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Eigenmode Distortion Analysis for Motion Cueing Evaluation
in Fixed-Wing Aircraft Simulators

S. Stoev∗, M. M. van Paassen†, O. Stroosma‡, I. Miletović§, and M. Mulder¶

The Eigenmode Distortion (EMD) analysis is a novel method for objective evaluation of sim-
ulator motion cueing fidelity, developed at Delft University of Technology. It expresses the
distortions of the perceived motion cues in terms of the dynamic modes of a linear model of the
vehicle and has been applied to assess rotorcraft simulations. This paper presents the adap-
tation of EMD for fixed wing aircraft, including performing the analysis at the pilot station
instead of the centre of gravity. The method is applied to a combined linear model of a Cessna
Citation 500 aircraft and the Classical Washout Algorithm (CWA). EMD is compared to the
current state-of-the-art objective method, the Objective Motion Cueing Test (OMCT), which
does not consider the dynamics of the simulated vehicle in its analysis. The two methods show
different results in their cueing fidelity assessment of four CWA configurations. An experiment
with six pilots is performed in the SIMONA Research Simulator to test the capability of EMD
and OMCT to predict the cueing fidelity as perceived by pilots. The subjects perform pairwise
comparisons between the four CWA configurations by exciting the short period dynamics of
the aircraft. Results indicate that preferences vary considerably between pilots, causing both
EMD and OMCT to show poor, but similar, predictive capabilities.

I. Introduction
The motion cues provided by ground-based flight simulators can usually not fully match the cues present in the real
vehicle. Motion Cueing Algorithms (MCAs) are employed to translate the cues calculated by the simulator’s vehicle
model into simulator motions that fit inside the simulator’s motion space. In this process the cues are inevitably distorted,
which might decrease the simulator’s usefulness in representing reality for the pilot.

The design and tuning of the MCA must reconcile the two competing goals of providing realistic cues and limiting
the simulator motion. The most widely used procedure for this process relies heavily on subjective evaluations by
experienced pilots [1]. The relative lack of objective metrics to characterize "good" motion can lead to vastly different
motion profiles between operational simulators.[2].

The undesirability of a purely subjective evaluation of motion cueing quality was already recognized in the 1970s,
when Sinacori [3] proposed a simple gain and phase distortion test of the MCA at a frequency of 1 rad/s, together with
boundaries for low, medium, and high fidelity. This was later refined and expanded into tuning procedures based on this
test by Schroeder[4] and Gouverneur[5].

Since then further research [6–8] has resulted in the current state-of-the art objective evaluation method: the Objective
Motion Cueing Test (OMCT) [9], which is now part of the latest ICAO criteria for qualification of flight simulation
training devices [10]. In OMCT, a frequency response analysis of the MCA and motion hardware dynamics is performed
for all six axes of motion in twelve frequency points between 0.1 rad/s to 15.97 rad/s thus giving a more complete
representation of the motion system’s charateristics than the Sinacori test at 1 rad/s.
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However, at the time of writing, fidelity regions comparable to the ones proposed by Sinacori and Schroeder are based
on the averaged response of ten simulators of various qualification levels and simulated aircraft types [9]. Alternative
fidelity criteria based on pilot task performance during flight tasks are investigated [1]. Despite that no definitive fidelity
criteria have yet been identified, OMCT has also been used for tuning of the MCA. An example is the study by De
Ridder and Roza [11], where OMCT is used in an automatic optimization process of MCA parameters.

One drawback shared between the method of Sinacori and OMCT is that both tests only evaluate the MCA itself,
and in the case of OMCT, the combination with the motion hardware dynamics. The simulated vehicle dynamics are
not included in either test, and it is assumed that the MCA response to motion cues provided by the vehicle model
is sufficiently similar to the combined responses of the individual motion axis responses tested in the Sinacori test
or OMCT. Recent work by Dalmeijer et al.[12] indicates that cross-couplings and other non-linearities in the MCA
might interact with vehicle dynamics to further amplify or attenuate certain cues at certain frequencies in ways that
are not apparent in an OMCT evaluation. In order to further study this problem, a new objective method for motion
cueing fidelity analysis, named Eigenmode Distortion (EMD), is developed by Miletović et al. [13]. EMD evaluates
the distortions of the perceived motion cues imposed by the MCA while taking the dynamics of the simulated vehicle
into account. This is made possible by coupling the dynamics of the MCA and the vehicle into a single combined
system, enabling the representation of the human perceived motion cues in terms of the dynamic modes of the vehicle.
Originally EMD was developed for and applied in rotorcraft simulation [13].

The purpose of this study is to investigate the use of EMD in fixed-wing aircraft simulations. To this end EMD is
applied to a linear model of a Cessna Citation 500 for symmetric flight and the Classical Washout Algorithm (CWA)
[14] used as the MCA. In addition, EMD is compared to OMCT for four CWA configurations. The capability of both
methods to predict the cueing fidelity as perceived by pilots is tested in a piloted experiment in the SIMONA Research
Simulator (SRS) [15] at the Delft University of Technology.

This paper is structured as follows. The general principles of EMD and its adaptation for use in fixed-wing aircraft is
examined in Section II, followed by the practical application of EMD and comparison to OMCT in Section III. Next, the
experiment to evaluate EMD’s capabilities is discussed in Section IV with the results being shown in Section V. The
paper ends with a discussion in Section VI and in Section VII the conclusions are given.

II. EMD application in fixed-wing aircraft

A. Main principles of the methodology

The current state-of-the-art method for objective evaluation of the motion cueing fidelity − the Objective Motion Cueing
Test (OMCT) − analyses the frequency response of the Motion Cueing System (MCS) to a set of sine-wave input signals
for the human perceived motion cues − specific forces and angular rates along all six simulator axes. The same input
signals are used irrespective of the aircraft type being simulated. While OMCT gives a very detailed picture on the
combined performance of the Motion Cueing Algorithm (MCA) and the motion hardware dynamics, its input signals
do not realistically represent motions experienced during simulations of different aircraft types [16]. In addition, the
response to each signal is studied in isolation, while the motions of the aircraft, and consequently the cues sent to the
MCA, are linked through the vehicle dynamics.

The Eigenmode Distortion (EMD) analysis aims to address these shortcomings. It approaches the evaluation of the
motion cueing fidelity from a different perspective. While OMCT analysis is performed in the frequency domain, EMD
investigates the distortion of the motion cues imposed by the MCA in terms of eigenvectors representing the dynamic
modes of the simulated vehicle. In this paper a typical fixed-wing aircraft will be considered. In the EMD analysis,
linear dynamic models for the aircraft and MCA are used. They are presented respectively in Eq. (1) for symmetric
flight and Eq. (2) for longitudinal motions. Here the p superscript refers to the dynamics experienced by the pilot and
the m superscript to the MCA dynamics. The δ notation indicates that the states and inputs are in fact perturbations
relative to the initial condition. Furthermore, while on the one hand the aircraft state vector δpx̄ is known from classical
flight dynamics, the exact formulation of δmx̄ depends on the used MCA. On the other hand, the MCA inputs δmū are
universal and consist of the reference motion cues (or human perceived quantities):
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Ûδ
p
x̄ = Apδ

p
x̄ + Bpδ

p
ū

δ
p
x̄ =

[
δu δw δθ δq

]T
δ
p
ū =

[
δδe δδt

]T (1)

Ûδmx̄ = Amδmx̄ + Bmδmū

δmū =
[
δfxp δfzp δqp

] (2)

The EMD analysis is made possible by effectively combining the linear dynamic systems of the aircraft and the MCA
into a single system which is excited only by the pilot inputs δpū , as seen in Eq. (3). This is achieved through adding
the perturbed specific forces δfxp and δfzp to the aircraft state vector δpx̄ which are in turn given as inputs to the MCA
dynamics through the Amp matrix. The end result is a new combined system matrix Ac with a corresponding state
vector δcx̄ [13]. (

Ûδ
p
x̄

Ûδmx̄

)
=

[
Ap 0

Amp Am

] (
δ
p
x̄

δmx̄

)
+

[
Bp

0

] (
δ
p
ū

0

)
= Acδcx̄ + Bcδūc(

δ
p
ȳ

δmȳ

)
= ȳc = Ccδcx̄

δ
p
ȳ =

[
δfxp δfzp δqp

]
δ
p
ȳ =

[
δfxm δfzm δqm

]
(3)

As a result of this formulation of the combined system, the eigenmodes of the simulated vehicle that can be obtained
from the Ap matrix are carried over to the combined system matrix Ac . Furthermore, by employing a modal coordinate
transformation, as will be explained in Section II.C, the combined aircraft and simulator motion cues (defined in matrix
Ac) can be expressed as (potentially complex) eigenvectors related to the original aircraft eigenmodes. This in turn
enables a systematic analysis of the degree to which the simulator motion cue eigenvectors are distorted in magnitude
and phase with respect to the aircraft motion cues. Through showing the eigenvectors in the complex plane one can
investigate the distortions of all dynamics caused by the MCA.

It is important to clarify that the EMD analysis captures only the linear dynamics of the perturbed human perceived
quantities. Therefore the analysis is valid only close to the given initial condition. If it is desired to evaluate a broader
region of the flight envelope, EMD must be performed across multiple points which are subsequently connected by
techniques such as gain scheduling. In order to simplify the notations for the remainder of the paper, the δ notation is
dropped from the states, inputs and outputs.

B. Application to a linear aircraft model

In this paper, the application of EMD in symmetric flight conditions will be studied. They are described with the
dimensional symmetric equations of motion, presented in Eq. (4), that originate from classical flight dynamics. There
the influence of the aircraft dynamics can be seen through the stability and control derivatives. It must be stated that the
aircraft model used in this study is defined in the stability reference frame, indicating that a transformation is required to
express the perceived cues in the pilot-aligned body reference frame. The equations of motion can also be represented
in a state-space form, which forms the basis for the Ap and Bp matrices in Eq. (1):

−W cos θ0θ + Xuu + Xww + Xqq + Xδe δe + Xδt δt = m Ûu

−W sin θ0θ + Zuu + Zww + Z Ûw Ûw + Zqq + Zδe δe + Zδt δt = m( Ûw − qV)

Muu + Mww + M Ûw Ûw + Mδe δe + Mδt δt = Iyy Ûq
Ûθ = q

(4)
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As already stated, x̄p must be further extended by the inclusion of the specific forces as states in order to enable the
coupling of both systems. In turn, the Ap matrix is modified to include the necessary equations for the new states.

State representation of fxp and fzp

The specific force can be defined as the non-gravitationally induced acceleration [14]. Therefore, the gravity related
components must be removed from the first two equations of motion in Eq. (4) to obtain expressions for the specific
forces at the centre of gravity:

f sxcg =
Xu

m
u +

Xw

m
w +

Xq

m
q +

Xδe

m
δe +

Xδt

m
δt

f szcg =
Zu

m
u +

Zw

m
w +

Z Ûw
m
Ûw +

Zq

m
q +

Zδe

m
δe +

Zδt

m
δt

(5)

However, the MCA requires the specific forces to be defined in the body reference frame. Therefore f sxcg and f szcg must
be transformed from the stability frame to the body frame, as demonstrated in Eq. (6). Here α0 denotes the initial
condition for angle of attack in the body reference frame, since, by definition, the initial angle of attack in the stability
reference frame is 0. The transformation is not needed if the used aircraft model is already defined in the body reference
frame.

f bxcg = f sxcg cosα0 − f szcg sinα0

f bzcg = f szcg cosα0 + f sxcg sinα0
(6)

The final step to arrive at the complete expressions is to move the specific forces to the pilot station. This is an important
requirement for the EMD implementation for fixed-wing aircraft, and in contrast to the application of the method in
rotorcraft, where the cues can typically be evaluated at the vehicle centre of gravity (CG) [13]. In fixed-wing aircraft
the pilot is often located a large distance in front of the CG, which is quantified by the horizontal and vertical cockpit
moment arms lx and lz , see Fig. 1. Together with the pitch rotation acceleration these arms can considerably affect the
specific forces perceived by the pilot from the ones at the centre of gravity as shown in Fig. 1 and Eq. (7). The extent
to which this happens depends on the evaluated aircraft type. For example this effect will be more pronounced on an
airliner than on a business jet, since the former aircraft tend to have larger cockpit moment arms than the latter.

Fig. 1 Influence of the pitch acceleration on the specific forces at the pilot position

fxp = f bxcg − Ûqlz

fzp = f bzcg − Ûqlx
(7)

To arrive at the state-space representation of fxp and fzp , their time derivative is found by differentiating their expressions
obtained from combining Eqs. (5) to (7). In this process the time derivatives of the pilot inputs δe and δt are found by
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approximating their associated actuator dynamics as a first order lag filter as demonstrated in Eqs. (8) and (9). There
δue/t stands for the pilot input for the elevator or thrust setting, while τe/t is the corresponding time constant. The
actuator dynamics approximation results in δe and δt being moved to the vehicle state vector and δue and δut form the
new input vector.

Hδe/t =
1

τe/t s + 1
(8)

Ûδe/t = δue/t −
1
τe/t

δe/t (9)

It must be stated that the values of the time constants τe/t have no influence on the final eigenvector distortions of
the motion cues. This behaviour is expected, since even though the actuator dynamics affect the aircraft motion cues,
the latter are used only as the inputs in the MCA dynamics and therefore have no influence on them. However, in the
specific case that the MCA also uses δe and δt as inputs, the values of τe/t must be selected to represent the simulated
aircraft and flight condition. In the current analysis, the MCA does not rely on the pilot inputs and τe/t = 0.01.

This concludes the derivation of the state-space representation of fxp and fzp . The resulting aircraft state and input
vectors x̄p and ūp are presented in Eq. (10) together with the total system output, vector δpȳ .

x̄p =
[
u v w θ q δe δt fxp fzp Ûq

]T
ūp =

[
δue δut

]T
ȳp =

[
q fxp fzp

]T (10)

Coupling of the two systems

In this study, the used MCA is the Classical Washout Algorithm (CWA) [14], shown in Fig. 2. Since only the longitudinal
motions will be analyzed, it is assumed that φm = ψm = 0◦. Furthermore, in the linearization process small angle
approximations are used and the rate limit of the platform tilt coordination is not modelled.

The coupling of the aircraft and MCA linear systems is done through the Amp matrix as was previously stated. Because
the aircraft motion cues are present in its state vector, the Amp can be directly constructed from the simulator input
matrix Bm. The same process is repeated for the construction of the coupled system output matrix Cc , where Cmp

effectively binds the MCA outputs to the aircraft dynamics, as seen in Eq. (11). The definitions for Amp and Cmp are in
turn shown in Eq. (12), in which Dm represents the MCA feedthrough matrix.

Kf
Transform to

Inertial HP3 
Transform

to Body 

LP filter 
Tilt

Coordination Rate Limit

Kq
Transform to

Euler HP2 ++

fxp

fzp

q

++

ḡ

+- fzm

ḡ

fxm

qmTransform
to Body 

Fig. 2 The Classical Washout Algorithm adapted for longitudinal motions [14]
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Cc =

[
Cp 0

Cmp Cm

]
(11)

Amp = [0 Bm] Cmp = [0 Dm] (12)

C. Distorted eigenvector analysis

The final component of the EMD methodology is finding the extent of the distortion of the aircraft motion cues by the
MCA dynamics. The combined system formulation presented in Eq. (3) enables the representation of the perceived
motion cues as components of the eigenvectors of the Ac matrix, which also describe the vehicle dynamic modes. In
Eq. (10) it can be observed that the aircraft motion cues fxp , fzp , and q are already part of x̄p and are thus represented
in the eigenvectors of Ac . The same, however, is not valid for the motion cues in the simulator fxm , fzm , and qm. As a
result of the system coupling, these are expressed as a combination of aircraft and simulator states, which is observed
in Eqs. (3), (11) and (12). Thus, in order to relate the simulator motion cues to the vehicle dynamic modes a modal
coordinate transformation needs to be performed [17].

The modal coordinate transformation is in principle a change of basis of the system defined by Ac ,Bc ,Cc and Dc

matrices. This is done with the help of the modal matrix V , defined in Eq. (13), where V contains the right eigenvectors
of Ac corresponding to the eigenvalues λc [17]:

AcV = λcV (13)

In general it is assumed that there are n distinct eigenvalues, thus making V invertible. This assumption is valid for the
current formulation of Ac . The modal matrix is used to define a new state vector − the modal state z̄ and corresponding
matrices, presented in Eqs. (14) to (17):

z̄ = V−1 x̄c (14)
Û̄z = (V−1 AcV)z̄ + (V−1Bc)ūc (15)

ȳc = (CcV)z̄ = Cmod z̄ (16)

Cmod =
[

fxpmod
fzpmod

qmod fxmmod
fzmmod

qmmod

]T
(17)

The new modal output matrix Cmod contains the motion cue components of all eigenvectors of Ac expressed in terms of
the modal state z̄ as shown in Eq. (16). The simulator-related entries in Cmod are therefore connected to the dynamic
modes of the aircraft through z̄. For the aircraft-related motion cues the rows in Cmod are equivalent to rows in V , which
correspond to fxp , fzp and q. The end result is that it is possible to do a direct comparison between the motion of the
aircraft and the motion cues produced by the simulator, all expressed as eigenvectors of the combined system. The
comparison is then visualized by plotting all motion cue eigenvectors in the complex plane.

An example visualization of the distorted eigenvectors is presented in Fig. 3, where the used MCA is taken from [18]
and is applied on a Cessna Citation 500 linear model. The solid and dashed lines represent the motion cue eigenvector
components of, respectively, the aircraft and the simulator. The eigenvectors in Fig. 3a and Fig. 3b in turn correspond to
the eigenvalues of the short period and phugoid eigenmodes. The aircraft related eigenvectors have different magnitude
and phase relations to one another that originate from the aircraft model. Therefore they remain fixed and do not
change with the MCA parameters. The relations between the MCA related eigenvectors change when altering the MCA
parameters.

It is important to note that the comparison of eigenvector magnitudes can only be made for the same motion cues due
to their different dimensions. For example in Fig. 3 it can be seen that fzp has a much higher amplitude than qp for
both eigenmodes. However, it would be wrong to conclude that fzp is a more dominant motion cue than qp in these
eigenmodes.

The magnitude distortion of an eigenvector can be defined as the ratio of the magnitudes of the simulator eigenvector
with respect to the aircraft eigenvectors. For example, in Fig. 3a it is observed that | fz |sp =

| fzm |sp
| fzp |sp

= 0.73. Similarly,
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the phase distortion is characterised by the angle between the aircraft and simulator eigenvector. If the eigenvectors
corresponding to the positive conjugate eigenvalues are visualized, counter-clockwise and clockwise phase distortions
indicate, respectively, phase lead and phase lag. For example in Fig. 3a fzm has a phase distortion of 87 degrees
counter-clockwise (∠( fz)sp = 87◦ lead), while qm has a 13 degree clockwise distortion in phase (∠(q)sp = 13◦ lag).
The magnitude distortion for qm is pronounced with |q |sp = 0.43, while fxm has a good level of magnitude and phase
distortions: | fx |sp = 0.77, and ∠( fx)sp = 33◦ lead.

The eigenvector distortions can also be seen in the time domain. Consider that a system is excited with eigenmode i,
which is described by a pair of complex conjugate eigenvectors vi and v∗i . This is visualized in the time domain through
the zero-input response of the system to an initial condition of 2Re(vi). The distortions related to the short period are
presented in Fig. 4a. Here it can be observed that fxm is slightly leading fxp while having a slightly lower amplitude,
corresponding with the eigenvector distortions. Similar observations that correlate to Fig. 3a can be made for fz and q.

The EMD analysis for the phugoid is presented in Fig. 3b. Immediately it is noticeable that the pitch and heave motion
cues in the simulator are almost non-existent: ∠( fz)phug = 108◦ lag, | fz |phug = 5.65 · 10−4 and ∠(q)phug = 101◦
lag, |q |phug = 0.097. The surge cues are less distorted: ∠( fx)phug = 16◦ lag, | fx |phug = 0.71. The time domain
representation of the phugoid distortions is shown in Fig. 4b, where fzm and qm are essentially zero.

Finally, the modal coordinate transformation results in a parameter presenting the modal response of the system in the
time domain. This is the absolute value of the complex modal state z̄ that gives information on the participation of each
mode in the system response [13]. This measure is called a Mode Participation Factor (MPF) and its integrated value
over a given time gives an indication of the relative contribution of each mode in a particular manoeuvre.

D. Proposed criteria for filter tuning

The currently proposed tuning approach used with EMD aims to preserve the aircraft motion cues in the simulator for
one eigenmode of choice while using as much as possible from the available motion space. This is achieved by tuning
with the following criteria shown in their order of importance:

1) Minimize the phase distortions of all motion cues.
2) Maintain the relative phases between the motion cues. This effectively translates to all motion cues having phase lag

or phase lead distortions of similar proportions.
3) Minimize the magnitude distortions of all motion cues.
4) Attempt to maintain a similar magnitude distortion level for all motion cues.

After the tuning process is completed, it needs to be checked whether motion platform exceeds the available motion
space for a desired task or manoeuvre. If the space is exceeded, the tuning process is repeated until the actuator length
limits are no longer reached.

Finally, it must be stated that these criteria used for tuning are not necessarily optimal and are based on the current
interpretation of EMD. Future research might prove that better approaches exist.
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Fig. 3 Example for eigenvector distortion plots
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(a) Short period eigenmode
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(b) Phugoid eigenmode

Fig. 4 Time histories of separately exciting the two eigenmodes of the aircraft

III. Practical application of EMD and comparison to OMCT
In this study the EMD analysis is applied to a linear model of the Cessna Citation 500 in cruise configuration, which is
presented in Table 1. The goal is to arrive at configurations which accurately simulate one of the two eigenmodes.

8

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
M

ay
 2

8,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
01

79
 



Table 1 The Cessna Citation I (dimensionless) linear model parameters

CX0 = -0.0277 CZ0 = -0.216 Cm0 = 0.213 m = 5207 [kg]
CXu = -0.0698 CZu = -0.4702 Cmu = 0.0561 S = 24.2 [m2]
CXα = 0.0744 CZα = -5.6149 Cmα = -0.4982 c̄ = 2.022 [m]
CX Ûα = 0.0259 CZ Ûα = -0.2039 Cm Ûα = 0.1689 V = 160.03 [m/s]
CXq = -0.4179 CZq = -5.8339 Cmq = -10.152 h = 5000 [m]
CXδe

= -0.0131 CZδe
= -0.5814 Cmδe

= -1.2269 ρ = 0.7361 [kg/m3]
CXδt

= 0 CZδt
= 0 Cmδt

= 0 KYY = 1.114 [-]

The short period eigenmode is selected for tuning of the configurations. It is preferred to the phugoid since motion
simulators are better suited to emulating high-frequency accelerations than ones of low-frequency due to the limited
motion space [14]. Furthermore, magnitude and phase distortions become more prominent during precision control
tasks and do not influence the fidelity of large amplitude manoeuvres [19]. The short period eigenmode is a better
representative of the former. Moreover, in order for the phugoid to be the dominant eigenmode in a manoeuvre a large
deviation from the initial trim condition is needed. This can lead to leaving the validity region of the EMD method,
which analyses the linear dynamics of the system state and input perturbations. Finally, the distortions related to the
short period exhibit noticeable variations with changing CWA parameter configurations, while the distortions for the
phugoid remain similar to the behaviour observed in Fig. 3b with severely attenuated heave and pitch motion cues.

In total four CWA configurations, presented in Tables 2 and 3, were analyzed. The baseline configuration B is tuned
based on established rules of thumb and previous experience from motion tuning experiments on the SRS. Furthermore,
it is ensured that this configuration complies to the current OMCT criteria set in ICAO 9625 [10]. The next two
configurations Eph(ase) and Em(agnitude) are tuned according to the EMD analysis approach. The difference between
the two is that Eph has the smallest phase distortion for fx and q, while Em has the smallest overall magnitude distortion
summed over all motion cues. The final configuration O is tuned to pass the current OMCT tests while exhibiting
unsatisfactory behaviour in the EMD analysis. For all configurations, a pull-up push-over manoeuvre of ±5◦ pitch angle
capture was simulated to ensure that the available motion space was not exceeded. The result from these simulations
is that all configurations were set with the same heave parameters, as the heave cue is largely uncoupled from the
other degrees of freedom, and the most motion space is used up in replicating the heave movements. Furthermore, all
subsequent performance differences are resulting from the settings for the coupled pitch and surge axes. Therefore
from now on when magnitude and phase distortions are discussed, this is done for fx and q unless specifically stated
otherwise.

Table 2 Labels and description of the four used configurations of the Classical Washout Algorithm

Label Description
B Baseline configuration, complying with the OMCT criteria.
O OMCT tuned configuration with bad performance in EMD, complying with the OMCT criteria.

Eph Configuration with smallest phase distortion, not complying with the OMCT criteria.
Em Configuration with the smallest magnitude distortion, not complying with the OMCT criteria.
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Table 3 Classical Washout Algorithm filter parameters for all configurations used in the experiment

Kx

[-]
ωnx

[rad/s]
ωbx

[rad/s]
ωnl px

[rad/s]
ζx

[-]
Kz

[-]
ωnz

[rad/s]
ωbz

[rad/s]
ζz

[-]
Kq

[-]
ωnq

[rad/s]
ζq

[-]
B 0.7 0.8 0 2.5 1 0.5 2.5 0.2 1 0.7 0.8 1
O 0.7 2 0 4 1 0.5 2.5 0.2 1 0.7 1 1

Eph 0.8 1 0 1 1 0.5 2.5 0.2 1 0.7 0.7 1
Em 0.8 1.5 0 1 1 0.5 2.5 0.2 1 0.7 1 1

The eigenvector distortion plots for all configurations are shown in Fig. 5 with their distortions quantified in Table 4.
By inspecting them it can be observed that configurations Eph and Em maintain fairly low phase distortions while
attempting to keep the relative phase between fx and q as inherent in the aircraft dynamics. The baseline configuration
B exhibits reasonable phase and magnitude distortions. However, the relative phase is not preserved, as q is exhibiting
phase lag, while fx shows a phase lead distortion. A similar behaviour is observed in configuration O, where the phase
distortion in fx and magnitude distortion in q are prominent.

These trends are also evident in the time-domain representation of the distortions, presented in Fig. 6. For instance, note
how fxm is out of phase with respect to fxp at t = 0 for configuration O, see Fig. 6b. This corresponds to its phase
distortion of ∠( fx)sp = 152.1◦ lead. In the same figure, it is clearly visible that qm has a higher amplitude than qp and is
lagging behind it, which is again in accordance with the eigenvector distortion results.

The excitation of the eigenmodes also aids in the understanding of how the MPFs behave. In Fig. 7a it can be observed
that when the initial condition is the short period eigenvector, the SP MPF component starts from one and quickly
reduces to zero. The opposite is seen in Fig. 7b, when the phugoid eigenvector is the initial condition, where the
phugoid MPF gradually decreases while the aircraft is returning to its trimmed state. For both conditions, the MPF of
the eigenmode that is not excited is verified to have a value zero throughout the entire evaluation. This behaviour is
directed by the short period and phugoid eigenvalues (λsp and λph), presented in Eq. (18), which govern the frequency
and damping of both eigenmodes:

λsp = −2.0362 ± 3.0513i λph = −0.0124 ± 0.1149i (18)

While methods such as EMD and OMCT are usually used for evaluation of the motion cueing fidelity they can also be
employed for tuning of the MCA. For example De Ridder and Roza [11] investigated an automatic tuning method using
OMCT. The four CWA configurations used in the current study enable the presentation of both tuning and evaluation
using EMD. For the former, configurations Eph and Em are tuned to produce motion cues at least as good as the baseline
B, in terms of subjective pilot opinion. It is hypothesized that this statement is valid, since configurations Eph and Em

have similar or lower phase and magnitude distortions than the baseline B, as seen in Table 4.

For the evaluation, a ranking can be made based on interpreting the outcome of the EMD analysis with respect to the
tuning criteria and their relative importance, that are set in Section II.D. This ranking for the presented configurations
is Eph > Em > B > O. Configuration Eph has the lowest phase distortion for surge and pitch, while simultaneously
maintaining reasonably low magnitude distortions. Em has on average better magnitude distortions, but a slightly
worse phase distortions which ranks it on second place. The baseline configuration B has worse phase distortions and
magnitude than Eph and Em. Furthermore it fails to preserve the relative phase between fxp and qp, since fxm has a
phase lead distortion, while qm has a phase lag distortion. Configuration O has the same problem, which is even more
pronounced due to the large phase lead distortion of fxm . This, combined with it having the largest magnitude distortion
for qm, gives it the last place in the EMD based ranking.
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Fig. 5 Short period eigenvector distortion plots for all CWA configurations

Table 4 Short period eigenvector magnitude and phase distortions for all CWA configurations

| fx |sp ∠( fx)sp[◦] | fz |sp ∠( fz)sp[◦] |q |sp ∠(q)sp[◦]
B 0.76 33.0 lead 0.73 87.4 lead 0.67 45.9 lag
O 0.90 152.1 lead 0.73 87.4 lead 1.83 34.0 lag
Eph 0.82 24.2 lead 0.73 87.4 lead 0.70 21.6 lead
Em 0.78 33.5 lead 0.73 87.4 lead 0.76 33.1 lead

11

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
M

ay
 2

8,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
01

79
 



0 0.5 1 1.5 2 2.5 3

t[s]

-0.15

-0.1

-0.05

0

0.05

0 0.5 1 1.5 2 2.5 3

t[s]

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

t[s]

-0.01

-0.005

0

0.005

0.01

0.015

(a) B

0 0.5 1 1.5 2 2.5 3

t[s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3

t[s]

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

t[s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) O

0 0.5 1 1.5 2 2.5 3

t[s]

-0.15

-0.1

-0.05

0

0.05

0 0.5 1 1.5 2 2.5 3

t[s]

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

t[s]

-2

0

2

4

6

8

10

12
10

-3

(c) Eph
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(d) Em

Fig. 6 System response to the short period eigenmode excitation

12

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
M

ay
 2

8,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
01

79
 



Short Period MPF

(a) Short Period initial condition

Phugoid MPF

(b) Phugoid initial condition

Fig. 7 MPF evolution for the system response to both eigenvector initial conditions

The four CWA configurations are also subjected to offline OMCT tests excluding the dynamics of the motion platform
[18]. Their results are presented in Fig. 8 where the fidelity boundaries are the ones defined in ICAO 9625 [10]. As
previously stated, configurations B and O manage to comply to the OMCT conditions. It is also observed that B manages
to stay within the boundaries a bit better than O, since for the latter in surge test 6 the magnitude at ω = 1.585rad/s lies
just outside the lower boundary.

The frequency response of the EMD tuned configurations Eph and Em lies outside these boundaries for almost the entire
tested frequency range for pitch test 1 and for its lower half for surge test 6 as observed in Fig. 8a. Furthermore, Em lies
further away from the fidelity boundaries than Eph for both the pitch and surge tests. Therefore, a ranking based on the
OMCT results can also be devised: B > O > Eph > Em.

Even though the two rankings overlap in the sense that in both B > O and Eph > Em, they exhibit enough differences
for the used configurations. The validity of both rankings can be tested in a piloted experiment.
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(a) Pitch due to pitch (test 1) (b) Surge due to pitch (test 2)

(c) Surge due to surge (test 6) (d) Pitch due to surge (test 7)

(e) Heave due to heave (test 10)

Fig. 8 OMCT results for all configurations
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IV. Experiment set up
In order to investigate the predictive capabilities of the EMD methodology and to validate its inherent assumptions, a
pilot-in-the loop experiment is performed in the SIMONA Research Simulator (SRS). The used MCA configurations are
the ones presented in Table 2, while the simulated aircraft is a non-linear high-fidelity model of the Cessna Citation
500 business jet. The initial trim condition is at an altitude of 5000m and Mach number of 0.5 with the corresponding
velocities VT AS = 160 m/s and VI AS = 245 kts. Six pilots of different background performed double-blind pairwise
comparisons between all four CWA configurations by exciting the aircraft short period dynamics. This section will
present the a-priori hypothesis, followed by a discussion of the task flown by the pilots, the experimental structure, and a
brief description of the participants.

A. Hypothesis

The main experiment hypothesis is that EMD is a better predictor of the subjective motion cueing fidelity given by pilots
for motions exciting the aircraft short period oscillation dynamics than OMCT. An alternative formulation is that the
EMD-based ranking will better correspond to the winners of the pairwise comparisons than the OMCT-based ranking.

B. Experiment Task

The task of the evaluation pilots is to excite the aircraft and subsequently the simulator motion system in a way allowing
them to confidently state a preference for the most realistic condition in the evaluated pair. Pilots are instructed to excite
the aircraft short period dynamics as they wish, on the condition that they obey the following boundaries:

• The airspeed must not deviate more than ±10 knots from the trim airspeed.
• Any pitch captures that are performed must not exceed ±5◦.
• No full deflections of the side stick are allowed.
• Different strategies for exciting the short period can be tried during training, but only a single strategy can be used
during the evaluation runs.

There are several reasons for these limitations. First, the aircraft must not deviate too much from the trimmed condition,
since the motion filters are specifically tuned for it. Second, large pitch inputs must be avoided since it is easy to
overstress the simulated aircraft and quickly run out of available motion space due to excessive heave. An additional
measure to prevent this is the implementation of a force curve on the side stick identical to the one used in the Airbus
A320 in a cruise configuration. The strategy must remain consistent to ensure that any perceived differences in the
simulator motion are resulting only from the evaluated CWA configurations.

Pilots are also provided with a full outside visual, and a Primary Flight Display (PFD) to monitor the airspeed and
pitch angle. In addition, an engine noise is played while the pilots were performing the task in order to mask any noise
coming from the hydraulic motion actuators. Finally, the roll and yaw controls are disabled.

C. Experiment Structure

Dependent measures

The main recorded variable is the preferred CWA configuration from each paired comparison. Pilots are briefed to
select the ’winner’ as the configuration which presents the most realistic motion cues. For validation purposes, time
histories of the pilot inputs, aircraft states and specific forces, and the simulation motion cues are recorded.

Training

Each pilot is subjected to approximately 20 minutes of training. In this phase, the pilots fly all four CWA configurations
two times in a randomized order. Every training run lasts for one minute, during which a pilot can explore different
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control strategies that enable him to make an evaluation of the motion cueing fidelity. All pilots are instructed to choose
a single strategy by the end of the training and keep using it in the evaluation phase.

There are two additional training runs in the form of a standard pair comparison that are done immediately after a short
break.

Evaluation phase

The evaluation phase begins after the training has concluded. The pilots first perform all six paired comparisons once.
After a break, the paired comparisons are repeated with the CWA configurations presented in the opposite order. The
Latin square matrix of all configurations is presented in Table 5.

Table 5 Latin Square matrix of the experiment conditions for all pilots

Subject Conditions
1 B −O B − Eph Em−Eph B − Em Em −O O − Eph Eph −O O − Em Em − B Eph−Em Eph − B O − B
2 B − Eph B − Em B −O O − Eph Em−Eph O − Em Em −O Eph−Em Eph −O O − B Em − B Eph − B
3 B − Em O − Eph B − Eph O − Em B −O Eph−Em Em−Eph O − B Em −O Eph − B Eph −O Em − B
4 O − Eph O − Em B − Em Eph−Em B − Eph O − B B −O Eph − B Em−Eph Em − B Em −O Eph −O
5 O − Em Eph−Em O − Eph O − B B − Em Eph − B B − Eph Em − B B −O Eph −O Em−Eph Em −O
6 Eph−Em O − B O − Em Eph − B O − Eph Em − B B − Em Eph −O B − Eph Em −O B −O Em−Eph

For every pair, one evaluation run of maximum one minute is performed for each CWA configuration. The pilots can
stop the run once they feel that they sufficiently know the motion signature of the condition.

Test subjects

Six pilots with a varying degree of experience participated in the piloted experiment. All of them gave their informed
consent prior to starting the experiment. Their background is summarized below:

• Subject 1 - Retired military test pilot with experience in motion simulation experiments.
• Subject 2 - Active general aviation pilot.
• Subject 3 - Active aerobatic glider pilot experienced in motion cueing evaluation of Level-D Full Flight Simulators
(FFS).

• Subject 4 - Active Cessna Citation 550 research pilot with experience in motion simulation experiments.
• Subject 5 - Active test pilot of commercial airliners with experience in motion simulation experiments.
• Subject 6 - Active airline pilot and Cessna Citation 550 research pilot with experience in motion simulation experiments.

V. Results
The results for all pairwise comparisons grouped for all subjects is presented in Fig. 9. The height of bars represents the
total number of times this configuration has been preferred in this current pair. The different colours correspond to the
evaluations given by each subject. It must be noted that there is one missing data point for the pair B − Em as Subject 1
was unable to give a confident preference in one of his evaluations.
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Fig. 9 Results of the pairwise comparisons for all pairs evaluated by all pilots

In Fig. 9 it can be observed that the subjects express two types of consistency. The first is the within-pair consistency
which is satisfied when the same configuration is preferred in both evaluations of a given pair, visualized by a full bar
in Fig. 9. It is seen that for the pair Eph − Em all subjects are within-pair consistent. The second consistency type is
related to the transitivity of the evaluations from the different pairs. An example of a perfectly transitive evaluation is
when B > O, O > Eph , Eph > Em, and O > Em. When the data for all pilots are analyzed, it can be concluded that it is
intransitive, since a circular triad is present: O > Eph , Eph > Em, but Em > O. This prevents the formulation of a clear
and intuitive ranking based on the absolute results from all pilots for every pair.

However, it is possible to use statistical modelling techniques in order to arrive at an estimation of a data-based ranking.
Many methods exist for statistical analysis of paired comparisons data which is likely to have high degree of dependence
[20], as is the case with the evaluations of a repeated measures experiment. One approach is to fit the data to a
Bradley-Terry pattern model with the R package prefmod [21]. The model assumes that the evaluations made by
a single pilot are dependent, while the evaluations of the different pilots are independent. The resulting ranking is
B > Eph > Em > O with corresponding worth parameters

{
πB, πEph

, πEm, πO

}
=

{
0.348, 0.335, 0.174, 0.143

}
. There

are other methods that can provide more accurate models which are better tailored to the specific data [20]. Their
implementation is unfortunately not straightforward [20] and considerable time would have to be spend on it.

From further analysis of Fig. 9 it is seen that the subjects can be divided in three groups based on their consistency. The
first group, formed by Subjects 1 and 2, is within-pair consistent (5 out of 6 pairs) but not transitivity consistent. The
second group, represented by Subjects 3 and 4, is the worst with respect to within-pair consistency (3 out of 6 pairs) but
is transitively consistent when discarding the inconsistently rated pairs. The third group of Subjects 5 and 6 is both
within-pair consistent (with respectively 4/6 and 5/6 pairs) and transitively consistent.

The experiment hypothesis is tested by comparing the ratio of correct paired comparison outcome predictions to the
EMD-based ranking and the OMCT-based ranking. Since the two predictors have a degree of similarity - both state that
B > O and Eph > Em, the analysis is done for all outcomes as well as the truly discriminatory outcomes (from pairs
B − Eph , B − Em, O − Eph , O − Em), which are indicated as EMD* and OMCT*. These ratios are visualized through
box plots in Fig. 10. The data points for each test subject are shown as circles and overlaid on top of the box plots in
order to provide a good representation of the data distribution. The colours used for the data points representing the
subjects correspond to the legend in Fig. 9. It is interesting to note that while Subjects 5 and 6 are the most consistent
overall, they have completely opposite preferences. Subject 6 picks a winner according to the EMD ranking for 9 out of
12 evaluations, while Subject 5 is consistent with the OMCT ranking for 10 of the total 12 evaluations.
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Fig. 10 Box plots of the ratio of correct predictions

By observing Fig. 10 it can be concluded that the main hypothesis is rejected as the medians of the complete and
discriminatory OMCT ratios are higher than the medians of the corresponding EMD ratios. Furthermore, the difference
between the two methods is not expected to be significant. This is confirmed with a statistical analysis. A non-parametric
Friedmann ANOVA test is used for this, since the data does not satisfy the homogeneity of variance assumption. The
results are χ2(1) = 0.2, p = 0.65 for both the complete ratios and the discriminatory pairs, indicating that for both of
them the difference is indeed not significant.

Several other "predictors" are tested as well. They are not subjected to a statistical analysis, but serve as a baseline for
the predictive performance of EMD. The first one is based on the ranking derived from the data with the Bradley-Terry
model. Additionally, three random predictors are initialized with the following seeds:

1) The experiment date (e.g. 20180818)
2) The subject number after the experiment date (e.g 201808183)
3) The subject number before the experiment date (e.g 320180818)

The random predictors are used as an unbiased measure to gauge the predictive capabilities of EMD and OMCT for
pilot subjective cueing fidelity. It can clearly be seen in Fig. 10 that both methods do not seem to perform better than the
random predictors. Finally, the ratio of wins for the first and second presented filter in the pair is compared in order to
see if an order effect is present. Their corresponding box plots show a more noticeable difference in favour of the first
element of the pair being preferred, which may potentially be significant. The result from the statistical test for the order
effect is χ2(3) = 0.964, p = 0.81, meaning that it is not significant when taken over all pilots.

VI. Discussion
The main goal of this paper is to present the application of EMD to fixed-wing aircraft and investigate its capability to
predict the subjective motion cueing fidelity perceived by pilots. In order to test this, six pilots compare four MCA
configurations in pairs of two, by exciting the short period dynamics of a Cessna Citation 500 aircraft.

After completing the experiment all pilots reported they had difficulties in consistently giving evaluations of a high
confidence, since according to them all four configurations had a similar feel. The test subjects gave a positive feedback
on the pairwise comparison format of the experiment however, as it better enabled them to differentiate between the
different configurations. Another opinion shared between the majority of the participants is that high frequency pitch
oscillations, aiming to excite the short period dynamics for longer periods of time, were not beneficial for distinguishing
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differences between the configurations. On the contrary, slower movements resulting from manoeuvres such as pitch
angle intercepts enabled the pilots to better observe deficiencies in the motion. Therefore it is recommended that in
future experiments a specifically defined task is used.

In addition, the pilot feedback indicates that the currently used EMD tuning approach can be improved upon by
considering simultaneous tuning for the short period and phugoid. Since both eigenmodes are excited during longitudinal
motions, a weighted tuning approach based on their relative MPFs for a set of manoeuvres can be investigated.

From the experiment results, it can be concluded that there are no significant differences between the predictive
capabilities of EMD and OMCT. Both methods exhibit a performance similar to a random predictor, indicating that they
are not the most reliable tools for predicting subjective cueing fidelity for MCA configurations which appear to be very
similar, such as the ones used in this experiment.

Additionally, the accuracy of the ratios of correct predictions for EMD and OMCT can be argued, since some pilots
tended to report varying levels of confidence when giving their evaluations. However, this was not done in a systematic
manner for all pilots and was therefore not addressed in the statistical analysis. Should a similar experiment be attempted
in future studies, it is recommended to add the confidence level of each evaluation to the dependent metrics. It can
subsequently be used to improve the statistical modelling performed with the Bradley-Terry pattern model or another
more complex method.

Furthermore, the subjective evaluation method of MCA configurations is not an inherently consistent and consequently
reliable metric for measuring the predictive performance of EMD and OMCT. The evaluation criteria employed by
different pilots can vary even when measures, such as providing universal instructions and briefing, are taken to minimize
this. For instance, one pilot stated during the experiment that sometimes he might prefer a configuration that is not
necessarily the most representative of the real aircraft, but more beneficial for training. Therefore it is recommended for
future studies to investigate other more objective methods of quantifying and evaluating the performance of objective
metrics such as EMD and OMCT.

Another observation based on the experiment results is that the currently used fidelity boundaries for OMCT need to be
further refined, as there is a clearly expressed difference in the preference given to the two configurations conforming to
OMCT, which is visible in the results for pair B − O. Studies have already been performed that analyze the fidelity
boundaries based on pilot performance [1]. Similar research can be done with respect to different aircraft types and
flight conditions.

Finally, the results of the pair Eph − Em are unexpected, since these two conditions were hypothesized to be the most
similar to one another and hence that pilots would find a little difference between them. The experiment showed that, on
the contrary, this is the only pair where all pilots had consistent evaluations and on average Eph is preferred to Em. This
is another indication for potential deficiencies in the currently used set of EMD based tuning criteria. Therefore further
research into the methodology is needed.

VII. Conclusions
This paper presented the application of a novel method for objective motion cueing fidelity evaluation, Eigenmode
Distortion, to fixed-wing aircraft. It was shown how this method can assess MCA settings for a specific aircraft
model and flight condition, and how it can generate a ranking between MCA settings which sometimes conflicts with
state-of-the-art OMCT assessments.

Validation through pilot opinion of both these ranking methods was hampered by inconsistencies between and within
pilots. A reliable and objective "gold standard" to calibrate cueing assessment techniques that minimizes the influence
of individual preferences and variability would strongly benefit a confident demonstration of EMD’s value in the future.
It is questionable if such a standard can (or should) be constructed without reference to expert pilot opinion.

In general EMD provides an alternative perspective on the tuning and assessment of motion cueing algorithms. It has
the potential to identify issues with MCA configurations for a given flight condition that are not noticeable with the
current objective criteria. Since the methodology is applicable to any aircraft throughout its flight envelope, it can be
used as a stepping stone to understanding aircraft and flight condition specific motion cueing and for enhancing the
currently used methods.
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