we have that Cov(X,X) = Var(X).

2.2 Markov Processes

Particle systems are processes with random behaviour over time, in order to
properly define them, we first define stochastic processes.

Definition 2.6 (Stochastic process). A stochastic process is a collection of
random variables {Xt : t ≥ 0} defined on a common probability space (Ω,F ,P)
taking values on the same measurable space (D,D), which is named the state
space. If time is discrete a stochastic process is a sequence {Xn : n ∈ N0}.

In this thesis we will use the following notation for Stochastic Processes with
state space D:

Px(Xt = y) := P(Xt = y|X0 = x) ∀x, y ∈ D and t ≥ 0

Let µ denote a probability measure on D, then we denote by Eµ[Xt] the expecta-
tion of a stochastic process Xt initialized from a value X0 distributed according
to µ.
In a similar manner we use the following notation for the conditional variance
in which X0 is distributed according to µ:

Varµ[Xt] := Eµ
[
(Xt − Eµ[Xt])

2
]

We then also adapt the notation for the conditional covariance in which (X0, Y0)
are distributed according to µ:

Covµ[Xt] := Eµ
[
(X − Eµ[X])(Y − Eµ[Y ])

]
Throughout this thesis we consider stochastic processes satisfying the so-called
Markov Property. This property means that only the last known state of the
system has any influence on the next unknown state. The formal definition is
as follows:

Definition 2.7 (Markov Property). Let {Xn : n ∈ N0} be a discrete-time
stochastic process on a discrete state space D. We say that such a sequence
satisfies the Markov Property if for all x0, x1, ...xn ∈ D:

P(Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2 . . . X1 = x1, X0 = x0)

= P(Xn = xn | Xn−1 = xn−1)

We can extend this definition to include processes which work on continuous
time. We call a continuous stochastic process {Xt, t ≥ 0} a continuous Markov
Process if for all tn > tn−1 > ... > t1 > t0 ≥ 0 it holds that:

P(Xtn = xn|Xtn−1
= xn−1, ..., Xt0 = x0) = P(Xtn = xn|Xtn−1

= xn−1)
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A stochastic process with this property is called a Markov Process. We will
also define time-homogeneity, which is the property for a stochastic process that
the next unknown state is only influenced by how much time has passed since
the previous known state. And that this unknown state is not dependent on the
total amount of time that has passed since the start of the process.

Definition 2.8 (Time-homogeneity). A stochastic process with state space D
has the time-homogeneity property if ∀x, y ∈ D, and t > s with t, s ∈ N0 (for
discrete Markov Processes) or t, s ∈ R0 (for continuous Markov Processes).

P(Xt = x | Xs = y) = P(Xt−s = x | X0 = y)

For the rest of this thesis we will assume that all the Markov Processes have
the time-homogeneity property.
We can then denote all of the possible transition probabilities in the following
manner ∀x, y ∈ D and t ≥ 0:

pt(x, y) := P(Xt = y|X0 = x)

This defines the (possibly infinitely sized) transition matrices Pt. It turns out
that for Markov Processes these matrices satisfy the semigroup property :

Theorem 1. The transition matrices Pt of Markov Processes with state space
D satisfy the semigroup property ∀t, u ≥ 0:

Pt+u = PtPs

Or expressed differently:

pt+s(x, y) =
∑
z∈D

pt(z, y)ps(x, z)

10



Proof. This property relies on the Markov property and time-homogeneity:

pt+s(x, y) = P(Xt+s = y|X0 = x)

=
P(Xt+s = y,X0 = x)

P(X0 = x)

=
∑
z∈D

P(Xt+s = y,Xs = z,X0 = x)

P(X0 = x)
=

=
∑
z∈D

P(Xt+s = y|Xs = z,X0 = x)P(Xs = z,X0 = x)

P(X0 = x)

=
∑
z∈D

P(Xt+s = y|Xs = z,X0 = x)P(Xs = z|X0 = x)

Markov property
=

∑
z∈D

P(Xt+s = y|Xs = z)P(Xs = z|X0 = x)

Time-homogeneity
=

∑
z∈D

P(Xt = y|X0 = z)P(Xs = z|X0 = x)

=
∑
z∈D

pt(z, y)ps(x, z)

This property implies that there is a matrix L such that:

Pt = eLt

Where we define the exponential of a matrix by means of its Taylor series
expansion around t = 0.

eLt :=

∞∑
n=0

(Lt)n

n!

This matrix L is called the infinitesimal generator of a continuous-time Markov
Process. And we can find its coefficients by calculating the time derivative of
Pt.

dPt
dt

= LetL = LPt

And evaluating it at time t = 0:

dPt
dt

∣∣
t=0

= L

The non-diagonal elements of L represent the jump rates of the continuous-time
Markov Process:

c(x, y) := Lxy for x 6= y

The diagonal elements of this matrix are equal to the negative sum of the other
elements on the same row; indeed:

pt(x, x) +
∑
y∈D
y 6=x

pt(x, y) = 1
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Taking the derivatives with respect to time and evaluating them at t = 0 gives
us

Lxx +
∑
y∈D
y 6=x

c(x, y) = 0

thus
Lxx = −

∑
y∈D
y 6=x

c(x, y)

These rates define the entire process, as these define L, which in turn defines
Pt, which holds all of the transition probabilities due to the Markov Property
and time-homogeneity. One way of describing the matrix L, is by looking at
how it acts on functions f : D → R in the following manner:

[Lf ](x) =
∑
y∈D
y 6=x

c(x, y)(f(y)− f(x))

We will also define ft(x) = [Ptf ](x) = E[f(Xt)|X0 = x] this gives us:

dft(x)

dt
= Lft

ft(x) is called the time-evolution of f(x).
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3 Interacting particle systems

We can now define interacting particle systems in terms of continuous-time
Markov processes.

Definition 3.1 (Interacting particle system). An interacting particle system
{η(t), t ≥ 0} is a Markov Process modeling the interaction of particles moving
in a lattice V ⊆ Zd and jumping among the sites of the lattice according to
some stochastic rules. In this thesis we consider the one dimensional case d = 1
where each ηt is defined on a measurable space (SV ,P(SV )). For which S ⊆ N0

is a subset of the natural numbers called the space of occupation numbers and
P(SV ) is the power set of SV .

3.1 Standard Generator

We examine the interacting particle systems which are defined on the set V = Z
and for which S ⊆ N0. Then ∀η ∈ SV we denote by ηi ∈ S the amount of par-
ticles at site i ∈ Z.
We would like that our particle system only has interactions between neigh-
bouring sites, we want particles to only be able to jump to the sites left and
right of them. To describe these jumps we use a notation that describes the
configuration in which a particle has jumped one spot to the left or right with
respect to the former state η ∈ SV .This way we can for all η ∈ SV denote ηi,j

to be the configuration obtained by moving a particle from site i to j.

ηi,jk =

 ηi − 1 k = i
ηj + 1 k = j
ηk otherwise


We denote by c+(ηi, ηi+1) the rate of particles jumping from i to i+1 and with
c−(ηi+1, ηi) the rate to describe a particle jumping from site i+1 to i. This gives
us the following generator:

[L f ](η) =
∑
i∈Z
{c+(ηi, ηi+1)[f(ηi,i+1)− f(ηi)] + c−(ηi+1, ηi)[f(ηi+1,i)− f(ηi)]}

3.2 The Reference Process

In this thesis we will study an interacting particle which has linear rates living
on a finite lattice VN = {1, . . . , N}. It is of the following form:

[L θ
intf ](η) =

α

2

N−1∑
i=1

{ηi(1 + θηi+1)[f(ηi,i+1)− f(ηi)] + ηi+1(1 + θηi)[f(ηi+1,i)− f(ηi)]}

The reason that we choose our particle system to have these rates is because we
can then make use of the duality property, which we will describe in section 5.
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These generators have two free parameters: α and θ. α determines how fast the
process evolves. If α is larger, then the process will evolve faster, and if it is
smaller, the process will evolve slower. α therefore serves as nothing more than
a time-scaling parameter. The sign of θ modules the nature of the interaction
between particles. It relates to the‘attractiveness’ that the particles have be-
tween each other. We divide these differing behaviours into 3 categories. The
Symmetric Inclusion Process (SIP), the Symmetric Exclusion Process (SEP)
and the Independent Random Walkers (IRW).

So far we have been examining particles systems in which the total amount of
particles remains constant over time. We will now be examining particle systems
in which the particles have reservoirs which interact with a finite lattice of length
N . Our lattice VN has N sites on which particles move VN = {1, 2, ..., N−1, N}
and on the site 1 and N , particles will interact with ‘reservoirs’. On these sites,
the particles can jump out of the finite lattice or jump in based on birth rates
and death rates. In general the generator of our particle systems will be written
in the following manner:

LR = L0 + L θ
int + LN+1

Where

[L0f ](η) = b(η1)(f(η0,1)− f(η)) + d(η1)(f(η1,0)− f(η))

[LN+1f ](η) = b̄(ηN )(f(ηN+1,N )− f(η)) + d̄(ηN )(f(ηN,N+1)− f(η))

With b, d, b̄, d̄ being functions from S ⊆ N0 to R. If we specifically choose
b = b̄ = 0 we will have absorbing boundaries. Particles will be able to jump out
of the lattice, but not into it.
We can now discuss the 3 different particle systems in more detail.

The Symmetric Inclusion Process SIP(2k). If θ > 0 then when particles
are adjacent on the lattice, the jump rate onto each other will increase. This
will result in the particles performing attractive behaviour. If θ gets larger, the
likelihood of the particles separating once they are adjacent becomes lower. The
space of occupation numbers is S = N0. A visualization of the rates can be seen
in Figure 2. The inclusion process (without reservoirs) was defined first in [7],
and examined further in [8]. This system is often described with a parameter
k, with θ = 1

2k and α = 4k.

The inclusion generator has the following properties for the reservoirs b(x) =
α(2k + x), d(x) = γx, b̄(x) = δ(2k + x), d̄(x) = βx. All of this gives us the
following generator:

14



[L
SIP (2k)
R f ](η) = α(2k + η1)(f(η0,1)− f(η)) + γη1(f(η1,0)− f(η))

+

N−1∑
i=1

{ηi(2k + ηi+1)[f(ηi,i+1)− f(ηi)] + ηi+1(2k + ηi)[f(ηi+1,i)− f(ηi)]}

+ δ(2k + ηN )(f(ηN+1,N )− f(η)) + βηN (f(ηN,N+1)− f(η))

Figure 2: Figure from [6] showing the transitions and corresponding rates be-
tween the sites and the reservoirs of the Symmetric Inclusion Process (SIP(2k)).

This process, is generally defined with parameter 2k, instead we will use the
parameter 1

|θ| , with θ > 0. We are are interested in the cases when γ − α =

β−δ = 1
|θ| . When we make use of these constraints we get the following equality:

[θL
SIP ( 1

θ )

R f ](η) = α(1 + θη1)(f(η0,1)− f(η)) + (1 + αθ)η1(f(η1,0)− f(η))

+

N−1∑
i=1

{ηi(1 + θηi+1)[f(ηi,i+1)− f(ηi)] + ηi+1(1 + θηi)[f(ηi+1,i)− f(ηi)]}

+ δ(1 + θηN )(f(ηN+1,N )− f(η)) + (1 + δθ)ηN (f(ηN,N+1)− f(η))
(1)

The Symmetric Exclusion Process SEP(2j). If θ < 0 and 1
|θ| ∈ N then

the particles will repel each other. If for example θ = −1 then each site can
at most hold 1 particle, because as soon as a second particle is adjacent to this
one, the rate becomes 0. A schematic overview of the processes can be seen in
Figure 3. In general, with 1

|θ| being a natural number, each ηi takes values in

S = {1, 2, ... 1
|θ|}. The case θ = −1 has been studied by H. Spohn [14], after

which the general model was introduced by G. Schütz and S. Sandow [12]. This
process is generally defined with parameter 2j.
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The reservoirs are defined by the following rates b(x) = α(2k−x), d(x) = γx,
b̄(x) = δ(2k − x), d̄(x) = βx. Which gives the following generator:

[L
SEP (2j)
R f ](η) = α(2j − η1)(f(η0,1)− f(η)) + γη1(f(η1,0)− f(η))

+

N−1∑
i=1

{ηi(2j − ηi+1)[f(ηi,i+1)− f(ηi)] + ηi+1(2j − ηi)[f(ηi+1,i)− f(ηi)]}

+ δ(2j − ηN )(f(ηN+1,N )− f(η)) + βηN (f(ηN,N+1)− f(η))

Figure 3: Figure from [6] showing the transitions and corresponding rates be-
tween the sites and the reservoirs of the Symmetric Exclusion Process (SEP(2j)).

We will yet again replace this parameter with 1
|θ| , with θ < 0 and we are

interested in the cases when we take γ + α = β + δ = 1
|θ| . We will rewrite the

particle system into the following form:

[|θ|L
SEP ( 1

|θ| )

R f ](η) = α(1 + θη1)(f(η0,1)− f(η)) + (1 + αθ)η1(f(η1,0)− f(η))

+

N−1∑
i=1

{ηi(1 + θηi+1)[f(ηi,i+1)− f(ηi)] + ηi+1(1 + θηi)[f(ηi+1,i)− f(ηi)]}

+ δ(1 + θηN )(f(ηN+1,N )− f(η)) + (1 + δθ)ηN (f(ηN,N+1)− f(η))
(2)
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Figure 4: Visualization of Symmetric Exclusion Process with N = 20, θ = 1
5 ,

α = 0 and δ = 5 through simulation. Every blue dot represents a particle that
is located on a site in VN with the x-axis representing the position of this site.
Note that there are no sites with more than 5 particles.

Independent Random Walkers IRW. If θ = 0, then the particles in the
system become independent random walkers. The state space where ηi takes
values is S = N0. This model was first researched by F. Spitzer [13], after which
the system was investigated with boundary conditions by E. Levine etal. [3].
The process that we are interested in has the following boundary conditions
b(x) = α, d(x) = γx, b̄(x) = δ, d̄(x) = βx.

[L IRW
R f ](η) = α(f(η0,1)− f(η)) + γη1(f(η1,0)− f(η))

+

N−1∑
i=1

{ηi[f(ηi,i+1)− f(ηi)] + ηi+1[f(ηi+1,i)− f(ηi)]}

+ δ(f(ηN+1,N )− f(η)) + βηN (f(ηN,N+1)− f(η))

For the independent random walker process we are interested in the cases when
γ = β = 1 in this case the generator take the following form:

[L IRW
R f ](η) = α(f(η0,1)− f(η)) + η1(f(η1,0)− f(η))

+

N−1∑
i=1

{ηi[f(ηi,i+1)− f(ηi)] + ηi+1[f(ηi+1,i)− f(ηi)]}

+ δ(f(ηN+1,N )− f(η)) + ηN (f(ηN,N+1)− f(η)) (3)

17



Reference generator. What we now notice by examining equation 1, 2 and 3
is that all of these generators reduce to the same form depending on a parameter
θ. We can describe the above three cases using the reference generator in the
following manner:

[L
REF (θ)
R ](η) =


[L IRW

R ](η) θ = 0, η ∈ N{1,2...N}, γ = β = 1

[θL
SIP ( 1

θ )

R ](η) θ > 0, η ∈ N{1,2...N}, γ − α = δ − β = 1
θ

[|θ|L
SEP ( 1

|θ| )

R ](η) θ < 0, 1
|θ| ∈ N, η ∈ {1, 2... 1

|θ|}
{1,2,...N}, γ + α = δ + β = 1

|θ|


(4)

The reservoirs on the sides of the interval control the average or expected amount
of particles at these sides. We will call these average amounts, the reservoir
densities of the particle systems. With ρa being the expected amount of particles
at the left reservoir and ρb being the expected amount of particles in the right
reservoir.

System ρa ρb
SIP 2k α

γ−α 2k δ
β−δ

SEP 2j α
γ+α 2j δ

β+δ

IRW α
γ

δ
β

Table 1: Definition of ρa and ρb.

Note that the SIP process requires γ > α and β > δ. This condition turns
out to be necessary in order for the system to reach a stationary state. Under
the restrictions imposed by our reference generator (equation 4) we have that
ρa = α and ρb = δ. We would now like to examine the limiting distributions of
the particle systems with respect to these reservoir densities.
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4 Stationary measures of the interacting parti-
cle systems at equilibrium

As t → ∞, the distribution of particles will converge to a stationary distribu-
tion. Stationary measures are known for the particular case where the system
is kept at equilibrium. This means that the boundary densities imposed by the
reservoirs are the same: ρa = ρb. These measures are also called reversible
measures, as they have been found by imposing the detailed balance condition
for which it is required that for the generators L , with configurations η, η′ ∈ Ω
and probability measure P:

L (η, η′)P(η) = L (η′, η)P(η′)

For the generators defined in section 3, we have the following stationary mea-
sures:

Symmetric Inclusion Process SIP(2k)

The process with generator L
SIP (2k)
R with parameters α, γ and β, δ such that

αβ − γδ = 0, has a reversible stationary measure given by products of gen-
eralized Negative Binomial measures with parameters 2k > 0, p = α

γ = δ
β ,

α < γ and δ < β.

P(η) =

N∏
i=1

pηi

ηi!

Γ(2k + ηi)

Γ(2k)
(1− p)2k .

Symmetric Exclusion Process SEP(2j)

The process with generator L
SEP (2k)
R with parameters α, γ and β, δ such that

αβ−γδ = 0, has a reversible stationary measure given by products of Binomial
measures with parameters 2j ∈ N and p = α

γ+α = δ
β+δ

P(η) =

N∏
i=1

(
p

1−p

)ηi
ηi!

Γ(2j + 1)

Γ(2j + 1− ηi)
(1− p)2j .

Independent Random Walkers IRW
The process with generator L IRW

R with α
γ = δ

β has a reversible stationary

measure given by products of Poisson distributions with parameter λ := α
γ = δ

β
i.e.

P(η) =

N∏
i=1

ληi

ηi!
e−λ .

All of these stationary measures are for particle systems which are in equi-
librium, which means that ρa = ρb. However, when we try to examine systems
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out of equilibrium in which ρa 6= ρb. We lose the product structure of the sta-
tionary measure, and everything becomes much more complicated. We can see
an example of the stationary distribution in equilibrium in Figure 5.

Figure 5: Visualization of the stationary distribution of the Symmetric Inclusion
Process in equilibrium with N = 20, θ = 0.5, α = 5 and δ = 5 through
simulation. Every blue dot represents a particle that is located on a site in
VN with the x-axis representing the position of this site. The yellow line is the
analytically calculated expectation for the stationary profile. The red line is an
approximation for the expected amount of particles by averaging over the last
8000 timesteps. The blue line is an approximation for the expected amount of
particles by averaging over the last 100 timesteps. We can see the expected
amount of particles is the same for all sites, as the distribution of particles is
the same at each site.

At the moment there are only exact results for the out of equilibrium particle
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systems in two cases: θ = 0 and θ = −1. For the θ = 0 case, the product
structure still holds, this case has been studied by L. Bertini et al. [10]. The
θ = −1 case (where there can be at most 1 particle at each site) has been studied
by B. Derrida et al. [1], where a matrix product solution was found. In order to
say something about the distribution of these stationary measures for particle
systems out of equilibrium we will make use of a duality.
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5 Duality

It can be very difficult to say something about the moments of complex particle
systems with many particles. Even more in the non-equilibrium case where
we do not have a reversible measure. Instead, we would like to reduce complex
systems to simpler ones and link properties between the two. One way of setting
up such a link is through duality of Markov Processes.

Definition 5.1 (Duality between Markov Processes). We say that two Markov
Processes ηt and ξt are dual with a duality function D(η, ξ) : Ω×Ω′ → R if for
all of the starting configurations η ∈ Ω and ξ ∈ Ω′ and for all t ≥ 0 we have the
following property:

Eη(D(ηt, ξ)) = Eξ(D(η, ξt))

There are several duality functions that have been found. The following duality
relationships are from C. Giardinà et al. [2].

Symmetric Inclusion Process (SIP(2k)). We have a duality function that
links an inclusion particle system with reservoirs as described in formula (1)
with generators of the form:

[L
SIP (2k)
Dual f ](ξ) = (γ − α)ξ1(f(ξ1,0)− f(ξ))

+

N−1∑
i=1

{ξi(2k + ξi+1)[f(ξi,i+1)− f(ξi)] + ξi+1(2k + ξi)[f(ξi+1,i)− f(ξi)]}

+ (β − δ)ξN (f(ξN,N+1)− f(ξ))

with duality function:

DSIP (2k)(η, ξ) =
( α

γ − α
)ξ0 N∏

i=1

ηi!

(ηi − ξi)!
Γ(2k)

Γ(2k + ξi)

( δ

β − δ
)ξN+1

Symmetric Exclusion Process (SEP(2k)). We also have a duality function
for the exclusion process as described in formula (2) and generators of the form:

[L
SEP (2j)
Dual f ](ξ) = (γ + α)ξ1(f(ξ1,0)− f(ξ))

+

N−1∑
i=1

{ξi(2j − ξi+1)[f(ξi,i+1)− f(ξi)] + ξi+1(2j − ξi)[f(ξi+1,i)− f(ξi)]}

+ (β + δ)ξN (f(ξN,N+1)− f(ξ))

with duality function:

DSEP (2j)(η, ξ) =
( α

γ + α

)ξ0 N∏
i=1

ηi!

(ηi − ξi)!
Γ(2j + 1− ξi)

Γ(2j + 1)

( δ

β + δ

)ξN+1
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Independent Random Walkers (IRW). Finally we also have a duality func-
tion for the independent random walkers as described in formula (3) and gen-
erators of the form:

[L IRW
Dual f ](ξ) = γξ1(f(ξ1,0)− f(ξ))

+

N−1∑
i=1

{ξi[f(ξi,i+1)− f(ξi)] + ξi+1[f(ξi+1,i)− f(ξi)]}

+ βξN (f(ξN,N+1)− f(ξ))

with duality function:

DIRW (η, ξ) =
(α
γ

)ξ0 N∏
i=1

ηi!

(ηi − ξi)!
( δ
β

)ξN+1

We notice that when we use the constraints for γ, α, β, δ from equation 1,
2 and 3, that all of these dual processes have the same form as the reference
generator in equation 4.

[L
REF (θ)
Dual ](η) =


[L IRW

Dual ](η) θ = 0, η ∈ N{1,2...N}, γ = β = 1

[θL
SIP ( 1

θ )

Dual ](η) θ > 0, η ∈ N{1,2...N}, γ − α = δ − β = 1
θ

[|θ|L
SEP ( 1

|θ| )

Dual ](η) θ < 0, 1
|θ| ∈ N, η ∈ {1, 2... 1

|θ|}
{1,2...N}, γ + α = δ + β = 1

|θ|


And in a similar way we can characterize all of the duality functions:

Dθ(η, ξ) =


DIRW (η, ξ) θ = 0, η, ξ ∈ N{1,2...N}, γ = β = 1

DSIP ( 1
θ )(η, ξ) θ > 0, η, ξ ∈ N{1,2...N}, γ − α = δ − β = 1

θ

DSEP ( 1
|θ| )(η, ξ) θ < 0, 1

|θ| ∈ N, η ∈ {1, 2... 1
|θ|}
{1,2...N}, γ + α = δ + β = 1

|θ|


We can now make use of the duality function to extract information about
expected number of particles in the sites of the particle systems. For example
if we take x ∈ VN and ξ = δx. ξ is now a configuration with a single particle at
site x. We can then get the first moment of site x in η:

ηx =
1

|θ + 1θ=0|
Dθ(η, δx)

Note that ξ now has 1 particle and that η can have an arbitrary amount of
particles.

In order to examine higher moments we take x, y ∈ Vn, x 6= y and ξ = δx + δy.
ξ is now a configuration with two particles at two different sites x and y. We
can get the second moments for differing sites in η:
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ηxηy =
1

(θ + 1θ=0)2
Dθ(η, δx + δy)

Finally we can take x ∈ VN and ξ = 2δx. ξ is now a configuration with two
particles at sitex. We can then get the second moment of a single site x in η:

Dθ(η, 2δx) =
(θ + 1θ=0)2ηx(ηx − 1)

θ + 1

and thus

η2
x = ηx +

θ + 1

(θ + 1θ=0)2
Dθ(η, 2δx)

In the next section we will examine the dual process in order to then use
that information for examining the moments for more complex systems like η
with an arbitrary amount of particles.
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6 Distance and sum processes

We now examine the following generator, which is the dual process to the pro-
cesses described in section 3, as described in section 5.

[L
REF (θ)
Dual f ](ξ) = ξ1(f(ξ1,0)− f(ξ)) + [L θ

intf ] + ξN (f(ξN,N+1)− f(ξ))

This process is a special case of the reference process with α = 2, N in-
ternal points and absorbing boundaries with the death rate being equal to
d(x) = d̄(x) = x. We want to examine this system with two particles in such
a way that we can get information about the second moments of the original
process η. Instead of examining the position coordinates processes of the two
particles (x(t), y(t)) we will instead examine the distance and sum processes of
the particles (w(t), u(t)).

w(t) = |x(t)− y(t)|
u(t) = x(t) + y(t)− (N + 1)

With x(t) being the position of the leftmost particle and y(t) being the position
of the rightmost particle. The jump rates in terms of the distance process and
sum process breaks down into three cases. The numbers above the arrows (

·−→)
indicate the rates for these transitions

Case 1, two particles at the same node w = 0:

S S

In this case each particle can jump to the right or the left with an equal rate 1.
So

(w, u)
2−→ (w + 1, u+ 1) a particle jumps to the right

(w, u)
2−→ (w + 1, u− 1) a particle jumps to the left

Case 2, two particles next to each other w = 1:

S S

In this case the rate of jumping onto the other particle is slightly different than
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them jumping away.

(w, u)
1−→ (w + 1, u− 1) left particle jumps to the left

(w, u)
1−→ (w + 1, u+ 1) right particle jumps to the right

(w, u)
1+θ−−→ (w − 1, u+ 1) left particle jumps to the right

(w, u)
1+θ−−→ (w − 1, u− 1) right particle jumps to the left

Case 3, two particles far away from each other w ≥ 2:

S S

In this case the particles move independent from each other with equal rate.

(w, u)
1−→ (w + 1, u− 1) left particle jumps to the left

(w, u)
1−→ (w + 1, u+ 1) right particle jumps to the right

(w, u)
1−→ (w − 1, u+ 1) left particle jumps to the right

(w, u)
1−→ (w − 1, u− 1) right particle jumps to the left

Case 4, a particle is stuck in the left boundary:

S S

In this case the left particle can not move and the right one moves independently.

(w, u)
1−→ (w + 1, u+ 1) right particle jumps to the right

(w, u)
1−→ (w − 1, u− 1) right particle jumps to the left

Case 5, a particle is stuck in the right boundary:

S S

In this case the right particle can not move and the left one moves independently.

(w, u)
1−→ (w + 1, u− 1) left particle jumps to the left

(w, u)
1−→ (w − 1, u+ 1) left particle jumps to the right
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Case 6, the particles are both stuck in the boundaries:

S S

S S

S S

In this case none of the particles can move and all of the rates are zero

The coordinates are defined on a space ΛN , this forms a triangle, as can be
seen in Figure 6. ΛN is defined in the following manner:

ΛN :=
{(w, u) ∈ N0 × Z : w = u mod 2, 0 ≤ w ≤ N + 1− |u|} if N mod 2 = 0
{(w, u) ∈ N0 × Z : w = u+ 1 mod 2, 0 ≤ w ≤ N + 1− |u|} if N mod 2 = 1

We will denote all the configuration on this axis {u = 0} by Λ0 = {(w, u) ∈ ΛN :
u = 0}. All the configurations on the right of this axis by Λ+ = {(w, u) ∈ ΛN :
u > 0} and all of the configurations on the left of this axis by Λ− = {(w, u) ∈
ΛN : u < 0}.
We can now write down the generator for the sum and distance process (w(t), u(t)).

[L
(sum,dist)
dual f ](w, u) =

f(w + 1, u− 1)− 2f(w, u) + f(w − 1, u+ 1),
w = (N + 1)− |u|
and (w 6= 0 or w 6= N + 1)

0, (w, u) ∈ S

2(f(w + 1, u− 1)− 2f(w, u) + f(w + 1, u+ 1)), w = 0 and w 6= (N + 1)− |u|

(1 + θ)(f(w − 1, u− 1) + f(w − 1, u+ 1))+
w = 1 and w 6= (N + 1)− |u|

f(w + 1, u− 1) + f(w + 1, u+ 1)− (4 + 2θ)f(w, u)),

f(w − 1, u− 1) + f(w + 1, u− 1)+
w = 2 and w 6= (N + 1)− |u|

f(w − 1, u+ 1) + f(w + 1, u+ 1)− 4f(w, u)


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Where we have S = S0 ∪ S1 ∪ S2.
S0 ∈ ΛN represents the state in which one particle is in the left reservoir and
the other one is in the right one, and corresponds with w = N + 1 and u = 0.
S1 ∈ ΛN represents the state in which both particles are stuck in the right
reservoir and corresponds with w = 0 and u = N + 1.
S2 ∈ ΛN represents the one for which both particles are in the left reservoir and
w = 0 and u = −(N + 1).

Putting all of these cases together, we can examine the full transition graph:

w = 0

w = 1

w = 2

w = 3

w = 4

u = −4 u = −2 u = 0 u = 2 u = 4

S0

S2 S1

1 11 1

2 22 2
1+
θ 1+

θ 1+
θ 1+

θ

11

1 1

2 2

1 1
1

1 1

11 1

1 1

1 1

Figure 6: Transition graph with rates for the distance and sum process of the
two particle dual process with N=3

We can see that the process gets stuck on the line w = u + (N + 1) and
w = −u+ (N + 1). And we can also see the 3 absorbing states. S0 , S1 and S2.

Our aim is to compute the probabilities for each of the sinks to eventually
be reached. Because there is no time dependence on these probabilities we will
examine the corresponding discrete-time process (or Skeleton Process).

6.1 Discrete transition probabilities

We now convert these continuous probability processes into discrete ones using
the following notation:

P ((w, u), (w′, u′)) = P (wn+1 = w′, un+1 = u′|wn = w, un = u)
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It can now be seen that

for (w = u + (N + 1) and (w 6= 0 or w 6= N + 1))

P ((w, u), (w + 1, u+ 1)) = P ((w, u), (w − 1, u− 1)) =
1

2
for (w = −u + (N + 1) and (w 6= 0 or w 6= N + 1))

P ((w, u), (w − 1, u+ 1)) = P ((w, u), (w + 1, u− 1)) =
1

2
for (w = u + (N + 1) or w = −u + (N + 1)) and (w = 0 or w = N + 1)

P ((w, u), (w, u)) = 1

for w = 0 and w 6= (N + 1)− |u|

P ((0, u), (1, u+ 1)) = P ((0, u), (1, u− 1)) =
1

2
for w = 1 and w 6= (N + 1)− |u|

P ((1, u), (2, u+ 1)) = P ((1, u), (2, u− 1)) =
1

4 + 2θ

P ((1, u), (0, u+ 1)) = P ((1, u), (0, u− 1)) =
1 + θ

4 + 2θ

for w ≥ 2 and w 6= (N + 1)− |u|
P ((w, u), (w + 1, u+ 1)) = P ((w, u), (w + 1, u− 1)) =

P ((w, u), (w − 1, u+ 1)) = P ((w, u), (w − 1, u− 1)) =
1

4

We wish to determine the probability for the two particles to be absorbed
in each of the absorbing states. We denote the probability of going into S0 by
q0(w, u) (with (w, u) ∈ ΛN ) and for S1, S2 by q1(w, u), q2(w, u) respectively. We
have three unknowns, so we need to get three constrains in order to solve these
unknowns. The first constraint is obvious as eventually one of the three states
must be reached so q0(w, u) + q1(w, u) + q2(w, u) = 1.

6.2 The reflection principle and q1 − q2

The second constraint comes from the symmetric properties in the transition
graph. This gives us a relation between the probability of q1(w, u) and q2(w, u).
We were able to verify this relation with the recurrence relations which were
found by G. Carinic et al [5].

Theorem 2. For the skeleton process defined in section 6.1 the following holds
for any (w, u) ∈ ΛN :

q1(w, u)− q2(w, u) =
u

N + 1

Proof. With abuse of notation we will use ξ to denote the respective state in
the coordinates (w, u).
We first note a symmetry in the transition graph. If we start out with a state
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ξ = (w, u) ∈ Λ+ and compare it with the reflected state Rξ = (w,−u) ∈ Λ−
along the axis Λ0, the odds of reaching S1 and S2 are reversed and the odds of
reaching S0 remains the same.

We denote by τ the first hitting time of the axis Λ0. We then note that the
odds of getting absorbed in state S1 can be written as:

q1(ξ) = Pξ(ξ(∞) = S1) = Pξ(ξ(∞) = S1, τ =∞) + Pξ(ξ(∞) = S1, τ <∞) (5)

For the reflected state Rξ to reach S1, it must pass through Λ0, so τ < ∞ for
all of

q2(ξ) = Pξ(ξ(∞) = S2) = PRξ(ξ(∞) = S1, τ <∞) (6)

Reflection principle. We note that the probability for τ to be finite is the same
for ξ and Rξ because of the symmetry of the transition graph along Λ0. The
probability distribution along the axis Λ0 is the same because of this symmetry.
And thus if we know that we have reached this axis Λ0, we now know that the
probability distribution of hitting the sinks is the same for ξ and Rξ, we now
have the following:

PRξ(ξ(∞) = S1, τ <∞) = Pξ(ξ(∞) = S1, τ <∞) (7)

This gives us the final relationship by combining equation 5, 6 and 7:

q1(ξ)− q2(ξ) = Pξ(ξ(∞) = S1, τ =∞)

The right hand side turns out to be relatively easy to solve. We examine the
same Markov Process, but this time with an absorbing border Λ0. If any of the
absorbing states on the line Λ0 is hit, then we have for the corresponding normal
Markov Process that either τ < ∞ or ξ(∞) = S1. Solving the probability for
the particle to end up in the right reservoir is the same as calculating the right
hand side of the above expression.
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Figure 7: Transition graph for the discrete-time distance and sum process of
the two particle inclusion process with N=3, with Λ0 absorbing. Note that at
each node there is an equal chance of w increasing or decreasing.

The question now reduces to whether ξ(∞) ∈ Λ0 or ξ(∞) = S1 = (w,N + 1).
We can now see that at every state, there is a probability of a 1

2 for u to increase
by 1 and a probability of 1

2 for u to decrease by 1, it does not depend on w. We
only need to know when u = 0 or u = N + 1, so this reduces the problem to
solving a 1 dimensional random walk on N + 2 nodes (including the absorbing
boundaries). The coordinates perform an autonomous discrete-time symmetric
random walk on {0, ..., N+1} with 0 and N+1 being absorbing states. We know
for such a simple system that the probability of reaching the right boundary is
equal to distance from the left boundary divided by the amount of nodes or u

N+1 .
With u, defined by the starting configuration ξ = (w, u). The symmetry of the
problem shows the same argument holds under the assumption that ξ ∈ Λ−, so:

Pξ(ξ(∞) = S1, τ <∞) =
u

N + 1

This gives us the following expression:

q1(w, u)− q2(w, u) =
u

N + 1
(8)

6.3 Probability of q0,q1 and q2

Finally we would like to derive an explicit expression for q0, such that we have
3 restrictions, namely q0 + q1 + q2 = 1 and equation (8) with which we can fully
determine the other two probabilities q1 and q2.
We have the following result:
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Theorem 3. A particle system based on the reference generator with absorbing
boundaries at {0, N + 1} as defined in section 5 with 2 particles in VN in the
starting configuration has the following property:

q0(w, u) =
γNP

θ=∞(w, u) + P IRW (w, u)

γN + 1

with

γN =
θ

N + 1

P θ=∞(w, u) =
w + 1w=0

N + 1

P IRW (w, u) =
w2 − u2 + (N + 1)2

2(N + 1)2

The same probability can also be expressed in positional coordinates.

P θ=∞(x, y) =
|x− y|+ 1x=y

N + 1

P IRW (x, y) = (
x

N + 1
)(1− y

N + 1
) + (

y

N + 1
)(1− x

N + 1
)

Proof. The proof of this theorem can be found in section A.1.

When θ = 0 the expression for q0(w, u) reduces to two independent random
walkers. This has the following probability:

P IRW (w, u) =
w2 − u2 + (N + 1)2

2(N + 1)2

P IRW (x, y) = (
x

N + 1
)(1− y

N + 1
) + (

y

N + 1
)(1− x

N + 1
)

We see that as θ →∞ that q0 → P θ=∞(w, u) = w+1w=0

N+1 for internal points. It
can be easily verified that this should be true.
When θ →∞ if we reach a state on w = 0 or w = 1 we will automatically end
up in (w = 1, u = N) or (w = 1, u = 1). Which has a probability of 1

N+1 of
reaching S0 and otherwise if we don’t reach w = 0 or w = 1 we have a random
walk on w = 1, 2, ..., N + 1 where N+1 and 1 are absorbing boundaries. As such
the final probability of reaching S0 becomes:
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P θ=∞(w, u) =
w − 1

N
+
N − w + 1

N

1

N + 1

=
(w − 1)(N + 1)

N(N + 1)
+
N(N − w + 1)

N(N + 1)

=
w

N + 1

and as such

P θ=∞(w, u) =
w + 1w=0

N + 1

This allows us to rewrite q0 as a linear combination of the two solutions for
θ =∞ and θ = 0 with γN = θ

N+1

q0(w, u) =
γNP

θ=∞(w, u) + P IRW (w, u)

γN + 1

Now if one of the particles starts in one of the reservoirs, or expressed differently,
if it holds for our (w, u) ∈ ΛN that w = N + 1 − |u|, the system becomes an
independent random walk again so we finally get the following formula for all
(w, u) ∈ ΛN :

q0(w, u) =
γNP

θ=∞(w, u)1w 6=N+1−|u| + P IRW (w, u)

γN1w 6=N+1−|u| + 1

=

(w+1w=0)
N+1 γ1w 6=N+1−|u| +

w2−u2+(N+1)2

2(N+1)2

γ1w 6=N+1−|u| + 1

Equivalently we can keep the definition original definition of q0(w, u) and rewrite
P θ=∞(w, u) to take into account the absorbing states at w = 0.

P θ=∞(w, u) =
w + 1w=0 and u 6=N+1 and u 6=−(N+1)

N + 1

Now that we have defined q0(w, u) for all (w, u) ∈ ΛN , we can do the same
for q1(w, u) and q2(w, u).

Corollary 3.1. A particle system based on the reference generator with ab-
sorbing boundaries at {0, N + 1} as defined in section 5 with 2 particles in the
starting configuration has the following property:

q1(w, u) =
1

2
+

u

2(N + 1)
− q0(w, u)

2

q2(w, u) =
1

2
− u

2(N + 1)
− q0(w, u)

2
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And thus in the positional coordinates they can be expressed as:

q1(x, y) =
x+ y

2(N + 1)
− q0(x, y)

2

q2(x, y) = 1− x+ y

2(N + 1)
− q0(x, y)

2

Proof. Adding q1 − q2 = u
N+1 and q0 + q1 + q2 = 1 we get:

q0 + 2q1 = 1 +
u

N + 1

rearranging these terms we get:

q1 =
1

2
+

u

2(N + 1)
− q0

2

Subtracting q1 − q2 = u
N+1 from q0 + q1 + q2 = 1 we get:

q0 + 2q1 = 1− u

N + 1

and thus after reordering these terms we get:

q2 =
1

2
− u

2(N + 1)
− q0

2

This gives us all of the probabilities for the sink states q0, q1 and q2.
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7 Stationary profile of particle systems out of
equilibrium

In order to describe the stationary measures of the reference particle systems
out of equilibrium from equation 4 we will first examine the expectation and
covariance/variance of the individual sites ηi, with i ∈ VN .
In order to calculate Eµ[ηx] and Covµ[ηx, ηy] for all x, y ∈ {1, 2, 3, ...N}, where
µ is a stationary distribution, we will make use of the duality property from
section 5.
We are interested in the stationary distributions µ of the processes. Because
the particle process is irreducible, our limiting distribution is the same as a the
stationary distribution. We can therefore say that for any initial configuration
η the following holds:

Eµ[f(η)] = lim
t→∞

Eη[f(η(t))]

We first observe that for a process ξ(t), with |ξ| particles and absorbing bound-
aries at {0, N + 1} after an infinite amount of time, all of the particles will have
to be absorbed by one of the two boundaries. This causes the duality function
to reduce to a simpler expression:

Eµ[Dθ(η, ξ)] = lim
t→∞

Eξ[Dθ(η, ξ(t))]

=

|ξ|∑
i=0

(
α|θ + 1θ=0|

)i(
δ|θ + 1θ=0|

)|ξ|−i
P (ξ0(∞) = i|ξ(0) = ξ)

=(δ|θ + 1θ=0|)|ξ|
|ξ|∑
i=0

(α
δ

)i
P (ξ0(∞) = i|ξ(0) = ξ)

The term P (ξ0(∞) = i|ξ(0) = ξ) corresponds to the probability that i parti-
cles will end up in the left sink after an infinite amount of time with initial
configuration ξ. We will repeatedly make use of this in the following sections.

7.1 Expectation

In order to calculate the expectation of the individual site ηi under the stationary
measure µ we first observe that if we take ξ = δx (a single particle system), with
x ∈ {1, 2, 3, ...N} then we have the following:

ηx =
1

|θ + 1θ=0|
Dθ(η, δx)

So in order to calculate Eµ[ηx] we get:
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Eµ[ηx] =
1

|θ + 1θ=0|
Eµ[Dθ(η, δx)]

=
1

|θ + 1θ=0|
lim
t→∞

Eη[Dθ(η(t), δx)]

Duality
=

1

|θ + 1θ=0|
lim
t→∞

Eδx [Dθ(η, δX(t))]

=
1

|θ + 1θ=0|
δ|θ + 1θ=0|

(
P (ξ0(∞) = 0|ξ(0) = δx) +

α

δ
P (ξ0(∞) = 1|ξ(0) = δx)

)
=δ

x

N + 1
+ α(1− x

N + 1
)

=α+ (δ − α)
x

N + 1

Where we have that δX(t) is a symmetric random walk on VN with absorbing
boundaries at {0, N + 1}. The expectation of the stationary profile is thus a
linear equation, which is equal to α at the left boundary and δ at the right
boundary.
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Figure 8: Visualization of the stationary distribution of Independent Random
Walkers with N = 20, α = 0 and δ = 15 through simulation. Every blue dot
represents a particle that is located on a site in VN with the x-axis representing
the position of this site. The yellow line is the analytically calculated expectation
for the stationary profile. The red line is an approximation for the expected
amount of particles by averaging over the last 8000 timesteps. The blue line is
an approximation for the expected amount of particles by averaging over the last
100 timesteps. It can be seen that the long term approximation very accurately
covers the stationary profile.

7.2 Covariance

In order to calculate the Cov[ηx, ηy], because Cov[ηx, ηy] = E[ηxηy]−E[ηx]E[ηy]
we need to calculate the second moments of the sites as well. We start with the
second moments of the internal points were we take ξ = δx + δy, with x 6= y:

ηxηy =
1

(θ + 1θ=0)2
Dθ(η, δx + δy)

Then we perform the calculations in a similar manner:
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Eµ[ηxηy] =
1

(θ + 1θ=0)2
Eµ[Dθ(η, δx + δy)]

=
1

(θ + 1θ=0)2
lim
t→∞

Eη[Dθ(η(t), δx + δy)]

Duality
=

1

(θ + 1θ=0)2
lim
t→∞

Eδx+δy [Dθ(η, δX(t) + δY (t))]

=
1

(θ + 1θ=0)2
((θ + 1θ=0)δ)2

[
P (ξ0(∞) = 0|ξ(0) = δx + δy)

+
α

δ
P (ξ0(∞) = 1|ξ(0) = δx + δy)

+
α2

δ2
P (ξ0(∞) = 2|ξ(0) = δx + δy)

]
=δ2q1 + αδq0 + α2q2

Corollary 3.1
= δ2(

x+ y

2(N + 1)
− q0

2
) + αδq0 + α2(1− x+ y

2(N + 1)
− q0

2
)

=α2 +
(δ2 − α2)

2

x+ y

N + 1
+ (αδ − α2 + δ2

2
)q0

Theorem 3
= α2 +

(δ2 − α2)

2

x+ y

N + 1
− (δ − α)2

2

γN
|x−y|
N+1 + x+y

N+1 + −2xy
(N+1)2

γN + 1

Where we have that δX(t) + δY (t) is a symmetric random walk on VN which
interact when they are close to each other, with absorbing boundaries at {0, N+
1} and starting configuration δx + δy.
And because Eµ[ηx]Eµ[ηy] = (α+ (δ − α) x

N+1 )(α+ (δ − α) y
N+1 ) = α2 + α(δ −

α) x+y
N+1 + (δ−α)2

2
2xy

(N+1)2 , we can now calculate the covariance of the internal
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points for x 6= y.

Covµ[ηx, ηy]

= Eµ[ηxηy]− Eµ[ηx]Eµ[ηy]

= α2 +
(δ2 − α2)

2

x+ y

N + 1
− (δ − α)2

2

γN
|x−y|
N+1 + x+y

N+1 + −2xy
(N+1)2

γN + 1

− α2 − α(δ − α)
x+ y

N + 1
− (δ − α)2

2

2xy

(N + 1)2

= (
(δ2 − α2)

2
+ α2 − αδ) x+ y

N + 1
− (δ − α)2

2
(

2xy

(N + 1)2
+
γN
|x−y|
N+1 + x+y

N+1 −
2xy

(N+1)2

γN + 1
)

=
(δ − α)2

2
(
x+ y

N + 1
− 2xy

(N + 1)2
)− (δ − α)2

2

γN
|x−y|
N+1 + x+y

N+1 −
2xy

(N+1)2

γN + 1
)

=
(δ − α)2

2
(
x+ y

N + 1
− 2xy

(N + 1)2
−
γN
|x−y|
N+1 + x+y

N+1 −
2xy

(N+1)2

γN + 1
)

=
γN

γN + 1

(δ − α)2

2
(
x+ y

N + 1
− 2xy

(N + 1)2
− |x− y|
N + 1

)

=
γN

γN + 1

(δ − α)2

2
(P IRW (x, y)− P θ=∞(x, y))

Note that if θ = 0 then the covariances are zero as well. Also note that these
terms are bounded for all θ.

7.3 Variance

Lastly we need to calculate the covariance for the internal points x = y which
is the same as the variance of a single point x. We begin with calculating the
second moment of a single point, for this we take ξ = 2δx. We then have

η2
x = ηx +

θ + 1

(θ + 1θ=0)2
Dθ(η, 2δx)
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Eµ[η2
x]

=Eµ[ηx] +
θ + 1

(θ + 1θ=0)2
Eµ[Dθ(η, 2δx)]

=Eµ[ηx] +
θ + 1

(θ + 1θ=0)2
lim
t→∞

Eη[Dθ(η(t), 2δx)]

=Eµ[ηx] +
θ + 1

(θ + 1θ=0)2
lim
t→∞

E2δx [Dθ(η, δX(t) + δY (t))]

=Eµ[ηx] +
θ + 1

(θ + 1θ=0)2
((θ + 1θ=0)δ)2

[
P (ξ0(∞) = 0|ξ(0) = 2δx)

+
α

δ
P (ξ0(∞) = 1|ξ(0) = 2δx)

+
α2

δ2
P (ξ0(∞) = 2|ξ(0) = 2δx)

]
=Eµ[ηx] + (1 + θ)(δ2q1 + αδq0 + α2q2)

Corollary 3.1
= Eµ[ηx] + (1 + θ)(δ2(

2x

2(N + 1)
− q0

2
) + αδq0 + α2(1− 2x

2(N + 1)
− q0

2
))

=Eµ[ηx] + (1 + θ)(α2 +
(δ2 − α2)

2

2x

N + 1
+ (αδ − α2 + δ2

2
)q0)

Theorem 3
= Eµ[ηx] + (1 + θ)(α2 +

(δ2 − α2)

2

2x

N + 1
− (δ − α)2

2

γN
1

N+1 + 2x
N+1 −

2x2

(N+1)2

γN + 1
)

Where we have that δX(t) + δY (t) is a symmetric random walk on VN which
interact when they are close to each other, with absorbing boundaries at {0, N+
1} and starting configuration 2δx.
And because Eµ[ηx]2 = (α + (δ − α) x

N+1 )2, we can now calculate the variance
of a single point x.

Varµ[ηx] = Eµ[η2
x]− Eµ[ηx]2 =

Eµ[ηx]− (α+ (δ − α)
x

N + 1
)2+

(1 + θ)(α2 +
(δ2 − α2)

2

2x

N + 1
− (δ − α)2

2

γN
1

N+1 + 2x
N+1 −

2x2

(N+1)2

γN + 1
) =

γN
γN + 1

(δ − α)2

2
(P IRW (x, y)− P θ=∞(x, y))

+Eµ[ηx] + θ(α2 +
(δ2 − α2)

2

2x

N + 1
− (δ − α)2

2

γN
1

N+1 + 2x
N+1 −

2x2

(N+1)2

γN + 1
)

We notice in the final two lines of the above equations that the first term is
the same term as the one we discovered for the covariance with x 6= y. Then
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we have a bias term Eµ[ηx] and finally we have a term that is dependent on θ.
We now have that for θ = 0 that Varµ(ηx) = Eµ[ηx] and for θ >> 0 we have
that Varµ(ηx) >> 0 as the variance tends to infinity due to the term that is
dependent on θ.

Figure 9: Visualization of the stationary distribution of the Symmetric Inclu-
sion Process with N = 20, θ = 2, α = 5 and δ = 15 through simulation. Every
blue dot represents a particle that is located on a site in VN with the x-axis rep-
resenting the position of this site. The yellow line is the analytically calculated
expectation for the stationary profile. The red line is an approximation for the
expected amount of particles by averaging over the last 8000 timesteps. The
blue line is an approximation for the expected amount of particles by averaging
over the last 100 timesteps. It can be seen that the long term approximation
insufficiently approximates the the stationary profile due to the high variance.

7.4 Density field

We would like to examine the stationary behavior of the particle systems on a
real numbered interval instead of just an integer lattice. By taking the limit in
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space (N → ∞) we would like to get the probability density function p(x) of
the particles. In order to examine the probability density function p(x), we will
look at the way Schwartz functions Φ : R→ R (with Φ ∈ S(R) = {f ∈ C∞(R) :

||f ||α,β < ∞ ∀α, β ∈ N} , ||f ||α,β = supx |xα dβ

dxβ
f(x)|) behave. In order to

extract information about the density function. We will define the density field
as:

XN (Φ, η(t)) =
1

N

N∑
x=1

Φ(
x

N
)ηx(t)

And we will refer to XN (Φ, η(t)) under the limiting distribution µ as XN (Φ, η).
In the following theorem we provide a result concerning the expectation and

variance of the density field. We prove that there are three different behaviour
depending on the limit of γN as N →∞.

Theorem 4 (Variance of the stationary density field for different scaling regimes).
For particle systems with generators of the form as in equation 4 we have, for
the expectation of the density field:

lim
N→∞

Eµ[XN (Φ, η)] =

∫ 1

0

Φ(x)[α+ (δ − α)x] dx

Whereas for the variance we have three different scaling regimes:

The deterministic regime: limN→∞ γN = 0. In this regime we have that

lim
N→∞

Varµ[XN (Φ, η)] = 0 (9)

and then

XN (Φ, η)→
∫ 1

0

Φ(x)[α+ (δ − α)x] dx in probability as N →∞ (10)

The sticky regime: γ := limN→∞ γN ∈ (0,∞). In this regime we have that

lim
N→∞

Varµ[XN (Φ, η)] =
γ

γ + 1

∫ 1

0

∫ 1

0

Φ(x) Φ(y)
(δ − α)2

2
(x+ y − 2xy − |x− y|) dx dy+

γ

∫ 1

0

Φ(x)2 [(α2 + (δ2 − α2)x− (δ − α)2x− x2

γ + 1
)] dx

The absorbing regime: γ = limN→∞ γN =∞. In this regime we have that

lim
N→∞

Varµ[XN (Φ, η)] = +∞

.

Proof. We have
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Eµ[XN (Φ, η)] =
1

N

N∑
x=1

Φ(
x

N
)Eµ[ηx]

Varµ[XN (Φ, η)] =Eµ[(XN (Φ, η)− Eµ[XN (Φ, η)])2]

=Eµ[XN (Φ, η)2]− Eµ[XN (Φ, η)]2

=
1

N2

N∑
y=1

N∑
x=1

Φ(
y

N
)Φ(

x

N
)Eµ[ηxηy]− 1

N2

N∑
y=1

N∑
x=1

Φ(
y

N
)Φ(

x

N
)Eµ[ηx]Eµ[ηy]

=
1

N2

N∑
y=1

N∑
x=1

Φ(
y

N
)Φ(

x

N
)Covµ[ηx, ηy]

We will first examine the expectation value using the expectations from
section 7.1.

Eµ[X (Φ, η)] = lim
N→∞

Eµ[XN (Φ, η)]

= lim
N→∞

Eµ[
1

N

N∑
x=1

Φ(
x

N
)ηx]

= lim
N→∞

1

N

N∑
x=1

Φ(
x

N
)Eµ[ηx]

= lim
N→∞

1

N

N∑
x=1

Φ(
x

N
)[α+ (δ − α)

x

N + 1
]

=

∫ 1

0

Φ(x)[α+ (δ − α)x] dx

We then find the density function p(x) = α+ (δ − α)x.
Next we will look at the variance of X (Φ, η) by splitting up the covariances for
the diagonal and the rest of the sum and using the results from section 7.2 and
section 7.3.

Varµ[X (Φ, η)] = lim
N→∞

Varµ[XN (Φ, η)]

= lim
N→∞

Varµ[
1

N

N∑
x=1

Φ(
x

N
)ηx] =

= lim
N→∞

1

N2

N∑
y=1

N∑
x=1

Φ(
y

N
)Φ(

x

N
)Covµ[ηx, ηy] =

= lim
N→∞

1

N2

N∑
y=1

N∑
x=1
x 6=y

Φ(
y

N
)Φ(

x

N
)Covµ[ηx, ηy] + lim

N→∞

1

N2

N∑
x=1

Φ(
x

N
)2Varµ[ηx]
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We will have to calculate two terms. We start with limN→∞
1
N2

∑N
x=1 Φ( xN )2Varµ[ηx].

lim
N→∞

1

N2

N∑
x=1

Φ(
x

N
)2Varµ[ηx]

= lim
N→∞

1

N2

N∑
x=1

Φ(
x

N
)2
(
Eµ[ηx] +

γN
γN + 1

(δ − α)2

2
(P IRW (x, y)− P θ=∞(x, y))

)
+ lim
N→∞

θ

N2

N∑
x=1

Φ(
x

N
)2(α2 +

(δ2 − α2)

2

2x

N + 1
− (δ − α)2

2

γN
1

N+1 + 2x
N+1 −

2x2

(N+1)2

γN + 1
)

= lim
N→∞

γN (N + 1)

N2

N∑
x=1

Φ(
x

N
)2(α2 +

(δ2 − α2)

2

2x

N + 1
− (δ − α)2

2

γN
1

N+1 + 2x
N+1 −

2x2

(N+1)2

γN + 1
)

=γ

∫ 1

0

Φ(x)2 [(α2 + (δ2 − α2)x− (δ − α)2x− x2

γ + 1
)] dx

Next we examine limN→∞
1
N2

∑N
y=1

∑N
x=1
x6=y

Φ( yN )Φ( xN )Covµ[ηx, ηy].

lim
N→∞

1

N2

N∑
y=1

N∑
x=1
x6=y

Φ(
y

N
)Φ(

x

N
)Covµ[ηx, ηy]

= lim
N→∞

1

N2

N∑
y=1

N∑
x=1
x6=y

Φ(
y

N
)Φ(

x

N
)(P IRW (x, y)− P θ=∞(x, y))

= lim
N→∞

1

N2

N∑
y=1

N∑
x=1
x6=y

Φ(
y

N
)Φ(

x

N
)

γN
γN + 1

(δ − α)2

2
(
x+ y

N + 1
− 2xy

(N + 1)2
− |x− y|
N + 1

)

=
γ

γ + 1

∫ 1

0

∫ 1

0

Φ(x) Φ(y)
(δ − α)2

2
(x+ y − 2xy − |x− y|) dx dy

Now we have a full expression for the variance of X (Φ, η). Then the vari-
ance is related to the limit γ = limN→∞

θ
N+1 , where we make θ dependent on

N . Depending on the value of this limit we get different behaviours for the
stationary density field X (Φ, η). If γ =∞ it is clear that

lim
N→∞

Varµ[XN (Φ, η)] = +∞.

If γ ∈ [0,∞) then

lim
N→∞

Varµ[XN (Φ, η)] =
γ

γ + 1

∫ 1

0

∫ 1

0

Φ(x) Φ(y)
(δ − α)2

2
(x+ y − 2xy − |x− y|) dx dy+

γ

∫ 1

0

Φ(x)2 [(α2 + (δ2 − α2)x− (δ − α)2x− x2

γ + 1
)] dx
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We notice that when the particle system is in equilibrium (δ = α), then the

variance reduces to Varµ[X (Φ, η)] = γ
∫ 1

0
Φ(x)2 α2 dx.

In particular, if γ = 0 then, using Chebychev’s we can say more about how
the density field varies from its expected value:

P (|XN (Φ, η)− Eµ[XN (Φ, η)]| > ε) ≤ 1

ε2
Varµ[XN (Φ, η)]

where
lim
N→∞

Varµ[XN (Φ, η)] = 0 (11)

then

lim
N→∞

P (|XN (Φ, η)− Eµ[XN (Φ, η)]| > ε) = 0 (12)

from which we have the convergence in probability in the deterministic regime.

We know from [11] that in the sticky regime, the particles will form piles
which distance processes behave like one-sided sticky Brownian motion. We
expect a similar thing to be happening for the sticky regime of the out of equi-
librium particle systems. Indeed this is consistent with our result from which
emerges a positive finite variance of the density field in the sticky regime.
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8 The dynamics of the particle system

After having examined the stationary distribution in the previous section, we
would like to examine the dynamics of the particle system and see if the results
are consistent with what we have found. Before we can do that, we will first
define introduce some background information about Brownian motion.

8.1 Brownian motion and random walkers

A one-dimensional random walker is a Markov Process on a (possibly infinite)
discrete lattice. It describes a point that starts somewhere on the lattice and
randomly jumps to on of its neighbouring points. We would like to examine
the limiting behaviour of the random walker {Xt, t ≥ 0} on a finite lattice
VN = {0, ..., N + 1} with absorbing boundaries and symmetric jump rates as
we take N → ∞. In order to do this, we try to examine the generators. The
generator for such a simple random walker is the following:

[LNR f ](x) = {1

2
f(x+ 1)− f(x) +

1

2
f(x− 1)}1x∈VN

We rescale the random process such that the values stay in a bounded interval
for all N ≥ 1: Xt ∈ {0, 1

N , ..., 1,
N+1
N }. Furthermore, we will be making use of

the critical time-scaling of the random walker, this means that we multiply the
time variable by N2. So we will be examining the process BN (t) = 1

NX(tN2).
Which has the following generator:

[LNf ](x) = N2{1

2
f(x+

1

N
)− f(x) +

1

2
f(x− 1

N
)}1x∈{ 1

N ,...,1}

We will also define the following limiting time-evolution on f:

fNt (xN ) := E[f(
1

N
X(N2t) | 1

N
X(0) = xN ]

ft(x) := lim
N→∞

fNt (xN )

If we then take N →∞ we get

[LBf ](x) := lim
N→∞

[LNf ](x) =
1

2
∆f(x) for x ∈ [0, 1]

And because [LNf ](0) = [LNf ](N+1
N ) = 0 for all N, we also have [LBf ](0) =

[LBf ](1) = 0 and thus ∆ft(0) = ∆ft(1) = 0. Because the generators converge,
this also means that the semigroup converges [4]. And this LB is the infinitesimal
generator of the Brownian motion in [0,1] with absorbing boundary conditions.
A detailed proof of this can be found in [9]. Indeed if we denote by B(t) such
Brownian motion, then its semigroup ft(x) := Ex[B(t)] satisfies the following
two-boundary heat equation problem:

dft(x)

dt
= [LBft](x) =

1

2
∆ft(x) for x ∈ [0, 1] (13)

∆ft(0) = ∆ft(1) = 0 (14)

f0(x) = f(x) (15)

46



8.2 The expectation of the sites

We now wish to examine the time-dependent density field when the system
is initialized from a probability measures νN on the configuration space Ω.
We will again make use of the duality property. We first note that for x ∈
{0, 1, 2...N,N + 1} we have:

1

|θ + 1θ=0|
Dθ(η, δx) =

 α x = 0
ηx x ∈ {1, 2...N}
δ x = N + 1


Because η0 and ηN+1 are undefined, we can define them with η0 := δ and
ηN+1 := γ. By doing this, we get the simplified expression.

1

|θ + 1θ=0|
Dθ(η, δx) = ηx

We can now analyze all of the processes at the same time. We will make use of
the duality property. Let X(t) be the position of a random walker in {0, ..., N +
1} with absorbing boundaries at {0, N + 1}. We denote by Ex with respect
to X(t) with X(0) = x. We define τ as the absorption time of X(t) into the
absorbing boundaries. We now have:

Eη[ηx(t)] =
1

|θ + 1θ=0|
Eη[Dθ(η(t), δx)]

=
1

|θ + 1θ=0|
Ex[Dθ(η, δX(t))]

= Ex[ηX(t)]

= Ex[ηX(t), 1t<τ ] + Ex[ηX(t), 1t≥τ,X(τ)=0] + Ex[ηX(t), 1t≥τ,X(τ)=N+1]

= Ex[ηX(t), 1t<τ ] + αPx(X(τ) = 0, t ≥ τ) + δPx(X(τ) = N + 1, t ≥ τ)

We assume the expectation of the number of particles at each site with respect
to νN to be a slowly varying function:

ρ(
x

N
) := EνN [ηx]

Lastly we will perform critical time-scaling for the random walker X(t) starting
at x as N →∞. Let B(t) be the Brownian motion defined in section 8.1. This
means that we will scale time by a factor N2, and space by a factor N−1. As
N →∞ this causes the limit object to become a Brownian motion process B(t)
with absorbing boundaries at 0 and 1. We then take Eη[ηx(t)] and then average
out the initial configuration η with respect to the initial probability measure
νN .

EνN [ηx(t)] = Ex[ρ(
X(t)

N
), 1t<τ ]

+ αPx(X(τ) = 0, t ≥ τ) + δPx(X(τ) = N + 1, t ≥ τ)
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We now examine the density field of the particle system starting from a proba-
bility measure νN as described above.

EνN [X (φ, η(N2t))] =
1

N

N∑
i=1

Φ(
x

N
)EνN [ηx(N2t)]

=
1

N

N∑
x=1

Φ(
x

N
)Ex[ρ(

X(N2t)

N
)]

In order to examine what happens with the limit as N → ∞, we will have to

look at the limit of Ex[ρ(X(N2t)
N )].

Then we define τ ′ to be the absorption time of the Brownian motion B(t) into
its boundaries.

ρ(x, t) := lim
N→∞

Ex[ρ(
X(N2t)

N
)] = Ex[ρ(B(t)), 1t<τ ′ ]

+ αPx(B(τ ′) = 0, t ≥ τ ′) + δPx(B(τ ′) = 1, t ≥ τ ′)

ρ(x, t) satisfies the following two-boundary heat equation problem:

∂ρ(x, t)

∂t
=

1

2
∆ρ(x, t)

ρ(0, t) =α

ρ(1, t) = δ

ρ(x, 0) = ρ(x)

A detailed proof of this can be found in [9].
The unique stationary solution to these equations is α + (δ − α)x. This is
consistent with the scaling limit of the stationary density field that we found in
section 7.1.
Now we take the limit N →∞ and we get the following:

lim
N→∞

EνN [X (φ, η(N2t))]

= lim
N→∞

1

N

N∑
x=1

Φ(
x

N
)Ex[ρ(

X(N2t)

N
)]

=

∫ 1

0

Φ(x)ρ(x, t) dx

This gives a lot of information as to how the field density function evolves over
time as the the heat equation has been studied thoroughly.
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9 Conclusion

Within this thesis we examined the behaviour of the stationary distribution for
the out of equilibrium Symmetric Inclusion Process (SIP), Symmetric Exclusion
Process (SEP) and Independent Random Walkers (IRW).
We achieved this by first examining the generators of the reference processes
with reservoirs and linking these systems with the dual processes with absorbing
boundaries.
By examining the behaviour of a two particle system we came up with the
following theorems regarding the absorption probabilities for the particles.

Theorem 3. A particle system based on the reference generator with absorbing
boundaries at {0, N + 1} as defined in section 5 with 2 particles in VN in the
starting configuration has the following property:

q0(w, u) =
γNP

θ=∞(w, u) + P IRW (w, u)

γN + 1

with

γN =
θ

N + 1

P θ=∞(w, u) =
w + 1w=0

N + 1

P IRW (w, u) =
w2 − u2 + (N + 1)2

2(N + 1)2

The same probability can also be expressed in positional coordinates.

P θ=∞(x, y) =
|x− y|+ 1x=y

N + 1

P IRW (x, y) = (
x

N + 1
)(1− y

N + 1
) + (

y

N + 1
)(1− x

N + 1
)

Corollary 3.1. A particle system based on the reference generator with ab-
sorbing boundaries at {0, N + 1} as defined in section 5 with 2 particles in the
starting configuration has the following property:

q1(w, u) =
1

2
+

u

2(N + 1)
− q0(w, u)

2

q2(w, u) =
1

2
− u

2(N + 1)
− q0(w, u)

2

And thus in the positional coordinates they can be expressed as:
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q1(x, y) =
x+ y

2(N + 1)
− q0(x, y)

2

q2(x, y) = 1− x+ y

2(N + 1)
− q0(x, y)

2

We were able use these theorems together with duality to describe the first
and second moments of the stationary distribution of complex reference pro-
cesses out of equilibrium.
We described the behaviour of the out of equilibrium stationary density fields
and their variance. We noted three different scaling regimes depending on
γN = θ

N+1 , relating the strength of the interaction θ to the amount of nodes on
the lattice VN .
We noticed that for the regimes where limN→∞ γN = 0 the variance tends to
0. This means that the fluctuations around the macroscopic profile (that is the
linear function connecting the reservoirs densities) are small and tend to 0 as
N →∞.
We noticed for the sticky regimes limN→∞ γN ∈ (0,∞) that the stationary
density field would get a finite non-zero variance. We know from [11] that the
stationary regimes for particle systems on an infinite lattice become ‘piles’ which
distance processes perform one sided sticky Brownian motion with non-zero lo-
cal time. By examining the simulations, we expect the same thing to happen
with the particle systems with reservoirs. This picture would be consistent with
the emergence of a positive finite macroscopic variance.
Finally we have the absorbing regime limN→∞ γN = ∞. For this regime we
have infinite variance for the stationary density field. We know from [11] that
in the limiting distribution on the infinite lattice there will be similar ‘piles’ as
with the sticky regime, however the distance processes will perform absorbing
Brownian motion, meaning that once their distance become 0, their distance
will remain 0 forever.
Finally we also examined the dynamics of the particle systems and we discovered
how the expectation of the density field would converge to the heat equation
with Dirichlet boundary conditions, which is consistent with our findings about
the linear profile of the stationary distribution.
There is still further research that needs to be done towards the distribution of
the stationary density field for out of equilibrium particle systems. Specifically,
by finding relationships between the absorption probabilities for the dual pro-
cess as was done in [5], will allow us to get the all of the higher moments in the
particle system as well. Ultimately allowing us to get the full distribution of the
stationary density field.
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A Appendix

A.1 Derivation of the exact formula for q0

Proof. In order to prove this formula for q0 we make use of the Markov property.
We denote with abuse of notation S0 as the event that (wn, un) is at some point
equal to the sink S0 (which means ξ = (w, u) = (N + 1, 0)). We denote with Ω
the state space of the particle system.

q0(ξ) = Pξ(S0)

= P (S0|ξ0 = ξ)

=
∑
ξ′∈Ω

P (S0|ξ1 = ξ′, ξ0 = ξ)P (ξ1 = ξ′|ξ0 = ξ)

=
∑
ξ′∈Ω

P (S0|ξ1 = ξ′)P (ξ1 = ξ′|ξ0 = ξ)

=
∑
ξ′∈Ω

Pξ′(S0)P (ξ, ξ′)

=
∑
ξ′∈Ω

q0(ξ′)P (ξ, ξ′)

Thus

q0(ξ) =
∑
ξ′∈Ω

q0(ξ′)P (ξ, ξ′)

This formula must hold for all N and for all states ξ = (w, u) ∈ ΛN , as long as
the two particles are on internal nodes, which means that w 6= N + 1− |u|. We
know all of the values of P (ξ, ξ′) from section 6.1.
We start with the case w = 0. In this case we have two states we can transition to
with non-zero probability. One or both of these states can be on w = N+1−|u|.
We first check the case for when both of them are not on w = N + 1− |u|.∑
ξ′∈Ω

q0(ξ′)P ((0, u), ξ′) =
1

2
q0(1, u+ 1) +

1

2
q0(1, u− 1)

=
γN

1
N+1 + 1−(u+1)2+(N+1)2

2(N+1)2

2(γN + 1)
+
γN

1
N+1 + 1−(u−1)2+(N+1)2

2(N+1)2

2(γN + 1)

=
γN

1
N+1 +

1− (u+1)2+(u−1)2

2 +(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1 + u2+(N+1)2

2(N+1)2

γN + 1

= q0(0, u)
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We then check the case with w = 0 when only the term q0(1, u + 1) is on
w = N + 1− |u|. Which means u = N − 1∑
ξ′∈Ω

q0(ξ′)P ((0, N − 1), ξ′) =
1

2
q0(1, N) +

1

2
q0(1, N − 2)

=
1

2

1

N + 1
+

1

2

γN
1

N+1 + 1−(N−2)2+(N+1)2

2(N+1)2

γN + 1

=
1

2

γN
1

N+1 + 2N+2
2(N+1)2

γN + 1
+

1

2

γN
1

N+1 + 1−(N−2)2+(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1 +

2N+3−(N−2)2+(N+1)2

2

2(N+1)2

γN + 1

=
γN

1
N+1 + 4N

2(N+1)2

γN + 1

=
γN

1
N+1 + −(N−1)+(N+1)2

2(N+1)2

γN + 1
= q0(0, N − 1)

We then check the case w = 0 when both q0(1, u + 1) and q0(1, u − 1) are on
w = N + 1− |u|. This means N = 1 and u = 0.∑

ξ′∈Ω

q0(ξ′)P ((0, 0), ξ′) =
1

2
q0(1, 1) +

1

2
q0(1,−1)

=
1

2

1

N + 1
+

1

2

1

N + 1

=
1

N + 1
= q0(0, 0)

We then move on to the case w = 1 with all the adjacent states being internal
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points as well.∑
ξ′∈Ω

q0(ξ′)P ((1, u), ξ′)

=
1 + θ

4 + 2θ
q0(0, u+ 1) +

1 + θ

4 + 2θ
q0(0, u− 1) +

1

4 + 2θ
q0(2, u+ 1) +

1

4 + 2θ
q0(2, u− 1)

=
1 + θ

4 + 2θ

γN
1

N+1 + −(u+1)2+(N+1)2

2(N+1)2

γN + 1
+

1 + θ

4 + 2θ

γN
1

N+1 + −(u−1)2+(N+1)2

2(N+1)2

γN + 1

+
1

4 + 2θ

γN
2

N+1 + 4−(u+1)2+(N+1)2

2(N+1)2

γN + 1
+

1

4 + 2θ

γN
2

N+1 + 4−(u−1)2+(N+1)2

2(N+1)2

γN + 1

=
2 + 2θ

4 + 2θ

γN
1

N+1 + −1−u2+(N+1)2

2(N+1)2

γN + 1
+

2

4 + 2θ

γN
2

N+1 + 3−u2+(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1

γN + 1
+

2

4 + 2θ

γN
1

N+1

γN + 1
+

2 + 2θ

4 + 2θ

−1−u2+(N+1)2

2(N+1)2

γN + 1
+

2

4 + 2θ

3−u2+(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1

γN + 1
+

2

4 + 2θ

γN
1

N+1

γN + 1
+

2θ

4 + 2θ

−1−u2+(N+1)2

2(N+1)2

γN + 1
+

4

4 + 2θ

1−u2+(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1 + 1−u2+(N+1)2

2(N+1)2

γN + 1
+

2

4 + 2θ

γN
1

N+1

γN + 1
+

2θ

4 + 2θ

−2
2(N+1)2

γN + 1

=
γN

1
N+1 + 1−u2+(N+1)2

2(N+1)2

γN + 1

=q0(1, u)

We then have the case with w = 1 when only the term q0(2, u + 1) is on
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w = N + 1− |u|. Which means u = N − 2∑
ξ′∈Ω

q0(ξ′)P ((1, u), ξ′)

=
1 + θ

4 + 2θ
q0(0, N − 1) +

1 + θ

4 + 2θ
q0(0, N − 3) +

1

4 + 2θ
q0(2, N − 1) +

1

4 + 2θ
q0(2, N − 3)

=
1 + θ

4 + 2θ

γN
1

N+1 + −(N−1)2+(N+1)2

2(N+1)2

γN + 1
+

1 + θ

4 + 2θ

γN
1

N+1 + −(N−3)2+(N+1)2

2(N+1)2

γN + 1

+
1

4 + 2θ

2

N + 1
+

1

4 + 2θ

γN
2

N+1 + 4−(N−3)2+(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1

γN + 1
+

1

4 + 2θ

2

N + 1
+

1 + θ

4 + 2θ

−(N−1)2+(N+1)2

2(N+1)2

γN + 1

+
1 + θ

4 + 2θ

−(N−3)2+(N+1)2

2(N+1)2

γN + 1
+

1

4 + 2θ

4−(N−3)2+(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1

γN + 1
+

1

4 + 2θ

4θ
2(N+1)2 + 4(N+1)

2(N+1)2

γN + 1

+
1

4 + 2θ

4−(N−1)2−2(N−3)2+3(N+1)2

2(N+1)2

γN + 1
+

θ

4 + 2θ

−(N−1)2−(N−3)2+2(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1

γN + 1
+

4

4 + 2θ

−N2+4N−3+(N+1)2

2(N+1)2

γN + 1
+

2θ

4 + 2θ

−N2+4N−3+(N+1)2

2(N+1)2

γN + 1

=
γN

1
N+1 + 1−(N−2)2+(N+1)2

2(N+1)2

γN + 1

=q0(1, N − 2)

We then check the case w = 1 when both q0(2, u + 1) and q0(2, u − 1) are on
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w = N + 1− |u|. This means N = 2 and u = 0.∑
ξ′∈Ω

q0(ξ′)P ((1, 0), ξ′)

=
1 + θ

4 + 2θ
q0(0, 1) +

1 + θ

4 + 2θ
q0(0,−1) +

1

4 + 2θ
q0(2, 1) +

1

4 + 2θ
q0(2,−1)

=
1 + θ

4 + 2θ

γN
1
3 + 4

9

γN + 1
+

1 + θ

4 + 2θ

γN
1
3 + 4

9

γN + 1
+

1

4 + 2θ

2

3
+

1

4 + 2θ

2

3

=
2 + 2θ

4 + 2θ

γN
1
3 + 4

9

γN + 1
+

4

4 + 2θ

1

3

=
2γ2
N + 14γN

3 + 20
9

(4 + 6γN )(γN + 1)

=
γN

1
3 + 5

9

γN + 1

=q0(1, 0)

We then check the case w ≥ 2 with all the adjacent points being internal nodes.

∑
ξ′∈Ω

q0(ξ′)P ((w, u), ξ′)

=
1

4
q0(w − 1, u+ 1) +

1

4
q0(w − 1, u− 1) +

1

4
q0(w + 1, u+ 1) +

1

4
q0(w + 1, u− 1)

=
1

4

γN
w

N+1 + (w−1)2−(u+1)2+(N+1)2

2(N+1)2

γN + 1
+

1

4

γN
w

N+1 + (w−1)2−(u−1)2+(N+1)2

2(N+1)2

γN + 1

+
1

4

γN
w

N+1 + (w+1)2−(u+1)2+(N+1)2

2(N+1)2

γN + 1
+

1

4

γN
w

N+1 + (w+1)2−(u−1)2+(N+1)2

2(N+1)2

γN + 1

=
γN

w
N+1

γN + 1
+

1

4

2(w−1)2+2(w+1)2−2(u+1)2−2(u−1)2+4(N+1)2

2(N+1)2

γN + 1

=
γN

w
N+1

γN + 1
+

1

4

4w2−4u2+4(N+1)2

2(N+1)2

γN + 1

=
γN

w
N+1 + w2−u2+(N+1)2

2(N+1)2

γN + 1

=q0(w, u)

We then have the case with w ≥ 2 when only the term q0(w + 1, u + 1) is on
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w = N + 1− |u|. Which means u = N − w − 1∑
ξ′∈Ω

q0(ξ′)P ((w,N − w − 1), ξ′)

=
1

4
q0(w − 1, N − w) +

1

4
q0(w − 1, N − w − 2)

+
1

4
q0(w + 1, N − w) +

1

4
q0(w + 1, N − w − 2)

=
1

4

γN
w

N+1 + (w−1)2−(N−w)2+(N+1)2

2(N+1)2

γN + 1
+

1

4

γN
w

N+1 + (w−1)2−(N−w−2)2+(N+1)2

2(N+1)2

γN + 1

+
1

4

w

N + 1
+

1

4

γN
w

N+1 + (w+1)2−(N−w−2)2+(N+1)2

2(N+1)2

γN + 1

=
1

4

3γN
w

N+1 + 2(w−1)2+(w+1)2−2(N−w−2)2−(N−w)2+3(N+1)2

2(N+1)2

γN + 1
+

1

4

γN
w

N+1 + 2w(N+1)
2(N+1)2

γN + 1

=
γN

w
N+1

γN + 1
+

1

4

2(w−1)2+(w+1)2−2(N−w−2)2−(N−w)2+2w(N+1)+3(N+1)2

2(N+1)2

γN + 1

=
γN

w
N+1

γN + 1
+

−N2+2Nw+2N−2w−1+(N+1)2

2(N+1)2

γN + 1

=
γN

w
N+1 + w2−(N−w−1)2+(N+1)2

2(N+1)2

γN + 1

=q0(w,N − w − 1)

We finally check the case w = 1 when both q0(w+1, u+1) and q0(w+1, u−1)
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are on w = N + 1− |u|. This means u = 0 and w = N − 1.∑
ξ′∈Ω

q0(ξ′)P ((N − 1, 0), ξ′)

=
1

4
q0(N − 2, 1) +

1

4
q0(N − 2,−1) +

1

4
q0(N, 1) +

1

4
q0(N,−1)

=
1

4

γN
N−2
N+1 + (N−2)2−12+(N+1)2

2(N+1)2

γN + 1

+
1

4

γN
N−2
N+1 + (N−2)2−(−1)2+(N+1)2

2(N+1)2

γN + 1

1

4

N

N + 1
+

1

4

N

N + 1

=
1

2

γN
N−2
N+1 + (N−2)2−1+(N+1)2

2(N+1)2

γN + 1
+

1

2

γN
N
N+1 + N

N+1

γN + 1

=
γN

N−1
N+1

γN + 1
+

1

2

(N−2)2−1+(N+1)2

2(N+1)2 + 2N(N+1)
2(N+1)2

γN + 1

=
γN

N−1
N+1 + 2N2+2

2(N+1)2

γN + 1

=
γN

N−1
N+1 + (N−1)2+(N+1)2

2(N+1)2

γN + 1

=q0(N − 1, 0)

A.2 Code

The following code is used for the particle simulation. The code is written in
python 2.7.12, using Numpy 1.11.2, Matplotlib 1.5.3 and Scipy 0.18.1.

import numpy as np
from s c ipy . s p a t i a l . d i s t anc e import pdist , squareform

import matp lo t l i b . pyplot as p l t
import s c ipy . i n t e g r a t e as i n t e g r a t e
import matp lo t l i b . animation as animation
import random as rnd

class P a r t i c l e L i n e :
def i n i t ( s e l f , i n i t s t a t e = [ 1 , 2 , 3 , 4 ] ,

a lpharate = 15 ,
theta = 55 , alpha =0, gamma=0, de l t a =0, beta= 0 ) :
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#s e l f . l e n g t h i s e q u a l to the l e n g t h N of the l a t t i c e V N .
s e l f . l ength = len ( i n i t s t a t e )

#s e l f . r a t e s i s an array o f dimension [N, 2 ] and r e p r e s e n t s the jump
#r a t e o f each p a r t i c l e wi th [ i , 0 ] be ing the jump r a t e o f p a r t i c l e i
#to the l e f t and [ i , 1 ] be ing the jump r a t e o f p a r t i c l e i to the r i g h t .
s e l f . r a t e s = np . z e ro s ( [ s e l f . length , 2 ] )

#s e l f . chances i s an array o f dimension [N+2 ,2] and i t r e p r e s e n t s
#a sample o f e x p o n e n t i a l d i s t r i b u t i o n s o f each o f the p a r t i c l e s .
#The f i r s t and l a s t e lement [ 0 , j ] and [N+1, j ] r e p r e s e n t the odds
#of a p a r t i c l e jumping from a r e s e r v o i r onto the l a t t i c e .
s e l f . chances = np . z e ro s ( [ s e l f . l ength + 2 , 2 ] )

#s e l f . i n i t s t a t e i s an array o f l e n g t h N which i n d i c a t e s the amount
#of p a r t i c l e s a t each s i t e a t the s t a r t o f the s i m u l a t i o n .
s e l f . i n i t s t a t e = np . asar ray ( i n i t s t a t e , dtype=int )

#s e l f . i n i t s t a t e i s an array o f l e n g t h N which i n d i c a t e s the amount
#of p a r t i c l e s a t each s i t e during the s i m u l a t i o n .
s e l f . s t a t e = s e l f . i n i t s t a t e . copy ( )

#s e l f . t i m e e l a p s e d keeps t r a c k o f the time t t h a t has
#e l a p s e d s i n c e the s t a r t o f the s i m u l a t i o n .
s e l f . t ime e l apsed = 0

#s e l f . a l p h a r a t e i s the r a t e t h a t i n d i c a t e s the speed o f the s i m u l a t i o n .
#The a l p h a r a t e i s m u l t i p l i e d a g a i n s t the e n t i r e generator ,
#so no a d d i t i o n a l s c a l i n g o f parameters i s r e q u i r e d .
s e l f . a lpharate = a lpharate

#s e l f . t h e t a i s the t h e t a parameter f o r the genera tor and
#i n d i c a t e s the a t t r a c t i v e n e s s between the p a r t i c l e s .
s e l f . theta = theta

#s e l f . a lpha i s the l e f t r e s e r v o i r b i r t h r a t e
s e l f . a lpha = alpha

#s e l f . gamma i s the l e f t r e s e r v o i r death r a t e
s e l f . gamma = gamma

#s e l f . d e l t a i s the l e f t r e s e r v o i r b i r t h r a t e
s e l f . d e l t a = d e l t a

#s e l f . be t a i s the r i g h t r e s e r v o i r death r a t e
s e l f . beta = beta

#s e l f . t i m e l e f t i n d i c a t e s how much time t h e r e i s l e f t in the frame
s e l f . t i m e l e f t = 0

#s e l f . updated i n d i c a t e s i f the changes t h a t have been made
#during the p r e v i o u s frame have been a p p l i e d
s e l f . updated = True
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#s e l f . minx and s e l f . y are used f o r determining which
#p a r t i c l e shou ld jump and to what l o c a t i o n
s e l f . minx = −99
s e l f . miny = −99

#s e l f . boundratea i n d i c a t e s the c a l c u l a t e d r a t e f o r the l e f t
#boundary , and s e l f . boundrateb r e s p e c t i v e l y f o r the r i g h t boundary
s e l f . boundratea = 0
s e l f . boundrateb = 0

#ca lcRat es i s used f o r c a l c u l a t i n g the r a t e s o f the a l l
#o f the p a r t i c l e s f o r the g e n e r a l p r o c e s s e s
def ca l cRates ( s e l f ) :

#We w i l l f i r s t go through the r a t e s o f a l l o f the i n t e r n a l nodes
for i in range ( len ( s e l f . s t a t e ) ) :

# i == 0 i n d i c a t e s the case o f the l e f t m o s t i n t e r n a l node
#and t a k e s i n t o account the death r a t e o f the l e f t r e s e r v o i r
i f i == 0 :

s e l f . r a t e s [ i ] = [ s e l f . theta ∗ s e l f . gamma∗ s e l f . s t a t e [ i ] , \
s e l f . s t a t e [ i ]∗(1+ s e l f . theta ∗ s e l f . s t a t e [ i +1 ] ) ]

continue
# i == s e l f . l en g th−1 i n d i c a t e s the case o f the r i g h t m o s t i n t e r n a l
#node and t a k e s i n t o account the death r a t e o f the l e f t r e s e r v o i r
i f i == s e l f . length −1:

s e l f . r a t e s [ i ] = [ s e l f . s t a t e [ i ]∗(1+ s e l f . theta ∗ s e l f . s t a t e [ i −1]) ,\
s e l f . theta ∗ s e l f . beta ∗ s e l f . s t a t e [ i ] ]

continue
# This l i n e i s f o r c a l c u l a t i n g the r a t e s on the i n t e r n a l nodes
s e l f . r a t e s [ i ] = [ s e l f . s t a t e [ i ]∗(1+ s e l f . theta ∗ s e l f . s t a t e [ i −1]) , \

s e l f . s t a t e [ i ]∗(1+ s e l f . theta ∗ s e l f . s t a t e [ i +1 ] ) ]

# In t h i s l i n e we speed up a l l the r a t e s depending
# on the paramater s e l f . a l p h a r a t e
s e l f . r a t e s = s e l f . r a t e s ∗ s e l f . a lpharate /2

# We a s s i g n the r a t e s f o r the l e f t and r i g h t boundary
s e l f . boundratea = s e l f . alpha ∗ \

(1+ s e l f . theta ∗ s e l f . s t a t e [ 0 ] ) ∗ s e l f . a lpharate /2
s e l f . boundrateb = s e l f . d e l t a ∗ \

(1+ s e l f . theta ∗ s e l f . s t a t e [ len ( s e l f . s t a t e )−1])∗ s e l f . a lpharate /2

#ca lcRat es i s used f o r c a l c u l a t i n g the r a t e s o f the a l l
#o f the p a r t i c l e s f o r the r e f e r e n c e p r o c e s s e s
def ca lcRefRates ( s e l f ) :
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#We w i l l f i r s t go through the r a t e s o f a l l o f the i n t e r n a l nodes
for i in range ( len ( s e l f . s t a t e ) ) :

# i == 0 i n d i c a t e s the case o f the l e f t m o s t i n t e r n a l node
#and t a k e s i n t o account the death r a t e o f the l e f t r e s e r v o i r
i f i == 0 :

s e l f . r a t e s [ i ] = [ (1+ s e l f . theta ∗ s e l f . a lpha )∗ s e l f . s t a t e [ i ] , \
s e l f . s t a t e [ i ]∗(1+ s e l f . theta ∗ s e l f . s t a t e [ i +1 ] ) ]

continue
# i == s e l f . l en g th−1 i n d i c a t e s the case o f the r i g h t m o s t i n t e r n a l
#node and t a k e s i n t o account the death r a t e o f the l e f t r e s e r v o i r
i f i == s e l f . length −1:

s e l f . r a t e s [ i ] = [ s e l f . s t a t e [ i ]∗(1+ s e l f . theta ∗ s e l f . s t a t e [ i −1]) ,\
(1+ s e l f . theta ∗ s e l f . d e l t a )∗ s e l f . s t a t e [ i ] ]

continue

s e l f . r a t e s [ i ] = [ s e l f . s t a t e [ i ]∗(1+ s e l f . theta ∗ s e l f . s t a t e [ i −1]) , \
s e l f . s t a t e [ i ]∗(1+ s e l f . theta ∗ s e l f . s t a t e [ i +1 ] ) ]

# In t h i s l i n e we speed up a l l the r a t e s depending
# on the paramater s e l f . a l p h a r a t e
s e l f . r a t e s = s e l f . r a t e s ∗ s e l f . a lpharate /2

# We a s s i g n the r a t e s f o r the l e f t and r i g h t boundary
s e l f . boundratea = s e l f . alpha ∗ \

(1+ s e l f . theta ∗ s e l f . s t a t e [ 0 ] ) ∗ s e l f . a lpharate /2
s e l f . boundrateb = s e l f . d e l t a ∗ \

(1+ s e l f . theta ∗ s e l f . s t a t e [ len ( s e l f . s t a t e )−1])∗ s e l f . a lpharate /2

# In ratesToExp we use the r a t e s to sample from the e x p o n e n t i a l
#d i s t r i b u t i o n to see which which p a r t i c l e shou ld jump f i r s t
def ratesToExp ( s e l f ) :

# This l i n e samples the e x p o n e n t i a l d i s t r i b u t i o n f o r the l e f t boundary
s e l f . chances [ 0 ] = [ f loat ( ” i n f ” ) , f loat ( ” i n f ” ) \

i f s e l f . boundratea ==0 else rnd . expovar ia te ( s e l f . boundratea ) ]

# This l i n e samples the e x p o n e n t i a l d i s t r i b u t i o n f o r the i n t e r n a l nodes
for i in range ( len ( s e l f . s t a t e ) ) :

s e l f . chances [ i +1] = [ f loat ( ” i n f ” ) i f s e l f . r a t e s [ i ] [0 ]==0 \
else rnd . expovar ia te ( s e l f . r a t e s [ i ] [ 0 ] ) ,

f loat ( ” i n f ” ) i f s e l f . r a t e s [ i ] [1 ]==0 \
else rnd . expovar ia te ( s e l f . r a t e s [ i ] [ 1 ] ) ]

# This l i n e samples the e x p o n e n t i a l d i s t r i b u t i o n f o r the r i g h t boundary
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s e l f . chances [ len ( s e l f . s t a t e )+1] = [ f loat ( ” i n f ” ) i f s e l f . boundrateb==0\
else rnd . expovar ia te ( s e l f . boundrateb ) , f loat ( ” i n f ” ) ]

# This f u n c t i o n performs one t i m e s t e p o f the s imula t ion ,
#the t i m e s t e p l e n g t h i s g i ven by dt
def s tep ( s e l f , dt ) :

s e l f . t ime e l apsed += dt
s e l f . t i m e l e f t += dt

# T ime le f t i n d i c a t e s how much time we s t i l l have f o r t h i s t imestep ,
#when we have no time l e f t , we w i l l go to the next frame
while s e l f . t i m e l e f t > 0 :

# This f u n c t i o n checks i f we a p p l i e d the l a s t changes from the
#p r e v i o u s frame , in case we had no time anymore
i f not s e l f . updated :

# We f i r s t check i f we have to remove a p a r t i c l e , i f the
#jump event came from one o f the i n t e r n a l nodes
i f ( s e l f . minx > 0) and ( s e l f . minx < len ( s e l f . chances )−1 ) :

s e l f . s t a t e [ s e l f . minx−1 ] −= 1
# We then check i f we need to add a p a t r i c l , i f the jump
#event i s i n t o one o f the i n t e r n a l nodes
i f ( ( s e l f . minx−1 + s e l f . miny∗2−1) > −1) and \

( ( s e l f . minx−1 + s e l f . miny∗2−1) < len ( s e l f . s t a t e ) ) :
s e l f . s t a t e [ s e l f . minx−1 + s e l f . miny∗2−1] += 1

s e l f . updated = True

# We f i r s t update the r a t e s to our curren t c o n f i g u r a t i o n
s e l f . ca l cRe fRates ( )

# We can uncomment s e l f . c a l cRat es i f we want to make use o f
# the g e n e r a l p a r t i c l e s i m u l a t o r
#s e l f . c a l cRat es ( )
# We then c a l c u l a t e the w a i t i n g time f o r each event
s e l f . ratesToExp ( )

minvalue = f loat ( ” i n f ” ) ;

# We then l o o k up what event has the l o w e s t w a i t i n g
# time and save i t s index in s e l f . minx and s e l f . miny
# which w i l be used in the next update
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minvalue = np . amin ( s e l f . chances )
r e s u l t = np . where ( s e l f . chances == minvalue )
i n d i c e s = zip ( r e s u l t [ 0 ] , r e s u l t [ 1 ] )
s e l f . minx = i n d i c e s [ 0 ] [ 0 ]
s e l f . miny = i n d i c e s [ 0 ] [ 1 ]

s e l f . updated = False
s e l f . t i m e l e f t −= minvalue

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Set up i n i t i a l s t a t e
np . random . seed (0 )

box = [ ]

#RenderExpectat ion i s f o r render ing the A n a l y t i c a l e x p e c t a t i o n
#RenderExpectationLongApprox i s f o r render ing the
#long term approximation f o r the e x p e c t a t i o n
#RenderExpectationApprox i s f o r render ing the
#s h o r t term approximation f o r the e x p e c t a t i o n
RenderExpectation = True
RenderExpectationLongApprox = True
RenderExpectationApprox = True

# We then have s e v e r a l p r o c e s s e s which we can run
i f 0 :

#Expec ta t ion i n c l u s i o n pro cess in e q u i l i b r i u m
i n i t s t a t e = [ 4 ]∗2 0

Theta = 0 .5
Alpha = 5
Delta = 5

box = P a r t i c l e L i n e ( i n i t s t a t e , a lpharate = 1 , \
theta = Theta ,
alpha = Alpha , gamma = Alpha + f loat (1)/ Theta , \
d e l t a = Delta , beta = Delta+ + f loat (1)/ Theta )

e l i f 0 :
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#Expec ta t ion i n c l u s i o n pro cess out o f e q u i l i b r i u m
i n i t s t a t e = [ 4 ]∗2 0

Theta = 2
Alpha = 5
Delta = 15

box = P a r t i c l e L i n e ( i n i t s t a t e , a lpharate = 11 , \
theta = Theta ,
alpha = Alpha , gamma = Alpha + f loat (1)/ Theta , \
d e l t a = Delta , beta = Delta+ + f loat (1)/ Theta )

e l i f 0 :
#Expec ta t ion e x c l u s i o n pro cess out o f e q u i l i b r i u m , t h e t a = −1
i n i t s t a t e = [ 0 ]∗2 0
i n i t s t a t e [ 1 0 ] = 1
Theta = −1
Alpha = 0
Delta = 1

box = P a r t i c l e L i n e ( i n i t s t a t e , a lpharate = 100 , \
theta = Theta ,
alpha = Alpha , gamma = −f loat (1)/ Theta − Alpha , \
d e l t a = Delta , beta = −f loat (1)/ Theta − Delta )

e l i f 0 :
#Expec ta t ion e x c l u s i o n pro cess out o f e q u i l i b r i u m , t h e t a = −0.2
RenderExpectation = False
RenderExpectationLongApprox = False
RenderExpectationApprox = False
i n i t s t a t e = [ 3 ]∗2 0
Theta = −0.2
Alpha = 0
Delta = 5

box = P a r t i c l e L i n e ( i n i t s t a t e , a lpharate = 10 , \
theta = Theta ,
alpha = Alpha , gamma = −f loat (1)/ Theta − Alpha , \
d e l t a = Delta , beta = −f loat (1)/ Theta − Delta )

e l i f 1 :
#Expec ta t ion independent wa lker out o f e q u i l i b r i u m
RenderExpectation = False
i n i t s t a t e = [ 0 ]∗2 0
Theta = 0
Alpha = 5
Delta = 15
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box = P a r t i c l e L i n e ( i n i t s t a t e , a lpharate = 20 , \
theta = Theta ,
alpha = Alpha , gamma = 1 , \
d e l t a = Delta , beta = 1 )

else :
#Expec ta t ion i n c l u s i o n pro cess t h e t a >> 0
i n i t s t a t e = [ 4 ]∗2 0

Theta = 200
Alpha = 5
Delta = 15

box = P a r t i c l e L i n e ( i n i t s t a t e , a lpharate = 1 , \
theta = Theta ,
alpha = Alpha , gamma = Alpha + f loat (1)/ Theta , \
d e l t a = Delta , beta = Delta+ + f loat (1)/ Theta )

dt = 1 . / 30 # 30 f p s

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# S e t t i n g up the p l o t and animation
f i g = p l t . f i g u r e ( f i g s i z e =(8 , 7 ) )

f i g . s u b p l o t s a d j u s t ( l e f t =0.08 , r i g h t =.92 , bottom =0.08 , top =.92)
f i g . s u p t i t l e ( ’ Reference p a r t i c l e system with node averages ’ , f o n t s i z e =16)

ax = f i g . add subplot (111 , aspect=’ equal ’ , au to s ca l e on=False , \
xlim =(−.3 , len ( i n i t s t a t e )+1.7) , yl im=(−1, 6 + 1.6∗max( box . de l ta , box . alpha ) ) )

ax . s e t x l a b e l ( ’ Po s i t i on ’ )
ax . s e t y l a b e l ( ’ P a r t i c l e Count ’ )

# P a r t i c l e s h o l d s the l o c a t i o n s o f the p a r t i c l e s
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p a r t i c l e s , = ax . p l o t ( [ ] , [ ] , ’ bo ’ , ms=6)
# Avg h o l d s the average o f the s i t e s f o r the long term
avg , = ax . p l o t ( [ ] , [ ] , ’ r ’ , ms=16)
# Avg h o l d s the average o f the s i t e s f o r the s h o r t term
avg2 , = ax . p l o t ( [ ] , [ ] , ’ c ’ , ms=16)

# This p l o t s the a n a l y t i c a l e x p e c t a t i o n
i f RenderExpectation :

l i n e x = np . l i n s p a c e (1 , len ( box . s t a t e ) , 100 )
l i n e y = box . alpha + ( box . de l ta−box . alpha )∗ l i n e x /( len ( box . s t a t e )+1)
p l t . p l o t ( l i nex , l i ney , ’−y ’ , l a b e l=’ y=2x+1 ’ )

t imestep = 1
#s t e p h i s t o r y i n d i c a t e s the amount o f t i m e s t e p s f o r the long−term approximation
s t e p h i s t o r y = 8000
avgdata = np . z e ro s ( ( s t eph i s t o ry , len ( i n i t s t a t e ) ) )
#s t e p h i s t o r y i n d i c a t e s the amount o f t i m e s t e p s f o r the short−term approximation
s t e p h i s t o r y 2 = 100
avgdata2 = np . z e ro s ( ( s t eph i s t o ry2 , len ( i n i t s t a t e ) ) )
def animate ( i ) :

””” perform animation s t e p ”””

global box , l i n e , dt , ax , f i g , t imestep , avgdata
t imestep+=1

i f t imestep % 1000 == 0 :
print ” Current frame : ” , t imestep

box . s tep ( dt )

#ms = i n t ( f i g . dp i ∗ 2 ∗ f i g . g e t f i g w i d t h ( )
# / np . d i f f ( ax . ge t xbound ( ) ) [ 0 ] )

x = [ ]
y = [ ]

#This i s f o r g e n e r a t i n g a l l the p a r t i c l e p o i n t s f o r the p l o t
for i in range (0 , len ( box . s t a t e ) ) :

for j in range (0 , box . s t a t e [ i ] ) :
x = x + [ i +1]
y = y + [ j +1]
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#p a r t i c l e s . s e t d a t a ( range (0 , l e n ( box . s t a t e ) ) , box . s t a t e )
p a r t i c l e s . s e t d a t a ( x , y )

#This i s f o r render ing the long term approximation o f the e x p e c t a t i o n
i f RenderExpectationApprox :

for i in range (0 , s t eph i s t o ry −1):
avgdata [ i ] = avgdata [ i +1]

avgdata [ s t eph i s t o ry −1] = np . copy ( box . s t a t e )
temp = np .sum( avgdata , 0 ) . astype ( f loat )/min( s t eph i s t o ry , t imestep )
avg . s e t d a t a ( range (1 , len ( box . s t a t e )+1) , temp )

#This i s f o r render ing the s h o r t term approximation o f the e x p e c t a t i o n
i f RenderExpectationLongApprox :

for i in range (0 , s t eph i s t o ry2 −1):
avgdata2 [ i ] = avgdata2 [ i +1]

avgdata2 [ s t eph i s t o ry2 −1] = np . copy ( box . s t a t e )
temp2 = np .sum( avgdata2 , 0 ) . astype ( f loat )/min( s t eph i s t o ry2 , t imestep )
avg2 . s e t d a t a ( range (1 , len ( box . s t a t e )+1) , temp2 )

return p a r t i c l e s

ani = animation . FuncAnimation ( f i g , animate ,
i n t e r v a l=dt ∗1000 , b l i t=Fal se )

p l t . show ( )
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