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Amacroscopic flowmodel for mixed bicycle–car traffic

M. J. Wierbos , V. L. Knoop , F. S. Hänseler and S. P. Hoogendoorn

Department of Transport and Planning, Delft University of Technology, Delft, The Netherlands

ABSTRACT
Bicycles are gaining popularity as a mode of transport resulting in
a mixed bicycle–car traffic situation on urban roads. Cyclists, how-
ever, are hardly included in traffic flow models which complicates
the design of safe and congestion-free traffic situations. This work
introduces class-specific speed functions based on two variables,
being space headway for both cars and cyclists. This enables the
macroscopic modelling of mixed bicycle–car traffic. The multi-class
macroscopic flowmodel is successfully tested for different traffic sit-
uations that occur on urban roads where cyclists and cars share the
same infrastructure, e.g. cyclists overtaking a queue of cars and cars
overtaking cyclists with reduced speed. The mixed bicycle–car flow
model allows travel time estimation of both classes, which in turn can
be used to evaluate the overall performance of a mixed traffic road.
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1. Introduction

Traffic participants in urban environments often share the available infrastructure. In places
with high cyclist volumes, the roads are used simultaneously by cars and cyclists. This cre-
ates amixed traffic situation inwhichboth classes canbe the fastestmovingonedepending
on the traffic state. In lowdemand situations, cars have the opportunity to overtake cyclists,
while in congested situations, the cyclists can manoeuvre alongside a queue of cars and
thus be the fastest moving class. An essential property of mixed traffic flow is this ability
of cyclists to continue moving in congested traffic. Describing this feature is important for
estimating the expected travel time loss, which is a common metric for road network per-
formance. The travel time loss may differ for the multiple user types since the experienced
delay depends on the traffic state and the specific class characteristics.

Macroscopic flowmodels are commonly used for travel time estimation. However, these
models generally handlemixed traffic situations by selecting cars as the reference class and
expressing the other classes in passenger car equivalents (pce) based on their impact to
the traffic flow. The pce-concept was first introduced in the U.S. Highway Capacity Man-
ual by (National Research Council 1965) and has been used in many studies since then
resulting in various methods to convert a mixed traffic stream into a uniform one, as sum-
marised by Shalini and Kumar (2014). A consequence of using the pce-concept is that the
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speeds for both classes depend on one (pce-based) density, and cannot depend on the
vehicle-bicycle composition leading to that density. Therefore, it does not fully represent
themovements observed inmixed bicycle–car traffic. Our purpose here is to overcome this
limiting model property by introducing an alternative approach that enables switching of
the fastest moving class in congestion.

This work presents amulti-classmacroscopic traffic flowmodel which uses class-specific
speed functions that depend on the density of all classes as independent variables. The dis-
tinction into classes is based on the mode of transportation only, so heterogeneity in e.g.
driver type is not considered. A Lagrangian approach is used, following groups of traffic
participants over time. Both group size and simulation time are discretised in the numer-
ical implementation, while position is a continuum. The class-specific speed functions are
two-dimensional and take into account the space headway of both cars and cyclists. The
successful working of the model is illustrated for different traffic situations that typically
occur on urban roads. The proposed model allows for travel time estimation for multiple
trafficmodesbydescribing their joint traffic dynamics,which in turn canbeused toevaluate
the overall performance of a mixed traffic road.

The paper continues with a background on macroscopic traffic flow modelling in
Section2, followedby anexplanationof themodellingprinciples in Section3, thenumerical
implementation of the model in Section 4 and the presentation of the class-specific speed
functions in Section 5. Afterwards, Section 6 illustrates the successful working of themodel
and Section 7 presents the discussion and conclusion.

2. Background onmacroscopic modelling

This paper aims to describe mixed traffic flow in an urban setting where cars and cyclists
share the infrastructure, using amacroscopic flowmodel. Macroscopicmodels describe the
evolution of trafficmovements over time and space at an aggregated scale using the quan-
tities: density, average speed and flow. This differs from microscopic flow models, which
describe the movements of individual traffic participants. The distinction between micro-
scopic andmacroscopic is therefore based on the level of detail. Macroscopicmodels often
use an equilibrium relationship between speed and flow. This equilibrium relationship is
commonly known as the fundamental diagram (Greenshield 1935).

The earliest macroscopic model is the LWR model, which is a first-order kinematic
wave model that was simultaneously introduced by Lighthill and Whitham (1955)
and Richards (1956). It describes the flow based on the assumption that traffic is a con-
tinuum and obeys the physical law for mass conservation. Using the density k, flow q and
average speed u at position x and time t, the continuity equation is given by:

∂k(x, t)
∂t

+ ∂q(x, t)
∂x

= 0, (1)

with

q(x, t) = u(x, t)k(x, t) (2)

and

u(x, t) = U(k(x, t)) (3)

stating that velocity u is given by the fundamental diagram U.
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The solution to thementioned systemof equations has two important properties: hyper-
bolicity and anisotropy. Hyperbolicity indicates that perturbations in the flow travel as
waves through time and space, so they are not instantaneously felt in the whole domain.
Anisotropymeans that traffic flow is influenced by the traffic state in front and not from the
back. For this, the wave speed of perturbations should never exceed the maximum veloc-
ity. Anisotropy requires the model to be weakly hyperbolic, which is the case if when the
velocity function is nonincreasing (Zhang et al. 2006; van Wageningen-Kessels et al. 2013).
In the simulation, the solution of the kinematicwavemodel is approximatedusing a numer-
ical scheme. The LWRmodel is commonly solved using Godunov’smethod, which is a finite
difference scheme (Godunov 1959), but also other methods have been applied.

The LWR model is both loved and criticised for its simplicity. The main imperfection
is that the model describes equilibrium states only, which implies that changes in traffic
state result in instantaneous speed adjustments. In reality, traffic is often in non-equilibrium
and a reaction time is observed for acceleration and deceleration. This deficiency has been
partially addressed in higher-order models by replacing the fundamental diagram with a
velocity function that includes acceleration behaviour based on driver anticipation, relax-
ation and traffic inertia, e.g. Payne (1971). After critique that the higher-order model is
not anisotropic and therefore unrealistic at traffic discontinuities (Daganzo 1995), several
adjustments are proposed to incorporate changes in e.g. density (Aw and Rascle 2000),
headway (Berg, Mason, and Woods 2000), velocity distribution (Zhang 2002), speed gradi-
ent (Gupta and Katiyar 2006) and driver physiological response (Khan et al. 2019). Despite
these developments in second-ordermodels, the first-order kinematicwavemodel remains
an effective and popular method to describe traffic flow as long as traffic flow phenomena,
e.g. capacity drop and stop-and-go waves, are not required.

The aforementioned models describe homogeneous traffic flow. The description of
heterogeneous traffic has been addressed in the development of multi-class models by
distinguishing traffic type using e.g. different velocities (Wong and Wong 2002; Zhang
et al. 2006), vehicle size (Chanut and Buisson 2003; Logghe and Immers 2008), and impact
basedonvelocity using static (Ngoduy and Liu 2007) anddynamic passenger car equivalent
(pce) values (van Lint, Hoogendoorn, and Schreuder 2008). Furthermore, developments
have beenmade in describing traffic situations with multiple lanes, e.g. the ‘2-pipe regime’
with slugs and rabbits (Daganzo 2002), modified speed–density relation based on lane-
changing (Jin 2010) and utility-driven lane changes (Shiomi et al. 2015). The disordered
traffic situation, in which lane discipline is lacking, has been captured in continuum mod-
els using e.g. available space (Benzoni-Gavage and Colombo 2003; Nair, Mahmassani, and
Miller-Hooks 2011; Fan and Work 2015) and lateral distances (Gupta and Dhiman 2014).

Heterogeneousmodels capture the characteristics of different traffic types and theeffect
of their interaction on the overall flow. Slow vehicles, such as buses (Lebacque, Lesort,
and Giorgi 1998) and lorries (Muñoz and Daganzo 2002), are considered as moving bottle-
necks for cars, whereas the impact of pedestrians on car traffic is addressed in Daganzo and
Knoop (2016). The model of Fan and Work (2015) includes the characteristic trait of small
vehicles, i.e. motor cyclists, to manoeuvre through congestion, maintaining a higher speed
than cars. This interaction between cars and powered two-wheelers is further developed
by Gashaw, Goatin, and Harri (2018), whose model also takes into account that a higher
share of two-wheelers results in a lower speed at similar roadoccupancy. Toour knowledge,
bicyclists have not been included yet inmacroscopicmodels. However, there are examples



TRANSPORTMETRICA A: TRANSPORT SCIENCE 343

of microscopic models that include bicycles, e.g. the individual-following model by Tang,
Huang, and Shang (2010) and the cellular automata model by Luo et al. (2015).

All macroscopic flow models describe traffic using the relation between position, time
andvehicle number. Threedifferent representations of traffic arise by fixingoneof the three
variables (Laval and Leclercq 2013). The most common one is the Eulerian coordinate sys-
tem,which fixes the vehicle number and visualises the number of vehicles that have passed
a location at a certain time. Another well-known representation is the Lagrangian coordi-
nate system in which time is fixed. Here, the time at which vehicles pass a certain location
is simulated, resulting in trajectories. The third and least common representation fixes the
position and describes the time at which vehicles cross a certain location.

Although the Eulerian method is most commonly used, the Lagrangian method has
been successfully applied to numerically solve the kinematic wave model as well. This has
been done for homogeneous traffic (Leclercq 2007; Wu et al. 2014), as well as mixed traf-
fic including trucks (vanWageningen-Kessels et al. 2011) andmotor cyclists (Gashaw, Harri,
and Goatin 2018). Examples of the Lagrangian method applied to second-order flowmod-
els are Greenberg (2001, 2004); Zhang,Wu, andWong (2012). In themacroscopic approach,
the Lagrangian method calculates the traffic evolution for platoons consisting of multi-
ple vehicles, whereas the microscopic approach gives the trajectories of individual traffic
participants. The macroscopic model reduces to a microscopic car-following model when
the platoon size is reduced to one vehicle only, as shown e.g. by (Aw et al. 2002) and
Leclercq (2007). Information travels downstream only in the Lagrangian Godunov scheme,
making it less prone for errors due to numerical diffusion. Using the Lagrangian meth-
ods therefore results in a more robust model compared to the Eulerian scheme where
information travels both up and downstream.

Based on the above, we have identified the gap in literature that bicycles are not yet
represented in macroscopic traffic flow models, while they are an important part of daily
traffic in countries such as The Netherlands and China. The common feature in the above-
mentioned models is that a fastest class is assumed; one class, i.e. the passenger car, is
assigned tohave thehighest speed irrespective of prevalent traffic conditions. This assump-
tion is limiting when representing bicyclists, since they are able to switch into being the
faster class when manoeuvring forward in congestion. This occurs, for instance, in the sit-
uation where the road is wide enough for a car and cyclist to move alongside each other,
and the cyclists can pass a queue of stopped cars. We include this phenomenon by intro-
ducing class-specific speed functions in the first-order macroscopic model, which depends
on the density of all modes. We use the Lagrangian method because of its modelling
accuracy.

3. Lagrangianmodel

The starting point of our model is the continuity equation in Eulerian coordinates,
Equation (1), which states that changes in density over time should match the change in
flow over space, indicating that vehicles should not suddenly appear or disappear from the
road. To rewrite into Lagrangian coordinates, we use the spacing s instead of the density
k as the main variable. Spacing is equivalent to space headway and is defined as the aver-
age distance between travellers belonging to the same entity. Furthermore, the spacing is
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inversely proportional to the density,

s = 1
k
. (4)

The spacing can also be expressed as the partial derivative of the position x to vehicle
number n:

s = − ∂x

∂n
. (5)

Here, the negative sign results from the choice in the numbering of traffic units. These
numbers are assigned when traffic units pass a certain position. When selecting a position
further along the road (larger x), less vehicles will have passed it (lower n), resulting in a
negative sign for the change in n.

When substituting Equation (4) into the Eulerian continuity equation, we get:

∂

∂t
(1/s) + ∂

∂x
(v/s) = 0 (6)

Now, using the quotient rule, Equation (5) and the Lagrangian time derivative

D
Dt

= ∂

∂t
+ v

∂

∂x
, (7)

we retrieve the continuity equation expressed in Lagrangian coordinates:

∂s

∂t
− s

∂v

∂x
+ v

∂s

∂x
= 0 ⇒ Ds

Dt
+ ∂v

∂n
= 0. (8)

The Lagrangian continuity equation states that speed differences between traffic units
coincide with changes in their spacing over time. In other words, when two following vehi-
cles initially go at equal speed and the first one slows down, the distance between the two
vehicles should decrease.

We now extend the model to describe multiple classes, similar to the multi-class
LWR model expressed in Eulerian coordinates Wong and Wong (2002). The conservation
equation holds separately for each class u and all variables are class-specific except for time:

Dsu
Dt

+ ∂vu
∂nu

= 0. (9)

The density of different classes are not combined into one effective density but treats them
independently instead. In practice, this implies that traffic participants of each class can
move alongside eachother as if they are using separate sections of the road. The interaction
between classes is included in the model via the speed function, which will be elaborated
in Section 5.

In the numerical implementation, both time and traffic units are discretised in finite
steps, while space remains a continuum. Although more classes are possible, we continue
with two only, being cars (u = c) and bicyclists (u = b). The traffic units within these classes
are grouped into platoons of a certain size. More details are provided in the following
section.
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4. Numerical implementation

The Lagrangian continuity Equation (9) is a hyperbolic equation which can be solved
numerically using the Godunov scheme. Following the works of Leclercq (2007) and van
Wageningen-Kessels et al. (2011), we use an explicit time-stepping scheme to solve the
continuity equation, resulting in the following discretised equation:

st+1
ui = stui +

�t

�n
(vtui−1 − vtui). (10)

This equation states that the spacing s in platoon iof classu in the following time step (t+ 1)
can be retrieved by taking the spacing at time t and add it to the difference in speed (v) of
subsequent platoons (i and i−1), corrected with the time step �t divided by the number
of traffic units in a platoon �n. To ensure stability and convergence of (10), the CFL condi-
tion should be met, which limits the distance a platoon can travel downstream within one
timestep (van Wageningen-Kessels 2013). This condition is given by:

�t

�n
max|dv

ds
| ≤ 1. (11)

The length of platoon i stretches between positions xui and xui+1 and the corresponding
spacing within that platoon equals its length divided by its size:

sui = xui − xui+1

�nu
. (12)

Using this discretisation for spacing,we can express the discretised continuity Equation (10)
in position xuwhich simplifies the simulation, resulting in Eq. (13). The newposition x of pla-
toon i and class u is retrieved by adding up the previous position and the distance travelled
within the time step �t.

xt+1
ui = xtui + vtui�t, (13)

The change in position is based on the speed v, which in turn depends on the spacing of all
classes in the previous time step. In our case, we use two classes, bicycles b and cars c:

vt+1
u = Vu(s

t
b, s

t
c), (14)

where Vu is the speed function specified by Equation (18) and (19) in Section 5.
The position and speed are given for the first car or cyclist of a platoon, which is defined

here as a platoon of dn traffic participants. When the platoon size equals 1, the scheme
is basically a microscopic car-following model. This equivalence has been demonstrated
by Leclercq (2007) and Zhang, Wu, and Wong (2012). In the macroscopic approach, the
platoon size exceeds 1 but it is not restricted to positive integers. Numerically, the platoon
size consists of 1.43 or 15.43 traffic participants. However, using decimals would come at
the cost of an intuitive physical interpretation of the modelling results. An example of the
numbering of platoons, positions and spacings are visualised in Figure 1(a). An additional
position is added (xun ) to mark the end of the last platoon and to ensure that a spacing can
be calculated for the area following the last platoon.

A choice is made on how the positions of the N platoons influence the spacing, which
influences the speed. Since the speed of a car or cyclist in a platoon is influencedmostly by
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Figure 1. Sketch showing the numbering of the position x and spacing s for two platoons of cars
and cyclists (a) and the linear interpolation to retrieve the car spacing at the positions of the bicycle
platoons (b).

what happens in front of the platoon, we argue that the downstream spacing is mostly of
influence to the speed and to a lesser extent the spacing within the platoon. This way we
ensure anisotropy in thenumerical scheme.Weuse thedownstreamspacing for calculating
the speed and the speed Equation (14) is further specified to:

vt+1
ui = Vui(s

t
bi−1

, stci−1
). (15)

This equation requires as input the spacing of both classes at the position of a platoon. For
one of the classes, the spacing retrieved by Equation (12) can directly be used. However,
the spacing of the other class is unspecified yet because the values are known for different
x-positions. Therefore, the spacings of the other class need to be determinedwhich is done
via linear interpolation. Giving the example of finding the car spacing at the position of a
bicycle platoon, the linear interpolation is performed using the car spacing as base for the
positions of the car platoons. Figure 1(b) presents a visualisation of this process.

Using the spacing of the downstream area of the platoon comes with a challenge; the
spacing in front of the first platoon cannot be determined using Equation (12) without
implementing additional boundary conditions. For this purpose, two additional x-positions
are predefined which are similar for both classes: x0 at a position very far away and xn+1 at
x = 0, see Figure 1(a). The first boundary condition ensures that the first platoon always
experiences an empty road, while the second condition ensures an empty road after
passing of the last platoon.

5. Class-specific speed functions

Amain contribution of this work is that themodel can handle class-specific speed functions
which depend on densities of both classes. In a first-order macroscopic model, the speed
function is typically provided by a fundamental diagram, describing the equilibrium rela-
tion between the aggregated variables spacing, speed and flow rate. The speed is typically
given by the function V that depends on the density and in our case on spacing. In our
multi-class situation, the class-dependent fundamental diagram is based on the spacing
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Table 1. Characteristic valuesused in the speed functions: jamspacing
sj, critical spacing scr, free flow speed vf and reduced speed vred

sj (m) scr (m) vf (m/s) vred (m/s)

cyclists 1.5 4.5 5.0 2.0
cars 5.0 10 9.0 -

distribution of both cars and cyclists. Previous work in literature has tackled this multi-
dependency by introducing a pce value for each class and calculating the speed based on
the number of pce present, v = V(spce).

This study takes an alternative approach using two-dimensional speed functions. The
main thought underlying this idea is that at a given generalised density, the speed of cars
is fixed, while the speed of cyclists can vary depending on the traffic state, e.g. due to their
ability tomanoeuvre along a queue of cars. This feature ofmixed traffic cannot be captured
accurately by a model based on pce value, since this assumes the reference class to always
be the fastestmoving class. Tomodel the characteristics of both classes correctly, this study
introduces class-specific two-dimensional speed functions, which describes the speed of a
class, based on the spacing of both cars and cyclists separately, so v = V(sc, sb).

The framework presented here can handle various shapes of the fundamental dia-
gram V(sc, sb). The starting point for our two-dimensional speed functions is the triangular
fundamental diagram in flow-density for single-class traffic flow (Daganzo 1994). In the
speed-spacing format, this function is given by:

Vu(su) =
⎧⎨
⎩
0 if su = su,j [1]
(sc − sc,j)wu if su,j < su ≤ su,cr [2]
vu,f if su > su,cr [3]

(16)

withw the wave speed of traffic state characteristics, given by:

wu = vu,f
su,cr − su,j

. (17)

Equation (16) states that the traffic entities of class u are at stand still (v = 0) when the jam
spacing (su,jam) is reached, their speed gradually increases with spacing until the desired
speed (vu,f ) is reached at the critical spacing (su,cr), and continue to travel at the desired
speed for larger spacings. The characteristic values for jam spacing, critical spacing and
free flow speed used in this study are presented in Table 1. Figure 2 presents the result-
ing single-class speed-spacing diagram of cars and bicycles when no other class is present.
To connect the two classes, additional cased are added to (16) while trying to maintain a
linear expression where possible. This has resulted in the class-specific speed functions for
bicycles (18) and cars (19).

For the speed of bicycles, a condition is introduced to reduce the speed to vb,red when
cyclists are passing a queue of cars (18.4). Condition (18.5) is included to ensure that the
cycling speed does not exceed the reduced speed when cars are slowed down in conges-
tion but not standing still. Equation (18.6) is added to ensure a smooth transition at the
boundaries between the reduced speed and the speed reduction caused by decreasing
bicycle spacing (18.2). For cars, two additional rules are introduced. First, cars cannot over-
take when there are too many cyclists on the road, and they have to adapt their speed to
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Figure 2. Single-class speed functions for cars and bicyclists.
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Figure 3. Two-dimensional speed functions for cars (a) and bicyclists (b).

match the cyclist’ speed (19.2). Second, when cyclists are sparsely present, i.e. sb > a, suffi-
cient space for cars is available tomove in between and overtake at a reduced speed (19.4).
We assume this sufficient spacing to be 10m (a = 10m). The parameter wbc is the tan-
gent of the connecting line between the reduced and free flow speed of bicycles, given by
Equation (20). A contour plot of the two-dimensional speed functions are shown in Figure 3.

The class-specific speed functions presented here are non-decreasing with spacing
(∂v/∂s ≥ 0), which according to van Wageningen-Kessels (2013) should ensure the model
to be weakly hyperbolic and therefore able to show anisotropic behaviour. Further investi-
gation of the hyperbolicity of the model is not performed.

Vb(sb, sc) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if sb = sb,j, sc > sc,j [1]
(sb − sb,j)wb if sb,j < sb ≤ sb,cr, sc > sc,j [2]
vb,f if sb > sb,cr, sc > sc,j [3]
vb,red if sb > sb,cr, sc = sc,j [4]
min(vb,red, (sb − sb,j)wb) if sb,j < sb ≤ sb,cr, sc ≤ sc,j [5]

min
(
(sb − sb,j)wb,

vb,red + wbc(sc − sc,cr)
)

if sb,j < sb ≤ sb,cr, sc,j < sc ≤ sc,cr [6]

(18)
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Vc(sb, sc) =

⎧⎪⎪⎨
⎪⎪⎩

0 if sc = sc,j sb > sb,j [1]
min(Vb, (sc − sc,j)wc) if sc,j < sc ≤ sc,cr sb > sb,j [2]
vc,f if sc > sc,cr sb > a [3]
min(vc,f , Vb) if sc > sc,cr sb ≤ a [4]

(19)

wbc = vb,f − vb,red
sc,cr − sc,j

(20)

6. Case study

To illustrate the working of the model, we consider several situations which occur on uni-
directional urban streets with mixed bicycle–car traffic. A specific example is a so called
‘cycling street’ which is gaining popularity in The Netherlands. The traffic behaviour has
specific characteristics resulting from the property that bicyclists are prioritised over car
drivers. No uniform design of a cycling street exists but it is typically wide enough for cars
to overtake cyclists. However, cars are considered as guests on the road and have to slow
downwhen cyclists are present. Furthermore, cars cannot overtakewhen the cyclist density
exceeds a certain threshold and as a result, the cars have tomatch the cyclists’ speed.When
cars are moving slowly in a queue there is enough space for cyclists to carefully pass the
queue and create their own queue closer to an intersection. The speed limit on this cycling
street is 30 km/ h.

In the following three cases, we follow several platoons of five traffic units in space and
time (�n = 5) and the simulations are performedwith time steps of two seconds (�t = 2 s).
The speed is given by Equations (18) and (19) and the characteristic values in the speed
functions are presented in Table 1.

6.1. Little to no interaction

We consider a situation with low demand for the purpose of face validation. All traffic par-
ticipants can move at their maximum allowed speed and the spacing is large. As a result,
the two classes have sufficient space tomanoeuvre freely and are unhindered by each oth-
ers presence. This is the case when we set the initial spacing of both classes to 20m, which
results in a total platoon length of 100m.

Two cases can occur depending on the starting positions, displayed in Figure 4; either
the cars have a head start over the bicycles (a) or the other way around (b). In both cases,
there are two platoons of cars and three platoons of cyclists. In the primary case, the cars
are given a head start of 350m. As a result, no interaction between the two classes takes
place since the desired speed of cars is higher than that of cyclists causing a rapid diver-
gence of the two classes. Interaction does occur in the second case where the starting
positions are switched and the cyclists have a 350m head start over the cars. Since cars
have a higher desired speed, the first platoon of cars catches up with the final platoon of
cyclists. Figure 4(b) shows that this happens after approximately 40 s in the simulation. The
spacing of the cyclists, however, is sufficiently large and cars can overtake without having
to reduce their speed. Note that the speed limit on the bicycle road is 30 km/ h, which is
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Figure 4. Simulation results for low demand situation (sb(t0) = sc(t0) = 20m), showing no speed
adjustments when cars have a head start over cyclists (a) and cyclists have a head start over cars (b).

considered a safe speed to overtake and no further speed reduction is required. In our sim-
ulation it takes about 170 s before all cars have passed the cyclists and the two classes start
to diverge.

6.2. Interaction and adjustment by cars

Interaction takes place when more cyclists are occupying the road and their space head-
way is decreased. For visualisation purposes, we only consider two car and three bicycle
platoons but the model will work for any number of platoons. The initial spacing for cars
remains 20m, while the bicycle spacing is decreased, resulting in a more compact platoon
length.

Different interactions take place depending on the exact initial spacing. This is best visu-
alised when the initial bicycle spacing is set close to the threshold for interaction, which is
a = 10m according to Equation (19). The initial spacing is set to 10.2m in Figure 5(a) and
10m in Figure 5(b). As a result, the cars overtake the bicycles with reduced speed in the first
case and have to match the cycling speed in the latter case. The speed reduction is visu-
alised by themagenta coloured cells which intensify when the reduction increases. In both
cases, the cyclists startwith a 350mhead start over the cars, and they canmoveunhindered
and at their desired speed throughout the simulation.

The magenta colouring in Figure 5(a,b) illustrates that the speed adaptation sets in
before the complete platoon has reached the cyclists. Also, in Figure 5(a) can be seen that
the speed increases already before all cyclists are overtaken. This results from our choice
in the numerical implementation to determine the speed based on the spacing in front
(Equation (15)), which can be interpreted as anticipation behaviour. As a result, the car
spacing after overtaking the cyclists is larger than before the cars reached the cyclists.

6.3. Queuing situations

Both cyclists and cars have to adjust their speed in congested situations where the spacing
reduces to valuesbelow the critical density. This is included in the simulationby introducing
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Figure 5. Simulation results for different demand situations. When initial spacings are sb(t0) = 10.2m
and sc(t0) = 20m, cars can still overtake cyclists but at a reduced speed (a) and when initial spacings
are sb(t0) = 10mand sc(t0) = 20m cars have tomatch the speed of cyclists (b). Themagenta colouring
appears when the speed is reduced and is more intense for lower speeds.

Figure 6. Simulation results for queuing situations. In (a) sb(t0) = 10.2m and sc(t0) = 20m and the
cyclist have a head start of 450m. In (b) sb(t0) = 10.4m and sc(t0) = 20m and the cars have a head
start of 300m. The cyan and magenta colouring appear when the speed is reduced for, respectively,
cyclists and cars.

a temporary obstruction; the first platoon is enforced to stop in the first time step causing
queue formation behind it. Again, two cases can occur based on the starting positions of
the two classes.When the cyclists have a head start over the cars, the first platoon of cyclists
is stopped creating agrowingqueueof first cyclists and then cars, see Figure 6(a). The speed
reduction of the cars and cyclists is visualised by the coloursmagenta en cyan, respectively;
no colour is shown when speed coincides with the desired speed. In total, three car and
four platoons are followed in time and space. The first cyclists have a 450m head start over
the first cars. After some time in the simulation, the first cars catch up with the last cyclists
and the cars have to reduce speed until they come to a complete stop. The bottleneck
is removed after 200 s after which the cyclists restart moving and the queue is gradually
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cleared. The cyclists quickly move at their desired speed again, but the spacing is too small
for the cars to overtake.

A different situation occurs when the starting positions are switched around and the
first car platoon is stopped instead. The cyclists can pass the queue of cars but have to do
so at a reduced speed. The cars have a head start of 300m over the cyclists and it takes
some time for the first cyclists to catch up with the last cars. When looking closely at the
colouring, the cyclists are reducing speed well before they reach the actual position of the
queue, and they are increasing in speed before the queue is actually passed. This results
from the assumption that the speed is influencedmost by the spacing in front of the traffic
participants instead of the spacing at their current position. When the cars start moving
again after the obstruction is removed, the cars can first move at their maximum allowed
speed until they catch up with the cyclists and reduce their speed to gradually overtake
them.

6.4. Discussion

The face validation of the three cases show that the model can accurately handle various
conditions that occur in mixed traffic situations where bicycles and cars share the same
infrastructure. Themain feature is that both classes can be the fastestmoving one, depend-
ing on the traffic state. Furthermore, themodel includes anisotropy by considering only the
spacing of all classes in front of the current position to adjust the speed. This modelling
approach leads to plausible results including anticipation; traffic participants slow down
before reaching a queue and accelerate when a queue is about to dissolve.

When comparing our modelling outcome to available research on mixed bicycle–car
traffic, we have two observations. Our model includes a two-way interaction between cars
and cyclists; the speed of cars is influenced by the presence of bicycles and vice versa. This
property is an improvement compared to the individual-following model by Tang, Huang,
and Shang (2010), which includes one-way interaction only. However, the bicycle–car inter-
action in our model is based on space headway only and does not take the lateral spacing
into account,which is the case in the cellular automatamodel by Luoet al. (2015). To include
the interaction due to lateral distance, the future development of our model could include
a fundamental diagram based on an area density.

The presented model is tested solely to qualitative criteria and has not yet been vali-
dated with observational data. The model is tested for the Dutch cycling street scene but
could also be applied in other mixed traffic situation, e.g. where lane discipline is lacking.
However, this would require an adjustment to the speed functions. The development of a
more general description of the speed functionwill be beneficial for the applicability of the
presented macroscopic flow model.

7. Conclusion

A first-order multi-class macroscopic flow model is presented to describe mixed bicy-
cle–car traffic. The model uses class-specific speed functions, enabling each class to be
the fastest moving one depending on density. This trait facilitates the modelling of e.g.
congested situations where cyclists can manoeuvre along a queue of cars. The presented
model is specifically relevant for shared street situations, which typically occur in urban
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environments. Three test cases show the ability of the model to handle various traffic flow
conditions that occur in mixed traffic situations where bicycles and cars share the infras-
tructure. The model shows anisotropic behaviour by considering the spacing of all classes
in front to adjust the speed. This modelling approach leads to plausible results including
anticipation; traffic participants slow down before reaching a queue and start accelerating
when a queue is about to dissolve.

The working of the model has been successfully tested based on qualitative criteria,
showing the expected behaviour of mixed bicycle–car traffic. The next step would be
to perform a validation of the model to quantitatively test it against observational data.
These data, however, are not yet available. Furthermore, themathematical properties of the
model couldbe further investigated, e.g. hyperbolicity. In this study,mixed traffic consisting
of bicycles and cars are considered but the model is equally applicable to other configu-
rations of mixed traffic. However, this would require adjustments to the speed functions.
Possible applications of the model are estimation of e.g. class-specific travel time and road
capacity in amixed traffic situations, which is all relevant input data to network-wide traffic
models and route choice models.
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