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Abstract

The use of robotic systems outside the branch of tasks currently common in industry requires
the development of novel intelligent control methods.

In this thesis we will aim to improve on a recent machine learning method known as active
reward learning. This method is able to teach a robotic system a task using human expert
ratings on demonstrated robotic trajectories. Current implementations of this method use
information collected from complete trajectories without regard for time specific features.
This work will incorporate time segmentation as a new feature in two extensions of the
active reward learning framework. In one extension, demonstrations are still rated over entire
trajectories, leaving extraction of the important time segments to the learning algorithm. In
the second extension we allow the expert to rate trajectory segments directly.

The two constructed algorithms are tested using a robot simulator. It is shown that these
new methods are able to learn simple end effector tasks using reasonable numbers of queries
and rollouts.
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Chapter 1

Introduction

Robotic systems are widely used in industry nowadays. The use of robots in various applica-
tions instead of humans can lead to improvements both in terms of costs and task performance.
Robotic systems show their use mostly in applications that are so-called “4D tasks”, tasks
that are dangerous, dull, dirty or dumb [2]. A common property of the 4D tasks is that the
robots are used in a repetitive setting: the same exact task is performed repeatedly. Examples
of common robotic tasks can be found in material handling, such as welding or 3D printing.
The human interaction with such a robot is often not allowed during operation. Usually, a
cage is present to guarantee the safety of employees that are present. When using robots
in this environment, it makes sense to program each robotic task manually. It allows the
programmer to optimize the robot for each task. For example, a robot could be programmed
to perform a task as fast a possible, for maximum production speed. Therefore, manual im-
plementation of robotic tasks is still the most used practice in the industrial application of
robots [3].

There are two aspects of the manual programming approach prone for improvement. First
off, the process of programming a robotic task is expensive and time consuming. The cost
of robotic experts makes the use of robots economically unfeasible for small series of tasks,
especially tasks outside 4D area. Furthermore, the controllers that result from this process
generalize very poorly [3]. In a different environment the robot will not perform as well, it has
to be tuned again. Also, if the application of the robot operates in a dynamic environment,
such as a human-robot interaction task, a more adaptive control strategy is needed.

Several control strategies have been developed that focus on the control systems operating
in dynamic environments. One of these methods called Reinforcement Learning (RL), has
interesting properties for robotic applications. Reinforcement learning methods can operate
dynamic and noisy environments without the need of a model [4]. The RL method also
applies optimization to achieve its pre-defined purpose [5]. An important element of the RL
algorithm, the reward function, defines the assignment that the robot has to execute. In
many applications, this reward function is defined by the programmer and tuned manually
to produce the best result. This form of manual programming is still expensive and time
consuming. Also, for many tasks, a measure of success is hard to define explicitly [6].
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2 Introduction

A simple example in Figure 1-1 illustrates how a RL algorithm converges to a different outcome
than originally intended. The task, which is intended by the programmer, is for the end
effector of a robot arm to move from an initial position towards a goal. In between it should
pass through a point in space. As can be seen from the final trajectory, the end effector passes
the viapoint with precision. However, the path towards the viapoint can be described as an
inefficient detour. The problem in this example is that the reward function, which is the RL
equivalent of the cost function used in optimal control, is defined too simple. A more elaborate
reward function could also take into account the traveled distance of the end effector as a
penalty function. However, if we would include this penalty function in the reward function we
must also determine the relative importance between tracking accuracy and traveled distance
by assigning weights to the two objectives. In order to tune the importance weights, we
need to obtain multiple solutions of the RL problem, which is a time consuming procedure in
practice.

Figure 1-1: Resulting trajectories of a simple via point task.

A better alternative would be to teach the robot a task from another entity, called the
expert, that knows exactly how the task needs to be performed. There are several approaches
that accomplish machine learning from an expert. In the field of reinforcement learning, two
approaches have been studied extensively: Apprenticeship learning and Inverse Reinforcement
Learning (IRL). Both methods rely extensively on the availability of example (sub-) optimal
trajectories, supplied by the expert. Inverse reinforcement learning differs from apprenticeship
learning by the notion that IRL methods try to obtain the underlying reward function where
apprenticeship learners try to obtain the optimal policy. The former class of methods is more
interesting as an approach for adaptive control, because the obtained reward function can be
used in different environments.

A more recent method is the Active Reward Learning (ARL) method [7]. The idea of active
reward learning is similar to inverse reinforcement learning as this method also constructs
a reward function, using the expert as source of information. In this setting, the expert is
used to give feedback on robot trajectories. Active reward learning has been applied to a
small number of robotic problems. The experiments in [7] show how ARL can be applied
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1-1 Task description 3

to an inverse learning problem. In this experiment, the robot learns how to cross a viapoint
in Cartesian space by controlling motor commands in joint space. As input for the reward
function the robot is given the difference between the position of the end effector and the
viapoint. As a result, a reward model containing a squared relation with respect to the
viapoint error is returned. In a more advanced experiment, a robot hand is taught how to
grab an unknown object, based on the calculated forces at the fingertips.

1-1 Task description

In this thesis we adopt the task description of the first experiment in [7], which is a viapoint
task, as we would like to improve on this work. The viapoint task is described as follows:
Given an initial position xinit, goal position xgoal and a viapoint xviapoint in Cartesian space,
construct a path in Cartesian space such that the end effector of a robot arm travels from
xinit to xgoal, crossing xviapoint at a specific point in time tviapoint. An example of such a task
is shown in Figure 1-2. In all experiments conducted, we assume the trajectories to be of
fixed length tN in discrete time.

Figure 1-2: Viapoint task in one dimension.

A second task that we use in the experiments, which is very similar to the viapoint task, is
a viaplane task. Similar to the viapoint task, during the execution of a viaplane task, the
end effector of a robotic arm needs to travel from xinit to xgoal in Cartesian space. However,
instead of crossing a single point in between xinit and xgoal, the end effector has to track a
pre-defined plane in a specific region in the time line. Such a task can be combined with a
viapoint task to generate a more challenging goal for the robot arm to achieve, as is shown
in Figure 1-3.

The combination of viapoints and viaplanes can be used to define various end effector move-
ments. For example, we can teach a robot arm to move towards a known goal and avoid an
area with obstacles. Also, we can teach the robot to approach the end goal from a certain
angle. This technique can be used for example to teach the robot an insertion task.

In this thesis, a simulated 2 degrees-of-freedom robotic arm is used for conducting experi-
ments. We use high level commands to interact with the robotic system as is illustrated in
Figure 1-4. As can be seen in this graphic overview, the algorithm is used to define a path
in Cartesian end effector space, so the reinforcement learning agent will define a path in x
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4 Introduction

Figure 1-3: Viaplane in combination with viapoint task in one dimension.

and y coordinates. This trajectory is subsequently run on a simulated entity referred to as
the robotic system. This robotic system contains a simulator of a robot arm as well as a low
level joint controller. There is an inverse kinematics and a forward kinematics solver present
in this entity as well in order to convert the input trajectory from end effector space to joint
space and to convert the output trajectory back from joint space to end effector space. The
output of this robotic system will be a trajectory in end effector space which will be evaluated
by the reward model. There will be tracking errors between the input and output trajectory
due to imperfect inverse and forward kinematics conversion and imperfect tracking of the
joint controller. The algorithms created in this thesis regard the complete robotic system as
a black box system, they can only observe the input and output trajectories.

ARLpolicy reward model

robotic
system

end effector in-
put trajectory

end effector out-
put trajectory

Figure 1-4: Overview of the interaction between the robot and the ARL algorithm.

1-2 Research goals

Although the ARL method has been proven to work in a practical example, there is room for
more research. To be more specific, the input of the reward model constructed in [7] contains
information about the complete trajectory of a rollout. In case of the viapoint experiment
conducted in [7] the exact position of the viapoints and time slot at which the end effector
should cross it is known by the reward model but this is usually absent in practical cases.
In this thesis we assume that task specific information is unknown to the robot and should
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1-3 Roadmap 5

be learned instead. In order to compensate for the lack of task specific information, time
segmentation is implemented in the ARL algorithm. In this work we propose two segmented
active reward learning methods, applied to learn end effector tasks purely on expert feedback.

The first proposed Segmented Active Reward Learning (SARL) algorithm achieves time seg-
mentation by creating segment-specific groups of reward model inputs. Since the reward
model proposed in [7] is able to distinguish relevant inputs from non-relevant inputs, this new
method should be able to determine relevant time segments as well.

In the first proposed SARL method, we assume that the human expert is only able to give
a rating over full trajectories. The amount of information that the expert gives is limited to
one grade per complete trajectory. We could extend this framework such that the expert can
give feedback on time segments of the trajectory. A more sophisticated adaptation on the
ARL algorithm, which basically constructs a different reward model for each time segment,
is needed to achieve this kind of time segmented learning. The hypothesis is that with this
new source of expert information, the accuracy of the end effector trajectories will improve.

The purpose of this thesis is to show the results of two time segmented ARL algorithms. In
this experiment we try to answer the following research questions:

• Can we use time segmented active reward learning to teach a robotic arm a simple end
effector tasks described in Section 1-1?

• How many expert queries are necessary to achieve convergence for teaching a robot end
effector tasks, described in Section 1-1, using time segmented active reward learning?
How many expert queries are necessary if segment specific demonstrations are used
compared to full trajectory demonstrations?

• How many roll outs are needed to teach a robot arm simple end effector tasks? Is the
number of rollouts of the proposed SARL methods within practical limits?

1-3 Roadmap

In order to give an overview of the contents of this work, a roadmap is provided in Figure 1-5.
The order of subjects is best explained when we take a brief look at the general formulation
of reward learning. As shown in semi-mathematical Equation (1-1), active reward learning is
essentially solving a double optimization problem. The main goal is to maximize the expert
ratings through querying demonstrated rollouts. We can adjust the reward function in order
to accomplish better results from the reinforcement learning agent. These results flow from
the second optimizer, which is a straight-forward RL problem.

max
reward function

expert


Reinforcement learning (Chapter 2)︷ ︸︸ ︷

max
policy

[reward function(policy)]


︸ ︷︷ ︸

Reward learning (Chapters 3-5)

(1-1)

In Chapter 2, we will focus on the second optimizer, the forward RL method. We will review
the RL methods that are applied to continuous systems as this is the application that we
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6 Introduction

are focusing on. One specific reinforcement learning method will be described in more detail,
as this method will be used in Chapters 4-5 as well. After that, two different approaches
to reward learning are explained in Chapter 3, namely inverse reinforcement learning and
active reward learning. We will explain the difference between the two methods and discuss
the advantages and disadvantages of both methods in detail. In Chapter 4, the active reward
learning method is described in more detail. Important concepts of the active reward learning
method such as the acquisition function and the reward model will be explained. After that,
in Chapter 5, time segmented active reward learning is introduced. We will describe two
novel variants of ARL in which we will use the concept of time segments. After a theoretical
introduction to these new variants of ARL, we will show the results of this new method in
Chapter 6 and compare them to the original ARL method. At last we will review the results
of the research and show some recommendations for further research.

Chapter 1
Introduction

Chapter 2
Reinforcement
Learning

Chapter 3
Reward Learning

Chapter 4
Active Reward
Learning

Chapter 5
Segmented Active
Reward Learning

Chapter 6
Experiment results

Figure 1-5: Roadmap of the report. The dashed line represents an a shortcut through the
material.
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Chapter 2

Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method, developed in the 1980’s [4]. The
concept of RL is a combination of different methods in the field of artificial intelligence,
adaptive- and optimal control. Reinforcement learning has successfully been applied in the
field of artificial intelligence to teach computers to play chess and backgammon. In the field
of control, reinforcement learning is a particular interesting method, but hard to realize in the
field of robotics. The reason for this is that the state-space of robotic systems is continuous
in multiple dimensions, where as the state-space of a game of chess is finite. The search space
for optimal solutions is therefore of a completely different order. Since the RL framework
assumes no model of the system (some methods incorporate model learning), applying RL
on a robotic system can be described as model-free, adaptive, optimal control. However, the
representative power of the RL framework comes at a cost in lack of tractability properties [8].

In this chapter we will outline the method of reinforcement learning as well as describe several
reinforcement learning methods that are suitable for robotic applications.

In Section 2-1, a mathematical framework called the Markov Decision Process (MDP), which
we will be using throughout is introduced. Several definitions used to describe the RL method,
applied to robotic systems, are given as well. After that, in Section 2-2, several main ap-
proaches of reinforcement learning are elaborated upon. We will finish the Chapter with a
specific reinforcement learning method called black-box policy improvement (PIBB), in Sec-
tion 2-3.

2-1 Markov Decision Process

The RL framework considers an intelligent robot, called the agent, that has to perform a
task. In order to achieve the task, the agent can manipulate the environment by performing
actions which will cause a transition to another state. Mathematically, the environment of
the agent described above is called a Markov decision process. This process can be described
as the following tuple: (X,U, T ) [4]:
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8 Reinforcement Learning

• X: A set of possible states that represent the dynamics of the system. It is assumed
that the agent can sense the complete state.

• U : A set of possible actions that the agent can select at each time step.

• T : The state transition probability function T : X ×U ×X → R. For each state x ∈ X
the probability of transforming to the next state x′ ∈ X by inferring action u ∈ U is
given by T (x,u,x′).

Note that the transition of the agent from state x to x′ is not influenced by states prior to
state x. This is called the Markov property.

In this work we assume that all trajectories to have the same length in time. As such, we can
define a trajectory τ as the ordered set of state-action pairs from the initial state to the final
state: τ = {{x0,u0, t0} , ..., {xN ,uN , tN}}.

2-1-1 Policy

The policy, in some areas referred to as the control law, is the function π : X → U that
makes the decision for control action. In discrete-state problems, the policy chooses an action
u from a fixed set of actions. If the MDP is continuous, the control action is calculated. A
policy can be a deterministic function but it can be a stochastic as well.

In continuous-time reinforcement learning problems, a common practice is to use parameter-
ized policies. Let us denote vector θ as the policy parameter. The function that maps such a
policy from action x to the control action u would now also be dependent on the parameter
vector θ as such: u = π(x,θ). The policy parameters allows us to directly change the policy.

2-1-2 Reward

In the RL framework, the reward function is used to reinforce desired behaviour of the agent.
A large variety of reward functions is present in literature since each application has a different
definition of desired behaviour. Some applications require a reward function that maps each
state-action pair of trajectory τ to a reward value r(x,u). The total amount of reward
obtained, also called the return of a trajectory can be defined as:

R(τ ) =
∑

{x,u}∈τ
r(x,u). (2-1)

The return of a trajectory can also be calculated using the complete trajectory of trajec-
tory segments, as will be shown in Section 4-2 and Section 5-2-1. Reinforcement learning
algorithms are designed to maximize the expected return per trajectory. The expression for
accumulated reward is very similar to the cost function used in optimal control algorithms,
only difference being that the expression for accumulated reward should be maximized where
as the cost function should be minimized.

In common feature in RL algorithms, is the use of a discount factor γ ∈ (0, 1]. This variable
is used as such
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2-2 RL learning algorithms 9

R(τ ) =
∞∑
k=1

γkr(xk,uk),

where k denotes the discrete time index. Incorporating a discount factor is particularly useful
to bound the possibly unbounded return of variable length trajectories but it also regulates
the importance of future rewards. In this work we assume that all trajectories have the same
length in time and that the reward at each time segment is equally important, so we use a
γ = 1 for all experiments.

2-1-3 Value function

We continue by defining a useful definition for the accumulated reward that the agent obtains
in time. The so-called value function or state-value function defines the expected return of
an agent in state x, when the optimal policy is used.

V (x) = max
ui:uN

E

 ∑
τti :τtN

r(x,u)



2-2 RL learning algorithms

The Markov decision process is a very powerful tool to create adaptive learning methods.
Several algorithms are developed for MDPs over the years. In general, we can establish a
common optimization problem that all RL methods solve in a different manner:

π = arg max
π

E [R(τ )]

The group of reinforcement learning algorithms can roughly be divided into three main
groups [9]: actor-only, actor-critic and critic-only methods, where the actor denotes the policy
and the critic denotes the value function.

2-2-1 Critic-only methods

In critic-only methods, the value function plays an important role. A critic-only algorithm
consists of a method to learn the value function and a policy that chooses the control action
in order to maximize this function. If the state-space and action-space of the MDP are finite,
an approximation of the value for each state-action pair can be stored in computer memory.
The values of each state-action pair can be updated using the temporal difference error. In
that case, dynamic programming methods can be used as a policy. In continuous space the
value function can be approximated. Also, discretizing a continuous state and action space
is often done in critic-only algorithms. In critic-only methods, the value function can be
updated either each time step or after each episode. Critic-only methods use an optimization
algorithm in its policy. Each time step, the next control action is determined by optimizing
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10 Reinforcement Learning

the estimate of the value function. This is the basis for the Q-learning [10] and SARSA [11]
algorithms. Critic-only methods tend to work very well in finite-space MDP problem such as
playing back-gammon [12]. In continuous state-space problems, such as robotics, critic-only
methods are not often used. One of the main disadvantages of critic-only methods are their
slow convergence speed.

2-2-2 Actor-critic methods

If both the value function and the policy function are learned by the agent we call the
algorithm an actor-critic method. In these methods the critic is used to update the current
policy, prescribed by the actor, by evaluating the performance of the agent.

In each iteration, two updates occur: a value function update and a the policy update. In the
first update step, the value function of the previous state is updated using the reward that
followed. After that, the policy parameters are updated using the value function. In finite
space MDPs, the two updates can be performed after each time step, as shown in [4]. A more
practical approach for robotic applications is episodic natural actor critic method [13]. In
this particular method, the update is calculated after sampling a batch of rollouts, a common
feature in many robotic RL methods.

2-2-3 Actor-only methods

Algorithms in the actor-only class of reinforcement learning are characterized by a policy
learning algorithm. Typically, actor-only methods define the policy of the agent as a function
with variable parameters, which can be tuned to optimize the expected return.

Actor-only methods do not use the definition of value function such as critic-only methods,
to learn which actions result in high returns. Instead, direct optimization over the definition
of the expected return is common practice. A group of actor-only methods called gradient
methods relies on optimizing the accumulated reward, by approximating the gradient of the
expected return with respect to the policy parameters. An example of a known policy gradient
method is REINFORCE [14]. One major drawback of this approach is that the policy gradient
tends to have a high noise variance.

A second class of actor-only methods, called reward weighted average methods, circumvents
the problem of gradient variance. This class of methods update the policy after performing
multiple different trajectories, also called rollouts, on the robot. After each batch of rollouts,
the algorithm will update the policy based on which rollouts turned out to have the highest
return. This particular class of methods have shown to deal reasonable well in the high
dimensional continuous space of robotic systems. Several methods of this type have been
developed both originating from reinforcement learning, as well as the field of stochastic
optimal control (see Figure 2-1). Two main flavors of reward weighted average algorithms are
relative entropy policy search (REPS [15]) and path integral approaches (PI2[16]). Section 2-3
will describe a reward weighted, actor-only algorithm called black-box policy improvement
(PIBB) which will be used in the active reward learning algorithm.
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2-3 Black box PI algorithm 11

Figure 2-1: Overview of RL methods commonly used in robotics [1]. The blue arrows indicates
progress over time.

2-3 Black box PI algorithm

The specific algorithm that we will use in the active reward learning framework is called black
box policy improvement (PIBB) [1]. This specific algorithm is a black box optimizer that uses
reward weighted averaging for improving its policy. This particular algorithm is well suited
to work with the active reward learning method for the following reason: The algorithm does
not require a reward specified in each time step. Instead, the PIBB algorithm only requires
the return over complete trajectories for each sampled rollout. Learning a reward function
for each part in state-space is much more difficult than learning the return over complete
trajectories, since the expert feedback will be given over complete or segmented trajectories,
not for each state.

2-3-1 Episode based learning

The PIBB algorithm is an episode based method. A common feature among episode based
methods is that the agents’ policy does not change during an episode. In each iteration of
the PIBB algorithm a fixed number of episodes, also called rollouts, will be run or simulated,
resulting in multiple trajectories τk, where k = 1, ...,K. We define T as the set of sampled
rollouts {τ1, ..., τK}. After sampling, the return of each rollout τk is calculated and the new
policy parameters θ are calculated. This approach has proven to be more effective in robotics
compared to traditional RL methods, in which an update is performed every time step [1].

2-3-2 Parameterized policy

Since the PIBB method is an actor-only algorithm, we need to use an adaptive policy. The
policy used in PIBB is parameterized as π(θ+εk). In this definition, θ is the policy parameter
vector and εk is the exploration noise.
As mentioned in Section 2-3-1, the policy will be updated after sampling a batch ofK rollouts,
which means that the policy vector θ will stay the same during sampling.
In order to explore the impact of changing policy parameters, exploration noise vector εk is
introduced as a direct addition to the policy parameters. The exploration noise εk is different
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12 Reinforcement Learning

for each rollout τk. Furthermore, εk is a zero mean white noise vector with variance matrix
Σε. In order to regulate the exploration-exploitation trade-off, the variance of the exploration
noise is decreased each iteration in a simulated annealing fashion using an annealing factor
λε.

In the experiments we will use a policy called Dynamic Movement Primitive (DMP) [17], a
policy suited for learning trajectories with a pre-specified start- and end position. This policy
will construct end effector trajectories as described in Section 1-1.

2-3-3 Reward weighting

After sampling, the return of each trajectory will be calculated using the return function
R(τ ). Secondly, the probability for each rollout is approximated using the return of each
rollout. We assume that rollouts resulting in a high return value should be more probable
than rollouts resulting in a low return value. In oder to approximate this probability, we first
scale the return of each trajectory to obtain a measure of return relative with respect to the
other rollouts in the batch of samples

S̃(τk) = −h(R(τk)−minτi∈T (R(τi)))
maxτi∈T (R(τi))−minτi∈T (R(τi)))

,

where h is a tuning factor which determines how dense the probabilities of the different
trajectories are distributed. The obtained value for relative return S̃(τk) is then used to
calculate the reward based probability of each rollout using the softmax operator as such:

P (τk) = e−S̃(τk)∑
τi∈T e

−S̃(τi)
.

We will use the probability of each rollout to formulate the policy update. We can observe
that trajectories resulting in a high return value used a highly successful exploration noise
vector εk. To obtain a reward weighted average update we simply need to multiply P (τk)
with the exploration noise εk for each sample in the batch of samples T :

δθ =
∑
τk∈T

P (τk)εk.

In Algorithm 1, the pseudo code of the PIBB method is given.
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Algorithm 1 PIBB pseudo code
1: initialize policy π(x,θ0)
2: initialize exploration noise and annealer Σε, λε
3: while not converged do
4: for k = 1,...,K do
5: Generate exploration noise
6: εk ∼ N (0,Σε)
7: Collect samples from the sample policy
8: τk = {xi,ui = π(θ, εk)} , i ∈ 1, ..., N
9: T = {τ1, ..., τK}

10: Calculate return
11: R(τk) = φtN +

∑N−1
j=0 r(xtj ,utj , tj)

12: Calculate relative return
13: S̃(τk) = −h(R(τk)−minτi∈T (R(τi)))

maxτi∈T (R(τi))−minτi∈T (R(τi)))
14: Calculate reward weighted probability
15: P (τk) = e−S̃(τk)∑

τi∈T
e−S̃(τi)

16: Calculate policy update
17: δθ =

∑
τk∈T P (τk)εk

18: θ ← θ + δθ
19: Apply noise annealing
20: Σε = λεΣε
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Chapter 3

Reward learning

The reward function plays an important role in any Reinforcement Learning (RL) method. In
many practical applications, programming and tuning the reward function is a critical design
step and this is mostly done by an engineer or programmer. Over the years, methods have
been developed that try to construct a reward function, using information from an expert.
A well studied method called Inverse Reinforcement Learning (IRL), reconstructs a reward
function based on expert example trajectories [18]. More recent work has been published in
the field of active reward learning, which is based on human expert feedback [7].

In this chapter we will review reward learning methods that are studied over the years. There
are important similarities in a number of reward learning methods, which will be highlighted.

In the first section, different methods to interact with an expert are explained. Two different
methods of using the expert as a source of information are described. After that, the reward
function will be revisited in Section 3-2. We continue by explaining the inverse reinforcement
learning approach briefly in Section 3-3. In the last section we will outline the basic algorithm
of Active Reward Learning (ARL).

3-1 Expert reward learning

In order to obtain a suitable reward function without manual programming, an expert can
be used. This expert does not have to be a programmer, it can be a human or robot that
knows how to execute a specific task very well. In literature, two methods to obtain a reward
function are studied: learning by expert example and learning by expert feedback.

3-1-1 Example trajectories

Since the resulting policy of any RL agent is based on optimizing the reward function, exam-
ples of well executed trajectories contain information about the underlying reward function.
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16 Reward learning

We can use an expert to provide us with (sub-) optimal examples trajectories to teach a move-
ment to an RL agent. Such an example trajectory can be written as a sequence of state-action
pairs. Usually, a batch of these trajectories is gathered: TE = {τ1, ..., τm}.

There are several ways expert trajectories can be obtained in practice as described in [19].
Four categories of gathering expert trajectories can be distinguished:

Teleoperation An expert operates the robot via teleoperation. The measurements from the
robot joints or end effector can directly be used as examples trajectories. No mapping is
needed from the state-space of the teacher to the robot, which is the reason this method
is often used. However, teleoperation requires that operating the robot be manageable,
which can be problematic for some systems. For example, if we want to record joint
motion on a robotic arm which happened to have more joints than a human arm.

Shadowing While an expert demonstrates a certain behavior, the robot tries to mimic the
movement. As with teleoperation, the measurements from the robot can be used as
example trajectories. In this approach, the quality of the expert examples is limited to
the accuracy of the mimicing algorithm used.

Sensors on teacher The human expert demonstrates a specific movement with sensors at-
tached to its body. This data must be mapped to the joint or end effector space of the
robot, before it is used as example trajectory.

External observation An expert demonstrates a certain behavior without any sensors at-
tached. The robot tries to extract the state/actions from external observations, such
as a camera. In this case, a mapping must be made from the external sensors to the
state-action space of the expert as well as a mapping from the state-action space of the
teacher to the robot.

The obtained batch of expert trajectories TE can be used for reward function extraction. This
approach, known as inverse reinforcement learning, is described in more detail in Section 3-3.

3-1-2 Expert queries

As explained in the previous section, obtaining high quality example trajectories can be
problematic in practice. However, there are more ways we can extract information from the
expert as human experts are able to distinguish desired and undesired behavior. According
to Miller [20], several studies have shown that the capacity for a human to judge different
stimuli, the so called channel capacity, is between 1.6 and 3.9 bits for a two dimensional
representation.

A safe option would be let the expert distinguish trajectories in a binary fashion, only giving
the expert the options “better” or “worse” on a pair of rollouts. Since this setting operates
below the channel capacity, the expert would always succeed. However, such a setup would
only give one bit of information for two demonstrations, which is extremely low. In this work,
demonstrations are rated in a scale of the expert’s choice, displaying the previous ratings in
the background to maximize the expert’s channel capacity (see Section 6-1-2).
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3-2 Reward function structure 17

Instead of using a set of example trajectories, the active reward learning algorithm uses a
dynamic set of demonstrated trajectories and their respective expert rating:

D = {{τ1, RE1} , ..., {τm, REm}}

This approach has been studied in order to teach a grasping task to a KUKA lightweight
arm [7]. Chapter 4 will describe this method in more detail.

3-2 Reward function structure

Before we describe the various methods that can achieve reward learning, we review the
approximation techniques that are used to construct the reward function. Since we cannot
consider an infinite space of possible reward functions, simplifications must be made regarding
the structure of the reward function.

3-2-1 Discrete reward table

In discrete MDPs, there is the option of defining a reward value for each possible state of
the MDP r(xi) = ri,∀xi ∈ X. These reward functions are agnostic about the underlying
dynamics of the reward function [18] [21]. Usually, the resulting reward functions assign a
high value for a small set of highly desirable state, whilst assigning zero or near zero reward
for the rest of the state space.

3-2-2 Linear combination of features

When a reward value must be assigned for each state in an MDP, the number of optimiza-
tion variables for a reward learning algorithm can grow out of proportion. For continuous
state-space MDPs this approach is impossible. Besides that, the underlying dynamics for
the reward function remain unknown after learning the reward function. Both disadvantages
can be alleviated by the introduction of candidate reward functions, also referred to as fea-
ture functions. Inspired by the task at hand, several feature functions can be constructed as
φ(x,u), where each element of vector φ is a different candidate reward function. In order to
obtain an approximation of the true reward function, we define a weight vector w and con-
struct the reward function as a linear combination of feature functions r(x,u) = wTφ(x,u).
Using a linear combination of feature functions and weights reduces the reward learning prob-
lem to finding the optimal weight vector w. This approach is applied in most IRL algorithms,
both in discrete and continuous state-space [22].

3-2-3 Non-linear function of features

Besides using a linear combination of features as a reward function, some IRL methods use
non-linear function approximators. For example, Dvijotham uses adaptive radial basis func-
tions in state-space to construct a value function. From this value function a reward function
is derived using the Hamilton-Jacobi-Bellman equations [23].
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Several works use Gaussian Processes (GPs) to model a non-linear relation between features
and reward in different ways. For instance, Levine et al [24] use this model to learn a function
between the features at a certain state and the reward at that state r(x,u) = GP(φ(x,u)).
In discrete MDPs, it is possible to model a different reward function for each possible action
in the action space. Following this approach, a GP for each action u ∈ U can be trained that
maps states to rewards rui(x) = GP(x)ui∀ui ∈ U [25].
Instead of modeling a reward for each state, it is also possible to model the a non-linear
relation between the features and the return of complete trajectories. The active reward
learning technique described in [7] uses a GP to learn such a relation R(τ ) = GP(φ(τ )), since
in active reward learning the return of demonstrated trajectories is given by the expert.

3-3 Inverse reinforcement learning

In literature, learning from expert examples is shown in several different methods. Some meth-
ods that try to recover the relation between states and actions, based on expert examples, are
known as apprenticeship learning methods. Applications used to demonstrate apprenticeship
learning include a pendulum swing-up task [26], segway control [27], grasping tasks [28] and
an egg flipping task [29]. One disadvantage of this approach is that the resulting policies do
not generalize over changing environments.
If we want to teach a RL agent a specific task, a well defined reward function should be
sufficient, regardless of the environment. Inverse reinforcement learning methods use the
concept of apprenticeship learning to achieve reward learning by using expert demonstrations
to extract a reward function.

3-3-1 IRL problem statement

The goal of inverse reinforcement learning is to create a reward function based on expert
examples. This process can be divided into two parts: example acquisition (see Section 3-1-1)
and reward function deduction. In general, the approach of the second part is to come up with
a reward function such that the example trajectories are the optimal solution of a standard
RL problem.
It can easily be observed that any reward learning problem, including inverse reinforcement
learning and active reward learning, is ill-posed. Multiple reward functions exist that return
an optimal reward for the set of examples TE . For example if we consider a reward function
for which r(x,u) = 0 for each state and action, any trajectory in state-action space is an
optimal trajectory and therefore this reward function is always a valid solution of the inverse
reinforcement learning problem. It can also be observed that the solution of a RL problem
is invariant under a reward function scaling. So for each reward function r there exists an
infinite set of reward functions r∗ = c · r which will share the same optimal policy.

3-3-2 Maximum margin planning

Several IRL algorithms have been developed over the years, all of which try to enforce a unique
reward function as result. There is no standard formulation to describe the optimization
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problem of IRL. Each method defines what it considers to be a “good” resulting reward
function differently.

For instance the max-margin planning method tries to maximize the gap between the reward
of the expert examples (the optimal solution) and all other possible policies [30]. In a discrete
state-space MDP, this optimization problem can be solved using a gradient descent method.
A more advanced method called LEARCH [31], by the same authors extends this method
to incorporate non-linear reward functions as well. Applications using this approach include
route planning for an autonomous vehicle, quadrupedal locomotion planning and a grasping
task. All of these problems are solved as a planning problem in discrete state-space.

3-3-3 Bayesian IRL

Other IRL methods take a stochastic approach for defining a good reward function. In this
group of methods, the expert examples are seen as evidence that the reward of these trajec-
tories should be high. Using this line of thought we can construct probability distributions as
such: P (r|TE). This is the probability of reward function r being the “true” reward function
given the set of expert examples TE . If we can calculate or approximate this probability,
we can define the IRL problem as to maximize this probability with respect to the reward
function maxr [P (r|TE)]. In this class of methods, the reward function is modeled as a vector,
containing a reward value for each state in discrete state. We can use Bayes’ rule to expand
the objective function, transforming it into a maximum a posteriori. This is the reasoning
behind the Bayesian IRL method [21] and Preference Elicitation IRL [32]. The latter method
is extended to a multi-task IRL algorithm [33].

3-3-4 Entropy based IRL methods

In contrast to Bayesian probability algorithms, entropy based IRL methods reverse the rea-
soning of the stochastic IRL problem. Instead of maximizing the probability of a reward
function under condition of the examples, entropy based methods maximize the probability
of the examples under condition of a reward function P (TE |r). More specifically, the entropy
of this distribution is maximized under certain constraints: max log(P (TE |r)) [34]. The re-
ward model in this case is modeled as a linear combination of feature functions, r = wTφ(x),
so we are looking for the optimal w. This optimization problem can be solved using the
gradient of the cost function, which can be obtained using the visiting frequencies of each
state in discrete state space per trajectory. An interesting extension to this method is rela-
tive entropy IRL [35]. This method minimizes the relative entropy between two probability
distributions of P (τ ) and Q(τ ), where P (τ ) is the new distribution under reward r and Q(τ )
is the distribution of a baseline policy. There are some reasons to prefer the relative entropy
method over the maximum entropy method, the most important being that relative entropy
IRL is a model-free method.

3-3-5 Non-linear IRL

Besides Bayesian and entropy based methods, several other works have been published about
IRL. These methods often use non-linear models to construct the resulting reward function.
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For linearly solvable MDPs, an IRL method is developed that derives the reward function
from the value function [23]. It is possible to learn a value function with adaptive radial
basis functions and using the Hamilton-Jacobi-Bellman equations we can calculate the reward
function accordingly. The inference method of this technique is very similar to maximum
entropy IRL, since the probabilities of expert trajectories being taken by a RL agent is
maximized: maxw logP (TE |w), where w are the parameters of the radial basis functions.

Other non-linear IRL methods primarily use Gaussian processes to model the reward function.
In discrete MDPs, this is done in a Bayesian setting [25]. In this particular method, there
exists a GP for each action in U . Each GP gives the reward of taking their corresponding
action u, given a state x. The training points for the GP are constructed using a preference
graph.

In continuous MDPs, no finite set of GPs can be constructed to represent the reward function.
Instead, we can use feature functions and train a GP to map the features to rewards r(x,u) =
GP(φ(x,u)) [24]. In order to construct a GP that is capable of doing this, we need a set of
training points {{φ(x1,u1), r1}, ..., {φ(xm,um), rm}}. As inputs for our training set we can
take points along the example trajectories plus a few random points in state-action space.
The corresponding rewards for these points {r1, ..., rm} along with all the hyper parameters
of the GP itself are the parameters that we optimize for. The inference distribution is similar
to the maximum entropy method. We can use the LFBG method to solve this optimization
problem.

3-3-6 IRL in robotics

Not many IRL methods have been implemented in robotic applications yet. The vast ma-
jority of publications use discrete grid worlds to compare their respective results with other
methods. However, there are interesting applications outside the field of robotics where in-
verse reinforcement learning showed nice results. A comparative study over IRL methods,
showed that IRL can recover the reward of decision making problems very well by learning
the strategies of table tennis players [36].

There are multiple reasons for the lack of applicability in continuous applications. First
off, the vast majority of IRL methods require solving the forward RL problem for every
iteration, which is either an intense computational burden in simulators. If there is no model
or simulator available, such an approach is unfeasible because real-life rollouts are very costly
to perform, both in terms of hardware (which can break) as in computation time (rollouts
are very slow). One IRL method is an exception to this rule: the PI2 variant of maximum
entropy IRL [37].

The second disadvantage, which is apparent in most IRL methods, is the need of a model.
Usually, modeling the environment of a robot is costly, moreover the environment can change
over time. Also, by using a model for learning the reward, one of the biggest advantages of
RL is canceled out.

The last disadvantage of the IRL approach is inherent to its use of expert examples. In real
life applications, expert examples are often imperfect or incomplete, only a sub optimal policy
is available. For most IRL methods, the example trajectories are considered as the correct
behaviors. However, only a notion of what is the correct behavior limits the information for
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the agent. In many tasks, examples of failed attempts can be at least as valuable if the RL
agent learns how to actively avoid this behavior.

3-4 Active reward learning

As mentioned before in Section 3-1, the active reward learning method is based on learning
a return function from expert ratings. In this method, a non-parametric model is used to
map the feature functions φ to reward values, using the expert ratings as training samples.
Another important aspect of active reward learning with respect to inverse reinforcement
learning is that in active reward learning, both the return function as well as a (sub) -optimal
policy is learned in hybrid fashion.

3-4-1 Reward model

The return function used in active reward learning is modeled as a Gaussian process, a non-
parametric statistical model [38]. Gaussian processes can be used to learn non-linear relations,
in case of active reward learning, to learn a relation between feature functions and return:
R(τ ) = GP(φ(τ )). We will use the expert ratings obtained in demonstrations as learning
samples for the reward model. The GP reward model can give an estimate for the return of
non-demonstrated trajectories, which we need for learning the policy, as well as an indication
of the variance for this estimate. The latter is particularly handy for the ARL algorithm to
determine which rollouts are interesting for expert querying.

3-4-2 Forward learning method

Since the reward model only gives a return according to a complete trajectory, this has
implications for the forward RL method that we can use in combination with active reward
learning. In fact, only black-box policy learning techniques can be used within active reward
learning [7].
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Chapter 4

Active reward learning

The active reward learning method [7] is a relatively recent machine learning algorithm de-
signed to learn a return function using expert feedback. In this chapter, the active reward
learning algorithm will be explained in detail.
In Section 4-1, we will first present the basic ARL algorithm, to give a good overview of this
method. After that, we will specify how the different parts of this algorithm work in detail. In
Section 4-2 we explain the reward model of the ARL method in more detail. The statistical
inference model that we use, the Gaussian Process (GP), will be introduced after that in
Section 4-3. We will elaborate upon the details of using this inference method to our purpose
as well. We will finish this chapter in Section 4-4 by explaining how the query acquisition
method works.

4-1 Basic ARL algorithm

In Algorithm 2, the basic algorithm of active reward learning is illustrated. As can be seen
in the pseudo-code, the algorithm starts by initializing a basic policy and an initial reward
model. Several methods exist to initialize the initial policy, such as random initialization,
zero initialization or using prior knowledge. In this work we choose to use zero initialization,
which means that all policy parameters in θ0 are zero. In order to initialize the reward model
we sample a number of rollouts using the initial policy and demonstrate result to the expert.
We collect the set of rated rollouts in the initial demonstration set D0 which will be the basis
for the initial reward model.
After that, an iterative procedure begins which include three steps: sampling, reward update
and policy update. In the first step, a number of rollouts are sampled (line 6). This procedure
is similar to lines 6-9 in Algorithm 1. Several different trajectories are produced, based on a
policy parameter θ using a different exploration noise vector εk for each rollout. The resulting
trajectories {τ1, .., τK} are collected in a set of samples T .
In the second part of the iteration, lines 8-17, we investigate if any of the sampled rollouts in
T are worth demonstrating. As will be described in Section 4-4, we will use an acquisition
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function to determine which rollouts are interesting for demonstration. This acquisition func-
tion will return a high value for interesting trajectories. If the highest obtained acquisition
value is above a certain threshold λa we will ask the expert to rate this rollout. Subsequently
we will update the reward model and repeat the procedure until there are no more rollouts
interesting enough to demonstrate.

In the last step of the iteration, lines 19-21, the return of each trajectory in T is calculated
according to the reward model. After that a policy update is executed according to our
forward reinforcement learning algorithm (see Algorithm 1 lines 13-18).

Algorithm 2 Basic ARL pseudo code
1: initialize policy π(θ0)
2: initialize reward model D = D0
3:
4: while not converged do
5: Sample K rollouts
6: T = {τ1, ..., τK}
7:
8: FindNominee = true
9: while FindNominee do

10: Nominated outcome:
11: τ+ = arg maxτ∈T u(φ(τ )) (See Section 4-4)
12: if τ+ /∈ D ∧ u(φ(τ+)) > λa then
13: Demonstrate τ+ to expert. Retrieve RE+

14: D = D ∪
{
φ(τ+), RE+

}
15: Optimize GP hyper parameters (See Section 4-3-3)
16: else
17: FindNominee = false
18:
19: Calculate return trajectories T
20: R(τ ) = GP(φ(τ )|D), ∀τ ∈ T
21: Update policy π(θ) (See Section 2-3)

4-2 Reward model

The reward model is a very important entity in the active reward learning method. It is used
to describe a mapping between a trajectory τ and its return R(τ ). We would like this mapping
to approximate the expert ratings over a trajectory as close as possible R(τ ) ≈ RE(τ ).

In Figure 4-1, the layout of the reward model according to [7] is illustrated. As can be seen,
the reward model will not use the information present in trajectory τ the directly. Instead, we
will define a number of reward features φ(τ ), which can be seen as candidate reward functions.
The outcomes of all reward features are collected in vector φ which is subsequently used as
an input for a Gaussian process (see Section 4-3). The Gaussian process approximates the
return R(τ ) of trajectory τ based on the outcomes φ of the feature functions. Using feature
functions reduces the dimensionality of the inputs of the GP, which is necessary to make the
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reward learning problem feasible. In Chapter 5 we will extend the overall layout of the reward
model to include time segmentation into the reward model.

feature block GP
τ φ(τ ) R(τ )

Figure 4-1: Reward model layout viewed schematically.

4-3 Gaussian process

We will use a Gaussian process [38] to identify the mapping between reward features φ and the
return over a trajectory. We assume that there is a relation f between the feature outcomes φ
and the return over the trajectory R(τ ). We can only observe this mapping by demonstrating
a certain trajectory τ and obtaining a rating for this rollout by the expert:

RE(φ(τ )) = f(φ(τ )) + εE ,

where RE is the experts’ return and f is the unknown return function. This mapping is
disturbed by expert rating noise εE , which is considered to be a zero mean Gaussian white
noise with standard deviation σE .
For notation simplicity, we will refer to φ(τ ) as φ. In the demonstration set D, we have a
number of demonstrated trajectories with their respective feature outcomes and ratings. We
can collect the feature outcomes of all trajectories in D to form a matrix Φm =

[
φm1 · · ·φmn

]
.

Also, there is a set of input inference points Φ∗ at which we would like to know the return.
Similarly, we will refer to an expert rating RE(φ) simply as Rm. The set of measured ratings
present in D can be collected into a vector Rm =

[
Rm1 · · ·Rmn

]T
.

In order to identify the mapping described above, a Gaussian process is used, which is a sta-
tistical non-parametric model. The mathematically correct description of a GP is as follows:

Definition 1. A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution [38].

However a more intuitive definition is to describe it as a distribution over functions. From this
distribution, the most likely function, called the posterior mean function, can be evaluated at
inference points which gives us an approximation of the mapping at those points. Besides pro-
viding the most likely value at some inference points, GPs can also provide the approximated
variance at these inference points, expressed in the posterior covariance function.
In order to construct this distribution, a number of assumptions have to be made. First off,
we have to design a prior covariance function in which we will specify what class of functions
we consider and which functions to rule out. Optionally, we could define a prior mean function
which tells the GP which function within the considered set is the most likely.
Finally we need a set of training points, in our case the set of demonstrations D. Based on the
prior assumptions and the set of training points, the posterior distribution can be calculated
(see Section 4-3-2).
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4-3-1 Prior functions

The design of a GP is determined for the most part by the choice of prior functions. In
the construction of the prior mean and prior covariance function we incorporate all prior
knowledge about the mapping that we would like to identify with the GP.

Prior covariance function The covariance function, also known as the kernel, that we choose
determines what class of functions we consider likely by the mapping that we are looking for
and eliminates all other possible functions. Since we do not have any prior knowledge of
the return function, we cannot be too restrictive in our choice. If we choose the squared
exponential covariance function, we still have a broad class of function under consideration,
namely all differentiable functions. The squared exponential covariance function is defined as
follows:

k(φ,φ′) = λ2
f exp

(
−1

2
(
φ− φ′

)T Λφ

(
φ− φ′

))
(4-1)

The covariance function relates two input vectors φ and φ′ to a measure of correlation. In
case of the squared exponential function, we can easily observe that input vectors that are
close to each other obtain a high value.
Equation 4-1 also contains a few constants, namely λ2

f and matrix Λφ. These constants are
called hyper parameters. The so called signal variance, λ2

f , reflects how much variance is
present in the mapping itself. Setting a high value for λ2

f indicates that we expect a high
level of variation in the function.
Matrix Λφ is a diagonal matrix, whose elements represent length scales.

Λφ =


λ−2
φ1

0 · · · 0
0 λ−2

φ2
· · · 0

...
... . . . ...

0 0 · · · λ−2
φn


There is a length scale λφi

present in Λφ for every input dimension. The value of each
λφi

indicates how much we expect that particular input dimension to have influence on the
mapping.
Let us assume that we have two sets of input vectors stored in a matrices Φm and Φ∗. The
covariance matrix of according to Φ would look as such:

K(Φm,Φ∗) =

k(φm1 ,φ∗1) · · · k(φm1 ,φ∗n∗)
... . . . ...

k(φmn ,φ∗1) · · · k(φmn ,φ∗n∗)

 (4-2)

In order to simplify notation we will refer to K(Φm,Φ∗) as Km∗. Furthermore we will refer
to its transpose variant as K(Φ∗,Φm) = K∗m = KT

m∗. We also need a covariance matrix
which correlates the individual measurement points with each other: K(Φm,Φm) = Kmm.
The last covariance matrix we need is one that correlates the inference points with each other:
K(Φ∗,Φ∗) = K∗∗.
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Prior mean function Besides choosing a prior covariance function, a prior mean function
also has to be chosen. The prior mean function indicates what function we find to be the most
likely. As we do not have any knowledge of the relation between the features and the return,
we cannot specify any function to be the most likely a priori. This can easily be specified by
setting the prior mean function as a zero function: µ(φ) = 0.

Prior measurement noise variance The last prior element we need to determine is the
measurement noise variance. In case our application, this hyper parameter directly represents
the expert rating noise σE . As before, we do not take into account any prior knowledge about
this value, since we do not know anything about the expert beforehand. However, as we will
see in Section 4-3-3, we can approximate this hyper parameter on the fly, using the set of
demonstration data we collect during learning.

4-3-2 Posterior functions

Now that we have determined our prior mean and covariance function, we can construct the
posterior function distribution. We assume for now that we have the correct hyper parameters.
In order to compute a posterior distribution, we must apply Bayes’ rule:

P (Hypothesis|Evidence) = P (Evidence|Hypothesis) · P (Hypothesis)
P (Evidence)

Where the left side term, also called the posterior, is the distribution we want to obtain. In
the nominator, two terms are present: the likelihood and the prior. The denominator term
is called the marginal likelihood.

Let us assume that we have a set of demonstrations D = {Rm,Φm} at our disposal and
we would like to know the posterior distribution of some set of inference points {R∗,Φ∗}.
According to Bayes’ rule, we should solve the following:

P (R∗|Φ∗,Rm,Φm) = P (Rm,Φm|R∗,Φ∗) · P (R∗,Φ∗)
P (Rm,Φm|Φ∗)

According to Bayes rule we can thus merge the prior assumptions with our measurement data
to obtain a posterior distribution. If we assume that our measurement data is recorded with
a zero mean Gaussian measurement noise, the posterior is again a Gaussian distribution

P

([
Rm

R∗

]
|Φ∗,Rm,Φm

)
∼ N

([
µm
µ∗

]
,

[
Σmm Σm∗
Σ∗m Σ∗∗

])
.

As can be seen, the posterior of a Gaussian process provides an estimate of the inference points,
expressed in µ∗ as well as an estimate of the accuracy, expressed in covariance matrix Σ∗∗.
The values for µ and Σ can be expressed in terms of the prior functions and the measurement
values
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[
µm
µ∗

]
=
[
Kmm(Kmm + ΣE)−1Rm

K∗m(Kmm + ΣE)−1Rm

]
(4-3)[

Σmm Σm∗
Σ∗m Σ∗∗

]
=
[
Kmm(Kmm + ΣE)−1ΣE ΣE(Kmm + ΣE)−1Km∗
K∗m(Kmm + ΣE)−1ΣE K∗∗ −K∗m(Kmm + ΣE)−1Km∗,

]
(4-4)

where ΣE is a diagonal matrix expressing the expert noise variance ΣE = σ2
EI.

4-3-3 Hyper parameter optimization

So far, we assumed that we knew the true values of each hyper parameter we use. In general,
this is not the case. The choice of hyper parameter value is important when using GPs for
inference. If the values of the hyper parameters are not chosen carefully, the data fit can turn
out be really poor. For some choices of hyper parameters, the data fit can also be too strict.
In that case, the prediction on inference points have poor results as well because the GP is
overtrained.

There are several hyper parameters we need to determine: λf , Λφ and σE . For simplicity, we
will write these hyper parameters as ξ.

Since we cannot calculate the “true” hyper parameters, we look at which combination of
hyper parameters is the most likely, based on the set of training points in D. We can express
the likelihood of ξ, as an optimization problem

max
ξ
P (ξ|Rm,Φm).

Using Bayes’ rule we can write this as probability as follows:

P (ξ|Rm,Φm) = P (Rm|ξ,Φm) · P (ξ|Φm)
P (Rm|Φm) . (4-5)

Since the marginalization term in the denominator does not depend on ξ, we can simply
ignore it. In the nominator we find a likelihood term P (Rm|ξ,Φm) and a prior probability
P (ξ|Φm). If we examine the likelihood term, we find that it equals the posterior distribution
of the GP using ξ as hyper parameter. Finally, if we look at the prior probability P (ξ|Φm),
we first observe that we can ignore Φm, since the probability of our hyper parameters being
likely does not depend on the measurement inputs. If we assume the probability for each set
of hyper parameters P (ξ) is equal, this term can be treated as a constant in our optimization
problem. We can thus express our posterior distribution as follows:

P (ξ|Rm,Φm) ∝ 1√
|2π(Kmm + ΣE)|

exp
(
−1

2R
T
m(Kmm + ΣE)−1Rm

)
Maximizing over this expression directly is difficult, due to the exponential term. However,
taking the logarithm of this expression does not change the optimization problem. Doing so
results in the following:
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log(P ) ∝ −nm2 log(2π)− 1
2 log |Kmm + ΣE | −

1
2R

T
m(Kmm + ΣE)−1Rm (4-6)

The first term in (4-6) is a normalization constant. Because this term does not depend on
ξ, we can ignore it during optimization. The last term is called the data fit, which denotes
how well our hyper parameters can explain the observed data. We could easily maximize this
term by giving Kmm + ΣE extremely high values. This comes down to assuming so much
noise that every kind of measurement fits within the model. To prevent this from happening
during optimization, the second term penalizes high values for Kmm + ΣE . This term is
called the complexity term. If we combine the data fit term and the complexity term into
our optimization function, we are able to obtain ξ for which the data fit is as high as possible
with a low risk of overfitting.

We can maximize the above mentioned optimization function using a gradient descent ap-
proach. Since we chose a prior covariance function which is differential with respect to its
hyper parameters, we can take the gradient of our cost function analytically. To be more
specific, we use the Polak-Ribiere flavour of conjugate gradient descent [39] in combination
with a line search method to optimize for ξ.

4-4 Demonstration acquisition

An important aspect of the ARL method is the decision whether or not the reward model
needs to be improved by querying the expert. In order to sufficiently learn the return function,
enough expert queries are necessary, but we would like to keep the number of expert queries
to a minimum, as it would be too costly to learn movements. In each iteration a batch of
rollouts is sampled (see Algorithm 2). If there are rollouts present in this new batch that
are interesting for the reward model, we should demonstrate this rollout for the expert. The
ultimate goal of active reward learning is to reach the optimum of an unknown return function
by strategically selecting points of function evaluation (expert queries). This problem is also
known as Bayesian optimization.

The decision whether or not to query the expert is captured in the acquisition function
u(φ(τ )). The acquisition function maps the features of a rollout to a number which indicates
how interesting this particular rollout is for querying: u : τ → R. According to this value
we can decide whether or not to demonstrate a particular rollout. In case of active reward
learning, we will only demonstrate rollouts whose acquisition value is higher than a certain
threshold, provided that we did not already query that particular rollout.

The GP provides us with some useful information regarding the return of new rollouts. First
off, the GP provides a “best estimate” of the return of a rollout in the form of the mean
function: µ(φ(τ )). Besides that, the GP also provides an estimate of its own variance:
σ(φ(τ )). We can interpret the variance as a confidence level of the accuracy of the model.

A number of different acquisition functions have been proposed in literature in the field of
Bayesian optimization [40].
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Probability of Improvement (PI) This acquisition function chooses the rollout that has the
highest probability of improvement, according to a normal probability distribution [41]. If
we denote µ+ = maxτ∈T µ(φ(τ )), the probability of improvement can be defined using the
normal distrubtion: P (µ(φ(τ )) ≥ µ+) = Φ

(
µ(φ(τ ))−µ+−ξ

σ(φ(τ ))

)
. Where the variable ξ denotes an

exploration parameter and Φ denotes the normal cumulative distribution function.

Expected Improvement (EI) Instead of maximizing the probability that the cost function
will improve, the expected improvement focuses how much the cost function will improve.
This subtle difference results in an acquisition function that is a little less greedy in its search
towards optima than PI. If we define d = µ(φ(τ )) − µ+ − ξ, we can work out an expression
for expected improvement as such:

u(φ(τ )) =
{
dΦ(d/σ(φ(τ ))) + σ(φ(τ ))φ(d/σ(φ(τ ))) if σ(φ(τ )) > 0
0 if σ(φ(τ )) = 0

(4-7)

Where the function Φ(·) and φ(·) denote the CDF and the PDF of the normal distribution.

Upper confidence bound (UCB) The upper confidence bound acquisition function uses the
mean and standard deviation directly to define the acquisition value: u(τ ) = µ(φ(τ )) +√
vβσ(φ(τ )). Where v denotes a hyper parameter and β is used as a learning rate variable.

GP Hedge The GP Hedge acquisition function is built upon a portfolio of different acquisi-
tion functions. It basically combines the results of PI, EI and UCB in order to give the best
estimate of u(τ ). This method, along with the above mentioned methds work well in the
field of Bayesian optimization. However, in the next section a specific acquisition function,
designed for ARL, will be explained.

4-4-1 Expected policy divergence

The above mentioned acquisition functions work well for Bayesian optimization problems.
However, the active reward learning differs slightly from Bayesian optimization problems.
This difference has been exploited to create a novel acquisition function designed for active
reward learning: Expected Policy Divergence (EPD) [7]. If we look at the Bayesian optimiza-
tion acquisition functions, one assumptions holds for all: the main purpose is to optimize the
objective function (return function in our case). In case of active reward learning, we are not
primarily interested in the return function but also in the resulting policy. Taking the policy
into account makes sense when designing an acquisition function. We should not demonstrate
any rollouts if the expected effect on the policy is very small.
In Figure 4-2 a visual representation of the steps taken in expected policy divergence is
shown. We start with a set of trajectories T , one of which, τ , we would like to evaluate in
the acquisition function. Furthermore, we have a set of demonstrated trajectories D on which
the reward model is based and a policy π.
First off we calculate the return of each trajectory in T according to the current reward
model. We can collect the feature outcomes of all trajectories in T in matrix Φ(T ) and

R. M. Olsthoorn Master of Science Thesis



4-4 Demonstration acquisition 31

use these outcomes as inference points for the GP. Furthermore, we will use the following
notation GP(Φ(T )|D) to describe the calculation of the return, using the features of set T
as inference points and the demonstrations in set D as training points. We will denote the
vector of resulting returns from the reward model GP(Φ(T )|D) as R̃. After obtaining the
return for each trajectory, we can use the update rule of the reinforcement learning agent to
calculate the resulting policy, which we will call π̃.

After evaluating the unmodified policy update, we investigate at what happens if trajectory
τ is queried. If we evaluate the GP for this particular rollout GP(φ(τ )|D) we receive µ(τ )
and σ(τ ), the posterior mean and variance. The posterior mean µ(τ ) can be interpreted as a
“best estimate” of the return while the variance can be interpreted as the “confidence” that
we have that this is the correct return. It also tells us what rating we expect the expert to give
trajectory τ . From this information we determine two sigma points: s+ = µ+σ, s− = µ−σ.
We can extend the current set of demonstrations with one of these sigma points to obtain a
new, extended reward model. After extending the reward model we evaluate the extended
GP for each trajectory in T to obtain the return vector R∗ = GP(Φ(T )|D∗). We can also
calculate the resulting policy according to the new return values, denoted by π∗. Now that we
have the two different policies we want to compare, we calculate Kullback-Leibler divergence
(see Section 4-4-1) over the resulting policies π∗ and π̃. Note that we repeat this procedure
twice, since we have two sigma points to evaluate and take the average result as final value
for u(τ ).

compare

RL policy
update

GP(Φ(T )|D)
calculate reward
all trajectories

RL policy
updateGP(Φ(T )|D∗)

calculate reward
all trajectories

D∗ = D ∪ {µ± σ, τ}
extend reward model
with sigma points

GP(φ(τ )|D)

calculate return τ

T

τ

π̃

R̃

π∗

R∗µ, σ D∗

u(τ )

Figure 4-2: Expected policy divergence viewed schematically

Policy comparison Since we use a stochastic policy, it makes sense to compare the two
resulting policies π∗ and π̃ using a stochastic measure. A commonly used method for compar-
ing two stochastic variables is the Kullback-Leibler divergence [42]. This measure represents
the relative entropy between two probability distributions. We would like to maximize the
expected value of the KL divergence between π∗ and π̃:
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E
P (R|τ ,D)

DKL(π(θ)∗||π̃(θ)) =
∫∫

π∗(θ) log
(
π∗(θ)
π̃(θ)

)
dθdR.

Unfortunately, we cannot solve this integral in closed form. Instead we have to resort to sample
based methods. However, we should avoid Monte-Carlo sampling to solve this particular
problem as sampling is a very expensive operation in our application. Instead we will use the
limited set of samples we already obtained. We could for example use the policy samples θi
that were used in sampling the rollouts in T , to compute a sample-based approximation:

KL(π∗(θ)||π̃(θ)) ≈ 1
N

N∑
i=1

π∗(θi)
π(θi)

log π
∗(θi)
π̃(θi)

.

In this approximation, we denote π as the original policy, where the samples were drawn
from. We use importance sampling to correct for the sampling bias. This approximation can
be numerically unstable, especially when the number of parameters in θ is high (e.g. greater
than 20).

Another alternative is to assign a weight γi each sample in T and calculate the Kullback-
Leibler divergence directly over the weights. We denote γ̃i as the weight used for trajectory τi
in the policy update. Similarly, we denote γ∗i as the weight for trajectory τi in the alternative
policy update. The PIBB algorithm already provides such a weight for us, which is given in
Equation (2-3-3).

Combining the weights of γ∗ and γ̃ leads to the following approximation of the Kullback-
Leibler divergence:

KL(π∗(θ)||π̃(θ)) ≈
N∑
i=1

γ∗i log γ
∗
i

γ̃i
.

4-5 Summary

In this chapter we have described the active reward learning method [7] in detail. The ARL
algorithm achieves reward learning and policy in a hybrid setting by updating both the reward
model and the policy each iteration.

In order to achieve reward learning we use a Gaussian process, a regression technique that is
both able to estimate a function value as well as the variance of its estimate. A set of feature
functions must be created to reduce the dimensionality of the GP input.

Every iteration, the acquisition function is evaluated for each sampled rollout, in order to
determine which samples are interesting for demonstration. In each evaluation of the acqui-
sition function we obtain the variance of the reward estimate from the GP. This variance
is then used to calculate whether we expect the policy of the reinforcement learning agent
to change if we would demonstrate the respective sample. Only samples that obtain a high
acquisition value are demonstrated.

R. M. Olsthoorn Master of Science Thesis



4-5 Summary 33

After updating the reward model, the Gaussian process is evaluated for every sampled rollout
to calculate the return. After that, the policy of the reinforcement learning agent is updated
according to the PIBB update rules.

In Chapter 5, we will adapt the algorithm described in this chapter by including trajectory
segmentation. Two new algorithms will be derived, both able to distinguish relevant segments
of the trajectory. In the first adaptation of active reward learning, the segmentation will be
accomplished by assigning a group of feature functions for each segment. In the second
algorithm, a separate GP will be constructed for each different time segment that we define.
Using different GPs for each time segment allows for segment specific expert ratings.
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Chapter 5

Segmented active reward learning

In this chapter we will extend the active reward learning algorithm by including trajectory
segmentation. Furthermore, we will design two novel algorithms able to learn tasks defined
in end effector space purely based on expert feedback. The first Segmented Active Reward
Learning (SARL) algorithm implements trajectory segmentation by creating a group of fea-
tures for each defined segment. The resulting groups of features are used as input for a single
Gaussian process, which should be able to distinguish important segments from unimportant
ones. In the second algorithm we extend this algorithm even further by constructing a differ-
ent GP for each defined segment. By using multiple GPs in a reward model we can implement
segment specific demonstrations.

This chapter is divided into two main parts. In Section 5-1, a novel adaptation of active
reward learning will be described. This section explains how we can implement trajectory
segmentation by creating separate groups of feature functions in order teach simple end effec-
tor tasks introduced in Section 1-1. In the second part of this chapter (Section 5-2), we built
upon the algorithm described in Section 5-1 to create another novel active reward learning
algorithm. We will use the same feature segmentation presented in Section 5-1 and extend
the reward model to include multiple GPs. Furthermore, we describe an acquisition function
that selects interesting trajectory segments for demonstration.

5-1 Trajectory segmentation using feature grouping

In this section we will introduce an adaptation to the ARL method, designed to learn end
effector tasks described in Section 1-1. We will introduce trajectory segmentation based on
time segments in Section 5-1-1. After that, we introduce the feature functions designed for
our application in Section 5-1-2. In this section a new layout of the reward model will be
shown as well, introducing groups of features for each specific time segment. Apart from the
feature functions and the reward model layout, the basic algorithm of active reward learning
does not have to be adapted for this new setup to work, so we can reuse Algorithm 2 (Section
4-1) as well as the EPD acquisition function (Section 4-4-1).
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36 Segmented active reward learning

5-1-1 Trajectory segmentation

One property of the end effector tasks described in Section 1-1 is that not all parts of the
trajectory are important. In order to exploit this feature, we introduce time segmented
trajectories. We assume that we cannot use any prior knowledge indicating which points in
time are relevant. Instead we will create a specific number of segments ns, and divide the
trajectories into equidistant parts in time (see Figure 5-1).
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Figure 5-1: Example of equidistant time segmentation.

We can distinguish ns different trajectory segments denoted as τ (1), ..., τ (ns).

5-1-2 Segment specific feature functions

Feature functions are candidate reward functions that we use to simplify the reward learning
problem, as discussed in Section 3-2. In order teach the robot end effector tasks, we need
to design a number of feature functions that give relevant input information to the GP. We
assume that we cannot program task specific parameters into our feature functions. For
example if the task of a robot arm is to cross a specific point, we cannot program a feature
that would measure the squared error with respect of that point. Instead, we use feature
functions that give a more global representation of the end-effector trajectory in Cartesian
space. For each trajectory segment, the following feature functions are considered:

• Mean x position of the end effector

• Mean y position of the end effector

• (Optionally) Variance x position of the end effector

• (Optionally) Variance y position of the end effector

We will conduct part of our experiments using only the mean positions of the end effector
as feature functions. In some experiments we will include the variance of the end effector
position as well. With this extended set of features we should be able to reward viaplane
tasks with more accuracy.

In Figure 5-2, the layout of the adapted reward model is illustrated. As can be seen in this
block diagram, we create separate groups of feature functions, each group linked to a specific
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5-2 Trajectory segmentation using multiple Gaussian processes 37

time segment. In each group, features describing the end effector position are present. The
result is a set of functions that describes the global position of the end effector in each time
segment. We will use only one GP to calculate the return of a trajectory which takes all
groups of feature functions as its input. However, this GP should be able to distinguish
relevant inputs from non relevant inputs via hyper parameter optimization (see Section 4-3-
3), so it should be able to distinguish relevant time segments from non-relevant time segments
as well.

Segmentation

feature
block 1

feature
block 2

...

feature
block ns

GP
τ R(τ )

τ (1)

τ (2)

τ (ns)

φ(1)

φ(2)

φ(ns)

Figure 5-2: Segmented reward model

5-2 Trajectory segmentation using multiple Gaussian processes

The previous section described how we can implement trajectory segmentation using a dif-
ferent reward model layout. In this section we will extend the reward model presented in
Section 5-1-2 to implement segment specific expert ratings.
There are two main reasons why it is interesting to investigate segment based expert queries.
First off, we are able to acquire more specific information about the reward function. In
most robotic tasks there are parts that are critical for the performance and parts that are not
that important. By querying only the parts of the task that are critical for performance, we
effectively apply a filter for non-relevant information for the reward model. In other words, we
can make our reward model more focused. Another benefit of segment specific demonstrations
can be found when we consider the expert. Human experts only have a limited capacity
(also called bandwidth [20]) for judging performances. In our case, the human expert will
make judgement errors if the number of demonstrations becomes too big. Segment specific
demonstrations can be an important factor for increasing the bandwidth of the expert. This
is especially interesting when we consider a multi-task objective, such as a double viapoint
or a viapoint/viaplane objective. In this scenario, the expert can focus on increasing the
performance for one task per demonstration, provided that the different tasks are separated
into different time segments.
In Section 5-2-1 a new reward model layout that is needed to implement segment specific
expert ratings is described. After that, we will revisit the acquisition function described in
Section 4-4-1. In order to implement segment specific expert ratings we need to change the
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38 Segmented active reward learning

acquisition function from a function over complete trajectories to a function over trajectory
segments. Finally, the pseudo code of this new variant of ARL is elaborated upon.

5-2-1 Multi GP reward model layout

In order to implement segment specific expert ratings, we need a reward model that is adaptive
for each defined time segment. Figure 5-3 illustrates a reward model layout that is adaptive
for each time segment such that segment specific expert ratings can be achieved. As can be
seen in this overview, we create groups of feature functions for each defined time segment
similar to the reward model shown in Section 5-1-2. However, instead of using only one
GP to learn the return function, we use several. For each time segment we will construct
a different GP, taking only the feature functions for that specific time segment as input
argument. Each segment specific GP also holds a segment specific set of demonstrations
D(i) = {{τ (i)

1 , R
(i)
E1
}, ..., {τ (i)

n , R
(i)
En
}}. Note that not every segment needs to have the same

number of demonstrations. Typically, the time segments which are critical for the objective
hold a much larger set of demonstration compared to other time segments. Each time-specific
GP will produce an estimate of the reward for its time segment upon evaluation. In order
to obtain the total return for the trajectory, we simply add up the rewards of all the time
segments.

segmentation

feature
block 1

feature
block 2

...

feature
block ns

GP 1

GP 2

...

GP ns

∑τ

φ(1)

φ(2)

φ(ns)

R(τ )

τ (1)

τ (2)

τ (ns)

R(1)

R(2)

R(ns)

Figure 5-3: Segmented reward model

5-3 Demonstration acquisition over multiple segments

Now that we have constructed a reward model that can be adjusted in each time segment,
we focus on the acquisition. In Section 4-4-1 an acquisition function is described that is able
to select interesting trajectories for expert demonstration. In this section we will modify
this acquisition function such that it evaluates trajectory segments instead of full trajecto-
ries. However, we will reuse the basic idea of expected policy divergence as our measure of
acquisition.
To give an overview, the flow of procedures of the designed acquisition function is illustrated in
Figure 5-4. We start by considering a set of sampled trajectories T as before. Furthermore,
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5-3 Demonstration acquisition over multiple segments 39

we have a reward model consisting of four GPs, each of which has a different set D(i) of
demonstrations. We would like to know which trajectory segment is most important for
acquisition. To accomplish this, we have to calculate the expected policy divergence of each
trajectory segment τ (i)

j ∈ τj for all trajectories τj ∈ T .

Let us consider a single trajectory segment τ (i). In order to obtain the expected policy
divergence of this segment, we need to calculate the return of each trajectory in T using the
original reward model. Let us denote T (i) as the set of all i-th trajectory segments apparent
in the trajectories of set T . We can calculate the return of each trajectory in T by summing
over the return of all defined segments

R̃ =
ns∑
k=1
GP(k)(Φ(T (k))|D(k)),

which results in vector R̃ containing the return of each trajectory τ ∈ T .

Secondly, we need to calculate expected change in return for demonstrating trajectory segment
τ (i). We start by evaluating τ (i) using its segment specific GP

µ, σ = GP(i)(φ(τ (i)
j )|D(i)),

which results in a mean value µ and a variance σ. In order to obtain an approximation of the
expected expert rating, we compute two sigma points: s+ = µ + σ, s− = µ − σ and look at
the consequence of adding one of these sigma points to the reward model. So let us assume
one sigma point s is added to the set of demonstrations of its particular segment:

D(i) ← {D(i) ∪ s}.

The reward model now consists of ns − 1 unaltered GPs and one altered GP which contains
the sigma point. We continue by calculating the total return of each trajectory according to
this altered reward model,

R∗ =
ns∑
k=1
GP(k)(Φ(T (k))|D(k))

which results in a vector R∗ containing the returns of each trajectory τ ∈ T .

After obtaining the return values for all according to the unaltered and altered reward model,
we proceed as described in Section 4-4-1 by evaluating the policy update functions according
to R∗ and R̃ and compare the results with the Kullback-Leibler divergence measure. We
repeat this procedure twice, since we have two sigma points for each trajectory segment at
our disposal. The acquisition value for a trajectory segment is the average of the two resulting
EPD values.
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5-4 Summary 41

5-3-1 Resulting algorithm

Even though significant changes have been made to the reward model and the acquisition
function, the global structure of the ARL algorithm remains the same. As can be seen in
Algorithm 3, most of the changes are incorporated in the reward model update (lines 8-17).
By implementing segment specific demonstrations means we need to evaluate the acquisition
function for every trajectory segment instead of every full trajectory. This extension results in
a higher computational load depending on the number of defined segments. Empirically, this
increase in computational load is negligible compared to the computational load of simulating
robot trajetories.

Algorithm 3 Mutlit GP segmented active reward learning pseudo code
1: initialize policy π(θ0)
2: initialize reward model D(1), ...,D(ns)

3:
4: while not converged do
5: Sample K rollouts
6: T = {τ1, ..., τK}
7:
8: FindNominee = true
9: while FindNominee do

10: Nominated outcome:
11: τ

(i)
+ = arg maxτ (i)∈τ ,∀τ∈T u(φ(τ (i))) (See Section 5-3)

12: if τ (i)
+ /∈ D(i) ∧ u(φ(τ (i)

+ ) > λa then
13: Demonstrate segment τ+

s to expert. Retrieve R+
E

14: D(i) = D(i) ∪
{
φ(τ (i)

+ ), RE+

}
15: Optimize GP(i) hyper parameters (See Section 4-3-3)
16: else
17: FindNominee = false
18:
19: Calculate return trajectories T
20: R(τ ) =

∑ns
i=1 GP(i)(τ |D(i)), ∀τ ∈ T

21: Update policy π(θ) (See Section 2-3)

5-4 Summary

This chapter introduced two new active reward learning algorithms incorporating time seg-
mentation.

In Section 5-1 we described an algorithm that implements time segmentation by creating
groups of feature functions assigned to specific time segments. With the specified end effector
tasks in mind we constructed features functions for each time segment that represent the
position of the end effector in that particular segment. The resulting reward model should be
able to distinguish important time segments from unimportant time segments by recognizing
relevant inputs. Incorporating the new reward model in the ARL framework does not have
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42 Segmented active reward learning

an effect on the structure of the algorithm. The resulting method is able to learn end effector
trajectories by expert feedback over full trajectories.

In Section 5-2 another extension to the ARL method is shown which incorporates segment
specific demonstrations. In order to support segment specific demonstrations we have created
a reward model which is based on multiple Gaussian processes, each one dedicated to a
specific trajectory segment. The groups of feature functions designed in Section 5-1 are used
as inputs for the GPs. To calculate the return over complete trajectories, a simple summation
over the result of the different GPs suffices. The acquisition function of the standard active
reward learning algorithm is adapted, such that it returns the acquisition value of a trajectory
segment instead of a full trajectory. This new acquisition function is still based on the expected
policy divergence principle but allows the algorithm to choose the most interesting trajectory
segment. In order to implement the segmented reward model and acquisition function, the
standard ARL has to be adjusted (See Algorithm 3). Using expert feedback over trajectory
segments, this algorithm is able to teach end effector tasks to robotic systems.
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Chapter 6

Experimental results

In this chapter, the results of multiple simulation experiments will be presented. More specif-
ically, we will present the outcome of the algorithms shown in Chapter 5 applied to different
robotic end effector tasks. First off, we will describe two different rating methods in Sec-
tion 6-1. In Section 6-2, we will describe a number of important details regarding the policy
learner (PIBB) used in the experiments. After that, we will discuss the results of a simple
viapoint task in Section 6-3. Both the results of a hard coded expert and a computer expert
are shown. We continue in Section 6-4 by switching to a more advanced task which includes
both a viapoint and a viaplane objective. In the last section we will try to improve the results
of this advanced task by including variance of the different segments as a feature function in
our reward model.

The implementation of all experiments conducted in this chapter can be found on github 1.

6-1 Rating methods

An important aspect of the algorithms we would like to test is the resulting reward model.
We consider the result of our algorithms successful when, besides delivering a good policy, the
resulting reward model captures the intention of the expert. This is hard to test when using
a human as the expert since the true intentions of human ratings cannot be measured. So in
order to test the convergence of the reward model with respect to the “true” return function,
a computer expert is created. Using a computer expert allows us to evaluate the algorithm
in a statistical manner, summarizing the result of different trials.

Besides performing experiments using a computer expert, we also test the SARL methods
using a human expert in order to gain insight in the practical aspects of the algorithms rating
procedure.

1https://github.com/RonaldOlsthoorn/RewardLearning
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6-1-1 Computer expert

Fortunately, the performance measure of the tasks described in Section 1-1 can be expressed
accurately in terms of mathematical functions. In the first task, the end effector of the robot
arm needs to pass a viapoint xviapoint at a specific time tviapoint in its trajectory. We can use
the Euclidean distance between the end effector at time tviapoint and the viapoint xviapoint
and describe this measure as a penalty in the reward function.

Rtrue = −‖xtviapoint − xviapoint‖

A suitable reward function for the viaplane objective can be constructed similarly. Instead of
a single point in time we need to formulate a measure for penalizing the difference between
the end effector and the viaplane in a time segment. If we denote the specific time segment
as τplane we can use the Sum of Squard Errors (SSE) as our true reward.

Rtrue = −
∑

t∈τplane

(xt − xplane)2

If both a viaplane and a viapoint objective are used in the same experiment, a linear combi-
nation of the above mentioned expressions is used as a true return function.

In order to simulate human rating errors, the computer expert is extended with a zero mean
Gaussian white noise. This computer expert is used when the algorithm asks for a rating on a
given rollout. We will also evaluate a validation rollout each iteration using a computer expert
without rating noise. This validation rollout will be generated by simulating the outcome of
the policy without any exploration noise. Not only will the validation rollout be used to
generate the policy learning curve but it is also useful to track the convergence of reward
learning.

6-1-2 Manual ratings

In order to test the performance of the algorithms in practice, each task is also performed using
a human expert. Every time a new demonstration is required, a graphical representation of
the specific rollout is shown to help the expert in its decision making. Two different windows
are designed for presenting rollouts, one for complete trajectories and one for trajectory
segments. Examples of the two different interfaces are shown in Figure 6-1 and Figure 6-2.
As can be seen, the window shows the requested trajectory or trajectory segment in each
end effector dimension as well as the viapoint that we try to teach the robot. In order to
enhance the accuracy of the expert we add annotations of previously rated rollouts in the
background. Furthermore, the mean position of the different segments is also visible, since
this is an important feature function for the reward model.
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Figure 6-1: Rating window used to rate demonstrations of full trajectories.
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Figure 6-2: Rating window used to rate demonstrations of trajectory segments.
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6-2 Design RL method

As discussed in Section 2-3, the PIBB method is used for policy learning. Before generating
the results of the two SARL methods, we need to design and tune the policy learning algo-
rithm using a programmed return function. The results of PIBB will give valuable data for
comparison as will be shown in Section 6-3, Section 6-4 and Section 6-5.
Table 6-1 gives an overview of the design parameters used in the PIBB. As can be seen in
the table, we sample a small number of rollouts each iteration. However, a number of these
samples are recycled to be used in the next policy update. We select the reusable rollouts
based on the return. This procedure improves the number of rollouts needed for convergence
which results in a total number of 250 rollouts or less for all conducted experiments.
The exploration noise variance is tuned to make sure a large part of the state-space is explored.
In order to preserve enough exploration after converging to a local or global minimum, a
minimum noise annealing factor is maintained. This is particularly useful considering a reward
model that will change over time.

Table 6-1: Design parameters PIBB .

Measure value Unit
Samples per iteration 5 -
Number of reused samples 5 -

Exploration noise variance Σε

[
100 0
0 100

]
-

Noise annealing factor λε 0.95 -
Minimum noise annealing 0.1 -
Relative return scaling h 10 -

6-3 Single viapoint task

In this section we will apply the two active reward learning algorithms we constructed to
teach a robot arm a simple viapoint task. We will investigate if it is possible to teach a robot
such a viapoint task purely based on expert feedback. As input for the reward model we will
only use the average x and y position of the end effector, the variance of the end effector
positions will not be used. First we will show the result of the algorithm using a computer
expert. After that, the results of the algorithm with a human expert are shown.

6-3-1 Computer expert result

The resulting trajectories of a viapoint task using a computer generated expert are shown
in Figure 6-3 and Figure 6-4, where a single GP and a multi GP reward model is used
respectively. In these figures, the average trajectory of twenty trials is shown as well as the
standard deviation of the resulting trajectories. We also compare the results of the active
reward learning algorithms with the results of the PIBB RL method, using the computer
expert as a return function.
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6-3 Single viapoint task 47

Figure 6-3: Resulting trajectory of a simple viapoint task using a single GP reward model.

Figure 6-4: Resulting trajectory of a simple viapoint task using a multi GP reward model.

It is clear from the resulting trajectories of the active reward learning method as well as
the reinforcement learning algorithm that the preferred trajectory that crosses the viapoint
is one in which the end effector approaches the viapoint from above. This is explained by
the policy of the reinforcement learning agent. We use a dynamic movement primitive as a
parametrization for our policy, which causes the trajectories to be drawn to a certain end goal
point at the end of the trajectory. In case of our specific viapoint task, this end goal is placed
below the viapoint. Since the reward model is only based on the average position of the end
effector in a specific time segment, the agent will learn to approach the viapoint from above.

Besides learning a decent policy that results in the end effector passing the viapoint, the
reward model is also obtained in both algorithms. Since a computer expert is used, we are
able to compare the obtained reward model with the “true” return function. In Figure 6-5
and Figure 6-6, the reward learning process is visualized. It is clear from the figures that both
single GP and the multi GP reward model are able to express the true reward with reasonable
accuracy. However in both graphs it is clear that the difference between the reward model
and the true reward does not converge to zero. Important to note here is that an absolute
difference between the reward model and the true return function does not necessarily have
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to be a problem. The reinforcement learning method used in the experiments uses a softmax
scaling method on the return of each trajectory in order to calculate the policy update (see
Algorithm 1). This means that the reinforcement learning process is invariant under a scaling
of the reward function. The only thing that matters is the relative difference in reward
between different rollouts.
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Figure 6-5: Convergence plot showing the
return of the single GP reward model com-
pared to the “true” return.
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return of the multi GP reward model com-
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If we use a multi GP reward model, the only feature functions are used as input for each GP
are the average x and y position of the end effector. This means that we are able to visualize
the reward model, as can be seen in Figure 6-7. The return function of the first, third and
last segment are all zero functions, since no tasks are placed in these time segments. In the
second time segment we can clearly observe an optimum, which coincides with the viapoint.
Important to note is that an initial number of eight rollouts are used for initializing the reward
model. During learning, the only extra demonstrations are performed in the second segment
of the trajectory.

Now that the qualitative properties of the results are discussed we can focus on the quantita-
tive measures of the algorithms. In this task there are three distinct measures we can use to
judge the performance on. Foremost, we use the distance of the end effector to the viapoint
xviapoint at time tviapoint. Secondly, we would like to keep the amount of expert queries to
a minimum. In Table 6-2, the resulting measures of twenty attempts are summarized for
each algorithm. We compare the SARL algorithms with a PIBB RL method that uses the
computer expert as its return function.

It is clear that for this simple viapoint task, the single GP algorithm is a better choice in
terms of performance. First off, the average distance to the viapoint is lower compared to the
multi GP method. Also, the total amount of expert queries is significantly lower. Important
to note is that the multi GP method needs more expert queries to initialize its reward model,
since each of the individual segments needs to be initialized with segment specific ratings.
The number of queries needed during learning is actually lower when using a multi GP reward
model.
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Figure 6-7: Graphical representation of the resulting multi GP reward model. The red dots
represent queried rollouts. The black mark denotes the viapoint.

If we compare the SARL algorithms results with the results of PIBB we can conclude that
using a programmed return function is still a significantly better choice for this simple task.

Table 6-2: Results of segmented active reward learning and PIBB applied to a viapoint task
using a computer expert.

Measure single GP multi GP PIBB RL Unit
Average distance viapoint 1.5 · 10−2 2.3 · 10−2 7.5 · 10−4 m
Standard deviation distance via-
point

1.21 · 10−2 2.08 · 10−2 4.9 · 10−4 m

Initial number expert queries 8 32 0 -
Average number expert queries 20.5 40.35 0 -
Standard deviation number expert
queries

3.8 3.5 0 -

6-3-2 Manual expert result

Now that we have shown the results of segmented active reward learning using a computer
expert, we will show the results of the same two algorithms using a human expert (the author).
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The computer rated algorithm is not completely identical to the human rated algorithm.
Besides the fact that the source of demonstration ratings is different, the tolerance parameter
for expected policy divergence λa is also increased. This is due to a higher rating noise that
the human expert is expected to produce. Keeping this tolerance parameter unchanged would
significantly increase the number of demonstrations.
The resulting trajectories are shown in Figure 6-8 and Figure 6-9. It can easily be observed
that the viapoints are tracked very accurately compared to the resulting trajectories of the
computer expert experiments.
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Figure 6-8: Resulting trajectory of a simple via point task using a single GP reward model.
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Figure 6-9: Resulting trajectory of a simple via point task using a multi GP reward model.

The resulting trajectories show a preference for approaching the viapoint from above as was
observed in the previous section. It is difficult to create a reward model that prefers more
elegant solutions, such as an approach from below, since the inputs for the reward model only
contain information about the average position of the end effector. The expert cannot resolve
this problem.
Since we do not have a “true” return function at our disposal, we cannot use this for comparing
the reward learning process. Instead we will compare the convergence of the reward model
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with the ratings that are given by the human expert, as is visible in Figure 6-10 and Figure
6-11.

A few observations can be made from these convergence plots. First off, the multi GP reward
model requires more expert queries than the single GP reward model as was also observed
in Section 6-3-1. The total number of expert queries matches the number of queries to the
computer expert very accurately. In the convergence plots we observe that the reward model
return is typically higher than the return of the demonstrated rollouts. Important to note is
that the reward model return in Figure 6-10 and Figure 6-11 is calculated based on a rollout
without exploration noise. All the demonstrated rollouts are perturbed by exploration noise,
and these rollouts are usually found in unexplored areas of the state-space. Only a small
number of these demonstrated rollouts obtain a high rating from the expert, which means
that a noiseless trajectory is usually better.

A typical aspect of the human rated algorithm is that the expert is allowed to choose his or
her own rating scale. So the fact that the single GP reward model shows a higher expert
return in the later stages compared to the multi GP reward model does not mean anything,
as we observed in the trajectory plots that the resulting trajectory of the multi GP model
is actually better. The only task of the human expert is to teach the robot which rollouts
are better or worse, relative to what has been rated before. Using a Gaussian process as
a reward model in combination with the PIBB reinforcement learning algorithm allows the
human expert to use whatever rating scale he or she prefers.
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Figure 6-10: Convergence plot showing the
return of the single GP reward model com-
pared to the expert return.
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Figure 6-11: Convergence plot showing the
return of the multi GP reward model com-
pared to the expert return.

The reward model of the multi GP reward model can be visualized as well. In Figure 6-
12 the return functions of the different time segments are shown. As expected, the GPs of
the non-relevant segments all return zero. We can also see that the return function of the
second segment shows a clear optimum at the viapoint position, but the gradient around this
optimum is much higher than observed with the computer rated algorithm. This applies even
you ignore the fact that the scaling of the expert ratings is different.

In Table 6-3 the results of the two manual trials are compared with the PIBB RL method. It is
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Figure 6-12: Graphical representation of the multi GP reward model. The red dots represent
queried rollouts. The black mark denotes the viapoint.

clear from the table that the PIBB method still outperforms both reward learning methods,
since the PIBB viapoint tracking measure an order of magnitude better than both reward
learning methods.

If we compare the results of the manual trials in Table 6-3 with the results of the computer
expert in Table 6-2, we see that it is actually possible to achieve a more accurate tracking
result using a human expert. We can conclude that for this task, the human expert is able
to create a better return function than the quadratic return function we used as computer
expert.

From the figures in the results table, it is also easy to note that the single GP reward model
is more efficient in terms of expert queries compared to the multi GP reward model. This
difference is mainly caused by the number of initial demonstrations needed for the multi GP
model. In terms of viapoint tracking accuracy, the multi GP method has a small advantage.

6-4 Multi objective task

In Section 6-3 we described how we can teach a viapoint task to a robotic arm. We will
investigate the performance for teaching the robot a more difficult task in this section. This
new task will contain two objectives. First off, we will recycle the viapoint objective that we
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Table 6-3: Results of segmented active reward learning and PIBB applied to a viapoint task
using a human expert.

Measure single GP multi GP PIBB RL Unit
Distance viapoint 9 · 10−3 6.8 · 10−3 7.5 · 10−4 m
Initial number expert queries 8 32 0 -
Number expert queries 25 42 0 -

used in Section 6-3. Besides that, the end effector of the robot arm must track a flat plane
in space at the end of the trajectory. This second objective is harder to achieve for the robot
arm. Also the combination of two objectives makes this task more challenging to solve.

6-4-1 Computer expert result

The computer expert described in Section 6-3 needs to be extended in order to be used for the
new task description. We add a term which penalizes deviation from the viaplane in the last
time segment. Also we need to multiply the result of the individual objectives (viapoint and
viaplane) with a weight parameter, such that the importance of the two objectives is scaled
properly.

In Figure 6-13 the average resulting trajectories of multiple succeeded runs using the single
GP model are shown. A plot showing the resulting trajectories of the algorithm using a
multi GP reward model is shown in Figure 6-14. Both trajectories clearly show an attraction
towards the viapoint and the viaplane. We can already observe that the single GP reward
model does not track the viapoint as accurate as is the case with a single objective task. In
the trajectory plot of the single GP reward model we see that the standard deviation around
the viapoint is significantly higher. Apparently, the single GP reward model does not map
the multi objective return function as well as the multi GP reward model.

Figure 6-13: Resulting trajectory of a multi objective task using a single GP reward model.

If we look at the convergence plots (Figures 6-15 and 6-16) we can make some remarks
regarding the stability issues. As can be seen in the convergence of a successful run using
a single GP as reward model, it is clear that the reward model does not converge as fast as
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Figure 6-14: Resulting trajectory of a multi objective task using a multi GP reward model.

before. The reward model has a tendency to overestimate the return of trajectories and needs
to be severely corrected during learning. If we look at the convergence plot of the multi GP
reward model (Figure 6-16), we observe a much more stable learning algorithm.
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Figure 6-15: Convergence plot showing the
return of the single GP reward model com-
pared to the “true” return.
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Figure 6-16: Convergence plot showing the
return of the multi GP reward model com-
pared to the “true” return.

Since we still use only two feature functions for each segment, we can plot the reward function
of the multi GP reward model. As can be seen in Figure 6-17 there are now two relevant
time segments. The second time segment contains the viapoint and, as expected, there is
an optimum clearly visible in the area of the viapoint. The second objective, is also clearly
visible as an optimal line.

If we look at the measurable results of the reward learning algorithms shown in table 6-
4, we can make some important remarks. First off, it is clear that the multi GP reward
model results in a policy that has better tracking results in both objectives compared to the
single GP reward model. This suggests that a multi GP reward model is able to distinguish
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Figure 6-17: Graphical representation of the multi GP reward model. The red dots represent
queried rollouts. The black mark denotes the viapoint and the dashed line denotes the viaplane.

tasks in different time segments with more accuracy than a single GP reward model. If we
look at the number of expert queries we see that the single GP method still requires less
demonstrations compared to the multi GP method. However, it is clear that this difference
is due to the number of demonstrations required during the initialization phase of the reward
model. During learning, the multi GP reward model requires less expert ratings than the
single GP reward model.

If we compare the results of the reward learning methods with the results of the PIBB method,
it is clear that a hard coded return function still gives a better performance in terms of
tracking. Especially if we look at the viaplan tracking results, we see an order of magnitude
difference in performance.

6-4-2 Manual expert result

As can be seen in Figure 6-18 and Figure 6-19, it is possible to teach a multi objective task
using a human expert as well. It is clear from the figures that both objectives are tracked
with a reasonable accuracy. Also, the single GP method shows a better trajectory then the
multi GP method. This is in contrast to the results we saw earlier in Section 6-4-1.

The reward learning results are shown in Figure 6-20 and Figure 6-21. In Section 6-3, we
showed the convergence results of the multi GP reward model in the same format as we did
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Table 6-4: Results of segmented active reward learning and PIBB applied to a viapoint/viaplane
task using a computer expert.

Measure single GP multi GP PIBB Unit
Average distance viapoint 4.18 · 10−2 2.00 · 10−2 1.68 · 10−2 m
Standard deviation distance via-
point

5.09 · 10−2 1.14 · 10−2 1.34 · 10−2 m

Average SSE viaplane 4.9 · 10−3 8.3 · 10−3 1.70 · 10−4 m
Standard deviation SSE viaplane 5.7 · 10−3 5.4 · 10−3 1.9 · 10−4 m
Initial number expert queries 8 32 0 -
Average number expert queries 45.05 52.2 0 -
Standard deviation number expert
queries

14.92 9.35 0 -
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Figure 6-18: Resulting trajectory of a multi objective task using a single GP reward model.
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Figure 6-19: Resulting trajectory of a multi objective task using a multi GP reward model.

with the single GP reward model. Now that we have more than one relevant time segment
we will present the results of the multi GP reward model per segment as is shown in Figure
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6-21. We can make a few remarks regarding the convergence of the multi objective task. If
we look at the multi GP reward model we can also conclude that the focus of the algorithm in
terms of segments occurs in batches. In the first half of the learning phase, the algorithm only
provides demonstrations in the last segment. Only when this objective seems to be learned,
the focus shifts to the second segment in order to improve the viapoint objective.
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Figure 6-20: Convergence plot showing the
return of the single GP reward model com-
pared to the expert return.

expert rating convergence

0 10 20 30 40 50

iteration

-1

-0.5

0

0.5

1

re
tu

rn

segment 1

expert return

reward model return

0 10 20 30 40 50

iteration

0

1

2

3

4

5

6

7

re
tu

rn

segment 2

expert return

reward model return

0 10 20 30 40 50

iteration

-1

-0.5

0

0.5

1

re
tu

rn

segment 3

expert return

reward model return

0 10 20 30 40 50

iteration

0

2

4

6

8

re
tu

rn

segment 4

expert return

reward model return

Figure 6-21: Convergence plot showing the
return of the multi GP reward model com-
pared to the expert return.

If we look at the resulting reward model in Figure 6-22 we clearly observe that the multi-
objective task is extracted properly. In the second segment we observe a single optimal point
right at the coordinate of the viapoint. It is clear that the gradient in the neighbourhood
of the objective is much higher compared to the computer generated reward model (Figure
6-17). In the last time segment, the viaplane is clearly visible as an optimal line in space.
Similar to the reward function of the second segment, the gradient around this line is much
higher, compared to the gradient of the computer generated reward model.

A summary of the results of the multi objective task using a human expert is shown in Table
6-5. We cannot objectively state which reward model is the better choice for this task since
both methods are able to perform quite well. In terms of viapoint and viaplane tracking, the
single GP reward model gives a better result over a multi GP reward model but in terms of
expert queries we should chose a multi GP reward model.

The two trials that are shown in the table are performing exceptionally well. This does not
hold for all trials performed. There is an element of chance involved in teaching the robot a
certain task, which is related to the acquisition function. In general, the acquisition function
chooses which rollouts are interesting for demonstration. In the design of the acquisition
function, we chose take the expected policy divergence as a measure of acquisition, which
means that the acquisition function does not take into account the expected return. Poorly
performing rollouts can be just as interesting as far as the acquisition function is concernded.
However, it can happen that one of the demonstrated queries is tracking the viapoint of
viaplane with a high accuracy. The expert can exploit this demonstration by giving such
a demonstration a rating relatively higher then any other previous demonstration, hereby
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Figure 6-22: Graphical representation of the multi GP reward model. The red dots represent
queried rollouts. The black mark denotes the viapoint and the dashed line denotes the viaplane.

creating a “spike” in the reward model. This spike will cause the policy learner to converge
to a very accurate result.

Extending the task description from a single viapoint to a multi objective task has impli-
cations for the human expert as well. When a single GP reward model is used, an obvious
disadvantage is that the complexity for rating a rollout increases. The human expert has to
keep track of the relative performance of different rollouts for two objectives and summarize
this difference in one single grade. The most obvious advantage of using a multi GP reward
model is the benefit in rating complexity. The expert only has to focus on one objective per
demonstrated trajectory segment (provided that the objectives do not share a time segment).
But there are disadvantages as well. In the previous section, the expert was free to choose
what rating scale he or she liked. This does not hold for a multi objective task, due to the fact
that the difference in priority between the two objectives is dependent on the reward. If one
objective is scaled from one to hundred whilst the second objective is scaled from one to five,
the reinforcement learning agent as well as the acquisition function will only focus on the for-
mer objective. During the experiment it is observed that the time segments which need most
improvement according to the expert are not always the time segments that are queried. This
problem is that the active reward learning algorithm assumes that the acquisition function
provides useful demonstrations for the reward model.
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Table 6-5: Results of segmented active reward learning and PIBB applied to a viapoint/viaplane
task using a human expert.

Measure single GP multi GP RL Unit
Distance viapoint 6.2 · 10−3 1.7 · 10−2 1.68 · 10−2 m
SSE viaplane 2.8 · 10−3 5.6 · 10−3 1.70 · 10−4 m
Initial number expert queries 8 32 0 -
Number expert queries 41 38 0 -

6-5 Multi objective task with tracking improvement

In Section 6-4 the results of a multi objective task are shown. Reviewing the results we can
conclude the second objective, the viaplane tracking task, is prone for improvement. The
reward model used in the previous section only uses the average position of the end effector
as an input for the Gaussian process, and this information is not enough for the reinforcement
learning agent to learn a viaplane task.
In this section we will extend the reward model to include the variance of the end effector x
and y position. This extension should give the reinforcement learning agent an incentive to
keep the last segment of the trajectory as flat as possible. The cost for this extension is an
increase in complexity for the reward model. Both the single GP and the multi GP reward
model will have twice the number inputs as before.

6-5-1 Computer expert result

Besides an extension on the reward model, the rest of the algorithm does not have to be altered
in order to work. For example the computer expert used in Section 6-4 can be reused. If we
look at the resulting trajectories (Figure 6-23 and Figure 6-23) we can see an improvement
in tracking performance. As can be seen in the plots, the standard deviation of the resulting
trajectories around the viapoint and the viaplane is smaller compared to the results obtained
in Section 6-4. It can also be concluded that the multi GP reward model has a smaller
standard deviation around the objective and therefore has a better tracking performance.
The reward learning results, are also different depending on what reward model we use. It
is clear in the convergence plots (Figure 6-25 and Figure 6-26) that the multi GP reward
model is a much more accurate reward learner for this task. A reason for the decrease in
reward learning for the single GP reward model can be found in the increased complexity of
the Gaussian process. The GPs used for in the previous sections had a total number of eight
inputs. The reward model used in this section has sixteen inputs. An important aspect of
reward learning is the ability for the reward model to determine which inputs are relevant for
performance and which inputs can be safely ignored. Since we doubled the number of inputs
for the single GP reward model, we increased the difficulty for the reward model to make
this generalization as well. We also increased the number of inputs for the multi GP reward
model but since we use a different GP for each segment, the number of inputs per GP stays
relatively low.
If we look at the measurable criteria in Table 6-6, it is clear that the variance extension of
the reward model does have a positive effect on the results. First off, it can be noted that the
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Figure 6-23: Resulting trajectories of a multi objective task using a single GP reward model.

Figure 6-24: Resulting trajectories of a multi objective task using a multi GP reward model.

SSE of the viaplane has dropped significantly compared to the results obtained in Section 6-4.
Another positive result is that the average distance to the viapoint also dropped, especially in
case of the single GP method. The number of expert queries has increased slightly for both
types of reward model. As before, the multi GP reward model needs some more expert queries
than the single GP reward model, mostly due to the initialization phase of the algorithm.

6-5-2 Manual expert result

In contrast the computer expert results, there is no performance increase when rating is done
by a human expert. Although the reward models are able to take the variance of a trajectory
segment into account, it is hard for the expert to do the rating. There is a clear increase
rating complexity if the human expert does not only have reward staying close to a plane but
also staying flat. Some rollouts for example have a very flat last trajectory segment, but on
a different level than is aimed for. These rollouts should be rewarded as well for staying flat,
but to the human expert this is counter intuitive.
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Figure 6-25: Convergence plot showing the
return of the single GP reward model com-
pared to the expert return.
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Figure 6-26: Convergence plot showing the
return of the multi GP reward model com-
pared to the expert return.

Table 6-6: Results of segmented active reward learning and PIBB applied to a viapoint/viaplane
task using a computer expert.

Measure single GP multi GP RL Unit
Average distance viapoint 2.79 · 10−2 2.35 · 10−2 1.68 · 10−2 m
Standard deviation distance via-
point

1.35 · 10−2 1.45 · 10−2 1.34 · 10−2 m

Average SSE viaplane 1.7 · 10−3 1.0 · 10−3 1.70 · 10−4 m
Standard deviation SSE viaplane 1.6 · 10−3 1.5 · 10−3 1.90 · 10−4 m
Initial number expert queries 8 32 0 -
Average number expert queries 49.5 54.1 0 -
Standard deviation number expert
queries

15.25 7.65 0 -

In the resulting trajectories, shown in Figure 6-27 and Figure 6-28, it can clearly be observed
that the extended reward model does not have a positive effect on the results. In the last
segment of the trajectory, the end effector should track the viaplane nicely as was observed
in the results of the computer expert. It is clear both reward models did not learn to reward
the desired variance.

If we examine the convergence plot, displayed in Figure 6-29 and Figure 6-30, it is also clear
that the multi GP reward model does not give the second objective enough priority. As can be
seen in the convergence plot of Figure 6-30, it is evident that the majority of demonstrations
is performed in the second segment. This is probably one of the reasons why the multi GP
reward model fails to include the variance input in its result.

If we look at the objective measures in Table 6-7, we can see a decrease in performance.
Both in terms of tracking performance and number of expert queries, the extended reward
model cannot match the results in Section 6-4-2. We can conclude that, in contrast to the
computer expert results, the extended reward model does not tend to increase the result. The
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Figure 6-27: Resulting trajectories of a multi objective point task using a single GP reward
model.
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Figure 6-28: Resulting trajectories of a multi objective task using a multi GP reward model.

disadvantages of increasing the complexity for the expert outweigh the advantages gained in
learning the reward model with more information.

Table 6-7: Results of segmented active reward learning and PIBB applied to a viapoint/viaplane
task using a human expert.

Measure single GP multi GP RL Unit
Distance viapoint 1.3 · 10−3 1.67 · 10−2 1.68 · 10−2 m
SSE viaplane 3.69 · 10−2 1.00 · 10−2 1.70 · 10−4 m
Initial number expert queries 8 32 0 -
Total number expert queries 37 59 0 -
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Figure 6-29: Convergence plot showing the
return of the single GP reward model com-
pared to the expert return.
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Figure 6-30: Convergence plot showing the
return of the multi GP reward model com-
pared to the expert return.
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Chapter 7

Conclusions and recommendations

In this thesis, a time segmented variant of active reward learning is developed and applied as a
machine learning algorithm to teach simple end effector tasks to robotic arms. In this chapter
we will give an overview of what has been constructed in this work as well as conclusions on
the results based on the research questions formulated in Section 1-2. Section 7-1 will give
a summary of the thesis per chapter and Section 7-2 will give the conclusions of the final
results. After that, Section 7-3 will give directions for further research based on the results
and conclusions of this work.

7-1 Summary

In Chapter 1 the we observed the necessity of machine learning methods for robotics as an
alternative for hard coded robotic programs. We proposed to extend the method of active
reward learning, an algorithm able to learn robotic movements by using human expert ratings.
This method combines the concept of reinforcement learning with reward learning in a hybrid
fashion. Two proposals are proposed in which this framework is extended to use information
of trajectory segments, instead of complete trajectories.

Chapter 2 continues by describing the reinforcement learning framework. We reviewed how
reinforcement learning algorithms can be used as adaptive controllers that maximize a specific
reward function. It is observed that using reinforcement learning is challenging in the field
of robotics and that most successful examples of reinforcement learning controllers use policy
learning algorithms. A black box policy learner called PIBB is described in detail for use in
Chapter 4 and 5.

In Chapter 3 the concept of reward learning is described as the process of obtaining the
reward function from an expert. Several methods for using experts as a source of information
are reviewed. The majority of these methods are not suited to be applied to robotics as they
require to many rollouts. The active reward learning method is different from other reward
learning methods as it uses the expert to give feedback on demonstrated rollouts, rather than

Master of Science Thesis R. M. Olsthoorn



66 Conclusions and recommendations

generating (sub) optimal rollouts itself. Due to the hybrid method of learning both the reward
function as the resulting policy, this methods can be used in the field of robotics.

Chapter 4 describes the method of active reward learning in more detail. In order to learn a
reward model, we use a stochastic inference method called Gaussian process. This inference
methods provides an estimate of the return of a rollout as well as a measure of confidence
for this estimate which we can use for demonstration acquisition. The acquisition function
determines which rollouts are interesting for demonstration based on the expected policy
divergence of a rollout.

In Chapter 5 we introduce two segmented active reward learning algorithms. In the first
algorithm we show how we can implement segmentation by creating segment specific feature
functions. In the second algorithm we show how we can implement segment specific expert
querying into the active reward learning framework by constructing a different GP for each
time segment that we use. We show how the concept of expected policy divergence is used to
calculate an acquisition value for each trajectory segment, such that only interesting segments
are demonstrated to the expert.

Finally in Chapter 6 we showed the performance of the algorithms constructed in Chapter 5.
Using a computer expert, we can simulate the performance of both the algorithms and extract
measurable performance figures. We applied the algorithms to a simple viapoint task and a
multi objective task containing a viapoint and a viaplane. The results showed that teaching
these tasks should be feasible and within practical limits in terms of expert queries and
number of rollouts. Overall, the single GP method described in Section 5-1 was less accurate
in tracking the objectives but it used less expert queries than the algorithm described in
Section 5-2.

When a human expert was used to rate the rollouts, the overall performance was dependent
on the complexity level of the task. For a single viapoint task, the expert was able to
outperform the computer expert by creating a steeper reward gradient around the objective
positions. In case of the multi objective task, it was clear that giving expert ratings on two
different objectives introduces an importance scaling problem. However, we showed that it
is possible to achieve the same level of performance with the human expert compared to the
computer expert. It was also clear that the constructed acquisition function in Section 5-2
does not achieve its intended result which is to point out interesting trajectory segments for
demonstration.

7-2 Conclusions

In Chapter 1 we introduced three research questions. From the results obtained in Chap-
ter 6 we can conclude that it is possible to teach a robot end effector tasks using segmented
active reward learning with a reasonable accuracy. Furthermore, it is clear from the results
that the number of expert queries (rarely exceeding 50 queries) stays within the limits of
practical application. We can also conclude that there is no benefit of using segment specific
demonstrations if the end effector task is simple. In case of a single viapoint task, rating
over complete trajectories gives similar results in terms of accuracy but using significantly
less expert queries. When more complex tasks are applied, segment specific demonstrations
performs similar to rating over complete trajectories. The number of rollouts needed for
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teaching the robot end effector trajectories stayed within practical limits (<250 rollouts for
all experiments).

One of the motivations for researching the topic of reward learning is to make reinforcement
learning less dependent on reward function programming and tuning. From the manual expert
results in Section 6-3-2 we can conclude that human experts are able to outperform computer
experts on simple tasks, by increasing the gradient around an objective position. Similar
reward functions with can be achieved by programming as well, but would require a lot of
tuning.

Another observation can be made by the results of the multi objective task experiments.
From these experiments it was clear that the importance of each objective has to be given
by rating of the expert as well. So by switching to a reward learning method, we trade the
problem of tuning importance weights in a program for a problem in assigning ratings. It can
be concluded that human experts can be really effective in creating complex reward functions
as long as the complexity of rating demonstrations is not too high.

7-3 Recommendations for further research

In this work we showed how we can learn a robotic arm some simple movements using human
expert queries. This approach is relatively unexplored. All though it has been applied to a real
robotic application namely a grasping task [7], this took the expert roughly 1000 evaluations,
which suggests that real world application of active reward learning is still far away.

In this thesis, we successfully applied the active reward learning method to teach end a robotic
arm end effector tasks. This thesis has shown that we can teach a robot arm viapoints and
viaplane with a reasonable accuracy and stay within practical limits in terms of rollouts and
expert queries. But we also found caveats in our approach that might be worth investigating
further.

The acquisition function shown in Section 5-3 did not function as expected. The goal of this
function is to point out interesting trajectory segments from a set of samples trajectories.
It turned out that the acquisition function often just focuses on one particular segment and
completely ignores other segments that might be interesting. The segments that are ignored
are always the segments with low rating values, which does not necessarily mean that these
segments are unimportant.

There are a number of different potential solutions that can solve this problem. A simple
solution for example could be to arrange small number of demonstrations on random samples,
similar to policy exploration noise. Another option which is more difficult to implement more
expert involvement into the algorithm. For instance the expert could point out which segments
are important using weights on each different segment. Another option that could be tried is
to bin the acquisition function and make the expert interrupt the learning algorithm whenever
he or she likes to query a specific trajectory segment. This option could lead to useful expert
feedback since the expert can comment on rollouts that the acquisition function would ignore.
But another outcome could be that a lot of expert ratings turn out to be useless because the
expert intervened too early and did not let the reinforcement learning agent learn to optimize
the reward model.
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Another aspect of active reward learning that is prone to improvement is the presentation
of demonstrations to the human expert. In the experiments conducted in this thesis, the
demonstrated rollouts are presented as a set of graphs. This presentation worked sufficient
until we tried to incorporate both average position and position variance into the reward
model. The number of different features to consider is just too much if we use this presenta-
tion. Presenting extra plots to express variance could help the human expert. We know from
previous works [20] that the rating bandwidth of human experts is limited but various widely
depending on data presentation.
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Glossary

List of Acronyms

ARL Active Reward Learning

DMP Dynamic Movement Primitive

EPD Expected Policy Divergence

GP Gaussian Process

IRL Inverse Reinforcement Learning

MDP Markov Decision Process

RL Reinforcement Learning

SARL Segmented Active Reward Learning

SSE Sum of Squard Errors
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List of Symbols

Table 1: List of Latin symbols.

Symbol description
D Set of demonstrated trajectories.
E Expected value operator.
h Tuning parameter relative return scaling.
k Covariance function.
K Covariance matrix.
ns Number of segments.
P Probability operator.
r Reward function.
R Return function.
R Vector containing trajectory returns.
R Set of all real numbers
s Sigma point.
S̃ Relative return.
t Continuous time variable.
tviapoint Time slot viapoint.
T Transition function.
T Set of sampled trajectories.
u Acquisition function.
u Control action.
U Set of all possible control actions.
V State-value function.
x x position end effector.
xviaplane x coordinate viaplane.
xviapoint x position viapoint.
x State of a system.
X Set of all possible states.
y y position end effector.
yviapoint y position viapoint.
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Table 2: List of Greek symbols.

Symbol description
γ Reward discount factor.
γ∗, γ̃ Trajectory weights for KL approximation.
ε Exploration noise.
εE Expert rating noise.
θ Policy parameter vector.
λε Exploration noise annealing factor.
λa Acquisition threshold.
λf Output length scale hyper parameter.
λφ Input length scale hyper parameter.
Λφ Matrix of squared length scales.
µ Posterior mean GP.
µm Posterior mean training points GP.
µ∗ Posterior mean inference points GP.
ξ Hyper parameters.
π Policy, also known as control law.
σ Posterior standard deviation GP.
σE Expert rating noise standard deviation.
Σε Exploration noise covariance matrix.
ΣE Expert rating noise covariance matrix.
Σmm Posterior covariance matrix training points GP.
Σ∗∗ Posterior covariance matrix inference points GP.
τ Trajectory in state-space.
φ Feature function vector.
Φ Matrix of stacked feature function outcomes.
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