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ABSTRACT To fully unleash the potential of graphene-based devices for neuromorphic computing, we
propose a graphene synapse and a graphene neuron that form together a basic Spiking Neural Network
(SNN) unit, which can potentially be utilized to implement complex SNNs. Specifically, the proposed
synapse enables two fundamental synaptic functionalities, i.e., Spike-Timing-Dependent Plasticity (STDP)
and Long-Term Plasticity, and both Long-Term Potentiation (LTP) and Long-Term Depression (LTD) can be
emulated with the same structure by properly adjusting its bias. The proposed neuron captures the essential
Leaky Integrate and Fire spiking neuron behavior with post firing refractory interval. We demonstrate the
proper operation of the graphene SNN unit by relying on a mixed simulation approach that embeds the high
accuracy of atomistic level simulation of graphene structures conductance within the SPICE framework.
Subsequently, we analyze the way graphene synaptic plasticity affects the behavior of a 2-layer SNN example
consisting of 6 neurons and demonstrate that LTP significantly increases the number of firing events while
LTD is diminishing them, as expected. To assess the plausibility of the graphene SNN reaction to input stimuli
we simulate its behavior by means of both SPICE and NEST, a well established SNN simulation framework,
and demonstrate that the obtained reactions, characterized in terms of total number of firing events and mean
Inter-Spike Interval (ISI) length, are in close agreement, which clearly suggests that the proposed design
exhibits a proper behavior. Further, we prove the unsupervised learning capabilities of the proposed design
by considering a 2-layer SNN consisting of 30 neurons meant to recognize the characters “A,” “E,” “I,” “O,”
and “U,” represented with a 5 by 5 black and white pixel matrix. The SPICE simulation results indicate
that the graphene SNN is able to perform unsupervised character recognition associated learning and that
its recognition ability is robust to input character variations. Finally, we note that our proposal results in a
small real-estate footprint (max. 30 nm2 are required by one graphene-based device) and operates at 200 mV
supply voltage, which suggest its suitability for the design of large-scale energy-efficient computing systems.

INDEX TERMS Character recognition Character recognition, graphene, spiking neural network, spiking
neural network, synaptic plasticity, synaptic plasticity, unsupervised learning, unsupervised learning.

I. INTRODUCTION
Human brain is a natural high performance computing system
that exhibits excellent properties, e.g., ultra-low energy con-
sumption, highly parallel information processing, suitability
for complex tasks solving, and robustness. As such, to obtain
artificial bio-inspired systems with brain akin computation
abilities that can help understand the complex functionality

of human brain, numerous attempts have been done to design
and implement neuromorphic systems [1]–[3].

However, the fact that human brain comprises billions of
neurons, which are the fundamental information processing
units, and trillions of synapses that interconnect them makes
the design and implementation of large-scale brain-inspired
computing systems quite a challenging task. In most of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 1, 2020 135

https://orcid.org/0000-0002-2597-7569
https://orcid.org/0000-0002-3813-2928
https://orcid.org/0000-0002-3638-219X
https://orcid.org/0000-0001-7132-2291
mailto:H.Wang-13@tudelft.nlStudent


WANG ET AL.: COMPACT GRAPHENE-BASED SPIKING NEURAL NETWORK WITH UNSUPERVISED LEARNING CAPABILITIES

state-of-the-art neuromorphic systems, neurons and synapses
are implemented with complex CMOS circuitry [4]–[6],
which have high energy consumption and limited scalability
and integration density. Recently, resistive switching memory
devices [7] have been utilized for artificial neuron and synapse
implementations [8]–[11] due to their simple structure, good
scalability, and state preservation ability. However, they suffer
from variability induced undesired stochastic behavior that
may result in the instability of the neuromorphic system.
Artificial neurons and synapses based on phase-change
devices were also proposed [12]–[14] as they exhibit small
footprint and the intrinsic device properties provide natural
support for capturing spiking neuron and synapse dynamics.
However, such designs require additional CMOS circuitry and
external signals to enable their basic functionality and operate
at relatively high voltage, which impede their applicability in
large-scale energy-efficient neuromorphic systems.

Graphene has emerged as a promising material for nano-
electronics, as it exhibits outstanding properties, e.g., ballis-
tic transport, flexibility, ultimate thinness, and biocompatibil-
ity [15], [16]. Due to these attractive properties, graphene-
based Boolean logic gate [17], [18] and spiking neuron and
synapse [19]–[21] implementations have been reported. How-
ever, previous work concentrated on individual synapse and
neuron designs while disregarding input-output compatibility
aspects, which preclude their direct utilization for the imple-
mentation of graphene-based Spiking Neural Networks.

In this paper, we propose a graphene-based synapse (com-
prising 2 graphene devices) and a spiking neuron (comprising
6 graphene devices), which form together a basic Spiking
Neural Network (SNN) unit and can be utilized for the imple-
mentation of complex graphene-based SNNs. Specifically, the
proposed artificial synapse emulates two basic synaptic func-
tionalities, i.e., Spike-Timing-Dependent Plasticity (STDP)
and Long-Term Plasticity, while the same synapse can ex-
hibit Long-term Potentiation (LTP) or Long-term Depression
(LTD) by properly adjusting the back-gate bias voltage of
one of its composing graphene device. The proposed artificial
neuron exhibits the essential Leaky Integrate and Fire (LIF)
spiking neuron behavior with post firing refractory interval
and provides the feedback signal required for the SDTP as-
sociated synaptic transmission efficiency modulation.

We first demonstrate the proper operation of the graphene
SNN unit by relying on a mixed simulation approach that
embeds the high accuracy of atomistic level simulation of
graphene structures conductance within the SPICE frame-
work. Subsequently, we analyze the way the synaptic plas-
ticity affects the graphene SNN behavior by making use of a
2-layer SNN example consisting of 6 neurons and the obtained
results indicate that LTP significantly increases the number
of SNN firing events while LTD is diminishing them, as
expected. To get some inside on the 2-layer graphene SNN
reaction to input stimuli plausibility we also simulate its be-
havior by means of NEST [22], a well established SNN sim-
ulation framework. Our experiments indicate that the SPICE
obtained reaction, characterized in terms of total number of

firing events and mean Inter-Spike Interval (ISI) length, is in
close agreement with the one reported by means of NEST
based simulation, which clearly suggests that the proposed
design exhibit a proper behavior. Further, we demonstrate
the unsupervised learning capabilities of the proposed design
by considering a two layer SNN consisting of 30 neurons
meant to recognize the characters (and variations of them)
“A,” “E,” “I,” “O,” and “U,” represented with a 5 by 5 black
and white pixel matrix. The simulation results indicate that
the graphene SNN is able to perform unsupervised learning
and that the enabled recognition ability is robust to input
character variations. Finally, we note that our proposal results
in a small real-estate footprint (max. 30 nm2 are required by
one graphene-based device) and operates at 200 mV supply
voltage, which suggest its suitability for the design of large-
scale energy-efficient computing systems.

The remaining of this paper is organized as follows:
Section II presents the fundamental structure and functionality
of a Spiking Neural Network, describes the basic graphene de-
vice, and give some inside over the utilized simulation frame-
work. Section III introduces the graphene-based SNN design
and its basic operation. Section IV presents the simulation
results and Section V concludes the paper.

II. BACKGROUND
In this section we introduce the basic structure and function-
ality of a Spiking Neural Network (SNN), present the generic
graphene device, which constitutes the fundamental building
block for the construction of graphene SNNs, and conclude by
providing some inside on the utilized graphene circuit SPICE
simulation framework.

A. SPIKING NEURAL NETWORKS
Synapses and neurons are basic SNN components, which
serve as junctions connecting different neurons and as ba-
sic information processing units, respectively. Fig. 1 depicts
a small SNN comprising three neurons connected via two
synapses. Neuron Ni collects signals (input spikes S j and Sk)
from neuron Nj and Nk , and it fires (generates the output spike
Si) when the cumulated input signals effect reaches the neuron
firing threshold. A spiking neuron comprises three compo-
nents: (i) a soma, which is the neuron cell body and supports
the main neuronal functionalities, (ii) dendrites, which collect
signals from other neurons and generate input to the soma,
and (iii) the axon, which transmits neuron output spike to
other neurons. There are various spiking neuron models to de-
scribe its functionality [23]–[25], among which the Integrate-
and-Fire model is of particular interest, as it captures the
essential behavior of a spiking neuron while having a low
complexity [26]. The model for a standard nonlinear Leaky
Integrate-and-Fire (LIF) neuron is as follows:

du/dt = F (u) + G(u) · I, (1)

where u represents the membrane potential, which is an in-
trinsic neuron parameter related to its membrane electrical
charge, F (u) is a voltage-dependent leak term, and G(u)
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FIGURE 1. Spiking neural network illustration.

denotes the voltage-dependent input resistance, which con-
tributes to the accumulation of the membrane potential due to
the input current I . The dynamics of a nonlinear LIF neuron
includes in chronological order: (i) an integration process,
when the membrane potential increases due to input spikes
arrival, (ii) an output firing event that generates an output
spike when the membrane potential exceeds the neuron fir-
ing threshold, and (iii) a refractory period during which the
neuron is not reacting to incoming spikes.

While synapses are essentially connecting neurons they are
more than simple signal transmission lines, as their trans-
mission efficiency (denoted as W ) governed by the so-called
synaptic plasticity process can either enhance or inhibit the
transmitted signals. As such, a synapse, e.g., the one connect-
ing neuron Nj and neuron Ni in Fig. 1, is actually processing
two input signals (an input spike S j from the pre-synaptic
neuron Nj and a feedback signal from the post-synaptic neu-
ron Ni) and produces one output signal Sout

j , which is trans-
mitted to neuron Ni. It is believed that synaptic plasticity
has an important impact on learning and memory of human
brain [27], [28] and there are two basic plasticity types, i.e.,
Spike-Timing-Dependent Plasticity (STDP) and Long-Term
Plasticity [26]. STDP follows the celebrated Hebbian learn-
ing principle [29] and adjusts the synaptic weight (transmis-
sion efficiency) according to the timing difference between
the pre-synaptic spike (input spike from pre-synaptic neuron)
and the post-synaptic spike (feedback signal from the post-
synaptic neuron). Specifically, when the pre-synaptic spike ar-
rives before the post-synaptic spike, the synapse transmission
efficiency increases; otherwise the synapse transmission effi-
ciency decreases. Long-term plasticity is a persistent synaptic
weight change, which relies on the history of synaptic activ-
ities, and materialize in Long-Term Potentiation (LTP) and
Long-Term Depression (LTD).

B. GENERIC GRAPHENE-BASED DEVICE
To enable the aforementioned synapse and neuron functionali-
ties, we rely on instances of the generic graphene-based device
depicted in Fig. 2, which comprises a monolayer Graphene
Nanoribbon (GNR) placed on an insulating layer and a doped
substrate that serves as a back-gate. The GNR sheet sustains

FIGURE 2. Generic graphene-based device.

FIGURE 3. GNR geometry and contact topology.

a conduction channel under a drain-to-source bias voltage
Vd − Vs, which conductance profile is determined by the GNR
sheet geometry and contacts topology, while the actual chan-
nel conduction value is modulated by means of external volt-
ages applied on the top/back gates [30]. Fig. 3 illustrates the
parameters related to GNR geometry and contacts topology.
Specifically, W and L denote the width and length of the
graphene sheet, respectively, PVg the distance between the
top-gate and the drain contact, and WVg the top-gate width. The
distance between two neighbor carbon atoms is denoted as
a = 0.142 nm. We note that the capability of such graphene-
based device to provide a rich set of complex functionalities
has been demonstrated by the utilization of specially tailored
(in terms of topology and dimensions) versions of it for the
implementation of Boolean gates and individual synapses and
neurons [17], [19], [21].
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FIGURE 4. Graphene-based spiking neural network: (a) SNN circuit, (b) Pre- vs post-synaptic spikes timing.

Apart of the conduction channel creation it has been experi-
mentally observed that graphene-based devices inherently ex-
hibit interface charges trapping/detrapping phenomena [31],
which are usually induced by top-gate oxide defects. De-
pending on the applied top-gate voltage Vg value charges are
trapped or released by the graphene oxide interface, which
causes an equivalent top-gate voltage shift and affects the
top-gate conductance modulation ability. This phenomenon
makes the GNR conductance dependent on the cumulated
device history activities and as such makes GNR devices suit-
able for the emulation of synaptic plasticity [21] and neuron
membrane potential dynamics [19].

C. SIMULATION FRAMEWORK
In order to properly validate and evaluate the graphene-based
SNN circuits, we rely on a mixed simulation approach incor-
porating atomistic level graphene-based device modelling and
SPICE simulation in Cadence [32].

For the graphene-based device electronic transport proper-
ties calculation, we utilize the atomistic level Tight-Binding
Hamiltonian to model the carbon atom interactions and exter-
nal potentials, the Non-Equilibrium Green Function (NEGF)
to solve the Schrödinger equation, and the Landauer-Büttiker
formula to calculate the GNR channel current and conduc-
tance [33]. The potential distribution on graphene sheet is
obtained by solving a 3D Poisson equation self-consistently,
and the effect of trapping/detrapping phenomenon on the de-
vice operation is accounted for by calculating the equivalent
voltage shift caused by interface trapped charges [34].

To enable high accuracy circuit simulation, we make use
of a Verilog-A graphene device generic model [35], which in
order to enable time effective SPICE simulation of graphene
circuit relies on GNR topology specific precomputed look-
up tables containing graphene conduction simulation data

obtained with the aforementioned atomistic level simulation
methodology.

III. GRAPHENE-BASED SPIKING NEURAL NETWORKS
In this section we present the proposed graphene-based Spik-
ing Neural Network design and describe its basic operation
principle.

The schematic illustration of the graphene-based SNN unit
(consisting of one synapse and one neuron) is depicted in
Fig. 4(a) and comprises four blocks: (i) synapse, (ii) integrate-
and-fire, (iii) feedback, and (iv) output. Each block consists of
two GNR-based devices and its output voltage (Vin, Vinternal,
Vfeedback, and Vout) is governed by the VDD · Gi

up/(Gi
up + Gi

dn)
relation, where VDD is the supply voltage (200 mV), and Gi

up

and Gi
dn denote the conductance of the ith GNRup and GNRdn,

respectively.
The synapse receives input spikes Vspike from another neu-

ron, potentiates or suppresses them according to its trans-
mission efficiency (weight), and generates Vin to be utilized
as neuron block input. The initial synaptic weight value is
determined by the Vsyn potential applied on the back-gate of
GNR1

up. The synapse exhibits two types of plasticity: Spike-
Timing-Dependent Plasticity (STDP) and Long-Term Plas-
ticity. STDP modulates the synaptic weight by accounting
for the time difference �t = tpost − tpre between the input
spike Vspike occurrence and Vfeedback transition from Vhigh to
Vlow, as depicted in Fig. 4(b). When �t > 0, i.e., Vfeedback is
asserted before the end of the input spike, the synaptic trans-
mission efficiency is increased and Vspike contribution to Vin is
strengthened. When �t < 0, i.e., the input spike occurrence
is not generating a Vfeedback transition to Vhigh, the synaptic
transmission efficiency is decreased and Vspike contribution to
Vin is weakened. The input spike potentiation/depression is
controlled by the Vfeedback signal, which by being connected
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TABLE 1. GNR Topologies

to GNR1
dn top-gate modulates its conductance. The long-term

plasticity emulation relies on the fact that when applying input
spikes on GNR1

up top-gate trapped charges are accumulated
and as such modulate its conductance persistently, which
depending on the Vsyn value results in Long-Term Potentia-
tion (LTP) or Long-Term Depression (LTD) of the synaptic
weight, e.g., 0 mV for LTP and −100 mV for LTD.

The integrate-and-fire block is the kernel of the graphene
spiking neuron and emulates the main neuronal functionali-
ties, including membrane potential integration and the genera-
tion of the output firing events. The integrate and fire behavior
builds upon the interface trapping phenomenon, which results
in charge accumulation when Vin spikes are applied on GNR2

up
top-gate. The trapped charges cause an equivalent shift �Vg of
the top-gate voltage Vg and when Vg + �Vg reaches a certain
level, i.e., the neuron firing threshold, GNR2

up conductance
increases abruptly, which triggers a firing event, i.e., generates
a spike on the Vinternal signal.

While this is enough to emulate spiking neuron function-
ality Vinternal requires some extra processing in order to be
compatible in terms of voltage levels and duration with the
input spike applied on Vspike, which assumes values between
20 mV and 180 mV and has a time duration of 2 ms. As
such the output block further processes Vinternal and produces
Vout that is level and duration compatible with synapse input
spikes, which enables the direct cascading of SNN basic units.
Moreover, as the neuron output is playing a crucial role in the
STDP process the Vinternal spike occurrence has to be signalled
to the synapse block. Again Vinternal cannot be directly utilized
and the feedback block is responsible for the generation of
Vfeedback that is connected to GNR1

dn top-gate to internally
signal the firing event occurrence. Apart of contributing to the
synaptic weight adaptation Vfeedback is also placing the neuron
into the refractory state, which has to occur after any output
firing event. This is enabled by the Vfeedback transition from
Vhigh to Vlow, which is increasing GNR1

dn conductance result-
ing in a significant Vin magnitude reduction that inhibits the
trap accumulation and as such incoming input spikes cannot
trigger a firing event while Vfeedback = Vlow.

The basic SNN unit behavior is actually dependent on the
conductance variation exhibited by each of the GNRs it com-
prises. Thus to guaranty proper SNN functionality 4 GNR ge-
ometry pairs, which conductance maps fit the variation profile
required to achieve the desired behavior of the Vin, Vinternal,
Vfeedback, and Vout signals, respectively, should be find. Fig. 5
depicts the GNR topologies we identified for the proposed
SNN circuit, by means of an atomistic model based Design
Space Exploration (DSE) process and Table 1 summarizes
their dimensions expressed in terms of the distance between

FIGURE 5. Basic SNN unit GNR shapes.

FIGURE 6. GNR conduction maps: (a) GNR1
up, (b) GNR1

dn.

adjacent carbon atoms in the graphene sheet a = 0.142 nm.
Concerning the interface trap profile for the atomistic-level
graphene-based device modelling in DSE, we assume an in-
terface trap density of 2.363 · 1013 cm−2(eV)−1 and a trap-
ping/detrapping time constant of 1.6 ms [36], [37].

To provide inside on the relation between the chosen GNR
topologies and SNN circuit behavior we present in Fig. 6 the
conduction maps of GNR1

up and GNR1
dn that form the synapse

block. As one can observe in Fig. 6 GNR1
up conduction is high

under large top-gate voltages and varies with back-gate volt-
age value thus can provide different initial synaptic weights.
GNR1

dn conductance is high under low top-gate voltages and
small under high top-gate voltages, which allows Vfeedback
to induce synaptic transmission potentiation and depression
when being Vhigh and Vlow, respectively. A similar analysis
can be carried on for the other GNR pairs in the circuit but
we omit it in view of page limit.

SPICE simulation results concerning the SNN unit basic
operation (with Vsyn = 0 mV) are illustrated in Fig. 7. As
seen from the point of view of Vfeedback value the basic op-
eration follows three phases. In Phase I Vfeedback has an ini-
tial after circuit reset value and the neuron input Vin follows
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FIGURE 7. Graphene-based SNN unit basic operation.

the synapse input Vspike. When Vg + �Vg of GNR2
up reaches

the firing threshold a spike is induced on Vinternal that makes
Vfeedback to enter into Phase II when Vin magnitude increases
to Vspike × 1.1 for a short time period as result of the pre-spike
before post-spike �t > 0 induced STDP potentiation. Imme-
diately after the firing event Vinternal returns to its initial value
and as the Vinternal induced trapped charges are still present
Vfeedback becomes Vlow and the SNN unit enters Phase III. In
this period Vin magnitude decreases to Vspike/2.2 as a result
of pre-spike after post-spike �t < 0 induced STDP depres-
sion. As no firing events can be triggered during Phase III,
it accounts for the spiking neuron refractory interval. When
the feedback block trapped charges decay to the initial level,
Vfeedback returns to its after reset value, Phase III finishes and
the circuit switches back to Phase I. Related to the refractory
interval influence on the neuron behavior one can observe in
Fig. 7 that the first output spike is triggered by 2 input spikes
while the second one occurs after 3 input spikes.

The basic SNN unit in Fig. 4(a) assumes that the neuron
process input spikes coming from one previous neuron only,
i.e., has a fan-in of 1, which is certainly not the case in any
relevant SNN. To accommodate for a fan-in of n we extend the
synapse block by replacing GNR1

up with n GNRs as illustrated
in Fig. 8. In this case the in-between voltage Vin is calculated
as:

Vin = VDD · G11
up + G12

up + · · · + G1n
up

G11
up + G12

up + · · · + G1n
up + G1

dn

, (2)

where G1n
up denotes the conductance of the nth up GNR.

IV. SIMULATION RESULTS
To get inside into the actual capabilities of the proposed SNN
unit we consider and evaluate by means of SPICE simula-
tion two graphene-based SNN examples. We first study the
effect of the graphene enabled synaptic plasticity on a 2-layer

FIGURE 8. Multi-input synapse block.

6-neuron SNN and compare its SPICE derived behavior with
the one obtained by means of NEST based simulations [22].
Subsequently, we demonstrate the capability of our proposal
to perform unsupervised character recognition. In all simula-
tions, the input spikes are 2 ms long pulses varying between
20 mV and 180 mV, and VDD = 200 mV. We note however
that our proposal is general and can be adapted to operate on
different power supply values and input spike formats.

A. GRAPHENE-BASED SNN BEHAVIOR EVALUATION
To evaluate how the long-term plasticity exhibited by the
graphene devices modulates the neuron input signal Vin,
we consider a single synapse block comprising GNR1

up and

GNR1
dn, as depicted in Fig. 4(a), and set the feedback signal

Vfeedback to the Phase I value. In such a setup the synapse out-
put magnitude follows the synapse input and if Vspike receives
a train of spikes Long-Term Plasticity should be observed.
To capture this phenomenon we apply a 200 Hz periodic
input spike train with 180 mV peak amplitude on the GNR1

up
top-gate and simulate the circuit evolution for 300 ms. The
obtained dynamics of the synapse output signal Vin is depicted
in Fig. 9(a) and (b) for Long-Term Potentiation (LTP) and
Long-Term Depression (LTD), respectively. Note that both
LTP and LTD are acquired with the same synapse by properly
changing the back-gate voltage of GNR1

up, i.e., 0 mV for LTP
and −100 mV for LTD. As expected, we observe a continuous
Vin magnitude increase and decrease for LTP and LTD, respec-
tively. After 300 ms the amplitude potentiation and depression
are around 3.3% and 4.5%, for LTP and LTD. respectively,
and exhibit an obvious saturation trend.

To explore the implication of the obtained long-term plas-
ticity on SNN’s firing events profile, we make use of a 2-layer
SNN consisting of 6 neurons as illustrated in Fig. 10. The
neuron in layer 2 is fully connected with all the neurons in
layer 1 via identical synapses. In the simulations we con-
sidered three synapse types: (i) without long-term plasticity
(assuming that the trapped charges do not affect the graphene
device conductance), (ii) with long-term potentiation, and (iii)
with long-term depression.

To evaluate the SNN behavior in the previously mentioned
conditions we perform SPICE simulations assuming that all
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FIGURE 9. Synapse long-term plasticity.

FIGURE 10. Two layers 6-neuron SNN.

layer 1 neurons receive identical 200 Hz periodic input signals
(Vspike) on their synapse block for 200 ms, thus all layer 1
neurons generate identical firing events. Fig. 11(a) depicts
the SNN output reaction with the synapses do not exhibit
long-term plasticity. We observe that periodic output spike
trains are generated by all neurons while layer 2 neuron firing
rate of the neuron is lower than that of the layer 1 neurons.
During the simulation there are in total 12 output spikes for
every neuron in layer 1 and 5 output spikes for neuron in
layer 2. Fig. 11(b) depicts the SNN output firing events with
Long-Term Potentiation. As expected LTP induces an increase
of the number of firing events in both layers, which now raise
to 15 and 13 for neurons in layer 1 and layer 2, respectively.
Thus LTP induces a 25% firing event increase in layer 1 and
160% in layer 2. On the contrary, in the case of SNN with
Long-Term Depression, the simulation result is depicted in
Fig. 11(c), we observe a significant decrease tendency of the
number of firing events in both layers. Specifically, the layer

FIGURE 11. Two layers 6-neuron SNN output firing events.

2 neuron stops generating any fire event after 60 ms, which
is related to the fact that due to LTD layer 1 neurons are less
active and as such cannot trigger a firing event of the neuron in
layer 2. The total number of firing events for neurons in layer
1 and layer 2 are 9 and 1, which is equivalent with a 25% and
80% decrease, respectively.

To get some inside of the plausibility of the LTP and LTD
influence on the considered SNN example we implement
it in NEST with standard leaky Integrate-and-Fire neurons
connected via synapses with Long-Term Potentiation, apply
200 Hz and 250 Hz periodic input spike trains, and record
its reaction a time period of 200 ms. The number of layer 2
neuron firing events as well as the mean Inter-Spike Interval
(ISI) between output spikes obtained by the SPICE simulation
of the graphene-based SNN with LTD and the ones reported
by means of NEST simulation are summarized in Table 2.
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FIGURE 12. “A,” “E,” “I,” “O,” and “U” recognition associated unsupervised learning.

TABLE 2. SNN Activity Overview

In terms of the total number of firing events, the graphene
SNN produces an almost identical response with the NEST
based simulation one, i.e., 1 spike difference at 200 Hz input
and the same number at 250 Hz input. As for the mean ISI,
which represents the average time interval between adjacent
output spikes, the values are quite close with a maximum
difference of 5% (1.5 ms) between the SPICE and NEST
predicted results. The obtained results clearly suggest that
the proposed graphene SNN exhibits similar behavior with
the one predicted by the well established NEST simulation
framework.

B. UNSUPERVISED CHARACTER RECOGNITION
To demonstrate the learning abilities of our proposal, we con-
sider a 2-layer SNN consisting of 30 neurons as depicted in
Fig. 12(a), which is meant to recognize the characters (and
variations of them) “A,” “E,” “I,” “O,” and “U,” represented
with a 5 by 5 black and white pixel matrix. Layer 1 comprises
25 neurons, which receive input spikes if the pixel in their
position is black and no spikes if the pixel is white, and
layer 2 consists of 5 neurons meant to indicate the recognition
result. We assume that: (i) LTP synapses with identical initial

synaptic weight are utilized for every neuron in layer 1 and
(ii) Every neuron in layer 2 is connected with all the layer 1
neurons via LTP synapses with randomly initialized synaptic
weights. This is achieved by biasing Vsyn (the back-gate volt-
age of GNR1

up) with fixed values between 0 mV and 100 mV,
such that layer 2 neurons exhibit different firing profile. For
a given input character, we stimulate the layer 1 neurons
corresponding to black pixels with identical 200 Hz periodic
spike trains as illustrated in Fig. 12(a). Each layer 2 neuron is
meant to signal the recognition of one character in the vowel
set and to indicate that we employ the “time-to-first-spike”
scheme [26], i.e., the layer 2 neuron that first fires is the one
that recognized the input character.

To validate the learning ability of the proposed design, we
apply the 5 characters “A,” “E,” “I,” “O,” and “U,” to the
graphene-based SNN one at a time and the learning process
for each of them is depicted in Fig. 12(b), (c), (d), (e), and (f),
respectively.

In each case, we observe that initially there are no firing
events on any layer 2 neurons. However, during the learning
process, the connections corresponding to the layer 1 stimu-
lated neurons (the one driven by black pixels) are strength-
ened because of long-term potentiation. Thus, after some time
one neuron in layer 2 fires (indicating the recognition result)
and eventually other neurons in layer 2 may fire afterwards.
Fig. 12(b), (c), (d), (e), and (f), clearly indicate that charac-
ters “A,” “E,” “I,” “O,” and “U” are recognized by Neuron1,
Neuron2, Neuron4, Neuron3, and Neuron5, respectively. The
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FIGURE 13. Character “E” recognition.

learning time for characters “A,” “E,” “O,” and “U” is around
125 ms while for “I” is around 165 ms as it stimulates less
layer 1 neurons than the other characters. As the result of this
unsupervised learning process each layer 2 neuron is labeled
with the character which presence in the input it recognizes
and based on this labelling one can tell if a new unknown
character is one of the 5.

To test the recognition ability of the graphene SNN we
make use of different variations of the original characters as
inputs. As an example, we present the recognition processes
for six character variations that gradually degrade from “E”
to “O,” as illustrated in Fig. 13. When applying inputs that
maintain the “E” character profile as depicted in Fig. 13(a),
(b), (c), (d), and (e), one can observe that Neuron2 first fires,
which indicates that the graphene SNN correctly recognizes
those inputs as character “E”. The time needed for the SNN
to recognize the inputs in each case are 125 ms, 135 ms,
155 ms, 135 ms, and 145 ms, respectively, which is in line
with the observation that when an input character stimulates
less input neurons in layer 1, the SNN recognition takes more
time. When applying an input that fundamentally deviate from
“E” as depicted in Fig. 13(f), Neuron3 first fires after around
125 ms, which indicates that the SNN recognizes the input

character as an “O” and not as an “E”. The fact that the
degraded character is closer to an “O” than to an “E” is
also obvious by visual inspection and as such the SNN made
the correct decision. The aforementioned results demonstrate
the applicability of the proposed graphene SNN for provide
support for unsupervised character recognition, and that the
learning ability is robust.

V. CONCLUSION
In this paper we proposed a basic graphene-based Spiking
Neural Network (SNN) unit consisting of a synapse and a
spiking neuron that can be utilized to implement complex
SNNs. The proposed design enables Spike-Timing-Dependent
Plasticity (STDP) and Long-Term Plasticity, and both Long-
Term Potentiation (LTP) and Long-Term Depression (LTD)
can be induced in the same synapse by properly bias ad-
justments. By means of SPICE simulation, we validated the
basic operation of the proposed design and analyzed how the
enabled synaptic plasticity affects the SNN behavior. To this
end we assumed a 2-layer SNN, derived its reaction to the
same input stimuli by means of SPICE and NEST simulations,
and demonstrated the close agreement between the obtained
results in terms of total number of firing events and mean
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Inter-Spike Interval (ISI) length. Further, we demonstrated
the unsupervised learning capabilities of the proposed design
by considering a two layer SNN consisting of 30 neurons
meant to recognize the characters (and variations of them)
“A,” “E,” “I,” “O,” and “U,” represented with a 5 by 5 black
and white pixel matrix. The simulation results indicated that
the graphene SNN is able to perform unsupervised character
recognition and that its recognition ability is robust to input
character variations.
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