
Noname manuscript No.
(will be inserted by the editor)

An Empirical Catalog of Code Smells for the
Presentation Layer of Android Apps

Suelen Goularte Carvalho · Maurício
Aniche · Júlio Veríssimo · Rafael S.
Durelli · Marco Aurélio Gerosa

Received: date / Accepted: date

Abstract Software developers, including those for the Android mobile plat-
form, constantly seek to improve their applications’ maintainability and evolv-
ability. Code smells are commonly used for this purpose, as they indicate symp-
toms of design problems. However, although the literature presents a variety
of code smells, such as God Class and Long Method, characteristics specific to
the underlying technologies are not taken into account. The presentation layer
of an Android app, for example, implements specific architectural decisions
from the Android platform itself (such as the use of Activities, Fragments,
and Listeners) as well as deal with and integrate different types of resources
(such as layouts and images). Through a three-step study involving 246 An-
droid developers, we investigated code smells that developers perceive for this
part of Android apps. We devised 20 specific code smells and collected the de-
velopers’ perceptions of their frequency and importance. We also implemented
a tool that identifies the proposed code smells and studied their prevalence
in 619 open-source Android apps. Our findings suggest that: 1) developers
perceive smells specific to the presentation layer of Android apps; 2) develop-

Suelen Gourlart Carvalho
University of São Paulo
E-mail: suelengcarvalho@gmail.com

Maurício Aniche
Delft University of Technology
E-mail: m.f.aniche@tudelft.nl

Júlio Veríssimo
Federal University of Lavras
E-mail: julio.santos@posgrad.ufla.br

Rafael S. Durelli
Federal University of Lavras
E-mail: rafael.durelli@ufla.br

Marco Aurélio Gerosa
Northern Arizona University
E-mail: marco.gerosa@nau.edu

2 Suelen Goularte Carvalho et al.

ers consider these smells to be of high importance and frequency; and 3) the
proposed smells occur in real-world Android apps. Our domain-specific smells
can be leveraged by developers, researchers, and tool developers for searching
potentially problematic pieces of code.

1 Introduction

“We are aware that good code matters, because we have had to deal with the
lack of it for a long time,” argues Robert Martin [1]. However, how do we find
potentially problematic pieces of code? One answer might be by searching for
smells. Code smells are anomalies that indicate a potential violation of design
principles [2]. By looking for code smells, developers find problematic code
that can be refactored to improve software quality [3].

Several code smells have been catalogued in the literature [1–4], e.g., Long
Methods and God Classes. These code smells are usually defined based on tra-
ditional concepts and technologies that emerged during the 1970s and 1990s,
such as object orientation and Java. In this paper, we call these “traditional
code smells.” However, in the last decade, new technologies have emerged, rais-
ing questions such as “Do traditional code smells apply to new technologies?”
and “Are there code smells which are specific to new technologies?” [5]. Some
researchers have already proposed technology-specific code smells for CSS [6],
JavaScript [7], MVC [8,9], and spreadsheets [10], for example.

Android [11], a mobile platform launched in 2008 by Google, has also at-
tracted the attention of researchers. Some scholars have investigated the exis-
tence of traditional code smells in Android applications [12–14]. Others have
studied Android-specific code smells related to efficiency (i.e., proper use of
features like memory and processing) and usability (i.e., software capability
to be understood) [15, 16]. Other researchers have focused on understanding
Android development features that set them apart from traditional software
development [17]. However, to the best of our knowledge, no study has focused
on the Android presentation layer, which follows specific concepts and mod-
els. In this paper, we investigate the existence of code smells related to the
maintainability of the presentation layer of an Android application.

To understand what developers consider code smells, we collected data
employing two questionnaires. In the first questionnaire (n=45), we asked de-
velopers about good and bad practices they notice in the development of the
Android presentation layer. From the responses, we derived 20 code smells.
We then conducted a confirmatory questionnaire (n=201) investigating the
frequency and importance of the 20 proposed code smells. We also imple-
mented a tool to assist in the identification of the code smells, and measured
their prevalence in 619 open-source apps from the F-Droid repository.

Therefore, the main contribution of this paper is the cataloguing and val-
idation of 20 new code smells related to the maintainability of eight types
of components and resources of the Android’s presentation layer: Activities,

Title Suppressed Due to Excessive Length 3

Fragments, Adapters, and Listeners (components), Layouts, Styles, String, and
Drawables (resources).

2 Background: Android and its presentation layer

Android is a Linux-based mobile development platform launched in 2008 by
Google in partnership with several companies [11, 18]. In early 2011, Android
became the leading mobile platform, having reached more than 87% market
share in 2017. While its main competitor, iOS, is only used by Apple’s prod-
ucts, totaling approximately 30 different models [19], Android is used by more
than 24,000 different models of mobile devices according to a survey conducted
in 2015 [20]. In terms of software development, the wide variety of hardware
configurations brings significant challenges: from performance-related issues to
issues related to user interface development, screens, and resolutions.

This research focuses on analyzing elements related to the presentation
layer of Android apps. We reviewed the official Android documentation for
the presentation layer [21], from which we identified the following components:
Activities, Fragments, Adapters, and Listeners.

– Activities represent a screen in the app, which the end-user sees and
interacts with.

– Fragments represent parts of an Activity and should indicate their corre-
sponding layout feature. Fragments are used inside Activities.

– Adapters are used to populate the UI (User Interface) with collections of
data.

– Listeners are Java interfaces that represent user events.

Resources are also related to the presentation layer [22], and Android pro-
vides more than fifteen different resource types [23]. They are “non-Java” files
used to build user interfaces, such as image, audio, or XML files. We relied
on the existing resources of the project created from the default template1 of
Android Studio [24], which is the official integrated development environment
for Android. The selected resources are: Layout, Strings, Style, and Drawable.

– Layout Resources are XML files used for the development of the UI
structure of Android components. The development is done using a hierar-
chy of Views and ViewGroups. Views are text boxes, buttons, etc., while
ViewGroups are a collection of Views with a definition of how these Views
should be shown.

– String Resources are XMLs used to define sets of texts for internation-
alization.

– Style Resources are XMLs used to define styles to be applied in layout
XMLs. Their goal is to separate code related to structure from code related
to appearance and shape.

1 Up to version 3.0 of Android Studio, the most current version at the time of this writing,
the standard design template, which is pre-selected in the creation of a new Android project,
is an Empty Activity.

4 Suelen Goularte Carvalho et al.

– Drawable Resources represent a general concept for a graphic that can
be drawn on the screen, including traditional images or specific XML files.

2.1 Developing a presentation layer in Android: A running example

In an Android app, a screen comprises two files: a Java class responsible for
creating the screen and responding to the user events, and a layout resource,
which is an XML file responsible for creating its visual interface.

An Activity is one of the major components of Android applications. It
represents a UI screen, comprising buttons, listings, text input boxes, etc. To
implement an Activity, it is necessary to create a class derived from the
Activity, and to override some inherited methods. We highlight the onCre-
ate() method. One of its responsibilities is to configure the user interface. In
listing 1, we illustrate the code for creating an Activity. In line 5, we find
the UI configuration, which indicates the layout “main_activity” feature.

Listing 1: An example of an Activity class.
1 public class MainActivity extends Act iv i ty {
2 @Override
3 public void onCreate (Bundle savedIns tanceState) {
4 super . onCreate (savedIns tanceState) ;
5 setContentView (R. layout . main_activity) ;
6 }
7 }

The UI of an Activity is built using layout resources, which are composed
of XML files. In the following, we show an example of a layout resource.

Listing 2: An example of a layout resource.
1 <?xml version=" 1 .0 " encoding="utf−8"?>
2 <LinearLayout . . .
3 android : layout_width=" f i l l_pa r e n t "
4 andro id : l ayout_he ight=" f i l l_pa r e n t "
5 and r o i d : o r i e n t a t i o n=" v e r t i c a l ">
6
7
8 <TextView andro i d : i d="@+id / text "
9 android : layout_width="wrap_content"

10 andro id : l ayout_he ight="wrap_content"
11 and ro i d : t e x t="ATextView" />
12
13
14 <Button and ro i d : i d="@+id /button"
15 android : layout_width="wrap_content"
16 andro id : l ayout_he ight="wrap_content"
17 and ro i d : t e x t="AButton" />
18
19
20 . . .
21 </LinearLayout>

Title Suppressed Due to Excessive Length 5

Although the examples presented are quite simple, real-world UIs tend to
be much more robust and richer in information and interactivity. Such rich
and robust UIs may result in large and complex code elements. Moreover, UI
components usually have long and complex life cycles. An Activity, for exam-
ple, has 7 different states in its life cycle (onCreate(), onStart(), onResume(),
onPause(), onStop(), and onDestroy()), while Fragments have 11 different
stages. These numbers are high compared to the life cycle of non-UI related
components (e.g., a Service has only four). In such contexts, challenges in
developing maintainable Android presentation code emerge.

3 Related Work

In this section, we present work related to traditional code smells, domain-
specific smells, and smells for Android applications.

3.1 Traditional code smells

Webster’s [4] book was likely the first code smells catalog, which focused on
object-oriented software. Since then, several developers and researchers have
studied this subject. As an example, Riel [25] has documented more than 60
different heuristics for object-oriented code. Fowler [3] suggests refactoring
strategies for more than 20 smells.

Some researchers have focused on understanding the impacts of code smells
on project quality. Khomh et al. [26], for example, conducted an empirical ex-
periment in which they found that classes affected by code smells tend to suffer
more changes than classes without code smells. In another study, Khomh et
al. [27] noticed that classes affected by code smells are also more prone to
defects. Li and Shatnawi [28] also empirically analyzed the impact of code
smells and found a high correlation between code smells and detect-proneness.
Yamashita and Moonen [29] explored the implications of inter-smell relations
and explained how different interactions impact maintainability. On a related
research, Abbes et al. [30], showed by means of a controlled experiment that
the existence of a single code smell in a class does not significantly dimin-
ish developers’ performance during maintenance tasks; however, when classes
suffer from more than one code smell, performance is significantly reduced.

Other researchers have studied how developers perceive code smells. Palomba
et al. [31] conducted an empirical experiment to evaluate the developers’ per-
ception of traditional code smells. Their results showed that developers easily
perceive “simple” code smells. However, experience and knowledge play a signif-
icant role in identifying code smells related to good practices of object-oriented
development.

Arcoverde et al. [32] conducted a survey to understand how developers react
to the presence of code smells. The results showed that developers postpone
removal to avoid API modifications. Peters and Zaidman [33] analyzed the

6 Suelen Goularte Carvalho et al.

behavior of developers regarding the life cycle of code smells. Their results
showed that awareness of a code smell is not enough to compel immediate
refactoring.

3.2 Domain-specific Code Smells

Several researchers have been investigating the existence of code smells that
are specific to a given technology, for example, MVC [9], Object-Relational
Mapping [34], CSS [6], and formulas in spreadsheets [10].

Chen et al. [34] studied code smells in Object-Relational Mapping (ORM)
frameworks, since developers are usually unaware of the impact of their code
in database performance. The authors implemented an automated and sys-
tematic framework to detect and prioritize anti-performance standards in ap-
plications developed using ORM, and mapped two specific anti-patterns to
ORM frameworks.

Aniche et al. [8, 9] investigated code smells related to the MVC architec-
ture. After interviewing and surveying developers, the authors proposed a set
of six smells related to the layers of an MVC application—Model, View, and
Controller—and showed how each of them affects classes’ change- and defect-
proneness. Aniche et al. [35] also performed an empirical analysis in 120 open
source systems and showed that each architectural role has a different code
metric values distribution, which is a likely consequence of their specific re-
sponsibilities.

Gharachorlu [6] investigated code smells in CSS code, a widely used lan-
guage in the presentation layer of web applications. According to the author,
despite the simplicity of CSS syntax, language-specific features make CSS cre-
ation and maintenance a challenging task. A large-scale empirical study indi-
cated that current CSS code suffers significantly from inadequate standards.
The author proposes the first CSS quality model derived from a large sample
to help developers estimate the total number of code smells in their CSS code.
His main contribution was a set of eight new code CSS smells that can be
detected with the CSSNose tool.

Finally, Fard and Ali [7] investigated code smells in JavaScript. The au-
thors claimed that because of its flexibility, JavaScript is a particularly chal-
lenging language for writing and maintaining code. According to the authors,
one of the challenges is that, unlike Android applications, which are compiled,
JavaScript is interpreted. This means that there is usually no compiler to help
developers detect incorrect or non-optimized code. Besides these challenges,
the authors also fault JavaScript’s dynamic, weakly typed, and asynchronous
nature. They propose a set of 13 code smells for JavaScript: seven as adap-
tations of traditional code smells and six as language-specific smells. They
also proposed an automated technique, called JSNOSE, to detect these code
smells.

Title Suppressed Due to Excessive Length 7

3.3 Code smells in Android Apps

Mannan et al. [36] state that 10% of the articles published in major software
maintenance conferences between 2008 and 2015 considered Android projects
in their research. They also observed that, when compared to traditional soft-
ware, little research has been conducted on code smells in Android applica-
tions.

A significant portion of the research dedicated to code smells in Android
applications focuses on studying the effects of traditional code smells. For
example, Linares-Vásquez et al. [13] used the DECOR tool [37] to perform
the detection of object-oriented anti-patterns in mobile applications developed
with J2ME. Among their conclusions, the authors noticed a significant differ-
ence in the values of quality metrics in applications affected by code smells
when compared to those that are not, and that while code smells occur in all
domains, some code smells are more prevalent in specific domains.

Verloop [14] investigated the presence of traditional code smells [3] in
Android applications to determine whether these code smells occur more of-
ten in “core classes,” classes in the Android project that need to inherit from
Android SDK classes, such as Activities, Fragments, and Services (as
compared to “non-core” classes). To that aim, the author used four automatic
code smell detection tools: JDeodorant, Checkstyle, PMD, and UCDetector.
The author states that core classes tend to exhibit God Class, Long Method,
Switch Commands, and Type Check code smells due to their nature of hav-
ing many responsibilities. These smells were particularly high in Activities,
which is the main component of the Android presentation layer. The author
also found that the traditional code smell Long List Parameters is less likely
to appear in core classes, as most of their method signatures come from classes
defined in the Android SDK.

Reimann et al. [16] correlated the concepts of code smell, quality, and
refactoring to introduce a catalog of 30 smells focused on usability, resource
consumption, and security. Hetch [38] used the code smells detection tool
Páprika [39] to identify 8 code smells. The author searched for the code smells
in 15 popular Android applications, including Facebook, Skype, and Twitter.
The author claims that traditional code smells are as prevalent in Android as
in non-Android applications, except for the Swiss Army Knife code smell [40].
Mannan et al. [36] conducted a large-scale empirical study to compare the
prevalence and effects of code smells on mobile and desktop applications. The
authors found that while code smell density is similar in both mobile and
desktop systems, some smells occur more often in mobile applications. For
example, data classes and data clumps happen more often in a mobile app,
while external duplication tends to happen more in desktop systems.

Researchers also showed that Android test code also contains test smells.
More specifically, Peruma [41] explored the prevalence of test code smells in
several open source Android applications. The author found that Android
apps exhibit test smells early on in their lifetime, with varying degrees of co-

8 Suelen Goularte Carvalho et al.

occurrences with different smell types, and that the existence of the test smells
is also associated with higher change-proneness.

Gottschalk et al. [15] conducted a study on ways to detect and refactor
code smells related to energy efficiency. The authors compiled a catalog with
six code smells drawn from other research. Linares-Vásquez et al. [42], who also
investigated energy consumption, showed that APIs related to user interface
and database represent around 60% of the energy-greedy APIs. The authors
also propose energy-saving recipes for Android developers, including “limit the
use of the Model-View-Controller (MVC) pattern, especially when used in apps
with many views” and “carefully design apps that make use of several views.”

Other researchers also investigated performance and resource consumption.
For example, Hetch et al. [43] studied the effects of three code smells (Internal
Getter/Setter, Member Ignoring Method, and HashMap Usage) on the perfor-
mance and memory-usage of two open source Android apps. Linares-Vásquez
et al. [44] investigated the effects of micro-optimization in mobile applica-
tions. After a study of more than 3,500 mobile apps, the authors concluded
that developers rarely make use of micro-optimizations and that the impact of
these micro-optimizations on CPU/memory consumption is often negligible.
Although not directly related to code smells, Liu et al. [45] conducted a study
of 70 real-world performance bugs collected from eight Android applications.
Among their findings, the authors show that most performance bugs (75%)
are GUI lagging. In other words, they reduce responsiveness or the smooth-
ness of the user interface. GUI lagging is indeed a concern of developers, as
Linares-Vásquez et al. [46] show after surveying 485 open source developers.

Palomba et al. [47] propose 15 Android-specific smells and lightweight rules
for their detection (that achieves an average precision and recall of 98%). The
proposed code smells relate to different parts of an Android application, rang-
ing from performance issues (e.g., the smell Data Transmission Without Com-
pression arises when a method transmits a file over a network infrastructure
without compressing it, and the Inefficient SQL Query, for which the authors
suggest that the use of JDBC over network introduces too much overhead) to
thread issues (e.g., the Leaking Thread happens when the application does not
properly stop unused threads).

Android security code smells have also been explored by Ghafari et al. [48].
After reviewing scientific literature, the authors proposed a catalog of 28 smells
that can lead to security vulnerabilities. The smells touch different security
problems, such as insufficient attack protection, security validation, access con-
trol, data exposure, and input validation. After investigating the frequency of
these code smells in around 46,000 open source mobile apps, the authors con-
clude that these smells occur in practice; some of them, such as Dynamic Code
Loading and XSS-like Code Injection, happen in more than 50% of the apps.

Title Suppressed Due to Excessive Length 9

4 Research Goals

The goal of our study is to catalog and empirically validate code smells that
occur in the presentation layer source code of Android applications. To that
aim, we employed a mixed method approach for understanding developers’
perceptions, as their points of view play an important role in defining code
smells related to a specific technology [31, 32, 49], especially considering the
smells’ intrinsic subjective nature [7, 50].

We investigate the following research questions (RQ):

RQ1: What code smells do developers observe in the presentation layer of An-
droid apps?

RQ2: How often do developers observe the identified code smells and what im-
portance do they give to them?

RQ3: How prevalent are the proposed code smells in real Android apps?

We employed two open online questionnaires to collect and confirm the
smells, which were answered by 45 and 201 developers, respectively. We also
developed a tool that automatically identifies the proposed code smells, and
we analyzed the prevalence of the proposed code smells in 619 Android apps.

As the results of each RQ influenced the design of the subsequent step of
the research, we present the method and results of each RQ in its own section.

5 A Catalog of Code Smells (RQ 1)

The first part of the study aimed to catalog code smells that occur in the
presentation layer of Android apps. We employed an online questionnaire ask-
ing about good and bad practices related to components and resources of the
Android’s presentation layer.

5.1 Methodology and Questionnaire

The online questionnaire comprises 25 questions organized into three sections.
The first section (6 questions) traces the participant’s demographic profile
(age, residence, experience in software development, experience with Android
development, and schooling). The second section focuses on understanding
what developers consider good and bad practices in each element of the pre-
sentation layer (Activities, Fragments, Adapters, Listeners, Layout, Strings,
Styles, and Drawables). We asked about good and bad practices since devel-
opers may not be able to express code smells directly, but may report the
measures they take to avoid problems. This strategy has also been applied
in previous work by Aniche et al. [8, 9] to identify code smells in MVC ap-
plications. This part of the questionnaire comprises 16 optional open-ended
questions: for each of the eight elements of the Android presentation layer, we
asked a question related to good practices and another to bad practices. As
an example, for the Activity element, we ask:

10 Suelen Goularte Carvalho et al.

3
2

4
3 3

11
9

1
2

7

0

3

6

9

<= 1 2 3 4 5 6 7 8 9 10+

(a) Software experience

6
7

12

6

3

7

2 2
0.0

2.5

5.0

7.5

10.0

12.5

<= 1 2 3 4 5 6 7 8

(b) Android experience

Fig. 1: Participants’ experience in the part I of our research (N = 45). X axis
represents years of experience, Y axis represents the number of participants.

Q1 Do you have any good practices to deal with Activities?
Q2 Do you have anything you consider a bad practice when dealing with Ac-

tivities?

The last section of the questionnaire comprises two open questions to cap-
ture any last thoughts not captured in the previous questions and one inviting
participants to provide their email. The complete questionnaire can be seen in
the online appendix [51].

Before the release, we conducted a pilot test with three Android develop-
ers. In the first configuration of the questionnaire, almost all questions were
mandatory. With the result of the pilot test, we realized that developers do not
always have good or bad practices to comment on all elements. Thus, we made
such questions optional. The responses from the pilot study were disregarded
to mitigate bias effects.

The questionnaire was released on Android forums, such as Android Dev
Brasil2, Android Brasil Projetos3, and Slack Android Dev Br4. The authors
of this paper also made use of their Twitter social networks to share the ques-
tionnaire. The questionnaire was open for approximately 3.5 months, from
October 9, 2016, until January 18, 2017.

5.2 Participants

We obtained 45 responses. In Figure 1, we show the experience in software
and Android development of our participants. Out of the 45 respondents, 90%
had two years or more of software development experience, and 71% had two
years or more of experience in Android development. It is noteworthy that
the Android platform reached its 10th anniversary in 2018, i.e., five years of

2 https://groups.google.com/forum/#!forum/androidbrasil-dev
3 https://groups.google.com/forum/#!forum/android-brasil–projetos
4 http://slack.androiddevbr.org

Title Suppressed Due to Excessive Length 11

experience in this platform represented 50% of Android’s lifetime. The ques-
tionnaire was replied to by developers from 3 continents and 7 countries. Most
responses came from Brazil (81%).

5.3 Data analysis

Our analysis was inspired by the Grounded Theory approach (GT) [52, 53],
which is increasingly popular in software engineering research [54]. GT is an
inductive approach whereby qualitative data is analyzed to derive a theory.
The goal of the approach is to discover new perspectives rather than confirm
existing ones. Our analysis started from 45 responses to the questionnaire and
occurred in 4 steps: verticalization, data cleaning, codification, and split, as
detailed in the following.

The verticalization consisted of considering each good or bad practice re-
sponse as an individual record to be analyzed. As each participant provided
18 answers to be analyzed, we started with 810 records.

The next step was data cleaning. This step consisted of removing answers
that were not specific to the Android presentation layer, i.e., practices that
could be applied to any other Android layer or even Java systems. Out of
the 810 answers, 352 were considered, and 458 were disregarded. We could
note that traditional code smells also apply to the Android context. The high
number of responses (352) that were specifically related to the Android presen-
tation layer shows that there are specific practices that take the architecture
into account. Out of the 352 answers, 45% of them related to bad practices and
55% to good practices. In Table 1, we show how many answers we collected
per survey question.

Next, we performed codification for good and bad practices [52, 55]. Cod-
ification is the process by which categories are extracted from a set of state-
ments through the abstraction of central ideas and relations between the state-
ments [52]. In our case, categories represented the code smells themselves. For
each statement about bad practice, we either defined a new code smell that
captured its essence or assigned it to an already identified smell. For the good
practices, the authors used their knowledge of the Android platform, analyzed
the goal of the good practice, and either defined a new code smell or assigned
the practice to an existing one. As a single statement can belong to more than
one code smell, some of them received more than one category. In this step,
we also disregarded more answers that were not “obviously disposable” in the
previous step. For each response not considered in this step, we recorded the
reason, which can be found in our online appendix [51].

Finally, we performed the split step, which consisted of dividing responses
that belonged to more than one category into two or more answers. As an
example, “Do not make Activities to be callbacks of asynchronous executions.
Always inherit from support classes, never directly from the platform.” indi-
cates one category in the first sentence and another one in the second. In
some cases, the complete response was necessary to understand both catego-

12 Suelen Goularte Carvalho et al.

Total of
Question participants Participants

Q1 Good practice / Activities 36 (80%) P1, P2, P4-P12, P14-P17, P19, P22,
P23, P25-P32, P34-P37, P39-P43, P45

Q2 Bad practice / Activities 35 (78%) P2, P4-P11, P14-P17, P19, P22, P23,
P25-P32, P34-P37, P39-P45

Q3 Good practice / Fragments 33 (73%) P4-P11, P14-P17, P19, P22, P23, P25-
P28, P30-P32, P34-P37, P39-P45

Q4 Bad practice / Fragments 31 (69%) P2, P4-P11, P14, P15, P17, P19, P22,
P23, P25-P28, P31,P32, P34-P37, P39-
P43, P45

Q5 Good practice / Adapters 30 (67%) P2, P4-P11, P14, P15, P17-P19, P22,
P23, P26, P28, P29, P31,P32, P34-
P37, P39-P43, P45

Q6 Bad practice / Adapters 27 (60%) P2, P4-P8, P10, P11, P14, P18, P19,
P22, P23, P26, P28, P31, P34-P37,
P39-P45

Q7 Good practice / Listeners 24 (53%) P2, P4-P6, P8, P9, P11, P14, P22, P23,
P26, P28, P29, P31, P32, P34, P36,
P37, P39-P43, P45

Q8 Bad practice / Listeners 23 (51%) P2, P4, P5, P8, P9, P11, P14, P19,
P22, P23, P26, P28, P31, P32, P34,
P36, P37, P39-P44

Q9 Good practice / Layout
Resources

28 (62%) P4-P9, P11, P14, P19, P22, P23, P26-
P29, P31, P32, P34-P37, P39-P45

Q10 Bad practice / Layout Re-
sources

23 (51%) P4, P5, P7-P9, P11, P22, P23, P26,
P28, P31, P32, P34-P37, P39-P45

Q11 Good practice / Styles Re-
sources

23 (51%) P4-P9, P11, P18, P22, P23, P26, P28,
P31, P32, P34-P37, P39-P43

Q12 Bad practice / Styles Re-
sources

22 (49%) P4-P8, P11, P18, P22, P23, P26, P28,
P31, P32, P34-P37, P39-P43

Q13 Good practice / String Re-
sources

28 (62%) P4-P6, P8-P11, P14, P18, P22, P23,
P26-P29, P31, P32, P34-P37, P39-P45

Q14 Bad practice / String Re-
sources

23 (51%) P4-P6, P8, P9, P11, P14, P18, P22,
P23, P26, P28, P31, P32, P34-P37,
P40-P43, P45

Q15 Good practice / Drawable
Resources

24 (53%) P4-P6, P8-P11, P14, P18, P22, P23,
P26, P28, P31, P32, P34-P37, P39-P43

Q16 Bad practice / Drawable
Resources

21 (47%) P4-P6, P8, P11, P14, P18, P22, P23,
P26, P28, P31, P32, P34, P36, P37,
P40-P44

Q17 Other good practices 22 (49%) P2, P4, P8, P10, P11, P14, P18, P22,
P23, P26, P28, P31, P32, P34, P36,
P37, P39-P43, P45

Q18 Other bad practices 20 (44%) P2, P4, P8, P10, P11, P18, P22, P23,
P28, P31, P32, P34, P36, P37, P40-
P45

Table 1: Participants and questions they answered (participants = 45).

Title Suppressed Due to Excessive Length 13

rizations, in which case we maintained the original answer. At the end of the
analysis, 359 responses were individually categorized into 46 categories.

The first author of this paper conducted the verticalization, data cleaning,
codification, split, and categorization steps. The second author of the paper
intervened whenever the first author had questions about a specific coding.
Both authors discussed until reaching a final agreement. At the end of the
coding process, the first and the second authors discussed all the derived codes
and together derived the final definition of the code smells.

In the usability community, Nielsen [56] suggests that five repetitions are
enough to characterize a recurring problem, and successive repetitions tend not
to aggregate new relevant information. After experimenting with the number
five as the minimum number of mentions, we obtained 20 smells, which be-
longed to two different groups: 9 of them related to the Java classes of the
Android presentation layer, and 11 related to resources (string, layout, style,
and drawable). After some consideration from the authors, we decided that
this catalog met our criteria of having a reasonable number of recurrent smells
covering the Android presentation layer.

5.4 Results

Activities was the element with the highest number of answers: 35 (78%)
out of the 45 respondents answered the question about good practices while
38 (84%) responded to the question about bad practices. The element that
received the least number of responses about good practices was Listener,
which was answered by 10 (22%) participants. The elements that received the
fewest responses about bad practices were Style resources and Drawable, both
of which were answered by 9 (20%) participants.

The coding process resulted in 46 categories. As aforementioned, to derive
a code smell we considered all 22 categories that presented occurrences greater
than or equal to five. Out of the 22, we disregarded 2 categories because they
were either (i) too similar to a traditional code smell (Large Class) or (ii) too
focused on object-oriented programming (inheritance). In the online appendix,
we report the full coding results [51].

In Table 2, we present a summary of each code smell, and in Table 3,
we show how often our participants mentioned that smell. In the following
paragraphs, we present the definition of the code smells, as well as the elements
affected and related symptoms. We provide more information about each smell,
such as code examples and refactoring suggestions, in a dedicated website.5

Brain UI Component: Activities, Fragments, and Adapters should be
responsible for presenting, interacting, and updating the UI only. Business
logic should be implemented elsewhere. This idea is similar to what Evans [57]
calls the separation of the “UI layer” and the “domain layer.” The existence in

5 http://suelencarvalho.com/android-presentation-layer-code-smells.

14 Suelen Goularte Carvalho et al.

Table 2: The proposed code smells in the presentation layer of Android apps.
The smells are ordered by the number of times they were mentioned in the
survey.

Name Summary

C
om

po
ne
nt

sm
el
ls

Brain UI Component UI components with business logic.
Coupled UI Component UI components with concrete references to

each other.
Suspicious Behavior Listener being implemented within an UI com-

ponent.
Fool Adapter Adapters that do not use the ViewHolder pat-

tern.
Absence of an Architecture Presentation layer without a known/clear ar-

chitecture.
Excessive Use of Fragments Use of fragments without an explicit need.
UI Component Doing I/O UI components making access to I/O, e.g.,

database.
No Use of Fragments The lack of Fragments prevents UI with be-

havior reuse.
Flex Adapter Adapters with any (business or view) logic.

R
es
ou

rc
e
sm

el
ls

No Naming Pattern No naming pattern in Resources.
Magic Resource Strings, numbers, or colors hardcoded.
Deep Nested Layout Layout resources with deep levels of nested

Views.
Unnecessary Image Images that could be transformed into a

graphic resource.
Long or Repeated Layout Layout resources that are too long or with du-

plicated code snippets.
Missing Image Image without all standard resolutions.
God Style Resource Long Style resources that contain too much

data.
God String Resource String resource without a clear naming pat-

tern.
Duplicate Style Attributes Repeated attributes in layout or style re-

sources.
Inappropriate String Reuse Strings being reused improperly within re-

sources.
Hidden Listener Listeners being configured inside of layout re-

sources.

presentation layer elements of code related to business logic, I/O operations,
conversion of data, or static fields is a sign of code smell.

No Naming Pattern: This smell happens when resources (layout, string,
style, and drawables) do not follow a naming pattern. More specifically, it
happens when the file where the resource is located and its internal name (i.e.,

Title Suppressed Due to Excessive Length 15

Code smell Qty of codes # of Participants

Brain UI Component 60 21 (P2, P6-7, P9, P10-11, P16-17,
P19, P23, P25, P27-28, P31, P34-
37, P39-41)

Coupled UI Component 18 13 (P2, P4, P6, P10, P19, P23,
P31, P36-37, P40, P44-45)

Suspicious Behavior 18 11 (P4, P6, P8-10, P32, P34, P37,
P42-44)

Fool Adapter 13 12 (P4, P6-8, P11, P17, P31, P35-
36, P39, P43, P45)

Absence of an Architecture 13 10 (P1, P4, P8, P12, P15, P26,
P28, P31, P42, P45)

Excessive Use of Fragments 9 7 (P2, P4, P7, P11, P30, P39, P41)
UI Component Doing I/O 9 4 (P2, P26, P37, P41)
No Use of Fragments 8 7 (P9-10, P31, P14, P19, P34, P45)
Flex Adapter 6 6 (P2, P7, P23, P39, P40, P41)

No Naming Pattern 23 10 (P4, P6, P8, P11, P27, P29,
P34, P37, P39, P43)

Magic Resource 23 14 (P14, P23, P26, P27, P29, P31-
32, P34-36, P41, P43-45)

Deep Nested Layout 21 15 (P2, P4, P6-8, P14, P19, P26,
P36-37, P39-41, P44-45)

Unnecessary Image 18 13 (P6, P8-9, P11, P14, P23, P28,
P35-37, P40-42)

Long or Repeated Layout 15 13 (P4, P6, P7, P9, P23, P26, P28,
P32, P34, P36, P40-42)

Missing Image 12 10 (P4, P8, P10, P11, P31, P34,
P36, P40, P42, P44)

God Style Resource 8 5 (P7-8, P28, P40, P42)
God String Resource 8 6 (P8, P26, P28, P32, P41, P42)
Duplicate Style Attributes 8 8 (P4, P8, P28, P32, P34, P39-41)
Inappropriate String Reuse 6 5 (P4, P6, P9, P32, P40)
Hidden Listener 5 3 (P34, P39, P41)

Table 3: The origin of each of the code smells (participants = 45). Quantity
of codes represent the number of times the smell was mentioned. Note that
a participant may have mentioned the same smell more than once in their
survey. Thes smells are ordered by the number of times they were mentioned
in the survey.

how the resource is called inside the source code) differ. These different names
cause confusion among developers.

Magic Resource: A smell that occurs when resources (e.g., layout, string,
and style) are hard-coded instead of pointing to an existing resource file.

Deep Nested Layout: Deep nesting when constructing layout resources
was considered a code smell. Interestingly, the official Android website has
more information and provides automated tools to deal with this problem
[58].

16 Suelen Goularte Carvalho et al.

Unnecessary Image: Android has resources that can replace images. The
smell occurs when the system has images with, for example, pure solid colors
or gradients, which could be replaced by Android’s native shapes.

Coupled UI Component: In order to be reused, Fragments, Adapters,
and Listeners should not have a direct reference to who uses them. The ex-
istence of direct reference to Activities or Fragments in these elements is an
evidence of code smell.

Suspicious Behavior: Activities, Fragments, and Adapters should not
contain in their source code the implementation of event handlers. First, event
handling code, when embedded into one of these components, is implemented
through anonymous or internal classes. As the interfaces that these event han-
dlers need to implement are often complex, the source code of Activities, Frag-
ments, and Adapters becomes less readable. Second, an event handler often
makes use of business rules and domain models. A less attentive developer
may then write these business rules directly into the event handler (which
then leads us to a possible Brain UI Component smell). The use of anonymous
classes or internal classes to implement Listeners to respond to user events is
a sign of code smell.

Long or Repeated Layout: The code smell appears when long or du-
plicated layout resources occur in the source code.

Fool Adapter: This smell occurs when Adapters do not reuse instances of
the views that represent the fields that will be populated for each item of a
collection using the View Holder pattern.

Absence of an Architecture: This smell happens when one cannot
easily identify how the components are organized. Developers cannot identify
whether the application makes use of Model-View-Controller (MVC), Model-
View-Presenter (MVP), or Model-View-ViewModel (MVVM).

Missing Image: This code smell happens when the system has only a single
version of .png, .jpg, or .gif images. The Android platform encourages images
to be available in more than one size or resolution to perform optimizations.

Excessive Use of Fragments: This smell emerges when Fragments are
used without an explicit need. Examples include applications that do not need
to support tablets and when Fragments are used in only a single screen of the
app.

UI Component Doing I/O: Activities, Fragments, and Adapters per-
forming I/O operations, such as database and file access, cause this smell.

No Use of Fragments: Fragments can decouple UI with behavior
pieces. The non-use of fragments can be a smell in visually rich apps. Such apps
have a high number of different behaviors, animations, and events to handle.
If all the implementation relies on a single Activity, for example, this class
will be highly complex and hard to understand. Moreover, visually rich apps

Title Suppressed Due to Excessive Length 17

are also often responsive, i.e., have different UIs for different screen sizes. In
this case, not using fragments will hinder code reuse. This code smell emerges
when view components (e.g., EditTexts or Spinners) are directly used by an
Activity instead of a Fragment.

God Style Resource: Long style resources define this smell. Symptoms
of this smell happen when all styles are defined in the same styles.xml.

God String Resource: This smell is defined by Long string resources.
Developers should separate their string resources according to a rule: e.g., one
string resource per screen.

Duplicate Style Attributes: Android developers often choose to de-
fine the style of a UI element directly in the layout file. However, this might
lead to unnecessary duplication (e.g., the same complex style appears in dif-
ferent components). The existence of duplicated style definitions in different
components indicates this code smell.

Flex Adapter: Adapters should be responsible for populating a view from
a single object. The code smell emerges when Adapters contain business or
view logic. As we discussed in the Brain UI Component smell, UI logic and
business rules should remain separate from each other.

Inappropriate String Reuse: Developers reuse strings among the dif-
ferent UIs of the application. For example, the string “Name” might appear in
many parts of the app; thus, developers write this string only once in a string
resource file and reuse it whenever they need it. However, the smell happens
when developers reuse the same string in different parts of the system because
the string is coincidentally the same, and not because they represent the same
concept in the UI. For example, in one part of the app, “name” might refer to
the name of the user, whereas in another part of the app, “name” might refer
to the name of the user’s favorite band. Reusing strings simply because of their
similarity might lead to two problems: First, if developers decide to change the
string, they need to be aware that the changes will be reflected throughout
the entire application. Second, when adding support for multiple languages,
one language might need two words to express what another language can
communicate in one.

Hidden Listener: Layout resources should only be responsible for present-
ing data. This smell appears when these resources also configure the listener
that will respond to events, such as the onClick event. Event handling in
XML files makes it harder for developers to identify which listeners are used
and where. Although the most recent versions of IDEs are able to show devel-
opers which events are declared in an XML file when reading the respective
Java file, events that are declared in XML files are “hidden” from developers
who primarily work in Java code.

18 Suelen Goularte Carvalho et al.

11

22 23 22 23
15 15

11 8

51

0

10

20

30

40

50

<= 1 2 3 4 5 6 7 8 9 10+

(a) Software experience

39 39
34

21 20

12
18

2 20

10

20

30

40

<= 1 2 3 4 5 6 7 8 9

(b) Android experience

Fig. 2: Participants’ experience in the part II of our research (N = 201). X axis
represents years of experience, Y axis represents the number of participants.

RQ1. Based on developers’ reports of good and bad practices, we cata-
loged 20 code smells for the presentation layer of Android apps: 9 related
to components (Activities, Fragments, Adapters, and Listeners), and 11
related to resources (Layout, String, Style, and Drawable resources).

6 Importance and Frequency of the Code Smells (RQ 2)

The second part of the research aimed to understand the perceptions of the
developers regarding the frequency and importance of the proposed smells. We
collected these perceptions through another survey.

6.1 Methodology and Survey

This survey has three sections (the full version is available in the appendix).
The first section (6 questions), as in the first step, collects the participants’ de-
mographic profile (age, residence, software development experience, Android
development experience, and education). The second section captures develop-
ers’ perceptions about how often they come across the smells in their Android
systems. The third section captures perceptions of the developers regarding
the importance of mitigating the code smells. In this survey, we were not in-
terested in collecting more code smells, but rather in confirming the ones we
devised in the first part. However, we did not indicate that code smells would
be presented, nor did we mention the names of the smells used in this research.
We have chosen this approach to avoid having to fully explain the code smells.

To investigate frequency (second part of the survey), we presented a list
of statements derived from RQ1 where each statement described in practical
terms how the smells manifest themselves in the source code. For each state-
ment, the participant could choose one of five scale options from the frequency
range: very common, frequent, sometimes, rarely, and never. We presented

Title Suppressed Due to Excessive Length 19

25 statements to contemplate the 20 code smells from RQ1. The difference
in these numbers occurred because, for four of the code smells—Suspicious
Behavior, Long or Repeated Layout, God Style Resource, and Du-
plicate Style Attributes)—more than one statement was presented, each
addressing one symptom. We chose to separate the symptoms into statements
to understand which ones were frequently perceived by developers.

To investigate importance (third part of the survey), we asked developers
about the importance of mitigating the smells. We decided to present mitiga-
tion approaches instead of the code smells, since: 1) in the previous question,
we had already introduced the smells and asked about how often they see the
smells, and that would be too repetitive for the participants; and 2) showing
them ways to mitigate the problem would give them a different perspective
on the proposed code smells (which, we conjecture, can make them rethink
their answers). The participants were asked to indicate how important they
considered 21 sentences related to approaches that mitigate the proposed code
smells. Again, the divergence of the total number of code smells, and the to-
tal of mitigation statements can be explained because of smells with more
than one symptom. For each statement, the participant could choose one of
the following options: very important, important, fairly important, slightly
important, and not important.

Before publishing the questionnaire, we performed pilots with two experi-
enced Android experts, DEV-A and DEV-B. DEV-A has 10 years of software
development experience and 5 years of experience in Android development,
considers himself proficient in Java, Objective C, Swift, and Android tech-
nologies, and holds a bachelor’s degree in Information Technology. DEV-B
has 7 years of software development experience and 6 years of experience in
Android development, considers himself proficient in Java, Objective C, and
Android technologies, and has a postgraduate degree in Service Oriented Soft-
ware Engineering. In these pilot studies, we walked the experts through all
the sentences we devised to the questionnaire and asked them to think aloud
while reading each sentence. Our primary goal was to make sure all sentences
made sense and were clear. We used their feedback to improve the formulation
of the sentences. After all the improvements, the two experts agreed that all
the sentences in the survey were clear and conveyed our intention and that it
was ready to go public. Although we did not show the definitions of the code
smells to the experts (only the survey), as the survey is intrinsically related to
the smells, their feedback also helped us in sharpening the final definition of
the smells.

The questionnaire was open for approximately three weeks in mid-September
2017 and was shared in the same venues as in Part 1. The statements were
presented randomly, and 201 developers answered the questionnaire. A possi-
ble explanation for the difference in the number of answers (Part 1 received 45
answers) is due to the differences in format: while Part 1 was focused on open
questions that take a long time to respond to, Part 2 mostly contained closed
questions, which take less time to complete and are thus more attractive to
participants.

20 Suelen Goularte Carvalho et al.

6.2 Participants

In Figure 2, we show the experience of the 201 participants that answered
our survey: 94% indicated they had two years or more of experience in soft-
ware development, and 74% indicated two years or more of experience in An-
droid development. In addition, 15% had one or more post-graduation degrees,
and 61% had a bachelor’s degree. Most participants were between 20 and 35
years old. We also asked participants about their level of knowledge in various
object-oriented languages. More than 80% claim to have intermediate or ex-
pert knowledge in Java and Android. Five participants (2%) stated that they
did not know about Android, so their answers were disregarded in the anal-
ysis. We obtained responses from Android developers from 3 continents and
14 different countries. Similar to the previous survey, 78% of participants are
from Brazil.

6.3 Results

In Figures 3a and 3b, we show the participants’ perception of the importance
and frequency of the identified code smells. In Table 4, we present the median,
mode, and standard deviation of their answers (varying from 1 to 5).

Most code smells are considered highly important by developers.We
see that most code smells (either related to components or resources) have a
mode equal to or greater than four, meaning that most developers considered
them to be from “important” to “highly important.”

Too many or too few fragments? Two of the code smells are opposite to
each other: Excessive Use of Fragments and No Use of Fragments.
Our data shows that there is no definite perception of their importance. Inter-
estingly, not even popular Android best practice guides, such as Futurice [59],
have clear suggestions on when to use Fragments. Quoting the guide: “We sug-
gest you sail carefully, making informed decisions since there are drawbacks
for choosing a fragments-only architecture, or activities-only.” Our results, to-
gether with the current best practice guidelines, suggest that better guidelines
for how to use Fragments are necessary.

Developers often encounter the proposed code smells in their apps.
To all other code smells (except two: Fool Adapter and Hidden Listener),
developers’ perceptions of frequency range from “sometimes” to “almost al-
ways.” This means that developers often find the code smells in their apps.

Fool Adapter and Hidden Listener are highly important, but
do not occur often. The mode for these two code smells was smaller than
3, meaning that participants “seldom” or “never” noticed them. However, they
both are considered highly important: Fool Adapter was considered highly
important by 58% of participants (the second most important code smell),
and Hidden Listener was considered highly important by 33% of partici-

Title Suppressed Due to Excessive Length 21

God String Resource
Deep Nested Layout

Inappropriate String Reuse
Duplicate Style Attributes

God Style Resource
Brain UI component
Unnecessary Image

Magic Resource
Long or Repeated Layout

Excessive Use of Fragments
No Naming Pattern

Missing Image
Coupled UI component

Flex Adapter
Absence of an Architecture

Suspicious Behavior
UI Component doing I/O

Hidden Listener
No Use of Fragments

Fool Adapter

(a) Importance

God String Resource
Deep Nested Layout

Inappropriate String Reuse
Duplicate Style Attributes

God Style Resource
Brain UI component
Unnecessary Image

Magic Resource
Long or Repeated Layout

Excessive Use of Fragments
No Naming Pattern

Missing Image
Coupled UI component

Flex Adapter
Absence of an Architecture

Suspicious Behavior
UI Component doing I/O

Hidden Listener
No Use of Fragments

Fool Adapter

(b) Frequency

Fig. 3: Frequency and importance of the proposed code smells, according to
our participants’ perceptions.

22 Suelen Goularte Carvalho et al.

Table 4: Frequency and importance of the proposed code smells, according to
our participants’ perceptions.

Code smell Importance Frequency

Median Mode Std Median Mode Std
Dev dev

Brain UI Component 5 5 1.05 3 4 1.19
Magic Resource 4 5 1.00 3 4 1.24
Unnecessary Image 4 5 0.95 3 4 1.23
Long or Repeated Layout 4 5 0.95 4 4 1.07
Missing Image 5 5 0.95 3 4 1.25
Coupled UI Component 4 5 1.02 3 3 1.15
UI Component Doing I/O 5 5 1.03 3 3 1.29
Absence of an Architecture 5 5 0.82 3 3 1.30
Flex Adapter 4 5 0.91 3 3 1.15
No Naming Pattern 5 5 0.88 3 3 1.24
Fool Adapter 5 5 0.93 2 2 1.20
Hidden Listener 4 5 1.23 2 2 1.29
God Style Resource 4 4 1.06 4 5 1.18
God String Resource 3 4 1.22 4 5 1.18
Suspicious Behavior 3 4 1.19 3 4 1.19
Deep Nested Layout 4 4 1.12 4 4 1.06
Long or Repeated Layout 4 4 0.86 4 4 1.11
No Use of Fragments 3 4 1.34 3 2 1.21
Inappropriate String Reuse 3 3 1.29 4 4 1.12
Excessive Use of Fragments 3 3 1.36 3 3 1.17

Average SD 1.05 1.19

pants. These results suggest that developers already know the benefits of the
ViewHolder pattern [60] and are avoiding the fooladapter smell. In addi-
tion, developers are already avoiding defining events in layout resources, and
thus, avoiding the Hidden Listener smell.

RQ2. Developers consider most of the proposed smells as important and
frequent.

7 Prevalence of the code smells (RQ 3)

The third part of our study aimed to analyze how prevalent the proposed
smells are in real Android apps. To that aim, we devised a tool, named An-
droidUIDetector.6 Our tool relies on a combination of AST visitors and
heuristics and it was designed based on two parsers: (i) JavaParser7 and (ii)
JDOM8. The former is used to parse Java files in a lightweight and straight-
forward way, while the last is used to process XML files.

6 https://github.com/julioverissimo88/AndroidUIDetector
7 https://javaparser.org/
8 http://www.jdom.org/

Title Suppressed Due to Excessive Length 23

7.1 Code Smell Detection Strategies

We implemented detection strategies in our tool for 15 out of the 20 proposed
smells. We did not implement five smells: No Naming Pattern, Unneces-
sary Image, Long or Repeated Layout, Inappropriate String Reuse,
and Absence of an Architecture, as they are more subjective and require
more than static analysis.

7.1.1 Detection strategies for the component-related smells

This section presents the detection strategies used to identify the eight component-
related smells.

Coupled UI Component: Fragments, Adapters, and Listeners, to
be reused, should not have direct reference to who uses them. The detection
strategy is as follows: we collect all Fragments, Adapters, and Activities of
the app. For each component, we check whether any of its fields is a direct
reference to another Activity or Fragment. If so, we mark the component as
smelly. Algorithm 1 depicts this detection strategy.

Algorithm 1: Coupled UI Component algorithm.
1 foreach j in listOfJavaFiles do
2 if (j.isActivity() or j.isFragment() or j.isAdapter()) then
3 foreach f in j.getFields() do
4 if (f.isActivity() or j.isFragment()) then
5 listOfSmells.add(f)
6 end
7 end
8 end
9 end

Suspicious Behavior: Activities, Fragments, and Adapters should
not be responsible for implementing event behavior. The detection strategy is
as follows: we collect all Fragments, Adapters, and Activities of the app.
For each component, we verify whether it contains either an (i) inner class or
(ii) an anonymous class (as inner and anonymous classes are how developers
often implement event behavior). If a component possesses any of them, we
mark it as smelly. Algorithm 2 presents this detection strategy.

Algorithm 2: Suspicious Behavior algorithm.
1 foreach j in listOfJavaFiles do
2 if (j.isActivity() or j.isFragment() or j.isAdapter()) then
3 if (j.containInnerClass() or j.containAnonymousClass()) then
4 listOfSmells.add(j)
5 end
6 end
7 end

24 Suelen Goularte Carvalho et al.

Brain UI Component: Activities, Fragments, Adapters, and Listeners
should only contain code responsible for presenting, interacting, and updat-
ing the UI. The detection strategy is as follows: we collect all Fragments,
Adapters, and Activities of the app. For each component, we measure its
(McCabe) code complexity and identify whether it makes use of I/O oper-
ations, database access, or static fields. We use this heuristic as a proxy for
business rules, as there is no clear and unambiguous way of deciding whether a
piece of code has business logic. Algorithm 3 presents this detection strategy.
Please note that α and β are thresholds and we describe how we calculate
them in the next section.

Algorithm 3: Brain UI Component algorithm.
1 foreach j in listOfJavaFiles do
2 if (j.isActivity() or j.isFragment() or j.isAdapter()) then
3 if (WMC(j) > α or hasIO(j) or hasDB(j) or hasSF(j) > β)

then
4 listOfSmells.add(j)
5 end
6 end
7 end

Flex Adapter: Adapters should be responsible for populating a view
from a single object. The detection strategy is as follows: for each Adapter in
the app, we verify whether its complexity is below a specific threshold. We use
complexity as a proxy, as highly complex Adapters often deal with more than
one object. Algorithm 4 presents this detection strategy.

Algorithm 4: Flex Adapter algorithm.
1 foreach j in listOfJavaFiles do
2 if (j.isAdapter()) then
3 if (WMC(j) > α) then
4 listOfSmells.add(j)
5 end
6 end
7 end

Fool Adapter: Adapters should use the View Holder pattern to reuse
instances of the views that represent the fields that will be populated for each
item of a collection. The detection strategy is as follows: for each Adapter (or
any of its children, e.g., BaseAdapter, ArrayAdapter, and CursorAdapter),
we detect whether there is a call to findViewById() inside its getView()

Title Suppressed Due to Excessive Length 25

method. If so, we mark the class as smelly. Algorithm 5 illustrates this detec-
tion strategy.

Algorithm 5: Fool Adapter algorithm.
1 foreach j in listOfJavaFiles do
2 if (j.isAdapter()) then
3 foreach m in j.getMethods() do
4 if (m.getName().equals(getView)) then
5 foreach st in m.getMethodStatements() do
6 if (st.getName().equals(findViewById)) then
7 listOfSmells.add(st)
8 end
9 end

10 end
11 end
12 end
13 end

UI Component Doing I/O: Activities, Fragments, and Adapters
should not perform I/O operations, such as database and file access. The
detection strategy is as follows: for each Activity, Fragment, and Adapter, we
check whether they make any call to I/O, database, or internet request APIs.
We created the dataset of APIs by scraping the Android manual. Algorithm 6
depicts this detection strategy.

Algorithm 6: UI Component Doing I/O algorithm.
1 foreach j in listOfJavaFiles do
2 if (j.isActivity() or j.isFragment() or j.isAdapter()) then
3 foreach m in j.getMethods() do
4 foreach st in m.getMethodStatements() do
5 if (hasIO(st) or hasIR(st) or hasDB(st)) then
6 listOfSmells.add(st)
7 end
8 end
9 end

10 end
11 end

No Use of Fragments: UI decoupling is recommended for improving
maintenance. Fragments are often used to accomplish this task. Thus, the
non-use of Fragments can represent a highly coupled UI. In practice, we can
observe this smell when view components, e.g., EditTexts, Spinners, and
TextViews, are directly used by an Activity, instead of small Fragments. The
detection strategy is similar to what we described above: for each Activity of
the app, we check whether it contains any view component (e.g., EditTexts,

26 Suelen Goularte Carvalho et al.

TextViews, Spinners, etc.). If so, we mark the component as smelly. This
detection strategy is depicted in Algorithm 7.

Algorithm 7: No Use of Fragments algorithm.
1 foreach j in listOfJavaFiles do
2 if (j.isActivity()) then
3 foreach f in j.getFields() do
4 if (containsViewComponents(f)) then
5 listOfSmells.add(f)
6 end
7 end
8 foreach m in j.getMethods() do
9 if (containsViewComponents(m)) then

10 listOfSmells.add(m)
11 end
12 foreach st in m.getMethodStatements() do
13 if (containsViewComponents(st) then
14 listOfSmells.add(st)
15 end
16 end
17 end
18 end
19 end

Excessive Use of Fragments: Although the use of Fragments is
important for UI decoupling, these components should not be used without
an explicit need. To automate the identification of this smell, we count the
number of Fragments in an app. If the number is higher than a pre-defined
threshold, we mark the app as smelly. We define the threshold later in this
paper. In Algorithm 8, we present the detection strategy, where α represents
the threshold.
Algorithm 8: Excessive Use of Fragments algorithm.
1 foreach j in listOfJavaFiles do
2 if (j.isFragment()) then
3 counter = counter + 1
4 end
5 end
6 if (counter > α) then
7 listOfSmells.add(f)
8 end

7.1.2 Detection strategies for the resource-related smells

God Style Resource: This smell happens when a single style is overly
complex. We detect this smell by counting the number of lines in all resources

Title Suppressed Due to Excessive Length 27

of the app (i.e., XML files). All resources that have the number of lines of
code higher than a threshold are marked as smelly. The detection strategy is
presented in Algorithm 9, where α represents the threshold.

Algorithm 9: God Style Resource algorithm.
1 foreach x in listOfXMLFiles do
2 if (x.isStyle()) then
3 counter = counter + 1
4 else if ((x.isStyle) and (x.lenght() > α)) then
5 listOfSmells.add(x)
6 end
7 if (counter == 1) then
8 listOfSmells.add(x)
9 end

Deep Nested Layout: Hierarchies of long and deeply nested views in
layouts should be avoided. Any resource that has a nested view deeper than a
pre-defined threshold is considered smelly. Algorithm 10 depicts the detection
strategy, where α represents the threshold.

Algorithm 10: Deep Nested Layout algorithm.
1 foreach x in listOfXMLFiles do
2 if (deep(x) > α) then
3 listOfSmells.add(x)
4 end
5 end

Duplicate Style Attributes: Duplicated styles are considered a
smell. We detect this smell by collecting all XML files available in the “res/-
values” folder of the app and looking for repeated properties among these files.
If we find a repeated property, we mark the resource as smelly. Algorithm 11
depicts the detection strategy.

Algorithm 11: Duplicate Style Attributes algorithm.
1 foreach x in listOfXMLFiles do
2 if (containsRepeatedProperties(x)) then
3 listOfSmells.add(x)
4 end
5 end

Hidden Listener: Layouts should only handle information presenta-
tion. It is a sign of smell to use event attributes, such as “onClick,” di-
rectly in layout files. We detect this smell by searching for the usage of

28 Suelen Goularte Carvalho et al.

android:onClick in any layout resource file (i.e., any XML file inside the
“res/layout” folder of the app). Algorithm 12 depicts this detection strategy.

Algorithm 12: Hidden Listener algorithm.
1 foreach x in listOfXMLFiles do
2 if (seek(x, “android:onClick")) then
3 listOfSmells.add(x)
4 end
5 end

Magic Resource: Every text or color used in the app should be created
in its respective resource file, and then reused throughout the app. It is a sign of
the smell when strings and colors appear directly in the source code rather than
referencing an existing resource. We detect this smell by observing the usage of
all Android’s text and color markers in layout resources (e.g., android:text
and android:textColor). If the marker has a hard-coded text or color (rather
than referencing a resource file), we mark the resource as smelly. Algorithm 13
depicts this detection strategy.

Algorithm 13: Magic Resource algorithm.
1 foreach x in listOfXMLFiles do
2 if (seek(x, “android:text")) then
3 if (!regex(“@.*/.*")) then
4 listOfSmells.add(x)
5 end
6 else if (regex(“android:.*Color.*")) then
7 listOfSmells.add(x)
8 end

God String Resource: It is a good practice to separate string re-
sources according to some rules, e.g., one string resource per screen. To detect
this smell, we compare the amount of Activities and string resources (i.e.,
resource files that contain the string element in the res/values folder of the

Title Suppressed Due to Excessive Length 29

app). If they are different, we mark the app as smelly. Algorithm 14 depicts
the detection strategy applied to this smell.
Algorithm 14: God String Resource algorithm.
1 foreach x in listOfXMLFiles do
2 if (x.contain(“<string>")) then
3 counterString = counterString + 1
4 end
5 end
6 foreach j in listOfJavaFiles do
7 if (j.isActivity()) then
8 counterActivity = counterActivity + 1
9 end

10 end
11 if (!(counterString == counterActivity)) then
12 listOfSmells.add(x)
13 end

Missing Image: This smell happens when the system contains only a
single version of its .png, .jpg, or .git images. We detect this smell by check-
ing whether all images of the app exist in all resolutions (i.e., that the same im-
ages exist in res/folders-hdmi, res/folders-xhdpi, res/folders-xxhdpi,
and res/folders-xxxhdpi folders). We also verify whether the file sizes differ
from each other. Algorithm 15 depicts this detection strategy.
Algorithm 15: Missing Image algorithm.
1 foreach file in listOfFiles do
2 if (containDuplicatedFiles(file) or containSameSizeFiles(file)) then
3 listOfSmells.add(file)
4 end
5 end

7.2 Sample dataset

To study the prevalence of the proposed code smells, we randomly selected
open-source apps listed in the F-Droid directory9 and hosted on GitHub10.
We started with a random dataset of 1,103 repositories. We then followed the
guidelines proposed by Kalliamvakou et al. [61] to avoid “non-real apps.” For
instance, we identified active mobile apps by considering projects that had a
reasonable lifespan and number of commits, stars, forks, issues, and commit-
ters. We also removed repositories with no lines of Android code (typically,
these projects are implemented in non-programming languages, like CSS or
HTML). The final selection comprises 619 repositories. The final dataset can
be found in our online appendix [51].

9 https://f-droid.org/
10 https://github.com

https://f-droid.org/
https://github.com

30 Suelen Goularte Carvalho et al.

Table 5: Descriptive statistics summarizing the selected mobile apps.
LI=Lifespan, CO=Commits, COn=Contributors, ST=Stars, FO=Forks,
IS=Issues.

Overview of the selected mobile apps

Line of Code GitHub’s Metrics

Java XML LI† #CO COn ST FO IS
Max 180,407 154,582 3,340 45,920 295 17,578 7,246 7,341
Min 65 40 52 2 0 0 0 0
Trimmed
mean

5772.75 6009.73 1725.7 262.6 5.0 64.0 28.1 48.7

Median 3759 1362 1786 129 3 32 15 22
Std Dev 20910.95 24423.89 723.4 2390.4 21.2 854.5 379.5 579.8
MAD‡ 4477.45 1622.70 668.6 163.1 2.9 40.0 19.2 29.6
‡MAD stands for median absolute deviation. †Lifespan is presented in days.

Table 6: Three largest apps and the three smallest apps in the sample (in
LoC).

Project Java Files/LOC XML Files/LOC Category

Largest
OsmAnd 614/175,902 861/154,582 Maps
GreenBits Wallet 602/180,407 93/7,290 Finance
Open Explorer 929/130,231 50/4,500 Productivity

Smallest
IcsImport 1/65 3/44 Productivity
FlashLight 2/77 3/40 Tools
BMI Calculator 1/93 23/273 Health

Table 5 shows descriptive statistics about the lifespan (in days), number of
commits, size (number of *.Java files and number of *.XML files), and number
of contributors, stars, forks, and issues of the selected repositories. For each
metric, we report median, trimmed mean, median absolute deviation (MAD),
and standard deviation (SD). On average, the apps have around 3,759 lines of
java code and 1,363 lines of XML code. Most of the apps have up to 5 KLoC:
395 apps, which accounts for 59.6% of our sample. Approximately 40% of the
analyzed apps have more than 5 KLoC (268 projects).

Table 6 presents the three largest apps and the three smallest apps (in
LOC). The three smallest apps in our sample are: (i) IcsImport - imports events
from calendars, (ii) FlashLight - uses the device as a flashlight, and (iii) BMI
Calculator - computes the body mass index (BMI). The three largest projects
are: (i) OsmAnd - provides offline access to maps from OpenStreetMap, (ii)
GreenBits Wallet - a bitcoin wallet, and (iii) OpenExplorer - helps to manage
files from the device.

Since an app project’s age might indicate the app’s maturity, we also in-
vestigated the lifespan of the projects. In the context of our study, a project’s
lifespan represents the time (in days) since the project’s repository was cre-

Title Suppressed Due to Excessive Length 31

ated on GitHub. The most mature analyzed repository has existed for 3,340
days – approximately nine and a half years. The least mature repository has
52 days (see Table 5). On average, the selected apps have been developed and
maintained for 1,786 days – almost five years.

Another indicator of project maturity is the number of commits to a project
repository. The selected apps have on average 129 commits (max = 45,920
commits), with an average of 53.47 commits in the last six months.

GitHub allows its users to “star” projects to show appreciation. Starring
in GitHub can be seen as the equivalent of “liking” in other social media
platforms. Borges and Valente [62] report that 73% of developers consider the
number of stars before using or contributing to GitHub projects. The selected
apps have on average 32 stars (max = 17,578 stars).

Forks and issues also indicate potential contributors to the repository [62].
Our sample has a median of 15 forks (Table 5), while 31 projects have never
been forked.

7.3 Threshold tuning

In this section, we report how we defined the thresholds used in the detection
strategies. We use quantile analysis, similar to what has been done in previous
code smells literature [9, 63]. More specifically, we define the threshold as the
third quantile plus 1.5 times the inter-quartile range:

TS = 3Q+ 1.5× IQR (1)

Table 7: Thresholds used in the detection strategies

Smell Threshold

God Style Resource α = 11
Deep Nested Layout α = 4
Excessive Use of Fragments α = 10
Brain UI Component α = 56 and β = 9
Flex Adapter α =56

The thresholds used in this paper were derived from 200 random apps from
our dataset. Table 7 depicts the thresholds obtained for each smell.

7.4 Accuracy of the detection strategies

The ability of our heuristics to automatically detect code smells is intrinsically
correlated with the validity of our results. In this sub-section, we discuss the
accuracy of our detection strategies. Our smells can be divided into three
groups based on their detection strategies:

32 Suelen Goularte Carvalho et al.

– Group 1 (Decidable): Some of our smells can be detected via decidable,
unambiguous, rules. In our case, the smells No Use of Fragments, Duplicate
Style Attributes, Hidden Listener, Magic Resource, God String Resource,
and Missing Image can be detected via straightforward static analysis. For
example, in the case of No Use of Fragments, our tool detects whether
Fragments are present or not in the system.

– Group 2 (Decidable, threshold-based): Some smells can also be de-
tected via decidable rules, but they depend on a threshold. This is the case
for the God Style Resource, Deep Nested Layout, and Excessive Use of
Fragments smells.

– Group 3 (Heuristic-based): Other smells do not have decidable rules
and require a heuristic (i.e., an approximation) for the detection. This
is the case for Brain UI Component, Coupled UI Component, Suspicious
Behavior, Flex Adapter, Fool Adapter, and UI Component Doing I/O.

We use software testing to evaluate whether our tool is adequately imple-
menting the detection strategies from Groups 1 and 2. Since the strategies in
Group 2 depend on a specific threshold to consider a class smelly, and we use
extreme values as thresholds, some smelly classes may not identified. We fol-
lowed this approach to reduce false positives (at the expense of false negatives).
Consequently, the numbers we report for Group 2 smells might underestimate
the real amount of smells.

Given the nature of the strategies in Group 3, further validation is required.
To measure the accuracy of these detection strategies, we manually produced
an oracle and compared the results of the tool against it. To build the oracle,
two authors of this paper inspected the entire source code of three apps in our
dataset and identified the smells (or the lack thereof) that each class contained.
Our selection procedure was as follows:

1. We looked at the aggregated number of smells of each app in our dataset;
we used this information to help us find a minimum set of apps that would
have all the smells we proposed,

2. We filtered out apps with less than 50 Java classes or with more than 200
classes. The numbers 50 and 200 were chosen arbitrarily; we considered
apps with less than 50 classes as too small and apps with more than 200
classes as too expensive for manual analysis.

3. We selected the largest app with the highest diversity in smells. We then
repeated the process on the remaining smells.

The selected apps are: seadroid, an Android client for Seafile; tasks, an app
that helps users to organize their tasks; and yaaic, an IRC client. seadroid has
228 classes; tasks, 151 classes; and yaaic, 88 classes. Our entire oracle comprises
467 Java classes.

In Table 8, we show the precision, recall, and F1 measures for each of the
six smells from Group 3. We observe from these results:

1. The Brain UI Component and Flex Adapter detection strategies achieve
a high precision and recall (their F1 measures are 0.93 and 0.86, respectively).

Title Suppressed Due to Excessive Length 33

Smell Precision Recall F1 TP TN FP FN

Brain UI Component 0.91 0.94 0.93 93 360 9 5
Coupled UI Component 0.84 0.68 0.75 32 414 6 15
Suspicious Behavior 0.57 0.95 0.71 65 350 49 3
Flex Adapter 0.76 1.00 0.86 30 428 9 0
Fool Adapter 1.00 0.26 0.42 4 452 0 11
UI Component Doing I/O 0.94 0.6 0.73 18 436 1 12

Table 8: Precision (tp/(tp+fp)), recall (tp/(tp+fn)), and F1 (2∗ (precision∗
recall)/(precision + recall)) of our detection strategies. N=3 systems, 467
Java classes. The true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) columns show the concrete number of instances in
each category, used to calculate the precision, recall, and F1.

2. The Suspicious Behavior detection strategy achieves a high recall (0.95), but
its precision is just acceptable (0.57). After manual analysis in the false posi-
tives, we observed that some classes made use of inner and anonymous classes
which are not related to event handling (note that out Suspicious Behavior
detection strategy looks for any usage of inner and/or anonymous classes in-
side Activities, Fragments, or Adapters). Future work should focus on a more
precise way of detecting event handling (e.g., take the semantics of the in-
ner/anonymous class into account). 3. The Coupled UI Component and the
UI Component Doing I/O detection strategies achieve high F1 measures (0.75,
0.71, and 0.73, respectively). However, while their precision are high (0.84 and
0.94, respectively), their recall are just acceptable (0.68 and 0.6, respectively).
After manual analysis, we observed that, for the UI Component Doing I/O
detection, our tool makes use of a pre-defined list of APIs that handle I/O
(the list is available in our appendix). The false negatives made use of APIs
other than the ones in our list. To improve the effectiveness of the detection
strategy, we thus suggest the development of a systematic list of Android APIs
that make use of I/O. 4. Finally, the Fool Adapter detection strategy present
less accuracy: maximum precision (1.0), but low recall (0.26), mostly because
of the existence of 11 false negatives. After manual analysis, we noticed our
parser failing in case developers pass the Android’s View class as a parameter
to another method, and then invoke the findViewById() method (used in the
detection strategy). Future work should systematically explore all the ways a
developer might make use of the findViewById() method, with the goal of
refining the parsing strategy.

The manually produced oracle, the complete source code of the apps we
used, as well as the script that measures the precision and recall of our tool
are available in our online appendix [51].

34 Suelen Goularte Carvalho et al.

Table 9: Prevalence of the proposed smells in a sample of 619 Android apps.
Percentages are calculated over the total number of Java and XML files ana-
lyzed in the 619 Android apps (37,026 Java files and 32,888 XML files.)

Smell # of Java/XML files %
Components

Suspicious Behavior 8,584 ≈23%
Brain UI Component 6,697 ≈18%
Coupled UI Component 1,906 ≈5%
UI Component Doing I/O 810 ≈2%
No Use of Fragments 292 ≈0.78%
Fool Adapter 187 ≈0.50%
Excessive Use of Fragments 87 ≈0.23%
Flex Adapter 70 ≈0.18%

Total of affected components 18,633
Resources

God String Resource 8,581 ≈26%
God Style Resource 8,528 ≈25%
Deep Nested Layout 7,856 ≈23%
Magic Resource 1,093 ≈3%
Duplicate Style Attributes 208 ≈0.63%
Hidden Listener 195 ≈0.59%
Missing Image 48 ≈0.14%

Total of affected resources 26,509

7.5 Results

In Table 9, we present the smells identified in the 619 Android apps. The bar
chart depicted in Figure 4 presents a macro view of the identified smells.

We found 26,509 instances of resource smells and 18,633 instances of com-
ponent smells. God String Resource and Suspicious Behavior were the
most common smells, with 8,581 resources (26% of all XML files in the sample)
and 8,584 components affected (23% of all Java files in the sample), respec-
tively. On the other hand, Missing Image and Flex Adapter were the least
identified smells, with 48 resources and 70 affected components, respectively.

In Tables 10 and 11, we show the distribution of each code smell per app.

Although we observe that some projects have a critically high number of
smells (e.g., a single project has 153 classes affected by the Brain UI Compo-
nent smell), having a high number of classes affected by specific smells is not
the common behavior. The median number (as well as the third quantile) of
classes affected per project is quite low for all the studied smells. God String
Resource is the one with the highest median (14).

RQ3. All the proposed smells can be observed in real-world Android apps.
At the project-level, the number of classes affected by each smell is low.

Title Suppressed Due to Excessive Length 35

GSR GStR DNL MR DSA HL MI

Resource Smells Identified

0

2000

4000

6000

8000

85
81

85
28

78
56

10
93

20
8

19
5

48

(a) Resource Smells identified.

SB BUIC CUC UIC NUF FAd EUF FA

Component Smells Identified

0

2000

4000

6000

8000

85
84

66
97

19
06

81
0

29
2

18
7

87 70

(b) Component Smells identified.

Fig. 4: Identified smells. DNL=Deep Nested Layout, DSA=Duplicate Style
Attributes, GStR=God Style Resource, HL=Hidden Listener, MR=Magic
Resource, GSR=God String Resource, MI=Missing Image. BUIC=Brain
UI Component, UIC=UI Component Doing I/O, SB=Suspicious Behavior,
EUF=Excessive Use of Fragments, CUC=Coupled UI Component, NUF=No
Use of Fragments, FAd=Fool Adapter, FA=Flex Adapter

BUIC UIC SB CUC FAd FA
1st Qu. 1 0 2 0 0 0
Median 4 0 5 0 0 0
Mean 11 1 14 3 0.3 0.11
3rd Qu. 12 1 14 2 0 0
Max. 153 33 279 78 11 6

Table 10: Prevalence of the Component smells per app. BUIC=Brain
UI Component, UIC=UI Component Doing I/O, SB=Suspicious Behavior,
EUF=Excessive Use of Fragments, CUC=Coupled UI Component, NUF=No
Use of Fragments, FAd=Fool Adapter, FA=Flex Adapter.

8 Discussion

In this section, we discuss the main implications of our work.

A catalog of code smells for the presentation layer of Android apps.
Developing high-quality user interface code for Android apps is challenging.
Developers should make good use of the limited screen space and cannot take
advantage of the full range of features that a traditional web application pro-
vides [64]. Our work paves the road for a catalog of bad practices that arise in
such an important part of the source code. When it comes to the presentation
layer, smells not only occur in classes, such as Activities and Fragments, but
also in resources, such as layout and strings, which are mostly XML-based.
It is common for developers to see XML files as “simple” configuration files;

36 Suelen Goularte Carvalho et al.

DNL DSA GStR HL MR GSR
1st Qu. 2 0 2 0 0 1
Median 5 0 4 0 0 2
Mean 13 0.33 14 0.31 2 14
3rd Qu. 15 0 10 0 2 9
Max. 219 13 446 11 48 454

Table 11: Prevalence of Resource smells per app. DNL=Deep Nested Layout,
DSA=Duplicate Style Attributes, GStR=God Style Resource, HL=Hidden
Listener, MR=Magic Resource, GSR=God String Resource, MI=Missing Im-
age.

however, they play a key role in Android apps, and their quality should also
be monitored.

In this work, we proposed smells that go beyond the “traditional smells” in
the literature. In a more abstract way, one can see how foundational concepts
in object-oriented design can help developers tackle smells. For example, a
class affected by the Brain UI Component smell would benefit from a better
separation of concerns [65], and classes affected by the Coupled UI Component
smell would benefit from better dependency management [66]. Moreover, we
observe that developers considered both the intensive use and lack of use of
Fragments problematic. Interestingly, the set of participants who reported
the intensive use of Fragments as problematic differs from the set of partici-
pants who saw the lack of Fragments as problematic (see Table 3). Deciding
whether to use small or large fragments is a similar problem as deciding how
to modularize a software system [65]; in practice, it is hard to know when to
stop creating more modules. Thus, as a recommendation, we suggest develop-
ers should understand foundational OO practices deeply, as some of the smells
can be explained by what is already in the OO literature.

The relationship between our study and the existing body of knowl-
edge. As we present in the Related Work (Section 3), different authors have
proposed catalogs of code smells and/or best practices for Android mobile
applications, e.g., Palomba et al. [47] proposed a generic catalog of smells,
Gharafi et al. [48], of security code smells, Hecht et al. [43] and Linares-Vásquez
et al. [44] of performance, and Linares-Vásquez et al. [42] and Gottschalk et
al. [15] of energy consumption smells.

Our research complements the existing body of knowledge in the following
ways:

– Two security smells from Ghafari et al.’s catalog are related to the presenta-
tion layer of Android apps. More specifically, Broken WebView’s Sandbox,
which is relevant to developers rendering web content in an unsafe man-
ner, and SQL Injection, which commonly happens when user input goes
straight to an SQL query. This result shows that issues in the presentation
layer can also lead to security flaws. Therefore, as future work, we sug-

Title Suppressed Due to Excessive Length 37

gest researchers study the relationship between the presentation layer code
smells and security vulnerabilities.

– Palomba et al. [47]’s code smells catalog does not touch on any presentation
layer code smells, and thus, our catalog is complementary to it. However,
UI developers should be aware of the Leaking Thread code smell proposed
in their catalog, as most of what happens in presentation layers occurs in
threads (we discuss the life cycle of the components in Section 2).

– Linares-Vásquez et al.’s [42] showed that UI-related APIs (GUI and image
manipulation) represent around 40% of the energy greedy APIs in the An-
droid platform. As actionable advice, authors suggest developers carefully
design apps that make use of several views and to avoid refreshing views.
We see their results as a complementary to ours. Our catalogue has several
smells related to complex UIs (i.e., Brain UI Component, UI Component
Doing I/O, Deep Nested Layout, and Unnecessary Image). Besides being
harmful for maintenance, we conjecture that these smells also impact en-
ergy consumption, and therefore suggest developers consider not only the
maintenance cost but also the energy costs of classes affected by these
smells.

– While performance studies by Hecht et al. [43], Linares-Vásquez et al. [44],
and Liu et al. [45] lacked focus on the presentation layer, our smells can be
related to performance issues. Linares-Vásquez et al.’s study, in particular,
showed that unused strings (and other resources) can be costly to mobile
apps. Our catalog indeed has smells related to how developers organize
their resources in their software (i.e., God String Resource, Inappropri-
ate String Reuse, Duplicate Style Attributes, God Style Resource, Long or
Repeated Layout, Deep Nested Layout). Thus, we suggest developers also
consider elements affected by resource-related smells as candidates for per-
formance improvements. In future work, we suggest researchers investigate
the relationship between our smells and performance issues.

– Companies and independent developers have been working on guides and
best practices catalogs that go beyond “traditional smells,” such as Google’s
Jetpack Best Practices [67,68] and Futurice, a software house which hosts a
GitHub repository on Android best practices with around 17,000 stars [59].
Our catalog complements this effort.

– In our research, we focused on smells related to the presentation layer of
Android apps. Nevertheless, we noticed that many of our participants often
mentioned “traditional” smells, such as Long Methods and God Classes [3,
63] as problems they also face in this layer. As we show in the Related Work
section, researchers have also investigated the role of traditional smells
in Android apps. Therefore, when developing the presentation layer, we
recommend developers be aware of both traditional and presentation layer-
specific smells.

Smells in different Mobile platforms. We acknowledge that some of our
smells may become less important to practitioners over time. For example, the
Flex Adapter smell, although considered an important smell for developers

38 Suelen Goularte Carvalho et al.

to tackle, was less perceived in practice. We conjecture this is due to the An-
droid’s new Adapter component, the RecyclerView.Adapter, which appeared
in Android 5.1 Lollipop and facilitates the implementation of the ViewHolder
pattern. Before that, developers had to implement the pattern themselves,
which required previous knowledge about best practices. We hope that our
results can inspire new tools, strategies, and modifications to the underlying
technology to make the mitigation strategies easier to implement.

It is also important to notice that our current catalog solely focuses on
Android mobile apps. Since its launching in 2008, Android native apps have
been developed using the Java language. In May 2017 (after we started this re-
search), Google announced Kotlin as the official language for the platform [69].
Although research [70] shows that Kotlin leads to more concise and clearer code
and tends to contain less “traditional code smells” when compared to Java, we
argue that the Android framework is still the same. In other words, develop-
ers still need to write Activities, Listeners, and all the other components,
as well as resources. Thus, we see our smells as important for Kotlin-based
Android apps as well.

Moreover, although this catalog cannot be directly transported to iOS
(Swift and Objective C), Windows Phone, or Xamarin development, it can
serve as inspiration for future research on these platforms. Interestingly, pre-
vious research [71] has shown that iOS apps contain the same proportions of
code smells regardless of the development language (Swift and Objective C),
but they seem to be less prone to code smells compared to Android apps.
Thus, understanding whether our smells impact iOS apps as much as they do
Android apps seems to be the natural continuation of this research.

9 Threats to Validity

Internal validity. Threats to internal validity concern how external factors
that we do not consider can affect the variables and relationships investigated.
In the literature, code smells are derived from the empirical knowledge of
experienced developers [1, 3, 4, 25]. Research also showed that experience and
knowledge play an important role in the perception of code smells [31, 72].
We removed from our analysis answers to our questionnaires (parts 1 and 2)
from developers with no experience with Android development; most of our
respondents have two or more years of experience.

In addition, as the participation was anonymous, we did not control for
developers who participated in the multiple steps of our study. However, as
all the parts of our research have different goals, and Part 2 had many more
participants than Part 1, this threat has a limited effect. Nevertheless, we
propose replications of this work as a way to strengthen our findings.

The coding analysis in Part I was conducted by the first author of this pa-
per, and the second author acted as a mediator whenever a question arose (as
explained in Section 5). At the time of the analysis, the first author had five
years of industry experience with Android development. To improve the valid-

Title Suppressed Due to Excessive Length 39

ity of the identification of the smells, in later stages of our research we revisited
the proposed smells with external Android experts, and they all agreed with
the proposed smells (RQ2 methodology, Section 6.1). Moreover, the fact that
many developers also face these smells (RQ2 results, Section 6.3) is also an
indication of their validity. However, we acknowledge that different researchers
could interpret the data in different ways (and thus derive a different set of
smells). We make all our raw data available in our online appendix [51] to
enable researchers to further validate our work and make additional analyses.

Regarding the study on the prevalence of code smells in mobile applica-
tions, we set out to mitigate the selection bias issue by using randomization.
However, no blocking factor was applied to reduce the threat of possible vari-
ations in, for instance, the complexity of the apps, usability, and performance.
Thus, we cannot rule out the possibility that the chosen apps stem from other
quality factors as opposed to the amount of code smells.

Construction validity. Threats to the construction validity concern the
relationship between theory and observation. The questionnaire in Part 2
aimed at measuring developers’ perceptions on the frequency and importance
of the code smells. Thus, the questions were derived from our catalog of code
smells. In retrospect, we noticed that we had not added any control questions
that would help us measure biases from our participants. Nevertheless, while
the number of answers we collected in this survey is quite significant (201
responses) and one could argue that biased answers would be a minority, we
suggest the replication of this survey as future work.

Finally, in Part 3, given that all code smells have been identified by a tool,
it is possible that some data is incorrect due to misguided or ill-identified code
smells. Thus, our data might not reflect the actual amount of code smells (given
to possible false negatives and false positives). We nevertheless discuss the
accuracy of our tool in Section 7.4. As we show there, the proposed detection
strategies can be improved, and we leave it as future work.

External validity. Threats to external validity refer to the generalization
of our results. We define the presentation layer as the eight elements we show in
Section 2. Although this definition has been based on official documentation,
we acknowledge that there are other resources and there may be less commonly
used classes that also relate to the presentation layer. Therefore, we do not
claim that the presentation layer is limited to the eight elements studied here.

In addition, the first part of our research aimed at devising the catalog
of smells. In the end, we obtained 359 pieces of information from 45 different
(mostly Brazilian) software developers. We were able to derive 20 code smells
that were observed by more than 5 participants. However, we do not claim that
this catalog is complete; as an example, if we reduce the number of required
repetitions (e.g., from 5 to 4), we would have a broader set of code smells. In
practice, we indeed expect this catalog to continue to expand as the Android
framework keeps evolving. We expect researchers to join forces and use our
proposed methodology to continuously collect the perceptions of developers
on new code smells.

40 Suelen Goularte Carvalho et al.

Regarding the study on the prevalence of code smells in mobile appli-
cations, the sample we collected from the open source repository might not
be representative of the target population. As aforementioned, we randomly
selected apps from the F-Droid repository. However, our set is diverse and in-
cludes active and largely used projects. Replications are encouraged to explore
the smells in industrial settings.

10 Conclusion

In this paper, we propose a catalog of 20 code smells specific to the presenta-
tion layer of Android apps, employing two online questionnaires and a study
with real projects. Our results show that developers are aware of good and
bad practices specific to the Android platform. From the reported practices,
we devised the smells, which were validated with a second questionnaire and
analysis of the source code of real projects. The proposed smells are particu-
larly relevant, as Android became the world’s leading mobile platform in 2011
and since then has increased its share of the market, having reached 86% [73]
in 2017.

This study answered the following questions:
RQ1: What code smells do developers observe in the presenta-

tion layer of Android apps? We cataloged 20 code smells in the presen-
tation layer of Android apps, 9 related to components (Activities, Fragments,
Adapters, and Listeners), and 11 related to resources (Layout, String, Style,
and Drawable resources). The complete catalog can be found in Section 5.4.

RQ2: How often do developers observe the identified code smells
and what importance do they give to them? Developers perceive most
of the proposed smells as important, and most of them have previously en-
countered these code smells. Their perceptions are discussed in Section 6 of
this paper.

RQ3: How prevalent are the proposed code smells in real An-
droid apps? All the proposed smells can be observed in real-world Android
apps. Some of them, such as Brain UI Component (29% of all components)
happen very often, whereas others, such as Flex Adapter and Duplicate Style
Attributes happen less often.

Our contributions are a small but important step in the search for higher
code quality on the Android platform. Researchers can use our results as a
starting point to conceive tools and heuristics to suggest refactorings in An-
droid applications, and Android developers can use our catalog to search for
problematic pieces of codes.

Our work opens space for future research and tool development. More
specifically:

Evaluate the effects of the proposed code smells in other contexts. In
this paper, we collected diverse empirical evidence about the relevance of the
smells. Further investigation is necessary about the impacts the smells bring
to software developers. Some suggestions regarding future evaluations are: 1)

Title Suppressed Due to Excessive Length 41

controlled experiments about the relationship between the proposed smells
and maintainability and other development activities (e.g., do developers take
more time to comprehend and maintain a smelly class when compared to a
clean class?), 2) to quantitatively measure how these presentation-layer smells
affect the change- and the defect-proneness of the smelly classes, 3) understand
whether these code smells can have an impact on different quality attributes
of a mobile app, such as performance and energy consumption.

Generalizability of our results to other mobile platforms. Although
Android has a significant market share of mobile development, it is not the
only one; iOS (Apple phones) and Windows phones are also popular platforms.
The reasons we focused on Android are twofold: First, our research method
requires in-depth knowledge of the platform. The authors of this paper are well
versed on the Android platform, but not so on the other platforms. Second,
by focusing on a single mobile architecture, we could ask highly focused ques-
tions to our participants, which we argue increases the quality of the answers.
Nevertheless, coining code smells for other mobile platforms is also important,
and our study can be replicated to other platforms.

References

1. R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1 ed., 2008.

2. G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for software design
smells: Managing technical debt. Morgan Kaufmann, 2014.

3. M. Fowler and K. Beck, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 1999.

4. B. Webster F, Pitfalls of Object-Oriented Development. M & T Books, 1995.
5. M. Aniche, J. Yoder, and F. Kon, “Current challenges in practical object-oriented soft-

ware design,” in 41st ACM/IEEE International Conference on Software Engineering,
(United States), IEEE, 2019.

6. G. Gharachorlu, Code smells in Cascading Style Sheets: an empirical study and a pre-
dictive model. PhD thesis, University of British Columbia, 2014.

7. A. M. Fard and A. Mesbah, “JSNOSE: Detecting javascript code smells,” pp. 116–125,
2013.

8. M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen, “Code smells for
model-view-controller architectures,” Empirical Software Engineering, pp. 1–37, 9 2017.

9. M. Aniche, G. Bavota, C. Treude, A. Van Deursen, and M. A. Gerosa, “A validated set
of smells in model-view-controller architectures,” pp. 233–243, 2016.

10. M. Pinzger, F. Hermans, and A. van Deursen, “Detecting code smells in spreadsheet for-
mulas,” in Proceedings of the 2012 IEEE International Conference on Software Main-
tenance (ICSM), ICSM ’12, (Washington, DC, USA), pp. 409–418, IEEE Computer
Society, 2012.

11. O. H. Alliance, “Open handset alliance releases android SDK.”
https://www.openhandsetalliance.com/press_111207.html, 2007. [Last access: 25
de Novembro de 2017].

12. G. Hecht, “An approach to detect android antipatterns,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 2, pp. 766–768, IEEE
Press, May 2015.

13. M. Linares-Vásquez, S. Klock, C. McMillan, A. Sabané, D. Poshyvanyk, and Y.-G.
Guéhéneuc, “Domain matters: bringing further evidence of the relationships among anti-
patterns, application domains, and quality-related metrics in java mobile apps,” pp. 232–
243, 2014.

42 Suelen Goularte Carvalho et al.

14. D. Verloop, Code Smells in the Mobile Applications Domain. PhD thesis, TU Delft,
Delft University of Technology, 2013.

15. M. Gottschalk, M. Josefiok, J. Jelschen, and A. Winter, “Removing energy code smells
with reengineering services,” GI-Jahrestagung, vol. 208, pp. 441–455, 2012.

16. J. Reimann and M. Brylski, “A tool-supported quality smell catalogue for android de-
velopers,” 2014.

17. R. Minelli and M. Lanza, “Software analytics for mobile applications, insights & lessons
learned,” In Proceedings of the 2013 17th European Conference on Software Mainte-
nance and Reengineering, 2013.

18. Google, “Android – plataform architecture.” https://developer.android.com/guide/
platform/index.html. [Last access: 25 de Novembro de 2017].

19. Wikipedia, “IOS — Wikipedia, the free encyclopedia.” http://en.wikipedia.org/w/
index.php?title=IOS&oldid=812046680, 2017. [Last access: 25 de Novembro de 2017].

20. OpenSignal, “Android fragmentation visualized.” http://opensignal.com/reports/
2015/08/android-fragmentation, 2015. [Last access: 25 de Novembro de 2017].

21. Google, “Documentação site android developer.” https://developer.android.com,
2016. [Last access: 25 de Novembro de 2017].

22. Google, “Android – fundamentals.” https://developer.android.com/guide/
components/fundamentals.html, 2017. [Last access: 25 de Novembro de 2017].

23. Google, “Android – resource type.” https://developer.android.com/guide/topics/
resources/available-resources.html, 2016. [Last access: 25 de Novembro de 2017].

24. Google, “Android – building your first app.” https://developer.android.com/
training/basics/firstapp/creating-project.html, 2016. [Last access: 25 de Novem-
bro de 2017].

25. A. J. Riel, Object-Oriented Design Heuristics, vol. 335. Addison-Wesley Publishing
Company, 1996.

26. F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory study of the impact
of code smells on software change-proneness,” in Proceedings of the 2009 16th Work-
ing Conference on Reverse Engineering, WCRE ’09, (Washington, DC, USA), IEEE
Computer Society, 2009.

27. F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study
of the impact of antipatterns on class change-and fault-proneness,” Empirical Softw.
Engg., vol. 17, June 2012.

28. W. Li and R. Shatnawi, “An empirical study of the bad smells and class error probability
in the post-release object-oriented system evolution,” Journal of systems and software,
vol. 80, no. 7, pp. 1120–1128, 2007.

29. A. Yamashita and L. Moonen, “Exploring the impact of inter-smell relations on software
maintainability: An empirical study,” in Proceedings of the 2013 International Confer-
ence on Software Engineering (ICSE), ICSE ’13, (Piscataway, NJ, USA), pp. 682–691,
IEEE Press, 2013.

30. M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program comprehension,” in
Software maintenance and reengineering (CSMR), 2011 15th European conference on,
pp. 181–190, IEEE, 2011.

31. F. Palomba, G. Bavota, M. Penta, R. Oliveto, and A. Lucia, “Do they really smell bad?
a study on developers’ perception of bad code smells,” pp. 101–110, 2014.

32. R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the longevity of code smells:
preliminary results of an explanatory survey,” in Proceedings of the 4th Workshop on
Refactoring Tools, pp. 33–36, ACM, 2011.

33. R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using software repos-
itory mining,” in Software Maintenance and Reengineering (CSMR), 2012 16th Euro-
pean Conference on, pp. 411–416, IEEE, 2012.

34. T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora, “Detecting
performance anti-patterns for applications developed using object-relational mapping,”
pp. 1001–1012, 2014.

35. M. Aniche, C. Treude, A. Zaidman, A. van Deursen, and M. A. Gerosa, “SATT: Tailoring
code metric thresholds for different software architectures,” in Source Code Analysis and
Manipulation (SCAM), 2016 IEEE 16th International Working Conference on, pp. 41–
50, IEEE, 2016.

https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/platform/index.html
http://en.wikipedia.org/w/index.php?title=IOS&oldid=812046680
http://en.wikipedia.org/w/index.php?title=IOS&oldid=812046680
http://opensignal.com/reports/2015/08/android-fragmentation
http://opensignal.com/reports/2015/08/android-fragmentation
https://developer.android.com
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/topics/resources/available-resources.html
https://developer.android.com/guide/topics/resources/available-resources.html
https://developer.android.com/training/basics/firstapp/creating-project.html
https://developer.android.com/training/basics/firstapp/creating-project.html

Title Suppressed Due to Excessive Length 43

36. U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen, “Understand-
ing code smells in android applications,” in Mobile Software Engineering and Systems
(MOBILESoft), 2016 IEEE/ACM International Conference on, pp. 225–236, IEEE,
2016.

37. N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A method for the
specification and detection of code and design smells,” IEEE Transactions on Software
Engineering, vol. 36, no. 1, pp. 20–36, 2010.

38. G. Hecht, R. Rouvoy, N. Moha, and L. Duchien, “Detecting antipatterns in android
apps,” in 2015 2nd ACM International Conference on Mobile Software Engineering
and Systems, pp. 148–149, May 2015.

39. G. Hecht, R. Rouvoy, N. Moha, and L. Duchien, “Páprika.” https://github.com/
geoffreyhecht/paprika, 2015. Last access on April, 2018.

40. W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns:
refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.,
1998.

41. A. S. A. Peruma, “What the smell? an empirical investigation on the distribution and
severity of test smells in open source android applications,” 2018.

42. M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk, “Mining energy-greedy api usage patterns in android apps: an empirical
study,” in Proceedings of the 11th Working Conference on Mining Software Repositories,
pp. 2–11, ACM, 2014.

43. G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the performance impacts of
android code smells,” in Proceedings of the International Conference on Mobile Software
Engineering and Systems, pp. 59–69, ACM, 2016.

44. M. Linares-Vásquez, C. Vendome, M. Tufano, and D. Poshyvanyk, “How developers
micro-optimize android apps,” Journal of Systems and Software, vol. 130, pp. 1–23,
2017.

45. Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting performance bugs
for smartphone applications,” in Proceedings of the 36th International Conference on
Software Engineering, pp. 1013–1024, ACM, 2014.

46. M. Linares-Vasquez, C. Vendome, Q. Luo, and D. Poshyvanyk, “How developers de-
tect and fix performance bottlenecks in android apps,” in Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference on, pp. 352–361, IEEE, 2015.

47. F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “Lightweight
detection of android-specific code smells: The adoctor project,” in 2017 IEEE 24th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 487–491, IEEE, 2017.

48. M. Ghafari, P. Gadient, and O. Nierstrasz, “Security smells in android,” in 2017 IEEE
17th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 121–130, IEEE, 2017.

49. A. Yamashita and L. Moonen, “Do developers care about code smells? an exploratory
survey,” in Reverse Engineering (WCRE), 2013 20th Working Conference on, pp. 242–
251, IEEE, 2013.

50. E. Van Emden and L. Moonen, “Java quality assurance by detecting code smells,” in In
Proceedings of the Working Conference on Reverse Engineering (WCRE), pp. 97–106,
IEEE Computer Society, 2002.

51. “An empirical catalog of code smells for the presentation layer of android apps: Ap-
pendix.” https://doi.org/10.5281/zenodo.3256367, 2019.

52. J. Corbin and A. Strauss, Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. SAGE Publications Ltd, 3 ed., 2007.

53. B. G. Glaser and A. L. Strauss, Discovery of grounded theory: Strategies for qualitative
research. Routledge, 2017.

54. S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study the experience
of software development,” Empirical Software Engineering, vol. 16, no. 4, pp. 487–513,
2011.

55. J. Saldaña, The Coding Manual for Qualitative Researchers. SAGE Publications Ltd,
2 ed., 2015.

https://github.com/geoffreyhecht/paprika
https://github.com/geoffreyhecht/paprika
https://doi.org/10.5281/zenodo.3256367

44 Suelen Goularte Carvalho et al.

56. J. Nielsen, “Why you only need to test with 5 users.” https://www.nngroup.com/
articles/why-you-only-need-to-test-with-5-users, 2000. [Last access: 25 de
Novembro de 2017].

57. E. Evans, Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2004.

58. Google, “Android – optimizing view hierarchies.” https://developer.android.com/
topic/performance/rendering/optimizing-view-hierarchies.html, 2017. [Last ac-
cess: 25 de Novembro de 2017].

59. Futurice, “Android best practices.” https://github.com/futurice/android-best-practices,
2018. Last accessed on October 29th, 2018.

60. Google, “Android – recyclerview.” https://developer.android.com/reference/
android/support/v7/widget/RecyclerView.html, 2017. [Last access: 25 de Novembro
de 2017].

61. E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German, and D. Damian, “The
Promises and Perils of Mining GitHub,” in Proceedings of the 11th Working Conference
on Mining Software Repositoriesa (MSR), pp. 92–101, ACM, 2014.

62. H. Borges and M. T. Valente, “What’s in a github star? understanding repository star-
ring practices in a social coding platform,” Journal of Systems and Software, vol. 146,
pp. 112–129, 2018.

63. M. Lanza and R. Marinescu, Object-oriented metrics in practice: using software metrics
to characterize, evaluate, and improve the design of object-oriented systems. Springer
Science & Business Media, 2007.

64. A. I. Wasserman, “Software engineering issues for mobile application development,” in
Proceedings of the FSE/SDP workshop on Future of software engineering research,
pp. 397–400, ACM, 2010.

65. G. Booch, Object oriented analysis & design with application. Pearson Education India,
2006.

66. R. C. Martin, Agile software development: principles, patterns, and practices. Prentice
Hall, 2002.

67. Google, “Guide to app architecture.” https://developer.android.com/jetpack/docs/guide,
2018. Last accessed on October 29th, 2018.

68. Google, “Optimizing layout hierarchies.” https://developer.android.com/training/improving-
layouts/optimizing-layout, 2018. Last accessed on October 29th, 2018.

69. “Kotlin on android. now official.” https://blog.jetbrains.com/kotlin/2017/05/
kotlin-on-android-now-official/, 2017. JetBrains blog.

70. M. Flauzino, J. Veríssimo, R. Terra, E. Cirilo, V. H. S. Durelli, and R. S. Durelli,
“Are you still smelling it?: A comparative study between java and kotlin language,” in
Proceedings of the VII Brazilian Symposium on Software Components, Architectures,
and Reuse, pp. 23–32, ACM, 2018.

71. S. Habchi, G. Hecht, R. Rouvoy, and N. Moha, “Code smells in ios apps: How do they
compare to android?,” in Mobile Software Engineering and Systems (MOBILESoft),
2017 IEEE/ACM 4th International Conference on, pp. 110–121, IEEE, 2017.

72. D. Taibi, A. Janes, and V. Lenarduzzi, “How developers perceive smells in source code:
A replicated study,” Information and Software Technology, vol. 92, pp. 223–235, 2017.

73. Statista, “Global mobile OS market share in sales to end users from 1st quar-
ter 2009 to 1st quarter 2017.” https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems, 2017. [Last access:
25 de Novembro de 2017].

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies.html
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems

	Introduction
	Background: Android and its presentation layer
	Related Work
	Research Goals
	A Catalog of Code Smells (RQ 1)
	Importance and Frequency of the Code Smells (RQ 2)
	Prevalence of the code smells (RQ 3)
	Discussion
	Threats to Validity
	Conclusion

