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Abstract—Linear control such as PID possesses fundamental
limitations, seen through the Waterbed effect. Reset control has
been found to be able to overcome these limitations, while still
maintaining the simplicity and ease of use of PID control due
to its compatibility with the loop shaping method. However, the
resetting action also gives rise to higher order harmonics that
hinders consistent realization of the aforementioned expected
improvement. In this paper, a fractional-order augmented state
analogue of the reset integrator is investigated. This analogue
is composed of a series of augmented states that each possesses
unique reset values, providing the same first order harmonic be-
havior but reduced higher order harmonics magnitude compared
to the reset integrator. The optimal number of augmented states
along with the corresponding tuning values are investigated. To
validate the improvement, the reset integrator and the optimal
fractional order analogue are tuned to equally improve distur-
bance rejection of a high precision 1 DOF positioning stage while
maintaining the stability level, with both designed to overcome
linear control. From simulation and experimental results, it was
found that the novel fractional-order augmented state analogue
gives rise to disturbance rejection performance that is closer to
the desired and expected improvement, compared to using the
traditional reset integrator.

Index Terms—Reset Control, Motion control, Fractional Cal-
culus, Fractional Order Control

I. INTRODUCTION

PID control scheme has become the most used controller in
many industries even if it is new or high-tech [1], [2] due to
robustness and ease of use through the loop-shaping method.
However, being inherently linear, it suffers from fundamental
limitations, which are the waterbed effect and Bode’s gain
phase relation [3], [4]. Reset control is a nonlinear control
technique which has gained increasing attention due to its
compatibility with frequency domain techniques for design
and analysis, which are popular within industry.

In reset control, the states of the controller are reset when
a predefined condition is satisfied. The first reset element

This work was supported by NWO, through OTP TTW project #16335.

introduced was a Clegg Integrator (CI) in 1958 [5], which
is an integrator whose state is reset to zero when the input
is zero. Using a pseudo-linear frequency response description
of nonlinear filters called Describing Function (DF) [6], the
frequency response of the CI is obtained, which reveals a sim-
ilar gain behaviour as the linear integrator but with only -38°
phase lag. This is advantageous since this violates Bode’s gain
phase relationship, allowing improved performance without
sacrificing stability. The idea of reset has also been extended
to elements such as First Order Reset Element (FORE) [7],
[8] and Second order Reset Element (SORE) [9]. These
elements have been successfully applied to satisfy various
objectives such as phase lag reduction [10], broadband phase
compensation [11], improving servomotor performance [12],
and improvement of mid frequency disturbance rejection [13].

Frequency response of reset controllers can be approximated
using the aforementioned DF method [6]. However, since
it is an approximation, the advantages described previously
are not always seen in practice. This is because the higher
order harmonics present in the output of the nonlinear reset
controllers are not considered by the DF method. These higher
order harmonics are analyzed in open loop through HOSIDF
method [14] and recently in closed loop [15]. There exists a
need to reduce the higher order harmonics such that the output
is dominated by the first harmonic, which makes the benefit
of reset control predicted by the DF consistently realizable.
This paper presents a novel augmented analogue for the reset
integrator with the aim of obtaining the same first harmonic
behavior while reducing the higher order harmonics.

The paper is structured as follows. Section II of this paper
will introduce reset control. Section III examines the fractional
order augmented state reset integrator and the benefits it
possesses over the traditional reset integrator. Section IV gives
an illustrative example of the benefits of using the augmented
state reset integrator through simulation and experimental
validation of disturbance rejection on a precision positioning

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 



∑
r

r(t) +

− P (s)
y(t)

Gnr(s)

∑
RC

Fig. 1: Block diagram of a reset controller RC with a plant P.

system. Conclusions and possible future work are outlined in
section V.

II. RESET CONTROL

A. Definition

A single-input single-output (SISO) reset controller (de-
noted ΣRC) is defined as

ΣRC :=


ẋ (t) = Arx (t) +Bre (t) if e(t) 6= 0

x (t+) = Aρx (t) if e(t) = 0

u (t) = Crx (t) +Dre (t)

(1)

where x(t) are the states, and Ar, Br, Cr and Dr are the
matrices corresponding to state-space representation. These are
referred to as the base linear system of the controller. e(t) and
u(t) are the input and output of the controller respectively. Aρ
is a diagonal matrix that dictates the after-reset values of the
states.

Theorem 1. [16] The reset controller defined by (1) with a
sinusoidal input has a 2π

ω periodic solution that is globally
asymptotically stable for all ω > 0 if and only if

|λ(Aρe
∆)| < 1 (2)

where ∆ ∈ R > 0. This theorem consequently constraints
each member of the diagonal of Aρ to be between -1 and 1.

B. Reset Systems Stability

Fig. 1 shows a reset controller ΣRC with a plant P . As
shown in the figue, the reset controller can be decomposed
into a reset part Σr and a non reset part Gnr. Let nr and nnr
therefore denote the number of reset and non reset states of
ΣRC respectively.

Theorem 2. [17] The reset control system depicted in Fig. (1)
is quadratically stable if and only if the Hβ condition holds,
i.e. there exists a β ∈ Rnr and a positive definite matrix Pr ∈
Rnr×nr such that the transfer function

Zβ(s) :=
[
βCp 0nr×nnr Pr

]
(sI −Acl)−1

 0np
0nnr×nr
Inr


(3)

is strictly positive real. And

ATρ PρAρ − Pρ ≤ 0. (4)

Here Acl is the closed loop A matrix of Fig. 1 defined as:

Acl =

[
Ap BpCRC

−BRCCp ARC

]
in which (Ap, Bp, Cp) are the state space matrices of Σp, and
(ARC , BRC , CRC) are the state space matrices of ΣRC .

C. Describing function

Describing Function (DF) is a pseudo-linear approximation
of the frequency response of nonlinear elements like reset
controllers. Since it only considers the first harmonic of the
output, expected experimental results based on loop shaping
are not seen [11]. Reference [6] developed the concept of
higher order sinusoidal input describing function (HOSIDF),
which is further developed by [14] specifically for reset
elements. The HOSIDF formula for reset elements is as shown:

Hn(ω) =


Cr(jωI −Ar)−1

(I + jΘ(ω))Br +Dr, n = 1

Cr(jωnI −Ar)−1
jΘ(ω)Br, odd n > 2

0, even n ≥ 2

Θ(ω) = −2ω2

π
∆(ω)[Γ(ω)− Λ−1(ω)]

Λ(ω) = ω2I +Ar
2

∆(ω) = I + e
π
ωAr

∆ρ(ω) = I +Aρe
π
ωAr

Γ(ω) = ∆−1
ρ (ω)Aρ∆(ω)Λ−1(ω)

(5)

where Hn(ω) is the nth harmonic describing function for
sinusoidal input with frequency of ω. The DF is therefore a
special case of HOSIDF with n = 1.

III. AUGMENTED FRACTIONAL-ORDER STATE RESET
INTEGRATOR

Fractional calculus generalizes integration and differentia-
tion to real or complex number powers. There exist multiple
accepted definitions of fractional differentiation. The notation
Dαx(t), k ∈ [0, 1] in this paper will refer to the Caputo
definition defined in [18].

A. Augmented system of fractional order reset integrator

A fractional order reset integrator is defined as:

Dαx(t) = e (t)

x(t+) = γx(t)

u(t) = x (t)

(6)

where α ∈ [0, 1].
The fractional order integrator is implemented through the

CRONE approximation [19] with its poles being reset, defined
by:

��>
γ

sα ≈ P
N∏
m=1�

�
�
��>

Aρ
1 + s

ωz,m

1 + s
ωp,m

(7)
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Fig. 2: Illustration of equivalence between cascade of frac-
tional order integrators and an integer reset integrator. The
arrows indicate that the reset of each element is with respect
to the input to the cascade i.e. e(t)

with

ωz,m = ωl

(
ωn
ωl

) 2m−1−α
2N

ωp,m = ω1

(
ωh
ωl

) 2m−1+α
2N

where α ∈ (0, 1), N is the number of real stable poles and
real minimum phase zeros, [ωl, ωh] is the frequency range
where the approximation is valid, and P is a parameter to
tune the gain of the approximation. Aρ is a reset matrix that
corresponds to the reset of the fractional order integrator γ.

B. Augmented system of integer order reset integrator

The integer-order state reset integrator is obtained by setting
k = 1 in (6). The augmented fractional order form of this case
is given by:

Dqχ (t) = AX (t) + Be (t) (8)

X
(
t+
)

= AρX (t)

u (t) = CX (t)

where,

A =

[
0 I
0 0

]
, Aρ = γI

B =

0
...
1

 ,C =
[
1 . . . 0

]
Here X = [x1, x2 ... xp]

T is a vector of the augmented states
and p = 1

q , where p ∈ Z+.

C. Equivalence of cascaded fractional order reset integrators
with augmented integer order reset integrator

Remark 1. Consider Fig. 2. The cascade of p fractional order
reset integrators in series is equivalent to the augmented form
of an integer reset integrator with q = 1

p .

Proof. Consider the kth fractional order reset integrator, with
1 ≤ k ≤ p. The state space representation becomes:

D1/pxk(t) = ek (t) (9)
xk(t+) = γkxk(t)

uk(t) = xk (t)

With e1(t) = e(t), ek = uk−1 and up(t) = u(t), the
combined state space of the cascade is simplified to:

D1/p

x1 (t)
...

xp (t)

 =

[
0 0
I 0

]x1 (t)
...

xp (t)

+

1
...
0

e (t) (10)

u (t) =
[
0 . . . 1

]x1 (t)
...

xp (t)


where x2 = x1/D

1/p, x3 = x2/D
1/p, . . . , xp =

xp−1/D
1/p.

Reverse the ordering of the state vector above such that xp
becomes in the first entry. With q = 1/p and Aρ = γI , this
results in state space that is equal to (8). Therefore equivalence
is proven and the augmented system is a valid replacement of
the integer-order reset integrator.

Remark 2. [20] Let the reset control system ΣRC in Fig. 1
be composed of firstly a reset element Σr followed by a linear
element Gnr. The higher order harmonics gain of ΣRC is
smaller than Σr if Gnr is a linear lag element:

|Hn(jω)|ΣRC ≤ |Hn(jω)|Σr , odd n > 1 (11)

Remark 3. Consider a reset integrator with reset value γ.
With −1 < γ ≤ 1, the following relation holds:

−90◦ ≤ ∠H1(jω) < 0◦ (12)
where −90◦ corresponds to γ = 1 (linear integrator) and 0◦

corresponds to γ = −1.

Remark 3 also holds for the fractional order reset integrator
of (6), with the lower limit changed to −90k◦.
Equation (10) is the analogue to the reset integrator if γk =
γ,∀ k. It therefore follows that not only the first but also higher
order harmonics are similar. However, it is desired to reduce
the higher order harmonics while maintaining the first order
harmonic behavior. Considering Remarks 2 and 3, this could
be achieved through a combination of γ1, . . . , γp that does
not necessarily satisfy the aforementioned restriction on γk.
More specificly, from Remark 2, there could be an advantage
in making later fractional integrators more linear. Therefore,
the goal of this paper is to design γ1, ..., γp such that the
first harmonic is the same as that of the reset integrator while
simultaneously possessing lower higher order harmonic gain.

This goal is casted in an optimization problem as shown:
min

γAug=[γ1,γ2,...,γp]
|Hn(γAug, jω)|Aug (13)

∀ odd n > 1 ,∀ω ∈ [ωl, ωh]

subject to

|H1(γAug, jω)|Aug = |H1(γ, jω)|RI

∠H1(γAug, jω)Aug = ∠H1(γ, jω)RI
where Aug refers to the fractional order analogue of the reset
integrator and RI stands for Reset Integrator. For simplicity, the
optimization will be run for p = 2, 3 and 4 and the reductions
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Fig. 3: 3rd order harmonic gain at ω = 100 rad/s of various p
values, for different provided phase lag.

in higher order harmonics magnitude will be compared. In
addition, non-zero values of γ for RI will also be considered.

D. Results

Table I shows the third order harmonic gain for different
reset values of the reset integrator and its respective augmented
fractional order analogue for p = 2, 3 and 4. Instead of the
different reset values, by utilizing Remark 3, the horizontal
axis of Fig. 3 alternatively shows the phase lag that the reset
integrator provides which is matched by the novel augmented
fractional order analogue. Table I shows the reset values of
the augmented states for each value of p and the optimal reset
values. Some observations:
• For all p and phase lag values, the integrator nearing the

end of the cascade is more linear than those nearing the
start, which satisfies Remark 2.

• As the required phase lag decreases, the reset value
of the integrators near the end of the cascade is not
fully linear. Considering Remark 2, this indicates that
the starting integrators cannot provide all the required
phase lag reduction, and thus the integrators near the end
provide some support in this regard.

• There is more reduction of the third order harmonic for
larger phase lag. Thus there exists a tradeoff between
obtaining larger reduced phase lag advantage and the
corresponding third harmonic gain reduction.

• The further reduction in third harmonic gain by going
from p = 2 to p = 3 or p = 4 is insignificant compared
to reduction from the original reset integrator to p =
2 case. Therefore it is recommended to use p = 2 in
implementation.

E. Non-Zero Higher Order Harmonic Phase

In this subsection it will be shown how the non-zero higher
order harmonics phase of the augmented fractional-order state
analogue could be of benefit.

The time domain output of a reset element given a sinu-
soidal input sin(ωt) is:

u(t) =

∞∑
n=1

An sin(nωt+ φn), oddn ≥ 1 (14)

TABLE I: Reset values and 3rd harmonic gain at ω =
100 rad/s of each augmented state for various p values, the
subscripts for the various γ correspond to Fig. 2.

Reset Integrator

γ
Equivalent

phase lag (◦)
3rd harmonic

gain (dB)

-0.8 -5.00 -9.57
-0.4 -18.60 -10.00

0 -38.15 -11.63
0.4 -61.38 -15.94
0.8 -81.95 -26.62

Augmented analogue, p = 2

γ
Equivalent

phase lag (◦) γ2 γ1
3rd harmonic

gain (dB)

-0.8 -5.00 -0.98 -0.74 -9.71
-0.4 -18.60 -0.98 -0.11 -10.83

0 -38.15 -0.97 0.66 -13.56
0.4 -61.38 -0.38 1.00 -18.44
0.8 -81.95 0.59 1.00 -29.32

Augmented analogue, p = 3

γ
Equivalent

phase lag (◦) γ3 γ2 γ1
3rd harmonic

gain (dB)

-0.8 -5.00 -0.97 -0.97 -0.66 -9.80
-0.4 -18.60 -0.95 -0.95 0.27 -11.25

0 -38.15 -0.75 -0.71 1.00 -13.72
0.4 -61.38 -0.6 0.48 1.00 -18.55
0.8 -81.95 0.35 1.00 1.00 -29.68

Augmented analogue, p = 4

γ
Equivalent

phase lag (◦) γ4 γ3 γ2 γ1
3rd harmonic

gain (dB)

-0.8 -5.00 -0.94 -0.92 -0.87 -0.64 -9.81
-0.4 -18.60 -0.95 -0.92 -0.87 0.53 -11.34

0 -38.15 -0.97 -0.82 0.18 1.00 -13.73
0.4 -61.38 -0.43 -0.23 1.00 1.00 -18.60
0.8 -81.95 0.16 1.00 1.00 1.00 -30.20

The above emphasizes that not only the gain but the higher
order harmonics phase also influence the output of the reset
element.

To investigate this, the RMS difference between the time
domain response of the reset integrators and the ideal response
is computed, where the ideal response is the response of
the reset integrator with all the higher order harmonic gains
eliminated. Fig. 4 shows this RMS difference for different
values of the higher order harmonics phase. At -48.5° there
exists a minimum of the RMS difference. The reset integrator
however, has zero higher order harmonics phase and so this
minimum cannot be achieved.

In contrast, the augmented fractional-order state analogue
has a negative higher order harmonics phase. For instance
the third harmonic phase is shown in Fig. 5 for p = 2.
Therefore in addition to lower higher order harmonics gain,
the augmented fractional-order state analogue also possesses
a beneficial higher order harmonics phase behavior.
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Fig. 5: Phase plot of 1st and 3rd harmonic of the RI vs.
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Laser interferometer Lorentz actuator

Moving stage

Leaf springs

Leaf springs

Fig. 6: The custom-designed precision stage used for experi-
ments.

IV. ILLUSTRATIVE EXAMPLE

For validation in performance improvement of a system
that utilizes the augmented fractional state analogue, four
controllers are designed and studied in simulation and in
practice. This section compares results of disturbance rejection
performance between a parallel PID (termed PI+D) and three
other parallel PID respectively in series with a linear integrator,
Clegg Integrator and augmented fractional state analogue of
the Clegg Integrator with p = 2.

1) Plant: The plant use for this validation is a flexure-
guided stage actuated by a Lorentz actuator as shown in

10-1 100 101 102
-40

-20

0

20

40

60

80
Measured frequency response
Approximated Model

10-1 100 101 102
-250

-200

-150

-100

-50

0

Fig. 7: Identified frequency response of the stage.

Fig. 6, with Fig. 7 describing its identified frequency response
and additionally a fitted second order transfer function. The
position of the plant is sensed using a laser interferometer with
10nm resolution, with the sampling period of 100µs.
The fitted transfer function is:

G(s) =
3.038e4

s2 + 0.7413s+ 243.3
(15)

2) Control Strategy: Four sets of controllers are designed
with a bandwidth of 100 Hz: a parallel PID controller (PI+D),
a parallel PID with an extra tamed integrator ((PI+D)PI), a par-
allel PID with an extra tamed Clegg Integrator ((PCI+D)PI),
and a parallel PID with an extra tamed augmented fractional
order analogue of Clegg Integrator ((PCIAug+D)PI). Fig. 8
depicts the details of these controllers. As shown in Fig. 9,
the (PI+D)PI controller is capable of outperforming PI+D in
terms increased gain at low frequencies resulting in better dis-
turbance rejection, however with the tradeoff of phase margin
reduction. Considering the reduced phase lag advantage of a
Clegg Integrator, it is surmised that the (PCI+D)PI controller
could be tuned to have less phase margin reduction while still
maintaining the gain behavior of (PI+D)PI, which is indeed
the case as shown in yellow and blue in Fig. 9. To verify this
result, Fig. 10 shows simulation result of disturbance rejection
performance to 1 Hz disturbance input. Contrary to expected
performance from Fig. 9, the simulation plot shows (PCI+D)PI
performing far worse compared to (PI+D)PI; this is because
Fig. 9 shows only the first order harmonic.

To reduce the effects of the higher order harmonics, the
augmented fractional-order analogue replaces the Clegg Inte-
grator (giving the controller (PCIAug+D)PI), with tuned open
loop performance shown in purple in Fig. 9. The simulation
result is also shown in purple in Fig. 10. From these figures it
is observed that the phase margin of (PCI+D)PI is still main-
tained, while the jump size in Fig. 10 reduced in magnitude,
making the maximum amplitude of the response now closer
to (PI+D)PI.
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Fig. 11: Process sensitivity plot based on (16).

To see whether this improvement exists over a range of
frequencies, a process sensitivity function is constructed. To
capture the higher order harmonics in the process sensitivity
function plot for the controllers with reset elements, a new
process sensitivity function is defined as:

S(ω) =
max(|e(t)|)
|D|

for t ≥ tss (16)

where tss is the time it takes for the response to become
steady state and periodic, y(t) is the output and D is the ampli-
tude of the sinusoidal disturbance input. This function is found
by simulating the closed loop system with a disturbance input
for increasing, closely spaced ω. The plot is shown in Fig. 11.
Here it is seen that compared to (PCI+D)PI, (PCIAug+D)PI’s
performance is closer to (PI+D)PI up to approximately 4 Hz,
from which the performance of all the reset controllers are
now able to match (PI+D)PI.

It is also noted that the higher stability level of the
(PCI+D)PI and the (PCIAug+D)PI compared to (PI+D)PI and
PI+D, which was implied by their higher phase margin from
Fig. 9, was also taken by utilizing the Descibing Function.
This therefore means that the true stability level may not be
the same as what the DF predicted in this figure. To check that
the higher stability level indeed truly exist, the peak of the step
response is examined, with a lower overshoot indicating higher
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TABLE II: Experiment results. Disturbance sinusoidal input
amplitude is 6528 (10 nm) and step input size is 1000 (10
nm).

Sin Dist. max(|y(t)|)

Hz PI+D (PI+D)PI (PCI+D)PI (PCIAug+D)PI

0.1 21 3 14 13
0.2 32 3 25 20
0.3 56 4 37 35
0.4 74 5 49 40
0.5 93 7 61 46
0.6 110 8 72 62
0.7 127 12 84 69
0.8 146 14 96 78
0.9 163 13 107 85
1 178 19 116 89
2 341 68 206 146
3 476 137 263 250
4 582 216 296 290

Step Dist. max(|y(t)|)

1000 1492 1611 1515 1516

stability. This is shown in Fig. 12. This confirms that a higher
stability level has indeed been achieved.

3) Stability Check Using Hβ condition: To further confirm
the stability of the fractional order analogue, the Hβ condition
described in Section II is also applied on the control scheme
of Fig. 8. Solving the condition using a YALMIP Sedumi
solver [21], a positive definite matrix Pr was indeed found,
further confirming that the fractional order analogue is indeed
stable.

V. EXPERIMENT RESULTS

To validate the closed loop simulation results, an experiment
is conducted. Disturbances of selected frequencies are chosen,
and the amplitude of the plant response are recorded. To check
the stability level, a step input is also applied.

Table II shows the maximum error of the plant controlled
by each of the four different controllers at steady state. It
is seen that the trend in the simulation result is confirmed,
with the (PCIAug+D)PI outperforming (PCI+D)PI and PI+D
in the frequency region predicted by the simulation in Fig. 11.
In addition, the step response of the (PCI+D)PI and the

(PCIAug+D)PI also exhibit a similar overshoot value, indicating
that the increased stability level predicted by simulation is also
seen in experiment.

VI. CONCLUSION

Reset controller is a subset of nonlinear controllers that
overcomes the fundamental limitations of linear controllers,
while still retaining the advantage of linear controllers in that
the loop shaping method is applicable through the Describing
Function method. However, the Describing Function does not
take into account higher order harmonics, which makes the
actual output of the reset controlled system sometimes deviate
from that predicted using the Describing Function. It is then
desired to minimize the role of these higher order harmonics
on influencing the output.

Augmented fractional-order reset integrator analogue is a
promising method in achieving this goal. By resetting the
fractional states of the reset integrator to determined optimal
values, it has been shown that there is a higher order harmonics
reduction that may not seem huge in open-loop, however
results in significant closed loop performance improvement.
A recommendation was then made as to the reset values of
the fractional states required for a particular tolerable phase
lag. Furthermore, the non-zero higher order harmonics phase
that the augmented fractional-order reset integrator analogue
possess was shown to be promising in further improving the
output of the reset integrator.

For future work, it is recommended to develop a tuning rule
for the state space representation of the augmented fractional-
order analogue such that the higher order harmonics phase can
be manipulated to obtain the optimal reduction in the RMS
difference discussed in Section III-E, while still maintaining
reduced higher order harmonic gains. A final recommendation
is to also investigate resetting the fractional elements with
respect to their own respective inputs as opposed to the error;
there may be aspects of the intermediate signals that could
bring about more higher order harmonic reductions.
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