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Abstract

In the last decade, development in quantum com-
puting has threatened the security of current public-
key cryptography. For this reason, the Ameri-
can National Institute of Standards and Technology
(NIST) has organized a competition-like process to
standardize new quantum-resistant public-key en-
cryption and digital signature schemes.

This research project aims to give a general
overview of post-quantum lattice-based cryptogra-
phy and analyze and compare the submitted lattice-
based public-key encryption schemes over perfor-
mance, security, distinguishing features and poten-
tial vulnerabilities.

1 Introduction

In the last decade, research in quantum computers has
developed significantly, to the point that big companies,
such as Google and IBM, claimed their quantum supremacy.
If a big enough quantum computer is ever built, it could
seriously threaten the security of many of today’s public-key
cryptosystems. Thanks to Shor’s algorithm [1], it would
solve mathematical problems, such as integer factorization,
discrete logarithms and elliptic curves, in polynomial time.
Therefore, encryption, key establishment, and digital signa-
ture schemes that rely on these computational problems will
be severely affected.

In response to this problem, the American National In-
stitute of Standards and Technology (NIST) has organized
a competition-like process to standardize new encryption
and digital signature schemes, which are robust against
both classical and quantum attacks. The first round of the
competition started in 2017 when 69 candidates, including
public-key encryption (PKE) and digital signature (DS)
schemes, were submitted. These schemes were analyzed
thoroughly by both NIST and public peer reviewers, which
assessed theoretical and empirical security, performance, and
risk factors. At the time of writing, seven finalist schemes
and eight alternates made it to the third and final round. The
candidates and reports for each round can be found here [2]

(31 [4].

The cryptographic schemes submitted to the competi-
tion can be divided into five main categories with respect to
the mathematical problem they are based on. As can be seen
in [5], these categories are: (1) lattice-based, (2) code-based,
(3) multivariate (4) hash-based, (5) Supersingular Isogeny-
based. This research project aims to present to the reader
a general overview of the state-of-the-art post-quantum
lattice-based encryption and key encapsulation systems. In
addition to a detailed background into this subject, this paper
also offers an analysis and comparison of the lattice-based
encryption schemes admitted to the second round of the
NIST competition. Particular focus will be paid to (1) the-
oretical security against both classical and quantum attacks,
(2) theoretical and practical level of cost, especially runtime
and bandwidth performance, (3) computation/distinguishing
features, (4) potential vulnerabilities and shortages (5) overall
complexity of the schemes and their implementations.

Note that round 3 of the NIST competition is happen-
ing at the time of writing. Therefore, the analysis is based
on the submissions in round 2. In the discussion section, a
paragraph is dedicated to the current state of the competition.

The paper is structured as follows. Background knowl-
edge is given in section 2. In section 3, the method is
explained. A summary of each analyzed scheme is given in
section 4. Theoretical and practical performance results are
shown and briefly discussed in section 5. In section 6, the
security of the schemes is analysed. An ethical discussion
is presented in section 7. The results of the research project
are discussed in section 8. Finally, section 9 contains the
conclusions and future work.

2 Background

Lattice-based cryptography is based on lattices, which are
algebraic abstract structures that consist of an ordered set
of points with a periodic structure in an n-dimension space.
They can be defined by a set of n vectors B = (by, ba, ..., by,),
denominated as the basis of the lattice (see Figure 1). Some
computationally hard problems can be defined on lattices:

SV P : given a set of basis B of an n-dimensional lat-
tice L, find the shortest non-zero vector in the lattice.
An approximated version also exists: SV P,: given an
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Figure 1: A 2-dimensional lattice generated by the basis B =
(b1, b2). (image taken from [6])

approximation factor v >= 1, find a solution v such that
[lv]| <=5 * A1(L), where ||v]| is the euclidean length of the
vector v, and Aj (L) = min,ep\o||z|| is the minimal distance
of the lattice L, which is the length of the shortest non-zero
vector in L .

CV P : given a set of basis B of an n-dimensional lat-
tice L and a target point X, find the lattice point that is closest
to the target. An approximated version also exists: C'V P, :
given an approximation factor v >= 1, find a solution v such
that ||v — z|| <=~y = dist(z, L).

Most of the submitted schemes are based on the Regev’s
Learning with Errors (LWE) problem [7] or its variants:
Module Learning with Errors (MLWE) and Ring Learning
with Errors (RLWE). Their security can be proven by finding
a theoretical reduction to a computationally hard lattice
problem.

Informally, LWE can be seen as, given a sequence of
approximate random linear equations on s in Z, find s. A
more appropriate definition of the problem is given below.

LWE : given a dimension n, a modulus q and an er-
ror distribution x over Z, construct m samples of the form
(a, b= {a,s) + e mod q) where s € Z", a € Zy chosen
uniformly at random and an integer error e € 7Z sampled
using x (See Image 2 for a visual representation of a LWE
instance). We can define two versions of the LWE problem:
search, which asks to recover the secret s and decision,
which asks to recognize samples taken from the LWE
distribution from uniformly sampled ones.

One downside of cryptographic schemes based on LWE is
that they require quite large keys, usually in the order of 12,
and therefore, their runtime performance is also affected.
One way to reduce the size of the keys is by assuming that
the lattice has a specific structure. This can be achieved by
interchanging the group Z; with a ring, such as the quotient
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Figure 2: Image taken from [8]

polynomial ring R, = Z,[z]/(z™ + 1), where Z,[z] is the
set of all polynomials that have coefficients in Z,. One can
then sample instances in (R’;, R,) where k is the rank of the
lattice. If & = 1, then we call the problem Ring-LWE, if
k >= 2 we call it Module-LWE. Thanks to the additional
structure, MLWE and RLWE feature better performance
than LWE, but they are theoretically more vulnerable to
attacks that could exploit the extra structure. Even though
no attack that exploits the additional structure has been
found so far, the cryptographic community believes that
these schemes need to be further studied. MLWE can be
considered as a trade-off between the security of LWE and
the high performance of RLWE [9]. MLWE also features
incredible flexibility; in fact, to increase security, it is enough
to change the rank k without affecting the underlying ring I2,
or any arithmetical operation defined on it.

Another variant of LWE is Learning with rounding (LWR). It
differs from LWE in the way the equations are approximated.
While in LWE a small error is added, in LWR they get
rounded to a smaller modulo. While maintaining the same
level of security, LWR features two advantages with respect
to LWE: it is more compact since, by rounding, the size of
the keys and the ciphertext decreases, and it is more simple
and efficient since it does not need to sample errors from
a distribution. The Module and Ring variants can also be
applied to the LWR assumption, respectively MLWR and
RLWR.

An alternative to LWE/R and its variants is NTRU (Nth
degree-truncated polynomial ring units). NTRU was first
proposed in 1998 by Hoffstein, Pipher and Silverman
[10] as a public-key cryptosystem, with the name of
NTRUEncrypt (see appendix A for a description of the
scheme). It is based on factorization of polynomials over
the ring R = Z,[z]/¢1 * ¢, where 1 = (z — 1) and
bn=@"=1)/(z—-1)=a" 1 +2" 2+ . +1

NTRU, unlike LWE/R, lacks an average to worse case
reduction; however, thanks to its long history of cryptoanaly-
sis, the cryptographic community lays trust in it.



According to Peikert [11], lattice-based cryptography is
the most promising alternative to nowadays public-key
cryptography for the following reasons: (1) it is efficient,
bandwidth requirements are fairly small and runtime
performance is even better than classical schemes (e.g.,
Diffie-Hellman). (2) So far, it has been proven resistant
against quantum attacks. (3) Its security (except for NTRU)
is based on formal average-case to worst-case reductions,
which guarantee that it is computationally hard on average
instances. (4) It can be used to implement different schemes,
such that encryption and digital signatures, and it also
provides solutions for the ‘holy grail” problems, such as fully
homomorphic encryption.'

3 Method

During the first stage of the research, for approximately 1-2
weeks, a thorough literature study has been conducted to
acquire a basic understanding of the mathematical concepts
behind lattice-based encryption. Research has also been done
on the state of the art post-quantum cryptography. Useful
information can be found in NIST round reports [2][3][4] and
in [5]. Furthermore, in this survey [lattice survey peikert],
Peikert gives an overview of the lattice-based encryption
development in the last decade.

Subsequently, the submitted schemes were analyzed.
This was done firstly by reading the reference papers submit-
ted to the NIST competition and secondly by reading reviews
and comments published by the peer review community.
Particular attention was paid to the performance, security
and distinguishing features of the schemes. Finally, After the
theoretical analysis, a practical analysis has been conducted.
In fact, the codebases of the schemes were cloned and run all
on the same machine to obtain data for a fair comparison.

4 Summary of Analysed Schemes

This section presents an analysis for each of the considered
schemes. For every scheme is given an insight into the
original problem they are based on and how they differ from
it, in addition to performance, security and general features.
seven schemes out of nine are based on LWE/R or their
variants; therefore, it is worth dedicating a paragraph to
explain the common features.

4.1 LWE/R based schemes:

All LWE/R based schemes admitted to the second round of
the competition are key encapsulation mechanisms (KEMs).
They are all based on an IND-CPA PKE scheme which
is generally part of the submission, and they all achieve
IND-CCA security by applying slight modifications of the
Fujisaki-Okamoto (FO) transformation [12] (see appendix B

"Fully homomorphic encryption is a form of encryption that allows a
user to make computations on encrypted data, without first decrypt-
ing it, eventually having the same result that would be produced if
the operations were computed on decrypted data.

for a detailed explanation of IND-CPA and IND-CCA). The
main idea behind this transform is to check if the ciphertext is
valid by re-encrypting it after decryption and accept it only if
it is valid. This procedure obviously affects the performance
of the schemes, but it gives them higher security. In order for
the FO to produce a correct IND-CCA KEM, the IND-CPA
PKE needs to have a negligible failure rate, approximately
lower than 2128 [13].

For every scheme, unless otherwise specified, three pa-
rameter sets are proposed. These parameter sets reach level
1, level 3, and level 5 security specified by NIST.

The schemes differ mainly on the choice of the under-
lying ring, the dimensions of the moduli, the error correcting
codes, and the distribution used to sample errors and secrets.

4.1.1 FrodoKEM

FrodoKEM [14] is a suite of KEMs based on the LWE prob-
lem. It differs from the original scheme proposed by Regev
[7] on multiple points, such as: A is a square N x N matrix
instead of a long rectangular one, and it is pseudorandomly
generated from a small seed. These modifications allow
FrodoKEM to use smaller keys and ciphertexts. New sets
of parameters are also suggested. The submission proposes
three sets of parameters that differ on the security level:
FrodoKEM-640 (level 1), FrodoKEM-976 (level 3), and
FodoKEM-1344 (level 5). The three versions differ mainly
on the ring and the modulo q, which is a power of 2 such
that ¢ <= 216 and the standard deviation of the Rounded
Gaussian distribution. Moreover, for every security level, two
implementations are provided: AES, which uses AES128 to
generate the matrix A, and SHAKE, which uses SHAKE128.
Generally, SHAKE offers better performance, whereas AES
is particularly suitable on platforms that provide hardware
for AES acceleration (such as AES-NI on Intel platforms).

The general design idea behind FrodoKEM is: “a con-
servative approach that errs comfortably on the side of
security and simplicity over performance and (premature)
optimization.” [14]. Even though the creators claim that
the performance of FrodoKEM is acceptable for most of
nowadays usages, it is significantly less efficient than the
schemes based on algebraically structured versions of LWE.
Specifically, the bandwidth usage and the runtime are one
order of magnitude bigger than the other schemes.

The performance loss is a direct disadvantage of choos-
ing LWE. However, there are some significant advantages as
well. First of all, the scheme is really simple (e.g., there is
no need to implement the complicated NTT? transform since
the main operations are simple matrix-vector products). Sec-
ondly, it is theoretically more secure than the other schemes

Level 1, level 3 and level 5 are defined by matching or exceeding the
brute-force security of respectively AES-128, AES-192 and AES-
256.

3Number Theoretic Transform: it is the Discrete Fourier Transform
over aring, it allows to store elements of the ring in a compact way
and to multiply them efficiently.



because it has less structure that an attacker could exploit.
Even though no attacks that exploit the extra structure have
been found so far, the more robust theoretical security is the
reason why FrodoKEM was selected as an alternate scheme.
To cite NIST words: “FrodoKEM could also serve as a
conservative backup in the case of new cryptanalytic results
targeting structured lattices being discovered in the third
round.” [3].

4.1.2 NewHope

NewHope [15] is a family of KEMs that rely on the
RLWE assumption. It is based on the polynomial ring
R = Zy[z]/(z™ + 1), which is a power of 2 cyclotomic
ring. The submission includes only two parameter sets:
NewHope512 (level 1) and NewHope1024 (level 5), because,
in order to implement the NTT efficiently, the size of the
Ring n has to be a power of 2, and the following relation
between n and the modulo ¢ must hold: ¢ = 1 mod 2n.
Therefore, it is impossible to achieve any intermediate
security level.

NewHope is based on the scheme described by Lyuba-
shevsky, Peikert and Regev [16]. The modulo ¢ is the same
for both implementations and is chosen to be as little as pos-
sible since the security level grows with the noise-to-modulo
ratio; the smallest modulo that satisfies all the constraints is
g = 12289. The secret s and the error e are both sampled
from the same centered binomial distribution, which in
practice is easier to implement than a Gaussian distribution
and is less vulnerable against timing attacks.

NewHope achieves excellent performance both for band-
width and runtime. However, it is fairly complex due
to the implementation of the NTT and the reconciliation
mechanism. Furthermore, unlike MLWE/R schemes, RLWE
based schemes do not feature flexibility in changing the
security level; in fact, to increase security, the underlying
ring must be altered. For these reasons, NIST developed a
slight preference over MLWE schemes and decided not to
admit NewHope to the third and final round.

4.1.3 Kyber

Kyber [17] is a suite of KEMs based on the MLWE problem.
In the submission, three parameter sets are specified: Ky-
ber512 (level 1), Kyber768 (level 3) and Kyber1024 (level
5). In addition, for every parameter set, an optimized version
“90s” is provided. The parameter n = 256 is the same for
all the variants because they need to encapsulate keys with
256 bits of entropy (encrypt a plaintext 256 bits long). Also,
the modulo ¢ = 3329 is the same for all the variants. It was
chosen to be as small as possible, satisfying the condition
n|(q¢ — 1) to implement the NTT efficiently and have negli-
gible failure probability. The scalar k, used to fix the lattice
dimension to a multiple of n, is the only parameter that can
be changed and is, therefore, the parameter responsible for
changing the security level.

Kyber is based on the module R’; where R is the same
ring used by NewHope. Kyber also uses the same centered
binomial distribution to sample secrets and errors.

Kyber can be seen as a trade-off between efficient RLWE
schemes and secure LWE ones; the parameter sets proposed
in the submission witness less structure than RLWE and
similar performance, being more scalable. In fact, being
based on MLWE assumption, in order to vary the hardness,
and therefore the security, it is enough to vary the dimension
of the module without changing the underlying ring structure.

Kyber was selected to be a finalist and it is considered
to be a likely candidate for standardization.

4.14 Saber

Saber [18] is a suite of KEMs based on the MLWR prob-
lem. It differs from MLWE by applying a second smaller
modulo reduction instead of adding a small random error.
For this reason, MLWR schemes halve the randomness
required and reduce bandwidth usage. The Module structure
gives it the same flexibility as MLWE schemes, such as
Kyber. The submission contains three different parameter
sets: LightSaber (level 1), Saber (level 3), FireSaber (level 5).

Saber has excellent performance both for bandwidth
and runtime. The MLWR structure allows it to reduce
bandwidth and, thanks to the choice of using power of 2
moduli, modular reductions can be computed efficiently by
using bit-masking operations, but it makes it impossible to
implement the NTT. However, this is not a severe problem
because the scheme only requires multiplications between
random elements from I2; and small elements from the same
ring. Moreover, since the small elements have bounded
coefficients in absolute value, it is possible to implement
multiplication efficiently by simple circular shifts and
additions. The overall performance is comparable to the
ones of other structured LWE schemes. Thanks to its high
performance, simplicity and flexibility, Saber was admitted
to the final round.

4.1.5 LAC

LAC [19] is a family of cryptographic algorithms based on
the RLWE assumption. The submission provides three sets
of parameters for the KEM scheme: LAC-128 (level 1),
LAC-192 (level 3), and LAC-256 (level 5).

The principle design idea is to keep the keys and ci-
phertext sizes as small as possible. Therefore, to reduce the
bandwidth requirements, the byte modulus ¢ = 251 was
chosen. As a consequence, it is not possible to implement the
NTT to compute operations between polynomials efficiently;
however, Intel Advanced Vector Extensions2 (AVX2) can
be used to improve the efficiency of the computations
by parallelizing multiple multiplication operations in one
instruction cycle. A consequence of using a small modulo is
that the error rate increases. Therefore, LAC uses an error
correction code, such as BCH, to guarantee correctness.
LAC uses a similar cyclotomic ring as NewHope, and it also
samples secrets and errors from a narrow centered binomial
distribution.

During the first and the second round, some security is-



sues were discovered. Despite the designers modified LAC
to resist attacks that could exploit these issues, NIST believes
that LAC still needs to be studied further before it can
be considered for standardization. Therefore, it was not
admitted to the final round.

4.1.6 Three Bears

Three Bears [20] is a family of KEMs based on the Kyber
MLWE implementation with a major difference: the polyno-
mial ring is replaced with the integers modulo a generalized
Mersenne number?, making it Integer Module Learning With
Errors (I-MLWE). The submission contains three parameter
sets that achieve different levels of security: BabyBear (level
2), MamaBear (level 3) and PapaBear (level 5).

The creators’ goal is to explore some less studied vari-
ants of the LWE problem that might have a good potential,
such as -lMLWE. The design choice to store the private key
as a seed is motivated by the fact that the key generation is
very fast and, therefore, it is worth saving on space. As a
consequence, the private key is only 40 bytes long.

As with the others RLWE and MLWE schemes, Three
Bears is characterized by excellent bandwidth and runtime
performance. However, both the I-'MLWE problem and
Three Bears have not received much attention and have not
been thoroughly studied by the community; therefore, NIST
decided not to admit it to the final round despite its qualities.

4.1.7 Round5

Round5 [21] is a family of KEMs based on (Generalized)
LWR problem. It is a merger of the round one submissions
Round?2 [22] and HILAS [23]. The most particular feature of
Rounds5 is the unified design that allows it to be instantiated
as both a LWR or a RLWR problem depending on the input
parameters. This features allows Round5 to be flexible and
particularly suitable for more applications: instantiated as a
LWR, it suites applications that don’t have strict performance
requirements but need high security, while instantiated as
a RLWR problem, it suites for applications with opposite
requirements. RoundS uses ¢ = 2" +...+x+1,withn+1a
prime, as a reduction polynomial because it allows to choose
n from a wide range to achieve different security levels.

Round5 is characterized by a great bandwidth and run-
time performance. The rounding leads to faster execution
time since no errors has to be sampled and reduces the
bandwith requirements. The moduli p and ¢ are powers
of 2, therefore rounding is computed efficiently by simple
bit-masking operations. It derives XEf error correcting code
from HILAS to reduce the failure probability.

The submission is composed by 18 parameter sets: six
ring parameter sets without error correction, six ring param-
eter sets with error correction, and six non-ring parameter
sets. Each parameter set contains IND-CPA and IND-CCA
version of security levels 1, 3, and 5. In this paper are

“Marsenne number: a prime number that is one less than a power of
two (2" — 1).

analyzed the level 5 IND-CCA variants for the ring version
with error correcting code (RSND_5CCA_5d) and the non
ring version (RSN1_5CCA _0d).

Even though Round5 achieves great levels of perfor-
mance, it is not enough to compensate its complexity.
Therefore, NIST decided to focus its attention to other
structured-lattice schemes and not to admit Round5 to the
final round.

4.2 NTRU

Only two KEMs based on the NTRU assumption have
been submitted to the NIST competition: NTRU [24] and
NTRUPrime [25]. The idea behind NTRU assumption is the
hardness of factoring polynomials, in a truncated polynomial
ring, into a quotient of two small coefficients polynomials.

Both KEMs are perfectly correct, which means that de-
cryption is guaranteed to always be correct, and they both
feature fast encryption and decryption routines since the
main operations are efficient polynomial multiplications.
They both achieve IND-CCA security by applying a version
of the FO transform.

Many versions of NTRU have been designed in the
past decades. Appendix C shows the genealogical tree of
such schemes.

4.2.1 NTRU

NTRU [24] is a family of KEMs based on the NTRU
assumption. The NTRU round 2 submission is based on
the first round’s NTRUEncrpypt and NTRU-HRSS-KEM
submissions [2]. Four parameter sets for NTRU are pro-
posed: ntruhrss701, ntruhps2048509, ntruhps2048677 and
ntruhps4096821. The creators provide two different models
to assess the theoretical security level: a non-local model,
which is similar to the ways other schemes assess security,
and a local model, a more aggressive one. NTRU lacks a level
5 scheme in the non-local model. NIST declared that these
models need to be further studied in order to find a consensus.

NTRU features fast encapsulation and decapsulation
routines, but the key generation is significantly slower
than the RLWE and MLWE schemes because it requires
polynomial division; for this reason, it is harder to achieve
forward security in ephemeral encryption systems.

Even though it lacks a formal worst-case-to-average-
case reduction, NTRU has been extensively studied during its
long history, and other organizations have even standardized
some of its versions. For this reason, NIST developed a
strong preference for NTRU and admitted it to the final
round.

4.2.2 NTRUPrime

NTRU Prime is a family of KEMs composed by “Stream-
lined NTRU Prime” and “NTRU LPRime”. The idea
behind NTRU Prime is to reduce significantly the attack
surface in exchange to a slight loss in performance. The
main difference with respect to the other submissions is



the choice of the ring. NTRU Prime in fact substitutes the
commonly used ring R = Z,[z]/(z"™ + 1) with the field
F = Z,[z]/(z™ — « — 1), where n is prime. This change
reduces the ring homomorphism available to an attacker.

The main differences between the two KEMs are the
algebraic structure to compute the public key and the way
they add noise to the ciphertext. Streamlined NTRU is
denominated as a “quotient rounded NTRU’ scheme. It
follows the classic NTRU key generation procedure with
a small change: instead of computing the public key as
h = 3% g/f computes h = ¢/3 * f. This new design
choice brings two advantages: slightly better performance
obtained by skipping computing h~! in decryption routine
and less space for storing the key pair. This scheme is
called “rounded” because it adds noise to the ciphertext by
computing h * r and rounding every coefficient to the nearest
multiple of 3. The “rounded NTRU” has two advantages
over “noisy NTRU”: first of all, it simplifies protection
against chosen-ciphertext attacks because the message m is
directly determined by r; secondly, thanks to the fact that the
ciphertext is rounded, it requires smaller bandwidth. NTRU
LPRime is denominated a “product noisy NTRU’ scheme.
It is called “product” because the public key is generate as
h = d+ a * G, where a and d are secret small polynomials
and G is a public element in ;. As for the noise, it follows
the original design of choosing m at random.

NTRU Prime proposes three sets of parameters, respec-
tively in the security classes level 2, level 3 and level 4. NIST
advanced NTRU Prime to the final round as an alternate
finalist because of the different choice for the ring, which
could be an alternative to the cyclotomic ring used by most
of the other schemes. However, NIST asked to NTRU Prime
submitters to provide a security level 5 parameter set.

5 Performance Analysis

In this section, the theoretical and practical performance re-
sults will be reported. For every scheme, different security
levels and optimized versions are provided. To make the com-
parison as fair as possible, in this section we analyze the NIST
level 5 non-optimized version for each scheme.

5.1 Bandwidth and Memory Comparison

Table 1 shows the claimed sizes (in bytes) of the public key
(pk), private key (sk) and ciphertext (ct) for the analyzed
schemes.

5.2 Run-time Comparison

Table 2 shows the claimed run-time efficiency measured in
CPU cycles. The machines the schemes were tested on are
also reported.

Table 3 shows the experimental run-time data obtained
by running the schemes on a Intel Core i7-8750H 2.2
GHz with hyper threading and turbo boost on. It can be
noticed that the schemes generally achieved a better runtime
performance on this machine then on the test-benches

H scheme pk sk ct H

NewHope 1824 3680 2208

FrodoKem 21520 43088 21632

Kyber 1568 3168 1568

Three Bears 1584 40 1697
(seed)

NTRU 1230 1592 1230

LAC 1056 2080 1424

Saber 1312 1664 1472
(384)

Streamlined 1184 1462 1312

NTRU Prime

NTRU 1322 1999 1184

LPrime

R5SND_SCCA 978 - 1285

_5d

R5N1.5CCA 14 636 - 14 708

_0d

Table 1: Claimed bandwidth and memory performance (bytes)

used by the submitters. A possible explanation could be
that hyper-threading and turbo-boost were enabled on this
machine while they were disabled on the other test-benches.
The reason why the schemes were tested using these config-
urations is that eventually, when one or more schemes will
be standardized, they will run on ‘ordinary’ machines with
this features enabled.

Moreover, it can be also noticed that the relative differ-
ences in performance do not change; RLWE and MLWE
achieve high runtime performance, LWE scheme is the
slowest one, and NTRU features competitive performance
for encoding and decoding but significantly slower key
generation than structured LWE schemes.

It is worth noticing that data for Three Bears and Streamlined
NTRU Prime is missing. This is due to an error during
compilation that prevented them from running. Since this
is a theoretical research project, and gathering experimental
data is an addition, it was decided not to spend more time
trying to fix these errors, but to focus on more in depth
theoretical analysis on the security of the schemes. Finally,
runtime results for NTRU LPrime are exaggeratedly big.
This suggests a possible mistake made when executing the
experiment. However, due to time constraints, this situation
was not further investigated.

5.3 Failure Rate

Table 4 shows the claimed decryption failure rates of the an-
alyzed schemes.

From this table it can be noticed that NTRU based schemes
are the only correct KEMs; however, the failure rate of the
other schemes is so low that they can be assumed to be cor-
rect.



scheme machine key enc dec
gen
NewHope Intel core i7- 244 377 437

4770k 3.5 GHz 944 092 056

FrodoKem Intel core i7- 30301 32611 32 387
6700 3.4 GHz 000 000 000

Kyber Intel core i7- 331 396 451
4770k 3.5 GHz 418 928 096
Three Intel core 13- 118 145 211
Bears 6100U 2.3GHz 000 000 000
NTRU Intel core i17- 31835 1 856 4 920
4770k 3.5 GHz 958 936 436
LAC Intel core-17- 377 643 916
47708 3.1GHz 123 024 835
Saber Intel Core I5- 131 159 165
72000 2.5GHz 000 000 000
Stremlined Intel Xeon 940 44788 93 676
NTRU E3-1275v3 3.5 852
Prime GHz
NTRU Intel Xeon 44948 81144 113
LPRIME E3-1275v3 3.5 708
GHz
R5ND.5 Intel Core i7 101 152 207
CCA5d 2.6GHz 000 000 000
R5N1.5 Intel Core 17 29 048 26 589 26 844
CCA_0d 2.6GHz 000 000 000

Table 2: Claimed runtime performance (cpu cycles)

6 Security Analysis

To analyze the security level of the schemes, we only con-
sider attacks on unstructured lattices since no attacks that can
exploit the additional structure of the ideal or NTRU lattices
have been found so far. Many strategies to assess the security
of the encryption schemes are known. However, we can
rule out BKW (Blum-Kalai-Wasserman) and linearization
attacks due to the limited number of provided samples by
the schemes, leaving out with two BKZ (block Korkine-
Zolotarev) attacks: primal and dual attack. Primal attack is a
widely used strategy to assess security for the search-LWE
problem because its estimation is pretty conservative and it
only requires polynomial LWE samples [primal attack].

6.1 Primal Attack

Informally, one can say that the primal attack consists of
constructing a unique-SVP instance from the LWE problem
and solving it using BKZ. The BKZ algorithm reduces the
lattice basis by using an oracle in a smaller dimension b.
The two widely used techniques are (1) enumeration, that
runs in super exponential time but requires limited memory
and therefore, is efficient in low dimensions; (2) sieving,

scheme key enc dec
gen

NewHope 138 195 227
420 328 560

FrodoKem 2 813 3 587 3 414
367 118 095

Kyber 225 256 279
804 810 999

3 431 341 168
973 056 663

LAC 101 171 286
422 105 049

Saber 150 174 189
279 258 999

NTRU 6 373 12708 19 060
LPrime 771 470 046

NTRU

Table 3: Experimental runtime performance (cpu cycles)

which is exponential both in time and in space and is more
efficient than enumeration in higher dimensions. Although it
is known that the number of calls to the oracle is polynomial,
it is really hard to estimate it precisely. Therefore, the
primal attack aims to evaluate the core-SVP hardness, which
consists of just one call to the oracle in the smaller dimension
b, clearly underestimating the actual security of the scheme
[26]. A more formal definition of the primal attack is given
below.

Primal attack : Given a concrete LWE instance
(A, b), construct the lattice as A = {z € zZm™+l .
(A|L,| —b)xr = 0 mod ¢} of dimension d = m +n + 1,
volume ¢™, and with a unique-SVP solution v=(s | e | 1) of
norm A =~ ov/n + m. Then solve using a lattice reduction
algorithm, such as BKZ, with appropriate block size b.

In Table 5 are reported the estimated classical and quantum
costs, given in log, of CPU operations, for primal attacks on
the level 5 security version of the schemes.

6.2 Dual Attack

Dual Attack is another strategy to assess the security of a
scheme; however, it works only on LWE based schemes and
not on NTRU based ones.

Dual Attack : The Dual Attack aims to solve the
Decisional-LWE by reducing it to an instance of the Short
Integer Solution Problem (SIS). The SIS problem consists of
finding short vectors in the lattice L = {z € Z*|2' + A =0

mod ¢}, where the rows of A are the LWE samples.

>Values computed respectively in the non-local and local model.

®Quantum values for the primal attack are not reported in NTRU
specification paper.



scheme failure
rate

NewHope 27213
FrodoKem 27252
Kyber 27228
Three Bears 27256
NTRU correct
LAC 27138
Saber 27165
NTRU Prime  correct
R5SNDSCCA 27239
_5d

R5N1.5CCA 27151
_0d

Table 4: Claimed failure decryption rate

In Table 6 are reported the dual attack security esti-
mates, given in log, of CPU operations, for the level 5
schemes for which a dual attack analysis can be applied.

7 Responsible Research

In this section, we motivate the ethical needs of this project
and we propose an ethical discussion about the reproducibil-
ity of the experiments conducted within this research.

7.1 Ethical Discussion about the Project

Cryptography is a branch of mathematics and computer
science that aims to protect people’s privacy by encrypting
data and guaranteeing confidentiality (only who has access to
some data can decipher it) and integrity (only who is allowed
to change data can change it). It consists of encryption and
digital signature schemes. These schemes are used every day
in applications such as online banking, messaging systems,
medical systems...

However as explained in the introduction, quantum com-
puters will threaten some of the most widely used public
key encryption and digital signature systems, placing at risk
people’s privacy.

The goal of this project is to widen the study on new
quantum-resistant cryptosystems that will allow people to
protect their privacy.

7.2 Reproducibility of Experiments

This research project is mainly theoretical. This means that
most of the information and results reported in this paper
have been gathered by studying the existing literature.

The research was conducted in the most possible unbi-
ased way, trying not to be influenced by the opinions that
already exist on the analyzed schemes. The data is reported
in the most transparent way possible.

H scheme classical quantum H
NewHope 259 235
FrodoKem 281.6 256.3
Kyber 256 232
Three Bears 354 321
NTRU 179/253° -°©
LAC 323 293
Saber 283 257
Streamlined 153-368  139-208
NTRU Prime
NTRU 140-210 153-364
LPrime
SND_5CCA 256 233
_5d
R5N1.5CCA 257 234
_0d

Table 5: Claimed primal attack cost

H scheme classical quantum H
NewHope 257 233
FrodoKem 279.8 254.7
Kyber 256 232
LAC 320 290
Saber 338 308
SND_5CCA 259 235
5d
R5N15CCA 257 234
0d

Table 6: Claimed dual attack cost

As for the practical experiments, an ordinary Intel x64
laptop was decided to use as a common unbiased test-bench
to asses the practical runtime performance of the schemes. To
reproduce this experiment, one has to clone the source codes
that can be found here [3] and run the test scripts already
provided. As the schemes were developed on different
operating systems, using different libraries and language
versions, the most difficult and time consuming part of the
experiment will be to make the source codes compile and run
without mistakes.

8 Discussion

In this section, we discuss the results reported in the sections
5 and 6 and present a general overview of the lattice-based
cryptography up to date with NIST round 2.



8.1 Bandwidth and Memory Performance

As can be seen in table 1, the data supports the theoretical
claims presented in the background section. LWE based sys-
tems suffer from high bandwidth and memory usage, as can
be noticed by looking at FrodoKEM’s data. Generally, LWR
schemes require less bandwidth than LWE ones because of
the compactness of the keys and ciphertexts achieved by
rounding to a smaller modulo. In fact, Saber requires less
bandwidth and memory than Kyber. It can also be noticed
that schemes based on structured lattices feature high and
comparable performance.

Private keys are not a deciding factor in bandwidth re-
quirements because they are never shared, but they account
for memory usage. ThreeBears and Saber give up a little bit
of performance to generate private keys from a small seed,
which makes them more suitable for systems characterized
by limited memory, such as embedded systems.

8.2 Runtime Performance

The data gathered in Table 2 and in Table 3 supports the
runtime claims given in the background. It is clear that
schemes based on structured lattices have better runtime
performance than those based on unstructured lattices.
Schemes based on MLWE/R and RLWE/R achieve com-
parable results, while NTRU has similar performance for
encapsulation and decapsulation but has a very slow key
generation due to polynomial division required in the process.

However, the analyzed schemes have different features
and can be optimized for different platforms and appli-
cations. As an example, NTRU seems to feature high
performance on platforms which support AVX2 operations.
As a consequence, there is no best scheme overall.

8.3 Security

As mentioned before, schemes based on variants of Module
or Ring LWE/R have theoretical lower security than ones
based on plain LWE because of their extra structure that
attackers could exploit. Therefore, FrodoKEM, which is the
only scheme based on LWE assumption, could be used in
sensitive applications that need high security and do not have
strict performance constraints.

Schemes based on MLWE/R and RLWE/R witness more
structure. Even though their performance is similar, the
cryptographic community developed a preference towards
MLWE/R schemes because of their less structure and there-
fore higher theoretical security.

ThreeBears is the only submitted scheme based on -MLWE.
The goal of this scheme is to explore new possibilities
for lattice-based cryptography. However, even though the
security seems similar to the other schemes, NIST decided
not to consider it for standardization because it believes the
scheme has not being studied enough.

NTRU seems to feature similar security with respect to
LWE/R schemes. A significant disadvantage is that it lacks a

formal average-case to worst-case reduction. However, since
it has been subjected to cryptoanalysis for more than two
decades, and some versions have been standardized by other
organizations, it might be the most conservative choice.

8.4 Current status of round 3

The submissions of round 3 are slightly different from
the ones of round 2. The creators tried to improve them
taking into consideration the feedback received from the
cryptographic community and NIST itself. As a result, the
finalist schemes might have sightly different parameter sets
which increase security or performance, more thorough
theoretical proofs and more cryptoanalitic study as a support.
However, overall the schemes did no go through significant
changes.

Since round 3 is happening at the time of writing, and
will still go on for almost a year, not a lot of comments and
reviews about the schemes have been published yet.

9 Conclusions and Future Work

In this report we analyzed the most promising lattice-based
encryption schemes submitted to the NIST post-quantum
standardization competition. The lattice-based encryption
schemes that were admitted to the final round are Saber [18],
Kyber [17] and NTRU [24]. NIST declared that by the end
of the final round (early 2022), at most only one of these
three schemes will be standardized. Moreover, FrodoKEM
[14] and NTRU Prime [25] are taken into consideration as an
alternate finalist together with other three encryption/KEM
algorithms. These algorithms will need to be studied further
during a fourth round before they can be taken into consider-
ation for standardization.

As guidelines for the future, in addition to more crypt-
analytical study, NIST asked the cryptographic community to
investigate more on side channel resistant implementations,
performance data in internet protocols, and performance data
for hardware implementations.

Even though a big enough quantum computer is not
built yet, scientists believe that by 2035, they will build one
that can break classical public-key cryptographic schemes.
This means that an attacker could steal encrypted data today
and decrypt it in the next twenty years. Therefore, it is
important to deploy post-quantum encryption algorithms as
soon as possible. However, they cannot be fully trusted to
be resistant against both classical and quantum attacks. The
best solution to this problem is to have a transition phase in
which people will use hybrid encryption schemes composed
by both classical and post-quantum encryption algorithms.
Some experiments have already been carried out in the
past. For example Google used NewHopeUsenix’ together
with ephemeral elliptic curve Diffie-Hellman (ECDH) key
exchange in a hybrid TLS 1.2 ciphersuite in an experimental
version of the Chrome browser. Google has then reported

"An old version of NewHope-CPA.



than they did not encounter any unexpected impediment and
that the performance was affected by just a small margin.
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A NTRU original scheme
Parameters :

(N, p, q): three integer parameters, ¢ >> p.
Ly, Ly, Ly, Ly, sets of polynomials of degree N — 1 and integer coefficients.

Notation :
F®g=hwith by =00 fi- Ge—i + ity i nrei
KeyGeneration :

choose polynomials f, g € L, so that f has inverses F, and F}, such that:
F,®f=1 modgand F, ® f=1 mod p

compute public key h = F; ® ¢ mod gq.
Encryption :
select message m € L,, and random polynomial ¢inLg.
compute ciphertexte = p- ¢ ® h+m mod q.
Decryption :
first compute a = f ® e mod gq.

recover the message by computing m = F, ® a mod p.

B IND-CPA and IND-CCA

Ciphertext indistinguishability is the ability of a pair of ciphertexts to be indistinguishable to an attacker based on the messages
they encrypt.

IND — CPA : an attacker feeds an encryption oracle with messages m; and mo and gets back the ciphertexts c;
and co. The scheme is IND-CPA secure if the attacker has only a negligible advantage over random guessing to recognise
which ciphertext represent which plaintext. The attacker is said to have a negligible advantage if they win the challenge with
probability 1/2 + €, where ¢ is a small advantage.

IND — CCA : in addition to the abilities owned by the attacker in the IND-CCA challenge, they now have access
to the decryption oracle that they can feed with every ciphertext except with the ones the have to decrypt. The scheme is

IND-CCA secure if the attacker has only negligible advantage of winning the challenge.

Image 3 shows the queries available to an attacker in IND-CPA and IND-CCA models.

CPA query

mi 0, M4,1

N/
Encryption
oracle
C; E(k, mi’b) R

CCA query

A

N/
/
Decryption » G
oracle
m; D(k, c;)

Figure 3: Image taken from [27]
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C NTRU Genealogical Tree

|send m + hr for small m,r and public A in ring R (“NTRU”) |

cyclotomic, cyclotomic, large Galois group,
power-of-2 index, prime index, prime degree,
split modulus power-of-2 modulus inert modulus

(“NTRU NTT™) (“NTRU Classic”) (“NTRU Prime”)

round hr to m + hr

random ml |random m random m (“Rounded
NTRU Prime”)

key h =g/f )

keyv h = d + aG
key h = d + aG A
for small a, d, key h = g/f for sma‘ll a, d, for small f. g
; for small f, g public & .
public G ir R o (“Rounded
nTs (“Noisy Quotient (“Rounded .
(“Noisy Product NTRU Classic”) Product Quotient
NTRU NTT") NTRU Prime”) NTRU Prime”)
Lyubashevsky— — -
. original NTRU . — “Streamlined
Peikert-Regev -, | “NTRU LPRime” | P
cryptosystem [68] cryptosystem [54] NTRU Prime

Figure 4: Image taken from [25]
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