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1
INTRODUCTION

A robot companion in a home environment needs to ’do the right things’,
i.e. it has to be useful and perform tasks around the house,

but it also has to ’do the things right’,
i.e. in a manner that is believable and acceptable to humans.

—Kerstin Dautenhahn [1]
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2 1. INTRODUCTION

1.1. SOCIAL ROBOTICS AND HUMAN ROBOT INTERACTION

R OBOTS are likely to become an integral part of our daily lives in the near future. Sce-
narios in which robots share the same work space and usually cooperate with hu-

mans are increasingly emerging (see [2] for an overview). For example, robots are used
for the purposes of elderly care [3, 4], rehabilitation and health care [5–7], education
[8, 9], entertainment [10–12], personal companion [13–16], guide [17–20], and recep-
tionist [21, 22]. It is inevitable for a robot in such scenarios to interact with humans.
Social abilities are essential for such a robot to coexist with humans in harmony and to
be efficient in cooperation with humans.

In general, robots with social abilities are called social robots (SR) or socially intelli-
gent robots. Several definitions of social robots have been proposed and fundamental
aspects of social robots are identified [1, 23–27]. Different from traditional intelligent
robots, which are designed to deal with objects, social robots are designed to interact,
collaborate, and "live" together with humans within environments designed for humans.
A particular research field on the interaction between robots and humans is called hu-
man robot interaction (HRI). Dautenhahn described HRI as "a highly interdisciplinary
area, at the intersection of robotics, engineering, computer science, psychology, linguistics,
ethology and other disciplines, investigating social behavior, communication and intelli-
gence in natural and artificial systems" [1]. HRI addresses not only the development of
the robot abilities (a robot-centered view) but also the effects of the robot behavior on
humans and the responses elicited in humans during an interaction (a human-centered
view). The work presented in this thesis includes the modelling and evaluation of the
robot social behavior, and also how people perceive and react to the robot behavior and
its effects on humans in an interaction. Our work thus contains both a robot-centered
view and a human-centered view of designing social robots. More specifically, we de-
sign body language of humanoid robots by means of modulating functional behaviors
to express robot mood.

One major goal of designing social robots is to make a robot no longer considered
only as tools or machines but more as partners [28, 29]. To this end, a social robot has to
behave in a proper way, while interacting with humans, that is accepted by humans and
thus is favorable for maintaining a good relationship with humans. One major way of im-
proving the acceptance of social robots is to enable the robots to interact with humans in
a "natural" way. That is, a social robot should appear and behave in a way that humans
can perceive, understand, and respond to the robot in a manner similar to what they do
to other humans [24, 26]. For example, a social robot may converse with humans using
natural language; may use expressions to indicate the robot internal affective states; and
may use gaze to indicate the focus of the robot’s attention, etc. Humans are able to in-
teract with such a robot using their social skills developed in daily human-human inter-
actions. Hence, robots with "natural" interaction capabilities are able to communicate
with humans efficiently and intuitively, are also perceived more lifelike and believable,
and are more acceptable to users [1, 24, 25, 30].
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1.2. AFFECTIVE EXPRESSION IN SOCIAL ROBOTS

T HE expression of affect (e.g., emotion and mood) has been recognized as a key social
ability of social robots [24, 26, 31–33]. This section explains the motivation for de-

veloping affective expression for social robots. Before we introduce affective expression,
we first briefly introduce the concept of affect. Affect is an umbrella term in psychology
that presents the experience of feelings, emotions, or moods. In this thesis, affect refers
to emotion and mood. Distinctions between affect, emotion, and mood are explained in
[34–38]. Here, we highlight the distinctions between mood and emotion that are related
to expression: an emotion is a short-term, intense affective state, associated with specific
expressive behaviors; a mood is a long-term, diffuse affective state, without such specific
behaviors. Mood emphasizes a stable affective context, while emotion emphasizes af-
fective responses to events.

The main reasons to endow social robots with the ability of expressing affects are that

• Affective expression is an important element of interacting with humans socially;

• Affective expression indicates the internal states of robots and makes them more
predictable;

• Affective expression improves life-like quality of robots;

• Affective expression has (positive) effects on users.

First, a social robot can use expression to interact with humans in a social manner. For
example, a receptionist robot may display a smile to welcome a guest warmly; an em-
pathic companion robot may display sadness when the user is sad. Second, expression
of affect also helps humans to understand the internal states of a robot, e.g., emotions,
moods, beliefs, rationale, motives, and intentions [24, 32]. From these internal states,
humans can understand better the robot’s decision and current actions, and can pre-
dict its next move. The predictability is important for the acceptance of the robot, as
predictable robots are often perceived as trustworthy and reliable [24].

Third, expression of affect makes a robot less like a machine but be more life-like and
believable [24, 39]. Expression of affect is essential to the believability of a robot [39]. Ex-
pression of affect makes humans to believe, at least speculate, that a robot actually has
affective states and is capable to perceive the environment: the change of expression in-
dicates the change of the robots’ internal affective states; to have different affective states
a robot must be able to perceive and feel the changes of the environment. Expression
of affect also makes a robot more anthropomorphic [40]. Humans have the tendency to
treat an inanimate object as a living creature, and attribute the social properties and abil-
ities that humans or animals have, such as personality, attention, thinking, or showing
emotions, to the inanimate object [41]. Expression of affect, as a typical social ability of
humans, potentially increases the level of the anthropomorphism and hence contribute
the social acceptance of a robot [40]. An example of anthropomorphic and believable
robot is the Kismet robot [24, 25]. Humans tend to anthropomorphize such a robot and
interact with it in a manner that they use to interact with other humans and "living"
creatures (e.g., pets).
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Finally, affective expression can have positive effects on humans during an interac-
tion. The effects include the way of interacting with a robot [42], the attitude towards a
robot/agent [4, 43–45], the effectiveness of assistive tasks [46], user behavior [7, 47], and
user task performance [48].

1.2.1. DEVELOPING AFFECTIVE EXPRESSIONS VIA ROBOT BODY LANGUAGE

We are in particular interested in designing robot body language of humanoid robots1.
More specifically, we focus on how a social robot should behave to express mood through
body language. The motivation of working on mood and using body language to express
mood is explained in this section. We first demonstrate the importance of robot body
language for expressing affect. Then we explain the challenges of designing robot body
language that can be used in HRI scenarios and introduce our solution.

1.2.2. MOTIVATION FOR DEVELOPING ROBOT BODY LANGUAGE

Humans communicate with each other not only verbally (i.e., via speech and texts), but
also nonverbally: they hear the tone and volume, and they see facial expressions, gaze
directions, hand gestures, postures, and movements, from which they interpret the body
and mental states and thoughts of others. Studies have shown the importance of nonver-
bal expression in human-human communication. For example, Mehrabian found that
humans communicate their feelings and attitudes largely by nonverbal behavior [49, 50].

Body language is an important channel of nonverbal expression. Body language is
also a major modality that conveys information through the human visual perception
system. It has been shown that gestures are frequently used to convey information in
conversations and speech [51, 52]. Body language may also improve the overall effec-
tiveness of communication when combined with other communication modalities. For
example, Kret et al. studied humans’ recognition and response to isolated facial and
bodily expressions as well as face-body compounds [53]. The results showed that the
recognition of the expression was improved when congruent facial and bodily expres-
sions were shown, compared to isolated facial or bodily expressions.

Robots can also use body language in communication with humans. Studies have
begun to focus on the design of robot body language and several studies showed the
importance of body language in human-robot interaction. Humans have developed so-
phisticated skills to interpret behavioral cues from other humans. Those skills can be
used to interpret the behavioral cues displayed by robots. Experimental studies on robot
bodily expressions showed that people can recognize these expressions (e.g., [54–57]),
which indicates bodily expression is an effective communication channel of affect. We
believe that robot body language is essential to natural human robot interaction since
it provides another channel for humans to apply the same skills of understanding other
humans to understanding robots. Moreover, it has been shown that bodily expression
improves humans’ recognition of robots’ emotion ([54, 55]). Body language also has
been shown to increases the efficiency of human-robot task performance and robust-
ness [58]. Practically, for robots that lack sophisticated facial features (e.g., NAO, QRIO,
and ASIMO) bodily expression is an important nonverbal communication modality.

1We will use expressive/affective body language and bodily expression exchangeably throughout the thesis.
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(a) HRP4 surprise (b) Kobian fear (c) NAO angry (d) NAO sad (e) NAO happy

Figure 1.1: Examples of bodily emotion expression of humanoid robots

1.2.3. CHALLENGES OF EXPRESSING AFFECT VIA BODY LANGUAGE IN IN-
TERACTIONS

Researchers in the field of social robots have carried out extensive work on bodily emo-
tion expressions. Our idea of developing body language for expressing mood stemmed
from the challenges we encountered when we attempted to use the bodily emotion ex-
pressions in human robot interaction scenarios. We discuss related work on robot bodily
emotion expression in this section and explain the challenges and our idea.

One way of constructing bodily emotion expression is "mimicking" humans’ behav-
iors (static postures and dynamic movements). These bodily expressions are typically
designed as explicit body actions. For example, raising both hands shows happiness
[54, 59]; stretching arms shows surprise [60]; arms akimbo shows anger [55, 59]; cover-
ing eyes by hands shows fear [56]. Figure 1.1 illustrates some examples of these expres-
sions. These body actions are deliberately designed to express emotions but do not have
other functions such as fulfilling a task. We call them body-action based expression in
the reminder of the chapter.

A long term goal is to be able to embed bodily expression in a seamless way in any
robot behaviors. In daily activities, a robot needs to perform certain behaviors to fulfil
tasks or interact with humans. For example, a robot receptionist may deliver drinks to
guests; a robot guide may point to the direction that visitors ask about. In these cases,
it would be good if the robot can show a slightly positive expression at the same time. It
is a challenge, however, to apply the aforementioned body-action based expressions to
interaction scenarios as such. First, the body actions dedicated to expressing affect may
interrupt functional actions, typically when these actions occupy the same effectors or
the effectors required collide with each other. In the above example, a robot cannot ex-
press happiness by raising both hands while pointing to the direction or carrying drinks.
Thus, the bodily expression cannot be performed simultaneously as task related behav-
iors. This situation is illustrated in Figure 1.2(c). Second, these body actions used for ex-
pressing emotion rise and dissipate quickly; they do not extend over time. For example,
the expression of happiness with hand raising takes only a few seconds to complete, and
then the hands will return to neutral positions. As a result, robots’ affects are not visible
in between expressions or during a task execution, as shown in (Figure 1.2(a)). The aim
of this thesis is to develop mood expression that can indicate robots’ affect consecutively
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Figure 1.2: Integration of bodily expression with task-related behaviors

and simultaneously with tasks, as shown in (Figure 1.2(b)). The issue of invisible robot
affect becomes more obvious for scenarios in which robots need to perform task-related
actions constantly.

1.3. EXPRESSING MOOD THROUGH BEHAVIOR MODULATION

T O enable robots to express affect during task execution, we integrate bodily expres-
sion of mood with functional behaviors. To this end, we propose a parameterized

behavior model in which behavior parameters control the spatial and temporal extent
of a behavior. Modulating these parameters can generate variations of the same behav-
ior. Put differently, modulating these parameters provide affective behavioral cues in
the behavior. Thus, moods can be expressed using the same behavior executed in dif-
ferent "styles", rather than additional body actions used to show emotions. Applying
the parameterized behavior model to functional behaviors thus can express robot mood
continuously over time, even when the robot is executing a task.

Here, we explain why we call the bodily expression by means of behavior modulation
mood expression. The distinction between emotion and mood is explained in Section
1.2. First, the expression by means of behavior modulation extends over time and thus
is suitable to express long-term affect. We aim to design a generic model that can be ap-
plied to a broad range of robot behaviors. By applying the model to multiple behaviors
(including task-related behaviors) in a series, the robot mood can be expressed in a more
or less continuous fashion and extend over time. Second, the expression by means of be-
havior modulation does not show a particular action tendency. What behaviors should
be performed at a particular moment is determined according to the task requirements,
but not to the desire of showing mood. Mood expression only changes the "styles" of the
behaviors. Third, the expression by means of behavior modulation is implicit and less
intense. The expression relies on the affective cues generated by behavior modulation.
We keep the interference caused by the parameter modulation of a behavior with the
behavior functions as minimum as possible. The primary function of a behavior is still
to fulfill a task, while the mood expression is an additional function. We believe that the
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behavior function is more noticeable and the expression by means of the behavior mod-
ulation is implicit and less intense. Mood is a less intense affective state, compared to
emotion. We thus believe that the affect expressed by our expression is more like mood.

The expression by means of behavior modulation is a believable way of expressing
robot mood. Mood is implicit in nature, sometimes even obscured by humans. A robot
aiming for natural interaction should not express mood consciously and intentionally.
Our mood expression is implicit and thus is suitable for indicating internal states like
mood of a robot. Expressions for indicating internal states should be distinguished from
expressions used as emotional labor [61], such as receptionists showing smile to wel-
come guests or nurses showing smile to comfort patients. The latter is likely to be per-
ceived as conscious and intended behavior, if not pretended or fake. We believe that
people believe more in the robot mood showed by our expression.

One of the additional reasons of studying bodily mood expression is that mood typ-
ically is a more integral part of ongoing behavior [62, 63]. An individual is at any given
time in a more or less positive or negative mood. Integrating mood into the robot body
language may provide a robot with a more stable channel for communicating affective
information than by means of explicit emotion expression. Another reason is that ef-
fort has been mostly put into developing and studying bodily emotion expression of
robots, while bodily mood expression of robots still needs to be explored. The ability
of expressing mood provides an alternative of expressing robot affect and thus adds to
the expressiveness of a robot. Moreover, because the mood expression based on behav-
ior modulation lasts for a relatively longer time, the expression can prolong the exposure
of a human to the robot affect and thus may enhance the effects of the robot affect on
humans.

1.4. RELATED WORK

T HE affective states of a robot or a virtual agent can be expressed nonverbally by poses
and movements of facial and body components. In several studies, expressive body

movements are built by simulating human body movements (e.g., [54–57, 59, 60]). These
studies exhibited the potential of using behavior parameters to control behavior expres-
sivity. For example, fast speed was used for the joy expression in [56]; large arm expan-
siveness was used for the surprise expression in [60]. However, parameters were not
explicitly and systematically defined in their behavior models. The behaviors cannot be
modulated after creation.

Several studies have investigated parameters that control the expressivity of human
body movements. Atkinson et al. [64] studied how exaggeration of body movement in-
fluences the recognition of emotions from body. Parameters such as speed, jerkiness,
spatial extent were used by actors to render different exaggeration levels. Wallbott [65]
investigated whether body movements, body posture, gestures, or the quantity and qual-
ity of movement in general allow us to differentiate between emotions. This study found
that qualities of movement (movement activity, spatial extension, and movement dy-
namics) and other features of body motion can indicate both the quality of an emotion
as well as its quantity. Laban movement analysis (LMA) [66] models body movements
of dancers using four major components: body, space, effort, and shape, characterized
by a broad range of parameters. These studies shed light on using parameters to control
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body movement of virtual agent and robots.

Parameters of body movement have been used for synthesizing the behavior of vir-
tual agents. Rose et al. created expressive body movement for animated characters by
means of motion interpolation and extrapolation [67]. The parameters used in their ap-
proach are the coefficients of the interpolation and the timing of the animation. In our
model and some other studies, higher-level parameters that describe the characteristics
of movement are used. The relations between the high-level parameters and emotions
are clearer. Rose et al. conceptualized the movement and the control of the variations
in the movement as "verbs" and "adverbs". This is consistent with our idea of separat-
ing behavior functions and behavior styles. Some studies apply parameters to existing
movement in a post-processing fashion. Amaya et al. [68] extracted emotional trans-
forms using signal processing technique and applied two resulting parameters, speed
and spatial amplitude to existing motions to generate emotional animation. Based on
LMA, Chi et al. [69] developed the EMOTE framework that uses post-processing of pre-
generated behaviors to generate expressive gestures for virtual agents. In contrast, the
model developed by Pelachaud et al. [70] modifies gestures before generating actual
movements. This model distinguishes spatial, temporal, fluidity, power, overall activa-
tion, and repetition aspects of behavior. It has been applied to the Greta virtual agent
[71] for communicating intentions and emotions. They applied the model to the NAO
humanoid robot [72]. Physical constraints of the robot were reported to limit the expres-
sivity of the original model. In contrast, we do not impose an existing model on a robot.
In our model, behavior parameters are defined when the robot behavior profile is syn-
thesized, and physical constraints of the robot body are modelled at the same time. The
ranges of behavior parameters are determined when the parameters are defined to make
sure that modulation will not cause collision with other parts of the robot body.

Yamaguchi et al. proposed a model for expressing categorical emotions through set-
ting different values for three motion parameters (amplitude, speed, and position). They
applied the model into single-arm behaviors of a humanoid virtual agent [73] and the
AIBO robot [74]. The robot behavior only involved three degrees of freedom (DOFs) and
a pose parameter only controls one or two joints. Whether the emotion expression by
means of behavior modulation is effective for a high-DOF robot platform (e.g., a hu-
manoid robot) remains a question, as a single parameter has to control more joints. Lin
et al. [75] built a hierarchical model to link categorical emotions to motion parameters
including fluidity, stiffness, speed, power, and spatial extent. With this model, motions
of different styles can be generated for virtual agents to express emotions. Our model
adopts the layered architecture, and we studied high-DOF behaviors with this model.
Different from previous research, in our model affect is represented as a dimensional
variable. The behavior parameters can change continuously based on a numerical func-
tion of the affect variable. Another approach is to use the body resources that are not
required by functional behaviors to express affect (e.g., [76]). In our model, when head
movement is not part of the functional behaviors, head movement is used for expressing
mood if needed. A step forward of our work is that we not only develop a parameter-
ized behavior model for generating expressive body language of (high-DoFs) humanoid
robots, but also investigate the body language in interaction scenarios.
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1.5. RESEARCH QUESTIONS

T HE goal of the thesis is to develop a parameterized behavior model for a humanoid
robot to express mood through existing functional behavior, so that the robot can ex-

press mood during task execution. This thesis focuses on the following general research
questions.

• Model - Which parameters of robot behaviors are effective in expressing mood?
How should these parameters be modulated for different moods?

• Evaluation - Can humans recognize the mood expression generated by the behav-
ior parameter modulation?

• Effects - What are the effects of the mood expression in a human-robot interaction?

Behavior parameters, controlling spatial and temporal extent, are inherent proper-
ties of a robot behavior. Our first task is to figure out: which parameters can be used
to express different moods by means of modulating these parameters; what the corre-
lations between these parameters and the expressed moods are. We attempt to find
generic parameters that can be used for mood expression across behaviors. A unified
model can be applied to a broad range of behaviors. Second, we evaluate whether mood
can be recognized from modulated behaviors. We evaluate the expression not only in
a pure recognition experiment in which the only task for participants is to recognize
mood or distinguish different mood levels from the behavior, but also in real interac-
tion scenarios in which the interaction task and many other factors may influence the
recognition. Third, we investigate the effects of the mood expression in human robot
interaction. As the robot becomes "moody", mood may be induced to people who inter-
act with the robot. The perception of the robot expressing different moods also varies.
The changes in people’s mood and perception of the robot could further influence the
behavior and performance of the people.

The specific research questions that we address in this thesis are the following.

Q1) Which parameters of robot behaviors and what modulation principles of these
parameters can be used for mood expression? (Chapter 2)

Q2) What is the relative importance of the parameters? (Chapter 3)

Q3) What are the interrelations between the parameters? (Chapter 3)

Q4) Is the mood expression based on behavior modulation recognizable? (Chapter
4, 5, and 6)

Q5) Does our mood expression produce mood induction effects on the humans in
an interaction context? (Chapter 5, 6, and 7)

Q6) Does our mood expression influence task performance of humans in an inter-
action context? (Chapter 5 and 6)

Q7) Does our mood expression influence humans’ perception of the robot and the
interaction experience in an interaction context? (Chapter 6 and 7)
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Figure 1.3: The outline of the thesis

Q8) Can our mood expression express a mood that is changing over time? (Chapter
7)

Q9) Does our mood expression enhance the perceived mood in a spoken story told
by the robot? (Chapter 7)

1.6. THESIS OVERVIEW

T HE chapters in this thesis are based on peer-reviewed papers. Most of the papers
have been published. The general background in the introduction part of each paper

may overlap. As we want to keep each chapter self-contained, we did not change the
original papers. Instead, a short paragraph on the first page of each following chapter
elucidates the cohesion between the chapters. The outline of the thesis is illustrated in
Figure 1.3. Here we give a brief overview of each chapter.

• Chapter 2 In this chapter, we answer the question about which parameters can
be used for mood expression. We further propose how these parameters should
be modulated for different moods. We create a prototype of the parameterized
behavior model and evaluate it in a user study. This chapter is based on the publi-
cation [77].

• Chapter 3 In this chapter, we analyze the parameter settings created by the partic-
ipants in the user study presented in Chapter 2. We show which parameters the
participants think are important. Designers may focus more on these important
parameters. We also show how the parameters are correlated, aiming to simplify
the modulation principles. These findings also provide more insights in behavior
modulation based expressions. This chapter is based on the publication [78].
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• Chapter 4 Mood expressions generated by means of parameter modulation from
Chapter 2 are evaluated in a recognition task without an interaction context. We
answer the question: can people distinguish different mood levels expressed by
differently modulated robot behaviors? This chapter is based on the publication
[79].

• Chapter 5 The parameterized behavior model is applied to the gestures used in an
imitation game. We show that the mood expression integrated with functional be-
haviors (i.e., the game gestures) can be recognized in a dyadic interaction. We re-
port on what effects these expressions have on the users in the interaction. More-
over, we show how the difficulty of the interaction task influences the recognition
and the effects. This chapter is based on the publication [80], which is an extended
version of the publication [81].

• Chapter 6 In this chapter, we evaluate the recognition of the mood expression and
report on the effects of the mood expression in a robotic lecture scenario. We ap-
ply our model to the coverbal gestures of the robotic lecturer. This interaction sce-
nario is more close to a public setting in terms of that more people are involved in
the interaction and the awareness of other person’s presence may influence one’s
mind and behavior. This chapter is based on the publication [82], which is an ex-
tended version of the publication [83].

• Chapter 7 This chapter presents our investigation into whether behavior modula-
tion is able to express a continuously changing mood. The parameterized behavior
model is applied to the coverbal gestures of a robotic storyteller. The gestures are
modulated according to the current story mood. We also study the interaction be-
tween the bodily mood expression and other modalities of mood expression. The
other modality of the mood expression is the semantic content of the story. We
report on whether listeners perceive the mood expressed by behavior modulation
is as congruent with the story mood. We also show that the bodily expression has
effects on the listeners’ perception of the story mood, the mood induction process
caused by the story per se, and the listeners’ experiences. This chapter is based on
the paper [84].

Chapter 8 concludes the thesis and summarizes the findings. We discuss the results
and limitations of our work, envision possibly interesting research directions based on
our findings, and propose potential applications.

1.7. LIST OF PUBLICATIONS

T HE chapters in this thesis are based on publications in scientific journals and peer-
reviewed conference proceedings. The full list is given below. The publication 1 is

an extended version of the publication 5. The publication 2 is extended from the publi-
cation 4.

1. J. Xu, J. Broekens, K.V. Hindriks, M.A. Neerincx, Mood Contagion of Robot Body Language in
Human Robot Interaction, Journal of Autonomous Agents and Multi-Agent Systems, 29(6),
pp. 1216–1248, Springer US, 2015.
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This chapter describes the architecture of our parameterized behavior model, and elab-
orates a user study for validating the parameters we employed from literatures and for
obtaining modulation principles of the parameters.

This chapter is based on J. Xu, J. Broekens, K.V. Hindriks, M.A. Neerincx, Mood expression through parameter-
ized functional behavior of robots, Proceedings of IEEE International Symposium on Robot Human Interactive
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ABSTRACT

Bodily expression of affect is crucial to human robot interaction. We distinguish between
emotion and mood expression, and focus on mood expression. Bodily expression of an
emotion is explicit behavior that typically interrupts ongoing functional behavior. In-
stead, bodily mood expression is integrated with functional behaviors without interrupt-
ing them. We propose a parameterized behavior model with specific behavior parame-
ters for bodily mood expression. Robot mood controls pose and motion parameters, while
those parameters modulate behavior appearance. We applied the model to two concrete
behaviors — waving and pointing — of the NAO robot, and conducted a user study in
which participants (N=24) were asked to design the expression of positive, neutral, and
negative moods by modulating the parameters of the two behaviors. Results show that
participants created different parameter settings corresponding with different moods, and
the settings were generally consistent across participants. Various parameter settings were
also found to be behavior-invariant. These findings suggest that our model and parameter
set are promising for expressing moods in a variety of behaviors.

2.1. INTRODUCTION

T HE expression of affect (e.g., emotion and mood) is one of the key social abilities of
social robots [26]. Affect can be conveyed outwards through nonverbal expressions

like facial expressions, gestures, or postures. Robots’ bodily expression of affect is cru-
cial to human robot interaction (HRI), since it enables humans to predict robots’ actions
by understanding their internal states (e.g., beliefs, intentions, and emotions), and im-
proves the naturalness of HRI and the life-like quality of robots [24]. Bodily expression
is also important for robots that lack sophisticated facial features such as NAO, QRIO
and ASIMO. Recently, bodily expression of emotions for social robots has been exten-
sively discussed (e.g., [54–56]). For example, raising both hands shows happiness; arms
akimbo shows anger; and covering eyes shows fear. However, these body actions used
for expressing emotion rise and dissipate quickly and do not extend over time. For ex-
ample, robots raise hands for seconds for showing happiness, and then the hands will
return to neutral positions. It is unnatural for robots to raise hands for long. Moreover,
body actions dedicated to expressing affect may interfere with task-related functional
actions. As a result, robots’ affects are not visible in between expressions or during a task
execution. Our work aims at mood expression, which can indicate robots’ affect while
performing a task.

Parkinson proposed that moods may be expressed via bodily postures [63]. Breazeal
et al. [58] defined implicit communication, which convey robots’ internal states via be-
havioral cues. Amaya et al. [68] extracted emotional transforms through signal process-
ing and applied them to existing motions to generate emotional animation. Inspired by
them, we believe that mood can be expressed through affective cues in robots’ behaviors.

We propose a layered behavior model (Figure 2.1) that generates behavior varia-
tions through behavior parameter modulation, and the variations provide affective cues.
In our model, moods do not trigger behaviors but influence the behavior appearance.
Hence, our mood expression does not disorder task scheduling. We applied this model
to two concrete behaviors of the NAO robot, and selected behavior parameters related
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Figure 2.1: The multi-layered behavior model

to behavior expressivity (i.e., how a behavior is executed) [70]. To clarify whether our
model and parameter set are suitable for mood expression and what the parameter val-
ues should be for different moods is unclear, we conducted a user study in which partic-
ipants were asked to create mood expression through our model.

The remainder of the chapter is organized as follows. Section 2.2 illustrates the chal-
lenges of expressing affect during task execution, and reviews the research that moti-
vates our work. Section 2.3 describes our behavior model and the implementation into
concrete behaviors; Section 2.4 describes the experiment method and procedure. Sec-
tion 2.5 analyzes the experiment data and draws the results; Section 2.6 discusses the
remaining challenges and the potential for improving our model; Section 2.7 concludes
the main findings of this study.

2.2. RELATED WORK

R ECENT research sheds light on the importance of bodily expression of affect for hu-
manoid robots. Although facial expression is one of the main channel of nonverbal

expression [24, 54, 55], both [54] and [55] showed that bodily expression improved the
recognition rate of robots’ emotion. Bodily expression of emotion is typically designed
as explicit behavior including static postures and dynamic movements, which are con-
structed as a whole by “mimicking" those of human beings. For example, body postures
were constructed by professional artists [54]; body movements were created according
to psychological findings [56]; bodily expressions were collected using motion capture
system [85]. Nevertheless, these body postures and movements are difficult to perform
while executing a task.

Affect can also be expressed by performing a behavior in different ways, for example,
by means of motion interpolation and extrapolation [67], and by behavior parameters.
Laban movement analysis (LMA) [66] is a multidisciplinary approach to modeling body
movements in general by a broad range of parameters. It has been used in the synthesis
of expressive movements for virtual agents [69] and robots [86, 87]. Wallbott [65] studied
humans’ emotional bodily movements, and annotated behavior patterns as movement
"quality" defined by three dimensions. Pelachaud et al. [70] characterizes the expressiv-
ity of nonverbal behavior using six parameters: spatial, temporal, fluidity, power, over-
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Figure 2.2: The pose and motion parameters. The figure is adapted from [89]

all activation, and repetition. They were applied to an embodied conversational agent
Greta, so that Greta can communicate her cognitive and affective states through mod-
ulated gestures. All the above research suggests that affect can be reflected by different
styles of executing the same type of behavior. With these methods, affect is reflected by
the behavior "styles" rather than the behavior "contents" per se. However, effort is still
needed to transform these abstract parameters into concrete ones while applying them
to particular behaviors. Our goal is to define a set of more specific parameters that can
be directly applied to a range of behaviors.

Layered models that link the affect of robots or virtual agents to the behavior pa-
rameters have been developed. Yamaguchi et al. [74] proposed a model in which (four
categorial) emotions can be expressed through modifying three motion parameters (am-
plitude, speed, and position). They applied the model into single-arm behaviors of the
AIBO robot. However, the robot behavior only involved three degrees of freedom (DOFs).
Whether this method is effective for a high-DOF platform (e.g., a humanoid robot) re-
mains a question. Lin et al. [75] built a hierarchical model to link affects to motion pa-
rameters including fluidity, stiffness, speed, power, and spatial extent. With this model,
motions of different styles can be generated for virtual agents to express emotions. Our
model adopts the layered architecture, and we studied high-DOF behaviors with this
model.

Unused body parts can also vary behavior patterns without disturbing task execu-
tion. Brooks and Arkin proposed a behavioral overlay model that alters the overall ap-
pearance of robots’ instrumental behaviors by overlaying them with behaviors of unused
body resources [76]. The internal states like attitudes and relationship can be commu-
nicated non-verbally through the overlayed behaviors while the instrumental behaviors
still function properly. Beck et al. [88] investigated the effects of head position on emo-
tion interpretation with an ultimate purpose of establishing an "Affect Space" for bodily
expression. Through experiments with static postures, head position was found to have
a strong impact on the identification of displayed emotions. We adopt the head move-
ment as a behavior with which task-related behaviors are overlaid.
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2.3. THE DESIGN OF MOOD EXPRESSION

2.3.1. GENERAL PARAMETERIZED BEHAVIOR MODEL

T HIS study aims at expressing moods simultaneously with executing functional be-
haviors. We developed a multi-layer parameterized behavior model. The param-

eterized behavior model (Figure 2.1) consists of three layers: 1) a drive layer; 2) a be-
havior parameter layer; and 3) a joint configuration layer. The drive layer contains the
task scheduler and the affect generator. Moods, for instance, can be modeled as dimen-
sional variables in the affect generator, while the task scheduler decides which behavior
should be performed. The behavior profile describes behavior functions, while affect
determines behavior parameters without breaking the functions, resulting in different
behavior patterns. Thus, from the top layer, task scheduler and affect generator can work
simultaneously and separately (without interfering with each other).

The behavior parameter layer contains Pose Parameters and Motion Parameters. These
parameters serve as interfaces via which affect can stylize behaviors. To describe the pa-
rameters, we employed and modified the synchronization model from [89]. This model
describes stroke phases and the time points for synchronization (see Figure 2.2). Pose
parameters focus on effector positions (related to the spatial parameters in [70]). They
not only influence positions when an effector is static, but also influence stroke curves
when an effector is moving. Start pose, end pose, in-between poses, and stroke curves
compose motion trajectories (Figure 2.2). Motion trajectories specify behavior styles,
and it is possible to change motion trajectories without disturbing behavior functions.
Pose parameters are closely related to specific behaviors, although their abstract form
may be the same. Detailed parameters are introduced in Section 2.3.2. Motion param-
eters depict the dynamics of a motion. In this study, we investigate four motion param-
eters: motion-speed, decay-speed, hold-time and repetition (see Figure 2.2). The velocity
and hold-time relate to the temporal extent and fluidity in [70].

Joint configuration layer generates a list of joint values for one motion frame (one
pose). Joint values need to meet certain constraints placed by behavior functions. How-
ever, their values can be modified by behavior parameters within functional bounds.
One behavior parameter may influence multiple joints. In our work, the mapping from
behavior parameters to joint values is based on numerical functions (for key-points) and
interpolations (for in-between points).

2.3.2. IMPLEMENTATION OF THE MODEL

The behavior model was applied to two behaviors, waving and pointing. In HRI, waving
is a frequently used gesture for greeting, saying goodbye and drawing attention, while
pointing is a common deictic gesture. These behaviors have only one primary func-
tional effector (the right arm), so the number of the parameters for these behaviors is
appropriate for experiments. We selected three pose parameters and four motion pa-
rameters for each behavior. Beck et al. reports that head movements have a strong effect
on expressing affect [88]. Therefore, we added the head to the two behaviors as an effec-
tor with two pose parameters, head-up-down (vertical) and head-left-right (horizontal).
Thus, each behavior has nine parameters in total. The motion-speed, decay-speed and
hold-time for the head movement used the same values as the arm movement, and the
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Figure 2.3: The pose parameters of waving behavior

Figure 2.4: The parameterizations of waving behavior

head movement is never repeated.
A humanoid robot NAO of academic version 3.3 was used in this study. There are

six DOFs in each arm including Shoulder (Pitch, Roll), Elbow (Yaw, Roll), WristYaw, and
Fingers, and two DOFs including Head (Pitch, Yaw) in the neck. Although NAO emulates
the human body, differences remain in the arm. The wrist-pitch is missing, and the angle
range of shoulder-roll and elbow-roll is limited.

WAVING

We define waving as one hand swinging between two horizontally aligned positions re-
peatedly, and the palm should always face forward. The concrete parameterized behav-
ior model of waving (Figure 2.4) embodies the general model (Figure 2.1). The behavior
profile constrains the joints according to the definition of waving, while affective varia-
tions can be generated by modifying pose and motion parameters. The two end poses
of arm-swings — the maximum inward and outward poses (Figure 2.3) — are deter-
mined by the pose parameters including a) hand-height, b) finger-rigidness, and c) am-
plitude. Since the palm needs to face forward and NAO’s arm does not have wrist-roll
joint, the pose of the forearm is fixed. Hence, the hand-height can be controlled only by
the shoulder-pitch joint, which controls the inclination of the upper-arm (see top-right
figures in Figure 2.3). The waving of a human mainly relies on the movement of elbow
joint (the corresponding joint of NAO is elbow-roll). However, it is impossible for NAO
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to generate a natural waving with enough amplitude merely by the elbow-roll joint, due
to its angle range (-2◦ to 88.5◦). In our model, therefore, waving has two general modes
that are switched according to the hand-height: arm-swings are realized by controlling
elbow-yaw and shoulder-roll joints when hand-height is low (Figure 2.3a), and by con-
trolling elbow-roll and shoulder-roll joints when hand-height is high (Figure 2.3b). The
amplitude specifies the waving angle, and in practice the angle is allocated to the elbow
and shoulder. The finger-rigidness controls the straightness of the fingers. Other joints
are computed to keep the palm facing forward.

Motion parameters concern the dynamics of the joints. Waving-speed (motion-speed)
controls the velocity of the arm-swings. Decay-speed controls the velocity of the arm re-
turning to the initial pose. The value of the speed is a fraction of the maximum motor
speed. Hold-time [0.0, 5.0] (seconds) specifies the halting duration when the arm is in
the outward or inward poses. It influences the rhythm and fluency of the motion. Repe-
tition [1, 10] controls the number of the arm-swing cycles. One cycle is the arm swinging
from the outward pose to the inward pose and return to the outward pose. The swing
always starts from the outward pose.

POINTING

We define pointing as the arm stretching out from the preparation pose to the point-
ing pose (Figure 2.5a). Since NAO’s three fingers cannot be controlled separately, we
stuck two of them to the hand allowing only one finger to move as index finger. The
concrete parameterized behavior model of pointing (Figure 2.6) embodies the general
model (Figure 2.1). The behavior profile constrains the joints according to the definition
of pointing, while affective variations can be generated by modifying pose and motion
parameters. The pointing pose is determined by pose parameters including a) palm-up-
down, b) amplitude, and c) finger-rigidness. Palm-up-down controls the palm direction
of the pointing pose (see the top-right of Figure 2.5b). The palm direction is controlled
by the wrist-yaw and elbow-yaw joints, whose values are computed according to the nor-
mal vector to the palm. Amplitude is defined as the outstretching extent of the arm. It
is controlled by the curvature of the elbow. Figure 2.5b illustrates the amplitude and its
maximum state. Finger-rigidness is the straightness of the index finger. The finger cannot
be fully bent to avoid the deviation of the pointing direction. The values of other joints
are computed according to the pointing direction. NAO has only one DOF (WristYaw)
in the wrist, and NAO’s fingers can only be straight or bent, so the pointing direction is
almost in line with the direction of the forearm (see Figure 2.5b). In the experiment, the
pointing direction is fixed to the right-up of the robot (Figure 2.5a).

Regarding motion parameters, pointing-speed (motion-speed) refers to the velocity
of the arm moving from the preparation pose to the pointing pose. Decay-speed refers
to the velocity of the arm returning to the initial pose from the pointing pose. Hold-time
[0.0, 5.0] (seconds) refers to the time that the pointing pose persists before decaying.
Repetition [0, 5] refers to the frequency of the arm returning to an intermediate pose and
moving to the pointing pose again after the first pointing pose. Each joint of the inter-
mediate pose (J i nt ) is interpolated between the preparation pose (J pr e ) and the pointing
pose (J pnt ):

Ji nt = Jpr e +α× (Jpnt − Jpr e ) (2.1)
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Figure 2.5: The pose parameters of pointing behavior

Figure 2.6: The parameterizations of pointing behavior

α is a percentage set to 0.5.

2.4. EXPERIMENTS

2.4.1. RESEARCH QUESTIONS AND THE INITIAL DESIGN

T HIS study aims at designing mood expression superimposed on behaviors of a hu-
manoid robot. A parameterized behavior model has been developed so that moods

can be expressed through behavior variations. We applied the model to two functional
behavior prototypes (waving and pointing), for which the pose and motion parameters
can be set and assessed. The research questions are

Q1) Can our model and behavior parameter set be used for expressing mood?

Q2) What values should those parameters have?

To answer the questions, we created initial settings for both behaviors for the posi-
tive and negative moods. Then we conducted an experiment to test whether people

are able to use the parameters in our model to generate different affective robot behav-
iors corresponding with different moods, and whether their deign principles are con-
sistent with ours for the initial design. Based on literature (e.g., [64, 65, 88]) and our
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Table 2.1: The principles of the initial design

Parameters
Waving Pointing

Positive Negative Positive Negative

Motion

MotionSpeed fast* slow* fast* slow*
DecaySpeed fast* slow* fast* slow*

HoldTime short long long short
Repetition high* low* high* low*

Pose

HandHeight high low / /
PalmUpDown / / up down

FingerRig. straight* bent* straight* bent*
Amplitude large* small* large* small*
HeadVer. up* down* up* down*
HeadHor. look at you look away look at you/target look away

* general principles

experience, we formulated our design principles summarized as follows and outlined in
Table 2.1.

• Hand-height A higher hand pose presents a more positive mood. When waving is
in mode II (Figure 2.3b), the whole-arm activation shows more positive moods.

• Palm-up-down Palm facing up shows openness for positive moods while facing
down shows defensiveness for negative moods.

• Finger-rigidness Bent fingers generally show reluctance or unconcern reflecting a
negative mood; straight fingers show seriousness reflecting a positive mood.

• Amplitude A large waving angle represents expansiveness indicating a positive
mood; a small waving angle represents narrowness indicating a negative mood.
For pointing, an outstretched arm increases the hand traveling distance and the
arm rigidness, indicating a positive mood; an unextended arm shows unconcern
or reluctance indicating a negative mood.

• Motion-speed Fast motion speed expresses positive moods (e.g., happiness and
excitement); slow motion speed expresses negative moods (e.g., sadness).

• Decay-speed Fast decay speed expresses elation or excitement; slow decay speed
expresses fatigue or sadness.

• Hold-time Short hold time makes body movements fluent and smooth, indicat-
ing elation or delight; long hold-time makes body movements jerky or sluggish,
indicating sadness or depression. We used this principle for waving, whereas for
pointing we used long hold-time to show emphasis or willingness (to show direc-
tions) for positive moods, and short hold-time for negative moods. Particularly,
zero hold time will cause the pointing pose to decay immediately. The resulting
non-persistence shows unconcern, fatigue, and reluctance.

• Repetition Repeated movement shows excitement or elation. Non-repeated move-
ment stands for neutral or even negative moods like boredom, fatigue, or depres-
sion. For pointing, repetition also shows emphasis.
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• Head-up-down Raised head indicates a positive mood while lowered head indi-
cates a negative mood.

• Head-left-right Generally, head turning away from users (to avoid eye-contact) in-
dicates a negative mood, while facing users indicates a positive mood. In addition,
to indicate a negative mood through pointing the head should turn away from
both users and the pointing direction, while to indicate a positive mood the head
can face either users or the pointing direction.

According to the above principles, we created parameter settings across mood levels
(the initial settings) using a user interface which was used in the experiment.

2.4.2. DESIGN

USER DESIGN EXPERIMENT

The objective is to embed affective cues of different moods in waving and pointing by
modulating behavior parameters. The parameters can be adjusted using sliders or nu-
meric boxes on a user interface. Participants can click a "play" button to display the
adjusted behavior on the real NAO robot, so that they were able to observe the behaviors
from different positions and view-angles. Thus, they can test the effect on the behaviors
caused by the changes they made intuitively. The goal is to design behaviors that display
the mood that the robot is supposed to have. In this study, the mood is represented only
by valence with five levels ranging from negative to positive: very unhappy, unhappy,
neutral, happy, and very happy. The experiment is a within-subject design. Each partic-
ipant needed to set values for the nine behavior parameters for each behavior and mood
condition. The behavior parameters were reset to neutral values each time a participant
started designing for another valence level. The order of the behavior and mood condi-
tions was counter-balanced: a) Pointing → Waving, Negative → Positive; b) Pointing →
Waving, Positive → Negative; c) Waving → Pointing, Negative → Positive; d) Waving →
Pointing, Positive → Negative.

COMPARISON EXPERIMENT

In the design experiment, participants may fail to find the parameter settings they would
have preferred most due to the complexity of the parameter space and the limited time.
It is easier to identify a preferred design by comparison. Hence, after the design experi-
ment, participants were asked to compare their own design and the initial design. They
were not informed about who created either of these two designs. They were asked to
choose the one they preferred and provide reasons.

2.4.3. PARTICIPANTS

Participants were recruited by advertisements. 24 university students (14 males, 10 fe-
males) with an average age of 23 (SD=4) participated in this experiment. They were all
studying industrial design, and all had some experience of design. A pre-experiment
questionnaire confirmed that none of the participants had any expertise related to this
study per se. Each participant received a ten-euro coupon as a compensation for their
time.
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Table 2.2: Results of repeated-measures ANOVA

Waving Pointing
Parameters F(4,20) Sig. η2 Parameters F(4,20) Sig. η2

HandHeight 105.79 *** 0.955 PalmUpDown 3.36 * 0.402
FingerRig. 17.82 *** 0.781 FingerRig. 1.80 0.168 0.265
Amplitude 5.31 ** 0.515 Amplitude 22.47 *** 0.818
Repetition 22.01 *** 0.815 Repetition 13.67 *** 0.732
HoldTime 2.66 0.063 0.348 HoldTime 3.53 * 0.414
DecaySpd 16.75 *** 0.770 DecaySpd 6.84 ** 0.578

WavingSpd 42.39 *** 0.894 PointingSpd 37.31 *** 0.882
HeadVer. 75.58 *** 0.938 HeadVer. 42.55 *** 0.895
HeadHor. 1.39 0.274 0.217 HeadHor. 0.70 0.602 0.123

∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001

2.4.4. PROCEDURE

During the experiment, participants sat at a desk to manipulate the robot through a user
interface. The chair position was fixed by aligning the chair arms with two markers on
the desk. The robot stood on the desk and its location was fixed by markers under-
neath. Thus, the relative position between the participant and the robot was fixed to
minimize the bias on participants’ perception of the robot head direction. A NAO robot
of grey-white color was used to minimize the impact of color on participants’ perception
of moods.

After signing a consent form and filling in a pre-experiment questionnaire, each par-
ticipant received an explanation of the tasks for both experiments. Before the actual
experiment, participants were asked to familiarize themselves with the behavior param-
eters during a trial session and they can ask the experimenter to clarify anything unclear.
Then the actual user design experiment began. Participants were asked to adjust the pa-
rameters and test the behavior on the robot. For each behavior participants can proceed
to the next mood by clicking a "next" button if they are satisfied with their design for
the current mood. They were allowed to modify saved parameters of previous moods by
clicking a "previous" button. However, after they proceeded to the second behavior, they
were not able to modify the first one.

The comparison experiment started after participants completed the user design ex-
periment. For each behavior and mood, participants were asked to display two parame-
ter settings on the robot by clicking buttons on the user interface. They were asked to se-
lect the one they preferred most and provide reasons. The mood levels for each behavior
were presented in a random order, and the order of behaviors were counter-balanced.
After finishing the experiment, participants filled in a post-experiment questionnaire
and were informed about the purpose of the study. On average, the experiment took 90
minutes per participant.

2.5. ANALYSIS AND RESULTS

2.5.1. CORRELATION BETWEEN VALENCE AND BEHAVIOR PARAMETERS

T HIS section investigates in detail the correlation between valence and the nine be-
havior parameters of our model. Valence is the independent variable (within-subjects
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Figure 2.7: pairwise comparison between valence levels of waving behavior parameters

factor), and the nine parameters are the dependent variables. We used one-way repeated-
measures Analysis of Variance (ANOVA) to analyze the user settings to test whether sig-
nificant difference of each parameter exists between valence levels. Table 2.2 shows the
results and effect size η2. Results show that for both behaviors almost all parameters
vary significantly with mood. For the hold-time of waving, the difference is approaching
significance level. Therefore, it indicates that for both behaviors participants can create
parameter settings corresponding with different moods.

The results of pairwise t-tests with Bonferroni correction are provided in Figure 2.7
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and Figure 2.8 for the parameters that have significant difference between valence levels.
The parameter means are annotated on the bars. For waving, the values of hand-height,
finger-rigidness, amplitude, repetition, decay-speed, waving-speed, and head-up-down
increase with increasingly positive valence. Participants selected the hand-height value
of waving mode I for happy and mode II for very-happy (see Figure 2.3). As a result, we
conclude that waving mode II displays more happiness than mode I. For pointing, the
values of palm-up-down, amplitude, decay-speed, pointing-speed, and head-up-down
increase with increasingly positive valence. Overall, for these parameters the user de-
sign is consistent with the initial design (see Table 2.1), except for the repetition of the
pointing, which does not increase with increasingly positive valence (see Figure 2.8).

2.5.2. PATTERNS OF PARAMETERS

By connecting the points in the scatter plots of the parameter means, we obtain global
patterns (Figure 2.9) for the initial (blue) and the user (red) settings. The mean of each
parameter is scaled using the formula:

Pscaled = Por i g −Pg r andmi n(n,m)

Pg r andmax(n,m) −Pg r andmi n(n,m)
(2.2)

n is the number of participants. m is the number of moods. The grandmin/grandmax
is the minimum/maximum value of the parameter among the total n×m samples of the
user settings. The patterns reveal the interrelations between parameters for each behav-
ior and mood condition. Although exact parameter values may differ between behav-
iors, similar patterns are found in both behaviors for the same mood level (see Figure
2.9). The patterns of negative moods are similar for the two behaviors: the values of
finger-rigidness, amplitude, decay-speed and motion-speed are moderate; the repeti-
tion is low; the head is lowered. The patterns of positive moods are similar: the values
of finger-rigidness, amplitude, decay-speed and motion-speed are large; the repetition
is high; the head is raised.

2.5.3. DIFFERENCES FROM THE INITIAL DESIGN

Although the user design is overall consistent with the initial design, differences of exact
parameter values exist between them. Participants provided reasons in the comparison
experiment. Participants’ choices are shown at the top of each figure in Figure 2.9. Bi-
nomial tests suggest participants’ choice is not random for neutral (p<0.005) and happy
(p=0.064) pointing. One reason provided by participants is that they judged that the
initial design was more positive than it should be. Another reason is that participants
thought palm facing up looked unnatural. This also occurs for very-happy pointing (see
Figure 2.9). Participants selected a different value for palm direction than the initial de-
sign for neutral (t=-7.88, p<0.001) and positive moods (happy: t=-6.78, p<0.001; very-
happy: t=-7.68, p<0.001). Although more participants turned the palm up for positive
moods, still over 60% participants did not turn the palm up. Five participants explicitly
mentioned in the comparison experiment that the palm should be down, and some of
them thought palm facing up looked weird. It seems that the usual function of palm up
to display openness does not apply in the case of pointing.
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Figure 2.8: pairwise comparison between valence levels of pointing behavior parameters

We also discuss some of the salient differences between the initial and user designs
that are apparent from Figure 2.9. One-sample t tests were used to identify the differ-
ences. For the very-unhappy waving, although participants set decay and waving speed
slow, they are not as slow as the initial design (decay-speed, t=4.21, p<0.001; waving-
speed, t=1.78, p=0.089). These participants considered the robot to be "sad" or "de-
jected". Interestingly, some participants set the speeds very fast because they considered
the robot to be "angry" or "mad". Similarly, participants set faster speeds for the negative
pointing than the initial design (very-unhappy: decay-speed, t=5.65, p<0.001; pointing-
speed, t=3.59, p<0.005; unhappy: decay-speed, t=4.40, p<0.001; pointing-speed, t=2.20,
p<0.05;). About 25% participants set the speeds very fast for the negative pointing be-
cause they considered the robot to be "mad", "annoyed", "aggressive", or "impatient".
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These settings often have short hold-time and multiple repetition as well. Interestingly,
one participant seems to have intended to create a pointing with staring by making the
head face down, pointing-speed very fast (max), decay-speed very slow (min), and hold-
time very long (max). Although participants set larger amplitude for neutral and positive
waving, they did not set as large as the initial design (neutral: t=-6.20, p<0.001; happy:
t=-4.26, p<0.001; very-happy: t=-4.71, p<0.001). They mentioned that the initial design
made the motion more rigid and unnatural. Five participants set the amplitude small
for the positive waving, because the small amplitude with fast speed caused whole-body
shaking of the robot, which was perceived as happy or excited. For the negative point-
ing, participants considered the finger may influence the pointing direction, so they did
not set the finger as bent as the initial design (very-unhappy: t=3.79, p<0.001; unhappy:
t=2.07, p<0.05).

2.5.4. BEHAVIOR-INVARIANT PARAMETERS

Participants created different settings between the two behaviors for some parameters
of the same type, because these parameters have different functions for the behaviors.
Whereas most participants set the hold time for waving within one second, they set it
much longer for pointing. Possible reasons can be that hold time influences the flu-
ency of waving, but in the case of pointing it indicates the emphasis on the target. The
head-left-right parameter is related to eye-contact for both behaviors, but for pointing
it also emphasizes the pointing direction. Most participants turned the robot head side-
ways for both behaviors of a very-unhappy mood. For neutral and positive moods, al-
most all participants made the robot head face themselves for waving, but for pointing
almost all participants made the robot head face either themselves or the pointing direc-
tion. Finally, numerous repetition seems more natural for waving than for pointing, and
bent finger may influence the function of pointing. Whereas these parameters are found
to vary with behaviors, we also found parameters that are in essence behavior invari-
ant. As mentioned in Section 2.5.1, the same trends can be found in amplitude, decay-
speed, motion-speed, and head-up-down for both behaviors. Moreover, the patterns of
finger-rigidness, amplitude, decay-speed, motion-speed, repetition and head-up-down
are similar between behaviors for positive and negative moods. Therefore, we believe it
will be possible to generalize our findings to mood-modulation of other behaviors.

2.6. DISCUSSION

B EHAVIORS are parameterized in this study, and we intended to address the effect of
individual parameters on users’ perception of mood in the behaviors. However, par-

ticipants’ perception is usually an overall assessment of the behavior as a whole instead
of assessments of individual parameters. Moreover, parameters are probably interde-
pendent. One parameter may cause different effect on users’ perception when other
parameters changed. Thus, more careful experiment control is needed to address the
individual effect and interdependency of the parameters.

Although we only investigated the valence dimension in this study, some parameters
may relate more to the arousal dimension (active vs. passive moods). For example, the
participants that set the speeds fast considered the robot was angry (high arousal), while
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the ones that set the speeds slow considered the robot was sad (low arousal). We will
add the arousal dimension to our model and study the correlation between behavior
parameters and this dimension.

Experiment shows that creating settings for pointing seems more difficult than wav-
ing. It implies that the expressivity of behaviors per se may differ from each other, i.e.,
modulating parameters of the same type may produce different quantity of affective
cues for different behaviors. The effect sizes of ANOVAs indicate that the strength of
the association between valence and each behavior parameter may be different (see Ta-
ble 2.2). With quantitative assessment of affective cues provided by each parameter, a
robot system can select parameters for expressing mood quantitatively. Combined the
quantitative assessment with a further study of generic (behavior-invariant) parameters,
a minimum parameter set can be found for each behavior.

For each behavior and mood condition, we created weighted settings that integrate
the findings from the user study and our design principles (see Section 2.4.1). The video
clips of the initial and weighted design can be found on our website1. An evaluation of
the generated mood expression in which participants recognize mood from behaviors
will be done in the future. Numerical functions that correlate valence with each param-
eter can be established using the weighted settings and interpolation. These functions
can be evaluated through experiments and improved by tuning the interpolated points.

2.7. CONCLUSION

T HIS study indicates that with our model affect can be expressed through ongoing be-
havior of robots during a task. In our model, affect (mood in our particular case)

is expressed through affective cues provided by behavior variations, and the variations
are generated by behavior parameter modulation. Experimental results show that our
model and parameter set are able to generate such behavior variations. Our model con-
tains specific parameters that can be directly used for modifying robot behaviors. More-
over, various parameters were found to have identical function of expressing moods for
the two behaviors. This suggests that some of our parameters can be used as generic
ones in a variety of behaviors, and the design principles of these parameters can also be
applicable to other behaviors. The contribution of this study is to enrich the affective
expression of social robots by enabling them to express affect through body language
during task execution.

1http://ii.tudelft.nl/~junchao/moodexpression.html

http://ii.tudelft.nl/~junchao/moodexpression.html




3
THE RELATIVE IMPORTANCE AND

INTERRELATIONS BETWEEN

BEHAVIOR PARAMETERS FOR

ROBOTS’ MOOD EXPRESSION

This chapter describes the statistic analyses of the user-designed parameter settings from
Chapter 2 that we performed in order to figure out the relative importance of the parame-
ters and the correlations between the parameters.

This chapter is based on J. Xu, J. Broekens, K.V. Hindriks, M.A. Neerincx, The relative importance and interrela-
tions between behavior parameters for robots’ mood expression, Proceedings of IEEE International Conference
on Affective Computing and Intelligent Interaction (ACII). pp 558–563, 2013.
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ABSTRACT

Bodily expression of affect is crucial to human robot interaction. Our work aims at design-
ing bodily expression of mood that does not interrupt ongoing functional behaviors. We
propose a behavior model containing specific (pose and motion) parameters that charac-
terize the behavior. Parameter modulation provides behavior variations through which
affective behavioral cues can be integrated into behaviors. To investigate our model and
parameter set, we applied our model to two concrete behaviors (waving and pointing) on a
NAO robot, and conducted a user study in which participants (N=24) were asked to design
such variations corresponding with positive, neutral, and negative moods. Preliminary
results indicated that most parameters varied significantly with the mood variable. The
results also suggest that the relative importance may be different between parameters, and
parameters are probably interrelated. This chapter presents the analysis of these aspects.
The results show that the spatial extent parameters (hand-height and amplitude), the
head vertical position, and the temporal parameter (motion-speed) are the most impor-
tant parameters. Moreover, multiple parameters were found to be interrelated. These pa-
rameters should be modulated in combination to provide particular affective cues. These
results suggest that a designer should focus on the design of the important behavior pa-
rameters and utilize the parameter combinations when designing mood expression.
Keywords: nonverbal cues; bodily expression; affect; mood; behavior model; parameteri-
zation; social robots; HRI;

3.1. INTRODUCTION

B ODILY expression of affect is a key ability of social robots [26]. It is crucial to human
robot interaction (HRI) because it helps humans to perceive the internal states (e.g.,

beliefs, intentions, and emotions) of robots, and it improves the naturalness of HRI and
the life-like quality of robots [24]. Bodily expression is also important for robots that lack
sophisticated facial features such as NAO, QRIO and ASIMO. Current bodily expression
of affect usually consists of body actions that express emotions deliberately. For exam-
ple, raising both hands shows happiness [54]; arms akimbo shows anger [55]; covering
eyes by hands shows fear [56]. However, these body actions rise and dissipate quickly
and do not extend over time. Moreover, these body actions may interrupt functional be-
haviors during a task; functional behaviors also hinder such actions from expressing a
long-term affect like mood. For example, a robot cannot express an excitement mood
by raising both hands repeatedly while the robot is pointing to the object that makes it
excited for long. Parkinson proposed that moods may be expressed via bodily postures
[63]. Breazeal et al. [58] defined implicit communication (i.e., robots do not commu-
nicate deliberately), which conveys robots’ internal states via behavioral cues. Inspired
by them, we believe that mood can be expressed implicitly through affective behavioral
cues. Our work aims at integrating bodily expression of mood with task-related behav-
iors, by embedding affective behavioral cues into these functional behaviors. As a result,
robots can convey affects continuously over time, even during a task execution. There-
fore, our proposed bodily mood expression may enhance the effect of the affective ex-
pression on HRI.

We propose a layered behavior model that generates behavior variations through be-
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havior parameter modulation, and the variations provide affective cues. The model con-
tains parameters (e.g., speed, amplitude, and repetition) that are applicable to a broad
range of behaviors. In our model, moods do not trigger behaviors but influence the be-
havior appearance. As a result, mood expression does not interrupt task scheduling. In
previous work [77], we applied this model to two concrete behaviors of the NAO robot,
and studied the relation between mood variables and behavior parameter modulation
and obtained general design principles for each parameter. This chapter addresses the
relative importance and the interrelations between parameters. The results provide in-
sights into behavior parameter modulation for expressing moods, and provide criteria
for simplifying the behavior generation system of a robot. Designers may focus more on
the highly important parameters when designing bodily expression of mood. The pa-
rameter space of bodily expressions can be less complex by removing the less important
parameters. Moreover, we also found that multiple parameters have to be modulated
in concert to express a particular mood, and some of them vary correlatively. In this
case, less parameter modulation principles are needed when one function is built to
map mood variables to interrelated parameters as a whole.

The remainder of the chapter is organized as follows. Section 3.2 introduces the re-
search on parameterized behavior models. Section 3.3 describes our behavior model
and the implementation into concrete behaviors; Section 3.4 describes the experiment
and the initial findings. Section 3.5 reports our findings about the relative importance
and interrelations between behavior parameters; Section 3.6 concludes the main find-
ings of this study and proposes the future work.

3.2. RELATED WORK

O NE way of generating affective behavioral cues is to modulate behavior parame-
ters. In this way, affect can be reflected by the same behavior executed in different

"styles", rather than the behavior "contents" per se. Laban movement analysis (LMA)
[66] is composed of a broad range of parameters that models body movements from dif-
ferent aspects, e.g., effort and shape. It has been used in expressive gesture synthesis for
virtual agents (e.g., EMOTE [69]) and emotion expression for robots (e.g., [86]). Unlike
EMOTE, which performs as a post-process of generated behaviors, we define interfaces
(i.e., behavior parameters) simultaneously we create the functional profile of the behav-
ior, so that mood expression (by modulating these parameters) can exist in concord with
behavior functions. Wallbott [65] studied humans’ bodily movements that express emo-
tions. The behavior pattern is annotated as movement "quality" defined by three dimen-
sions. Pelachaud [70] characterized the expressivity of nonverbal behavior (i.e., how a
behavior is executed) using six parameters: spatial, temporal, fluidity, power, overall ac-
tivation, and repetition. They were applied to an embodied conversational agent Greta,
so that Greta can communicate her cognitive and affective states through modulated
gestures. The parameters in the above studies are abstract and have to be transformed
into concrete ones while applying them to a particular behavior. Several concrete pa-
rameters can represent the same abstract one. For example, the spatial extent [70] can
present horizontal extent (amplitude or wideness), vertical extent (height), or radial ex-
tent (e.g., the outstretching extent of an arm). The speed parameter can present the
speeds of different phases of a behavior (e.g., motion speed and decay speed). These
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different transformed parameters may produce different affective cues. Moreover, when
applying these parameters to a functional behavior of a particular robot, some of them
may be restricted by the behavior function and the physical constraints of the robot. We
study behavior parameter modulation for mood expression with the parameters that ex-
ist inherently in the behavior and can be modulated without interfering with behavior
functions.

The robotic behaviors which parameter modulation has been applied to usually in-
volved merely a few degrees of freedom (DOFs) [74, 86]. Whether parameter modulation
of a high-DOF behavior is effective for mood expression remains a question, especially
in the presence of the behavior function. In addition, the underlying control mechanism
of high-DOF behaviors can be more complex. It may be difficult to apply a complex pa-
rameter modulation model to those behaviors. Parameter modulation can be simplified
by selecting a sufficient set of parameters that can express moods efficiently. Criteria
are needed for selecting a minimum set. Yet, the priorities of parameters are not clear.
Moreover, modulating a single parameter may be insufficient for expressing a particular
mood. Crane et al. showed that some parameters need to be modulated in combina-
tion for expressing a particular affect [90]. Yamaguchi et al. [74] proposed a model in
which four emotions can be expressed through modifying amplitude, speed, and posi-
tion. They applied the model into single-arm behaviors of an AIBO robot. They also
found certain emotions could not be expressed only by a single parameter. For exam-
ple, fast motion can be applied to both joy and anger. Thus, other parameters have to
be applied together. For high-DOF behaviors, interrelations between parameters also
become more complex. It is necessary to clarify the interrelations between parameters
to find such combinations for expressing affect more efficiently. We studied high-DOF
functional behaviors and investigated these issues by an experiment in which partici-
pants were involved in designing mood expression through parameter modulation.

Layered models (e.g., [74, 75]) were developed to link the affect of robots or virtual
agents to behavior parameters. Our model adopts the layered architecture. Unused body
parts can also vary behavior styles without interrupting task execution. Brooks and Arkin
[76] proposed a behavioral overlays model that alters the overall appearance of robots’
functional behaviors by overlaying behaviors of unused body resources. Beck et al. [88]
report that head movements have a strong effect on expressing affect. Therefore, we
added head into functional behaviors with two pose parameters, head-up-down, and
head-left-right.

3.3. BEHAVIOR MODEL AND IMPLEMENTATIONS

3.3.1. GENERAL BEHAVIOR MODEL

T HE parameterized behavior model (Figure 3.2 and 3.4) consists of three layers: 1) a
drive layer; 2) a behavior parameterization layer; and 3) a joint configuration layer.

The drive layer contains the task scheduler and the affect generator. We modeled mood
using dimensional variables in the affect generator. The task scheduler decides the cur-
rent behavior to be performed according to behaviors’ functional profiles. Each behav-
ior has its own functional profile that constrains the joints, while affect determines the
behavior parameters which change the joints within functional bounds, generating be-
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Figure 3.1: The pose parameters of the waving behavior

havior variations. Thus, from the top layer, the task scheduler and affect generator can
work simultaneously and separately without interfering with each other. In the behavior
parameter layer, pose and motion parameters serve as interfaces for the drive layer to
stylize the behavior. Pose parameters control the key postures (position, shape, and di-
rection) of effectors (a chain of joints, e.g., arm, leg, and neck), while movements are gen-
erated by these key postures and interpolation. Motion parameters depict the dynamics
of a motion including velocity, continuity, and repetition. We constructed the behavior
profiles by mimicking humans’ behaviors and according to social conventions (i.e., peo-
ple understand the behaviors with common sense). The parameters were defined during
the construction of behaviors’ functional profiles so that balance of behavior variations
and the maintenance of the behavior function can be better achieved.

3.3.2. IMPLEMENTATION

The behavior model was applied to a greeting gesture, waving (Figure 3.1) and a deictic
gesture, pointing (Figure 3.3) of a NAO robot (academic version 3.3). For each behavior
we used three pose parameters for the right arm and four motion parameters. Six DOFs
(degrees of freedom) exist in the arm including Shoulder (Pitch, Roll), Elbow (Yaw, Roll),
WristYaw, and Fingers, and two DOFs including Head (Pitch, Yaw) in the neck. Although
NAO emulates the human body, differences remain in the arm. The wrist-pitch is miss-
ing, and the angle range of shoulder-roll and elbow-roll is limited.

We define waving as one hand swinging between two horizontally aligned positions
repeatedly, and the palm should always face forward. Pose parameters determine the
maximum inward and outward poses (Figure 3.1). The pose parameters of waving are
hand-height, finger-rigidness, and amplitude. Hand-height determines the vertical po-
sition of the poses, while amplitude determines the horizontal. Figure 3.1 shows low and
high hand positions. In our design, waving has two modes, which are switched accord-
ing to the hand-height. Waving can be generated by controlling ElbowYaw and Shoulder-
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Figure 3.2: The parameterization of the waving behavior
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Figure 3.3: The pose parameters of the pointing behavior

Roll joints when the hand-height is low (Figure 3.1a), and by controlling ElbowRoll and
ShoulderRoll joints when the hand-height is high (Figure 3.1b). The amplitude is the
waving angle. Finger-rigidness controls the straightness of NAO’s fingers. Other joints
(WristYaw and ElbowRoll when the hand-height is low; WristYaw and ElbowYaw when
the hand-height is high) are constrained to keep the palm facing forward.

We define pointing behavior as the arm stretching out from the preparation pose to
the pointing pose (Figure 3.3a), with which the index finger aims at a specified target
(Figure 3.3b). Since NAO’s three fingers cannot be controlled separately, two of them
were stuck to the hand allowing only one finger to move as index finger. The pose pa-
rameters of pointing are palm-direction, finger-rigidness, and amplitude (Figure 3.3b).
Palm-direction controls the facing direction of the palm for the pointing pose (shown in
the top-right figure of Figure3b). Amplitude determines the outstretching extent of the
arm for the pointing pose. Finger-rigidness controls the straightness of the index finger,
which is constrained as the pointing finger cannot be fully bent in the pointing pose.

Four motion parameters were adapted from [70] and [89]: 1) Motion-speed (tempo-
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Figure 3.4: The parameterization of the pointing behavior

ral extent) refers to the velocity of the arm swings for waving (waving-speed), or the arm
outstretching from preparation pose to the pointing pose for pointing (pointing-speed).
2) Decay-speed (temporal extent) refers to the velocity of the arm returning to initial
pose. 3) Repetition is the number of swings for waving, and the number of outstretching
actions for pointing. 4) Hold-time (fluidity) determines duration of the arm waiting at
the endpoints of a swing for waving, or at the pointing pose for pointing. For the head,
we used the same values for motion parameters as used for the arm movement except
for the repetition (the head never repeats). Thus, each behavior has nine parameters in
total.

3.4. EXPERIMENT AND INITIAL FINDINGS

T O study the parameterized behavior model, we conducted an experiment in which
participants were asked to design mood expression by adjusting the nine parame-

ters for each of the two behaviors corresponding to different moods characterized by
valence. Although valence is a dimensional scale, five different levels were used for the
experiment. We used very-unhappy, unhappy, neutral, happy, and very-happy to de-
scribe to ensure that participants can understand them. We did not constrain the con-
text of arousal. Participants can display adjusted behaviors on a real NAO robot, so that
they can test resulting behaviors. They were also asked to provide their design rationale.
In this way, participants provided various self-evaluated parameter settings to us, and
we extracted design principles from their settings and comments. 24 university students
(14 males, 10 females) with an average age of 23 (SD=4) participated in this experiment.
More details can be found in [77].

We have analyzed the participants-created settings using repeated-measures ANOVA,
and obtained the relation between valence and behavior parameters [77], which we sum-
marize as follows. Results showed that almost all parameters of both behaviors varied
significantly with valence. This indicates that our model and behavior parameter set are
promising for generating behavioral cures for mood expression. Moreover, the results of
pairwise t tests suggest that most parameters are positively correlated with valence (Ta-
ble 3.1). Since these parameters follow the same trend, we speculate that some param-
eters are probably interrelated, and they should probably be modulated in combination
when expressing a particular mood. The interrelations can also simplify the mapping
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Table 3.1: Parameters that vary significantly with mood

Waving Pointing
Parameters Trend† Sig.‡ η2 Parameters Trend† Sig.‡ η2

HandHeight + *** 0.955 HeadVer. + *** 0.895
HeadVer. + *** 0.938 PntSpd + *** 0.882
WavSpd + *** 0.894 Amplitude + *** 0.818

Repetition + *** 0.815 Repetition *** 0.732
FingerRig. + *** 0.781 DecaySpd + ** 0.578
DecaySpd + *** 0.770 HoldTime * 0.414
Amplitude + ** 0.515 PalmDir + * 0.402
HoldTime 0.348 FingerRig. 0.265
HeadHor. 0.217 HeadHor. 0.123

†These parameters increase with increasingly positive valence.
‡* p<0.05, ** p<0.01, *** p<0.001

from mood variables to behavior parameters. Moreover, the effect sizes η2 of ANOVAs
indicated that the strength of the association between valence and each behavior pa-
rameter may be different. Therefore, we speculate that the importance of each parame-
ter is different. Parameters in Table 3.1 are sorted by the effect size η2. In this chapter, we
looked at the parameters with large (above 0.5) effect size, and the relative importance is
further assessed by analyzing the parameter settings and the empirical data provided by
participants. The importance provides a benchmark for simplifying the behavior model
by removing the less important parameters.

3.5. RELATIVE IMPORTANCE AND INTERRELATIONS

3.5.1. DATA RELIABILITY

Q UESTIONS (using 5-point Likert scale) about participants’ confidence of their de-
signs (Mean=3.85, SD=0.58), whether the moods can be recognized (Mean=4.08,

SD=0.58), and task complexity (Mean=3.33, SD=0.87) suggested that participants were
successful at the task. Before the main analysis, Cronbach’s α was used to test whether
the values for each parameter of five mood levels are consistent across 24 participants.
The data reliability indicates the validity of the results of the main analysis. Based on the
reliability, we can select parameters for the main analysis. Results show that the data of
the head-left-right of both behaviors are unreliable (below 0.60). The data of all other
parameters are reliable: for waving the α values from 0.833 to 0.994; for pointing the α
values range from 0.729 to 0.990. Therefore, all parameters except the head-left-right
were selected for the main analysis.

3.5.2. THE RELATIVE IMPORTANCE OF PARAMETERS
The relative importance of parameters was assessed through the user settings (objective
data) and the user ranks (empirical data) of parameters. Multivariate linear regression
was used to analyze the relationship between the mood variable (outcome variable) and
each behavior parameter (predictor variables). The standardized coefficient β and ∆R2
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Figure 3.5: The results of Friedman test and Wilcoxon tests for the two behaviors across all mood levels;
the mean ranks are denoted under each symbol; the significances are uncorrected
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of each predictor indicates its contribution to the outcome variable, i.e., its importance
in the model. Among the parameters that have high reliability, the behavior parame-
ters that vary significantly with mood (see Section 3.4) were selected as predictors. The
important parameters were selected using backward-stepwise method (to reduce Type
II error). Afterwards, we entered these parameters hierarchically (blockwise entry) to
obtain a forward change statistics. Table 3.2 shows the minimum set of parameters for
waving and pointing behaviors in order of importance suggested by the multivariate re-
gression results.

Table 3.2: Importance suggested by multivariate regression

Waving Coefficients Change Statistics
Parameters β Sig. step R2 ∆R2 ∆F Sig.

HeadVer. 0.483 0.000 1 0.842 0.842 627.436 0.000
HandHeight 0.236 0.000 2 0.886 0.044 44.953 0.000
WavingSpd 0.212 0.000 3 0.907 0.021 25.436 0.000
Repetition 0.071 0.077 4 0.910 0.003 3.723 0.056
Amplitude 0.065 0.054 5 0.913 0.003 3.790 0.054

Pointing Coefficients Change Statistics
Parameters β Sig. step R2 ∆R2 ∆F Sig.

HeadVer. 0.727 0.000 1 0.767 0.767 389.083 0.000
Amplitude 0.149 0.007 2 0.783 0.016 8.879 0.004

PointingSpd 0.094 0.085 3 0.788 0.005 3.014 0.085
Each parameter was entered for each step, and the coefficients of the final
step are shown.

Friedman test with Kendall’s W was used to analyze the user ranks of parameters.
The analysis was performed across all mood levels to assess the relative importance of
each parameter, and performed for each mood level separately to test how the impor-
tance of each parameter varied with mood levels. Kendall’s W was used to assess the
consistency of participants’ ranks. The results show that the importance of waving pa-
rameters is different (χ2(8) = 334.211, p<0.001, W = 0.348), and the importance of point-
ing parameters is also different (χ2(8) = 164.327, p<0.001, W = 0.171). Figure 3.5 shows
the mean rank of each parameter. Parameters with high importance (low mean rank) are
sorted to the left of the horizontal axis. Then we used Wilcoxon tests to compare the im-
portance of parameters in pairs. Parameters are grouped according to their importance;
different groups are marked with different symbols and colors (Figure 3.5). Significance
was found between each pair of the parameters from different groups, except for the
annotated one. Therefore, we obtained the relative importance of each group. The re-
sults of analyzing the parameter settings and the empirical ranks are overall consistent.
Combining these results, we conclude that the minimum parameter set of waving is 1)
hand-height, 2) waving-speed, 3) head-up-down, 4) amplitude, and 5) repetition, and
the minimum set of pointing is 1) head-up-down, 2) amplitude, and 3) pointing-speed.
Moreover, the head-up-down, motion-speed, and amplitude were ranked most impor-
tant for both behaviors. Thus, these parameters are probably also important for other
behaviors.
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Friedman tests were also carried out for each mood level separately to test how the
importance of each parameter varied with mood levels. Results show that the mean
ranks of each parameter in different mood conditions are consistent with the overall
result, although they vary slightly with moods. Among the five important parameters of
waving, across all mood levels the hand-height is top ranked, followed by waving-speed,
then amplitude, and then repetition; The head-up-down was top ranked for negative
moods, while it dropped to the middle for positive and neutral moods. This suggests
that a lowered head is important for showing negative moods, while a raised head is rel-
atively less important for showing positive moods. However, among the three important
parameters of pointing, the head-up-down was top ranked for all moods except neutral,
followed by the pointing-speed and amplitude. It seems more difficult to express moods
by arm movement for pointing than waving, since the head-up-down played a more im-
portant role in expressing positive moods for pointing.

3.5.3. INTERRELATIONS BETWEEN PARAMETERS

This section focuses on the interrelations between behavior parameters. From the de-
sign rationale provided by participants, we found that participants considered several
parameters in combination when they were designing a particular expression. To clar-
ify how general these patterns were among participants, we categorized participants’
parameters settings using hierarchical clustering analysis with behavior parameters as
predictors, and labelled the parameter modulation patterns of these combinations ac-
cording to their design rationale. Table 3.3 show these combinations and their occur-
rence. The mood levels we chose for this test are 1) very-unhappy (negative condition),
and 2) very-happy (positive condition), because the change of each parameter is larger
in these extreme conditions and thus less susceptible to the individual differences. To
minimize the random effect caused by individual differences on the neutral point, we
subtracted the parameter value of each sample (N=24) of very-unhappy and very-happy
from its corresponding neutral value.

We interpret these patterns in light of participants’ rationale as follows. For the wav-
ing of a negative mood, the majority of participants combined slow waving-speed and
decay-speed with small amplitude making the movement small and less energetic to
show sadness. With this settings, some participants increased the hold-time to make
the movement sluggish and even slower overall. This combination expresses a mood
of depression. Some participants combined large amplitude and slow waving-speed to
express boredom. When speed is slow, large amplitude made the speed of the overall
movement even slower. Similarly, small amplitude made the speed of the overall move-
ment rapid when the speed parameters were set fast. Two participants combined fast
waving-speed and decay-speed with a small amplitude to express anger. For the wav-
ing of a positive mood, the majority combined fast waving-speed with large amplitude
to show happiness, while five participants further increase the waving-speed and com-
bined more repetition and short hold-time to express elation. Six participants combined
fast waving-speed but small amplitude to create a feeling of rapidness for expressing ex-
citement. Here, the hand-height was set high to present a positive feeling, otherwise the
rapidness may be confused with a negative mood. Thus, the amplitude played different
roles in mood expression when combined with different speed conditions. In addition,
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Table 3.3: The Modulation of Parameters in Combination

Waving
Expressed Mood Parameter Modulation Freq.

Negative

angry MS+ DS+ AMP- 2
bored MS- AMP+ 5

sad MS- DS- AMP- HT- 7
depressed MS- DS- AMP- HT+ 8

Positive
excited MS+ AMP- HH+ HT- 6
happy MS+ AMP+ HT- 12
elated MS++ AMP+ REP+ HT- 5

Pointing
Expressed Mood Parameter Modulation Freq.

Negative
mad/aggressive MS++ DS++ REP+ 3

angry MS+ DS+ 5
sad MS- DS- 12

Positive
elated MS+ AMP+ HT- REP++ 5
happy MS+ AMP+ REP+ 14

pleased MS+ AMP+ REP=0 2
MS: motion-speed, DS: decay-speed, AMP: amplitude, HT: hold-time, REP: repetition,
HH: hand-height. The +/- symbols mean increase/decrease from the neutral values. The
++ means great increase, and it is differentiated from + based on clustering.

waving-speed correlates with decay-speed for both negative and positive conditions (Ta-
ble 3.4). Participants also mentioned that these two speeds are related and fast waving-
speed combined with fast decay-speed gave an "aggressive" feeling to express a negative
mood. Besides, almost all participants set waving-speed faster than decay-speed across
all mood levels. The finger-rigidness was also found to correlate with both speeds (Ta-
ble 3.4). Bent fingers usually express a fatigue (low energy) feeling, while straight fingers
accord better with fast speed showing high energy.

For the pointing of a negative mood, half the participants combined slow pointing-
speed and slow decay-speed to express sadness. Five participants combined fast pointing-
speed and fast decay-speed to show anger. Some of them also decreased the hold-time,
because short hold-time caused the pointing pose to decay immediately showing im-
patience, which enhanced the anger expression. Three participants further increased
waving-speed and decay-speed and combined with more repetition to show "madness"
or "aggressive". In addition, the decay-speed positively correlates with the pointing-
speed (Table 3.4). The head-up-down positively correlates to the repetition and two
speed parameters, since a lowered head accords with a "sad" mood but not an "angry"
mood. The finger was also found to correlate positively with these parameters for match-
ing the energy level. For the pointing of a positive mood, the most frequent combination
used by participants is fast pointing-speed and large amplitude, which shows pleasure.
When they are combined with a moderate repetition (1 to 3), the pointing looks happier.
When they are combined with a high repetition (4 to 5), the pointing shows elation. Be-
sides, the hold-time was found negatively correlated with the repetition (Table 3.4). Par-
ticipants explained that both repeated pointing and long-hold pointing pose could show
emphasis on the target. Using both cues is unnecessary. The pointing-speed positively
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Table 3.4: Regressions between Parameter Increments

Waving X Y Model R2

Negative
∆WavingSpeed ∆DecaySpeed y=0.663x-0.003 0.409
∆DecaySpeed ∆FingerRigidness y=1.568x-0.144 0.385

Positive ∆WavingSpeed ∆DecaySpeed y=0.779x-0.010 0.390
Pointing X Y Model R2

Negative ∆PointingSpeed

∆Repetition y=4.961x+0.614 0.497
∆DecaySpeed y=0.624x-0.020 0.383

∆FingerRigidness y=0.734x-0.028 0.424
∆HeadUpDown y=8.272x-4.013 0.317

Positive
∆PointingSpeed ∆Repetition y=14.229x-0.341 0.423
∆Repetition ∆HoldTime y=-0.522x+0.475 0.462

The symbol ∆means the increment from the neutral value.

correlates with the repetition because fast speed accords better with repeated motion.
In sum, the same parameter may function differently for expressing moods when

other parameters have changed. These findings provide a general principle for designing
bodily expression of mood using parameter modulation: it is more important to modu-
late a combination of parameters to produce particular affective cues rather than a sin-
gle parameter. In addition, one function can be established to link the mood variable
to these interrelated parameters as a group, while they link to each other internally by
functions that describe their interrelations (Table 3.4). In our case, a link can be built be-
tween mood variables and the motion-speed, to which other parameters can be linked
otherwise. Thus, research can be focused on the mapping from mood variables to mul-
tiple parameters as a whole instead of to each individual one.

3.6. CONCLUSION

T HIS chapter presents our study on the relative importance of the behavior parame-
ters and their interrelationships in a behavior model used for mood expression. Re-

sults indicate that the importance of each parameter is different, and thus it is possible
to express moods by modulating only the important parameters. In our case, the param-
eters of spatial extent (amplitude and hand-height), the vertical position of the head,
and the temporal extent (motion-speed) are the most important factors for expressing
moods in both behaviors. These parameters are probably important for a variety of be-
haviors. However, this study covered only two behaviors. More behaviors need to be
investigated to validate this point.

This study also shows that some parameters are interrelated and they should be
modulated in combination to produce the behavioral cues that express a particular mood.
From the perspective of designers, one function can be used to map mood variables to
the interrelated parameters as a group. In this way, the robot system can also be simpli-
fied.

In the future we plan to conduct a recognition experiment, in which designed behav-
iors will be evaluated and whether the unimportant parameters can be removed without
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reducing the recognition rate of moods will be tested. Moreover, the importance sug-
gests how easily moods can be recognized through the modulation of each parameter
may be different. This will also be addressed in the recognition experiment. Further-
more, these design principles will be applied to more behaviors and evaluated in real
HRI scenarios.



4
BODILY MOOD EXPRESSION:

RECOGNIZE MOODS FROM

FUNCTIONAL BEHAVIORS OF

HUMANOID ROBOTS

This chapter describes a recognition task that evaluates how people recognize the mod-
ulated waving and pointing behaviors generated based on the user-designed parameter
settings from Chapter 2. The behaviors are also modulated by adjusting only the "impor-
tant" parameters or "unimportant" parameters according to the results from Chapter 3.
We test the recognition of the behaviors to figure out whether the "important" parameters
are sufficient in expressing moods and whether the "unimportant" parameters can still
express "weak" moods.

This chapter is based on J. Xu, J. Broekens, K.V. Hindriks, M.A. Neerincx, Bodily mood expression: Recog-
nize moods from functional behaviors of humanoid robots, Proceedings of International Conference on Social
Robotics (ICSR). pp 511–520, 2013

45



4

46 4. RECOGNIZE MOOD FROM FUNCTIONAL BEHAVIOR

ABSTRACT

Our goal is to develop bodily mood expression that can be used during the execution of
functional behaviors for humanoid social robots. Our model generates such expression by
stylizing behaviors through modulating behavior parameters within functional bounds.
We have applied this approach to two behaviors, waving and pointing, and obtained pa-
rameter settings corresponding to different moods and interrelations between parameters
from a design experiment. This chapter reports an evaluation of the parameter settings in
a recognition experiment under three conditions: modulating all parameters, only impor-
tant parameters, and only unimportant parameters. The results show that valence and
arousal can be well recognized when the important parameters were modulated. Modu-
lating only the unimportant parameters is promising to express weak moods. Speed pa-
rameters, repetition, and head-up-down were found to correlate with arousal, while speed
parameters may correlate more with valence than arousal when they are slow.

4.1. INTRODUCTION

N ONVERBAL expression of affect, as a key ability of social robots, helps humans to un-
derstand robots’ internal states (e.g., emotions, moods, beliefs, and intentions) and

improves the life-like quality of robots [31]. Besides facial expression, bodily expression
is a major communication channel of affect. Experimental studies showed that peo-
ple can recognize these expressions (e.g., [54], [55], [56], and [57]). Furthermore, bodily
expression improved humans’ recognition of robots’ emotion ([54], [55]). In addition,
bodily expression is important for robots that lack facial features (e.g., NAO and ASIMO).
One way of constructing bodily expression is to build from scratch by "mimicking" hu-
mans’ behaviors (static postures and dynamic movements). These bodily expressions
are typically designed as explicit behaviors. They usually consist of body actions that ex-
press emotions deliberately. For example, raising both hands shows happiness [54]; arms
akimbo shows anger [55]; covering eyes by hands shows fear [56]. However, these body
actions rise and dissipate quickly and do not extend over time. Thus, we believe that this
type of expression is suitable for expressing emotions, but not moods. Moreover, these
body actions may interrupt functional behaviors. For example, a robot cannot express
excitement while it is pointing to the object or person that makes it excited by raising
both hands. Our work aims at integrating bodily expression of mood with functional
behaviors, e.g., task execution, communicative gestures, walking, etc. To this end, we
parameterized functional behaviors so that modulating parameters can generate affec-
tive cues. Hence, moods can be reflected from the same behavior executed in different
"styles", rather than the behavior "contents" per se. As a result, mood can be expressed
continuously over time, even when robots are executing tasks. Therefore, we believe that
this method is suitable for mood expression. Moreover, bodily mood expression may en-
hance the affective interaction by prolonging it and providing more modalities.

We investigated our behavior model with a humanoid robot NAO, with interests in
whether parameter modulation can be effectively applied to a robotic platform for show-
ing mood. In particular, mood is expressed less explicitly through our approach. In addi-
tion, we studied high-DOF functional behaviors, allowing us to define more parameters
that may enrich the mood expression. We are also interested how behavior parameters
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Figure 4.1: The parameterized waving (left) and pointing (right) behaviors: our model contains three
pose parameters of the arm shown in the figure, two pose parameters of head (head-vertical and head-
horizontal), and four motion parameters containing motion-speed, decay-speed, repetition, and hold-
time. More details can be found in [77].

can be combined to show different moods. In previous work [77], our model has been
applied to two functional behaviors, waving and pointing (Figure 4.1), and we obtained
general design principles about the relations between mood variables and behavior pa-
rameter modulation from a design experiment, in which participants were asked to de-
sign mood expression according to five levels of valence labeled by very-unhappy, un-
happy, neutral, happy, and very-happy. In addition, the relative importance and the in-
terrelations between parameters were investigated [78]. Table 4.1 summarizes the main
findings. It is not clear whether people can recognize moods in the presence of behavior
functions, since people may devote their attention to behavior functions. This chapter
reports the findings of a study on people’s recognition of the mood expressions resulted
from the design experiment, and whether the conclusions of the design experiment cor-
respond to people’s perceptions.

Table 4.1: The design principles and parameter importance

Waving HandHeight Finger Amp Rep HoldTime DecaySpd MotSpd HeadVer. HeadHor.
Relation1 + + + + + + +
Import.2 2 5 4 3 1
Pointing PalmDir. Finger Amp Rep HoldTime DecaySpd MotSpd HeadVer. HeadHor.
Relation1 + + * * + + +
Import.2 2 3 1
1*/+ denotes significant correlations with valence; + denotes increase with valence;
2 The number denotes the importance: small - important; unnumbered - unimportant.

Several studies addressed behavior parameter modulation. Wallbott [65] studied the
emotional bodily movements and postures of actors/actresses. His study indicated that
the body movement "qualities" can reflect emotions. Laban movement analysis [66]
models body movements from different aspects, e.g., effort and shape. Chi et al. [69]
developed EMOTE framework for synthesizing expressive gestures of virtual agents. An
evaluation of effort elements showed that trained observers can recognize the displayed
effort at a moderate rate, whereas this study also indicated that prominent effort ele-
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ments may mask other elements when they are showed in combination. In contrast to
EMOTE, which performs as a post process of pre-generated behaviors, Pelachaud [70]
modifies gestures before the computing the animation. They characterized behavior ex-
pressivity using six parameters: spatial, temporal, fluidity, power, overall activation, and
repetition. Their model was applied to an embodied conversational agent for commu-
nicating cognitive and affective states through modulated gestures. Evaluation showed
that spatial and temporal extents received high recognition rate, but power and fluid-
ity quite low; abrupt and vigorous received high recognition rate but not for sluggish.
To achieve a better concord between mood expression and behavior functions, our ap-
proach defines behavior parameters while defining the behavior functional profile, so
behaviors are also modified first and then the robot joints are computed.

4.2. EXPERIMENT DESIGN AND HYPOTHESES

T HE recognition experiment first evaluated whether participants can differentiate the
five valence levels from modulated behaviors of the design experiment [77]. Second,

we tested whether people’s recognition is different when modulating different parame-
ter (sub)sets according to the relative importance [78]: 1) all parameters (APS); 2) only
important parameters (IPS), which are numbered in Table 4.1; and 3) only unimpor-
tant parameters (UPS), which are unnumbered. We expect that modulating only the IPS
parameters can still express moods without reducing the recognition rate considerably.
Although statistical results and participants’ ranks showed that the importance of the
UPS parameters was low, but participants did modify them during the design. Thus, we
suspect that the UPS parameters can express "weak" moods, which are more implicit
and less intense, so we tested whether modulating only the UPS parameters can still ex-
press moods. Moreover, the behavior naturalness is one of participants’ design criteria in
the design experiment. Thus, we suspect that modulating all the parameters may result
in more natural behaviors than modulating only IPS parameters. Hence, the behavior
naturalness was assessed in the recognition experiment. Therefore, our hypotheses are
formulated as follows:

• H1. People can distinguish different valence levels from modulated behaviors
when all behavior parameters (APS) are modulated. The relationship between pa-
rameter settings and perceived valence levels is consistent with the relationship
found in the design experiment;

• H2. People can perceive different levels of valence when only important param-
eters (IPS) are modulated; People can still recognize the valence when only mod-
ulating unimportant parameters (UPS), but the recognition rate is worse than the
APS and IPS conditions;

• H3. The behaviors generated by modulating all the parameters (APS) are perceived
more natural than the ones generated by modulating only the important parame-
ters (IPS).

The test settings (videos can be found at our website1) for the recognition experi-
ment is based on the average setting obtained from the design experiment [77]. An

1http://ii.tudelft.nl/~junchao/mood_expr_recog.html

http://ii.tudelft.nl/~junchao/mood_expr_recog.html
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average setting may be not the best design due to the inconsistency and unnaturalness
caused by mixture of different individual designs [91]. In our case, the diversity on the
arousal dimension is averaged out: for the negative valence, most participants designed
sadness (low arousal), but a part of participants designed anger (high arousal). There-
fore, we corrected the weighted settings in terms of consistency and naturalness within
the boundary of the design principles found in the design experiment, and added anger
to recover the diversity on the arousal dimension.

Besides, we tested whether people can perceive arousal from the test settings, since
the participants of the design experiment did consider the arousal dimension as just
mentioned. We also studied whether parameter sets influence the recognition of arousal.
Note that the important parameters (IPS) were obtained from the task where partici-
pants were asked to design mood expression only according to the valence. The impor-
tance may be only or more in regard with the valence. Thus, whether the parameter sets
influence the perception of arousal was unclear.

Paired comparison was used to test how well people perceived valence and arousal
from behaviors under APS, IPS and UPS conditions (H1, H2). This method provides more
precise results in interval scales than a direct scaling, because it transforms the scaling
task, which is difficult for humans, to a comparison task [92], [93]. Participants were
asked to compare (not paired comparison) the naturalness of generated behaviors corre-
sponding to each mood under the IPS and APS conditions respectively (H3). The notions
of valence and arousal were explained to participants before the experiment using cat-
egorical emotion labels and SAM manikins. Naturalness was explained mainly in terms
of natural interaction. Participants were provided a user interface for inputting answers
and proceeding with the experiment. Two grey NAO robots were used to perform behav-
iors modified by two moods simultaneously to reduce participants’ cognitive workload.
Waving and pointing were arranged in a counter-balanced order. For each behavior, the
six moods were presented in pairs in a random order, and they were presented under
APS, IPS, and UPS conditions successively. 26 participants (13 females and 13 males)
were recruited from Delft University of Technology. The participants’ ages ranged from
21 to 35 years (M = 28.6, SD = 3.3). 13 participants are Chinese, and the other 13 are not.
All the participants signed the informed consent form. A pre-experiment questionnaire
confirmed that the participants had little experience of designing robots or animated
characters. Each participant received a gift as compensation for their time.

4.3. ANALYSIS AND RESULT

T HE method based on Thurstone model from [93] was used to analyze the paired com-
parison data. To see how well participants recognized the moods under the APS, IPS,

and UPS conditions, only the mood factor was input into the analysis. For convenience,
all results are combined and illustrated in Figure 4.2. Assuming that valence and arousal
are orthogonal [94], the tested moods are denoted in the valence-arousal space (Figure
4.2). First, we interpret the recognition of valence from the five settings derived from the
design experiment; second, we interpret the recognition of arousal; finally, we interpret
the additional mood anger.

To analyze the recognition of valence (H1), we first looked at the results under APS
condition (Figure 4.2a, b). Regardless of anger (interpreted later), for both behaviors the
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Figure 4.2: The figure shows the position of each perceived mood in the valence-arousal space under the
APS, IPS and UPS conditions for the waving and pointing behaviors. The valence or arousal of uncon-
nected moods was significantly differentiated, while for the connected ones either valence or arousal or
both was not significantly differentiated.
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valence of each pair of moods was significantly differentiated by participants except for
unhappy and neutral pointing. This result shows that people can recognize the valence
from the behavioral cues in general (H1). Pearson correlations between parameter val-
ues and the perceived valence scales (Figure 4.2a, b) were computed. The results (Table
4.2) show that the relationship between parameters and perceived valence is generally
consistent (H1) with the findings of the design experiment (Table 4.1).

Table 4.2: The correlation (Pearson r) between parameters and valence or arousal

Waving HandHeight Finger Amp Rep HoldTime Decay MotSpd HeadVer. HeadHor.
Valence 0.889 0.936 0.966 0.858 0.848 0.848 0.95
Arousal 0.653 -0.976 0.977 0.977 0.797
Pointing PalmDir. Finger Amp Rep HoldTime Decay MotSpd HeadVer. HeadHor.
Valence 0.507 0.914 0.81 0.315 0.927 0.927 0.984
Arousal 0.923 0.978 0.978 0.924

Secondly, we interpret how participants’ recognition under the IPS and UPS condi-
tions differs from the APS condition (H2). To this end, we added the parameter set con-
dition as a factor [93] to the paired comparison analysis. The overall result (Table 4.3) af-
firms that the parameter set condition influenced participants’ perception significantly
for both behaviors with regard to valence. In addition, we compared the parameter set
conditions in pairs using the same method above. For both behaviors, there are no sig-
nificant differences between the parameter set APS and IPS (Table 4.3), which suggests
that modulating only the important parameters is capable of expressing valence almost
equally well as modulating all the parameters. The generated scale of valence under IPS
condition is similar with the APS condition (Figure 4.2c, d). The only difference is that
the happy and very-happy pointing were differentiated under the APS condition but not
for the IPS condition. Possible reason is that repetition increased for very-happy under
the APS condition, but not for the IPS condition, since repetition was rated unimportant
in previous study. Further study is needed to address whether repetition is important to
valence in different situations.

Table 4.3: Significant differences of recognition between parameter set conditions

Overall APS vs. IPS APS vs. UPS IPS vs. UPS

Waving Valence p < 0.001*** p = 0.205 p < 0.001*** p < 0.001***
Arousal p < 0.010* p = 0.931 p = 0.026* p = 0.001**

Pointing Valence p < 0.001*** p = 0.671 p < 0.001*** p < 0.001***
Arousal p = 0.006** p = 0.879 p = 0.011* p = 0.001**

*p<0.05, **p<0.01, ***p<0.001

The recognition of valence under APS and IPS conditions is significantly better than
UPS condition (Table 4.3). The high-arousal moods (anger, happy, and very-happy)
and neutral were less successfully differentiated by participants for waving (Figure 4.2e).
Similar results were obtained for pointing (Figure 4.2f). Besides, the unhappy and neu-
tral pointing were not significantly differentiated. This suggests that none of the UPS
parameters is sufficient to present the valence of high-arousal moods. However, as we
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hypothesized, some moods can still be recognized even without modulating important
parameters. The valence of unhappy and very-unhappy waving was significantly differ-
entiated from waving of neutral and high-arousal moods (Figure 4.2e). The long hold-
time, slow decay-speed, head turning away from both hand and the front distinguished
the unhappy and very-unhappy. We exclude finger since few participants mentioned it
in the post-questionnaire. For pointing, the valence of very-unhappy was significantly
differentiated from other moods except unhappy. Thus, we conclude that the UPS pa-
rameters are promising for "weak" mood expressions for at least two valence levels: pos-
itive and negative.

Results also show that participants recognized arousal levels from behaviors. Un-
der APS (Figure 4.2a, b) and IPS conditions (Figure 4.2c, d), the arousal of high-arousal
moods and neutral was significantly differentiated for both behaviors, regardless of anger
(integrated later). The arousal of low-arousal moods (unhappy and very-unhappy) was
significantly differentiated from high-arousal moods and neutral for waving, whereas
only very-unhappy was significantly differentiated form high-arousal moods and neu-
tral for pointing. Statistically, there are no significant differences of perceived arousal
between the APS and IPS conditions for both behaviors (Table 4.3), which suggests that
the IPS parameters are capable to express arousal equally well as the APS parameters.
However, the perceived arousal under UPS condition differs significantly from either the
APS or IPS condition (Table 4.3). For waving (Figure 4.2e), the arousal of very-happy and
anger significantly differentiated from neutral, whereas other high-arousal moods were
not. Possible reasons are that the zero hold-time and fast decay-speed of angry and very-
happy waving made the overall movement fast and fluent, resulting in the perception of
a high arousal. The arousal of high-arousal moods was better recognized for the pointing
behavior than waving behavior. For pointing (Figure 4.2f), the arousal of all high-arousal
moods was significantly differentiated from neutral, and very-happy was differentiated
from happy. Fast decay-speed and high repetition may account for this. This suggests
that the decay-speed and repetition correlate more with arousal than valence. They were
actually considered unimportant to valence.

The arousal of unhappy and very-unhappy waving was significantly differentiated
from other moods (Figure 4.2e), but unhappy and very-unhappy were not differenti-
ated from each other. For pointing, the arousal of neither unhappy nor very-unhappy
was significantly differentiated from neutral (Figure 4.2f). In fact, the arousal between
unhappy and very-unhappy was not significantly differentiated for both behaviors un-
der all conditions, but their valence was significantly differentiated under APS and IPS
conditions. The arousal-correlated parameters (e.g., speed, repetition) seem not able to
render arousal for low-arousal moods. Back to the UPS condition (Figure 4.2e, f), we
found that the very slow decay-speed distinguished the valence of very-unhappy from
neutral. It seems that the speed parameter like decay-speed may correlate more with
valence when it is slow, whereas correlates more with arousal when it is fast.

The recognition of angry waving showed the promise of expressing anger through
parameter modulation. The valence of anger was perceived as negative for all conditions
(Figure 4.2a, c, e), although it was not significantly differentiated from neutral under
APS and UPS conditions. Surprisingly, the valence was better differentiated from neutral
under the IPS condition (Figure 4.2c). We considered that the longer hold-time under IPS
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condition caused the movement jerkier resulting in a more negative perception, whereas
the zero hold-time and the faster decay-speed under APS condition made the movement
smoother resulting in a relative more positive perception. Furthermore, the head turned
away from the moving hand in the APS condition, which made the robot seem to avoid
the eye-contact resulting in a feeling of fear, while fear has a more positive valence than
anger [94]. The valence of anger was recognized better for waving than pointing, since
it was recognized as positive for pointing under all conditions. Perhaps, the presence of
arousal (by large amplitude, repeated movements, and fast speed) in angry pointing was
dominant and masked the expression of negative valence, which led people to consider
the mood as excitement.

As discussed before, the arousal of anger was recognized significantly higher than
neutral and low-arousal moods for both behaviors under all conditions. Interestingly,
the perceived arousal of angry pointing and waving under UPS condition was as high as
very-happy (Figure 4.2e, f), whereas in other conditions it is significantly lower than very-
happy. Possible reason is that most parameters were set to the same value between these
two moods under the UPS condition. However, the only element that made the arousal
of the very-happy pointing under APS and IPS conditions higher than angry pointing is
the high-raised head. This suggests that head-up-down correlates with arousal. Accord-
ing to the above discussion, we summarize the parameters that correlate with arousal in
Table 4.2, where Pearson correlation was computed between parameter values and the
perceived arousal scale.

Binomial tests were used to analyze whether behaviors under the APS condition was
perceived more natural than the IPS condition (H3). Participants’ choices between the
APS and IPS conditions are not significantly above chance level for each mood and be-
havior. Thus, our study did not show that modulating UPS parameters improves the
behavior naturalness. We also tested the effect of gender and culture (Chinese and Non-
Chinese) by adding them as a factor into paired comparison analysis separately. The
results do not show any significant differences between gender and culture conditions.

4.4. DISCUSSION

T HE modulation of the important parameters expresses moods better than unimpor-
tant parameters. Most important parameters like hand-height, amplitude, motion-

speed, and repetition are "global" parameters, which influence the overall movement.
Changing these parameters will alter the movement appearance noticeably. Head posi-
tion also has strong effect on affect expression [57], probably because the head is a spe-
cial body part that people usually pay attention to during interaction. The unimportant
parameters are "local" parameters that influence only a small region of the body parts
(e.g., finger-rigidness, palm-up-down) or a short period (e.g., hold-time and decay-speed
are temporally local) of the whole movement. Thus, they may not produce sufficient af-
fective cues or people may not even notice them. Hence, behaviors with more "global"
parameters may be more affectively versatile, For example, waving has higher expressiv-
ity than pointing. In fact, moods were recognized better through waving than pointing
in general.

Interactions may exist between valence and arousal. According to Table 4.1 and Table
4.2, parameters like motion-speed, head-up-down and repetition of waving were found
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to correlate with both valence and arousal. In addition, a 5-point Likert scale (from 1:
"extremely disagree" to 5: "extremely agree") post-experiment questionnaire suggests
that the participants generally agreed on that valence and arousal are related. The mean
rating is 3.85 (SD=0.88). Several studies also reported that valence and arousal are not
orthogonal [95]. The interaction between valence and arousal should be taken into ac-
count when we design mood expressions.

Our model is possible to be generalized to other behaviors in terms of the relations
between behavior parameters and mood variables. As in our model parameters are de-
fined at the stage of constructing behavior functional profiles, parameters are dependent
on behavior functions. Thus, the same parameters may have different meanings for dif-
ferent behaviors. Despite the differences, design principles may still hold. For example,
although the amplitude is the swing angle for waving but the arm extension for pointing,
larger amplitude corresponds with a positive mood for both behaviors. However, design
principles may also be different for the same parameters. For example, the hold-time
means smoothness for waving but persistence for pointing. Hence, shorter hold-time
(smoother movement) corresponds with a positive mood for waving, whereas longer
hold-time (more persistent) of pointing generally expresses a positive mood. We sug-
gest designers pay attention to the meaning of a parameter for specific behaviors when
modulating the parameter to express mood.

4.5. CONCLUSION AND FUTURE WORK

T HIS chapter presents a study on people’s recognition of humanoid robots’ bodily
mood expression through behavior parameter modulation. The results indicated

that five valence levels can be expressed through parameter modulation for the two be-
haviors studied. Arousal can also be expressed with at least four levels. The important
parameters that influence the behavior overall have a major effect on both valence and
arousal. The unimportant parameters can express "weak" moods for at least two levels
of valence and three levels of arousal for both behaviors, but no effect on naturalness of
these parameters was observed. The speed parameters, repetition, and head-up-down
were found to correlate with arousal. Speed parameters are capable to render arousal
when they are fast, but not when they are slow. In the future, we will improve the angry
pointing and study the relation between the pointing direction and mood expression.
While mood expressions via parameter modulation can be recognized in an experimen-
tal setting, whether people can recognize them correctly, even notice, in real HRI sce-
narios still remains a question. We will apply the design principles into more behaviors
used in HRI and address the question in the future.
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MOOD CONTAGION OF ROBOT

BODY LANGUAGE IN HUMAN

ROBOT INTERACTION

This chapter demonstrates our first attempt of applying the parameterized behavior model
to HRI scenarios. The interaction scenario is dyadic – a game between a user and a hu-
manoid robot. The game gestures of the humanoid robot were modulated to show mood
during the game. This study showed that users can recognize the expressed mood in an
interaction task without priming. This study also showed the effects of the robot mood
expression on users’ affective states and game performance.

This chapter is based on J. Xu, J. Broekens, K.V. Hindriks, M.A. Neerincx, Mood Contagion of Robot Body Lan-
guage in Human Robot Interaction, Journal of Autonomous Agents and Multi-Agent Systems, 29(6), pp 1216–
1248, 2015.
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ABSTRACT
The aim of our work is to design bodily mood expressions of humanoid robots for inter-
active settings that can be recognized by users and have (positive) effects on people who
interact with the robots. To this end, we develop a parameterized behavior model for
humanoid robots to express mood through body language. Different settings of the pa-
rameters, which control the spatial extent and motion dynamics of a behavior, result in
different behavior appearances expressing different moods.

In this study, we applied the behavior model to the gestures of the imitation game per-
formed by the NAO robot to display either a positive or a negative mood. We address the
question whether robot mood displayed simultaneously with the execution of functional
behaviors in a task can (a) be recognized by participants and (b) produce contagion ef-
fects. Mood contagion is an automatic mechanism that induces a congruent mood state
by means of the observation of another person’s emotional expression. In addition, we
varied task difficulty to investigate how the task load mediates the effects.

Our results show that participants are able to differentiate between positive and negative
robot mood and they are able to recognize the behavioral cues (the parameters) we ma-
nipulated. Moreover, self-reported mood matches the mood expressed by the robot in the
easy task condition. Additional evidence for mood contagion is provided by the fact that
we were able to replicate an expected effect of negative mood on task performance: in the
negative mood condition participants performed better on difficult tasks than in the pos-
itive mood condition, even though participants’ self-reported mood did not match that of
the robot.

Keywords Human Robot Interaction (HRI), Mood Expression, Nonverbal Cues, Behav-
ioral Cues, Body Language, Social Robots.

5.1. INTRODUCTION

I N human-robot interaction (HRI), expressions of a robot facilitate human understand-
ing of the robot’s behavior, affects (e.g., emotions and moods), rationale, and motives,

and is known to increase the perception of a robot as trustworthy, reliable, and life-like
[32]. To participate in affective interaction, robots must be able to communicate their
affective state to others [31]. Among the many ways of showing affect, such as speech,
voice, facial expressions, bodily expressions, color, and lights, we are interested in bodily
expressions of humanoid robots. Studies showed that a considerable portion of com-
munication in human-human interaction is through body language [50]. People have
sophisticated skills at interpreting meanings from body cues. Expressing robot affect
through the body enables people to use those skills to better understand robots. More-
over, a study showed that bodily expressions in addition to facial expressions improved
the recognition of affect [53]. Making the robot body expressive thus may improve peo-
ple’s understanding of robot affect. Physically, the body is also a large part of many hu-
manoid robots, and many robot behaviors involve the body. The body is a particularly
important way for humanoid robots that lack facial features to express affect nonver-
bally, such as the NAO, ASIMO, and QRIO.

This study aims to investigate how a social robot expresses affect through body lan-



5.1. INTRODUCTION

5

57

guage during task executing in the context of a dyadic human robot interaction. More
specifically, we would like to figure out how robot affect can be shown through body lan-
guage while the robot is performing body actions required by the interaction at the same
time. Our motivation stemmed from a game between a humanoid robot and a child. In
this game, the robot performs gesture sequences and the child imitates the sequences.
This imitation game has been developed to foster the relationship between a personal
robot assistant and children with diabetes [96]. For the better part of the interaction,
the robot is performing gestures (details see Section 5.4.2), and children pay attention
mainly to the gestures.

Before introducing our work, we first briefly discuss the concepts of affect, emotion,
and mood. Affect is an umbrella term in psychology that refers to the experience of
feelings, emotions, or moods. Our work focuses on mood. Distinctions between af-
fect, emotion, and mood are explained in [34], [35], [36], [37], [38]. Here, we highlight
the distinctions between mood and emotion that are related to expression: emotion is a
short-term, intense affective state, associated with specific expressive behaviors; mood
is a long-term, diffuse affective state, without such specific behaviors. Mood emphasizes
a stable affective context, while emotion emphasizes affective responses to events.

Expressing affect through ongoing functional behavior as opposed to expressing af-
fect with explicit categorical expressions is relevant for the following reasons. First, ex-
pressions based on explicit body actions show affect for a brief period of time and in-
terrupt functional behavior. For example, raising arms akimbo to display anger [55];
covering eyes by the robot’s hands to display fear [56]; and raising both hands can be
used to display the emotion of happiness [54]. Although clearly recognizable, such ex-
plicit gestures cannot be used when a robot is, e.g., carrying a box that requires the use of
both arms and hands. To express affect through ongoing functional behavior the expres-
sion needs to be integrated into the robot behavior in a more or less continuous fashion,
which is quite different. In this chapter, we used the imitation game as an interaction
scenario and studied the use of body language for expressing mood. We extend previ-
ous work reported in [77], [78], [79] on a parameterized behavior model for expressing
mood. The model is adapted here to enable the continuous display of mood through
game gestures (see Section 5.4 for more details).

Second, affect expression that is integrated with the functional behaviors of robots
provides a way of expressing mood. Bodily expression of emotion has been extensively
studied, while bodily mood expression yet needs to be explored. Compared to emotion,
which is a short-term and intense affective state, mood is a more long-lasting and less
intense affective state. An individual is at any given time in a more or less positive or
negative mood. Integrating mood into the body language of a robot therefore may pro-
vide a robot with an alternative, more stable but less specific, affective communication
channel. This may also contribute to the believability, reliability, and lifelike quality of
a robot, since robots are enabled to show another form of affect, mood, and with mood
expression robots can show affect more often and continuously over time.

Our research questions in this study are whether (1) people, while interacting with a
robot, can recognize mood from positively versus negatively modulated robot behaviors
and, (2) how this influences a person’s own affective state and interaction behavior. For
example, it is well known that mood can transfer between persons and has specific ef-
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fects on behavior [97] and it is useful to gain insights into the effects and possible transfer
of mood from a robot to an individual.

The remainder of this chapter is organized as follows. Section 5.2 discusses related
work. In Section 5.3 we elaborate the parameterized behavior model for mood expres-
sion and the modulation principles, and we explain the rationale behind our claim that
the expression by means of behavior modulation is suitable for expressing mood. We
also briefly describe the evaluation of the model in a recognition task. We describe the
interactive game we used in our study and the integration of the behavior model into the
game gestures are introduced in Section 5.4. Importantly, we demonstrate the motiva-
tion of our investigation of using the bodily mood expression in an interaction scenario.
In Section 5.5, we formulate our main research questions and hypotheses. Section 5.6
discusses the experimental setup and Section 5.7 presents the results. We discuss these
results in Section 5.8. Finally, the chapter is concluded and the future work is discussed
in Section 5.9. In addition, we provide examples of how to construct parameterized be-
haviors computationally in Appendix A.

5.2. RELATED WORK

T HE affective states of a robot or a virtual agent can be expressed nonverbally by poses
and movements of facial and body components. Facial expressions have been used

in embodiments such as Kismet [24], iCat [98], Greta [70], and Max [99], while bodily
expression has been used for ROMAN [55], NAO [56], [57], KOBIAN [54], Greta [70], and
Max [99]. In these studies, it has been experimentally demonstrated that people gener-
ally are capable of recognizing the affective states that are expressed. Furthermore, [55],
[54] showed that bodily expression combined with facial expression may significantly
enhance the recognition of a robot’s emotion expression.

Bodily expression can be generated by directly simulating human static postures and
movements as done in, e.g., [54], [57]. A more generic approach for generating expres-
sive behaviors, however, is to modify the appearance of a behavior via the modulation
of parameters associated with that behavior. Wallbott [65] investigated whether body
movements, body posture, gestures, or the quantity and quality of movement in general
allow us to differentiate between emotions. This study found that qualities of movement
(movement activity, spatial extension, and movement dynamics) and other features of
body motion can indicate both the quality of an emotion as well as its quantity. Laban
movement analysis (LMA) [66] models body movements using four major components:
body, space, effort, and shape, characterized by a broad range of parameters. Based on
LMA, Chi et al. [69] developed the EMOTE framework that uses post-processing of pre-
generated behaviors to generate expressive gestures for virtual agents. The model de-
veloped by Pelachaud et al. [70] modifies gestures before generating actual movements.
This model distinguishes spatial, temporal, fluidity, power, overall activation, and rep-
etition aspects of behavior. It has been applied to the Greta virtual agent [71] and the
NAO robot [72] for communicating intentions and emotions. These methods can be ap-
plied to functional behaviors in order to express affect of a robot while it is performing
a task. In our model, behavior parameters are defined when the behavior profile is syn-
thesized. One advantage of doing so is that we can model the physical constraints of the
robot body at the same time. The ranges of behavior parameters are determined when
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the parameters are defined to make sure that modulation will not cause collision with
other parts of the robot body. Another approach is to use the body resources that are
not required by functional behaviors to express affect (e.g., [76]). In our model, when
head movement is not part of the functional behaviors, head movement can be used for
expressing mood if needed.

Affect expression of robots has many positive impacts on human-robot interactions
including the following aspects: the way of interacting with a robot, the attitude towards
a robot, the effectiveness of assistive tasks. A long-term field study showed that facial ex-
pression of robot mood influenced the way and the time that people interact with a robot
[42]. Emotional behaviors made elderly participants perceive a robot as more empathic
during their conversation [4]. Emotional gestures improved participants’ perception of
expressivity of a NAO robot during a story-telling scenario [43]. In an application of a
robot companion that is capable to play chess with children [48], robot emotion expres-
sion that varied with the state of the game was used to help children better understand
the game state. A preliminary evaluation also suggested that the emotional behavior of
the robot improved children’s perception of the game. In another study [44], this robot
responded empathically to children’s affective states. Results suggest that the robot’s
empathic behaviors enhance children’s attitude towards the robot. Adaptive multimodal
expression was studied with children using a quiz game [45]. Expressive behaviors were
selected based on events in the environment and internal parameters. The study showed
positive effects of the adaptive expression on children and the children’s preference for
bodily expression. In a personal assistant application for children [46], robot emotion
expression was shown to improve the effectiveness of the robot when used as compan-
ion, educator, and motivator. Robots equipped with minimally expressive abilities were
developed to help children with autism with their social abilities [47]. Facial and bodily
expressions of the robot were used to help children learn to recognize these expressions
and use their own expressions by imitating the expressions of the robot. These robot
expressions were found to attract children, improve and maintain engagement of the
interaction, and evoke emotional responses [7].

Affect expression also influences users that interact with virtual agents (see [100] for
a review). The review focused on the effects of affective expression of virtual agents
on users’ perception/attitude towards the agent (e.g., likeability, trustworthiness, and
warmth), users’ behavior (e.g., attention, concentration, motivation), and users’ task
performance in the interaction. Most studies suggested that people perceived agents as
more positive when they display emotions. More importantly, we would like to highlight
the studies that suggested effects on users’ (affective) states and performance, since they
are closely related to our study. Several studies showed that affective agents were able to
reduce negative affective states of users. Prendinger et al. [101] investigated the effect of
a virtual agent with affective behavior on a user in a mathematical game scenario. Partic-
ipants who interacted with the agent displaying empathy were significantly less stressed
according to physiological measurement. A similar effect was also found in a virtual job
interview scenario. Klein et al. [102] and Hone [103] reported that an interactive affect
support agent was able to alleviate frustration in games that were designed to frustrate
players on purpose. Hone found that an embodied agent was more effective in reduc-
ing frustration and a female embodied agent was more effective than a male. Similar
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results were obtained in Burleson and Picard’s study [104]: agents with affective support
was reported to reduce participants’ feeling of frustration in a learning context, and this
affective intervention was found to be more effective in girls.

Several studies also reported effects of affective virtual agents on performance. In
Klein’s study [102], participants who interacted with the affective support agent played
the game significantly longer. Maldonado et al. [105] found that participants who inter-
acted with the emotional agent performed better in a test in a language learning context.
Berry et al. [106] studied the effects of the consistency between emotion expressions and
persuasive messages about healthy diet using the GRETA agent. Results showed that
GRETA with consistent emotion expression resulted in better performance of memory
recall. Emotion expression was reported to have effects on users’ affective states and be-
haviors. Tsai et al. [107] found that happy expressions of both still images and virtual
agents can induce an increase of users’ happiness. Interestingly, when cognitive load is
increased by decision-making, this emotion induction is dampened. Okonkwo and Vas-
sileva [108] found that the agents with facial expressions improved concentration and
motivation in subjects. In Gong’s study [109], a talking head agent presented happy and
sad novels with either a happy or a sad facial and vocal expression. Results showed that
the happy agent elicited greater intent to buy the books and more positive evaluation of
the novel books and the book reviews. All these studies suggested that affective expres-
sions of virtual agents have effects on the users during interaction. Our study investi-
gated whether affective expressions of robots have similar effects on users. In particular,
[107] also looked at the mediating effects of task load. We also studied the effect of task
load by varying game difficulty.

In previous work, a parameterized behavior model for expressing mood using body
language while performing (functional) behaviors was proposed [77]. We have adapted
this parameterized behavior model for this work. The model is based on a set of generic
parameters that are associated with specific body parts and that are inherently part of
related body movements. These parameters subsequently are modulated in order to ex-
press various moods. This model allows us to integrate mood into functional behaviors
in a manner that does not interfere with the functions of these behaviors. The model was
validated by evaluating whether users could recognize robot mood in a recognition ex-
periment. The results obtained showed that participants who were asked to rate valence
and arousal were able to differentiate between five valence levels and at least four levels
of arousal [79].

In this chapter, we ask the question whether a robot’s mood can be transferred from
robot to human. Some evidence that supports this has been found by Tsai et al. [107]
who showed that even still images of virtual characters can induce mood. Their study
also revealed an interaction effect between cognitive load and contagion in a strategic
game: the contagion effect was reduced by the mobilization of more cognitive resources
required for the decision-making task. The application of robot bodily expression in
an HRI scenario and its effects on the interaction, however, are still largely unexplored.
To investigate these effects, in the study reported in this chapter bodily mood expres-
sion has been used that can be displayed simultaneously with functional behaviors. In
particular, we address the question whether these body expressions can produce a well-
known psychological effect – emotional contagion (in our case robot mood transferred
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Figure 5.1: General Parameterized Behavior Model

to humans) – during human robot interaction.

5.3. PARAMETERIZED BEHAVIOR MODEL FOR MOOD EXPRESSION

5.3.1. MODEL CONCEPT

T O enable a robot to express a long-lasting affective state during task execution, a
mood, we applied a previously developed model for integrating affect expression

with functional behaviors (e.g., task behaviors, communicative gestures, and walking).
In this model, behaviors are parameterized (see Figure 5.1), and by varying behavior pa-
rameters different moods can be expressed. The set of parameters is generic and can be
used to modulate behavior parameters of arbitrary behaviors. Example parameters in-
clude the speed of movement and the amplitude of a movement. A parameter may also
be associated with a particular body part of the robot (e.g., head, hand palm, and finger).
For a specific behavior, one only needs to specify which parameters should be varied
to express mood while performing that behavior. Moreover, by varying these parame-
ters the "style" of executing a particular functional behavior can be modified without
changing the particular function of that behavior. Different styles thus can be used to
express a range of affective states. This way, affect can be displayed throughout a series
of behaviors.

The parameterized behavior model (Figure 5.1) consists of three layers: 1) a drive
layer; 2) a behavior parameter layer; and 3) a joint configuration layer. The drive layer
contains the task scheduler (the task part) and the affect generator (the affect part).
Robot affect state can be determined by, for instance, appraisal models, while the af-
fect state controls the parameters. The task scheduler decides which behavior should be
performed at each moment according to the task requirements. From the top layer, task
scheduler and affect generator work simultaneously and independently (without inter-
fering with each other).
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5.3.2. MATHEMATICAL REPRESENTATION OF POSE MODULATION
This section focuses on the modulation of behavior poses. The modulation of motion
dynamics is straightforward, so is not included in this chapter but details can be found
in [77]. A behavior in this study is defined as a sequence of movements of effectors tran-
siting from one pose to another. A behavior profile describes the behavior function that
conforms to social conventions or fulfils certain physical operations of objects. For ex-
ample, we define the profile of the waving behavior as one hand swinging between two
horizontally aligned positions repeatedly, where the palm should always face forward.
Taking pointing behavior as another example, we define pointing as the arm stretching
out from the preparation pose to the pointing pose. Put differently, a behavior profile
defines the set of poses in a behavior and the order of transitions between poses. Note
that a pose of a behavior is not fixed but can vary within a certain range. The following
equation depicts the set of poses in one behavior, while the transitions between poses
form the movement.

Behavi or = (Σ, {Pose1,Pose2, . . . ,Posek }) (5.1)

Σ defines the order of the poses in the movement. A pose is a set of joint variables of
an effector.

Posei = { j 1
i , j 2

i , . . . , j n
i } (5.2)

i=1,2,...,k; j denotes a joint; the i-th pose contains n joints. The poses that corre-
spond to a particular behavior must meet certain conditions that represent the behavior
function. Put differently, some of the joints should meet the requirements specified by
a certain formula for each pose. We use B to denote, for example, a linear function that
represents the behavior function. Hence, ∃{ j m

i } ⊂ Posei ,m ≤ n, s.t.

B( j m
i ) = 0 OR B( j m

i ) > 0 OR B( j m
i ) < 0 (5.3)

The solution (the value of the joint variable jm
i ) to the above equations or inequations

is usually not unique. This allows for the use of pose parameters to vary the control a part
of the joints j r

i ∈ { j m
i }, while at the same time making sure that these joint variables still

meet the required equations. Note that we also use pose parameters to control the joints
( j ur

i ∈ Posei , j ur
i 6∈ { j m

i }) that are not related to behavior functions. We use M to denote
modulation formulas that represent the relations between pose parameters pt to joints.

j r
i = M r

i (pt ) OR j ur
i = M ur

i (pt ) (5.4)

As a result, different behavior patterns can be achieved without violating the behav-
ior function. An example can be found in Appendix A.

5.3.3. MODULATION PRINCIPLES
To evaluate the feasibility of the mood expression model, we initially applied the model
to two typical behaviors in HRI, waving and pointing, and we defined parameters for the
two behaviors based on the findings about human behaviors from literatures. Our aim
was to figure out what parameters can be modulated to express mood and how to mod-
ulate them to express different moods. Instead of applying the modulation principles
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from the literature directly to the robot behaviors, we decided to conduct a user study
[77] to collect data from users. Participants were asked to set a value for each parameter
of the robot behaviors to match a given mood (i.e., a given valence level). A graphic user
interface was designed for participants to set the parameter value and play the behavior
on a real robot.

One advantage of doing so is that we can obtain opinions from more general end-
users of the robot in the daily life about how the behaviors should be like for expressing
a specific mood. Put differently, how users think the parameters should be modulated
to express a mood. We also expected the user-designed expressions to result in higher
recognition rate. Although expert designers (actors/actresses or researchers on human
behavior modeling) used in some studies (e.g., [54]) can produce more versatile expres-
sions, sometimes the expressions are not interpreted as intended by normal people. The
reason might be that normal people do not have the same expertise of recognizing be-
havioral affective cues as the experts do. Moreover, in this way we can test whether robot
mood can be expressed by parameter modulation. More details about the user study
setting can be found in [77].

Results showed that participants created different parameter settings corresponding
to different valence levels. This supported that it is feasible to use behavior parameter
modulation to express mood. We also found that the spatial extent parameters (hand-
height and amplitude), the head vertical position, and the temporal parameter (motion-
speed) are the most important parameters. These parameters are "global" features that
shape the overall quality of behaviors. Moreover, multiple parameters were found to be
interrelated. Modulating these parameters in combination provides particular affective
cues. More details of the analysis and discussion about the relations between parameters
can be found in [78].

5.3.4. BODILY MOOD EXPRESSION

We consider that the expression by means of behavior parameter modulation is particu-
larly suitable for expressing mood. First, the expression extends over time, since it can be
used even when a robot is performing tasks. It is suitable to express a long-term affect.
Second, an expression does not show a particular action tendency. Behaviors are trig-
gered by the task scheduler, but not the affect. The affect only influences the "styles" of
the behaviors. Third, the expression relies on the behavior cues that result from behav-
ior modulation. Compared to the meaning or functions of the behavior, we believe that
the affect in the behavior is more implicit and less intense. Mood is also a less intense
affective state, compared to emotion. Therefore, we believe that our way of expressing
affect is suitable for expressing mood.

5.3.5. EXPRESSING MOOD WITHOUT A CONTEXT

To validate the modulation principles obtained from the user study [77], we first con-
ducted a recognition experiment in a laboratory setting using mood expression result-
ing from the user study. This is a pure perceptual task without an interaction context.
We adopted a paired comparison approach: five mood levels were presented to partic-
ipants in pairs. Participants were asked to compare which of the two robot behaviors
has higher valence and arousal. Paired comparison gave us more accurate results of
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Shoulder
Pitch

Shoulder
Roll

Figure 5.2: Modulated gestures for the imitation game: figure (a) shows the four elementary gestures
modulated for a positive mood; figure (b) shows the four mirrored elementary gestures for a neu-
tral mood; figure (c) shows the slope-right gesture modulated for a negative mood. Pose parameters
(amplitude-vertical, amplitude-horizontal, palm-direction, and finger-rigidness) are annotated on the
figure.

whether participants can distinguish these mood levels, especially the adjacent levels.
We tested the recognition under three conditions: modulating all parameters, only im-
portant parameters, and only unimportant parameters, as the user study suggested that
the contribution of each parameter to the mood expression is different [78]. Although
in our model mood is characterized using valence, we also tested whether the perceived
arousal also changed with the valence. The results showed that valence and arousal can
be well recognized as long as the important parameters are modulated. Modulating only
the unimportant parameters might be useful to express weak moods. We also found that
speed parameters, repetition, and head-up-down correlate with arousal. Thus, the mod-
ulated behaviors do not only display the valence of the robot mood but also the arousal.
More details about the recognition experiment can be found in [79].

5.4. EXPRESSING MOOD IN AN INTERACTION CONTEXT

T HE main contribution of this work is that we investigated mood expression in the
context of an actual HRI interaction task. We now describe the task, the gestures

used, and the rational for our hypotheses.

5.4.1. IMITATION GAME
The interaction scenario we used in this study is an imitation game, in which the hu-
manoid robot NAO performs a sequence of gestures that are shown to a human player
who is asked to imitate the gestures in the same order. Eight gestures were used to form
the sequences in the game; single left arm pointing to left of robot in upward direction,
left arm pointing left and downward, right arm pointing right and upward, and right arm
pointing right and downward (see Figure 5.2b). The left and right arm movements were
also performed at the same time, resulting in four more gestures: both up, both down,
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Figure 5.3: Item selection strategy of the imitation game

slope left (left up right down), and slope right (right up left down). The left and right were
mirrored between participants and the robot. For example, when the robot performs a
left-arm gesture, the participant should perform a right-arm gesture with the same up or
down direction.

The classification of participants’ gestures into one of the eight types of gestures was
done by one of the experimenters. Using this input, the robot system evaluated whether
the participant’s gestures correctly replicated its own gestures in the right order and pro-
vided feedback by means of speech. The feedback text was selected randomly from a
predefined list of sentences, e.g., "Yes, those were the right gestures" for a correct imita-
tion, or "No, those were not the right moves" for an incorrect imitation.

To make the game more entertaining and keep the human player engaged, the sys-
tem adaptively changes the difficulty of the gestures to be imitated according to the es-
timated level of the participant. Each gesture has an associated difficulty rating that has
been defined based on studies with the Glicko system [110]. Each participant starts with
an average difficulty level. When a participant correctly imitates a gesture, the partic-
ipant’s level goes up, and the system selects a next gesture with a slightly higher diffi-
culty rating. When a participant incorrectly imitates a gesture, the participant’s level
goes down, and the system selects a next gesture with a slightly lower rating. For stability
of the participant’s level, in practice the participant has to succeed or fail twice in a row
before the level changes (see Figure 5.3).

5.4.2. MOOD EXPRESSION IN THE GESTURES OF THE IMITATION GAME

One of our goals of the study we performed is to apply and evaluate this model in a more
interactive scenario as a step towards the application of this mood expression model in
real-life application context. To this end, we used the imitation game introduced above.
The robot gestures used in this game were adapted using the design principles (Table
5.1) gained from previous studies [77], [78], [79] in order to express robot mood while
the robot is playing the game, i.e., performing various gesture sequences that are to be
imitated.

The robot arm movements are the primary relevant movements for the imitation
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Table 5.1: Design principles for mood expression

Parameters Quality Valence Arousal

Amplitude
large positive /
small negative /

Palm Direction
extrovert positive /
introvert negative /

Finger Rigidness
straight positive /

bent negative /

Motion Speed
fast positive active
slow negative passive

Hold Time
short positive active
long negative passive

Head Vertical
raised positive active

lowered negative passive

Head Horizontal
follow arm1 positive /

look forward negative /
1look forward when two arms act.

game. Three pose parameters, amplitude, palm-direction, and finger-rigidness, were
used for the arm. The amplitude relates to three aspects: vertical extent, horizontal ex-
tent, and arm extension; these are controlled individually by the joints shoulder-pitch,
shoulder-roll, and elbow-roll (see Figure 5.2a). We also used two pose parameters for
head movement (see Figure 5.2c). Two motion parameters, motion-speed and hold-
time, were used to modulate the motion dynamics. Decay-speed was used in [77] to
control the speed of movements when robot actuators return to its initial poses. In this
study, we used motion-speed as decay-speed because decay-speed was found to corre-
late with motion-speed in [78]. The resulting gestures for positive and negative moods
are illustrated in Figure 5.2a, c. A video clip of the gestures used in this study and gestures
modulated by mood on a continuous scale is available in the supplementary materials
or online. The concrete modeling of the game gestures can be found in Appendix A.

5.4.3. RATIONALE FOR STUDYING MOOD EXPRESSION DURING AN INTER-
ACTION

Our ultimate goal is to apply robot mood expression to daily human robot interaction.
Different from the recognition experiment, in which participants were asked explicitly to
recognize the mood from the robot behaviors, during daily interaction people will not be
asked to do so. Expression based on behavior modulation is implicit (see Section 5.3.4).
Chances are that people may even not pay attention to the affective cues in the robot
behaviors. However, it is not uncommon that people spontaneously recognize the mood
from the behavior of other people. We are thus interested in whether (a) people can
recognize the robot mood from behavioral cues spontaneously, and, (b) the expression
has any (positive) effects on the interaction and users, more specifically, effects on the
users’ affective states (affective effects) and task performance (cognitive effects)?

To answer these questions, we have used a gesture-based game in this study and we
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have applied the mood expression model to these gestures. Instead of explicitly asking
a user to recognize mood, we asked users to play a simple imitation game with a robot
and try to get a high score. Hence, we considered that there is a chance that people will
ignore the affective behavioral cues, since people need to focus on the game to win a
high score.

We briefly discuss here the effects that might be expected by varying task difficulty
(i.e., the game difficulty) on the recognition and effects of an expression. For the same
task, increasing difficulty mobilizes more attention and effort on the task. For instance,
the difficulty of the imitation game was controlled by manipulating the sequence length
and gesture combination. As the difficulty of the gesture sequence goes up, human play-
ers focus more attention and effort on remembering the sequence, and thus may pay
less attention to the details of the robot behaviors. As a result, they may be less capa-
ble at recognizing the robot mood and thus less influenced by it. However, it is known
from psychology that cognitive load should not influence the recognition accuracy of
emotion [111], and as we in the long term aim at a model that is able to generate robot
moods that are recognized by observers in a similar fashion as mood expressed by hu-
mans, it would be good if mood recognition results do not depend on the difficulty of
the interaction task. A second reason to study the task difficulty is that we want to be
able to replicate mood effects on task performance [112], [113], [114], [115], [116], as a
behavioral measure for mood contagion (in addition to self-reported mood). Thus, we
also studied how the task difficulty influences people’s perception of the robot mood and
how the task difficulty influences the aforementioned affective and cognitive effects of
the mood expression on the interaction.

5.5. RESEARCH QUESTIONS AND HYPOTHESES

A S discussed in Section 5.4.3, the main questions addressed in this study are

1. Can participants differentiate between positive and negative robot mood expressed
in gestures during an interaction scenario, rather than in a pure recognition task?

2. Can mood expressed by a robot induce mood contagion effects in human ob-
servers?

3. Can the mood expression of a robot influence the performance of a human in an
interaction task?

As a result, in this study we looked at the effect of robot mood (positive versus neg-
ative) and task difficulty (difficult sequences to imitate versus easy sequences) on three
constructs: observed robot mood (participant-reported robot valence and arousal), ob-
server own mood (self-reported valence and arousal), and task performance (percentage
of correct imitation sequences). We formulated the following hypotheses:

1. Participants rate the robot mood more positive when the robot behavior is mod-
ulated to display positive mood than when the behavior is modulated to display
negative mood. This effect should not be dependent on the easy and difficult task
conditions.
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Robot

Participant

Wizard

Experiment Room Wizard Room
Wall

Figure 5.4: The Wiz-of-Oz setting: the wizard recognized the gestures of the participant
and input into the system; the system selected next gesture sequence and the robot
generated the mood-modified gestures automatically

2. Participants’ affective self-reports are more positive in the positive robot mood
condition than the negative robot mood condition.

3. Participants’ task performance is better in the negative robot mood condition than
in the positive robot mood condition.

The latter hypothesis needs some explanation. If robot mood influences participant
mood, then we should be able to observe mood effects on task performance. The imita-
tion game is a detail-oriented game in need of bottom-up attention because the goal is
to watch and repeat robot movements exactly. It is well known that orientation towards
details and bottom-up attention is favored in neutral-to-negative mood states, as op-
posed to creative and out of the box thinking in positive mood states [114], [115], [116].
Therefore, if mood contagion happens, we would expect to see higher task performance
in the negative mood condition than in the positive mood condition.

5.6. EXPERIMENTAL SETUP

5.6.1. EXPERIMENTAL DESIGN

W E used a mixed model 2×2 design with game difficulty (easy/difficult) as a between-
subject factor and robot mood (positive/negative) as a within-subject factor. Each

participant plays with the robot in only one game difficulty condition (easy or difficult)
and in both robot mood conditions (positive/active and negative/passive) in two ses-
sions. Each session took between 6 and 10 minutes and involved 10 imitations. The
game difficulty was manipulated by restricting the gesture sequences that the Glicko rat-
ing system could select (see Section 5.4.1): for an easy game condition, the item ratings
ranged from 300 to 1500; for a difficult game condition, the item ratings ranged from
1501 to 2800. Mood was manipulated by controlling behavioral parameters as explained
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in Section 5.4.2. Task difficulty was manipulated by the length of the sequence and the
variation of the gestures in the sequence. Participants were randomly assigned to the
two groups (Table 5.2). The order of the mood conditions was counter-balanced. After
the two sessions, participants were asked to fill out questionnaires.

Table 5.2: Experiment conditions and participant groups

Game Difficulty
Robot Mood

Negative/Passive Positive/Active
Easy Group A Group A

Difficult Group B Group B

5.6.2. MEASURES

Both the recognition of the robot mood (H1) and the participants’ affective states (H2)
were measured in terms of valence and arousal after the two game sessions using the
Self-Assessment Manikins (SAM) questionnaire [117] on a 9-point Likert scale (see Ap-
pendix 8.3.3). To gain more insights into how participants perceive the robot mood (re-
lated to H1), the participants were asked to describe how they thought the robot mood
related to the behavior parameters listed in Table 5.1. This question was placed at the
end of the questionnaire. Participants’ game performance (H3) was assessed by the per-
centage of correct imitations during each session (the score of the participant for that
session), where correct vs. incorrect was a binary choice rated by the Wizard observer as
explained above.

5.6.3. MATERIALS

A Wizard-of-Oz method (Figure 5.4) was used in this experiment for the recognition of
the participants’ gestures. An operator was sitting in the room next door to the experi-
ment room. He could see and hear the participants via a webcam and microphone. His
task was to recognize the correctness of the participants’ response. The operator clas-
sified all gestures made by the participants. Procedural instructions on how to classify
were given to the operator: each gesture had to be classified as one of the eight gestures
the robot displayed, and in the event that the operator could not classify a gesture (usu-
ally caused by the participant’s hesitation) he was told to ignore that particular gesture
and continue to see whether the participant’s next gesture is correct. The operator had
been trained before the experiment to minimize the chance that he made mistakes dur-
ing the operation.

A screen (Figure 5.4) was placed on the wall just behind the robot so that participants
knew that the "robot" could see their gestures. Participants were told that the screen was
used for facilitating the recognition of gestures by the robot, while in fact this was the op-
erator’s view. A grey NAO robot (NaoQi version 1.14; head version 4.0; body version 3.3)
was used with LED lights switched off. The robot provided oral feedback on the partic-
ipant’s imitation performance by indicating whether a sequence of gestures performed
by the participant correctly reproduced the gestures performed by the robot. The robot
accompanied its gestures with speech (e.g., "Left up." "Both down."). The robot voice
and texts were affect neutral. That is, phrases such as "Excellent!" or "Very good!" were
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avoided. The robot (58cm tall) was placed on a desk (Figure 5.4) to ensure that partici-
pants could see the robot by facing the robot and looking straight ahead.

5.6.4. PARTICIPANTS

36 students (25 males and 11 females) aged 19 to 41 (Mean = 26.6, SD = 4.1) were recruited
from the Delft University of Technology for this experiment. They were from nine differ-
ent countries, but most of them are Dutch (N=13) or Chinese (N=13). A pre-experiment
questionnaire confirmed that the participants had little expertise on the design of ges-
tures or behaviors for robots or virtual agents. As compensation, each participant re-
ceived a gift after the experiment.

5.6.5. TASK

Participants were asked to use a thumbs-up gesture to instruct the robot (actually the
"Wizard") to start the game. When the robot was performing gestures, the only task for
participants is to watch the robot and remember the sequence. They were asked to re-
peat the sequence after the robot finished the sequence. In addition, participants were
asked to act slowly to ensure that the robot could recognize their gestures, and they were
told that they did not need to mimic the exact movements of the robot, but to imitate the
correct direction (of four possible directions). They were also asked to put their hands in
front of their belly when they are not imitating gestures and not make any other gestures
to avoid misrecognition. Participants were encouraged to achieve a high score: they were
told beforehand that the winner would receive a prize.

5.6.6. PROCEDURE

Before the experiment, each participant was asked to fill in demographics, a general
questionnaire about previous experiences with robots, and a consent form with regard
to the general information of the experiment. Participants were told that the robot was
autonomous (as is common in a Wizard-of-Oz setup). Participants were told to pay at-
tention to the game in general, and we did not emphasize mood or behavior to try to
eliminate a demand effect (participants rating what they think we want them to feel /
see). They were informed that the experiment contains two sessions with different ex-
perimental conditions.

The robot started the interaction when the participant was ready. After the partici-
pant finished an imitation (sequence of movements), the robot told whether it was cor-
rect or not, and the score of the participant was updated in the system but not shown to
the participant. Then the robot started the next turn and performed the next gesture se-
quence. Each session contained 10 turns. There was no break between the two sessions,
but participants were clearly informed about the session switch.

After the two sessions, the participants filled in the SAM affect self-report (Appendix
C) and the post-experiment questionnaires. The experiment took about 30 minutes on
average. After the experiment, participants were fully debriefed, and each participant
signed a consent form with regard to the video recording.



5.7. RESULTS

5

71

F(1,17)
=20.121
p<0.001
η2=0.542

F(1,17)
=9.479
p<0.01
η2=0.358

F(1,17)
=29.110
p<0.001
η2=0.631

F(1,17)
=17.548
p<0.001
η2=0.508

A
ro

us
al

 +
/- 

95
%

 C
I  

3

2

1

0

-1

-2

V
al

en
ce

 +
/- 

95
%

 C
I  

3

2

1

0

-1

Perceived Robot Arousal

GameDifficulty EasyDifficult

GameDifficulty EasyDifficult

(a)

(b)

Perceived Robot Valence PositiveRobotMoodNegativeRobotMood

PositiveRobotMoodNegativeRobotMood

Figure 5.5: The participants’ perceived valence and arousal of the robot mood during the interaction

5.7. RESULTS

5.7.1. MANIPULATION CHECK

T ASK difficulty was effectively manipulated. The average difficulty ratings of the ges-
ture sequences used in the easy condition is 1229 (SD = 100) and in the difficult con-

dition is 1555 (SD = 51). An independent sample t test showed that the difference in
correctness is significant between the easy (Mean = 72%, SD = 10%), and difficult (Mean
= 33%, SD = 18%) conditions (t(34) = 8.121, p<0.001). In addition, we asked participants
to rate to what extent they thought the game is challenging on a 5-point Likert scale (-2
to 2) after the experiment. Participants in the difficult-game group considered the game
more challenging than those in the easy-game group (t(34) = 2.428, p<0.05).
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5.7.2. PARTICIPANTS CONSISTENTLY DIFFERENTIATE BETWEEN POSITIVE AND

NEGATIVE ROBOT MOOD

Participants were able to distinguish between positive and negative robot mood and this
distinction was consistent across the two task difficulty conditions, as evidenced by a
mixed (doubly) MANOVA with robot mood and difficulty as independent factors and
perceived valence and arousal of the robot mood as dependent variable. This analysis
(see Figure 5.5) shows that robot mood had a significant effect on participants’ robot
mood perception: F(2,33) = 23.597, p<0.001, η2 = 0.588. The perceived valence and
arousal were significantly different between positive and negative conditions: F(2,33)
= 27.008, p<0.001, η2 = 0.443 for the valence; F(2,33) = 44.222, p<0.001, η2 = 0.565 for
the arousal. In addition, task difficulty did not influence mood perception significantly
(F(2,33) = 1.589, p =0.219, η2 = 0.088). These results directly support our first hypothe-
sis (H1). Moreover, participants rated the positive robot mood as positive (one sample
t-test on valence measure, t(35) = 8.620, p<0.001), and active during the interaction (one
sample t-test on arousal t(35) = 8.544, p<0.001), and rated the negative robot mood as
passive (one sample t-test testing on arousal t(35) = -2.086, p<0.05) but they did not rate
it significantly more negative than neutral (t(35) = -0.435, p =0.666). This further sup-
ports our first hypothesis (H1), as it shows that arousal manipulation was in the right
direction for both positive and negative, and that valence of the positive mood was also
perceived as being more positive than neutral.

5.7.3. PARTICIPANTS’ MOOD DEPENDS ON ROBOT MOOD

Participants’ affective states were influenced by the robot mood in the expected direc-
tions, supporting our second hypothesis (H2) that robot mood has a contagion effect on
human observers. A mixed (doubly) MANOVA with robot mood and difficulty as inde-
pendent factors and self-reported participant mood valence and arousal as dependent
variables showed that both mood (F(2,33) = 8.379, p = 0.011, η2 = 0.337) and task dif-
ficulty (F(2,33) = 4.397, p<0.05, η2 = 0.210) influenced participants’ self-reported mood.
Post hoc analyses without adjustments showed that participant arousal (F(1,17) = 20.302,
p<0.001, η2 = 0.544) and participant valence (F(1,17) = 10.000, p<0.01, η2 = 0.370) were
significantly influenced in the easy task condition, but not in the difficult task condition
(see Figure 5.6). This suggests that we were able to measure mood contagion effects with
self-reported mood only for the easy task. In the difficult task, no contagion effect seems
to be present.

Post hoc tests of the game difficulty factor without adjustments show that in the pos-
itive robot mood condition participants’ valence is significantly higher in the easy game
than the difficult game (t = 4.049, p<0.0005). Arousal is approaching significance (t =
1.809, p = 0.079). Moreover, correlations were observed between the perceived valence
of the robot mood and the valence of the participants’ moods: r = 0.418, p = 0.011 for
the negative condition and r = 0.520, p = 0.0012 for the positive condition. The perceived
arousal of the robot mood was also found to correlate with the arousal of the partici-
pants’ moods: r = 0.335, p<0.05.
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Figure 5.6: The participants’ affective states

5.7.4. TASK PERFORMANCE DEPENDS ON ROBOT MOOD
Participants’ game performances were influenced by the robot mood (H3). A mixed
ANOVA showed that participants’ scores (percentage of correct imitations) were signifi-
cantly (F(1, 34) = 7.335, p = 0.011, η2 = 0.177) different when the robot showed a negative
mood. Post hoc tests without adjustments showed that participants’ scores were signifi-
cantly different between the robot mood conditions for only the difficult game condition
(F(1,17) = 6.608, p<0.05, η2 = 0.280), but not for the easy game condition (see Figure 5.7).
The direction of the mood effect on task performance is exactly as one would expect
based on psychological findings [114], [115], [116]: a neutral-to-negative mood state fa-
vors orientation towards details and bottom-up attention as opposed to a positive mood
state. This type of processing is needed to perform well on the imitation task.

5.7.5. QUALITATIVE ANALYSIS OF PERCEIVED AFFECTIVE BEHAVIORAL CUES
To investigate what affective behavioral cues participants perceived exactly, we asked
at the end of the post-experiment questionnaire how they recognized the robot’s mood
in general and what, according to the participant, the relations are between the robot
mood and the following behavioral features (parameters): amplitude, palm direction,
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Figure 5.7: The participants’ game performance

finger straightness, motion speed, hold time, head-up-down, and head-left-right. Par-
ticipants were allowed to leave no comments on particular behavioral features if they
did not notice a relation with robot mood, and were allowed to fill in "not related" if they
considered particular features did not contribute to the robot mood. The number of par-
ticipants that left a comment, the frequency of "not-related-to-mood" comments, and
the extracted adjective keywords are summarized in Table 5.3.

The results show that the most noticeable behavior parameters related to robot mood
are motion speed, amplitude, and head-up-down, while parameters like head-left-right,
finger-straightness, and palm direction are less noticeable although they still have weaker
contribution to the expression. We considered the number of participant leaving com-
ments as an indicator of the parameter importance in terms of mood display. This is
generally consistent with our previous findings with regard to the parameter importance
[78], [79]: motion speed and amplitude are "global" parameters that change the overall
quality of the behavior; finger-straightness and palm direction are "local" parameters
that change the behavior quality of only a small area of the body parts. This result sug-
gests that participants’ perception of the affective behavioral cues were not influenced
(at least not much) by an interaction task.

Moreover, the parameters hold-time and head-left-right become more important in
this scenario, compared to our previous findings [78], [79]. Our explanation is that the
hold-time changed the overall dynamics of the gesture sequence. Although a single ges-
ture of the imitation game contains only one stroke, gestures are displayed in sequences.
Thus, the effect of the hold-time on the fluency or smoothness of the gesture sequence is
more noticeable. With regard to the head-left-right, participants commented that more
movement made the head display more affective cues. In previous studies, the head
only turned to a certain direction and then held until the end of a behavior. In contrast,
in this scenario the head continuously turned to the direction where the arm was mov-
ing when the robot displayed a positive mood. As a result, the head performed more
movement and thus displayed more affective cues. From the comments about the re-
lations between parameters to valence and arousal, we gain insights into how partic-
ipants interpreted the affective behavioral cues. We separate the adjective words that
participants used to describe the relations into valence-oriented words (has a large ab-
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Table 5.3: Perceived Affective Behavioral Cues from Behavior Parameters

Parameter NoPC*
NR**
Freq.

Valence Orientated
Relation***

Arousal Oriented
Relation***

Other****

motion
speed

35 0

↑happy(5)
↑positive(3)

↑good(2) ↓bad(2)
↓depress(1)

↑excited(8)
↑enthusiastic(2)

↑energy(1) ↓calm(2)
↓bored(2)
↓relaxed(1)

↓serious(1)

amplitude 33 1

↑happy(9) ↑good(5)
↑positive(4)

↓negative(3) ↓bad(1)
↓sad(2)

↑excited(11)
↑enthusiastic(1)

↑playful(1)
↑aggressive(1)

head up
down

27 2

↑happy(3)
↑positive(5)

↑good(2) ↓sad(5)
↓negative(1) ↓bad(4)

↑excited(2)
↓bored(2)

↑friendly(1)

hold time 23 2

↑sad(1)
↑depressed(1)

↑bad(1) ↓positive(2)
↓good(1)

↑calm(6) ↑bored(2)
↑patient(1)
↓excited(3)

↑serious(1)
↓playful(1)
↓rushed(1)

head left
right

17 4
follow arm: good(1)

positive (1) look
away: negative(1)

more movement:
excited (4) less

movement:
bored(1)

playful(1)
interested (1)

irritated(1)
serious(1)

finger
straightness

16 2
↑happy(2)
↑positive(1)

↑excited(4) ↓calm(3)
↓relaxed(1)

↑thoughtful(1)
↓tense(1)

↓stressed(1)
palm

direction
9 4 ↑good(1) ↑happy(1) / /

* NoPC means the total number of participants that commented on the parameter.
** NR means participants commented that the parameter was not related to mood.

***
↑adj.(#) means # participants commented that increasing the parameter value makes
the robot mood appear adj. ↓ means decreasing value.

****
Compared to other adj., few participants used these words, and these words have
different meanings.

NB. One participant could use more than one adj.

solute valence value but smaller absolute arousal value) and arousal-oriented words (a
large absolute arousal value but smaller absolute valence value) according to the word
distribution in Russell’s circumplex affect space [94]. Based on the number of valence-
oriented or arousal-oriented words (Figure 5.8) used to describe a parameter, we deter-
mine whether the parameter is more likely to be perceived to show valence or arousal.

The motion speed seems to have strong relations to both valence and arousal, and so
does the amplitude. The motion-speed contributes slightly more to the arousal display
and the amplitude contributes more to the display of valence. The results are consistent
with the findings in [65], [118]: fast speed and large spatial amplitude usually show posi-
tive valence while slow speed and small spatial amplitude usually show negative valence.
The result of motion speed also confirms the findings in [64], [119], [120]: varying move-
ment speed influences the recognition of emotion intensity. The head-up-down seems
to contribute mainly to the valence display, since most participants commented on it us-
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Figure 5.8: Number of adjectives that participants used to describe the relations between pa-
rameters and valence and arousal

ing valence-oriented words. This result confirms the findings in [88] that head position
plays an important role in displaying valence and arousal. The hold-time influences the
fluency of the movement, so it influences the perceived speed of the movement. Thus,
the hold-time contributes mainly to the arousal display. There are two interpretation
of the head-left-right: when it is interpreted as a posture, e.g., looking at the moving
arm or not or looking at the participants or not, it is perceived to display valence; when
it is interpreted as head movement, it increased the movement intensity or the over-
all activation of the behavior, and thus it is perceived to display arousal instead. The
finger-straightness was perceived to show arousal, since this parameter controls the fin-
ger stiffness and shows the force of the finger. The palm-direction was only described
using valence-oriented words.

In sum, parameters like the motion-speed and the hold-time that control the dynam-
ics of a behavior, parameters like finger-straightness that present the force or stiffness of
a body part, and parameters like head-left-right (movement interpretation) that change
the overall intensity of movement are usually interpreted as showing arousal. Param-
eters like amplitude, head-up-down, finger-straightness, and head-left-right (posture
interpretation) that control the posture and spatial extent of a behavior are usually in-
terpreted as showing valence. These results are generally consistent with our previous
findings [79], except that previously the head-up-down was also found to correlate with
arousal to a large extent. In addition to our previous findings, the amplitude is perceived
to correlate with arousal to a certain extent in this study.

5.8. DISCUSSION

F IRST and foremost, this study showed that our model for bodily mood expression of
a humanoid robot successfully generalized to the behaviors needed in the imitation
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game: we applied the parameter modulation principles obtained in [77] to the imita-
tion gestures directly (see Section 5.4.2); and results show that participants distinguish
between positive and negative robot mood, even when they were faced with a high task
load. Moreover, the recognition of the valence and arousal is consistent with the find-
ings in [79]: modulating these behavior parameters varied both valence and arousal in
the same direction. We would like to stress that this is an important contribution to the
ability of appearance-constrained robots lacking facial expression capabilities to express
affective signals. Further, this is an important step towards the expression of affect dur-
ing task execution of a robot, something humans do automatically (e.g., walking in a sad,
happy, or angry way looks very different).

Our aim in this study has been to use bodily mood expression that does not inter-
fere with the behavioral functions of body movements and to study the effects of mood
expression. This has been achieved by using a parameterized behavior model, but this
does not necessarily mean that no additional effects besides the mood expression in an
interaction scenario have been introduced. More specifically, effects on the game it-
self may have been introduced: mood expression potentially influenced game difficulty.
For example, the use of head movements for expressing mood was reported by one par-
ticipant as something that distracted attention and thus made it more difficult for that
participant to remember the exact sequence. Another participant reported that the slow
speed of the gestures in the negative mood condition increased the duration of the se-
quence, and consequently, increased the time that the participant needed to remember
the sequence. On the other hand, slower movement may also make it easy to remember
the gestures. Because mood and difficulty level are not entirely independent factors, we
cannot fully rule out the possibility that the performance difference within a difficulty
condition is not caused by the slight variation of the game difficulty that is caused by
the gesture modulation. So formally, it is unclear if the performance difference between
mood conditions on the difficult task is only influenced by the induced mood. To ob-
tain a more reliable conclusion, further study is needed to investigate the effects of the
participants’ mood and the game difficulty on the game performance separately. To be
able to claim that mood contagion happened and the effect on performance is due to
the mood, a follow up priming study should be done in which participants are mood
primed using prior robot gestures as primes (and a manipulation test afterwards), after
which participants do a task at two difficulty levels.

We asked participants to report their own mood only after the two sessions, because
we wanted to avoid introducing a demand effect in the second session. This may have
influenced the self-reported mood because of mood decay effects or because of the dif-
ferent robot mood in the second session. In a mixed (doubly) MANOVA we found a sig-
nificant interaction effect between mood condition and mood order on self-reported
valence and arousal (F(2,33) = 3.507, p<0.05, η2 = 0.175), primarily caused by a decay in
self-reported arousal for the mood condition that was presented first. This shows that
presentation of the second session indeed diminishes the self-reported contagion effect
of the first session.

The results of the perceived behavior cues in Section 5.7.5 indicate that the partici-
pants consciously recognize the robot mood. Although some parameters are more no-
ticeable, every parameter received attention, which means that modulation of these pa-
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rameters did change the perception of the robot movement quality. The results also help
us to identify the role of each parameter in the mood expression in terms of showing
valence or arousal. This will help us to improve our behavior model. That is, it may be
possible to use arousal as a second variable in our model to control the modulation of
the parameters. Additional work is needed to address the modulation principles when
arousal is introduced in the control mechanism of our model.

Participants’ assessment of the robot mood is a comprehensive affective appraisal
over all aspects on display including robot body movements, the robot’s speech, game
events, etc. In line with this, the attribution of a mood was explained differently by dif-
ferent participants even though only body language was varied in both sessions (see Sec-
tion 5.6). Some participants thought the robot mood changed because of their perfor-
mance within a session. For example, one participant said "the robot’s mood was neg-
ative because I always made mistakes." Additional evidence that robot mood was con-
sciously recognized by participants is provided by the fact that a participant indicated
that the robot was happy because the robot did not display a negative mood even when
she made many mistakes, whereas another participant indicated that the robot was not
so happy because the robot did not praise and encourage him when he made a correct
imitation. Some participants also said they recognized mood by means of the voice of
the robot even though no changes were made to the robot’s voice between the two ses-
sions. This also indicates that participants were consciously aware that the robot mood
changed. In addition, participants could have different interpretations for the same be-
havior parameters. For example, the head left right movement can be interpreted as
either looking away (thus showing negative mood) or following the arm movement (thus
showing more excitement). The variation of the interpretation may depend on people’s
personality, their own behavioral habit, or the scenes in their minds.

In this study, the bodily expression of robot mood produced contagion effect on the
participants: 1) explicitly, participants’ self-reported valence and arousal was signifi-
cantly influenced by the robot mood under the easy game condition; and 2) implicitly,
participants’ game performance was significantly influenced by the robot mood under
the difficult game condition, suggesting that participants’ true mood might be influ-
enced by the robot mood during task execution even though they did not report it after
the task. We have no clear explanation for the absence of an influence on self-reported
mood in the difficult condition, apart from the following two. Tsai et al. [107] proposed
that the contagion effect of a virtual character still image was hindered by the occupa-
tion of cognitive resources by decision-making. It could be the case that in our study
self-reported mood was somehow hindered by cognitive load. Another alternative ex-
planation is that the participant’s mood in the difficult task was more negative by de-
fault, because the task was difficult. The fact that the participant’s negative mood was
not rated even more negative could thus be due to a floor effect as one does typically not
get into a very bad mood due to a game in an experiment. Hence, no effect of negative
mood induction due to the robot mood was measured. The same sort of explanation
would hold for why we did not find an effect of robot mood on participants’ task perfor-
mance in the easy task. Here we probably had a ceiling effect: the easy imitation game
is so easy, that no matter what your own mood is, you can do it almost perfectly. Finally,
we cannot completely rule out alternative explanations for our findings that would ar-
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gue, e.g., that participants were entertained more in the positive condition and for this
reason somehow performed worse. Even so, explanations like these would still suggest
some kind of mood transfer would have happened.

We have used an imitation task in this study. The participants were asked to repro-
duce sequences of arm movements made by a robot. The robot’s arm movements ex-
pressed different moods in two conditions. Although the participants were not asked to
reproduce the exact "moody" movements, some participants still mimicked the move-
ments to some extent, according to the recorded video. There is evidence that expression
of nonverbal behavior associated with affective communication can cause experience of
the relevant affect [121], [122], [123]. Moreover, the "motor mimicry" theory states that
people catch others’ feeling by unintentionally imitating others’ expressions [97], [124],
[125]. Thus, the imitation game task context of our study may have enhanced the mood
contagion. We believe, however, that mood contagion would have also happened even
if the participants would not have imitated the movements. That is, the imitation of the
movements is only part of the causal chain of mood contagion but not the main factor,
and imitation only enhanced the contagion. It remains, however, an important question
for future work to verify whether the mood contagion effect observed in this study can be
generalized in scenarios in which users do not perform actions that are directly related
to the robot body language.

We recorded video of each participant during the game. The videos are meant to
be analyzed for more objective evidence that supports mood contagion. We did a pilot
for the video annotation. Two coders performed event based annotation on the videos.
No significant results were found, because not enough cues from the participants’ body
actions or facial expressions were available to allow for interpretation of their emotions
or moods. One explanation for the lack of cues may be that the participants were in-
structed not to make extra movements to avoid misrecognition of their gestures so the
expressivity of their body movements is somehow constrained. Facial expressions also
did not vary that much. The only evident facial expression in the videos is the smile. The
participants mostly smiled when they made mistakes, but it remains difficult to interpret
the relation between the smile and the robot expression.

5.9. CONCLUSION AND FUTURE WORK

T HIS study shows that it is feasible to use parameterized behavior to express a robot’s
mood in an actual HRI interaction scenario. Results show that participants are clearly

able to distinguish between positive and negative robot mood. They are able to recog-
nize the parameters we manipulated during the interaction. The importance of each
parameter seems to be consistent with previous results in [78]. Our results also suggest
that mood contagion takes place between the robot and the human. We have evidence
for this contagion effect in the following two forms: 1) participants self-reported mood
matches that of the robot mood, and 2) participants’ task performance is lower in the
positive robot mood condition compared to the negative robot mood condition repli-
cating a well-known mood-contagion effect.

To the best of our knowledge, this study is one of the very few in which the robot
mood expressed by bodily expression is clearly distinguished by participants and the
robot mood has an effect on participants, which we interpreted as mood contagion. Our
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study is unique in that a) robot mood expression was evaluated and investigated in a real
HRI scenario, b) mood expression was realized by integrating robot body language into
functional behaviors required by a task, and c) the participants were not primed to pay
attention to any form of affective expression.

Our work provides an alternative way of expressing affect through robot body move-
ment. The study presented in this chapter shows the effectiveness of modulation based
expression in terms of recognition and influence on users. This indicates that our model
has been successfully generalized to imitation game behaviors. We believe that our be-
havior model can be applied to a wide range of applications, since the modulation based
expression has less interference with functional behaviors compared to the expressions
based on additional body actions. One of our long term goals is to apply the model to
more behaviors that are frequently used in HRI. One of our studies in this direction has
focused on the design and evaluation of the behaviors of a robotic tutor [83]. Our model
has been applied to the co-verbal gestures of the robotic tutor and the movements when
the robot is idle. As we discussed above, the imitation of movements may contribute to
mood contagion. In the robotic tutor scenario, students do not imitate the robot ges-
tures. It is important to examine whether mood contagion still exists in that scenario.

Moreover, we believe that our work not only contributes to field of the robotics, but
also contributes to the field of virtual agents. For virtual agents, extensive work regard-
ing affective expression based on behavior modulation is usually on the communicative
gestures of conversational agents (e.g., [70], [126]). Our method is similar to existing pa-
rameter based approaches in constructing communicative gestures. A difference is that
our model is a step further in modelling the poses related to behavior functions for more
complex behaviors such as waving (see Appendix A). There are also scenarios in which
virtual agents perform body actions that are constrained by functional requirements and
dimensions of the virtual environment. For example, the virtual agents in training sys-
tem need to demonstrate standard operations (e.g., [127], [128], [129]). Our model can
be used to parameterize these behaviors for modulation based expressions, while also
modelling the functional and spatial constraints of these behaviors. Moreover, our work
shows the mood contagion between a robot and a human via affective body language.
This provides support that affective body language can produce mood contagion effect
between agents in general and humans, and thus can be used as a support for mood
contagion between virtual agents and humans via body language of the agents.

In this experiment, the robot mood condition was designed as a within-subject fac-
tor and presented in successive sessions. Thus, participants were able to compare the
differences of the robot behaviors between the sessions. This differs from real recogni-
tion, which requires people to tell the robot mood without a reference. One way to test
whether people can actually "recognize" robot mood is to put the independent variable
(i.e., the robot mood) as a between-subject factor and ask people to rate the robot mood
using scales (i.e., assigning values for valence and arousal). This is also a challenge since
humans are not good at scaling and thus they may not be able to give accurate result.
After all, this study is the first step toward the "recognition" of the robot mood from its
behaviors.

An interesting topic would be to make the mood expression as a response to human
players’ task performance. Put it differently, the robot will change its mood according to
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whether human players imitate correctly or not. In this way, the functions of the bodily
mood expression in HRI can be explored. For example, we can test the empathy effect by
comparing the effects between the robot displaying a positive as a response to an incor-
rect imitation of the human player and displaying a negative mood. Moreover, we expect
the effect of the bodily mood expression on the HRI to be strengthened, since mood can
be expressed through behavioral cues more often or continuously. Another example is
to use the mood expression as an indicator showing the stage of goal achievement in
a learning-by-demonstration scenario in which humans teach a robot doing things. It
is interesting to see whether the mood expression simultaneously expressed during the
task will make the learning more efficient.

One additional interesting aspect that we found in our study is that participants at-
tributed the robot mood to various factors that were not manipulated. In a complex
interaction scenario such as the imitation game, participants may believe that the affec-
tive state of a robot is shaped by the events that happen during the game, the objects
present in the interaction scenario, or, for example, by the (performance of) participants
themselves. It is interesting to explore this conscious attribution of mood and its causes
to a robot in more detail in future work. Moreover, when other modalities of expres-
sion are also used as well as modulation based expression. It is interesting to study the
interaction between each modality. For example, a robot may change its tone to expres-
sion mood when it is talking, while the robot may also perform coverbal gestures. An
interesting question is whether modulated coverbal gestures (for expressing mood) can
enhance the overall mood expression, alongside with the vocal expression. It has been
showed in [34], [36] that body action based emotion expression may significantly en-
hance the recognition of a robot’s emotion when it was combined with facial expression.
It is also interesting to test whether modulation based expressions can also enhance the
recognition.

Finally, whether expression is universal or culturally-specific is another important
question. Culture may influence the recognition of affect expression. Ekman has proved
the existence of the universal facial expression [130]. For body language, Kleinsmith et al
showed that cultural differences exist in recognition of affect from body postures [131],
while many studies also found universal aspects of body expressions (see [132] for an
overview). Culture differences in the recognition may also influence the contagion pro-
cess. Besides, cultural difference may influence the contagion process indirectly. For
example, there is evidence that cultural background has significant influence on the at-
titude towards the interaction with robots including the attitude to the emotions in the
interaction with robots [133]. It was shown that attitudes influence emotional contagion
process [134]. Perhaps, attitudes have an effect on the mood contagion process between
humans and robots. Thus, it is important and interesting to validate our mood expres-
sion cross-culturally. Taking a step further, it would be useful to identify which param-
eters can be modulated to produce universal mood expression, or, just as important, to
produce culturally-specific mood expression.
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ROBOTIC LECTURER WITH

AFFECTIVE BODY LANGUAGE

This Chapter describes our investigation of the robot mood expression by means of behav-
ior modulation used in a one-robot-multiple-humans interaction scenario. Group pro-
cesses occur when multiple humans are together and may influence the perception of the
mood expression and the effects that the mood expression can have on the humans. As
one-to-multiple interaction is common in real life applications, we aimed to test whether
our mood expression is still effective in such a scenario.

Another objective is to test the utility of the mood expression in an educational sce-
nario. Our results showed that the robot mood expression is able to raise students’ arousal,
while moderately high arousal was shown to improve learning. This means that our mood
expression is promising to have positive effects in technology enhanced education.

This chapter is based on J. Xu, J. Broekens, K.V. Hindriks, M.A. Neerincx, Robotic Lecturer with Affective Body
Language, Journal of Computer & Education, submitted, 2015.
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ABSTRACT
Robots can play an active role in education. In this chapter we investigate a humanoid
robot NAO that is able to give a lecture to university students in a classroom setting. The
goal is to investigate whether affective body language of the robot improves learning expe-
rience: 1) can affective body language of the robot induce an affective state in students that
may benefit learning? 2) Can affective body language improve the students’ perception of
the robotic teacher?

We studied robot body language through its coverbal gestures. The coverbal gestures were
constructed using a parameterized behavior model, and the gestures appear differently
when the parameters, which control spatial extent and motion dynamics, were modu-
lated. Different robot moods are expressed via the modulated gestures. Two groups of
students listened to the same lecture presented by the robot, while the robot displayed a
positive and a negative mood respectively.

Unique in this study on human-robot interaction is that (a) the robot gave an actual lec-
ture to real students in a classroom setting that was kept as close to real life as possible,
(b) the human-robot interaction is one-to-many and relatively long (30 min), and (c) the
robot mood was expressed across a large set of modulated robot behaviors.

The results show that the arousal of the students’ affective states was significantly higher in
the positive mood condition compared to the negative mood condition, according to both
self-reports and video annotation. Moreover, the video annotation shows that valence was
also significantly higher. The students’ ratings of lecturing quality and gesture quality of
the robot are higher in the positive condition, demonstrating that the affective body lan-
guage of the robot is able to improve the perception of a robotic teacher. As literature indi-
cates that a positive valence and a moderate active arousal benefit learning performance
and a positive attitude towards a teacher also increases learning motivation, our results
show the potential of affective robot body language for improving learning outcomes of
robot-enhanced education.

Keywords: intelligent tutoring system; improving classroom teaching; interactive learn-
ing environment; human-computer interface; evaluation of CAL systems

6.1. INTRODUCTION

T ECHNOLOGY assisted education, also known as electronic learning (e-learning) or
ICT (information and communication technologies) enhanced learning, has become

popular in modern education [135]. Virtual reality (VR) based education stands out from
other e-learning applications because VR provides an interactive and immersive syn-
thetic environment and characters that allow multisensory interactions and authentic
tasks [136]. Those embodied virtual characters are able to engage interlocutors [137],
[138] and increase motivation of learners [139]; both engagement and motivation are
important to learning performance.

Robots are also capable of providing interactive and engaging learning experience.
First, robots can provide more engaging interaction experience because of its physical
embodiment. Studies showed that people prefer to interact with physical robots over
virtual characters, and have a more positive attitude towards robots compared to other
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modalities of computer-controlled interaction (e.g., virtual agents, robots in video) [140],
[141], [142], [143]. Possible reasons are that robots share the same physical space with
people, and thus have more social impact [142]. A study about a robots’ physical pres-
ence and proximity to a person [143] showed that the physical embodiment of a robot
is perceived as more trustworthy, altruistic, engaging, and as having a greater social
presence compared to virtual characters and virtual representations of robots. Playing
against a physical robot in a chess game was also reported to be more enjoyable than
against a virtual agent [144]. The reasons provided by the authors are that physical em-
bodiment provides more immersive user experience and more believable social inter-
action. Second, studies on robot-assisted education showed the value of using robots
in learning. A physical robot is preferable in authentic learning environments. It was
shown that a students’ sense of authenticity, engagement, and motivation is stronger
when learning with a physical robot [145]. The use of a real-robot was also shown to
significantly improve learning effectiveness, collaboration, and motivation [146]. More-
over, physical embodiment of robots seems to produce a "social facilitation" effect. That
is, the mere presence of a physical robot as an observer was shown to improve task per-
formance [147]. In addition, a study of Ryu et al. [148] suggests that among physical
robots, humanoid robots are the most preferable modality for teaching assistant robots.
On the other hand, in the field of social robotics, social abilities of robots are developed
and evaluated. We believe that these abilities can benefit education. Robot assisted ed-
ucation is also an interesting application for social robots [149]. In our work, we aim to
apply social abilities of humanoid robots to education.

Informed by "active learning" and "constructive learning" theories, most studies on
educational robotics focused on using robots as platforms to provide opportunities for a
student to use a robot as a tool to complete an assignment or learning task by program-
ming the robot [9]. In contrast, robots can also play an active role in learning activities
instead of being used as "passive" tools, for example, in giving a lecture, telling a story,
and playing educational games with students. Several studies (e.g., [150], [151], [152],
[5] investigated the effects of social abilities (e.g., nonverbal feedback, gaze, affective ex-
pressions, empathy) of educational robots on learning outcomes. These studies only
compared a robot that uses social abilities with a robot that does not use any social abil-
ities. The effects of the quality of the social abilities on learning still need to be explored.
For example, how different are the effects that positive and negative affective expres-
sions of a robot have on learning. It is our aim here to study the affective quality of social
abilities and differences in effects on students caused by varying quality levels. To this
end, we integrated affective body language of a robot into a robotic teacher application,
called RoboTutor, to test how the quality of the robot teaching behaviors influence stu-
dents’ learning experience. The robotic teacher is capable of giving a lecture in a typical
classroom of a university, and able to use teaching facilities like slide shows and a mi-
crophone. This chapter presents the details of how we integrated both and a study on
the quality of teaching behaviors of the RoboTutor, with the aim of improving learning
experience.

Our work focuses on improving the learning experience provided by the RoboTutor
in two perspectives. The first is whether the affective robot body language has positive
effects on students’ affective states during a lecture, so as to sustain their motivation
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and attention, and make them memorize the lecture materials better, i.e., to enhance
their learning efficiency intrinsically. The second is whether the robot body language
improves the perception of the robot as a teacher, i.e., to improve teacher quality of
RoboTutor. With greater social acceptance, students may trust the robot more and en-
gage more during the lecture. [153] shows that learning performance is better if students
show more positive attitudes to their teacher. To this end, we focused on raising the
robot behavior quality during the lecture. More specifically, we studied how affective
body language of RoboTutor influences students’ affective states and their perception of
the robot as a teacher.

The reminder of the chapter is organized as follows: Section 6.2 presents a review of
related work on educational robots. We also explain the interaction context of this study.
We used a university lecture scenario, which is a one-to-multiple human robot interac-
tion (HRI) scenario. How this context differs from dyadic interaction context is explained
in this section. In Section 6.3, we explain the rationale of using affective body language to
improve learning experience. In Section 6.4, we explain our rationale behind our claim
that the robot affective body language by means of behavior modulation is suitable for
expressing mood, is more believable, and has stronger effects on users during interaction
compared to other forms of expressions. We elaborate our questions and hypotheses in
Section 6.5. To give a clear picture of the experiment, we introduce our RoboTutor sys-
tem in Section 6.6, while describe our body language model and how we integrated the
model into the RoboTutor in Section 6.7. Details of the experiment are elaborated and
the results are discussed in Section 6.8. In Section 6.9, we discuss the feedback obtained
from an event for teachers, where we showed our RoboTutor application to real teach-
ers. We reflect on this study and draw more general conclusions in Section 6.10, where
we also discuss future work. Finally, Section 6.11 concludes the chapter.

6.2. RELATED WORK

R OBOTS have been used already in a range of educational scenarios. For the most
part, studies in the field of educational robotics have focused on teaching how to

construct robots, including aspects related to mechatronics, electronics and program-
ming [9]. In these studies, robots, such as LEGO Mindstorms [154]and Arduino [155],
were used as a platform on which students exercise skills such as hardware design, pro-
gramming, and system design. In those studies, robots were used as a passive platform
for students to work on. In our work, the robot plays the role of a lecturer that gives a pre-
sentation on learning materials and quizzes about the contents just taught. That is, the
robot actively participates in the interaction with students during the learning activities.

Robots show great promise for playing an active role in learning activities. Several
one-on-one teaching situations have been studied. Henkemans et al. [5] used a robot
as a personal tutor for educating children with diabetes in health knowledge. To be per-
sonal, the robot asked children about their personal information, such as names, sports,
and favorite colors, and referred to these personal data during the interaction. Results
show that children gain knowledge about diabetes and children interact more with a
personal robot. This study suggests that a robot can be used for educating children in an
enjoyable way. Tanaka and Matsuzoe [156] inverted the common roles between robots
and children: they let children teach robots. The results showed that this learning-by-
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teaching method promoted children’s spontaneous learning and motivation in a study
conducted at an English language school for Japanese children.

Some studies have used robots as teachers in public space. For example, Chang et
al. [152] explored the possibility of using educational robots as an instructional tool for
second language teaching in a primary school. They studied five typical scenarios in
a classroom setting cooperatively with teachers. The feedback from teachers revealed
several challenges associated with educational robots in classroom. First, they found a
lack of movement while the robot was talking. Coverbal gestures and random leg move-
ments in our study have been designed to improve the quality of the robot behavior in
this regard. Second, they found their robot did not engage in sufficient emotional com-
munication. Our study addresses this issue by exploring the use and effects of the robot
mood expression through body language in the classroom. Third, robots were reported
to elicit a high motivation of students to interact with the robot in the beginning, which
may be due to the novelty effect, but this motivation did not persist. The body language
we investigate in this chapter transfers, as we will argue, a robot’s mood to students, and
thus may positively influence students’ motivation [157]. We also address the issue of the
ease of use of an authoring tool to control the robot. We provide a script-based author-
ing tool, allowing non-technical people such as teachers on a primary school to create
educational scenarios.

Affective expression has been shown to support learning in various ways. Bodily ex-
pression was used in a social assistive robot application for preschool education [8]. The
robot expressed emotions by gestures, head movements, and eye blinking, correspond-
ing to the emotion of the story sections. The results show that children’s emotional
involvement in the learning process is promoted. Affective expression was shown to
improve motivation and reduce frustration. Okonkwo and Vassileva [108] incorporated
emotional facial expression into an agent used in an interactive learning environment.
They found that the emotional agent improved concentration and motivation in stu-
dents, and was also perceived as more engaging and sympathetic than the agent with-
out emotions. Burleson and Picard [104] found that agents with affective support reduce
participants’ feeling of frustration in a learning context, and this affective intervention
was found to be more effective in girls. Affective expression may make user perception of
educational robots more positive. The iCat robot was used in a chess lesson [44]. The re-
sults suggested that the emotional behavior of the robot improved children’s perception
of the chess game and the robot. Robot expression was used in a quiz game designed
for children to gain knowledge of health care [45]. The study showed positive effects of
the expression on children and the children’s preference for bodily expression. Beale and
Creed reviewed the influence of synthetic agent emotion on user attitudes and percep-
tions [100]. Many studies discussed in the review showed that people perceive agents
with affective expressions more positively and have better attitudes to the agents. The
review also pointed out that the role of agents in learning processes (e.g., learning com-
panion or tutor) and the type of learning tasks (e.g., language learning or problem solv-
ing) may influence the effects of the agent expressions. It is thus important to study
educational robots in different scenarios. We provide a study case of a robot teacher in
a university course about artificial intelligence. It will be useful to compare our setting
with the settings in other studies.
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In our previous studies, we showed the effectiveness of robot body language in a
dyadic interaction scenario in a laboratory. However, it is unclear yet whether the body
language is effective in an environment that is closer to real life. Studies [158], [159],
[160], [161] have shown that an experimental environment may strongly influence the
results regarding human robot interaction. This is the case particularly when a robot
application is used in a public space. It is thus important to bring robots out of labora-
tory environments and evaluate them in more realistic settings, in which conditions and
contexts are closer to a situation where a robot will be eventually used.

Placing robots in real-life like scenarios might elicit responses from people that are
more realistic and varied. For example, a study, in which a robotic receptionist that dis-
plays facial expressions interacted with people in a public setting for a long term [42],
showed that the average interaction time positively correlated with the number of vis-
itors, as long as the robot displayed facial expressions no matter positive or negative.
Social acceptance was studied using an ACE robot by putting the robot in a street and
having it ask for directions [162]. Results indicated that limitations of the robot were
less tolerated by people in a public area right from the start of the interaction. This
suggests that the first impression is important for extending human-robot interaction
over time. Abildgaard and Scharfe [163] placed a Geminoid robot in a university course.
The robot played the role of a lecturer and presented a lecture to a large audience. In-
terestingly, some students did not immediately realize that a robot was speaking. This
study suggests that the perception of the robot varies with the distance to the robot and
with gender. Moreover, people’s expectations and requirements for social acceptance
are higher in a real life scenario than in a laboratory setup [162]. Moreover, in a public
space multiple people may interact with robots at the same time. In the study of the
robotic receptionist [42], different interaction patterns have been observed for affective
robot interaction with few and with many people. It is known that there exist many fac-
tors that influence emotional contagion between individuals within a group (see [164]
for a review) such as group membership [165], affective context of the group [35], and
social power relations. This means that we need to investigate to what extent our pre-
vious findings can be replicated in a group setting. Note that some group effects do not
require physical interactions between individuals, such as the "social facilitation" effect
[166], which influences people’s performance and occurs as long as others are present
nearby.

The RoboTutor application enables us to study the body language that we have pro-
posed in earlier work in a more realistic environment. This is important for three rea-
sons. First, we used a "real-life" setting of teaching a lecture in a university. We simulated
a real classroom as closely as possible, where the main change was that we replaced a hu-
man teacher by a robot. The lecture room was familiar to the students, and the lecture
content was part of an actual course that they enrolled in. Thus, students might expect
the robot to demonstrate teaching skills similar to those of a human or else would not
accept the robot as a teacher. Second, in our RoboTutor application, the robot interacts
with an audience of about 20 students. This allows us to test whether the robot mood can
be effectively communicated to a group of people, and to study the effects of robot mood
expression on multiple individuals in a group. Third, this study allows us to test whether
the robot mood can be expressed consistently, using body language of the robot over a
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longer period of time. In order to do so, we generalized our mood expression model [77]
to a broad range of robot gestures, which are performed in series during the course of
the lecture. We needed such a variety to ensure that the robot’s body language would be
perceived as more or less natural over a longer period of time (30 min) during the lecture.
Forty-one co-verbal gestures were used, each of which was modulated to display mood
using our bodily mood expression model [77]. As such, this is the first study looking into
the effects of robot mood expression over an extended period of time by means of a large
variety of mood-modulated bodily gestures.

In most studies, educational robots have been developed for children. This is prob-
ably because robots are more easily accepted by children. Research starts to address ed-
ucational robots for adults. Abildgaard and Scharfe’s study [163] suggested that a Gemi-
noid robot as a lecturer in classroom environment of a university course is acceptable
to some extent. Our study is also aimed at adult education, i.e., lectures for master stu-
dents. As a result, we believe that our findings may be applicable to a broader range
of classroom education settings including, e.g., secondary school, high school, and uni-
versity. We did not use a Geminoid but used a lower-cost widely accessible commercial
robot (i.e., the NAO). It is interesting to investigate whether a low-cost robot without so-
phisticated humanlike features is sufficient for a robotic lecturer role.

6.3. AFFECTIVE EXPRESSION IN EDUCATIONAL ROBOTICS

O UR approach for improving the learning experience of robot-enhanced education
is to enable the RoboTutor to express mood while it is speaking during a lecture.

The rationale is twofold. First, mood expression can be used to influence students’ af-
fective states that may facilitate learning. The idea here is that 1) a robot mood with
positive valence influences a students’ mood positively, and therefore improves moti-
vation [157]; and 2) a robot mood with active arousal increases the arousal level of stu-
dents’ mood, which improves learning efficiency according to [167], [168], [169], [170].
In previous work we showed that a human’s mood can be influenced by a robot’s mood
when interacting with the robot in a game setting [81]. Based on these results we came
to believe that robot mood also will have an impact on students’ mood in a classroom
setting. Mood is a less intense form of affective state, compared to emotion. A posi-
tive mood usually is accompanied by a moderate arousal. One therefore would expect
that a robot mood should not induce a too high arousal of students, which would cause
learning performance to decrease [170], [171], [172]. Second, mood expression may im-
prove the students’ perception of the RoboTutor and positive attitude towards teachers
may increase learning performance. Affective expression is important for social robots
to interact with humans naturally and intuitively [26]. Expressive robots are perceived
as trustworthy, reliable, and life-like [24]. By controlling the valence and arousal level of
mood expression the robot is able to appear as a passionate and enthusiastic teacher.
Thus, mood expression may improve students’ perception and social acceptance of the
robot. Moreover, our mood expression can be used almost all the time during the lecture.
We expect that the mood expression have strong effects on the learning.
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6.3.1. POSITIVE MOOD IMPROVES LEARNING MOTIVATION AND CREATIVE

THINKING

Learners’ affective states have been shown to influence their motivation and information
processing, and ultimately learning outcomes. A positive mood is reported to increase
motivation and foster holistic, creative thinking [157]. Our robot mood expression was
shown to induce a positive mood to people who interact with the robot in a game [81].
Positive robot mood expression is likely to also induce a positive mood to students in a
classroom and thus improves students’ motivation. On the other hand, robot mood ex-
pression improves life-like quality and social presence of robots, and makes the learning
process more entertaining. The robot mood expression thus may reduce the boredom
in students, while boredom should be reduced during learning since it was reported to
produce negative intrinsic motivation (avoid an action) [157]. Silvestrini and Gendolla
also showed that pleasant task valence eliminated motivational deficit caused by nega-
tive mood and a difficult task [113]. The robot mood expression may make the learning
process more pleasant and thus improve learning outcomes.

6.3.2. MODERATE AROUSAL OPTIMIZES LEARNING PERFORMANCE

Maintenance of an optimal arousal level during learning process increases students’
learning efficiency. Learning is not a purely cognitive process, but is also mediated by
affective processes. The affective state of learners, in particular a moderate level of ac-
tive arousal, has a positive impact on learning efficiency, since it increases attention and
memory [167]. LaBar and Phelps [168] studied arousal-memory interactions in humans
using a word recall task. The results showed that arousal improved memory performance
by regulating consolidation processes. Studies in neuroscience support the existence of
the emotion-memory interaction [169]. However, arousal should be neither too high nor
too low, otherwise performance decreases. The well-known Yerkes-Dodson law [170],
[171], [172] illustrates the relationship between arousal and performance as an inverted-
U curve. The results of the studies on learning experience accord with these principles.
Masters et al. [173] showed that positive affective states enhance learning of children.
Moreover, their study indicated that even transient mood states may produce lasting
changes in behavior. Craig et al. [174] studied the role of affective states in learning.
They found that learning gains correlate positively with flow (engagement) and confu-
sion, while correlate negatively with boredom. Shen et al. [175] studied the evolution
of learners’ emotion during a learning process in a e-learning context. They found that
engagement and confusion were important and most common emotions during learn-
ing. Note that flow (engagement) and confusion are both affective states with moderate
arousal, according to [176]. In addition, Baas et al. [115] extracted the relation between
moods and creativity from a range of studies. They found that activating moods en-
hance creativity, while positive-activating moods produce more creativity than negative-
activating moods. The results are generalized across experiment scenarios, populations,
and facets of creativity. Therefore, maintaining a moderate arousal level is important to
learning efficiency and learning experience. Our previous study also showed that the
mood expression of a robot induced an active arousal to people who interacted with the
robot in a game [81]. In this study, we aim to use the robot bodily mood expression to
induce an active arousal at moderate level to students in a classroom.
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6.3.3. POSITIVE ATTITUDES TO TEACHERS INCREASES LEARNING PERFOR-
MANCE

Learning performance was shown to improve if students have more positive attitudes to
their teacher [153]. Several studies have shown that behavior quality of a robot correlates
positively with social acceptance. Saerbeck et al. [150] studied social supportive behav-
iors of a robotic tutor in a language learning application. They modelled social sup-
portiveness in five dimensions: role model, non-verbal feedback, attention guiding, em-
pathy, and communicativeness. Results show that social supportive behaviors improve
motivation and learning efficiency of students and improve students’ attitude towards
robots and towards the learning task, i.e., students considered the learning more like a
fun game rather than a tough assignment. Hence, the behavior design of an educational
robot has an impact on learning efficiency. Shin and Kim [151] studied students’ percep-
tion and attitudes to a teaching robot in a classroom environment using three scenarios
in which the robot played different roles. They found that students were able to learn
from robots and showed positive attitude towards the robot. More importantly, emo-
tion was found to be a vital factor that made the robot perceived as a qualified teacher.
Hence, expressive behavior can be used to improve social acceptance of the RoboTutor
and consequently improve students’ learning performance.

6.4. MOOD EXPRESSION BASED ON BEHAVIOR MODULATION

I N this chapter, we aim at designing mood expression for robots. Distinctions between
affect, emotion, and mood have been discussed in [37], [38], [34], [36], [35]. Here,

we highlight the distinctions between mood and emotion that are related to expression:
an emotion is a short term, intense affective state, associated with specific expressive
behaviors; a mood is a long-term, diffuse affective state, without such specific behav-
iors. Mood emphasizes a stable affective context, while emotion emphasizes affective
responses to events.

We consider that the expression by means of behavior parameter modulation is par-
ticularly suitable for expressing mood. First, our mood expression extends over time. We
aim to design a generic model that can be applied to a broad range of robot behaviors. By
applying the model to multiple behaviors (including task-related behaviors) in a series,
the robot mood can be expressed in a more or less continuous fashion. It is suitable to ex-
press a long-term affect. Second, our mood expression does not show a particular action
tendency. What behaviors should be performed at a particular moment is determined
according to the task requirements, but not to the desire of showing mood. The robot
mood only changes the "styles" of the existing behaviors. We do not create additional
robot body actions for expressing mood. Third, our mood expression is implicit. The
expression relies on the behavior cues that result from behavior modulation. Because
of this nature, we believe that the expression should not be perceived to have explicit
intention of showing mood, but rather an implicit reflection of the mood. We keep the
interference caused by the parameter modulation of a behavior with the behavior func-
tions as minimum as possible. The primary function of a behavior is still to fulfill a task,
while the mood expression is an additional function. Thus, we believe that the behavior
function is more noticeable and the expression by means of the behavior modulation is
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implicit and less intense. Therefore, we believe that our proposed mood expression is
suitable for a diffuse, global, and background affective state of an individual, i.e., mood.

We believe that our mood expression should make the robot more believable and
have larger the effects on users compared to other types of bodily expressions. First, be-
cause of the implicitness of the expression, users are less likely to perceive the expression
as a "show" or making emotional stimuli on purpose, but rather a genius manifestation
of the robot internal states. Users may believe more in that the robot truly has the state.
That is, the robot will be perceived more believable. Because of the believability of the
mood expression, users are more likely to be influenced by the robot mood. Second,
the proposed mood expression lasts for a longer time during human robot interactions.
The stimuli of the mood expression are presented to users in a more continuous fashion,
compared to putting emotion expressions in between functional behaviors of teaching,
such as coverbal gestures during the presentation. As a result, the effects of the mood
expression on users should be stronger. The robot may also be perceived more expres-
sive because of the long-term mood display. Therefore, we expect that in the RoboTutor
study presented in this chapter the mood expression of the Robotuor has larger effects
on students in terms of the improvement of students’ perception of the robot and the
mood induction to the students, compared to the use of other types of expression in a
robot enhanced learning process. Our work explores the possibility of using robot bodily
expression to improve learning experience. We believe that our mood expression based
on behavior modulation can generate better learning outcomes. In addition, the expres-
sion also does not break the flow of the coverbal gestures during the speech. The course
presentation of the robot thus can be more concurrent. The learning experience should
be better.

6.5. RESEARCH FOCI AND HYPOTHESES

6.5.1. RESEARCH QUESTIONS

T HE purpose of our study is to explore whether affective robot body language provides
an effective tool for improving learning experience of a robot-enhanced education

application. We integrated mood expression with the coverbal gestures that the robot
performed during the lecture (detailed in Section 6.4). In this study, the gestures were
modulated to show either a positive robot mood (the positive condition) or a negative
robot mood (the negative condition). We expected that differently modulated gestures
should have different effects on the interaction and on the students.

As discussed in Section 6.3.1 and Section 6.3.2, a positive valence strengthens stu-
dents’ motivation in learning, and a moderate active arousal enhances learning perfor-
mance. We therefore want to evaluate the following:

Q1) Can affective body language of a robotic teacher induce a valence and arousal in
students that supports learning?

Moreover, as discussed in Section 6.3.3, positive attitudes of students to teachers im-
prove learning performance. We derived our second research question from this:

Q2) Can body language make students rate a robotic teacher more positively?
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The ultimate goal of our study aims at using robot affective body language to improve
the students’ learning experience. Although improvement learning may be difficult to
measure, we still wanted to be able to check whether an immediate effect can be found.
We therefore included quiz questions during the lecture that can be used as a measure
of learning efficiency. The measure of quiz performance is also used as a behavioral
consequential measure for H1 and H2. Our third question therefore is:

Q3) Is students’ performance in answering quiz questions influenced by robot body
language?

6.5.2. HYPOTHESES
Mood has been shown to be transferable between persons [97], [165], and from a robot
to a person in a dyadic interaction [81]. We also believe that mood transfer can be repro-
duced during a lecture given by the RoboTutor. The major difference here is that mood
may transfer from one robot to multiple individuals (one-to-many interaction).

H1) Participants’ affective states are influenced by the robot mood: participants’ af-
fective states are significantly more positive in the positive condition than in the
negative condition.

Fortunato and Mincy [177] showed that induced positive mood increased students’ rat-
ings of teachers. Moreover, the affective body language of the robot enhances the life-like
quality of the robot [26], [24] and thus may improve students’ attitudes towards a robotic
teacher. We therefore expect participants to give higher ratings for lecturing quality and
gestures of the robot tutor in the positive condition than in the negative condition, re-
sulting in our second hypothesis:

H2) Participants’ ratings of lecturing quality and gestures of the robot are significantly
higher in the positive condition than in the negative condition.

As discussed in Section 6.3.1, 6.3.2, and 6.3.3, when students have a positive valence and
a moderate active arousal or have a positive attitude to the teacher, their learning perfor-
mance may be improved. Assuming that the robot body language influenced the mood
of the students as hypothesized in H1 or their attitudes were shaped by the robot body
language as hypothesized in H2, the students in the positive condition (where the robot
displays a positive mood) are expected to answer the quizzes better than the students in
the negative condition (where the robot displays a negative mood).

H3) Participants’ task performance (correctness of quiz answers) is significantly better
in the positive condition than in the negative condition.

6.6. ROBOTUTOR SYSTEM

6.6.1. ROBOTUTOR APPLICATION

W E chose to use the humanoid robot NAO and provided the robot with various ca-
pabilities that can be used to give a lecture such as using PowerPoint slides, per-

forming coverbal gestures, and asking quiz questions.
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One of the ideas behind the RoboTutor application is to design a robot lecturer that
takes itself as an example to introduce various aspects (e.g., sensors, effectors, and sys-
tem) related to robotics. For example, the robot is able to demonstrate how an ultrasonic
sensor works by putting its hand in front of the sensor and show the distance detected;
it can show that it is able to view the audience by showing a picture of the audience that
is taken by its camera on a presentation slide in real-time. The robot can also perform
a behavior while talking about it. The robot can illustrate, for example, how many de-
grees of freedom the NAO has in its arm by moving its arm. A robotic teacher application
provides students also with possibilities to interact with the robot in class, for example,
by touching the tactile sensors or converse with robot through speech recognition. Stu-
dents learn better when they actively interact with an environment [178].

A teaching authority that fully controls the learning process is not appreciated [150].
Instead, students’ internal control is more desired than external control [179]. Students
should have opportunity to actively reflect the content they learned, instead of solely
being told all the time. Some interaction may also keep the students attentive. To this
end, we enabled the RoboTutor to ask quiz questions related to content just taught: the
students are provided a wireless clicker to input answers within about 10∼15 seconds.
This also gives them chances to exercise taught knowledge timely. Microsoft PowerPoint
2010 and TurningPoint version 51 (a plugin for MS PowerPoint) were used for presenting
slides and quizzes. Students used TurningPoint clickers, which communicate wirelessly
with the computer, to provide their quiz answers. They were asked to provide their an-
swers within short intervals of time of about 10∼15 seconds, and the time remaining to
answer was indicated on the quiz slide. Feedback is essential to effective teaching and
students’ motivation of learning [179]. The robot responds to answers, and the percent-
ages of students that selected a particular answer is shown on the quiz slide. If most
students selected an incorrect answer, the robot provided additional details to explain
the correct answer. The robot also nods head (to correct answers) and shakes head (to
incorrect answers) with larger amplitude and faster speed in the positive mood condi-
tion.

6.6.2. SCRIPT ENGINE
We aimed at creating an authoring system that allows a non-programmer, such as a
teacher from a non-technical university, to use it easily. To this end, a script engine
was designed to enable course instructors to orchestrate the robot gestures, speech, and
slides by editing a text file (script). Users can load, execute, and pause or resume the
script using buttons on the GUI.

A script consists of three elements: 1) configurations; 2) commands; and 3) text of
speech. Configurations, usually located in the very beginning of a script, include the
voice parameters (e.g., speed, volume, and pitch) and behavior parameters like whether
the robot will perform random leg movements when ongoing behaviors do not contain
leg movements. Commands (blue letters in Figure 6.1) are special control syntax of the
system like running a robot behavior, switch a slide, or start a quiz session. Texts are the
content of the robot speech. Some built-in syntax of the Text-To-Speech engine of the
robot is supported, for example, a pause for a period of time and local voice variation.

1http://www.turningtechnologies.com/polling-solutions/turningpoint

http://www.turningtechnologies.com/polling-solutions/turningpoint
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Figure 6.1: The script editor for orchestrating the robot speech and behaviors

A script editor (Figure 6.1) with syntax highlighting and toolbar are provided to users
to facilitate editing. For example, users can insert a behavior command by clicking the
shortcut on the toolbar and input the behavior name. We also provide some validation
functions, such as check whether used behavior names match the behaviors defined in
the system. We will also provide spell check for speech texts in the future. More detailed
description of the script engine can be found in Appendix B.

The robot speech was generated by a Text-To-Speech engine shipped with the robot.
We initially were worried that the voice produced by the standard engine would bore
students quickly. However, in a pilot we found this not to be the case. As our focus is on
body language here, we kept using the standard speech engine.

We designed a corpus of coverbal gestures, and enabled the script engine to syn-
chronize automatically the starting points of a sentence and its coverbal gestures. Users
need to adjust the length of the sentence to guarantee the speech and gestures to finish
roughly at the same time if needed. A gesture can be executed by either the left or the
right arm. If random leg movement is enabled, the robot selects leg movements from a
predefined corpus in real time and performed them between hand gestures, to avoid a
long time of no movement.

6.7. BODILY MOOD EXPRESSION

6.7.1. PARAMETERIZED BEHAVIOR MODEL

A MONG the modalities of affective expression, we chose bodily expression because
humans understand intuitively the affective state, beliefs, and motives of a robot

through nonverbal cues from the robot’s expressive body language during human-robot
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Figure 6.2: The three layer architecture of our parameterized behavior model

interaction (HRI) [31], [150]. Expressive body language also increases the efficiency of
human-robot task performance and robustness [58]. Expressive body language also is
particularly important for humanoid robots that lack facial features such as the NAO,
ASIMO, and QRIO.

Our body language model enables a robot to express mood during the execution of
functional behaviors required by tasks. For example, a positive mood can be expressed
when a robot shows a direction by pointing or when a robot waves at people for greet-
ings. To this end, our model allows the functional behaviors to be modulated by change
behavior parameters.

We briefly discuss our model here. Our model is a parameterized behavior model
that consists of three layers: 1) a drive layer; 2) a behavior parameter layer; and 3) a joint
configuration layer (Figure 6.2).

The drive layer consists of a function component and an affect component: the func-
tion component decides which behaviors should be performed at a specific moment ac-
cording to the task requirements; the affect component determines the affective state of
the robot using an appraisal model, for instance. From the top layer, behavior functions
and affect expression are made independent. The affective state of the robot controls
the values of the parameters in the behavior parameter layer.

The parameters control spatial extent as well as motion dynamics of a behavior [77],
[78], and further changes the behavior appearance. The modulation of movement pa-
rameters does not change the function associated with the behavior. Some parameters,
such as speed and amplitude of a movement, are generic, and can be used to modulate
arbitrary behaviors. Other parameters are associated with a particular body part of the
robot such as head, hand palm, and finger. To express mood while performing a specific
behavior, one only needs to specify which parameters should be varied. Thus, a range of
moods can be expressed, and mood can be displayed throughout a series of behaviors.

The parameters are defined within functional bounds during the construction of the
behavior. They serve as interfaces between the affective states and the final configu-
rations of the joint values. Each parameter is associated with one or more joint values
using numerical formulas, which are the interpolations between poses. These poses are
constrained by the behavior profile of a behavior, which defines how joints depend on
each other according to social conventions. For example, we define waving as one hand



6.7. BODILY MOOD EXPRESSION

6

97

Anger 

afraid
angry

• 

frustrated

annoyed• 

distressed • 

miserable • 

• sad 
depressed• 

• 

• gloomy

• bored

Sad 

Arousal
Pleasure 

alarmed 
• 

tense 

• droopy

• astonished

• excited

• aroused • happy 
• delighted

grad 
• pleased 

• content 
• satisfied

serene • at ease 
• calm

• relaxed

• tired sleepy
Relaxed 

Valence

• 

•

• 
• 

•

0

Figure 6.3: Valence (pleasure)-Arousal affect space of Russells’ circumplex model [94].
The circles denote roughly the positions of the five mood levels in our previous study.
The two solid circles denote the moods we used in the RoboTutor study.

swinging between two horizontally aligned positions repeatedly, and the palm should
always face forward. All joints should comply with the definition whenever they are
changing.

6.7.2. PLEASURE-AROUSAL AS A BASIS FOR MOOD

One of our main goals with developing a robot body language framework has been to
create a generic model of robot behaviors, so that the behaviors can be modulated con-
tinuously to express mood that varies in a continuous space. Therefore, we have chosen
a dimensional approach to describe mood in theory, although we used discrete levels
for experiments. We chose Russell’s circumplex model [94] as a basis of the affect space
for mood. In this model, valence depicts the negativeness versus positiveness of mood
and arousal depicts the activation of mood. Using this model, each mood is modeled
as a coordinate in the VA space. For example, the difference between sadness and fear
can be represented in a numerical way: fear corresponds with a negative valence and
a high-activated arousal, while sadness corresponds with a negative valence and a low
arousal.

The VA affect model allows us to build a mapping for each parameter to the VA space,
and thus the mood can control these parameters. In this way, it is able to present each
behavior parameter as a function of V and A. Initially, linear functions were used for the
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mapping.

Pi = fi (V , A) =αi ×V +βi × A+γi (6.1)

The coefficients αi and γi in the equation above were established empirically in a
user study [77] and confirmed in a perceptual task in an additional evaluation study [79].
In the user study, we merely considered the valence dimension in this mapping. Put
differently, we set βi to zero. The reason is that mood mainly varies along the valence
axis, but slightly varies along the arousal axis. Only using valence for control also reduces
the complexity of the model and reduces the number of conditions of the user study (see
details below). It was found in the perceptual task evaluation [79] that the parameters for
motion-speed, hold-time (fluency), repetition, and head-vertical correlate with arousal.
Moreover, people were able to perceive both valence and arousal of the robot mood from
the modulated robot behaviors. This result indicates that each parameter correlates in
varying degrees with arousal. However, our previous studies did not allow us to figure
out the exact value for the coefficient of arousal (βi) for each parameter. Although our
direct manipulation of the robot mood is to vary valence, the range of the robot mood
is from sadness to happiness, i.e., from -A-P to +A+P (see Figure 6.3). In the RoboTutor
study, we studied two levels of the valence: negative (very unhappy) and positive (very
happy).

6.7.3. MOOD EXPRESSION OF THE ROBOTIC TEACHER

We applied the parameterized behavior model to two behaviors of a NAO robot, and con-
ducted a user study to address which behavior parameters have the potential to express
mood and how to modulate these parameters to express a specific mood [77]. The ob-
tained modulation rules are summarized in Table 6.1. The resulting mood expressions
were evaluated through a perceptual task without an interaction context and in an inter-
action game. Although the robot behaviors were modulated solely according to valence,
we also asked participants to rate arousal from the behaviors. Results show that partic-
ipants are able to identify correctly valence and arousal levels of a robot mood in both
setups. These results serve as the basis of the study presented in this chapter.

In this study, we parameterized 41 coverbal gestures of the RoboTutor with 12 pa-
rameters. The robot showed either a positive or a negative mood during the lecture by
modulating the gestures, according to the validated rules in Table 6.1. Decay-speed was
used in [77] to control the speed of movements when robot actuators return to their ini-
tial poses. In this study, we used motion-speed as decay-speed because decay-speed
was found to correlate with motion-speed in [78]. The duration of maintaining a partic-
ular pose called hold time was refined into "fluency" hold time and "persistency" hold
time [77]. As aforementioned, some parameters were found to correlate with arousal.
The modulated gestures thus do not only display the valence of the robot mood but also
arousal. Videos of the modulated gestures that show stepwise changed mood and a video
recording the robot during the experiment are available from our website2.

2http://ii.tudelft.nl/SocioCognitiveRobotics/index.php/RoboTutorMood

http://ii.tudelft.nl/SocioCognitiveRobotics/index.php/RoboTutorMood
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Table 6.1: Design principles for mood expression

Category Parameters Modulation Valence Arousal

Pose (spatial extent)

Width
outward positive /
inward negative /

Height
high positive /
low negative /

Forward
front positive /
back negative /

Palm Direction
extrovert positive /
introvert negative /

Finger Rigidness
straight positive /

bent negative /

Head Vertical
raised positive active

lowered negative passive

Head Horizontal
follow arma positive /

look forward negative /

Amplitude
large positive /
small negative /

Motion (dynamics)

Motion Speed
fast positive active
slow negative passive

Hold Time (fluency)
short positive active
long negative passive

Hold Time (persistency)
long positive /
short negative /

Repetition
repeated positive active

non-repeated negative passive
alook forward when two arms act.

6.8. EXPERIMENT AND RESULTS

I N this section, we introduce the field study experiment, in which the RoboTutor gave
a lecture in a master course about Artificial Intelligence at Delft University of Tech-

nology. We first elaborate the experimental design and procedure, then we describe the
analysis and results, and finally we interpret the results in a discussion subsection.

6.8.1. EXPERIMENTAL DESIGN

INDEPENDENT VARIABLE

The robot mood was manipulated as an independent variable at two valence levels: pos-
itive and negative (see Figure 6.3). Note that the arousal is also different for the two
mood levels (discussed in Section 6.7.2). The same lecture was given twice, once for
each condition. That is, the script (see Section 6.6.2), the lecture content (presentation
and spoken text), and the types of gestures were the same for both conditions. Only
the appearance of the gestures was modulated to vary the mood conditions. Slides did
not contain too many details to prevent students from paying too much attention to
the slides instead of to the robot. Participants were divided into two groups, and were
assigned to a lecture in either the positive or the negative condition, making the experi-
ment a between-subject design with one independent variable, the robot mood.
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DEPENDENT VARIABLES AND MEASURES

The affective states (valence and arousal) of participants were measured at the begin-
ning of the lecture (T0), during a break in the middle of the lecture (T1), and at the end
of the lecture (T2), using Self-Assessment-Manikins (SAM) [117] on 9-point Likert items.
The difference between T1 and T0 and between T2 and T0 were taken as measures of
the induced affective states (H1). By measuring participants’ affect and the perceived
robot mood both at T1 and at T2, we obtain a measure for mood change over time. In
addition, the lecture of each mood condition was video-recorded. Videos were manu-
ally annotated by two annotators (details in Section 6.8.7) to assess the overall valence,
arousal (H1), and attention distribution of the audiences.

The post-experiment questionnaires at T2 asked for participants’ ratings (H2) about
the robot lecturer on 5-point Likert items, using six items about the lecturing quality
including 1) maintenance of participants’ interests, 2) maintenance of participants’ en-
gagement, 3) enthusiasm, 4) friendliness, 5) maintenance of participants’ attention, and
6) overall satisfaction. The items were designed based on the aspects investigated in
[180]. Moreover, we also asked participants to rate the robot gestures (H2) on 5-point Lik-
ert items, using four items including 1) whether the robot was using gestures to commu-
nicate information, 2) whether the gestures made the participants to follow the speech
more easily, 3) whether the robot organized speech, gestures, and slide switching in a
fluent way, and 4) whether the gestures were natural.

The task performance was assessed using the answers to the quiz questions (H3).
These questions, which are multiple-choice questions, relate to the lecture content taught
by the robot just before the questions were asked. Each student was requested to provide
answers independently.

We also tested the recognition of the robot mood to verify whether conscious recog-
nition is a precondition for mood induction. Our previous studies showed that peo-
ple are able to recognize the robot mood from modulated behaviors [79], [81]. In a lec-
ture, although students may pay attention to the slides and may concentrate on thinking
about the lecture content, they still pay a considerable amount of attention to the lec-
turer. We believe that the students should also be able to rate the robot mood as posi-
tive/negative when the robot gestures are modulated as positive/negative. Participants
were asked to assess the robot mood (valence, arousal, and dominance) using SAM on 9-
point Likert items, at T1 and at T2. We took two measures because we wanted to see how
the recognition changed over time. The scenario (lecture) lasts for a long time (about 30
minutes) and the robot mood may become clearer to students at the end of the lecture.

In addition, participants were asked to do a self-assessment of the attention they paid
to the robot, slides, or something else in percentages, to rate the consistency of the robot
mood on a 5-point Likert item, and to answer an open question about the rationale for
their ratings of the robot mood in terms of valence, arousal, and dominance separately.

6.8.2. ASSIGNMENTS TO PARTICIPANTS

First, participants were requested to listen carefully to the robot. They were informed
that the lecture materials used by the robot were prepared by the course instructors, and
that the content would be part of the exam. Second, they were requested to answer quiz
questions that were posed by the robot and presented on the slides. We encouraged
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participants to obtain a high quiz score, by telling them beforehand that the first place
of each group would receive a Philips LED Rechargeable Candle as a prize.

6.8.3. PARTICIPANTS

Participants were recruited from the students who enrolled in the Artificial Intelligence
course at the Delft University of Technology. We asked the students to register, and asked
permission from the students for this experiment in advance. They were told that each
would receive a bonus course credit. 36 students registered, and all except one were mas-
ter students. They were randomly assigned to each group, but we ensured that the back-
ground of participants (department and master program) was roughly equal within each
group. 34 students (28 males and 6 females) whose ages range from 21 to 36 (Mean=23.8,
SD=2.7) participated in the experiment: 18 of them for the positive condition; 16 for the
negative condition. They come from 11 different countries, with 18 of them being Dutch.
The pre-experiment questionnaire showed that some participants had taken courses re-
lated to robotics such as "Humanoid Robots", "Machine Learning", and "Computer Vi-
sion". Some participants (12 in each group) attended projects related to robotics during
their bachelor. Participants reported that they were open to technology-assisted educa-
tion (Mean=3.941, SD=0.736, on a 1 to 5 scale).

6.8.4. MATERIALS AND SETUP

A small lecture room that contains about 26 seats (with desks) was selected for the study.
This setup has the advantage that participants sit relatively close to the robot so that they
were able to notice the details of robot movements more easily and thus more likely to
be influenced by the robot mood, even though we did not assign seats to participants
(the experiment setup was identical to a usual classroom setup). The seats were aligned
in a grid pattern (Figure 6.4), which facilitated the estimation of the distance and angle
of a participant to the robot. The shutters of the window were closed. The screen for
showing slides was located on the upper part of the wall behind the robot. The course
instructor also took part in the experiment and sat in front of the classroom to protect
the robot (e.g., from falling down) and to organize the experiment. Other experimenters
were seated at the back of the classroom.

A grey NAO robot (NaoQi version 1.14, head version 4.0, body version 3.3) was used
with LED lights switched off. The robot was connected with a laptop using cables, via
a router and a gigabit switch, to guarantee sufficient speed of data transmission. The
robot, which is 58 cm tall, was positioned on a desk (Figure 6.4) while giving the lecture,
which ensured that participants could see the robot by looking straight ahead.

Three video cameras were used for video data acquisition. Two cameras were placed
on desks at the front of the classroom, on each side of the robot. Each camera recorded
half of the classroom. The heights and angles of the two cameras were adjusted to guar-
antee that participants do not hide each other. The third camera placed at the back of
the classroom (Figure 6.4) was used to record the robot.

The course material (see footnote 2 for a link to the slides) was part of the course cur-
riculum and designed by the course instructor. The material is structured in five parts:
1) a general introduction to robotics, 2) a part about robot sensors, 3) a part about robot
effectors, and 4) the programming of the NAO robot, and 5) a brief part about the Robo-
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Figure 6.4: The layout of the lecture room and the positions of the
robot, students, experimenters, seats, and cameras.

Tutor system itself. The lecture included seven quiz questions. The first one was an easy
question, which asked about the origin of the word "robot", used as a warm-up exercise
at the beginning of the lecture. The other six were used for assessing participants’ per-
formance. The second question about the definition of a robot was asked at the end of
the part 1. Three questions about sensors were asked at the end of part 2, just before a
short break. The other two were asked at the end of part 3 and 4 each.

6.8.5. PROCEDURE
Before the lecture, experimenters aligned the seats and desks, measured and recorded
the dimensions needed (Figure 6.4), and set up the robot, laptop, projector, and cam-
eras. When students arrived, they were allowed to select seats, but were not allowed to
rearrange desks. Experimenters gave each participant a description of the experiment
and a TurningPoint clicker. Students were requested to fill in a consent form, a demo-
graphic form, a general questionnaire about previous experiences with robotics, and a
pre-experiment SAM questionnaire to report their own affect (valence, arousal) before
the start of the lecture (T0). An explanation sheet for valence, arousal, and dominance
was provided to them. The human lecturer briefly described the experiment and an-
swered questions. Students were told that they could not ask the robot questions during
the lecture. We did not emphasize the robot mood or gestures to avoid any demand
effects (i.e., participants rate what they think we expect).

The experiment started immediately after experimenters collected the pre-experiment



6.8. EXPERIMENT AND RESULTS

6

103

forms from all students. Three experimenters started the camera recording manually,
and another experimenter started the lecture program. The program started the Pow-
erPoint presentation automatically, and sent the lecture script (see Section 6.6.2 for an
example) to the robot. The robot then started to talk and perform gestures.

In the middle of the lecture (after part 2 of the slides), the robot asked participants
to take a 5 minute break and to fill in a mid-term questionnaire during the break (T1;
see Section 6.8.1). Experimenters handed out the questionnaire, but did not collect the
questionnaires during the break to save time. The robot resumed the lecture after 5 min-
utes.

The whole lecture including the break took about 30 minutes. After the robot fin-
ished the lecture, experimenters stopped the cameras. Experimenters first collected the
questionnaires that were completed during the break, and then handed out the post-
experiment questionnaire (Section 6.8.1). After 10 minutes, experimenters collected all
forms and questionnaires. The course instructor provided a brief explanation of the ex-
periment to the participants, and requested them not to tell anything related to the ex-
periment to the second group of participants. Experimenters checked whether all fields
had been filled in when they collected questionnaires.

6.8.6. FACTORS IN THE VALIDITY OF THE RESULTS

Here, we discuss other factors that may threat the validity of the results. First, distance
and angle between the robot and participant may influence attention paid to the robot
and the perception of body language [163], and social distance may influence people’s
interpretation of, attitude towards, and preferred type of body language [181]. In our
case, for example, it might be difficult to see subtle details of the robot body movements
like finger or wrist from a distance; waving hands with large amplitude is typically in-
terpreted as a greeting from a certain distance but can be interpreted as drawing some-
one’s attention at a closer distance. In our setup (Figure 6.4), participants sitting in the
first two rows are closer (far phase of social distance [182]) to the robot than those sit-
ting in the third or fourth row (close phase of public distance [182]). Hence, the robot
mood may influence the participants sitting close to the robot more (H1) and the partic-
ipants may recognize the robot mood better, than those sitting further away. As a result,
distance may also influence the ratings of the lecturing (H2) and the participants’ task
performances (H3). The distance and angle between robot and each participant was
estimated geometrically (Figure 6.4), according to the seat position (row and column)
reported by students in the pre-experiment questionnaire. Experimenters aligned the
seats in a grid pattern (Figure 6.4) and recorded the dimensions beforehand. The cen-
ter of the rear edge of the desk (the solid circle in Figure 6.4) was taken as the position
of each participant, despite of his/her postures (e.g., leaning back on the chair, leaning
forward on the desk).

Second, the attention a participant pays to the robot may mediate the mood conta-
gion process and, as a result, influence task performance [165]. Third, there is evidence
showing that social power ("dominance") influences the contagion process [164], [183].
Affect is more likely to transfer from superiors to subordinates. In our case, the contagion
effect may be stronger for participants that rate the robot as dominant.
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6.8.7. ANALYSIS AND RESULTS

CHECK OF PARTICIPANTS’ INITIAL AFFECTIVE STATES

As the data are not normally distributed, Mann-Whitney U tests were used to analyze the
initial affective states of participants (at T0). The results showed no significant difference
in the self-reports of participants’ own valence and arousal between mood conditions.
We thus may assume that participants in both groups had similar affective states at T0.

INDUCED AFFECTIVE STATES OF PARTICIPANTS

The self-reports of participants’ own valence and arousal are not normally distributed.
Friedman test and Wilcoxon Signed Ranks test were used for each mood condition to
analyze whether participants’ affective states (H1) were different over time and how the
affective states changed from T0 to T1 and from T1 to T2. Results showed the arousal
changed over time (χ2(2)=7.774, p=0.020), and showed a significant increase of arousal
at T1 (MedT0=1, MedT1=2, Z=-2.698, p=0.006, two-tailed) and a marginally significant
drop at T2 (MedT2=1, Z=-1.931, p=0.066, two-tailed) in the positive condition only and
only for arousal (Figure 6.6 left). This shows that there is mood induction in the positive
condition.

To find out if the induced mood is significantly different between mood conditions,
i.e., if positive robot mood induces significantly more arousal than negative robot mood,
we calculated two induction measures by subtracting T0 from T1 and T0 from T2 (Fig-
ure 6.5 right and Figure 6.6 right). Mann-Whitney U test was used to analyze the in-
duction effect. Results show that the induced arousal at T1 in the positive condition
was significantly larger than in the negative condition (MedT1neg=0, MedT1pos=1, U=73.5,
Z=-2.486, p=0.012, two-tailed), and the induced arousal at T2 in the positive condition
was larger than in the negative condition at a marginally significance level (MedT2neg=-1,
MedT2pos=1, U=91.5, Z=-1.857, p=0.064, two-tailed).

The videos of each condition (29 minutes) were annotated by two experienced anno-
tators to assess participants’ valence and arousal on a 9-point Likert item, and attention
distribution (rank order of robot, slides, and other). We employed the interval coding
method: the annotators assessed the overall valence, arousal, and attention of the audi-
ences as a whole from every one minute of the video. Spearman’s rho was used to test the
inter-coder reliability. Results showed that the correlation is significant and has a large
effect size: rho=0.675, p<0.001 for valence, and rho=0.511, p<0.001 for arousal. It indi-
cates a strong consistency between the two coders. We took the average of the ratings of
valence and arousal per minute from both coders as final ratings (valence: Medneg=-0.5,
Medpos=0.5; arousal: Medneg=-1.0, Medpos=0.5). Mann-Whitney U test was used to an-
alyze the difference of the final ratings between mood conditions. Results showed that
both valence and arousal are significantly higher in the positive condition than in the
negative condition: U=107.0, Z=-4.962, p<0.001, two-tailed for valence, U=163.5, Z=-
4.052, p<0.001, two-tailed for arousal. The results indicate that the robot mood expres-
sion had an effect on both the valence and arousal of the audiences. In addition, both
coders reported that there was more laughter in the positive condition, and only in the
positive condition the participants applauded at the end of the lecture.



6.8. EXPERIMENT AND RESULTS

6

105

V
al

en
ce

3.0

2.0

1.0

0.0

MoodCond
PositiveNegative

T0 T2T1Time
2.0

0.0

1.0

PosNegMood Condition

Time
T2T1

In
du

ce
d 

V
al

en
ce

Figure 6.5: Participants’ self-reports of their own valence (at T0, T1, T2) and induced valence (at T1, T2):
median value and interquartile range (IQR).

PERCEPTION OF LECTURING AND GESTURE QUALITY

The average ratings of the items about lecturing quality of the robot and the items about
the robot gesture quality are illustrated in Figure 6.7 and Figure 6.8. There is a trend that
the ratings of all items about the lecturing quality are higher in the positive condition
than in the negative condition (Figure 6.7). An independent t test shows that the sum
of the ratings about the lecturing quality in the positive condition is significantly higher
than the negative condition: t(32)=2.210, p=0.034. That is, the participants believe that
the lecturing quality of the robot is higher in the positive condition.

For the ratings of the robot gesture quality, we excluded an outlier (lower than the
lower inner fence of the boxplot) from analysis. There is a trend that the ratings of all
items about the gesture quality are higher in the positive condition than in the negative
condition (Figure 6.8). An independent t test shows that the sum of the ratings about the
robot gesture quality in the positive condition is higher than in the negative condition
at a marginal significance level: t(31)=1.920, p=0.064. This suggests that participants
believe that the robot gesture quality is higher in the positive condition.

LEARNING PERFORMANCE

As the data of the answers to quiz questions (2-7) is not normally distributed, Mann-
Whitney U test was used to analyze the difference between mood conditions. Results
showed no significant difference between the positive (Med=4) and negative (Med=4)
conditions. That is, we did not observe an effect of robot mood on participants’ task
performance in terms of question answering (H3).

6.8.8. DISCUSSION
The students’ self-reports showed that the positive mood expression of the robot in-
duced a more active arousal to the students than the negative expression. Objective
assessment in the form of video annotation also revealed that the positive expression in-
duced both a more positive valence and a more active arousal to the students, compared
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Figure 6.6: Participants’ self-reports of their own arousal (at T0, T1, T2) and induced arousal (at T1, T2):
median value and interquartile range (IQR).

to the negative expression. This means that the robot body language has an effect on
students’ affective states. It is known that mood contagion can happen between persons
automatically or subconsciously [97], [165]. This study showed that automatic mood
contagion could also occur from a robot to audiences. We thus did find support for H1.
As demonstrated in Section 6.3, a positive valence and a moderately active arousal may
improve students’ learning. Therefore, the positive body language of the robotic teacher
is possible to improve students’ learning by shaping their affective states.

The results support that the ratings of the robot in terms of lecturing quality and
the gesture quality are better when the robot displays positive body language. Although
each individual item is not significant, which may be due to the small sample size, trends
towards perceiving both qualities higher in the positive condition are clear and the sum
of those ratings is significant or marginally significant. Thus, there is support for H2.
As demonstrated in Section 6.3, a positive attitude of students toward their teacher may
improve students’ learning. Therefore, the positive body language of the robotic teacher
is able to improve students’ learning since it is able to improve students’ attitudes toward
the robot.

We checked for influences of attention, distance, angle, and perceived robot domi-
nance. We did not observe a significant difference of the attention between conditions
from t tests based on self-reports. According to these self-reports, participants in the
positive mood condition paid attention to the robot for 51.94% (SD=15.82%) of the time
and 38.61% (SD=16.34%) to the slides on average, and participants in the negative mood
condition paid attention to the robot for 48.75% (SD=18.66%) of the time and 40.00%
(SD=16.23%) to the slides on average. This is consistent with video annotation of atten-
tion distribution. Mann-Whitney U test did not show significant differences between
mood conditions for attention focus annotated from videos (inter-coder reliability was
strong for attention to robot, rho=0.635, p<0.001, and for attention to slides, rho=0.605,
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Figure 6.7: Participants’ ratings of their course experience at T2: the left side shows each indi-
vidual items, while the right shows the sum of the six items.

p<0.001). This means that the manipulation of the robot mood is not observed to influ-
ence the students’ attention. However, the attention paid to the slides may influence the
main results. In addition, correlation analyses did not show significant relations between
distance, angle, or the perceived robot dominance on the one hand, and the recognition
of the robot mood or induced participant mood on the other. This means that the effects
of distance, angle, and the perceived robot dominance on the recognition of the robot
mood and the mood induction process were not observed.

We did not observe direct effects of robot body language on students’ learning. The
performances of quiz answering between the positive and negative conditions show no
statistically significant difference. H3 is thus rejected. A possible reason could be that
the answering to in-class quizzes is primarily course content oriented. The performance
of the quiz answering is less influenced by lecturing quality, i.e., in our case, presenting
the same course content with different "moody" gestures. Many studies have reported
that the improvement in students’ learning outcomes caused by involving robots is not
guaranteed because many other factors also influence the learning outcomes (see [9]
for a review of these studies). Moreover, students paid considerable attention (almost
40%) to the slides, which may hinder the effects of the robot mood expression on the
learning performance. This finding is consistent with other studies, e.g., [108], [184].
Another possible explanation is that the improvement in learning can be only observed
in a relatively long term [185]. The learning procedure in this experiment is still short-
term, although it lasted for 45 minutes. Our measurement of learning performance is
based on quick quiz answering and only for once. The effects of the robot body language
on students’ learning thus may be not big enough be detected by question answering.
Even though we did not find significant performance differences, we believe that it is
worthwhile to further study the effects of robot body language for improving learning
outcomes, because the results show that the robot body language is able to induce af-
fective states that support learning to students and improve students’ attitudes to the
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Figure 6.8: Participants’ ratings of the robot gestures at T2: the left side shows each individual
items, while the right shows the sum of the four items

robotic teacher.
It is not clear whether the students recognized the robot mood consciously from the

robot body language. The self-reported SAM ratings about the robot mood did not show
a statistically significant difference in the perceived robot mood between conditions.
Participants rated the robot valence, arousal, and dominance at T1 and at T2. As the data
violated the normal distribution assumption, we compare the ratings of valence, arousal,
and dominance between the positive and negative conditions using Mann-Whitney U
test. The median values and interquartile range of each variable are illustrated in Figure
6.9. The results did not show significant differences between the positive and negative
conditions either at T1 or at T2. It was discussed in [97] that participants would not
spontaneously pay attention to another person’s expression if they were not required
to. In our case, we did not prime the participants to pay attention to the robot mood
expression in advance, and the analysis of participants’ attention distribution showed
that participants paid almost 40% of their attention to the lecture slides in both con-
ditions. This may explain the absence of the significant differentiation of positive and
negative mood. Another possible explanation for the absence of a significant difference
in reported robot mood is that participants attribute the gesture modulation to teaching
quality directly instead of to robot mood. Last, open participant feedback of the uni-
versity lecture study show that variation in robot mood is attributed to various factors
that were not manipulated such as tone and volume of the robot voice, speaking speed,
lecture pace, and gaze/eye contact. This may also explain the absence of a significant
difference in reported robot mood: these factors may interfere in the conscious recog-
nition of the robot mood through the gesture modulation. Additional work is needed to
verify how these factors influence the recognition. Note that the mood transfer between
persons occurs automatically and subconsciously [97], [165], i.e., conscious recognition
of mood may not be a precondition for mood transfer. This may also be the case for the
mood transfer between a robot and people. In this study, we also did not observe sig-
nificant correlations between the recognition of the robot mood and the self-reported
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participants’ moods. Thus, the mood induction in this study may have happened sub-
consciously.

6.9. TEACHERS’ PERSPECTIVES

T EACHERS’ opinions are useful for improving the RoboTutor. Not only they have plenty
of experience as teacher and in lecturing, but also they can provide a perspective on

teaching that is different from students and audiences in general. Teachers, researchers,
specialists, and students attended an event held in the Netherlands to discuss their own
needs in the field of learning and teaching with ICT (Figure 6.10). We seized the op-
portunity to show our RoboTutor to these teachers and ask for their opinion about the
RoboTutor. We used questionnaires as shown in Table 6.2. Fifteen teachers answered
our questionnaires.

We asked their perception of the robot mood with respect to the valance, arousal, and
dominance dimensions using 9-point Likert items, and their opinions on the statements
listed in the table below on a 5-point scale: strongly disagree, disagree, neither agree nor
disagree, agree, and strongly agree. In addition, the teachers were also asked to provide
suggestions in an open-question section of the questionnaire. Results are illustrated in
Figure 6.11.

Results show that the teachers’ ratings about whether the body language of the robot
makes the robotic teacher more enthusiastic is positive and an one-sample t test shows
significance (Mean=1.53, SD=0.52, t(14)=11.5, p<0.001, test value 0.00). This suggests
that the positively modulated body language is perceived as enthusiastic by teachers.
Teachers also consider that the gaze behavior of the robot makes the robot appear enthu-
siastic (Mean=0.71, SD=0.83, one-sample t(13)=3.238, p<0.01, test value 0.00). By asking
about this aspect, we intended to check whether teachers considered the eye contact was
an issue since the robot is not able to make eye contact with audiences in a natural way
(e.g., random scanning the audiences). It appears that the raised head has an already
sufficient effect on perceived enthusiasm. A few teachers mentioned in their answers to
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Figure 6.10: The RoboTutor is giving a lecture to teachers.

open questions that the robot should look at everyone in the audience from time to time,
because by doing so the robot shows awareness of its audience and respect.

The results also show that the perception of whether the robot is too small for teach-
ing in a classroom correlates negatively with the perceived authority (Spearman’s rho(15)=-
0.598, p=0.019) and the dominance of the robot (Spearman’s rho(10)=-0.635, p=0.049).
This means that teachers who thought the robot is too small for classroom teaching also
considered the authority and dominance of the robot to be low. Moreover, the rating
of the statement "the robot cannot teach in the classroom" correlates highly with the
perceived robot dominance (Spearman’s rho(10)=-0.664, p=0.036). That is, teachers who
think that the dominance of the robot is high consider the robot able to teach in a class-
room.

Teachers who think that the robot maintains their attention during the lecture also
rated the overall satisfaction high (Spearman’s rho(15)=0.722, p<0.005). It seems that
whether a robotic teacher can keep students’ attention is an important factor that real
teachers were concerned about the most. However, there is no agreement on the atten-
tion maintenance by the robot. Possible explanations may be that those teachers did not
have a learning goal in the lecture and they were listening to the lecture in an open envi-

Table 6.2: Items of the questionnaire

1. The robot shows sufficient authority for teaching.
2. I think the robot is too small for teaching in a classroom, even if it stands on a table.
3. Body language makes the robot more enthusiastic.
4. The robot lecturer maintains my attention during the presentation.
5. Overall, I am satisfied with the performance of the robot lecturer.
6. I like to be taught by a robot about a course related to robotics.
7. I do NOT think this robot can be used to teach in a classroom.
8. The gaze behavior of the robot during its speech makes the robot more enthusiastic.
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Figure 6.11: Teachers’ ratings. The full description of the items is in Table 6.2.

ronment where other events or demos happened nearby. The attention of the teachers
was drawn by the other happenings. They thus do not consider that the robot maintain
their attention.

6.10. GENERAL DISCUSSION AND FUTURE WORK

T HE experiment provides additional insights about a robotic teacher application out-
side the direct scope of our research. For example, we learned that physical presence

is an aspect that both students and teachers are concerned with. The size of the robot is
an important aspect of its physical presence. A few students in the university lecture ex-
periment thought that the dominance of the robot is low because "the robot is cute and
small". In the ICT event, not all the teachers agreed that the robot has enough authority
for teaching, and they did not give a high rating on the robot dominance. Correlation
analyses in Section 6.9 show that both the robot teaching authority and dominance cor-
relate with robot size. Two teachers explicitly mentioned in the open questions that the
robot should be made bigger. We thus can conclude that one of the physical limitations
of the humanoid robot NAO is its child-like size. Putting the robot on a table when it
gives a lecture does not change the perception that the robot is too small. The insights
that we gained in our study, however, are also useful for bigger sized robots (e.g., ASIMO,
ROMEO, and HRP4) and more work is needed to gain a better understanding of the ef-
fects of robot size.

Novelty effect is another aspect, which was addressed in many HRI studies through
long-term interactions such as [186], [187], [188], [189]. The main concern is whether
effects (e.g., attitude, relationship, and mood contagion) of a robot on people in an in-
teraction can be maintained over time or can be reproduced when people get used to
the robot. In our university lecture experiment, we observed that participants’ arousal
increased at T0 but decreased at T2 in the positive condition. The same trend was also
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observed in the negative condition but less significant. We speculate that this is due to a
novelty effect: people’s attitudes and preferences to a robot change over time. This effect
seems to be stronger when the robot shows positive mood through body language, since
the induced arousal at T1 is larger in the positive condition. This effect seems to be able
to draw attention from students and increase their arousal. For a less popular course,
the novelty effect can also be used to attract students. A long-term study regarding the
RoboTutor is necessary to confirm the effects observed in this study. An alternative, more
mundane explanation of the reduced arousal in our study, however, may be just due to
the time of the course. It is not uncommon that students are less excited when the course
is near the end (T2), as they may feel tired and start to imagine about activities after the
course.

There are many potential aspects of the RoboTutor that can be improved with the
aim of improving learning in the future. In the university lecture study, the robot mood
was attributed to various factors related to the speech such as the tone and volume of the
robot voice, speaking speed, and lecture pace. Teachers in the ICT event also suggested
improvement of the robot voice: for example, "the robot voice should not be monotone".
Indeed, the speech is an important channel to communicate mood and other internal
states of the robot. Voice can also be made expressive by modulating pitch, volume,
and speed, etc. Future work should contribute to a better understanding of multimodal
affective communication.

Suggestions in the open questions from the teachers in the ICT event also include fa-
cial expression. The NAO robot we use in this study does not contain rich facial features
and face expression is beyond the scope of our current research. Many other robots [24],
[98], [54] have sophisticated facial features. We believe that outcomes of our study on
robot body language can be applied to those robots. Combining facial expression with
our expressive body language should further enrich the expressiveness of the robot non-
verbal communication. Studying the effects of the combined expression on education
will be an interesting future work.

Moreover, the need for more interaction between the robotic teacher and the stu-
dents is suggested by both students and teachers. An effort is needed to make the Robo-
Tutor more responsive, and to provide students with opportunities of active interactions,
such as asking questions by raising hands. In addition, behaviors such as gazing at stu-
dents who are moving and maintaining eye contact with different students in the au-
dience should be added to the robot to show awareness of the environment, which may
improve the lifelikeness of the robot. In addition, affective recognition needs to be added
to provide a more situated teaching strategy. For example, when students show confu-
sion on their face the robot may provide more detailed explanation on the topic that is
being taught at that moment.

Finally, in this study we identified several aspects of the robot body language that we
would like to address in future work to improve the RoboTutor. First, as mood is a long-
term and stable affective state, expressing a stable mood using a range of behaviors is im-
portant. Although students’ ratings of the consistency of the robot mood is acceptable
(Mean=1.1, SD=0.9 on a -2 to 2 Likert item), expressing a stable mood remains a chal-
lenge. Second, support for the coordination of the modulation of temporal parameters
and the synchronization between gestures and speech is needed. In this study, temporal
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parameters were manually adjusted to align gestures with speech. A model is needed to
align the timing of speech and gestures automatically. Third, we deliberately limited the
levels of positive and negative mood expression to ensure body language would remain
acceptable within the context of a lecture. It is interesting to explore other settings that
allow for a broader range of mood expressions.

6.11. CONCLUSION

I N this chapter, we have introduced and discussed a robot that is capable of lecturing
and showed that robot body language contributes to the effects of delivering a lecture

to an audience. The robot interacts with students during a lecture which is quite differ-
ent from the more usual application of robots as a passive tool that students can use to
complete assignment work for a course. In particular, this study is one of the few that
focuses on the quality of the robot teaching behaviors. Mood expression has been inte-
grated with the teaching behaviors (coverbal gestures), i.e., the robot mood is expressed
through the robot body language. The focus of our study has been on the effects of the
robot mood expression on students’ learning.

This study shows that robot mood expression can induce affective states (valence
and arousal) in students: their valence and arousal were higher when the robot showed
positive mood during the lecture than negative mood. Although we did not observe im-
provement of learning performance in quiz answering in class, the induced affective
states were reported to facilitate learning. Moreover, the ratings of the robot and the
learning experience are higher when the robot displays positive mood. These findings
signify the value of robot bodily mood expression and also suggest more generally that
the quality of the robot teaching behaviors influence learning, when the robot plays an
active role in teaching in robot-enhanced education. Future work, however, is needed to
provide support for the hypothesis that the mood of a robot teacher may affect content-
based learning. Finally, we did not observe the effects of the robot body language on the
perception of naturalness, friendliness, or sociability. Further study is also needed for a
better understating of these aspects. We also report opinions from real teachers about
the RoboTutor. These opinions can be valuable for the design of the RoboTutor.
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EFFECTS OF A ROBOTIC

STORYTELLER’S MOODY GESTURES

ON STORYTELLING PERCEPTION

This chapter describes our exploration of using the robot bodily mood expression with
other modality of affect expression. As multimodal affective communication is common
in daily interactions between robots and humans, it is important to study the interaction
effects between our mood expression and other modalities.

This chapter is based on J. Xu, J. Broekens, K.V. Hindriks, M.A. Neerincx, Effects of a Robotic Storyteller’s Moody
Gestures on Storytelling Perception, International Conference on Affective Computing and Intelligent Interac-
tion (ACII), pp 449–455, IEEE, 2015.

115



7

116
7. EFFECTS OF A ROBOTIC STORYTELLER’S MOODY GESTURES ON STORYTELLING

PERCEPTION

ABSTRACT
A parameterized behavior model was developed for robots to show mood during task exe-
cution. In this study, we applied the model to the coverbal gestures of a robotic storyteller.
This study investigated whether parameterized mood expression can 1) show mood that
is changing over time; 2) reinforce affect communication when other modalities exist; 3)
influence the mood induction process of the story; and 4) improve listeners’ ratings of the
storytelling experience and the robotic storyteller. We modulated the gestures to show ei-
ther a congruent or an incongruent mood with the story mood. Results show that it is
feasible to use parameterized coverbal gestures to express mood that is evolving over time
and that participants can distinguish whether the mood expressed by the gestures is con-
gruent or incongruent with the story mood. In terms of effects on participants we found
that mood-modulated gestures (a) influence participants’ mood, and (b) influence partic-
ipants’ ratings of the storytelling experience and the robotic storyteller.

Keywords Storytelling, Mood Expression, Nonverbal Cues, Body Language, Social Robots,
Human Robot Interaction (HRI).

7.1. INTRODUCTION

B ODILY expression is important for social robots to naturally communicate affect to
humans [26]. Expressive body language of a robot facilitates human understanding

of a robot’s behavior, rationale, and motives [31], and increases the efficiency of human-
robot task performance and robustness [58]. It is known to increase the perception of a
robot as trustworthy, reliable, and life-like [24]. Bodily affective expression is in partic-
ular important for humanoid robots that lack facial features such as NAO, ASIMO, and
QRIO. A model that enables robots to show mood during tasks has been developed [77].
In this study, we applied this model to coverbal gestures of a storytelling scenario to
study the mood expression. We have several motivations.

First, in previous studies mood expression based on parameterized behavior has
been set to show mood at fixed discrete levels, e.g., a positive and a negative level. It
is not clear whether this model is able to show mood that is changing continuously over
time. In this study, we apply the model to the coverbal gestures of a storytelling scenario,
and we modulate the parameters of coverbal gestures continuously, in order to show an
evolving mood that is congruent with the story mood changing with the story line. We
evaluate whether people perceive the body language as changing over time and congru-
ent with the story line.

Second, in naturalistic settings people perceive affective information from different
channels simultaneously. Interactions between bodily expression and other modalities
of expression have been found in people’s perception [190], [191], [192], [193], [53]. We
would like to investigate the use of the affective body language in a scenario where a
robot also communicates affect through other affective channels. We need to guarantee
that the robot bodily expression generated by our model can express a congruent mood
with other modalities, and we expect that the introduction of bodily expression can im-
prove the recognition and the effects of the overall expression. Speech is an inherent
channel of affective communication in storytelling. In this study, we report our explo-
ration of the interaction between body language and speech semantics, while we kept
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the voice features the same.
Third, we’d like to see whether the affective body language is able to improve sto-

rytelling experience. Storytelling is an important application, for example, it supports
children’s development [8]. Improving storytelling experience may increase acceptance
of the robot application. Finally, using the mood expression model in a storytelling con-
text provides more evidence about whether the model is generalizable to different appli-
cations.

7.2. RELATED WORK

B ODILY expression was found to influence or be influenced by other modalities of
expressions. Stock et al. [190] found that bodily expression influenced the recog-

nition of facial expression and emotional tone of a voice. Later, Stock et al. also found
that recognition of bodily expression was influenced by nonverbal auditory information
(human and animal sounds) [191] or task irrelevant auditory (music) [192]. Meeren et
al. [193] studied people’s perception of congruent and incongruent integration of facial
expression and emotional body language using photographs. They found that people’s
judgement of facial expression was biased towards the bodily expression. Kret et al. [53]
showed that congruency between facial and bodily expression improved recognition. In
our case, we explore how the affective body language of robots interacts with affect ex-
pressed by semantics of stories.

Gestures influence people’s perception of the communication quality between robots
and people. Salem et al. studied how gesture influences humans’ evaluation of commu-
nication quality and the robot using ASIMO [194], [195]. Results showed that the robot
was rated more positively when coverbal gestures were used compared to speech alone,
even when the gestures did not semantically match the speech. An interesting result is
that incongruent gestures were even rated higher across many aspects. Their explana-
tion is that in the incongruent condition the robot is less predictable. In our study, we
also include a congruent and incongruent gesture condition, but we focused on affec-
tive congruency, i.e., whether the robot gestures show mood that is congruent with story
content. In this study gestures are manually coordinated with speech. Automatic coor-
dination is beyond the scope of this study (for an overview see [196]). Gaze of a robot
during storytelling is important [197]. In our study, the robot always looks at the listener
when the robot does not perform head movement.

Emotional coverbal gestures for storytelling were usually built based on corpora of
human behaviors. For example, expressive coverbal gestures of a NAO robot used for a
storytelling scenario were constructed using a video corpus of human storytellers [198].
The gestures were shown to improve participants’ perception of the expressivity of the
robot storyteller [199]. Park et al. developed an expressive robot behavior generation
framework based on sentence types and emotions [200]. The behaviors were generated
based on movements of actors. In this study, the affective gestures are generated by
a parameterized behavior model (Figure 7.1). The principles of parameter modulation
were obtained from users [77] and the resulting gestures have been evaluated in [79],
[83].

Robot storytelling is an important application. For example, it can be used for chil-
dren education. Montemayor et al. [201] provided children with a tool to create robotic
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pets and stories, which then can be acted out by the robots. Emotion expression was ar-
gued to be an indispensable feature of a robotic storyteller, as children typically attribute
emotions to toys they play with. Storytelling was used as an educational activity to test
whether the KindSAR robot can engage children in constructive learning [8]. Bodily ex-
pression, alongside with facial expression and vocal expression, was used to show the
robot emotion, for example, happiness was shown by raising hands, nodding head, and
eye light blinking. Results indicated that the story emotion was efficiently conveyed by
the robot and children’s emotional involvement was promoted, as the children’s emo-
tional responses were significantly correlated with the story emotion. A big difference
with our study is that we use mood expression that is expressed using parameterized
gestures.

7.3. MOOD EXPRESSION IN STORYTELLING

O UR work focuses on mood. Distinctions between affect, emotion, and mood are
explained in [34], [36], [37]. Here, we highlight the distinctions between mood

and emotion that are related to expression: emotion is a short-term, intense affective
state, associated with specific expressive behaviors; mood is a long-term, diffuse affec-
tive state, without such specific behaviors. Mood emphasizes a stable affective context,
while emotion emphasizes affective responses to events. We use valence and arousal
dimensions to represent mood.

We have used a parameterized behavior model (Figure 7.1) for integrating affect ex-
pression with functional behaviors (e.g., task behaviors, communicative gestures, and
walking). Using this model, robot movements can be modulated to display the robot
mood by changing behavior parameters with respect to both spatial extent and motion
dynamics [77], [78]. This model enables a robot to express mood, even during task ex-
ecution by modulation of the "style" of the behavior. The resulting mood expressions
have been evaluated with the NAO in a laboratory setup without context [79] and in a
game setting [81].

This model has been applied to 41 coverbal gestures and used in a university lecture
scenario [83]. We reused these gestures in the storytelling scenario, in order to express
the story mood while the robot is telling stories. The gestures were manually selected
for the sentences of the stories and manually aligned with the words in the sentences. In
study [83], a script engine was designed to orchestrate the robot gestures, speech, and
slides. We reused this engine in the storytelling study. The robot speech was generated
by a Text To Speech engine shipped with the robot. The script engine synchronizes the
starting points of texts and its coverbal gestures automatically. The robot selected leg
movements randomly from a predefined corpus in real time and performed them at the
same time as hand gestures. Random leg movements are used to maintain a life-like
quality of the robot. Pilot testing showed that a talking robot standing still was perceived
unnatural.

7.4. QUESTIONS AND HYPOTHESES

B ECAUSE the parameters of the gestures are controlled by a continuous variable and
can be modulated in real time, the gestures can be modulated to show a continu-



7.4. QUESTIONS AND HYPOTHESES

7

119

Affect (mood)

Pose
Parameters

Motion
Parameters

Effectors 
(chains of joints, e.g., arms, legs, neck, etc.)

Behavior Profile
(function formula)

Task Scheduler Drive Layer

Joint Configuration Layer

Behavior Parameter Layer
B2

B3

Bn

B1

...

Human Robot 
Interaction/Cooperation

Affect Appraisals, etc.

time

Figure 7.1: General Parameterized Behavior Model

ously changing mood. This study first investigates if the parameterized behavior model
can be used to generate behavior that expresses a mood that changes over time. Because
story mood changes throughout a story, we chose the storytelling domain. We chose sto-
ries in which the mood expressed semantically changes over time. We reasoned that if
listeners perceive the mood expressed by the robot as congruent with the story mood,
it must have been following the story mood over time as the story mood changes over
time. To test this, we hypothesize the following:

• H1. When robot mood is congruent with the story mood, listeners rate the congru-
ency of the robot mood with the story mood to be higher, as compared to a robot
mood that is the opposite.

Second, we investigate what perceived effects affective robot body language has on
storytelling. The affective communication in storytelling is inherently a multimodal
communication, since affect is conveyed through 1) the semantics, i.e., the story con-
tent; 2) the voice; and 3) the body language. Body language of humans was shown to
influence the recognition of emotions from other modalities [190], [191], [192], [193],
[53]. We would like to see if robot body language has similar effects on mood recogni-
tion. The difference is that we investigate the effect of robot body language on the affect
conveyed by semantics. Here we modulate the robot body language depending on the
story mood, and we do not manipulate the robot voice. It was shown that body language
reinforced people’s recognition of the robot emotions on top of facial expressions [55],
[54]. Body language thus may also be able to reinforce other forms of expression, e.g., af-
fect expressed in stories. Specifically, we are interested in whether robot body language
can facilitate the understanding of the story mood and make the story mood perceived
stronger. We test these aspects based on listeners’ self-reports:

• H2. A) When robot mood is congruent with the story mood, listeners perceived
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the body language as helpful in understanding the story mood, as compared to
the incongruent condition.

• H2. B) When robot mood is congruent with the story mood, listeners perceive that
the body language makes the story mood stronger, as compared to the incongru-
ent condition.

Third, it is known that stories can induce emotions or moods to listeners [202]. Fur-
ther, it is well known that mood can be transferred from one person to another [97].
Previous studies also showed that mood can be transferred from a virtual agent display-
ing facial expressions [107] or a robot displaying affective body language [83], [81] to a
person that is interacting with the agent/robot. Body language provides a second chan-
nel of mood induction. Moreover, if the perceived story mood is reinforced (H2 and H3)
the mood induction may also be stronger. We thus hypothesize:

• H3. When robot mood is congruent with the story mood, listeners report a stronger
mood change for their own mood, compared to the incongruent condition.

Finally, it was found in a university lecture study [83] that affective body language was
able to influence students’ ratings of the robot. Creed and Beale [203] found that incon-
sistent displays of emotion negatively influenced the perception of an embodied agent.
Berry et al. [106] also found that the consistency of the emotion expressions influenced
the ratings of the virtual agent. We test the following hypothesis:

• H4. When robot mood is congruent with the story mood it improves listeners’
ratings of the storytelling experience and the robotic storyteller, compared to the
incongruent mood condition.

7.5. EXPERIMENTAL SETUP

7.5.1. EXPERIMENTAL DESIGN

T O test the hypotheses, we defined three conditions:

1. Congruent condition: coverbal gestures are modulated to express mood congru-
ent with the mood of the current sentence. The robot also performs random leg
movements.

2. Incongruent condition: coverbal gestures are modulated to express mood oppo-
site to the mood of the current sentence. The robot also performs random leg
movements.

3. Control condition: the robot performs no coverbal gestures, but random leg move-
ments.

The control condition provides a benchmark, to check for generic effects of gestures.
To rule out the possibility that the hypotheses can be verified by arbitrary modulation,
we use the incongruent condition as contrast.

We used a between-subject design. Each participant listened to the stories in only
one body language condition (RBL condition for short). The dependent variables are 1)
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the perceived congruency of the coverbal gestures with the story mood; 2) the perceived
helpfulness of the coverbal gestures in the understanding of the story mood; 3) the per-
ceived reinforcement of the coverbal gestures on the story mood; 4) listeners’ mood; and
5) general ratings of the robotic storyteller.

7.5.2. MATERIALS
Two inspiring stories, one realistic (the ice cream story) and one fantasy (the cracked
pot story), were chosen for this study. Both stories were taken from this website1 and
modified. The ice cream story lasts for about 1 minute 45 seconds on our system, and the
cracked pot story 3 minutes. The full texts of the stories and the videos of the storytelling
can be found in the supplementary materials and our web site2. Each story had 2 break
points (explained later).

To avoid a ceiling effect (i.e., the mood expressed by the story content is already very
strong, so the mood added by the body language is limited), we chose stories with mod-
erate mood or emotions. To avoid confusing mood of different characters in the story,
we made the narrative focused on one character. The mood (valence) of the story was
annotated sentence-wise by five experienced annotators beforehand. Their annotations
are consistent: for the ice cream story Cronbach’s α = 0.736; for the cracked pot story
Cronbach’s α = 0.890. This annotation was used to drive the gesture-based mood model.

A grey NAO robot (NaoQi version 1.14; head version 4.0; body version 3.3; 58cm tall)
with LED lights switched off was used as the storyteller. The robot stands on a table while
telling stories and listeners sit in front of the robot while listening.

7.5.3. MEASURES
We test H1, H2A, H2B, and H4 with the following 11 item post-experiment questionnaire.
Each question is measured with a statement to be answered on a 5-point (-2 to 2) Likert
scale:

Q1) You did not notice that the robot was performing gestures while it was telling the
stories.

Q2) The robot teller was using gestures to communicate the story mood.

Q3) The mood expressed by the robot gestures is congruent with the story mood.

Q4) The gestures of the robot teller helped you to capture the story mood.

Q5) You mainly captured the story mood from the robot speech.

Q6) The gestures of the robot teller made the story mood stronger.

Q7) The robot teller kept you immersed in the stories.

Q8) The robot teller enthusiastically presented the stories.

Q9) The robot teller organized the speech and gestures in a fluent way.

1http://rishikajain.com
2http://ii.tudelft.nl/SocioCognitiveRobotics/index.php/Storytelling

http://rishikajain.com
http://ii.tudelft.nl/SocioCognitiveRobotics/index.php/Storytelling
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Q10) The gestures of the robot teller are natural.

Q11) Overall, you are satisfied with the performance of the robot teller.

Questions Q1 and Q2 check if listeners notice the gestures and realize the gestures
are used to communicate mood. Q3 tests H1, Q4 and Q5 test H2A, and Q6 tests H2B.
Finally, Q7∼Q11 test H4.

The change in listeners’ own mood (H3) is measured using the valence and arousal
dimensions of SAM (self-assessment manikin) [117] on a 5-point Likert scale. In addi-
tion, we asked participants to annotate the story mood during the storytelling in real
time in order to get more objective measures of the effects of the modulated gestures on
the perception of the story mood (related to H2 and H3). Participants were asked to click
the AffectButton whenever they thought the story mood changed.

7.5.4. PARTICIPANTS
66 participants (42 males and 24 females) aged 19 to 48 (Mean = 28.0, SD = 4.8) were
recruited from the university campus. They were from 19 different countries: 17 are
Dutch; 19 are Chinese; and 7 are Indian. A pre-experiment questionnaire confirms that
the participants had little expertise on robotics or virtual agents. Participants had some
storytelling experience and they held a positive attitude to reading or listening to stories.
Each participant received a gift after the experiment.

7.5.5. PROCEDURE
Each participant read the experiment instructions, filled out a consent form, and a gen-
eral questionnaire about demographics and previous experiences with robots and vir-
tual agents. Participants were told to pay attention to the robot in general when the robot
was telling the stories, but we did not emphasize mood or behavior to try to eliminate a
demand effect (participants rating what they think we want them to feel / see). Then, a
training session of the AffectButton started. The task was to adjust the facial expression
on the button to match 32 given affective terms [204]. Just before the start of each story
(T0), the current mood of each participant was measured with a SAM self-report. When
the robot stopped at break point (T1 and T2) during the storytelling or the end of each
story (T3), the mood of the participant was also measured using SAM questionnaires.
Participants also filled out a questionnaire about whether they understood the story,
whether they heard the story before, the perceived story length in minutes, and their
attention distribution at T3 after the mood measurement. Participants were allowed to
take a break between the two stories. After the two stories, participants filled out the
post-experiment questionnaire. After the experiment, participants were debriefed and
thanked for participation. The experiment took 30 minutes.

7.6. RESULTS

7.6.1. EXPRESSING EVOLVING MOOD (H1)

W E first check whether participants noticed the robot gestures (Q1) and thought the
gestured were used for communication (Q2). Then we test the perceived congru-

ency of the robot gestures (Q3). Kruskal-Wallis tests show a marginal significance for



7.6. RESULTS

7

123

M
ea

n 
±

 9
5%

 C
I

2.0

1.0

0.0

-1.0

-2.0
NotNotice
Gestures

CongruencyGestureMood
Communication

Q2 Q3Q1

p<0.001***

p<0.001***

p<0.001***

p≈0.001**

p=0.023*

p=0.073

incongruent
control
congruent

Conditions

Figure 7.2: Perception check and perceived congruency between the robot body language and the story mood

Q1: χ2(2) = 5.568, p=0.060 and significance for Q2: χ2(2) = 23.447, p<0.001 and for Q3:
χ2(2) = 22.675, p<0.001. Figure 7.2 shows the means and significances of the post-hoc
Mann-Whitney U tests.

These results suggest three things. First, participants noticed gestures more in the
congruent condition than in the control condition but not in the incongruent condition.
This is a bit odd as participants do indicate that the robot uses gestures to communi-
cate mood in the incongruent condition. Second, participants considered that the robot
was using gestures to communicate the story mood in both congruent and incongru-
ent conditions and no significant difference between the two conditions was observed.
Apparently gestures made the robot more expressive in general. Third, participants per-
ceived the mood expressed by the gestures in the congruent condition as significantly
more congruent than in the incongruent condition or in the control condition. As the
story mood changes over time (confirmed by pre-experiment annotation), this confirms
the model’s ability to express mood that is evolving over time.

In sum, these results support our hypothesis that modulated coverbal gestures can
be used for communicating story mood in storytelling continuously and that partici-
pants are able to distinguish whether the robot coverbal gestures are congruent or not
with the story mood (H1). Further, this confirms the importance of congruent gestures
as opposed to incongruent.
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Figure 7.3: Effects of the robot body language on the perception of the story mood

7.6.2. REINFORCEMENT OF STORY MOOD (H2AB)
PARTICIPANTS’ PERCEPTION

To test if modulated gestures helped participants to capture mood from the story (Q4),
provided an efficient way to capture the story mood in addition to the speech (Q5),
and made the perceived story mood stronger (Q6), we performed Kruskal-Wallis tests.
These show significant differences for Q4: χ2(2)=26.979, p<0.001, for Q5: χ2(2)=15.410,
p<0.001, and for Q6: χ2(2)=22.188, p<0.001. See Figure 7.3 for means and post-hoc
Mann-Whitney U.

These results suggest two things. First, participants considered coverbal gestures to
be helpful for capturing the story mood in general, whether the gestures are congruent
with the story or not. However, congruent gestures were considered significantly more
helpful (Q4). This is supported by the fact that participants indicated to use the text
to capture the story mood in both the control and incongruent conditions (Q5). This
indicates that people pay more attention to the mood in the gestures when these are
congruent, and otherwise pay more attention to the text. Second, participants indicated
that coverbal gestures made the story mood stronger in both congruent and incongruent
conditions, with the congruent condition being significantly stronger than the incon-
gruent condition. Apparently, some gesturing is better than none, but mood congruent
gestures are better than incongruent gestures.

In sum, we conclude that the affective quality of the gestures influenced these effects:
the gestures helped with the understanding the story mood (H2A) and made the story
mood stronger to a significantly larger extent, when the gestures expressed mood that is
congruent with the story mood (H2B).
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and our web (see footnote 2)

ANNOTATION OF THE STORY MOOD

To further study mood enhancement by gestures, we test whether the annotated mood is
more positive (valence) and more active (arousal) when the mood of the story is positive
and active; more negative and more passive when the mood of the story is negative and
passive. All participants’ annotations of one story are put together and sorted according
to time. Then data points were binned into time periods. ANOVA analyses testing for
difference between conditions did not reveal significant differences. This indicates the
affect traces are similar between conditions.

7.6.3. EFFECTS ON PARTICIPANTS’ MOODS (H3)
To find out whether the storytelling induced mood to the participants, we first check
whether participants’ mood changed over time. A mixed model MANOVA with congru-
ency as between-subject factor and time (T0, T1, T2, and T3) as within-subject factor was
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used to analyze the participants’ mood (valence and arousal). The results of the overall
tests show that time has an significant effect on the participants’ mood, both for the
cracked pot story F(6,58)=20.242, p<0.001, partial η2=0.677, and for the ice cream story
F(6,58)=5.371, p<0.001, partial η2=0.357. This means that participants’ moods were in-
fluenced by the storytelling. That is, the mood induction occurred. The cause could be
the robot body language, the story content, or something.

To test whether robot body language had an effect on the mood induction process,
we calculated induced mood in three periods: from T0 (start) to T1 (the first break), from
T1 to T2 (the second break), and from T2 to T3 (end) for each story. The changes of the
mood variables during the periods were used as induced mood. Figure 7.4 illustrates
the means and confidence intervals of the induced valence and arousal. A mixed model
MANOVA, with congruency as between-subject factor, time as within-subject factor, and
valence and arousal as two measures, was used.

For the cracked pot story, the effect of the modulated gestures on the mood induction
process is evidenced by a significant interaction effect (time*congruency): multivariate
test Pillai’s Trace F(8, 122)=2.300, p=0.025, partial η2=0.131. The univariate test showed
that the interaction effect is on the valence F(4)=3.193, p=0.016, partial η2=0.092. For
the ice cream story, an effect of the congruence is observed at a marginal significance
level: Pillai’s Trace F(4,126)=2.257, p=0.067, partial η2=0.067 (Roy’s Largest Root shows
significance: F(2,63)=3.968, p=0.024, partial η2=0.112). The univariate test showed that
the effect of congruence is on the arousal F(2)=3.846, p=0.027, partial η2=0.109. Post
hoc tests with Bonferroni correction showed that the induced arousal in the incongruent
condition is significantly larger (p=0.023) than in the congruent condition.

Overall, this suggests that robot body language influenced how the participants’ mood
was evolving over time. Put differently, body language has an effect on the mood induc-
tion process. However, a clear effect was shown only for arousal and only for one of the
two stories. As such, the results do not support the hypothesis that mood induction was
more pronounced in the congruent condition (H3).

7.6.4. EXPERIENCE OF THE STORYTELLER (H4)
In this section, we present the results of how the modulated coverbal gestures influence
participants’ storytelling experience and their ratings of the robotic teller. The results of
Kruskal-Wallis tests of Q7∼Q11 are listed in Table 7.1, and Figure 7.5 shows the result of
the post hoc Mann-Whitney U tests.

Table 7.1: The results of Kruskal-Wallis tests for Q7∼Q11

Statistics Q7 Immerse Q8 Enthus. Q9 Fluency Q10 Natural. Q11 Overall
χ2(2) 0.449 14.194 6.379 3.119 2.683
sig. 0.799 <0.001 0.041 0.210 0.261

We did not observe a significant effect of gestures on immersion (Q7). Possible ex-
planation is that the story content already made listeners immersed in the context (or
not) and that semantic meaning is therefore more important to immersion.

Participants perceived the robot to be significantly more enthusiastic as long as the
robot performs gestures, no matter the mood expressed by the gestures is congruent with
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Figure 7.5: Perception of the robot body language and general ratings of the robotic storyteller

the story mood or not (Q8). This may be because that more body movements (gestures
vs. no gestures) made the robot appear more active in general. In the congruent condi-
tion, the perceived enthusiasm is higher than the incongruent condition at a marginal
significance level. This means that in general participants considered a storytelling robot
that performs coverbal gestures as enthusiastic and the affective quality of the gestures
may have influenced participants’ perception of enthusiasm.

We did not observe a significant difference in the fluency of gesture-speech organiza-
tion between congruent and incongruent conditions (Q9). However, congruent gestures
were perceived to be more fluently organized with the speech compared to the control
(random leg movements). This provides some evidence that mood-congruent modula-
tion of gestures is important for perceived gesture-speech organization.

We did not observe a significant effect of the gestures on naturalness (Q10).
Finally, the overall satisfaction in the congruent condition is higher than incongruent

condition at a marginally significant level (Q11). This is in line with the trends on fluency
and enthusiasm.

In sum, there is some evidence to support the hypothesis that story-mood-congruent
gestures improve storytelling (H4).

7.7. GENERAL DISCUSSION

O VERALL, our results seem to indicate that the semantic channel takes priority over
robot body language. The attention distribution questionnaire showed that par-

ticipants paid 26% of attention to the robot movements and 52% to the robot speech.
The domination of speech seems to be true especially when speech and body language
are incongruent. For example, in the incongruent condition, participants indicated that
they did not notice the body language (Q1) and that they only captured the story mood
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from the speech (Q5). This suggests that participants shifted most of their attention to
the speech after they perceived little meaning in the incongruent body language. The
underlying reason may be that incongruent information adds to cognitive load, which
was observed in [106]. The phenomenon that participants following the speech in the in-
congruent condition can be also explained by cognitive dissonance theory [205], which
suggests that people attempt to reduce inconsistency in their perceptions. In our case,
participants ignored the mood expressed by the incongruent gestures but followed the
mood in the story content.

In addition to the domination effect of speech above, several other reasons may ac-
count for the lack of significant effect of the robot body language on the participants’
annotation of the story mood. First, using the AffectButton to annotate the story mood
and looking at the robot in real time is difficult. Attention distribution showed that par-
ticipants paid 22% of attention to the laptop during the storytelling, in addition to the
amount of attention already taken by the robot speech. This attention occupation might
further reduce the effect of the robot body language. Second, it is methodologically dif-
ficult to correctly analyze affect traces over time. For example, we cannot decide with
100% certainty to which bin a measurement belongs as participants were free to rate
when they wanted, and rating takes some time. So, some inputs might be wrongly clas-
sified to belong to a particular sentence. Last, although we considered that the stories
chosen are simple, the story mood seems to change too often. This increased complex-
ity and difficulty of annotation. It would be better to do a similar test with a story that
clearly changes in mood exactly once.

7.8. CONCLUSION AND FUTURE WORK

O UR study shows that it is feasible to modulate coverbal gestures in real time, based
on the behavior parameterize model, to express a mood that is evolving over time

and is congruent with the story line. The results show that participants distinguished
whether the mood expressed by the coverbal gestures was congruent with the story mood
or not. Results also show that participants perceived the coverbal gestures expressing
congruent mood helped them to capture the story mood and made the story mood
stronger. In terms of effects on participants we found that mood-modulated robot body
language (a) influences participants’ mood (but the effect is not entirely clear), and (b)
influenced participants’ ratings of the storytelling experience and the robotic storyteller.

To the best of our knowledge, this study is one of the very few in which bodily mood
expression of robots are studied in a scenario in which another affective communica-
tion channel (speech semantics) exists. Some challenges regarding the coexistence of
affective robot body language and affective speech content are revealed, which are yet
to be explored in the future work. These include speech content domination of affect,
the difficulty to rate in real time, and participants’ apparent reduction of inconsistency
between gesture mood and story mood.
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As one probes into a research field trying to fill in gaps and solve questions, more and more
interesting questions and challenges are discovered. One also gets better understanding of
particular questions. For example, our goal was initially defined as making the imitation
game (see Chapter 5) gestures emotional, so that we can test the effects of this emotion
expression. To this end, we actually put more effort than we expected into developing the
parameterized behavior model itself and we redefined the expression as mood expression
(Chapter 2). Later on, we started to look for generic parameters and attempted to make
our model generalizable to more robot behaviors (as we did in Chapter 5, 6, 7).

Some questions that are considered small may become bigger and more meaningful, while
some questions become less meaningful and thus be replaced by more significant ques-
tions. For example, instead of asking whether parameter modulation can be used to ex-
press mood, a better question is what parameters we should use and how we should mod-
ulate them to express a mood (Chapter 2); we initially thought an evaluation before using
the mood expression in an interaction would be sufficient (Chapter 4), while later on when
we considered the impacts of the interaction context on the mood effects, we realized that
the interaction context may even influence humans’ recognition of the mood expressed by
the robot. Many additional factors also emerged, e.g., attention, task difficulty, distance,
etc. We have to evaluate the recognition every time to get a complete picture of what is
going on (Chapter 5, 6, and 7).

In this chapter, we summarize the main findings of our studies and contributions to the
field. We discuss the constraints and limitations of our work, and propose future research
directions and potential applications of our mood expression model.

129
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8.1. ANSWERS TO RESEARCH QUESTIONS

O NE objective of this thesis is to find a way for a robot to express mood during task ex-
ecution. We propose a parameterized behavior model in which parameters control

spatial and temporal characteristics of a robot behavior. Modulating these parameters
generates variations in behavior appearance. Different behavior appearances express
different robot moods. We have designed the model through a user study, validated the
resulting expressions in a recognition experiment, and evaluated the use of the model in
three interaction scenarios. In the evaluation within interaction scenarios, we studied
the effects of the mood expression on humans. Related to each piece of the work, several
research questions have been stated in Chapter 1. In the following paragraphs, we revisit
and answer each research question.

Q1. Which parameters of robot behaviors and what modulation principles of these pa-
rameters can be used for mood expression?

This question was initially answered by a user study in which a group of participants
were asked to design mood expressions by modulating behavior parameters for two
robot behaviors (i.e., waving and pointing). Details can be found in Chapter 2. The re-
sults showed that the user-designed values of most parameters were significantly differ-
ent between mood levels, and the settings were generally consistent across participants.
The parameters include the height of the hand, the amplitude of the motion, the motion
speed and the decay speed, the times of repetition, the vertical movement/posture of the
head, the palm orientation, and the straightness of the fingers. The modulation princi-
ples participants used were consistent with those from literature and most of the prin-
ciples are consistent between the two behaviors. Therefore, we conclude that we found
parameters that can be modulated to express mood and we obtained general modula-
tion principles. The general modulation rules for each parameter are detailed in Chapter
2. These findings are validated by the recognition experiment (Chapter 4). We applied
these parameters and modulation principles to other behaviors in later studies (Chap-
ters 5, 6, and 7), where modulated behaviors are used in different interaction contexts,
and we evaluated the recognition in each of the studies. The results showed that people
are able to recognize the expressed mood both in a recognition task and in interaction
tasks (except for the Robotutor lecture scenario in Chapter 6). The main reason may be
that the participants concentrated on the lecture contents so they did not consciously
recognize the robot mood (see the detailed discussion in the chapter).

Q2. What is the relative importance of the parameters?

We investigated the relative importance of the parameters statistically (Chapter 3) us-
ing the data from the user study (Chapter 2). The results showed that the spatial extent
parameters (hand-height and amplitude), the head vertical position, and the temporal
parameter (motion-speed) are the most important parameters.

The importance of parameters was validated in the recognition experiment (Chapter
4) by comparing parameters in three importance groups. The results showed that modu-
lating important parameters generates mood expression of better recognition than mod-
ulating unimportant parameters and recognizable expressions can still be generated by
modulating unimportant parameters. We reasoned that the important parameters are
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"global" features that shape the overall quality of behaviors and thus are more notice-
able. Parameters like finger straightness, palm direction, and hold time only change part
of the effector or change the behavior for a short-term. We call them "local" features.
That the local parameters are less expressive may be because more attention is required
to recognize mood from the modulation of the local parameters. Although the head-
vertical parameter also change the movement of only a part of the robot body, the head
is a rather important body part that humans pay attention to for most of the time in
face-to-face interactions. Thus, this head parameter is also important.

These findings were validated in the imitation game experiment (see Section 5.7.5
of Chapter 5). The resulting importance of parameters is generally consistent with the
importance resulted from Chapter 3. The parameters motion speed, amplitude, and
head-vertical extent were perceived important, while the parameters finger-straightness
and palm direction were perceived less important. Moreover, the parameters hold-time
and head-left-right become more important due to the interaction context.

Q3. What are the interrelations between the parameters?

In the study presented in Chapter 3, we investigated the interrelations between parame-
ters from the design rationale provided by participants. The results showed that partic-
ipants considered several parameters in combination when they were designing a par-
ticular expression. The reason of the combination is that the mood cues generated by
modulating a parameter may depend on other parameters. Several design patterns were
identified from the analyses. As the results are very specific, we refer to Chapter 3 for
more details. These design details are still subtle. More dedicated studies are needed
for a more confirmative conclusion. Nevertheless, our findings provide more insights in
designing mood expression and suggest that modulating a combination of parameters
to produce particular affective cues rather than a single parameter may be a significant
research direction.

Q4. Is the mood expression based on behavior modulation recognizable?

Across the studies presented in this thesis, we evaluated the recognition of mood expres-
sion in two general settings: 1) without an interaction context and 2) within an interac-
tion context. The main differences of recognizing robot mood in an interaction context
is that 1) the participants are not explicitly asked to recognize the robot mood and 2)
the participants need to perform certain tasks in an interaction context and thus may
focus their attention on the tasks. This is important because in real-life use cases of so-
cial robots users will not receive an explicit request to recognize the robot mood. The
recognition should be spontaneous.

In Chapter 4, we validated the mood expression (i.e., the modulated waving and
pointing behavior) of five valence levels resulted from Chapter 2. There was no inter-
action context. The only task for participants was to compare the difference in valence
and arousal presented by several pairs of different modulations of robot behaviors. The
results showed that five levels of valence and at least four levels of arousal can be recog-
nized for the two behaviors when the important parameters are modulated. Modulating
only the unimportant parameters is promising to express "weak" moods: at least two
levels of valence and three levels of arousal for both behaviors can be recognized. These
results suggested that mood expression by means of behavior modulation is recogniz-
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able in a recognition task.
We validated the recognition in three interaction contexts. In Chapter 5, we applied

the modulation model to the gestures of an imitation game. We did not prime the par-
ticipants to pay attention to the mood expression beforehand, but only asked them to
rate valence and arousal of the gestures after the game. The results showed that the par-
ticipants differentiated the positive and negative mood very well, even when the game
difficulty is set to high. Moreover, the post-experiment questions showed that the par-
ticipants were able to recognize and interpret the behavioral cues generated by most of
the parameters. In Chapter 6, we applied the modulation model to the coverbal gestures
of a robotic lecturer in a university class setting. This setting is more close to the real-
life scenario, as more persons were involved and there was no experiment control over
participants. Moreover, we did not prime the participants to pay attention to the mood
expression of the robot. Although we did not obtain direct support for the recognition,
which may be due to the small sample size of the statistical analysis, the observed mood
induction effect provided evidence that the participants had different perception of the
mood expression between conditions. In Chapter 7, we modulated the coverbal ges-
tures in a storytelling scenario. During the storytelling, the participants were not primed
to recognize the robot mood, but were asked to rate the story mood in a continuous way.
The results of the post-experiment questionnaires showed that the participants distin-
guished whether the mood expressed by the coverbal gestures was congruent with the
story mood or not. The successful distinction implied that the participants recognized
different moods from different modulations of the robot gestures. In sum, we conclude
that people are able to notice and recognize the robot mood from behavior modulation,
even if they have to focus on other tasks and they are not explicitly asked to recognize
the robot mood.

Q5. Does our mood expression produce mood induction effects on the humans in an in-
teraction context?

We observed mood induction effects in the imitation game experiment (Chapter 5) and
the Robotutor experiment (Chapter 6). The results showed that participants who inter-
acted with a robot performing behaviors modulated to show a positive mood (positive
valence and high arousal) also had a more positive affective state (positive valence and
high arousal) according to self-report, compared to who interacted with a robot show-
ing a negative mood. The video annotation used in the Robotutor experiment showed
consistent results. We interpreted this mood effect as "mood contagion" [97].

In the storytelling experiment (Chapter 7), the robot body language was shown to
have an effect on the mood induction process caused by the stories. We did not observe a
clear difference in mood induction caused by robot mood expression conditions, but we
observed effects of the mood expression on the evolution of the listeners’ moods. That
is, how listeners’ moods changed with the story line is different between robot mood
expression conditions. We conclude that our mood expression is able to induce mood to
humans who interact with the robot in an interaction scenario.

Q6. Does our mood expression influence task performance of humans in an interaction
context?

Mood expression of the robot induces mood to humans who interact with the robot. Pos-
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sibly, the induction also influences the humans’ task performance. We addressed this by
measuring the correction rate of imitations in the imitation game experiment (Chapter
5) and by measuring the correction rate of quiz answering in the Robotutor experiment
(Chapter 6). The task of the imitation game is a memory-focused and attention-focused
task. The performance of such a task is facilitated by negative mood. We observed that
participants who interacted with a robot showing a negative mood via its game gestures
performed better in the game. This result answered the question: our mood expression
is able to positively influence humans’ task performance. In the Robotutor experiment,
however, we did not observe effects of the mood expression on the quiz answering. The
main reason could be that the change of a learning performance such as the quiz an-
swering performance usually can only be observed after a long time. More discussion
can be found in Chapter 6.

Although we cannot rule out the possibility that the effects on the task performance
may be caused by other aspects of the robot mood expression instead of mood induc-
tion, we can conclude that the robot mood expression influences task performance of
humans in the interaction.

Q7. Does our mood expression influence humans’ perception of the robot and the interac-
tion experience in an interaction context?

We investigated this question in the Robotutor experiment (Chapter 6) and the story-
telling experiment (Chapter 7). We asked the participants to rate about the lecturing
quality of the Robotutor (including enthusiasm, engagement, friendliness, etc.) and the
quality of the robot gestures (including helpfulness on following the lecture, coordina-
tion of the gestures and speech, gesture naturalness, etc.). We also asked the participants
in the storytelling experiment to rate about enthusiasm, immersion, fluency, and so on
of the robot storyteller. In general, the participants who interacted with a robot showing
a positive mood gave better ratings about the interaction experience and the robot, indi-
cating that they had better attitudes towards the robot. We conclude that the (positive)
mood expression generated by our model has positive effects on humans’ ratings of the
robot and interaction experience.

Q8. Can our mood expression express a mood that is changing over time?

We addressed this question by applying the behavior modulation to the coverbal ges-
tures of a robot storyteller (Chapter 6). The coverbal gestures were modulated in real
time to be either congruent or incongruent with the story mood that is changing over
time. Our answer to this question is based on the participants’ perception on the con-
gruency of the gestures in the both conditions. The rationale is that if listeners perceive
the mood expressed by the robot as congruent with the story mood, the mood must
have been following the story mood over time as the story mood changes over time. The
results showed that the gestures in the congruent condition were perceived to be sig-
nificantly more congruent with the story mood. This means that the modulation of the
coverbal gestures is able to generate mood expression that is evolving over time in more
or less the same way as the mood of the story line evolves.

Q9. Does our mood expression enhance the perceived mood in a spoken story told by the
robot?
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This question regards multimodal affective communication, which is quite common in
daily interactions as people talk, smile, and make gestures, for instance. We addressed
the question based on participants’ perception in the storytelling experiment (Chapter
6). The results showed that the coverbal gestures, no matter congruent or incongruent
with the story mood, 1) helped with the understanding of the story mood and 2) made
the story mood stronger. However, compared to the incongruent gestures, the congruent
gestures were considered significantly more helpful in capturing the story mood and
to make the story mood significantly stronger. We conclude that the mood expression
through the robot body language is able to enhance humans’ perception of the mood
expressed by the semantic content of speech.

8.2. CONTRIBUTIONS

F IRST and foremost, this thesis demonstrated the significance of using behavior mod-
ulation to realize robot bodily mood expression. Our approach to robot bodily ex-

pression goes beyond the state of the art in the scope of robot bodily affect expressions
(e.g., [54–56]), which rely on additional body actions and mostly express emotions, and
enables a robot to show mood while executing tasks. The first scientific contribution of
the thesis is stated as follows.

• SC1. We propose to use behavior modulation to express robot affect via body,
which is yet to be largely explored on robots. We point out that behavior-modulation-
based expression is suitable for expressing mood. We emphasize the importance
of showing affect during task execution and propose to modulate functional be-
haviors of tasks to express mood.

Based on the outcomes from the study of each chapter, we summarize three aspects
that our studies addressed and other contributions of the thesis.

8.2.1. THE PARAMETERIZED BEHAVIOR MODEL

The first aspect is the behavior model. We have been aiming at a generic behavior model
that can be applied to a broad range of robot behaviors for modulation-based mood ex-
pression. We defined a general behavior architecture containing three layers for the pa-
rameterized behavior model (see Chapter 2). The general architecture can be specified
to accommodate to concrete behaviors. We identified the parameters that can be used
for mood expression and the modulation principles for expressing different moods (Q1).
By directly taking the perspective of end users (i.e., the designers of mood behaviors in
Chapter 2), the obtained modulation principles can be used to generate mood expres-
sion that may be more recognizable to general users (i.e., the persons who interact with
the robot). Although expert designers (actors/actresses or researchers on human behav-
ior modeling) used in some studies (e.g., [54, 57, 131]) can produce more versatile ex-
pressions, sometimes the expressions are not interpreted by general users as intended.
The reason might be that general users do not have the same expertise of recognizing
(subtle) affective behavioral cues as the experts do. We have applied the behavior model
to a broad range of behaviors (Chapter 5, 6, 7). By doing so, we showed the generality of
our model to a certain extent.
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We provided insights into the parameter modulation by studying the relative impor-
tance and the interrelations between behavior parameters in Chapter 3. These findings
may be useful for simplifying the model. Moreover, pattens were revealed by our analy-
sis of interrelations between behavior parameters. These patterns can be used to show
specific moods.

Our method is similar to existing parameter based approaches in constructing com-
municative gestures of conversational agents (e.g., [70], [126]). A difference is that our
model is a step further in modelling the poses related to behavior functions for more
complex (higher degrees of freedom) behaviors such as waving (see Appendix A). We em-
phasize that our modulation retains the original functions of a robot behavior. Another
difference is that we work on robots. Our model has to comply with physical constraints
and adapt to limited control interfaces provided by the robot system. These two aspects
are integral parts of our behavior model.

The scientific contributions of our work on the mood expression model are summa-
rized as follows.

• SC2. We created a parameterized behavior model for behavior-modulation-based
mood expression. We identified the parameters that can be modulated to express
robot mood and the modulation principles of expressing mood.

• SC3. Our results implied that patterns exist for modulating parameters in combi-
nation and correlations exist between the modulation principles of some parame-
ters (detailed in Chapter 3).

• SC4. We showed the generality of our behavior model and the modulation princi-
ples by successfully applying them to a range of robot behaviors in different inter-
action contexts.

8.2.2. THE RECOGNITION OF THE MOOD EXPRESSION BASED ON BEHAV-
IOR MODULATION

The recognition of the robot mood is a long-term research topic that we have been ad-
dressing throughout our studies, since every change in the experiment settings may
influence the recognition. For example, as we discussed in Chapter 6, the interaction
context may influence the recognition of the robot mood. Apart from the evaluation in
Chapter 4, which does not contain an interaction context, we test the recognition when
the mood expression is used in interaction scenarios (Chapter 5, 6, and 7). Except for the
study of Robotutor in Chapter 6, we obtained direct support for the claim that users can
recognize the mood expression in interaction tasks, while mood induction effects ob-
served in all the studies suggest that users had different perceptions of the robot mood
expression. Therefore, we conclude that the robot behaviors modulated using our pa-
rameters and modulation rules is recognizable to people.

To clarify, our model relies on a dimensional representation of mood (i.e., valence in
a scale) as opposed to categorial representations. The "recognition" in this thesis means
distinguishing valence and arousal levels (Chapter 4) or give ratings in scales of valence
and arousal (Chapter 5, 6, and 7). Testing the recognition of underlying affect dimen-
sions goes beyond the recognition of categorial emotions seen in the majority of other
studies (e.g., [54–56]). It is a step further to investigating the recognition accuracy.
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One of the key interests is to test whether people can recognize mood spontaneously.
That is, people should not be primed to pay attention to the robot expressions. Affective
communication between humans is spontaneous by nature. People recognize emotions
or mood of others automatically. We believe that this nature of interaction should also
apply for the recognition of robot mood or emotion. We argue that it is important to
design robot expressions that can be recognized by people automatically in order to
achieve natural interaction between humans and robots. We have kept this in mind
across all of our studies.

The parameter importance resulted from Chapter 3 was further verified in the recog-
nition experiment in Chapter 4. From the differences in the perception of the parame-
ters, we identified the "global" and "local" parameters. We envision that behaviors with
more "global" parameters are more expressive. This result supports, from a perception
point of view, that the expressiveness of parameters differ from each other.

We identified valence-oriented and arousal oriented behavior parameters. Although
in current model only valence is used to control the behavior parameters, users indeed
can recognize differences in arousal according to the results in Chapter 4. Correlation
analysis showed that speed parameters, repetition, and head-up-down correlate with
arousal. The recognition of the arousal dimension also implies that some of the param-
eters correlate with both valence and arousal. More insights were obtained from the
imitation game study (Chapter 5). The users’ descriptions of the behavioral cues showed
which parameters are more related to valence, which more to arousal, and which to both.
From the rationale of how the participants recognized the robot mood from the given be-
havior parameters, we found that parameters like the motion-speed and the hold-time
that control the dynamics of a behavior, parameters like finger-straightness that present
the force or stiffness of a body part, and parameters like head-left-right (movement in-
terpretation) that change the overall intensity of movement are usually interpreted as
showing arousal; parameters like amplitude, head-up-down, finger-straightness, and
head-left-right (posture interpretation) that control the posture and spatial extent of a
behavior are usually interpreted as showing valence. These results provide the founda-
tions for the independent control of the valence and arousal of mood expression, and
show the possibility of using our model to express a broad range of moods.

Our work on evaluating the recognizability of the robot mood expression by means
of behavior modulation has the following contributions.

• SC5. We showed that the robot bodily expression of mood by means of behav-
ior modulation is recognizable without priming, indicating the feasibility of using
behavior modulation to express robot mood in daily interactions.

• SC6. We validated the parameterized behavior model we propose and the modu-
lation principles we employ.

• SC7. We found that the parameters that control the overall quality of behaviors are
more expressive and more salient than those that only control parts of the effectors
or control behaviors for a short time.
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8.2.3. THE EFFECTS OF MOOD EXPRESSION IN INTERACTIONS
The third aspect is the effects of our robot mood expression on the affective state, experi-
ence, and performance of the users who are interacting with the robots. We investigated
three types of effects of the robot mood expression: a) mood induction - effects on users’
affective states; b) behavioral impact - effects on users’ responses and behavior, i.e., task
performance; and c) ratings - effects on users’ ratings of the robot and the interaction
that include many items depending on the specific interaction scenario.

The mood induction effect was investigated in both dyadic settings (Chapter 5 and 7)
and group settings (Chapter 6). The differences are elaborated in Chapter 6. In general,
the group formation will possibly influence the mood induction process. The results of
these studies showed that our robot mood expression is effective in mood induction.
Although it is possible that participants had a more positive affective states just because
they liked the robot with positive mood expression more, still the mood expression had
a positive effect.

Positive effects on the task performance was observed in the imitation game exper-
iment (Chapter 5). Although we did not observe the effects on learning performance
in the Robotutor experiment (Chapter 6), we did observe significant effects of the robot
mood expression on students’ arousal during the lecture, while arousal was shown to
be an important component that supports learning. In addition, listeners of the story-
telling robot (Chapter 7) rated the robot body language to be helpful in capturing the
story mood and to make the story mood stronger. In sum, our robot bodily mood ex-
pression is promising to have positive effects on humans in an interaction scenario.

We tested participants’ rating of the robot and the interaction experience in the Robo-
tutor study and the storytelling study. In general, the results of both studies showed that
participants’ gave better ratings when the robot’s behaviors were modulated to show a
positive mood. This suggests that modulating the robot behavior in a more or less pos-
itive way will improve the acceptance of the robot. This shows the importance of robot
mood expression for the design of a user-friendly robot.

In sum, the contributions of our work on the effects of the mood expression are the
following.

• SC8. Our work provides evidence that the robot behaviors modulated to show pos-
itive mood are able to induce more positive affect to users than those modulated
to show negative mood.

• SC9. Our work provides evidence that the modulated robot behaviors are able to
positively influence the users’ task performance. This effect depends on task con-
text: our study showed that the behaviors showing negative robot mood improve
users’ performance in a memory focused task, while the behaviors showing posi-
tive robot mood may improve users’ performance in creative tasks. We provide an
explanation that this effect is likely to result from the mood induction effect (SC8).

• SC10. Our work showed that mostly the robot behaviors modulated to show posi-
tive mood are able to improve users’ ratings of the robot while sometimes even the
behaviors showing negative mood are also able to improve some of the ratings.

We believe that our work not only contributes to the field of robotics, but also con-
tributes to the field of virtual agents. There are scenarios in which virtual agents perform
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body actions that are constrained by functional requirements and dimensions of the vir-
tual environment. For example, the virtual agents in training system need to demon-
strate standard operations (e.g., [127], [128], [129]). Our model can be used to parame-
terize these behaviors for modulation based expressions, while also modelling the func-
tional and spatial constraints of these behaviors.

8.2.4. TECHNICAL CONTRIBUTIONS
In addition to the scientific contributions, our work also include the following technical
contributions.

• TC1. We implemented the behavior modulation model on a set of behaviors of the
NAO humanoid robots.

• TC2. We created a script engine that can be used to schedule the robot behaviors
and synchronize with the robot speech. The robot mood can be set in the script
and the behaviors will be modulated according to the mood.

More details can be found in the appendices.

8.3. LIMITATIONS AND OUTLOOK

I N this section, we discuss potential improvements of our model, as well as the things
in our experiments that need further investigation and the things we have not focused

on but may influence the generalization of our findings. Also we discuss the challenges
remained that can be interesting to investigate in the future.

8.3.1. IMPROVEMENTS OF THE PARAMETERIZED BEHAVIOR MODEL
First, there is still room for improving our parameterized behavior model for mood ex-
pression. It is not possible yet to control the valence and arousal of the expression inde-
pendently. Another variable that controls arousal can be added to the model. However,
while our model succeeds to display positive-valence high-arousal and negative-valence
low-arousal moods, it is not easy to display negative-valence high-arousal and positive-
valence low-arousal moods, for example, the anger displayed in the pointing behavior
(Chapter 4). The reason is that most parameters of our model correlate positively with
both valence and arousal. That is, the increase of those parameter results in the increase
of both displayed valence and arousal. The independent control of valence and arousal
is important for being able to show any mood across the valence-arousal space. One
feasible approach to the independent control is to quantify the valence and arousal dis-
played by each parameter in a more or less precise way and then compute the value
for each parameter mathematically according to the valence-arousal "coordinates" of a
mood. This requires full factor analysis of all parameters, i.e., modulating a single pa-
rameter at one time while keeping others constant and testing the change of expressed
valence and arousal. Performing such an analysis is challenging when the number of
parameters becomes large. Our study on parameter importance (Chapter 3 and 4) and
parameter "orientation" (Chapter 4 and 5) may simplify the method. The results showed
that some parameters relate more to the arousal while some parameters relate more to
valence. Then one can use those valence-oriented parameters as prime parameters to
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control the expressed valence and those arousal-oriented parameters as prime parame-
ters to control the expressed arousal. The parameters that are less related to either va-
lence or arousal, e.g., the unimportant parameters, can be used as tuning factors. This
way, less parameters require the full factor analysis. For example, it is not necessary to
accurately quantify, for example, the amount of arousal expressed by a valence-oriented
parameter. Another aspect of the quantification is the noticeable change of each pa-
rameter in expressed valence and arousal. Our study on the recognition of valence and
arousal from modulated behaviors (Chapter 4) showed the promise of using paired com-
parison to obtain perceived valence and arousal in interval scales. It may be possible to
find the minimum change for each parameter to produce recognizable change in ex-
pressed valence and arousal.

The second direction to improve the model is to use additional parameters to achieve
more detailed modulation of a behavior. Our spatial parameters were designed mainly
to control the hand positions (e.g., hand height and amplitude) and its shape (e.g., finger
straightness and palm direction). Additional parameters can be designed to control, for
example, the position of elbow. An outward elbow position may show the expansiveness
of an arm, while an inward elbow position may show the narrowness of an arm. More
spatial parameters usually require more complex mathematical calculations to compute
each joint. Our temporal parameters control every stroke of a motion, while individual
parameters can be used to control different strokes to generate variations in the mo-
tion flow. For example, the motion speed of different strokes may be different. When
more temporal parameters are applied to coverbal gestures, complex temporal control
requires a more sophisticated synchronization model to coordinate the gestures and
speech. Speech-gesture synchronization has been an active field (e.g., [89, 206, 207]).
It would be interesting to bridge the synchronization models and the behavior modula-
tion models.

The third direction of improving the model would be additional layers consisting of
higher level parameters. We have found in Chapter 3 that several parameters should be
modulated in combination in order to display a certain style of the behavior. For ex-
ample, small amplitude combined with slow motion speed and long hold time makes a
behavior appear sluggish and thus can be used to display a sad mood, while small am-
plitude combined with fast motion speed and short hold time makes a behavior appear
rapid and thus can be used to show excitement. Hence, a higher level parameter that
presents the extent of sluggishness/rapidness of the motion can be used to control the
amplitude, motion speed, and hold time in combination. It is more intuitive to estab-
lish the relations between such high level parameters and the mood variables, because
the high level parameters have semantic meaning (e.g., sluggish vs. rapid) that is closer
to mood. Moreover, when our model can control expressed valence and arousal inde-
pendently, the settings for parameters may not be unique. Our study on interrelations
between parameters (Chapter 3) suggested that patterns exist in the modulation. The
patterns provide more constraints to the parameter settings and make it easier to de-
termine the parameter settings. The high level parameters can be used to control the
patterns. For example, the sluggishness parameter controls the relations of the ampli-
tude and speed parameters. Further exploration and investigation are needed on the
modulation patterns. Moreover, how to integrate the patterns and high level parameters
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in the control mechanism of our behavior model remains an interesting question to us.

8.3.2. FUTURE WORK ON THE PERCEPTION AND EFFECTS OF THE EXPRES-
SION IN HRI

In this section, we discuss the aspects that need further investigation when using the
behavior-modulation-based expression in HRI scenarios. We found across all our HRI
studies (Chapter 5, 6, and 7) that participants’ appraisal of the robot mood is a compre-
hensive affective appraisal over all aspects including the robot (including body move-
ments, speech, appearance, etc.), participants’ own states and performance, and the
other events in the HRI, etc. We categorize their appraisals into two different types: 1) By
looking at what mood the robot appears to have: Participants perceive the robot mood
by the appearance of its physical body, voice, facial expression, and body movements.
2) By judging what mood the robot should have: Participants put themselves in the shoes
of the robot and think what mood they should have according to the current situation of
the interaction, even though the robot does not display that mood.

Our work aims to investigate how people perceive the robot mood displayed by the
body language. We expect participants to use the first type of appraisal to recognize the
robot mood. However, even so, people may have attributed the mood to other aspects
that the robot showed but we did not modulate, such as the robot voice and facial ex-
pression. It is difficult to exclude such factors from the experiment, especially when we
want to keep the experiment setting as natural as possible. That is, affective interac-
tion is multimodal by nature. People tend to gather affective information from different
channels. On the other hand, people may attribute the behavior modulation to other as-
pects instead of mood. For example, participants in the Robotutor experiment (Chapter
6) might have attributed the gesture modulation to teaching quality directly instead of to
robot mood. It is interesting to explore this conscious attribution of mood and its causes
in a more detailed way in future work.

Second, it is also difficult to make sure that participants do not use the second type
of appraisal. For example, one participant in the imitation game experiment (Chapter 5)
said "the robot’s mood was negative because I always made mistakes." This participant
thought the robot should have a negative mood according to the participant’s perfor-
mance. Another participant in the imitation game experiment indicated that the robot
was happy because the robot did not display a negative mood even when she made many
mistakes, whereas another participant indicated that the robot was not so happy be-
cause the robot did not praise and encourage him when he made a correct imitation.
These two participants had expectations of what the robot should respond to them and
then inferred the robot mood from what the robot actually did. Further studies may be
conducted to separate these two appraisals in order to gain a clear map of how people
perceive the robot mood. For example, the displayed mood can be made congruent or
incongruent with what mood the robot should have in certain situations. By comparing
the perception of the robot mood under these congruent and incongruent conditions,
we may get some clues about how people make their appraisals of the robot mood.

We believe that it makes more sense for HRI researchers to investigate the perception
of affective expressions in certain contexts. Cognitive dissonance theory [205] suggests
that people attempt to reduce the inconsistency of inconsistent things in their percep-
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tions. We believe that people tend to interpret an expression to be consistent with the
context. We have obtained evidence in the storytelling experiment (Chapter 7): peo-
ple are capable to correct incongruent expression. Assuming the robot expresses mood
that is consistent with the context, the context narrows the possible interpretations of an
expression. It is thus easier for people to recognize the mood that a robot intends to dis-
play within a context. Several studies (e.g., [54, 208]) have reported low recognition rate
of certain emotion expressions. There might not be any problem with the expressions
themselves. The recognition rate might be sufficiently high when using these expres-
sions in a suitable context.

We attempted to make the behavior modulation not interfere with the behavior func-
tions. This does not mean that the modulation introduces no effects on the behavior or
on the users. For example, we observed effects of the gesture modulation in the imita-
tion game (Chapter 5) on the user task performance: the use of head movements was
reported as something that distracted attention and the slow speed of the gestures in the
negative mood condition was reported as something that increased the duration of the
gesture sequence. These made it more difficult for participants to remember the gesture
sequence. The slow speed of movement also made the Robotutor lecture (Chapter 6) of
the negative condition and the storytelling (Chapter 7) of the negative condition slightly
longer. These might influence the user experience. We consider that more precisely de-
fined behavior profile and more strict regulations on the parameter range may be helpful
to reduce the unexpected effects of modulation. For example, a suitable range may be
found for the speed parameter, within which the modulation of motion speed will not
make the flow of movements (e.g., a gesture sequence) perceived significant slower or
faster. Additional study is needed to figure out the range. Moreover, the regulations of a
parameter may depend on the behavior. As we discussed in Chapter 4, the same param-
eter may play different roles in different behaviors. For example, the hold-time means
smoothness for the waving behavior but persistence for the pointing behavior. The reg-
ulations on the hold time parameter are thus different for these two behaviors.

We also consider that the regulations may also depend on the task context. For ex-
ample, one may wave hand with a small amplitude at a person standing close, but wave
with a large amplitude at a person far away. Thus, a small range can be used for ampli-
tude for the first context, while a large range for the second context. Another example is
that in the imitation game experiment (Chapter 5) the head left right movement can be
interpreted as either looking away (thus showing negative mood) or following the arm
movement (thus showing more excitement). The interpretation of the mood depends
on individual’s judgment of the current interaction context. Here, the context influences
parameter ranges in terms of the behavior function.

The context may also influence the naturalness of a behavior. An interesting topic
related to improving the model concerns the balance between behavior expressiveness
and behavior naturalness. Expressive behaviors often require some exaggeration. How-
ever, in certain contexts exaggerated behaviors may be perceived as unnatural. For ex-
ample, in a game setting (Chapter 5) exaggerated behaviors were more acceptable than
in a lecture setting (Chapter 6). We deliberately limited the levels of positive and negative
mood expression to ensure body language would remain acceptable within the context
of a lecture (Chapter 6). A formal model can be built to classify contexts and then adapt
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the bounds of the parameter modulation.

8.3.3. POTENTIAL APPLICATIONS

Our parameterized behavior model makes mood expression an integral part of the ongo-
ing tasks. It gives the robot more flexibility in time to show its affective states. We believe
that this type of expression can be applied to many applications and it is interesting to
explore the use of the mood expression in different applications.

First, the mood expression can be used in applications in which a robot is required
to communicate affective information. The expressed mood is not necessarily the mood
of the robot. For example, in the applications of the storytelling robots in Chapter 7 and
robotic theater (e.g., [209]), the expressed mood is the mood of the story or the drama.
Behaviors of a robotic actor in a theater are supposed to be expressive. Currently, expres-
sions of a robotic actor are mainly based on facial expression and a few specific body ac-
tions that are exaggerated to be expressive. These body actions can hardly be used in an-
other drama or in other occasions where these body actions should not be exaggerated.
Our behavior modulation model provides flexibility for adjusting the expressiveness of
robot behaviors. A robot behavior can be easily switched from emotional or exaggerated
form to a relatively neutral form by only changing the behavior parameters or changing
the affective variables that are mapped to the parameters. Moreover, using our model,
the design of the behaviors and the design of the drama procedures are separated, since
the behavior modulation does not require the change of the order of behaviors. One
can envision that the meaning conveyed by a drama can be completely different by only
modulating the behaviors to show different moods while keeping the same drama pro-
cedures.

Second, our mood expression can be applied to robots that are supposed to "live"
together and interact with humans on a daily basis. Examples of these robots are el-
derly care robots, nursing robots, personal companion, and service robots, etc. These
applications more or less require the robot to perform emotional labor, e.g., showing
empathy and sympathy. The aim of showing expression here is to bring good feelings
to human users. We believe that it is important for robots to show mood for a longer
time, because showing mood continuously makes the expression more believable and
also sustains the good feelings in humans. Our approach to mood expression enables a
robot to show mood during service tasks, and thus the robot can show mood more in a
continuous fashion.

Third, another interesting application is to use the body language to indicate the
robot internal states during task execution. From the indication, people can understand
how the task is going and the current work load of the robot. For example, our mood
expression can be used to show the stage of goal achievement in a robot learning sce-
nario, in which a human teaches a robot to perform a certain task, such as learning by
demonstration. The human needs to guide the robot to go through certain steps in order
to achieve the final goal and needs to adapt the guidance from time to time according to
the robot learning progress. The robot mood can be coupled with the rewarding system
of the learning mechanism: the robot shows a positive mood when receiving rewards
and shows a negative mood when receiving punishments. From the mood expressed
through the task behavior, the human teacher can determine the learning progress of
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the robot. It is interesting to see whether the mood simultaneously expressed during
the task will make the learning more efficient. Similarly, our mood expression can be
used in human robot teamwork applications. For example, the robot can show mood
to indicate whether it is busy/overloaded or available to receive more requests from the
human teammates. Since the mood expression is integrated with the task behaviors,
no additional communication is needed for human teammates to understand the robot
states. This way, the coordination between the robots and humans is more efficient.





APPENDIX A - PARAMETERIZED

BEHAVIOR MODELLING

FRAMEWORK

One advantage of modeling modulation while constructing the behavior is that the phys-
ical constraints can be modelled at the same time. Figure A.1 shows the structure of the
right arm of NAO and the degree range of each joint. The left arm is symmetric to the
right arm. Besides the degree constraints of each joints, constraints also come from the
fact that the arm should not bump into the body and other effectors (e.g., legs, the other
arm, and the head). The following examples demonstrate how a behavior profile is for-
mulated within the physical constraints and how the parameters are defined.

CONSTRUCTING IMITATION GESTURES
The concrete model of imitation gestures, which embodies the general model (Figure
5.1), is shown in Figure A.2. There are four gestures in this game: Left-Up, Right-Up,
Left-Down, Right-Down (Figure 5.2). The left and right gestures are symmetric, so we
take the left gestures (the right arm gestures) as examples. The hand position should be
higher and further away than the shoulder for the left-up gesture, while lower and more
outward than the shoulder for the left-down gesture. The following equation thus should
be met:

{
−90 ≤ JShoul der Pi tch ≤ 0, upg estur es

90 ≤ JS houl der Pi tch ≤ 115, downg estur es
(1)

JShoul der Rol l ≤ 0 (2)

The bounds of above conditions are obtained from extreme positions of the robot arm.
We define two parameters amplitudever and amplitudehor to control the vertical and
horizontal spatial extent of the (upper) arm. Linear functions were used as below:

JShoul der Pi tch =
{

−9× AmpV er, upg estur es

−2.5× AmpV er +115, downg estur es
(3)

JShoul der Rol l =
{

−4× AmpHor, upg estur es

−3× AmpHor −10, downg estur es
(4)

We define the parameter palm-direction to control the direction of the palm. For the
down gesture, the palm faces more up/forward when the mood is more positive, while
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Figure A.1: A diagram about NAO arm (joints) from Aldebaran website

Figure A.2: The concrete model for the imitation (arm) gestures with specific parameters

faces more down/backward when the mood is more negative.

PalmDi r ecti on(i ndeg r ee) =
{

80−16×PalmDi r, upg estur es

−90+18×PalmDi r, downg estur es
(5)

The values of joints ElbowRoll, ElbowYaw, WristYaw are computed using forward kine-
matics and gradient decent optimization, with given values of joints ShoulderPitch, Shoul-
derRoll, and the expected palm-direction. The finger-rigidness controls the straightness
of the fingers.

Jhand = 1.0×F i ng er Str ai g htness (6)

The numerical functions were obtained by interpolation between extreme positions of
the joints, which is bounded by physical constraints. This shows how we handled the
physical constraints of the robot when constructing these behaviors.
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CONSTRUCTING WAVING BEHAVIOR
We define waving as one hand swinging between two horizontally aligned positions re-
peatedly, and the palm should always face forward. The concrete parameterized behav-
ior model of waving (Figure A.3) embodies the general model (Figure 5.1). The two end
poses of arm-swings – the maximum inward and outward poses (Figure A.4) – are de-
termined by the pose parameters including a) hand-height, b) finger-rigidness, and c)
amplitude. To keep the palm facing forward at the two end poses, the joints need to
meet the following condition

V ectorPalmDi r ecti on = Rshoul der Pi tch •Rshoul der Rol l •Rel bowY aw (7)

•Rel bowRoll •Rwr i st • [0 0 −1]T (8)

θ = cos−1
(

V ectorPalmDi r ecti on • [1 0 0]T

‖V ectorPalmDi r ecti on‖
)
= 0 (9)

R j oi nt is a rotation along the joint; [0 0 −1]T is the vector when all joints are 0 degree
in the robot coordinate space; θ is the angle between the palm direction and a unit vec-
tor along X-axis. The behavior profile constrains the joints according to the definition
of waving, while affective variations can be generated by modifying pose and motion
parameters.

Figure A.3: The concrete model for the arm movement of the waving behavior with specific parameters

Since the palm needs to face forward and NAO’s arm does not have wrist-roll joint,
the pose of the forearm is fixed. Hence, the hand-height can be controlled only by the
shoulder-pitch joint, which controls the inclination of the upper-arm (see top-right fig-
ures in Figure A.4).

Jshoul der Pi tch =−130.0×H and Hei g ht +57.14 (10)

The waving of a human mainly relies on the movement of elbow joint (the corresponding
joint of NAO is elbow-roll). However, it is impossible for NAO to generate a natural wav-
ing with enough amplitude merely by the elbow-roll joint, due to its angle range (-2deg
to 88.5deg). In our model, therefore, waving has two general modes that are switched
according to the hand-height: arm-swings are realized by controlling elbow-yaw and
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Figure A.4: The pose parameters of the waving behavior

shoulder-roll joints when hand-height is low (Figure A.4a), and by controlling elbow-roll
and shoulder-roll joints when hand-height is high (Figure A.4b). The amplitude specifies
the waving angle, and in practice the angle is allocated to the elbow and shoulder. Here
we do not model the two end poses directly. Instead we coupled the parameter ampli-
tude with the movement (∆J) between the two end poses and a virtual middle pose.

J out w ar d
shoul der Rol l = J mi d

shoul der Rol l −∆Jshoul der Rol l (11)

J i nw ar d
shoul der Rol l = J mi d

shoul der Rol l +∆Jshoul der Rol l (12)

For the low hand-height 0 ≤ handhei g ht ≤ 0.8. When amplitude (the swinging angle)
is small, we mainly change ElbowYaw to present the increment of amplitude. When am-
plitude (the swinging angle) becomes large, the arm is likely to bump into the body if the
ElbowYaw is too large. Thus, we capped the range of the ElbowYaw, and uses Shoulder-
Roll instead.

J mi d
shoul der Rol l = −20.0 (13)

∆Jshoul der Rol l =
{

10.0, 0 < Ampl i tude < 0.82

50.0× Ampl i tude −31.0, 0.82 ≤ Ampl i tude ≤ 1
(14)

J out w ar d
el bowY aw = J mi d

el bowY aw +∆JelbowY aw (15)

J i nw ar d
el bowY aw = J mi d

el bowY aw −∆Jel bowY aw (16)

J mi d
el bowY aw =

{
88.0, 0 < H and Hei g ht < 0.5

−40.0×H and Hei g ht +108.0, 0.5 ≤ H and Hei g ht ≤ 1
(17)

∆Jel bowY aw =
{

50.0× Ampl i tude −10.0, 0 < Ampl i tude < 0.82

31.0, 0.82 ≤ Ampl i tude ≤ 1
(18)

The values of joints ElbowRoll, WristYaw are computed to minimize the θ using gradi-



APPENDIX A - PARAMETERIZED BEHAVIOR MODEL 149

ent decent, given the values of joints ShoulderPitch, ShoulderRoll, and ElbowYaw as in-
puts. For the high hand-height (handheight ≥ 0.8), the amplitude is presented by both
ShoulderRoll and ElbowRoll as they move in the same direction in this arm configura-
tion. When amplitude (the swinging angle) becomes large, the arm is likely to bump into
the head if ElbowRoll continue to increase. Thus, we increase ShoulderRoll more but
capped the ElbowRoll.

J mi d
shoulder Rol l =

{
−20.0, 0 < Ampl i tude ≤ 0.4

−20.0×H and Hei g ht −12.0, 0.4 < Ampl i tude ≤ 1
(19)

∆Jshoulder Rol l =
{

16.67× Ampl i tude +3.33, 0 < Ampl i tude ≤ 0.7

36.67× Ampl i tude −10.67, 0.7 < Ampl i tude ≤ 1
(20)

J out w ar d
el bowRoll = J mi d

el bowRoll −∆J out w ar d
el bowRoll (21)

J i nw ar d
el bowRoll = J mi d

el bowRoll +∆J i nw ar d
el bowRoll (22)

J mi d
el bowRoll = 30.0 (23)

∆J out w ar d
el bowRoll =

{
33.33× Ampl i tude −3.33, 0 < Ampl i tude ≤ 0.7

26.67× Ampl i tude +1.33, 0.7 < Ampl i tude ≤ 1
(24)

∆J i nw ar d
el bowRoll =

{
33.33× Ampl i tude −3.33, 0 < Ampl i tude ≤ 0.7

20.0, 0.7 < Ampl i tude ≤ 1
(25)

J out w ar d
el bowY aw = J i nw ar d

el bowY aw = 0.0 (26)

J out w ar d
wr i stY aw = J i nw ar d

wr i stY aw = 0.0 (27)

(28)

The finger-rigidness controls the straightness of the fingers.

Jhand = 1.0×F i ng er Str ai g htness (29)

The numerical functions were obtained by interpolation between extreme positions of
the joints, which is bounded by physical constraints.
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The script engine is an authoring system that allows a non-programmer, such as a teacher
from a non-technical university, to easily create a script that contains sequence of robot
actions (including gestures, speech, leg movements, and eye-LED movements) and slides
operations. A GUI based script editor (Figure B.1) with syntax highlighting is provided
for users to edit scripts and control procedures. Users can load, execute, and pause or
resume the script using buttons on the GUI.

A script consists of three elements: 1) configurations; 2) commands; and 3) text of
speech. Configurations, usually located in the very beginning of a script, include the
voice parameters (e.g., speed, volume, and pitch) and behavior parameters like whether
the robot will perform random leg movements when ongoing behaviors do not contain
leg movements.

# reset configurations
\rst\
# Speech speed
\rspd =95\
# Speech volume
\vct =100\
# Enable leg random move
{ idle_leg }
# Enable random gaze
{ idle_head }

Commands (blue letters in Figure B.1) are special syntax of the system control like exe-
cuting a robot behavior, switching a slide, or starting a quiz session. We designed a cor-
pus of coverbal gestures, and enabled the script engine to synchronize automatically the
starting points of a sentence and its coverbal gestures. Users need to adjust the length
of the sentence to guarantee the speech and gestures to finish roughly at the same time
if needed. A gesture can be executed by either the left or the right arm. If random leg
movement is enabled, the robot selects leg movements from a predefined corpus in real
time and performed them between hand gestures, to avoid a long time of no movement.

{ behavior | PushAside } # Robot behavior
I will also say a few things about , how you can
write programs for controlling my behavior . # Robot speech

{ behavior | HandOverLeft } # Robot behavior
Finally , I will introduce the robot tutor project ,
\pau =300\ and \rmw =1\ how the scenario is created \rmw =0\. # Robot speech

Plain texts are the content of the robot speech. The robot speech was generated by a
Text-To-Speech (TTS) engine shipped with the robot. Some built-in syntax of the TTS
engine of the robot is supported, for example, a pause for a period of time and local
voice variation.
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Figure B.1: The script editor for orchestrating the robot speech and behaviors

# slide 2
{ behavior | Twinkle } # Eye LED simulated blink
{ slide } # Switch to next slide
\pau =1000\ # Pause for a certain number of milliseconds

The current system only works with quiz slides designed using the Turningpoint1 plugin.
The Turningpoint clickers are provided to audiences to input answers. A quiz is started
by PowerPoint slide operation (i.e., the next slide command). The script engine system
sends the command to the PowerPoint program, when the script command {slide} is
executed.

# The current slide contains a quiz
# Speak the question
{ behavior | MeAndYou }
Using the clicker that we provided to you ,
please indicate whether you think ,
{ behavior | SpreadLeft }
the following statement is true or false .
\pau =500\
The word robot is derived from a slavonic word , which means serf.
{ behavior | PointForward }
I give you 10 seconds to answer this question ,
then we will discuss the answers .

# Start quiz timer
{ slide }
# Wait for 10 seconds
{ behavior | LookAround }

1http://www.turningtechnologies.com/polling-solutions/turningpoint

http://www.turningtechnologies.com/polling-solutions/turningpoint
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\pau =10000\
# Get results
{ slide }
\pau =2000\
Hum , let ’s see.
# Quiz responses
{quiz|You are correct !| That is incorrect .| Well , that is inconclusive !}

The robot can choose different responses according to the answers given by audiences.
The response sentences are predefined in the script.

A toolbar (on top of the editor; see Figure B.1) is provided to users to facilitate edit-
ing. For example, users can insert a behavior command by clicking the shortcut on the
toolbar and input the behavior name. We also provide some validation functions, such
as check whether used behavior names match the behaviors defined in the system. We
will also provide spell check for speech texts in the future. The RoboTutor script engine
software is open source and available at the GitHub repository2.

The script engine can be used for creating different human-robot interaction sce-
narios. To make the syntax set expandable, the syntax parser is designed using the Inter-
preter Design Pattern. The script syntax can be easily modified or expanded by simply
adding new syntax classes to the code. A template is provided below. The code is written
in C#.

// Send -out message
public delegate void ehNewSyntax ();

// Syntax Class
class NewSyntaxExpression : AbstractExpression
{

private NewSyntaxExpression (){}

// Interpret method
public static IExpression Interpret ( string line)
{

// Add how the syntax should interpreted . Below is an exmaple .
if (line. StartsWith (" new syntax "))
{

IExpression new_syntax_expr = new NewSyntaxExpression ();
return interruptexpr ;

}
else return null;

}

// Execute method
public static event ehNewSyntax evNewSyntax ;
public override void Execute ()
{

// Add what actions are followed by the syntax

evNewSyntax ();
}

}

2The source code is available in https://github.com/RoboTutor/Mood-Expression-Behavior-Engine

https://github.com/RoboTutor/Mood-Expression-Behavior-Engine
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The user has to define how a syntax should be interpreted and what are the follow-up
actions (e.g., robot behaviors, slide operations, or other system actions). This is usually
the only thing one needs to do for the expansion.



APPENDIX C - SAM
QUESTIONNAIRES USED IN THE

EXPERIMENT

The questionnaires I and II were used after two sessions of the game (see Section 5.6.6).
The images from [210] were used. We provided an explanation sheet for participants to
refer to for the meaning of valence and arousal.

Questionnaire I: What was the robot mood during the game?

Session I
Valence (Negative - Positive; Displeasure - Pleasure)

-4 -3 -2 -1 0 1 2 3 4

Arousal (Activation; Calm - Excited)

-4 -3 -2 -1 0 1 2 3 4

Session II
The same SAM scales and prompts as Session I were used.

Questionnaire II: What did you feel when you were playing with the robot?

The same SAM scales and prompts as Questionnaire I were used for two sessions.
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Explanation Sheet

Valence

Dimension Low score High score
Positive versus negative af-
fective states.

Negative affective states,
e.g., sad, angry, and bored.

Positive affective states,
e.g., happy, excited, and
relaxed.

Arousal

Dimension Low score High score
Level of mental alertness
and physical activity.

Low level of mental alert-
ness and physical activity,
e.g., sleepy, bored, and re-
laxed.

High-level of mental alert-
ness and physical activity,
e.g., wakeful, excited, and
alarmed.



SUMMARY

Robots will be increasingly integrated with daily activities of humans. The robots will
cooperate with us, assist us, and accompany us. Social abilities are important for such
robots to interact with us harmoniously and to be accepted by us. The expression of
affect is one of the social abilities. The expression facilitates human understanding of
a robot’s behavior, rationale, and motives, and increases the perception of a robot as
trustworthy, reliable, and life-like. Most of the current approaches focus on categorial
emotional expressions, often with a focus on facial expressions. A few studies addressed
bodily emotion expressions that are separate body actions. For enduring human-robot
interactions, there is a lack of models and methods for bodily mood expressions that
the robot can show during execution of functional behaviors. In this thesis, we develop
body language for humanoid robots to express mood at an arbitrary time, even while
executing a task, and the mood is represented in dimensional scales. We create a model
for robot mood expression, validate the model, and investigate users’ perception of the
robot mood and effects of the mood expression on users in dyadic and group settings.

To enable a robot to express mood, even during task execution, we have developed
a model for integrating mood expression with functional behaviors (e.g., task behav-
iors, communicative gestures, and walking). Our approach is to "stylize" behaviors by
modulating behavior parameters, rather than using additional body movements. In our
model, a particular functional behavior is parameterized, and by varying these parame-
ters, the "style" or "appearance" of the behavior is modified, while the function of that
behavior is not changed. We developed a parameterized behavior model that consists of
three layers. From the top to the bottom, the robot mood controls behaviors parameters
and the parameters control the behavior style.

Our research questions are: 1) Which behavior parameters have the potential to ex-
press mood when modulated, and how should these parameters be modulated to ex-
press a specific mood? 2) How well do people, while interacting with a robot, recognize
mood from robot behaviors that are modulated to express positive or negative moods?
and 3) what are the effects of robot mood on someone who is interacting with that robot?
For example, it is well known that mood can be transferred between persons, and thus,
it is useful to gain insights into the possible transfer and effects of mood from a robot to
an individual.

To figure out which behavior parameters have the potential to express mood and how
to modulate these parameters to express specific moods, we conducted a user study in
which participants were asked to modulate behaviors to match given valence levels by
adjusting the parameters. We evaluated the resulting "moody" behaviors in a recogni-
tion task. The results show that mood levels can be well recognized. Not only valence but
also arousal can be recognized. We also found that the spatial extent parameters (hand-
height and amplitude), the head vertical position, and the temporal parameter (motion-
speed) are the most important parameters. They are "global" features that shape the
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overall quality of behaviors. This provides us the user perspective of how a behavior
should be like to show a certain mood.

Eventually, the expression will be used during interactions with humans in a daily
scenario. We then evaluated our model and modulation principles in human robot inter-
action scenarios. These scenarios include two dyadic interactions and a one-to-multiple
interaction.

We first integrated our mood expression with the gestures used in an imitation game,
in which a human player imitates the gestures performed by the robot in a laboratory
environment. The results not only confirmed that people can recognize robot mood
from the body language in an interaction context, even when they were not primed to
pay attention to the expression, but also shows evidence of a "mood contagion" effect:
participants’ own mood matches with the mood of the robot in the easy task condition.
Moreover, the robot mood had an effect on game performance: in the negative mood
condition participants performed better on difficult tasks than in the positive mood con-
dition. As a behavior measure, this result further supports the contagion effect.

Second, we investigated the mood expression in a real-life scenario, in which the
robot gave a lecture and interacted with audiences using quiz questions in a university
classroom. Our mood expression model was applied to 41 coverbal gestures. The robot
gave the same lecture to two groups of audiences in either a positive or a negative mood
condition. We observed that participants’ own valence and arousal are higher in the pos-
itive mood condition compared to the negative condition, which suggests that the mood
expression can be used to shape the interaction affectively. The audiences’ ratings of the
lecturing quality and gesture quality of the robot are higher in the positive condition,
which suggests mood expression of a robotic teacher is important for the rating of the
robot’s teaching quality.

Third, we investigated the mood expression in a storytelling scenario, where there
is an additional modality of affect communication, the semantic content of the stories.
As the affective communication in our daily interaction is multimodal by nature (e.g.,
voice, semantic information, facial expression, body language, etc.), it is interesting to
investigate how the mood expression by means of body language interacts with other
modalities. Moreover, we tested whether the robot body language can express mood
evolving over time and its effects on storytelling experience. The expressed mood (i.e.,
the modulation of the coverbal gestures) followed the mood of the story line. The results
show that the robot affective body language is able to express mood that is evolving over
time. Moreover, when the expressed mood is consistent with the story mood, the body
language was perceived to help capture story mood and make the story mood stronger.
We also found evidence that the robot affective body language influences mood induc-
tion process. Last but not least, the body language that is consistent with the story mood
improves the listeners’ experience.

In sum, we have developed mood expression by means of behavior modulation for
humanoid robots. The results of several experiments show that the expression is recog-
nizable and can have (positive) effects on the interaction in many aspects.



SAMENVATTING

Robots zullen steeds meer worden geïntegreerd met de dagelijkse activiteiten van de
mens. Robots zullen met ons samenwerken, ons assisteren en ons gezelschap houden.
Sociale vaardigheden zijn belangrijk voor dergelijke robots om harmonieus met ons te
interacteren en om door ons geaccepteerd te worden. Het tonen van emoties is één
van die sociale vaardigheden. Het tonen van emoties ondersteunt het menselijk begrip
van robotgedrag, de beweegredenen en motieven, en verhoogt de geloofwaardigheid,
betrouwbaarheid en levensechtheid van de robot. Het merendeel van de huidige be-
naderingen richt zich op het vertonen van concrete emoties, vaak gefocust op gezicht-
suitdrukkingen. Een paar studies hebben zich gericht op het uitdrukken van emoties
via het lichaam met behulp van extra bewegingen. Voor langdurige mens-robot inter-
acties is er een gebrek aan modellen en methodes voor het lichamelijk uitdrukken van
gemoedstoestanden tijdens het uitvoeren van functioneel gedrag door een robot.

In dit proefschrift ontwikkelen we lichaamstaal voor humanoïde robots om op willek-
eurige momenten gemoedstoestanden uit te drukken, zelfs tijdens het uitvoeren van
een taak. De gemoedstoestanden worden uitgedrukt op een 3-dimensionele schaal.
We creëren en valideren een model voor het tonen van gemoedstoestanden door de
robot. Het gecreëerde model is een geparametriseerd gedragsmodel bestaande uit drie
lagen. De gemoedstoestand van de robot stuurt gedragsparameters aan, en de param-
eters bepalen op hun beurt de "stijl"van het gedrag. Daarnaast onderzoeken we de ge-
bruikersperceptie van de robot zijn gemoedstoestanden en de gevolgen van het tonen
van gemoedstoestanden op gebruikers in één-op-één situaties en groepsverband.

Om een robot in staat te stellen om gemoedstoestanden uit te drukken, zelfs tijdens
het uitvoeren van de taak, hebben we een model ontwikkeld voor de integratie van het
tonen van gemoedstoestanden en functioneel gedrag (bijvoorbeeld het uitvoeren van
een taak, communicatieve gebaren en wandelen). Onze aanpak is om gedrag te "stil-
eren"door gedragsparameters te gebruiken, in plaats van extra lichaamsbewegingen toe
te voegen. In ons model wordt een bepaald functioneel gedrag geparametriseerd en door
het variëren van deze parameters wordt de stijl van het gedrag aangepast, terwijl de func-
tie van het gedrag niet wordt gewijzigd.

Onze onderzoeksvragen zijn: 1) Welke gedragsparameters hebben het potentieel om
gemoedstoestanden uit te drukken, en hoe moeten deze parameters worden ingesteld
om bepaalde gemoedstoestanden uit te drukken? 2) Hoe goed kunnen mensen tijdens
de interactie met een robot gemoedstoestanden van de robot herkennen aan geparametr-
iseerde gedragingen die positieve of negatieve gemoedstoestanden uitdrukken? en 3)
Wat zijn de effecten van de gemoedstoestanden van de robot op iemand die interacteert
met die robot? Het is bijvoorbeeld bekend dat gemoedstoestanden kunnen worden overg-
edragen tussen personen. Het is dus nuttig om het inzicht in de mogelijke overdracht en
effecten van gemoedstoestanden van een robot naar een individu te vergroten.
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Om erachter te komen welke gedragsparameters het potentieel hebben om gemoed-
stoestanden uit te drukken en hoe deze parameters gemodificeerd kunnen worden om
specifieke gemoedstoestanden uit te drukken, hebben we een gebruikersstudie uitgevo-
erd. In deze studie werd de deelnemers gevraagd om het gedrag van de robot te modifi-
ceren met behulp van de parameters, zodat de gemoedstoestand van de robot overeenkw-
am met de gegeven ‘valence’ (valence geeft aan hoe positief of negatief een emotie wordt
gezien). Vervolgens hebben we de gedragingen van de robot geëvalueerd in een herken-
ningstaak. De resultaten daarvan tonen aan dat de gemoedstoestanden herkend wor-
den. Naast valence wordt ook ‘arousal’ (arousal geeft aan hoe stimulerend een emotie
is) herkend. Verder vonden we dat de ruimtelijke parameters (handhoogte en ampli-
tude van bewegingen), de verticale hoofdpositie, en de tijdelijke parameter bewegingss-
nelheid de belangrijkste parameters zijn. Dit zijn globale eigenschappen die de karak-
teristieken van gedrag vormen. Dit geeft ons het gebruikersperspectief van hoe gedrag
gestileerd zou moeten zijn om een bepaalde gemoedstoestand uit te drukken.

Uiteindelijk zal het uitdrukken van gemoedstoestanden worden gebruikt tijdens in-
teracties met mensen in dagelijkse scenario. Vervolgens hebben we ons model en princip-
es om gemoedstoestanden geparametriseerd te modificeren in verschillende mens-robot
interactie scenario’s geëvalueerd. Deze scenario’s omvatten twee één-op-één interacties
en een één-op-veel interactie.

Eerst hebben we het uitdrukken van gemoedstoestanden geïntegreerd met de gebaren
die gebruikt worden in een imitatiespel. In dit imitatiespel imiteert een menselijke speler
de bewegingen van een robot in een laboratorium. De resultaten bevestigen dat mensen
de gemoedstoestanden van de robot kunnen herkennen aan de lichaamstaal van de
robot, zelfs wanneer ze niet waren geïnstrueerd om aandacht te besteden aan de gemoed-
stoestand. Ook vonden we bewijs van een "stemmings-besmettingseffect": de gemoed-
stoestand van de deelnemers kwam overeen met de gemoedstoestand van de robot in de
gemakkelijke taak conditie. Bovendien had de gemoedstoestand van de robot effect op
de spelprestaties. In de negatieve gemoedstoestand conditie presteerden de participan-
ten beter op moeilijke taken dan in de positieve gemoedstoestand conditie. Dit effect
bevestigt het stemmings-besmettingseffect.

Ten tweede hebben we het uitdrukken van gemoedstoestanden in een real-life sce-
nario onderzocht. In het scenario gaf de robot een lezing en interacteerde met het pub-
liek door middel van quizvragen in een collegezaal. Ons model werd toegepast op 41
co-verbale gebaren. De robot gaf dezelfde lezing voor twee groepen, voor één groep in
positieve gemoedstoestand en voor de andere groep in een negatieve gemoedstoestand.
We zagen dat de eigen valence en arousal van deelnemers hoger waren in de positieve
gemoedstoestand dan in de negatieve gemoedstoestand conditie. Dit suggereert dat het
uitdrukken van een gemoedstoestand kan worden gebruikt om interactie te beïnvloe-
den. De kwaliteit van de lezing en de gebaren van de robot werden door de participanten
hoger gewaardeerd in de positieve conditie, hetgeen suggereert dat het uitdrukken van
gemoedstoestanden door een robotleraar van belang is voor de waardering van de robot
zijn lesvaardigheid.

Ten derde, onderzochten we het uitdrukken van gemoedstoestanden in de context
van verhalen vertellen. Het vertellen van verhalen brengt een extra modaliteit met zich
mee, namelijk de communicatie van emoties, ofwel de semantische inhoud van de ver-
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halen. Omdat de affectieve communicatie in onze dagelijkse interactie multimodaal
van aard is (bijvoorbeeld: stem, semantische informatie, gezichtsuitdrukking, lichaam-
staal, etc.), is het interessant om te onderzoeken hoe de expressie van gemoedstoes-
tanden door middel van lichaamstaal interacteert met de andere modaliteiten. Daar-
naast hebben we onderzocht of de lichaamstaal van de robot gemoedstoestanden kan
uitdrukken veranderend over de tijd en wat de effecten daarvan zijn op de ervaring tij-
dens het verhalen vertellen. De getoonde gemoedstoestand (d.w.z. de modificatie van
de co-verbale gebaren) volgde de sfeer van de verhaallijn. De resultaten laten zien dat
de affectieve lichaamstaal van de robot in staat is om ontwikkelingen in gemoedstoes-
tanden over tijd te tonen. Wanneer de getoonde gemoedstoestand consistent was met
de sfeer in het verhaal, dan werd de lichaamstaal gezien als ondersteuning voor de sfeer
in het verhaal en de sfeer als sterker. We vonden ook bewijs dat de affectieve lichaam-
staal van de robot de overdracht van gemoedstoestanden tussen mensen en/of objecten
beïnvloedt. Ook niet onbelangrijk is dat lichaamstaal die in overeenstemming is met de
sfeer in het verhaal de ervaring van de luisteraars verbetert.

Samengevat hebben we een model en bijbehorende principes voor het uitdrukken
van gemoedstoestanden door middel van het modificeren van het gedrag van humanoïde
robots ontwikkelt. De resultaten van diverse experimenten tonen aan dat de gemoed-
stoestanden herkenbaar zijn, en het uitdrukken daarvan (positieve) effecten op de inter-
actie kan hebben.
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