
Web based visualisation of
3D radar and LiDAR data

Additional Thesis (AES4011-10)

Adriaan van Natijne
Supervisors: Prof. dr. ir. R.F. Hanssen

Dr. R.C. Lindenbergh

Assessment committee:
Ramon Hanssen & Roderik Lindenbergh

As this report is intended as a manual too, footnotes are used as links to online resources, as
those resources are more spread out than conventional literature.

Figure 1 (on the cover): the completed application showing radar observations with their
error ellipsoids. An explanation of the features shown can be found in chapter 6.A (page 43).

Abstract
Laser scanners and Interferometric SAR both create point clouds. Their density, position accuracy,
varying on the sensor. To improve the interpretation of the low density InSAR data a combination is
made with high density airborne and terrestrial laser scanner data. Allowing for improvement of the
positioning of the scatterers and the understanding of their behaviour.

This combination is implemented as a web application, suitable for researchers to create 3D
visualisations for the greater public. Challenges are: the high volume nature of point clouds;
inhomogeneous coverage of laser measurements; different coordinate systems and limited
processing power of web-browsers.

All datasets were brought to the same coordinate system and where possible enriched with other
sources such as aerial photographs and maps. Tiling was applied to limit downloads and processing
requirements at the web-browser. Clustering of InSAR data may be applied to group points with
similar behaviour while preserving unique features in the data.

Results of this work are a demo application, this report and a manual on how to make a similar
application based on a combination of yet existing tools. These visualisations will allow for a new
approach in InSAR analysis, integrating measurements with their surroundings.

1

Contents
Abstract...1
1. Introduction..5

1.A. Terms of reference...6
1.B. Research questions...7

2. Available solutions for point clouds...9
2.A. Converter..9
2.B. Server...10
2.C. Viewer..11
2.D. Online examples...12
2.E. Demo application...14

3. Available data...15
3.A. Actueel Hoogtebestand Nederland 1/2/3...15
3.B. Terrestial Laser Scanners...16
3.C. Mobile laser scanner..19
3.D. PDOK Luchtfoto..20
3.E. InSAR (persistent scatterers)..20
3.F. Map sources..23

4. Data processing..25
4.A. Required software..26
4.B. Data structures..26
Step 1: from TLS to referenced point cloud..28
Step 2: colouring AHN..29
Step 3: creation of the PoTree datastructure..31
Step 4: tiling InSAR data...32
Step 5: PoTree viewer, integrating datasets...33
4.C. Optional steps...35

5. Clustering of scatterers...37
6. Results..43

6.A. The viewer, demo application..43
6.B. Effective combinations...50
6.C. Point density settings..50
6.D. Meshes...52
6.E. Object storage...55
6.F. Scalability of point cloud conversion...55

7. Conclusion..59
7.A. Recommendations..60

Appendix A “Quick recipe”..63
Appendix B TLS Alignment...67
Appendix C Scripts...69

3

1. Introduction
Interferometric Synthetic Aperature Radar (InSAR) can be used to monitor deformation from
satellites. Millimetre (per year) accuracy can be achieved in deformation trend estimations.
Unfortunately the source of the deformation signal is less accurately known. The location of the
scatterer can be of great importance to understanding and valuing the deformation behaviour: a
subsiding garden house or street will require different precautions than a subsiding bridge pillar.

Radar measurements are often dominated by a single scatterer. In those cases the reflection may be
attributed to a distinct feature. Unfortunately this relation is not always clear. To find and
demonstrate the dominant scatterer it is beneficial to combine radar measurements with a (high
resolution) point cloud. This will allow for linking scattering behaviour to a geometric feature in the
scene.

To illustrate this, the effects of the error in the position estimate are shown in Figure 2. The
estimated position of the scatterer is in mid-air. As such scattering behaviour in air is unlikely at
best, there are three candidates for the (dominant) scatterer.

To decide which of them is most likely the estimates of the positioning error may be used, indicated
here as a blue ellipsoid. Option 3 is the most likely (maximum likelihood) option, as positioning the
scatterer at this point will require the least possible error (compared to the estimated position) of the
three options. Estimates for the size of the errors are provided by P. Dheenathayalan et al.33.

Figure 2: Example error ellipsoid, showing
the position ambiguity. (P. Dheenathayalan
et al.33)

The introduction of web-based 3D techniques paved the road for online point cloud viewers. In
recent years multiple solutions have been launched for showing large (billions of points) point
clouds in the web-browser. Unfortunately no combination between point clouds and radar scatterer
information has yet been made public.

5

This project was aimed at creating this missing link and integrating both data sources. Given the
rise of web based point cloud viewers and the availability of a nationwide airborne LiDAR dataset
(AHN) The Netherlands forms a perfect test bed for this integration of datasets in an online
application.

This additional thesis has three final products: this report, a short manual on how to create a similar
application and a demo application. The requirements for the demo application are set out in
paragraph 1.A (Terms of reference), the associated research questions are stated in paragraph 1.B of
this introduction.

First the currently available solutions for point clouds will be discussed in chapter 2. The data
available to this study is discussed in chapter 3. In chapter 4 an outline of the steps necessary to
implement such a combined solution is shown. This chapter may serve as a manual for creating a
similar web-application.

In chapter 6 the demo application will be shown. Finally in chapter 7 the terms of reference and
research questions will be discussed. Those interested in creating a similar application could consult
Appendix A for a head start.

1.A. Terms of reference
The following requirements formed the basis of the demo application. In short: an application
aimed at a broad audience of professionals, skilled producers but novice users. The concept will be
demonstrated on the university campus, based on provided radar data.

Purpose of the tool To visualise the error ellipsoid of the radar measurements in their
environment (e.g. point cloud data), accessible for large(r) audiences.

The resulting map will be 'write once, read many'.

Target audience Focus is on internal use by researchers. Future use may include usage in
publications.

The creator will be skilled, but users should not require training.

Initial study area Two areas were marked for initial testing: the campus of the Delft
University of Technology and a reflector test site in Wassenaar (NL). The
campus was selected for initial testing, as (processed) radar data for this
location is available as well as high resolution scans from ground level.

Available data Initial radar data will be provided by SkyGeo and will consist of a
TerraSAR-X time series. A constant error (ellipse) is assumed for all
persistent scatterers, later usage may include datasets with error estimates
per scatterer.

Various point clouds from airborne LiDAR are available (Actueel
Hoogtebestand Nederland, AHN), several terrestrial scans and data from a

6

mobile laser scanner were available.

Aerial photographs were used to colour the airborne point clouds to ease
navigation.

1.B. Research questions
The following research questions were formed to accompany the development of the demo
application.

1. What software and applications are already available?
2. What information is required to position SAR data?

1. How are SAR signals and their uncertainties represented?
2. Which coordinate systems and (file) formats are involved?

3. Which combination of data is effective?
1. How is effectiveness assessed?
2. How does this combination help in finding the (dominant) scatterer?

4. What additional features can be foreseen and/or recommended?

7

2. Available solutions for point clouds
The introduction of the WebGL standard early 2011 allowed for a unified method of rendering
complex 3D images in a web-browser. WebGL defines a connection between scripts ('programs') in
the browser and the underlying graphics capabilities of the computer, without the further need for
plug-ins such as Java or Adobe Flash1. WebGL is currently supported by most desktop and mobile
browsers: an estimated 93% of the users is able to use WebGL in their browser2. In this chapter
existing solutions for rendering point clouds in the browser will be discussed, all are based on
WebGL.

All solutions consist of three distinct steps: converting (pre-processing), serving and viewing. Of
which only the latter is visible to the client. As it is (currently) unfeasible to load more than two
million points on the client side3, preprocessing (e.g. sorting, tiling) of the data is required. This will
allow the browser to load only the required points, thus reducing the workload to a workable
number of points. PoTree, plas.io and Cesium will be discussed, of which PoTree and plas.io stand
out as they are specifically designed for viewing point clouds in the browser. This process is shown
in Figure 3, the steps (converter/server/viewer) will be elaborated on in this chapter.

Figure 3: Processing workflow, from input to viewer. Any path from left to right will result in a
working point cloud viewer.

2.A. Converter
A converter reads input data and outputs a file structure readable by either the server or directly by
the viewer. This step is only performed once (per input point cloud). The file structures generated

1 “WebGL Overview”, Khronos Group, https://www.khronos.org/webgl/. Retrieved 2017-11-06.
2 Statistics on WebGL by Can I Use (http://caniuse.com/#search=WebGL). Retrieved 2017-10-23.
3 On average consumer hardware. This figure is dependant on both hardware (CPU, GPU, RAM) and software (OS

(drivers), browser) and no single number exists. Automatic detection is possible, but is outside the scope of this
work.

9

Source data

PoTreeConverter

entwine.io greyhoud.io

(Any)
Webserver

plas.io

PoTree

Converter Server Viewer

Cesium

http://caniuse.com/#search=WebGL
https://www.khronos.org/webgl/

resembles an Octree. (Readers unfamiliar with Octrees could refer to chapter 4.B for a short
introduction.) The following two converters create file structures are supported by PoTree,
Entwinte.io structures are supported by plas.io and Cesium:

• PoTreeConverter

Written by the authors of PoTree, the Computer Graphics group at the TU Wien.
PoTreeConverter4 can read LAZ/LAS, PTX, (binary) PLY and ASCII (XYZ). Converts to an
Octree structure5 of an internal binary format, LAS or LAZ. Files can be used by the viewer
(PoTree) directly from the filesystem, or served (as static files) by any webserver to the
viewer.

The Netherlands eScience Center created Massive-PoTreeConverter as part of their

efforts to convert the full AHN2 point cloud to the PoTree format18. This converter is

capable of running many PoTreeConverter jobs in parallel60 and adds extends of the

created tiles to a database (PostgreSQL, PostGIS)6.

• Entwine.io

Made by Iowa City (Iowa, United States) based collective Hobu7, maintainers of point cloud
related software like PDAL. PDAL, or the “Point Data Abstraction Library”, is a C++
library for “translating and manipulating point cloud data”. It exposes a series of “stages”
(readers, writers and filters) that can be chained using pipelines. The filters include a wide
variety of options, such as transformations, tiling, colourisation, etc.8.

Their converter, Entwine.io9, is based on PDAL and reads all file formats PDAL supports10.

By default Entwine.io is distributed as a docker container11. The output is either a 'sorted

structure' (Octree) for their Greyhound.io server and/or “3D Tiles”12,17 for Cesium.

2.B. Server
After processing the data has to be fed to the client. No data is written in this step, only transferred
to the client. Depending on the requirements by the client this step is either implemented as static
(all calculations done by the converter) or dynamic (final processing done in the server step).

• Static files

4 “PoTreeConverter”, https://github.com/potree/PotreeConverter. Retrieved 2017-10-30.
5 “PoTree Data Format”, https://github.com/potree/potree/blob/develop/docs/potree-file-format.md. Retrieved 2017-

10-23.
6 “Netherlands eScience Center, Massive-PotreeConverter”, https://github.com/NleSC/Massive-PotreeConverter.

Retrieved 2017-10-24.
7 “Hobu”, https://hobu.co/. Retrieved 2017-10-24.
8 “PDAL – Filters”, https://www.pdal.io/stages/filters.html. Retrieved 2017-11-06.
9 “Entwine.io”, https://entwine.io/. Retrieved 2017-10-25.
10 “[PDAL] Readers”, https://www.pdal.io/stages/readers.html. Retrieved 2017-10-24.
11 Docker containers allow running a dedicated 'operating system' alongside the current operating system. Creating

unified environments for application developers and separating the application from the coordinating operating
system.

12 “Static website to view Entwine.io's 3D Tiles in Cesium”, https://github.com/connormanning/entwine-cesium-
pages. Retrieved 2017-10-25.

10

https://github.com/connormanning/entwine-cesium-pages
https://github.com/connormanning/entwine-cesium-pages
https://www.pdal.io/stages/readers.html
https://entwine.io/
https://www.pdal.io/stages/filters.html
https://hobu.co/
https://github.com/NleSC/Massive-PotreeConverter
https://github.com/potree/potree/blob/develop/docs/potree-file-format.md
https://github.com/potree/PotreeConverter

Can be used directly from the filesystem13 (eg. an external harddrive shared between
colleagues) or in combination with a webserver. The files can be read by the viewer
immediately, without intervention of another program. “Static” is commonly used to refer to
files that are constant in time and require no further processing before being served to the
client (viewer).

In case of the PoTree Octree structure this structure is traversed by the client, requiring
frequent requests to either the webserver or filesystem. Those requests are relatively fast per
transfer as they are simple (read file, output file over network) and can be cached (each
request to the same file is equal). A drawback is that the full data of an only partially visible
cell will have to be loaded. Furthermore all filtering will be done on the client side.

• Greyhound.io (dynamic)

Streaming server, for files prepared by Entwine.io. Serves parts of the point cloud on request
by the client14.

Only points within a region requested by the client are sent, limited by the requested depth
of the Octree. Filtering can be applied on the server side, sending only points that will be
shown. This limits the amount of requests and data necessary to load the point cloud.
Nevertheless tiled requests may be employed to parallelise the loading process on the client
side15. (Parts of) requests may be cached, to allow faster responses.

2.C. Viewer
Three major web-based point cloud viewers exist. PoTree and Plas.io are especially written for
point clouds. Cesium has a broader focus as a virtual Earth, comparable to Google Earth. All three
will be introduced here:

• PoTree

PoTree is built as a plugin on the Three.js (3D) library and is built to shown point clouds
from either its own Octree structure or a Greyhound.io server. Built as an extension (to the
Three.js library) the viewer can easily be extended to show radar ellipsoids or other
geometries together with the point cloud.

The default PoTree interface has tools for various geometric measurements (distance,
surface area, profile).

• Plas.io

13 Results may vary, depending on how the browser handles the file:// protocol. Firefox, for example, will not
compute a mime-type for files. As a result JSON-files may be identified as XML-files. Some JavaScript libraries,
eg. OpenLayers4, will refuse to read those files.

14 “Client development”, https://github.com/hobu/greyhound/blob/master/doc/clientDevelopment.rst. Retrieved 2017-
10-24.

15 “Client development: Progressive Querying”,
https://github.com/hobu/greyhound/blob/master/doc/clientDevelopment.rst#progressive-querying. Retrieved 2017-
10-24.

11

https://github.com/hobu/greyhound/blob/master/doc/clientDevelopment.rst#progressive-querying
https://github.com/hobu/greyhound/blob/master/doc/clientDevelopment.rst

'Trendy' alternative to PoTree, built by the creators of Entwine.io and Greyhound.io (Hobu).
Allows live overlay of satellite photographs if points are reprojected as Web-Mercator.

Capable of loading small point clouds directly from the filesystem, larger point clouds can
be loaded from a Greyhound.io server.

• Cesium

Focussed on “3D globes and maps”16, but point cloud integration is possible. The
experimental “3D Tiles” output Entwine can be used as data source for Cesium17.

2.D. Online examples
Major examples of those viewers are Speck.ly (run by Hobu7) and the AHN2 viewer by the Massive
Point Clouds for eSciences project18.

In Figure 4 the AHN viewer by the Massive Point Clouds for eSciences project is demonstrated on
the town of Willemstad (Noord-Brabant). This viewer is based on PoTree and is publicly available
at http://ahn2.pointclouds.nl and contains a heavily processed version of AHN2, including removing
duplicate points60. Data is served from a PoTree file structure.

Figure 5 shows the same town in Speck.ly (http://speck.ly), an implementation of the Plas.io viewer.
Demonstrated is the feature to use imagery from a third source to (live) overlay the point cloud
served by a Greyhound.io server.

Further examples on combinations of the software discussed in this chapter are available online, a
selection:

• PoTree: http://potree. org and http://ahn2.pointclouds.nl/;

• Entwine.io, Greyhound.io and PoTree: http://potree.entwine.io/;

• Entwine.io, Greyhound.io and Plas.io: http://speck.ly/;

• Entwine.io + Cesium: http://cesium.entwine.io/.

16 “About Cesium”, https://cesiumjs.org/about/. Retrieved 2017-10-13.
17 “Add initial 3D Tiles output prototype”, https://github.com/connormanning/entwine/pull/12. Retrieved 2017-10-23.
18 “Massive Point Clouds for eSciences”, http://www.gdmc.nl:8080/mpc (redirected from http://pointclouds.nl).

Retrieved 2017-10-24.

12

http://cesium.entwine.io/
http://speck.ly/
http://potree.entwine.io/
http://ahn2.pointclouds.nl/
http://potree.org/
http://potree.org/
http://speck.ly/
http://ahn2.pointclouds.nl/
http://pointclouds.nl/
http://www.gdmc.nl:8080/mpc
https://github.com/connormanning/entwine/pull/12
https://cesiumjs.org/about/

Figure 4: AHN2 as shown on ahn2.pointclouds.nl. (Source: M. van Meersbergen, Netherlands
eScience Center)

Figure 5: Speck.ly, showing AHN2 overlayed with ArcGIS satellite imagery.

13

2.E. Demo application
Based on the possibilities discussed in this chapter an important subdivision can be made based on
the serving structure: static versus dynamic solutions.

Static solutions are processed once and the output will not change in time. After initial processing it
is left to the client (visitor) to request the correct files and do final processing on the points. Major
advantage is that no complex (web) server is needed. A file service, like Amazon S319, will be able
to serve the files at request. As a consequence this solution is (very) low in maintenance.

Dynamic solutions pre-process data that is later served by a (web-)service, sending the data on
request to the client after some final, on the fly, processing. Processing is shared between the server
and client. The advantage of reduced data transfer (only requested points are sent to the client)
comes at the price of the (relatively) high maintenance cost of maintaining a (complex) server.

Given the terms of reference of a write once, read many application that is focussed on researchers
rather than an internet company a static solution is preferred. Therefore PoTree with a backend of

static files (generated by PoTreeConvert) was chosen as basis for the application.

Due to the experimental nature of the Entwine.io – Cesium integration this solution was not
considered as a basis for this demo application.

19 “Amazon S3 (Simple cloud Storage Service)”, https://aws.amazon.com/s3. Retrieved 2017-11-08.

14

https://aws.amazon.com/s3

3. Available data
Data search was aimed at getting a high resolution view of the possible scatterers in the area.
Scatters are likely man made structures33 and will be in the slant viewing angle of the satellite. Thus
coverage of those areas is essential.

Given the initial study area, Delft University of Technology campus, the following datasets were
selected to be included in the application. Four types of data were used: LiDAR, radar, optical and
map (vector) data. For each dataset used the coverage, file format, coordinate system, (expected)
resolution and accuracy will be discussed.

3.A. Actueel Hoogtebestand Nederland 1/2/3
Three iterations of the country wide 'Actueel Hoogtebestand Nederland' exist, recorded over the last
20 years. Data was acquired via airborne LiDAR with the main purpose of creating a digital terrain
model. Therefore coverage is focussed on nadir measurements, rather than facades. The different
properties of the versions/years are shown in Table 1.

Recording

Error (vertical20, 1σ)

DensitySystematic Stochastic

AHN121 1996 – 200322 5 cm 15 cm 1 pt/16 m² – 1 pt/m²

AHN221 2008 – 201223 5 cm 5 cm 6 – 10 pt/m²

AHN3 2014 – 201823 5 cm 5 cm ~ 16 pt/m²
24

Table 1: Properties of different iterations of the AHN product.

Data is provided as tiled LAZ-files (5 km × 6.25 km) and is available for public download through
PDOK (Publieke Dienstverlening op de Kaart)25. Coordinates are expressed as RD-NAP coordinates
(EPSG:7415)27.

The selection of tiles used is refered to as “Groot Delft” and consists of the following AHN tiles:

30DZ2; 30GZ1; 30GZ2; 37BN1; 37EN1 (University campus); 37EN2 (University campus);

37BZ2; 37EZ1 and 37EZ2. Their extend is shown in Figure 6. Together they cover the extends of

the provided InSAR dataset (see paragraph 3.E).

20 AHN2 has a maximum horizontal error of 50 cm. See footnote 21, paragraph 3.1.2.
AHN3 has a identical constraint. See footnote 27.

21 “Kwaliteitsdocument AHN2”, N. van der Zon, May 2013, http://www.ahn.nl/binaries/content/assets/hwh---
ahn/common/wat+is+het+ahn/kwaliteitsdocument_ahn_versie_1_3.pdf. Retrieved 2017-10-24.

22 Swartvast: http://www.swartvast.nl/ahn_1_vs_2.php#actualiteit
23 Waterschappen: http://www.ahn.nl/common-nlm/inwinjaren-ahn2--ahn3.html
24 Estimate based on the points/area for tiles 37BN1 and 37EN1.
25 AHN1 (Atom feed): http://geodata.nationaalgeoregister.nl/ahn1/atom/ahn1_gefilterd.xml (ground) and

http://geodata.nationaalgeoregister.nl/ahn1/atom/ahn1_uitgefilterd.xml (other points).
AHN2 (Atom feed): http://geodata.nationaalgeoregister.nl/ahn2/atom/ahn2_gefilterd.xml (ground) and
http://geodata.nationaalgeoregister.nl/ahn2/atom/ahn2_uitgefilterd.xml (other points).
“AHN3 downloads”, PDOK, https://www.pdok.nl/nl/ahn3-downloads. Retrieved 2017-10-24.

15

https://www.pdok.nl/nl/ahn3-downloads
http://geodata.nationaalgeoregister.nl/ahn2/atom/ahn2_uitgefilterd.xml
http://geodata.nationaalgeoregister.nl/ahn2/atom/ahn2_gefilterd.xml
http://geodata.nationaalgeoregister.nl/ahn1/atom/ahn1_uitgefilterd.xml
http://geodata.nationaalgeoregister.nl/ahn1/atom/ahn1_gefilterd.xml
http://www.ahn.nl/common-nlm/inwinjaren-ahn2--ahn3.html
http://www.swartvast.nl/ahn_1_vs_2.php#actualiteit
http://www.ahn.nl/binaries/content/assets/hwh---ahn/common/wat+is+het+ahn/kwaliteitsdocument_ahn_versie_1_3.pdf
http://www.ahn.nl/binaries/content/assets/hwh---ahn/common/wat+is+het+ahn/kwaliteitsdocument_ahn_versie_1_3.pdf

Classification data is provided with the point clouds. For AHN1 and AHN2 data is split in
ground/non-ground LAZ-files. With AHN3 further classes are available, stored in a single LAZ-file.
Classification follows the classifications used in ASPRS LAS-files26,27. The points are divided in the
following classes: unclassified (1), ground (2), building (6), water (9) and civil structure (26).
Where the numbers in brackets correspond the class numbers (identifiers) used in the LAS-file. The
code for civil structure (26) is a custom code and is not in the ASPRS LAS standard.

AHN1 and AHN2 only provide coordinates, AHN3 contains per-point intensity information. All
three versions are included in the demo application. For recent InSAR data AHN3 is best suitable as
it has the highest point density of the three iterations, coincidently increasing the point coverage on
facades. For older data, older iterations of AHN may describe the ground truth at that time better.

Figure 6: Coverage of AHN tiles. Green: "Groot Delft"; red: "Campus".
(Background: PDOK BRT Achtergrondkaart.)

3.B. Terrestial Laser Scanners
Over the years parts of Delft were scanned using the department's Leica C10 Terrestrial Laser
Scanner. Unlike with down looking airborne AHN these scans were (mostly) focussed on facades

26 “LAS Specification, version 1.4”, https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf.
Retrieved 2017-10-23.

27 See “Bestekvoorwaarden” as supplied with the tender for “inwinning en controle AHN 2018 – 2019,
Rijkswaterstaat Centrale Informatievoorziening”, March 2017, https://www.tenderned.nl/tenderned-
web/aankondiging/detail/samenvatting/akid/d4ccd8312612ae997b3cdf85cd2caba8/pageId/D909C/huidigemenu/aan
kondigingen/cid/1929040/cvp/join . Retrieved 2017-10-24.

16

https://www.tenderned.nl/tenderned-web/aankondiging/detail/samenvatting/akid/d4ccd8312612ae997b3cdf85cd2caba8/pageId/D909C/huidigemenu/aankondigingen/cid/1929040/cvp/join
https://www.tenderned.nl/tenderned-web/aankondiging/detail/samenvatting/akid/d4ccd8312612ae997b3cdf85cd2caba8/pageId/D909C/huidigemenu/aankondigingen/cid/1929040/cvp/join
https://www.tenderned.nl/tenderned-web/aankondiging/detail/samenvatting/akid/d4ccd8312612ae997b3cdf85cd2caba8/pageId/D909C/huidigemenu/aankondigingen/cid/1929040/cvp/join
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

and trees, rather than the ground. They provide a dense cover in those areas, where AHN is lacking
information. The benefit of using multiple sources can be seen in Figure 7, where the full facade of
the Faculty of Civil Engineering and Geosciences (Delft University of Technology) is in the point
cloud, rather than only the roof in AHN3 (Figure 8).

Figure 7: AHN3, Mekelpark DTM and
Mekelpark Gras.

The following scans were available to this study:

• Mekelpark Tram

A (very) high resolution scan of the Tram tracks at the crossing of the Balthasar van der
Polweg, Berlageweg and Mekelpark in Delft. Recorded March 2015.

• Mekelpark DTM

Scan of the central part of the Mekelpark (Delft University of Technology campus).
Recorded March 2015.

• Mekelpark Trees

Scan at the south side of the CEG-building. Recorded May 2017.

• Mekelpark Gras

Scan of the central part of the Mekelpark. Contains large detail on the facades of EEMCS
and CEG. Recorded March 2017.

• Faculty of Architecture

A facade scan of the Faculty of Architecture at the inner court adjacent to the Michiel de
Ruyterweg (Delft). Recorded April 2015.

• Wassenaar (radar reflector)

Scan of an experimental radar reflector, the surrounding field (including one house) and the
transponders present on the field. Recorded August 2017, using a Leica P40.

17

Figure 8: AHN3, coloured with PDOK
Luchtfoto.

Unfortunately all scans are in local coordinates, without references to a national/global coordinate
system. Therefore matching is part of the processing workflow. Within a scan (local coordinates)
the accuracy is 6 mm (1σ)28, an improvement over the AHN resolution. N.B. the transformation to
the national/global coordinate system will introduce extra errors, decreasing the overall position
accuracy of the data.

To illustrate the extends of the dataset after alignment, the point density is shown in Figure 9 - 12 in
square cells of 0.25×0.25 m (≈ 0.6 m²). These images were generated using the Rasterize module in
CloudCompare and overlayed on OpenStreetMap in QGIS.

Figure 9: Point density of "Mekelpark Tram". Figure 10: Point density of "Mekelpark DTM".

28 “Leica ScanStation C10, product specifications”, https://hds.leica-
geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-
datasheet/Leica_ScanStation_C10_DS_en.pdf. Retrieved 2017-10-30.

18

https://hds.leica-geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-datasheet/Leica_ScanStation_C10_DS_en.pdf
https://hds.leica-geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-datasheet/Leica_ScanStation_C10_DS_en.pdf
https://hds.leica-geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-datasheet/Leica_ScanStation_C10_DS_en.pdf

Figure 11: Point density of "Mekelpark Trees". Figure 12: Point density of "Mekelpark Gras".

3.C. Mobile laser scanner
Two point clouds from a Mobile Laser Scanner (MLS) were provided by Jinhu Wang. Data was
recorded by Fugro Geoservices B.V. using their Fugro Drive-Map system for the SigVox project29.
Both point clouds were recorded on the northern part of the university campus, roughly between the
Faculty of Technology, Policy and Management and the Faculty of Architecture. The first point
cloud was recorded in 2013 (Figure 13), the second in 2016 (Figure 14). The density figures were
produced using the same procedure as with the TLS data.

29 “A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds”, J.
Wang et al., 2017, ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/j.isprsjprs.2017.03.012

19

Figure 13: Point density of the 2013 MLS
data.

Figure 14: Point density of the 2016 MLS
data.

3.D. PDOK Luchtfoto
Nationwide aerial photographs are recorded every year, recently the 'low-resolution' images with a
ground resolution of 25×25 cm were made publicly available30. Both true colour (RGB) and
infrared images were recorded.

Data is provided as a web-service using WMS (on demand, Web Map Service) and WMTS (tiled,
Web Map Tile Service). Data is available in various coordinate systems: EPSG:28992 (RD-
coordinates), EPSG:4326 (WGS84) as well as EPSG:3857 (Pseudo-Mercator/Web-Mercator).

The aerial photographs may be used to colour the point cloud for easier navigation. Unfortunately
AHN and the aerialphotograph do not perfectly align. The aerial photograph is defined to have a
position accuracy of 37.5 cm (1σ) at ground level31 and AHN2/3 has a horizontal accuracy of 50 cm
(1σ)20. As a consequence some grass can be seen on rooftops and vice versa.

3.E. InSAR (persistent scatterers)
The InSAR timeseries are provided by SkyGeo, a Delft' firm specialising in InSAR deformation
monitoring32. Provided are the (estimated/expected) position of the scatterer, a time series of

30 “Hogere resolutie luchtfoto als open data by PDOK”, PDOK, February 2017,
https://www.pdok.nl/nl/actueel/nieuws/artikel/10feb17-nieuw-hogere-resolutie-luchtfoto-als-open-data-bij-pdok.
Retrieved 2017-10-30.

31 “Bestekvoorwaarden Lage resolutie luchtopnamen”, chapter 6.2.k, Het Waterschapshuis, july 2015,
http://www.beeldmateriaal.nl/binaries/content/assets/hwh-bm/downloads/besteksvoorwaarden-2016-lrl-.pdf.
Retrieved 2017-10-23.

32 “About SkyGeo”, https://skygeo.com/company/. Retrieved 2017-10-30.

20

https://skygeo.com/company/
http://www.beeldmateriaal.nl/binaries/content/assets/hwh-bm/downloads/besteksvoorwaarden-2016-lrl-.pdf
https://www.pdok.nl/nl/actueel/nieuws/artikel/10feb17-nieuw-hogere-resolutie-luchtfoto-als-open-data-bij-pdok

measurements and an estimate of the linear trend. All one million points include a two year time
series from a single descending TerraSAR-X orbit. An example of such a time series can be seen in
Figure 15.

Figure 15: Timeseries of persistent scatterer “L67060P67047”, located
on or close to a bench at the Mekelpark (university campus). Shown on
top (black) is the estimated linear trend.

All data is within an approximately 12½ km diameter circle around Delft. The extends are shown in
Figure 16. As the region of interest is small it is assumed that all points share the same satellite
viewing geometry.

21

Figure 16: Extends of the InSAR dataset (black). Red patches indicate a high point density (colour
scale: blue to red, background: PDOK Achtergrondkaart).

The ratio between the errors, standard deviations, in range, cross-range and azimuth direction was
taken from the paper “high-precision positioning or radar scatterers” by P. Dheenathayalan et al.33
and was estimated to be 1/3/213 in range/azimuth/cross-range. The range error was defined as σ =
0.025 m, ergo: 0.075 m in azimuth and 5 m in range. This results in elongated, flat, ellipsoids. Some
examples can be seen in Figure 17.

33 “High-precision positioning or radar scatterers”, P. Dheenathayalan et al., Journal of Geodesy, February 2016. (doi:
10.1007/s00190-015-0883-4)

22

Figure 17: Example error ellipsoids as can be "seen" on the
pavement in the demo application. The radar signal is coming from
the right (range direction is from top right to bottom left of the
image).

3.F. Map sources
In the application the client is offered a map, this map is provided by OpenStreetMap34. The map is
provided as TMS (Tiled Map Service) in the Web-Mercator projection, compatible with most web-
based map applications. OpenStreetMap is based on mapping efforts of volunteers and has
worldwide coverage.

As an alternative NL Maps could be used35. This service is based on open data released by the
Dutch (governmental) institutions and is limited to The Netherlands. And provides standard (vector)
maps as well as aerial photos in the TMS format, suitable for web pages.

Labels for towns are based on the TOP10NL product of the Dutch Cadastre and were taken from a
dataset published by Imergis36. These were not included in the demo application, but an example of
those labels can be seen in Figure 25.

34 Implementing OpenStreetMap in OpenLayers: “OpenStreetMap Wiki: OpenLayers”,
http://wiki.openstreetmap.org/wiki/OpenLayers. Retrieved 2017-10-24.

35 “NL Maps”, https://nlmaps.nl/. Retrieved 2017-10-24.
36 “Geografische open-data GIS bestanden”, Imergis, http://www.imergis.nl/asp/47.asp. Retrieved 2017-10-25.

23

http://www.imergis.nl/asp/47.asp
https://nlmaps.nl/
http://wiki.openstreetmap.org/wiki/OpenLayers

4. Data processing
Data processing from input (chapter 3) to output is summarised in this flowchart (Figure 18).

Figure 18: Flowchart data processing. Processes shown in blue, data streams in black
and software used is shown as green boxes. The steps as discussed in this chapter are
marked in red.

25

G
D

A
L

L
A

S
To

ol
s

TLS
(Leica C10)

Airborne LiDAR
(AHN)

Orthophoto
(PDOK Luchtfoto)

Radar

C
lo

ud
C

om
pa

re

Intensity
scaling

Geo-Referencing

Adding
colours

P
oT

re
eC

on
ve

rt
er

Octree creation

Download

P
T

X

T
hr

ee
.js

P
oT

re
e

O
pe

nL
ay

er
s

Clustering
Tiling

Viewer

Estimate
normals

1

2
GeoTiff

3 4

5

MLS

L
A

Z

L
A

S

L
A

Z
L

A
Z

W
M

(T
)S

C
S

V
G

eoJS
O

N

L
A

S

In this chapter the steps in this flowchart (Figure 18) are subdivided in 5 distinct processing steps
(red). The purpose of this process is to integrate all available data to an integrated visualisation of a
point cloud overlayed with radar data. For each step their input and intended output are discussed
(black), followed by the commands involved. Together they will demonstrate in a manual style
fashion how to create a similar result.

As an alternative a short summary of how to create a very basic PoTree installation (viewer) with
one point cloud and an overlay of radar error ellipsoids is given in Appendix B. The steps in this
chapter may be used to expand this basic installation.

4.A. Required software
LASTools37, CloudCompare38 (with LASlib integration), PoTreeConverter4 and GDAL39 are
required for the creation of the (integrated) point cloud. Except for LASTools' lascolor all tools are
available as open source software. Furthermore lascolor is the only program limited to Microsoft
Windows only, all other software was tested on Linux but should work on Windows and Macintosh
too. The processing of InSAR data was implemented in Python40.

On the users side most modern browsers are supported by PoTree, major exception is Internet
Explorer 11. The application was tested and worked with Mozilla Firefox 56 (Linux), Google
Chrome 62 (Windows) and Apple Safari 11 (Macintosh).

4.B. Data structures
Taking the limited processing power of the client in mind, data has to be brought to the client
efficiently. Chunks of data have to be small enough to be downloaded quickly and the least possible
time should be lost on searching the right chunks. To accomplish this a spatial index is used.

For two dimensional searching a Quadtree is used, for 3D structures the similar Octree is used. Both
could be considered a tiling schema. Tiling schemes serve a dual purpose: spatially dividing the data
and splitting the data in small chunks. The tile will contain only the points within the tile boundaries
and is essentially, allowing access to specific points without much redundant (unwanted) data,
warranting a fast download (compared to downloading the full dataset and filtering).

The tile structure is such that there is an implicit relation between tiles and coordinates. This allows
for downloading the requested tile without doing a search query first, as the tile location (URL)
follows from the coordinates.

Quadtree

In a Quadtree data is divided in equal quadrants. This create an easy tile – coordinate relation. Take
Figure 1941 as an example. The top raster (level zero) contains all information of the input dataset

37 “rapidlasso GmbH, LAStools”, https://rapidlasso.com/lastools/. Retrieved 2017-11-08.
38 “CloudCompare”, http://cloudcompare.org/. Retrieved 2017-11-08.
39 “GDAL – Geospatial Data Abstraction Library”, http://www.gdal.org/. Retrieved 2017-11-08.
40 Python 3.5, with GeoPandas and Matplotlib (PyPlot).
41 “Damn Cool Algorithms: Spatial indexing with Quadtrees and Hilbert Curves”, Nick's Blog (Nick Johnson),

http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves.
Retrieved 2017-11-07.

26

http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves
http://www.gdal.org/
http://cloudcompare.org/
https://rapidlasso.com/lastools/

and can be split into four equal parts (level one). Subsequently these four tiles can be divided in 16
smaller tiles (level two). And so on and so on.

A quadtree may be implemented such that only the highest zoom level is stored. Another
implementation would be to include only a (random) subsample of points, adding points in each
level up to the zoom level were all points are included.

The first solution allows for rapid access to specific features (their storage location is known based
on the coordinates), the second option allows for incremental loading. Incremental loading is
praticullary useful for viewing purposes. Immediately showing the a rough preview of the data and
refining it (adding points) as soon as more data becomes available.

Finding the tiles based on the coordinates is as easy as (same relation holds for y):

floor(
x

xmax−x min

2z) (1)

Figure 19: Demonstration of the internal structure of a Quadtree,
systematically subdividing a set in equal quadrants. (Nick Johnson)

Octree

An Octree is a 3D implementation of the Quadtree structure. Divding data in equal octants, rather
than quadrants. An example can be seen in Figure 2042. The same impelmentation methods
discussed for the Quadtree hold for the Octree.

42 “GKOctree”, Apple Developer Documentation, https://developer.apple.com/documentation/gameplaykit/gkoctree.
Retrieved 2017-11-08.

27

https://developer.apple.com/documentation/gameplaykit/gkoctree

Figure 20: Demonstration of the internal structure
of a Octree. (Apple)

Step 1: from TLS to referenced point cloud
For the TLS data (see chapter 3.B) no georeference was available. To combine the datasets it is
necessary to align the local TLS coordinates to a coordinate system used by the other datasets.
When no georeference is available for the point clouds the point cloud can be aligned based on
another or an wide area (eg. airborne) LiDAR dataset.

Based on corresponding points (references) the transformation may be computed. It is important to
maintain the scale of the original (input) point cloud. Therefore determining a affine transform
using least-squares estimation will not suffice, as it will include shearing and scaling too.

To find the optimal rotation and translation a method described by Besl and McKay (1992)43 is
used. In short the translation is found by first calculating the centroids (average coordinates) of the
corresponding points, these form the translation parameters; the rotation is found based on the left
and right singular vectors of the singular value decomposition of the covariance matrix of the
points. The resulting transformation matrix can then be applied to all points in the input, to
transform them from the local coordinate system to the wide area coordinate system.

Furthermore (possibly Leica PTX specific) the intensity value in PTX files is in the range from 0 to

1. By definition LAS intensity values are stored as unsigned short (integer, 0 to 65535).

Therefore scaling of the intensity values is necessary before further processing.

43 “A method for registration of 3D shapes”, P.J. Besl and N.D. McKay, IEEE Transactions, 1992, http://www-
evasion.inrialpes.fr/people/Franck.Hetroy/Teaching/ProjetsImage/2007/Bib/besl_mckay-pami1992.pdf. Retrieved
2017-09-11.
A more straightforward explanation is available on:
“Finding optimal rotation and translation between corresponding 3D points”, Nghia Ho, May 2013,
http://nghiaho.com/?page_id=671. Retrieved 2017-09-11.

28

http://nghiaho.com/?page_id=671
http://www-evasion.inrialpes.fr/people/Franck.Hetroy/Teaching/ProjetsImage/2007/Bib/besl_mckay-pami1992.pdf
http://www-evasion.inrialpes.fr/people/Franck.Hetroy/Teaching/ProjetsImage/2007/Bib/besl_mckay-pami1992.pdf

The intensity scaling, (now known) transformation and conversion to LAS can be done by
CloudCompare. Either by using the graphical user interface or by using the command line
interface44.

First the point clouds were manually aligned to AHN3, by selecting equal points in both datasets
using CloudCompare. Based on the coordinates of the corresponding features the coordinate
transformation can be calculated. The matching points, their coordinates and the quality of the
transformation are shown in Appendix B. The alignment found is of poor quality, with an RMSE of
up to 30 cm. This can likely be attributed to the limited amount of corresponding features used in
the alignment process, limiting the redundancy of the process for operator error and mismatches
between points.

Unfortunately attempts to automatically refine the match/referencing using Iterative Closest Point
algorithms failed, likely due to a lack in overlap between the point clouds. Between the different
TLS point clouds the overlap is small, as they cover different areas (see Figure 9 - 12). The overlap
between AHN3 and the TLS point clouds is small due to the different viewing angle, as the airborne
AHN contains mostly roofs and ground while the terrestrial clouds contain mostly facades. But
more experiments would be required to come to a concluding answer.

The intensity scaling for PTX files is not automatically done by CloudCompare, but scaling of this
variable is easily performed. After estimating the transformation matrix all required steps can be
executed at once using the command line interface of CloudCompare44. An example of such
command can be found below. This command opens the PTX-file, scales the intensity, applies the
transformation and saves the resulting point clouds as LAS-file.

CloudCompare \
-O '[input].ptx' \
-AUTO_SAVE OFF \
-SF_OP 0 mult 65535 \
-APPLY_TRANS '[transformation matrix].txt' \
-C_EXPORT_FMT LAS \
-SAVE_CLOUDS ALL_AT_ONCE

An example script on the calculation of the transformation matrix and generation of the
CloudCompare command is available in Appendix C.

Aligned and processed were the TLS point clouds: Mekelpark Tram; Mekelpark DTM; Mekelpark
Trees and Mekelpark Gras. Not included were the Faculty of Architecture and the radar reflector in
Wassenaar. The Faculty of Architecture is not included for practical reasons (time constraints), the
radar reflector in Wassenaar is outside the extents of the “Groot Delft” AHN dataset.

Step 2: colouring AHN
To make the resulting point cloud easy navigable it is desired to add colouring. For this aerial
photographs are used. The nationwide 'PDOK Luchtfoto' is available as WMS and WMTS services,

44 “Command line mode”, CloudCompare Wiki, http://www.cloudcompare.org/doc/wiki/index.php?
title=Command_line_mode. Retrieved 2017-10-30.

29

http://www.cloudcompare.org/doc/wiki/index.php?title=Command_line_mode
http://www.cloudcompare.org/doc/wiki/index.php?title=Command_line_mode

webservices providing data on demand30. Using GDAL (gdal_translate) this image can be

tiled and downloaded as GeoTiff. LASTools' lascolor is able to add the data to the points in a

LiDAR dataset46.

Given lack of support for BigTiff, (Geo)Tiff files larger than 4 GiB, in lascolor the images must be
tiled to less than 4 GiB each (without compression). In practice this requirement is met when only
one AHN tile is processed at a time.

First the GDAL definition file for the PDOK Luchtfoto has to be created45. This is done by querying
the PDOK WMS or WMTS server for available layers that match the coordinate reference system
used by AHN (EPSG:7415, equal to EPSG:28992 for horizontal coordinates). As an example for the
WMS service:

gdalinfo \
"WMS:https://geodata.nationaalgeoregister.nl/luchtfoto/wms?
request=GetCapabilities&SRS=EPSG:28992&format=image/png"

A possible return is, for the 2016 aerial photograph with 25 cm resolution:

https://geodata.nationaalgeoregister.nl/luchtfoto/rgb/wms?
SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=2016_ortho25&SRS
=EPSG:28992&BBOX=-
285401.92,22598.08,595401.92,903401.92&FORMAT=image/png

This URL can be converted to a GDAL definition file using gdal_translate:

gdal_translate "https://[previous URL]" wms.xml -of WMS

Given this definition file the aerial photograph can be downloaded using gdal_translate. It is

recommended create a file for each AHN tile, not to hit the size limit of a conventional GeoTiff. A

download command for tile 37EN1 will look like this, with -projwin defining the bounds of the

tile:

gdal_translate -tr 0.25 0.25 -of GTiff \
-projwin 80000 450000 85000 443750 wms.xml 37EN1.tiff

It is important to define the desired resolution of the output (-tr 0.25 0.25, 25 cm), as the

GDAL default may be higher than the resolution of the source.

Using lascolor (unfortunately only available on Windows) the points can be matched to the

colours from the aerial photograph46. An example command, that outputs a coloured

C_37EN1_rgb.LAZ based on C_37EN1.LAZ and 37EN1.tiff, would be:

lascolor.exe -i C_37EN1.LAZ -image 37EN1.tiff -odix _rgb -olaz

Unfortunately, with the unlicensed version of LASTools, datasets with more than 3 million points
will be slightly distorted and their intensity values nulled.

45 “WMS: generation of WMS service description XML file“, GDAL manual, http://www.gdal.org/frmt_wms.html.
Retrieved 2017-10-30.

46 “lascolor”, rapidlasso GmbH, https://rapidlasso.com/lastools/lascolor/. Retrieved 2017-10-30.

30

https://rapidlasso.com/lastools/lascolor/
http://www.gdal.org/frmt_wms.html

Step 3: creation of the PoTree datastructure
Once all datasets are available as LAS-file, PoTreeConverter can be used to merge and tile the

input point clouds to the Octree structure. This structure allows fast loading over the web,
downloading only the points to the level of detail necessary for the current camera position and
angle.

The coordinate system is a parameter to PoTreeConverter, but it is currently only used to show

the extent of the dataset on a map47, ie. the coordinate system is ignored in the conversion48. It is
therefore important that all datasets are in the same coordinate system before conversion!

Using PoTreeConverter the input LAS-file is converted into a series of (open) binary or LAS

files. For the coloured version of AHN3 the command will be as follows:

PotreeConverter C_37EN1_rgb.laz \
-o ./37EN1_rgb --material RGB -p AHN3 --show-skybox \
--projection "+proj=sterea +lat_0=52.15616055555555
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000
+ellps=bessel +units=m +no_defs" \
--edl-enabled --intensity-range 3 256 -r 256 \
-a CLASSIFICATION RGB

Some explanation on the parameters:

• C_37EN1_rgb.laz, the input file. Multiple files or a directory may be specified.

• -o ./37EN1_rgb, the output directory. The same directory may be used multiple

times as long as the title/name (-p) of the cloud is different. This will create multiple

viewers (in a single directory structure) that can later be merged manually.

• --material RGB, the attribute on display. All attributes mentioned under -a are

stored, and may be selected for display in the viewer. Supported are: RGB, ELEVATION,

INTENSITY, INTENSITY_GRADIENT, RETURN_NUMBER, SOURCE and

LEVEL_OF_DETAIL. If the material is RGB, INTENSITY or CLASSIFICATION it

should be mentioned under -a too!

• -p AHN3, the filename in the output directory (-o), .html will be appended

automatically.

• --show-skybox, show some clouds as background (optional).

• --projection "...", projection (EPSG:28992), ignored by PoTreeConvert but

used by PoTree for addding a map.

47 "Projection with PoTreeConverter”, https://github.com/potree/potree/issues/344. Retrieved 2017-10-23.
48 “Does PoTreeConverter work with different projection?”, https://github.com/potree/PotreeConverter/issues/54.

Retrieved 2017-10-23.

31

https://github.com/potree/PotreeConverter/issues/54
https://github.com/potree/potree/issues/344

• --edl-enabled, enable “Eye-Dome-Lighting” for a more natural looking point cloud.

• --intensity-range 3 256 -r 256, although a full intensity range up to 65536

is available, with AHN3 most points have an intensity value between 3 and 256. Without
those limits the point cloud will be all black.

• -a CLASSIFICATION RGB, attributes to include in the output. Supported are: RGB,

INTENSITY and CLASSIFICATION. As INTENSITY is truncated by lascolor this

attribute may not be included.

This will create a point cloud based on the RGB values, but without intensity (lost due to the
unlicensed version of LASTools). A version of the command using the intensity values (of the
original AHN3 files) can be found in Appendix B.

Step 4: tiling InSAR data
The InSAR dataset has to be split in tiles that are small enough to be read by the browser. This is
achieved by tiling the points in a Quadtree-like tiling schema, where subsequent tiles contain the
same amount of points but in a smaller area. The tiles will be used in the map view, while the
highest zoom level is used to provide the ellipsoid data for the 3D viewer

Clustering can be applied to group points with equal properties. If the maximum number of points is
reached at lower zoom levels these groups can be shown rather than the individual points. The
clustering method developed is elaborated on in chapter 5. The number of clusters (k = 75) was
chosen as an empirical optimum between a cluttered map and enough clusters to represent the
regional behaviour.

The output of this step is a series of tiles of increasing zoom level, with every zoom level the tile is
divided into four equal parts. Every tile holds a fixed number of points related to (point) coverage of
the tile. If more points are present in the dataset, clusters of points are shown instead of points. At
the highest zoom level al points are included. The tiling loop can be written as the following
pseudo-code:

• If more than 75 points are present and this is not the highest zoom level, apply clustering.
Otherwise save all available points for this tile.

• If clustering is necessary:

◦ Any point distinctly visible in a previous tile (lower zoom level) will be shown directly
and will not be part of the clustering process. For visual consistency points visible at
lower zoom levels should be shown at higher zoom levels too.

◦ Determine the convex hull of the points. Calculate the ratio of the surface of the convex
hull versus the surface of the tile49. Full coverage will create 75 clusters. The minimum
is 1 cluster.

49 Calculating the convex hull of an irregular shaped group or a combination of two or more disconnected groups of
points may result in an overestimation of the surface area. Various other constraints are possible, such as using the
envelope instead of the convex hull (reducing computational complexity) or determining the coverage based on
density rather than geometric extends. This is briefly elaborated on in chapter 5.

32

◦ Apply K-Means with the previously calculated number of clusters/centroids50.

◦ If any clusters are formed by a single point, copy this point to the output.

◦ Copy all centroids (and their member count) to the output.

• Divide the tile in four equal parts and run this process again, until the maximum zoom level
is achieved. But only if there is at least one point.

Furthermore the colours indicating the linear deformation velocity are attached to the measurements
in this step. As all data is available in this step the extremes can be calculated that form the basis of
the colourramp.

As most web mapping applications use the Web-Mercator projection, all points are first transformed
to this coordinate system. As the point cloud is in RD-coordinates these coordinates are added to the
points. This will allow for using the same tiles for both the map view and the ellipsoids.
Transforming the coordinates in the browser is possible, but storing the coordinates as Web-
Mercator will allow for using standard tools. Adding the original RD-coordinates will guarantee that
the ellipsoids are not distorted by the transformation back and forth (RD-coordinates → Web-
Mercator → RD-coordinates).

The tile grid used is equal to the one used by OpenStreetMap, a Quadtree like structure, with the
positive x tile-coordinate from left to right and the positive y tile-coordinate from top to bottom.
This is done to ease configuration of the map layer in the final viewer. The dataset is rendered from
the lowest zoom level (0) with world coverage, iteratively higher zoom levels are created. As most
tiles will be empty (up to zoom level 7) they will not spawn children (of a higher zoom level).
Therefore high zoom level coverage is limited to populated parts of the map, limiting the number of
tiles generated.

An example on how to use K-Means clustering and colouring is available in Appendix C.

Step 5: PoTree viewer, integrating datasets
All previous steps come together in the viewer. The point clouds will be shown in the same scene as
the radar observations (error ellipsoids). As PoTree is built as a plugin to the versatile Three.js 3D
library51, this library can be used to form the error ellipsoids.

As much as possible has been used from the standard PoTree implementation, the application is
implemented with the least possible changes to the original PoTree viewer. This allows for quick
adaptation to future updates in the PoTree library and minimises the impact of adjustments on
browser compatibility. An important (structural) change is that the mapping library, OpenLayers 3,
was swapped for the newer OpenLayers 4.

The viewer can be dividend in three connected, but distinct, components:

50 It is possible to re-use the centroids/clusters of the previous zoom level that coincide with the extends of the current
tile as basis for the new clusters. In theory this could (visually) stabilise the clustering, as clusters would attain the
same or similar position in subsequent zoom levels. In practice this showed very little effect as often new centroids
had to be added (at random) as on average only around one quarter of the previous centroids is within the extends
of the new tile. Those randomly added clusters disturbed the centroid locations beyond recognition.

51 “three.js”, https://threejs.org/. Retrieved 2017-11-08.

33

https://threejs.org/

1. 3D view

Main screen of the application. Drawing and loading of the point cloud and navigating
through it. This includes traversing the Octree cells (point cloud) and Quadtree tiles (InSAR)
as necessary and drawing them on screen in accordance with the settings. (This is done
automatically.)

2. Settings

A 'passive' component, implemented as a sidebar. Settings influence the viewer directly, but
the viewer does not influence the settings (except for camera positioning).

3. Map

Shows the camera position on the map and shows where information is available.

All three components were edited with the implementation of the radar error ellipsoids. The
changes/additions will be listed per component:

1. 3D view

• Multiple parallel point clouds were added. Although this is a default feature, it is not
enabled by default and should thus be mentioned.

• Ellipsoids are implemented as a Three.JS Level of Detail (LOD) object, with three levels
of detail. At lower zoom levels the ellipsoids (represented by a series of vertices) are
replaced by boxes, containing less vertices and putting less strain on the browser.

Using the LOD configuration it is possible to show ellipsoids enlarged at larger
distances. This makes it easier to find ellipsoids at large distances. This is currently not
implemented.

Ellipsoids are coloured by the estimated linear deformation speed of the scatterer.
Colours are provided by PyPlot in the tiling step and included in the GeoJSON output.

• An extra loading mechanism was added, loading radar tiles around the focus (target) of
the camera. This limits the number of ellipsoids in view, reducing the computational
load.

• A colourbar is added, based on the characteristics of the dataset acquired during loading.

2. Settings

◦ Options for the ellipsoid scale were added. Ellipsoids can be scaled to 1/2/3σ.

3. Map

◦ OpenLayers 3 was swapped with OpenLayers 4, without further changes.

◦ The persistent scatterers and clusters of persistent scatterers were added as a layer to the
map.Including matching styling for both clusters and points.

34

4.C. Optional steps
As an additional step the implicit classification available in AHN1 and AHN2 can be added to the
LAS-file as ASPRS compatible code.

Adding classification to AHN1/2

AHN1 and AHN2 are subdivided into two groups: gefilterd and uitgefilterd. The first one being
ground points (ASPRS LAS classification code 2), the second one unclassified (code 0). When
added to the LAS-file PoTree will be able to filter points based on those properties.

Using las2las this classification code can be added to the LAS-file:

las2las -i [input].laz -set_classification 2 -odix _c -olaz

The version including the classification (in this case set to 2, ground) will be saved with as LAZ

with a c suffix: input_c.laz.

35

5. Clustering of scatterers
There are over a million persistent scatterers in the InSAR dataset. Although a million points of the
point cloud are shown continuously the information carried by a similar amount of persistent
scatterers is much harder to interpret. By clustering similar measurements it is possible to limit the
information output to the user (compare Figure 21 to Figure 22). The desired clusters should
describe regional behaviour; without masking anomalies. Focussing the users' attention to distinct
features within a regional trend.

Figure 21: All measurements in the InSAR
dataset overlayed on the university campus.
Points overlay each other, complicating
analysis.

Figure 22: After clustering the dataset (Figure
21) is summarised as clusters. Shown in black
are the tile boundaries.

Furthermore it is impossible to show all relatively complex ellipsoids (rendered as a series of faces,
approximating the smooth surface of an ellipsoid) in the 3D view without overloading the 3D
engine at the client. The test client was limited to around 2000 concurrent appearances before
performance issues ensued. To circumvent simultaneous loading of all persistent scatters a tiling
technique similar to the Octree used by PoTree is deployed. If more than 75 points are present in a
single tile, clustering is applied first.

This clustering is based on K-Means clustering. This technique was chosen for its scalability and
the guaranteed reduction of the output to a specified number of clusters. Using K-Means it is
possible to estimate a predefined number of centroids of an (almost) infinite set of input points52. It
has to be noted that a similar procedure may be implemented with a different clustering technique
as well.

52 An overview of clustering techniques is available on:
“Clustering”, scikit-learn, http://scikit-learn.org/stable/modules/clustering.html. Retrieved 2017-10-24.

37

http://scikit-learn.org/stable/modules/clustering.html

The predefined numbers of centroids is placed at random on the map. These centroids are iteratively
positioned between (input) points. For each centroid it is determined which points it is closest to,
the centroid is then moved to the centre (average coordinates) of these points. This step is repeated
until either all centroids remain stable (ie. no points are swapped between centroids) or a predefined
number of iterations is reached. Major drawback is that due to this random initialisation of the
centroids final results (clusters) may vary each run.

By implementing this procedure in the tiling process it is possible to reduce the number of points
shown while maintaining variability in the output. If a random sample or an average would be
chosen to represent a number of points all anomalies would be masked by the vast amount of data.

In determining the appropriate number of clusters it is important to consider that not every tiles may
be fully 'covered in data' (Figure 23). To circumvent this problem the convex hull of the points is
calculated, the ratio between the area covered and the tile size determines how many of the (default)
75 clusters will be shown. Another method would be to calculate the density of the coverage and
setting the amount of clusters accordingly.

The first option has the advantage of a evenly distributed map, where all areas of the map are
covered in (roughly) the same amount of clusters. The second option honours the variations in
density that may be present in the data. In the demo application the first method was implemented.

38

Figure 23: Not all tiles are fully covered in data, while the data in each tile was divided in 100
clusters. As a result some tiles (marked in black) have high (local) densities of points, while others
are evenly distributed. (Background: OpenStreetMap)

Including deformation behaviour
Clustering is implemented in four dimensions: position (x, y, z) and the (estimated) linear
(deformation) velocity of the persistent scatterer (v). Aim is to not only cluster scatterers that are
close together (eg. a house) but include deformation behaviour (eg. subsiding garage, attached to
the house) in the clustering process.

Unfortunately the four dimensions (x, y, z, v) are scaled differently. While the positions (x, y, z) of
persistent scatterers vary by meters (RD coordinates) the deformation velocity is not larger than ± a
few millimetre per year. As the Euclidean distance (in four dimensions) is used to determine which
centroid is the closest the (relatively) small difference in deformation velocity is negligible in the
process.

By scaling the deformation velocity it's contribution to the final clustering (centroid location) can be
enhanced. In Figure 24 the effects of scaling can be seen. When no scaling is applied (left) the
clustering is dominated by the geometry of the scene. If the velocity is scaled by 5000 (an empiric
number) the points are grouped by a combination of their deformation velocity and their geometric

39

proximity. An extreme case is shown on the right, by scaling with one million the clustering is
governed by the deformation behaviour, connecting points of similar velocity regardless of their
distance.

When used for a mapping application it is desirable to find a compromise between the first two
options. Geometric integrity is important to show the features in their appropriate place (rather than
a meaningless average position) while the deformation behaviour should not vanish in the average
of a geometric group.

Based on this clustering regional trends can be estimated, while retaining (some level of) local
behaviour. An example is shown in Figure 25 in 3D. This will guide users in the vast amount of
information available in the 3D display.

40

Figure 24: Clusters of data, with increased scaling of the velocity component. Input points are
shwon as circles, centroids as pyramids.

Figure 25: Clustering of 1 million persistent scatterers in 1500 clusters. Size of the cluster related
to the points in the cluster, color indicates (average) deformation speed of the cluster. (Vertical
scaling factor: 5000.)

41

6. Results
In this chapter the main result, the viewer, will be shown and its functions discussed. The
effectiveness of the combinations made will be assessed. The other parts of this chapter will focus
on practical aspects of the conversion process and storage of the data. A word on the scalability of
this process will conclude the chapter.

6.A. The viewer, demo application
The viewer was designed with a broad audience in mind. Accessible to the greater public and built
such that it can be built and included in publications by researchers. At the time of writing the demo
application was available at: http://dev.fwrite.org/radar/53.

Accessibility of the viewer is guaranteed by a broad support for (modern) browsers. Furthermore
the (native) PoTree controls were intuitive to all users the application was demonstrated to. Building
a viewer is not (yet) point an click. But recipe in Appendix A should be doable for all researchers
familiar with the commandline interface and some basic programming (or scripting).

As much of the original PoTree installation was retained to ease the creation process, updates and
future extensions. By using the original PoTreeConverter structure, static files are used for data
storage. With static files no complex webserver is necessary to transfer the files to the client. This
allows for adding combinations to publications, where the application should be available years
later. Either by attaching it to the publication ('zip-file') or by storing the application in a low-
maintenance object storage (see 6.E).

In this chapter the features of the demo application are discussed. The main viewport (Figure 26)
can be divided in three parts: the (3D) viewport, settings and map. Each will be discussed
separately.

53 Redirecting to https://potree.o.auroraobjects.eu/Groot/Map_vtiles_Groot.html.

43

http://dev.fwrite.org/radar/
http://potree.o.auroraobjects.eu/Groot/Map_vtiles_Groot.html

Figure 26: Demo application viewer canvas. The settings menu is on the left, a map view of the
scatterers at the bottom. In the map (3D) viewport the colourbar for the linear deformation speed
can be seen. (Faculty of EEMCS, Delft University of Technology)

3D viewport

The 3D viewport is controlled using the mouse. A '3 button' mouse, also known as a mouse with a
scrollwheel, is recommended for the best viewing experience. The controls are defined as follows:
double (right) click to set a target position; left click and drag to rotate around this target position;
right click and drag to move around. The scrollwheel is used to zoom.

Ten different point clouds are included in the demo application: AHN1; AHN2 and AHN3 (RGB
and intensity) as airborne LiDAR point clouds. From the terrestrial laser scanner Mekelpark Tram,
Mekelpark Gras, Mekelpark DTM and Mekelpark Trees are included. From the mobile scanner
(Faculty of Architecture and surroundings) a recording from 2013 and one from 2016 are included.

Ellipsoids are dynamically loaded from the same source (tiles) as the map view. A square of 5×5
tiles (of the highest zoom level) around the target is loaded. These ellipsoids are then shown in the
3D view (see Figure 17 for a close-up). If the viewer changes target this process is repeated, loading
new tiles (ellipsoids) and purging ellipsoids no longer in view.

Using the same technique it is possible to show regional behaviour (clusters of scatterers) in places
where the individual ellipsoids are not currently loaded. An example was shown in Figure 25. This
functionality is currently not implemented.

44

Three buttons can be seen in the left top corner of the viewer: the settings toggle, the map toggle
and the colourbar.

Map

Shown on the map (Figure 27) are the clusters (zoomed out) or individual scatters (zoomed in). As a
background OpenStreetMap is shown (see chapter 3.F). The colours match the estimated linear
deformation rate with the colours corresponding to the colours (and colourbar) shown in the 3D
view.

The map is in the Web-Mercator projection (EPSG:3857) instead of the RD-coordinates
(EPSG:28992) of the point cloud. The projection difference is unnoticeable in the example
application.

Figure 27: Map, as shown in the viewer. Scatterers are marked with dots and coloured according to
their deformation velocity.

The map can be moved independent from the 3D view. As soon as the cursor is on the map the RD-
coordinates at the cursor are shown in the top right corner. Double clicking on the map will focus
(camera target) the 3D view at this point and move the camera close to the point (camera position).

The map 'window' can be moved by dragging it (click and drag on the top grey bar) and enlarged on
the bottom and right side (click and drag).

Settings sidebar

Many of those features are standard PoTree features. The InSAR scaling features and the
documentation on the sources were added to the sidebar. In this section all functions of the sidebar
will be discussed.

45

Appearance of the point cloud
• Point budget (default: 1 000 000)

How many points will be in memory
(maximum), also known as high-water mark.
Cells of the Octree will be loaded until this
maximum is reached.

• Field of view (default: 60)
Camera setting, determining the field of view
of the virtual camera. Lower values will give
a telescopic (binocular) effect. Extreme
values may distort the image at the edges as
the 3D world is projected on a flat screen.

• Eye-Dome-Lighting (default set during
conversion)
“Is a non-photorealistic, image-based shading
technique designed to improve depth
perception in scientific visualization
images.”54 Shading is added to focus users on
points close by (the virtual camera) and
accentuate edges55. As a side effect the
shading added allows for the identification of
individual points.

• Background (default set during conversion)
Backgroundcolour behind the point cloud.
Skybox (a cloud like pattern) and gradient
will allow for the distinction between up and
down.

Appearance InSAR
• Sigma (default: σ1)

Scaling of the radar error ellipsoids, with 1, 2
or 3 σ (standard deviation).

54 “Eye-Dome Lighting: a non-photorealistic shading technique”, C. Boucheny & A. Ribes, Kitware Blog, April 2011,
https://blog.kitware.com/eye-dome-lighting-a-non-photorealistic-shading-technique/. Retrieved 2017-11-06.

55 “A neighbour pixel will reduce the lighting at p if its depth is lower (i.e. closer to the viewer) than the one of p. This
procedure defines a shading amount that depends solely on the depth values of the close neighbours.” Thus more
shading will be applied to points adjacent to points closer to the camera. Making those points 'darker' will increase
contrast between points.

46

https://blog.kitware.com/eye-dome-lighting-a-non-photorealistic-shading-technique/

Tools
Default measurement tools available in PoTree.
• Tools available

• : Angles in a triangle;

• : Point information (height, coordinates,
RGB);

• : Distance between two or more points;

• : Height difference (between two
points);

• : Surface area;

• : Volume, show a cube of specified
dimensions in the point cloud;

• : Profile;

• : Volume, mark points in a specified
volume in the point cloud.

• Navigation
• Various navigation/control modes, and

pre-defined camera angles (top view and
side view).

• Speed determines the sensibility of the
viewer for cursor movement.

Measurements
Populated after using one of the measurement
tools. Shown as an example is an area
mesurement. Results can be exported as JSON
or DXF file.

Annotations
List of annotations added to the viewer. Shown
both in 3D (as label) and as grey dot on the map.

When a target symbol () is present, camera
settings are linked to the annotation. Clicking
the annotation will then result in 'flying to' the
object annotated.

47

Scene
• Camera position & camera target

Position and rotation center (target) of the
virtual camera. This does not include the
direction the camera is pointing in (yaw and
pitch of the camera).
The length unit set is used by the
measurement tools for the correct labeling of
distances and areas. No conversion is done,
this has to be set to the length unit of the
unerlying coordinate system.

• Point clouds
List of point clouds included in this viewer.
They may be enabled/disabled using the
thickboxes.
Each pointcloud has detailed settings that can
be accessed by clicking on its name or the
cloud icon.

48

Scene, point cloud settings
Settings can be set per point cloud.
• Point size (default depends on point cloud,

0.5 – 1.0)
Determines the size of each individual point
in view. Taken to high (large) points will
overlap, taken to low (small) the cohesion
between points (eg. points on the same wall)
is no longer apparent.

• Point sizing (default: adaptive)
Adaptive scaling makes points close to the
viewer smaller compared to points further
away. This prevents points in close proximity
to the virtual camera from 'saturating' the
view.

• Shape (default: square)
Circular points are more computational
intensive. The paraboloid shape will 'melt'
adjacent points to a 3D surface/volume.

• Attribute (default depends on point cloud)
Select the attribute to be shown, eg. RGB,
elevation, level of detail, etc..

• RGB
Some colouring settings for the RGB viewer.

Classification filter
When ASPRS classification data16 is present in
the point clouds and this information is retained
during conversion filters can be applied here.
When no classification was provided all data is
marked as 'never classified'.

49

About
Two menu items with information on the sources
and the project were added. The tab 'About
PoTree' contains information on PoTree and the
modules it consists of.

6.B. Effective combinations
To find the dominant scatterer it is necessary to have a high enough level detail in the point cloud at
the area of interest. Given the airborne nature of AHN3 this method is less suitable for scatterers on
building facades, as limited information will be available on their geometry. This is shown in Figure
28, in this figure window frames and other scattering features of the facade are invisible. While in
Figure 29, recorded using a terrestrial laser scanner those features are well defined. See Figure 9/10
in chapter 3.B for a similar comparison between point coverage of various data products.

An effective combination of these sources is a combination where the high density properties of the
point cloud are exploited to the fullest. Thus giving centimetre/decimetre level of detail about
potential scatterers around the error ellipsoid.

The poor (compared to InSAR) accuracy of the AHN data (horizontal 50 cm, vertical 10 cm, both
1σ, see chapter 3.A) may become troublesome when matching both data sources automatically.

Figure 28: Error ellipsoids on the facade of the
faculty of EEMCS (EWI) overlayed on AHN3.

Figure 29: Same ellipsoids and viewing angle as
in Figure 28, but overlayed on the TLS cloud
“Mekelpark Trees”.

6.C. Point density settings
During Octree creation the Octree spacing can be set, setting how far points should be apart to be
included in the highest level Octree cell. Higher density settings will create fewer Octree cells, at
the cost of including more points per cell.

50

By default one million =concurrent points are shown in PoTree, allowing for acceptable
performance on most clients. This high-water mark can be adjusted on the client's side.

Octree cells close to the camera position will be loaded in higher resolutions until the set high
watermark is reached. This may include cells that are only partially visible in the current viewport.
With increasing density fewer Octree cells can be loaded before the high watermark is reached.

As a result fewer cells are shown in high resolution. This may result in part of the object of interest
not being shown in the highest possible resolution. Possible scatterers may be invisible because of
this.

At the same time a lower density will require more (small) files to be stored and more requests
(from the client) are necessary to load the point cloud. This may result in increased cost at the side
of the provider. This will be further discussed in 6.E (Object storage).

As an experiment AHN3 tile 30DZ2 was processed using PoTreeConverter using different density

settings (d). Shown is the Level of Detail visible in the viewer (high watermark at one million
points). Red indicates a high level of detail, orange to green a lower level of detail shown. As an
example the facade of the Haga Hospital (Els Borst-Eilersplein, The Hague) was used.

d = 200

115536 files
12 GB
Biggest cell: 1076 kB

d = 300

88606 files
12 GB
Biggest cell: 2264 kB

d = 400

73275 files
12 GB
Biggest cell: 3960 kB

51

As a compromise a density of 300 was used, this results in 24% fewer files compared to the default
density of 200. Reducing the costs for the provider of the data. The level of detail at short range is
acceptable for the application, the whole facade is loaded in the highest available detail.

6.D. Meshes
Meshes could provide an alternative to point clouds, their properties as closed surface could allow
analysis is lower density point clouds. As this was not the focus of this work further research is
definitely needed before any conclusions can be drawn. It is possible to load meshes in Three.js and
add them to the PoTree viewer56.

In Figure 30 to Figure 35 the results of mesh creation with standard CloudCompare tools is shown57.
In Figure 30 - 32 only the points from AHN3 are used. In Figure 33 - 35 AHN3 is combined with
the point clouds Mekelpark DTM and Mekelpark Gras.

56 PoTree examples including various meshes, read from the PLY format,
http://potree.org/demo/potree_1.5/examples/meshes.html. Retrieved 2017-10-30.
A OBJ format loader is included in Three.js, http://potree.org/demo/potree_1.5/examples/meshes.html. Retrieved
2017-10-30.

57 “Poisson Surface Reconstruction”, CloudCompare Wiki, http://www.cloudcompare.org/doc/wiki/index.php?
title=Poisson_Surface_Reconstruction_(plugin). Retrieved 2017-10-30.

52

http://www.cloudcompare.org/doc/wiki/index.php?title=Poisson_Surface_Reconstruction_(plugin
http://www.cloudcompare.org/doc/wiki/index.php?title=Poisson_Surface_Reconstruction_(plugin
http://potree.org/demo/potree_1.5/examples/meshes.html
http://potree.org/demo/potree_1.5/examples/meshes.html

Figure 30: Coloured point cloud from AHN3. Figure 31: Mesh calculated by 'draping' a cloth
over the scene. Note the trees are closed up to
ground level.

Figure 32: Mesh created using Poisson Surface
Reconstruction57. Note that in areas of low
surface density voids are created.

53

Figure 33: Similar to Figure 9 point clouds from
Terrestial Laser Scanners were added to
compenstate for the lower point density on the
facades.

Figure 34: CEG (CiTG) reconstructed using
Poisson Surface Reconstruction.

Figure 35: At the faculty of EEMCS (EWI) the
result of Poisson Surface Reconstruction57 is not
necessarely better than with only AHN3 as
source (compare to Figure 32).

Before those meshes will be web-ready their (file)size has to be reduced significantly or an efficient
transport method has to be found. The meshes shown are around 200 MB each. An alternative could
be adding the ellipsoids to Google Earth as models. This will allow overlaying the error ellipsoids
on the Google mesh.

54

6.E. Object storage
Given the intended write once, read many approach, object storage could be an ideal candidate to
store and serve the point cloud data to the viewers. Object storage solutions, Amazon S3 for
example, allow for storing an unlimited number of files ('objects') to be stored and served to users
on a pay as you go basis, without the maintenance responsibilities of a webserver.

Payment is based on objects stored (per gigabyte) and transactions (uploading or retrieving files).
Various storage types with different properties exist. Those properties form the balance between
transaction (retrieval) and (monthly) storage costs. The S3 Infrequent Access (S3 - IA) product
allows for lower storage costs at the expense of higher transaction costs. Ideal for publications with
infrequent visitors, but there is a catch.

The Octree consists of many (small) files. With Amazon S3 Infrequent Access the minimum size of
an object is 128 KiB, any smaller object will be billed as 128 KiB of storage58. Given the Groot
Delft dataset (described in 3.A) this results in the file counts as shown in Table 2.

Size on disk

Files

Billed size on S3 - IA

bytes GiB bytes GiB

AHN1 1142258294 1.06 12512 1950132981 1.82

AHN2 62590843891 58.29 946755 142120292416 132.36

AHN3 77164057944 71.86 1058891 174244620482 162.28

AHN3 (RGB) 87319375296 81.32 1064286 183190908124 170.61

Table 2: "Groot Delft" after conversion by PoTreeConverter, with a density setting of 300.

At the time of writing storage of the AHN3 (RGB) cloud on Amazon S3 (Ireland)58 would cost
(without taxes): $ 5.32 to upload the files (transaction fees); and $ 1.87 monthly for storage. With
S3 Infrequent Access those numbers would be: $ 10.64 to upload the files and $ 2.13 in monthly
storage. Doubling the initial costs and a 14% increase in monthly fees.

This prices do not include retrieval of the data by visitors of the application. Costs incurred by users
can not be controlled. For S3 they are $ 0.004 per 10 000 requests, $ 0.090 per GB data. Or $ 0.01
per 10 000 requests excluding a $ 0.01 per GB 'data retrieval fee' and bandwidth for S3 Infrequent
Access storage. Although very dependent on visitor behaviour, a minute of scrolling through Delft
results in 304 requests and 97 MB of data transferred. With frequent visitors this may incur high
costs for data transmission.

6.F. Scalability of point cloud conversion
Processing was done on a Intel i5 with 8 GB of RAM and two SSD's for storage. For two AHN3
tiles processing takes around 15 minutes. Processing of the nine tiles of the “Groot Delft” dataset,
consisting of 5 billion points takes more than 2½ hours. Processing was benchmarked for an
increasing point load. Iteratively one extra of the following AHN3 tiles (see Figure 6) was added to

the processing queue: 30DZ2, 30GZ1, 30GZ2, 37BN2, 37EN1, 37EN2, 37BZ2, 37EZ1,

58 “Amazon S3 Pricing”, Amazon, requested 2017-10-17. (https://aws.amazon.com/s3/pricing)

55

https://aws.amazon.com/s3/pricing

37EZ2. First only 30DZ2 was processed, then 30DZ2 together with 30GZ1 and so on. A

conversion of 24 tiles59 was done to test the behaviour for larger sets of tiles. In Figure 36 the timing
results are shown both as function of tiles and point count. A linear trend is plotted on top, a clear
linear trend can be seen in the data.

The Netherlands is tiled in 1441 tiles. Given that nine tiles took 159 minutes to convert it would
take 424 hours (18 days) to complete all tiles (assuming no restrictions on disk; I/O, memory, etc.).
This does not include the time needed for colouring the point cloud with the aerial photograph.

PoTreeConverter is implemented as a single thread, using only one of the available processors at a
time. As (in the test setup) the processing power was the limiting factor, this limits the overall
processing speed. Masse-PoTreeConverter may provide a solution to this problem, allowing
PoTreeConverter to run in parallel. This tool, by the Netherlands eScience Center, was briefly
mentioned in chapter 2.A. With this tool the time needed for the conversion of the 597 billion points
in AHN2 was reduced from 100 days to only 15 days60.

PoTreeConverter was likely updated after the paper was published in 2015, accelerating the
conversion. The authors report a conversion rate of 250 million points per hour on a much more
advanced system (128 GB RAM, 16 cores)60. Their estimate of 100 days is based on this number.
The consumer processor used in this study was able to process almost 1.8 billion points per hour –
about eight times more!

Entwine.io is built specifically for massive point clouds (“terrabytes in scale”)9 and may perform
better under those circumstances. Entwine.io was not benchmarked in this study, but publicly
available suggests slightly better performance: 2.6 billion points per hour on 30 cores and 60 GB
RAM61. This includes reprojection to the Web-Mercator projetion.

The conversion between input data and the internal (Octree) structure is not the only time
consuming step. Downloading of aerial photographs is a major factor due to their size and their
relatively low download speed (due to the nature of the WMS requests needed).

This step may be circumvented by using the live colouring features of the Plas.io viewer or a similar
(experimental) feature in PoTree62. This will allow having many colouring schemas available at the
same time, for example the infrared version of the aerial photograph (3.D) or those available
through the Sentinel Playground63.

In the current implementation scaling of the InSAR processing is not a problem, as pre-processed
data is delivered. It has to be noted that InSAR processing is an intensive process and will likely
have similar problems in scaling to national scale.

59 The tiles included formed an outer ring around the “Groot Delft” AHN3 selection. (Tiles: 30HZ1, 37EN1, 37FN1,
37DN2, 37BZ1, 30DZ1, 37EZ2, 30GN1, 37BZ2, 37GN1, 37EN2, 30GZ1, 30GN2, 37HN1, 30DN2, 30HN1,
30GZ2, 37EZ1, 30DZ2, 37FZ1, 37BN1, 37GN2, 37BN2)

60 “Taming the beast: free and open-source massive point cloud web visualisation”, O. Martinez-Rubi et al.,
November 2015. (doi: 10.13140/RG.2.1.1731.4326/1)

61 “Performance benchmark or estimate”, comment by C. Manning,
https://github.com/connormanning/entwine/issues/39#issuecomment-303192453. Retrieved 2017-11-06.

62 “A proof of concept for projecting web maps on point clouds”,
http://potree.org/demo/experimental/potree_map_projections/examples/viewer_proj.html. Retrieved 2017-10-25.

63 “Sentinel Hub, Sentinel Playground”, http://apps.sentinel-hub.com/sentinel-playground/. Retrieved 2017-10-25.

56

http://apps.sentinel-hub.com/sentinel-playground/
http://potree.org/demo/experimental/potree_map_projections/examples/viewer_proj.html
https://github.com/connormanning/entwine/issues/39#issuecomment-303192453
https://www.researchgate.net/publication/284617106_Taming_the_beast_Free_and_open-source_massive_point_cloud_web_visualization?channel=doi&linkId=56fd42c008ae3c85c0c9c024&showFulltext=true

Figure 36: Benchmark results of PoTreeConverter under an increasing dataset size. A
lineair trend is shown on top.

57

7. Conclusion
The advance of WebGL technology enabled the creation of powerfull 3D (point cloud) viewers in
the browser. Paving the way for an easy to implement combination of radar and LiDAR point
clouds. Although there are no ready-made solutions available, point cloud viewers can easily be
extended to contain radar data. PoTree was used as the basis for a demo application. Undoubtedly
this is a very powerful tool to visualise, analyse and understand the interaction of a radar signal with
its surroundings.

To analyse the properties of the radar signal the error ellipsoid of the measurement is shown at the
estimated position of the scatterer. Visualising the intersection of the estimation with the dense
geometry of the point cloud. This allows for analysis of the (expected) dominant scatterer in the
image.

To accomplish this goal it is necessary to have a high density (LiDAR) coverage of the object of
interest. For most facades this can be accomplished by either TLS or MLS surverys, while airborne
LiDAR will provide for coverage of groud, roofs and roof installations.

Possibilities are mostly limited by the ability of the browser to load (and process) large streams of
data. Tiling and Octree structures will allow the client to process only the points or ellipsoids in
view. Viewers come with solutions for the creation of the requierd Octree structure. Clustering of
points with equal properties reduces the visual clutter and allows the operator to focus on important
details elements of the data.

In this study the application was implemented over only a small area (Delft and surroundings).
Experiments with PoTreeConverter show that this technique may be used at larger scale with
reasonable preparation times. A solution like Massive-PoTreeConverter is defenitly not necessary at
city scale projects.

Research questions
As the first three research questions provide a powerfull summary of the work at hand, the results
per question will be briefly discussed.

1. What software and applications are already available?

No ready-made solution for the combination of point clouds with radar information exists as
of yet. There are two major point cloud tools available: PoTree and plas.io. Both come with
processing software to convert data from various input formats to a structure readable by
either the client or a server that transfers data to a client.

For the preparation of (very) large point clouds the Netherlands eScience Center has
developed Massive-PoTreeConverter, a parallel implementation of the traditional
PoTreeConverter.

2. What information is required to position SAR data?

59

1. How are SAR signals and their uncertainties represented?

SAR signals are presented by an error estimate (standard deviation) in range, cross-range
and azimuth direction. Based on the (known) satellite viewing geometry and estimates of
the scatterer position error ellipsoids may be placed in a 3D space.

2. Which coordinate systems and (file) formats are involved?

Horizontal coordinates are provided in RD coordinates. Vertical coordinates are in an
unknown height system.

As file formats ASPRS LAS (point clouds), GeoTiff (aerial photographs) and ASCII
(InSAR) were dominant. As output formats GeoJSON (InSAR) and a custom binary
format (PoTree) were used.

3. Which combination of data is effective?

A combination between point clouds from terrestrial (or mobile) laserscanners for facades
and an airborne LiDAR survey for the roofs and bigger picture.

1. How is effectiveness assessed?

The combination of data is effective if the properties of the (likely) dominant scatterer
can be found in the point cloud. This requires high density point clouds of the region of
interest. The resolution of AHN may not be high enough in some areas, such as on
facades.

2. How does this combination help in finding the (dominant) scatterer?

In its current implementation this combination will help a skilled operator estimate the
dominant scatterer. Further implementations of this combination may automatically
estimate the dominant scatterer based on likelihood as function of the error ellipsoid.

7.A. Recommendations
Geometric/Geological tools

By default PoTree is equiped with angle, distance, height, surface, volume and profile measurement
tools. There is no tool for estimating the orientation of a plane (through points) relative to the
coordinate axes. This would be a valuable extension for geologic use: estimating strike and dip of
the geological features present. (Such application exist for the desktop environment, eg. LIME64.)

Colourisation

PDAL may provide an alternative to lascolor, adding colours from a aerial photograph without
loosing intensity or other information65. Another alternative would be implementing a technique to
'live' overlay images on the point cloud (already possible in plas.io).

64 “LIME: Visualisation and Interpretation Software”, http://virtualoutcrop.com/lime. Retrieved 2017-11-08.
65 “PDAL: filters.colorization”, https://www.pdal.io/stages/filters.colorization.html. Retrieved 2017-11-08.

60

https://www.pdal.io/stages/filters.colorization.html
http://virtualoutcrop.com/lime

Improvement of alignment

Alignment between datasets will be a problem when expended to (automatic) matching between the
radar measurement and most likely scatterer (from the laser point cloud). Small alignment errors
could falsly attribute a scatterer to a mis-aligned point.

Currently alignment between the (laser) point clouds is rather poor with the manually defined
correspondences. Techniques like Iterative Closest Point (ICP) may improve this match. Initial
attempts at doiing so were unsuccesfull.

Currently the TLS scanning procedure in use at the Department of Geoscience and Remote Sensing
does not include georeferencing of the scan. Georeferencing while scanning would make manual
alignment redundant.

Equal representation of laser point

Currently only radar scatterers are represented by their error ellipsoid. To create a level playing field
the points aquired using a laser system should be represented by their error ellipsoid too. In case of
AHN, for example, the vertical component will be much larger than the intersection of the ellipsoid
in the same direction. Horizontally the accuracy of AHN is much (approximately 10×) better.

Meshesand intersection finding

Meshes could be used to represent the objects in the 3D space. These meshes could then be used to
detect the intersection of the expected position of the radar scatterer with the surface of the object –
determining the position of the (most likely) dominant scatterer.

Such an approach would use both the redundancy within the point clouds (many points describing
the same object) as well as solving the problem of the irregular spacing between points (intersection
with the surface may be closer than the closest point).

If it is only about the viewing experience, the radar data could be integrated into an existing solution
providing (building) meshes (eg. Google Earth).

Deformation vectors

A deformation vector could be added to the ellipsoid. This will show that deformation is in the
range direction and not in the vertical direction.

61

Appendix A “Quick recipe”
Presented here is a abbreviated version of the manual presented in chapter 4. Focus of this manual is
to create a simple PoTree web-interface from a point cloud and add radar measurements to it. This
is not the full flowchart (Figure 18) as discussed in chapter 4. In this recipe a simple case of a single
point cloud and a small (less than 1500 points) radar file is discussed.

Prerequisites
• A point cloud, AHN3 for example25. Please note that AHN1 and AHN2 do not contain

intensity information!

• PoTreeConverter4, available binaries (64-bit) for Windows and as sourcecode for Linux.

• Radar data.

Point cloud
Using PoTreeConverter the input LAS-file is converted into an Octree of binary files. For AHN3

tile 37EN1 the command will be as follows:

PotreeConverter C_37EN1.LAZ \
-o ./web --material INTENSITY -p AHN3 --show-skybox \
--projection "+proj=sterea +lat_0=52.15616055555555
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000
+ellps=bessel +units=m +no_defs" \
--edl-enabled --intensity-range 3 256 -r 256 \
-a CLASSIFICATION INTENSITY

Some explanation on the parameters:

• C_37EN1.LAZ, the input file or files.

• -o ./web, the output directory.

• --material INTENSITY, the attribute on display. All attributes mentioned under -a

are stored, and may be selected for display in the viewer. Supported are: RGB,

ELEVATION, INTENSITY, INTENSITY_GRADIENT, RETURN_NUMBER, SOURCE

and LEVEL_OF_DETAIL. If the material is RGB, INTENSITY or CLASSIFICATION

it should be mentioned under -a too!

• -p AHN3, the filename in the output directory (-o).

• --show-skybox, show some clouds as background (optional).

• --projection "...", projection (EPSG:28992), ignored by PoTreeConvert but

used by PoTree for addding a map.

• --edl-enabled, enable “Eye-Dome-Lighting” for a more natural looking point cloud.

63

• --intensity-range 3 256 -r 256, although a full intensity range up to 65536

is available, with AHN3 most points have an intensity value between 3 and 256. Without
those limits the point cloud will be all black.

• -a CLASSIFICATION INTENSITY, attributes to include in the output. Supported

are: RGB, INTENSITY and CLASSIFICATION.

After running PoTreeConverter there should be a file web/AHN3.html. When opened in a

browser (even locally) this should give a working PoTree installation.

Radar ellipsoids
Next step is adding the radar (error) ellipsoids. Independent of the source of the data JSON is the
prefered format to feed the data to the viewer. In this recipe an extra simplified format is used. It
may be extended at will.

As of Matlab 2016b jsonencode() is available66. Other languages will have similar functions.

The input does not matter as long as the output is of the same structure.

In this example the structure is a list of series of x, y, z values (as shown below) in the same
coordinate system as the point cloud. Whitespace is unimportant. The file should be saved as

web/radar.json.

[{"x":85443.4,"y":446144.6,"z":-1.714},
{"x":85452.0,"y":446150.5,"z":-1.346},
{"x":85450.1,"y":446138.7,"z":-0.73},
{"x":85437.0,"y":446151.9,"z":-0.7},
{"x":85440.7,"y":446157.1,"z":-0.158},
{"x":85434.1,"y":446142.3,"z":-0.569},
{"x":85453.7,"y":446133.0,"z":-1.341},
{"x":85458.1,"y":446135.6,"z":-1.543},
{"x":85433.7,"y":446159.2,"z":-1.077},
{"x":85435.6,"y":446161.7,"z":-0.8}]

To add the ellipsoids, add the following lines to web/AHN3.html, before </script> at around

line 72. The current parameters (scaling, rotation) are based on the TerraSAR-X estimates (3.E). See
the comments for some guidance.

// Read the file
$.getJSON('./radar.json', function(data) {

 // Create a spehere with radius 1
 let sph = new THREE.SphereGeometry(1, 12, 10);

 // Create a material

 let sphm = new THREE.MeshNormalMaterial();

66 “jsonencode”, MathWorks/MATLAB documentation, https://nl.mathworks.com/help/matlab/ref/jsonencode.html.
Retrieved 2017-10-26.

64

https://nl.mathworks.com/help/matlab/ref/jsonencode.html

 // Create a rotation matrix
 var eul = new THREE.Euler(0, -1.150172, -1.605703);

 // Loop over all elements
 $.each(data, function(key, val) {

 // Create an element out of the sphere and the material
 let s = new THREE.Mesh(sph, sphm);

 // Scale the ellipsoid
 s.scale.set(0.075, 0.025, 5.00);

 // Rotate the ellipsoid
 s.rotation.copy(eul);

 // Position the ellipsoid
 s.position.set(val.x, val.y, val.z);

 // Calculate the transformation matrix …
 s.updateMatrix();
 s.matrixAutoUpdate = false; // ... only once, to improve
performence

 // Add to the viewer (scene)
 viewer.scene.scene.add(s);

 });
});

You should now see ellipsoids in your 3D world!

65

Appendix B TLS Alignment
In this appendix the alignment between the local TLS coordinate system and the national coordinate
system (RD-coordinates, matched on the basis of AHN) is given. Per point cloud the groups of
matching points and their coordinates are given, together with the Root Mean Square Error (RMSE)
of the resulting fit (based on rotation and translation only).

Mekelpark Tram
RMSE: 0.36 m

AHN TLS

LocationN E U N E U

85512.500 445878.035 16.263 21.743 36.721 15.248 EWI

85558.945 445966.059 9.439 116.369 7.045 7.191 CiTG

85734.539 445939.430 11.717 120.813 -170.736 10.682 Bld. 36

85533.266 445878.286 -0.631 25.826 16.872 -1.599 Buslane

Mekelpark DTM
RMSE: 0.27 m

AHN TLS

LocationN E U N E U

85558.945 445966.059 9.439 -5.443 36.236 9.647 CiTG

85545.148 445999.124 9.441 -31.408 11.659 9.721 CiTG

85497.743 446108.008 9.346 -116.300 -71.393 9.365 CiTG

85536.222 445955.041 -0.413 12.680 18.749 -0.201 Buslane

85403.344 446053.721 81.187 -32.728 -140.890 81.274 EWI

Mekelpark Trees
RMSE: 0.24 m

AHN TLS

LocationN E U N E U

85558.945 445966.059 9.439 43.726 -48.558 8.651 CiTG

85530.845 446028.172 9.338 8.007 9.426 8.587 CiTG

85446.184 446029.268 18.844 -75.813 -0.184 17.972 EWI

85469.303 445972.804 18.85 -45.508 -53.111 18.002 EWI

67

Mekelpark Gras
RMSE: 0.34 m

AHN TLS

LocationN E U N E U

85446.184 446029.268 18.844 -51.588 -32.333 18.308 EWI

85469.303 445972.804 18.85 -50.884 -93.162 18.262 EWI

85497.743 446108.008 9.346 25.221 22.014 8.937 CiTG

85403.344 446053.721 81.187 -82.300 7.147 80.516 EWI

68

Appendix C Scripts
Some of the Python (3) scripts used during the creation of demo application are listed here. Their
programming style should not be an example and they should be considered a more elaborate
version of pseudo-code.

Alignment of two point clouds
In this example implementation the coordinates are implemented as a hard coded matrix. The first
three columns contain the AHN coordinates (EPSG:7415), the following three columns contain the
coordinates in the local coordinate system of the TLS. The corresponding points will have to be
found manually first, for example in CloudCompare.

The script will output a CloudCompare command that will project the input point cloud with the
transformation found, apply the intensity scaling necessary for PTX files and store the results as
LAZ-files.

import pandas as _pd;
_np = _pd.np;
from shlex import quote as _quote;
from os.path import join as _path_join;

ROOT = '[directory with TLS point cloud data]';

AHN_X, AHN_Y, AHN_Z, S_X, S_Y, S_Z
Coords = {

'Mekelpark Tram/Tram_HighestRes_Colour.ptx': _np.matrix(
[[85512.500, 445878.035, 16.263, 21.743, 36.721,

15.248], # EWI Laagbouw, south-east
[etc.]

]),
[repeat for other point clouds]

};

for key, coord in Coords.items():

Extract coordinates
coord_AHN = coord[:, :3];
coord_TLS = coord[:, -3:];

Calculate the transformation based on SVD (Besl method)43

centroid_AHN = coord_AHN.mean(axis=0);
centroid_TLS = coord_TLS.mean(axis=0);

Calculate rotation
H = (coord_TLS -centroid_TLS).T *(coord_AHN -centroid_AHN);

U, S, Vt = _np.linalg.svd(H);

69

R = Vt.T *U.T;

if _np.linalg.det(R) < 0:
R[:, 2] *= -1;
R = Vt.T *U.T;

Calculate translation
t = -R *centroid_TLS.T +centroid_AHN.T;

Add extra row (CloudCompare)
TransSVD = _np.vstack([_np.column_stack([R, t]),

 [0, 0, 0, 1]]);

Calculate residuals
ResSVD = _np.dot(_np.column_stack([coord_TLS,

_np.ones((coord_TLS.shape[0], 1))]), TransSVD[:3, :].T)
-coord_AHN;

Calcualte the RMSE
RMSESVD = _np.sqrt(_np.multiply(ResSVD,

ResSVD).sum()/coord_TLS.shape[0]);

Save the transformation matrix (SVD) for CloudCompare
with open(_path_join(ROOT, key) + '.trans', 'wb') as

trans_out:
_np.savetxt(trans_out, TransSVD);

Create the CloudCompare command
Command = ['CloudCompare',

 '-COMPUTE_NORMALS'];
Command += ['-O {!s}'.format(_quote(_path_join(ROOT, key)))];
Command += ['-AUTO_SAVE OFF',

'-SF_OP 0 mult 65535', # For LAS compatibility
'-APPLY_TRANS {!

s}'.format(_quote(_path_join(ROOT, key) + '.trans')), #
Transformatie matrix

'-C_EXPORT_FMT BIN', # LAS
'-SAVE_CLOUDS ALL_AT_ONCE'];

Print command
print(key, 'RMSE', RMSESVD);
print(' '.join(Command));

70

Clustering
This script serves as an example on how to apply K-Means clustering in Python3 using the scikit-
learn package67, The output will be a single JSON file, including per cluster colours related to the
deformation velocity.

import geopandas as _gpd;
_pd = _gpd.pd;
_np = _pd.np;

from shapely.geometry import Point as _point;
from sklearn.cluster import MiniBatchKMeans as _k_means;

import matplotlib as _mpl;
from matplotlib import pyplot as _plt;
from matplotlib import colors as _plt_colors;

Scaling of the trend
trend_scale = 5000;

Number of clusters
n_clust = 1500;

Points = _pd.read_csv('[input file]');

k_mtx = Points[['pnt_rdx', 'pnt_rdy', 'pnt_height',
'pnt_linear']].as_matrix();
k_mtx[:, 3] *= trend_scale;

k_means = _k_means(n_clust);

Pnts_gpd = _gpd.GeoDataFrame({'trend':
k_means.cluster_centers_[:, 3]/trend_scale, 'count':
k_means.counts_},

geometry=list(map(lambda r: _point(*r),
k_means.cluster_centers_[:, :3])),

crs={'init': 'epsg:28992'});

Calculate cluster scale/size
Pnts_gpd['scale'] = 3+22*((Pnts_gpd['count']
-Pnts_gpd['count'].min())/Pnts_gpd['count'].ptp());

Generate a color scale
c_min = Points.pnt_linear.quantile(0.05);
c_max = Points.pnt_linear.quantile(0.95);
c_lim = max(abs(c_min), abs(c_max));

67 “scikit-learn: machine learning in Python”, http://scikit-learn.org/stable/. Retrieved 2017-11-08.

71

http://scikit-learn.org/stable/

cmap = _plt.cm.RdBu_r;
norm = _plt_colors.Normalize(vmin=-c_lim,
 vmax=+c_lim);
sm = _plt.cm.ScalarMappable(cmap=cmap, norm=norm);

Pnts_gpd['color'] = ['#{:02X}{:02X}{:02X}'.format(r[0], r[1],
r[2]).lower() for r in sm.to_rgba(Pnts_gpd.trend, bytes=True)];

with open('[outputl.json]', 'wt') as json_out:
json_out.write(Pnts_gpd.to_json());

Create an image of the colorbar
fig = _plt.figure(figsize=(2, 4)); # Horizontal: (4, 1)

Create an axis for the colorbar, and the colorbar itself.
ax = fig.add_axes([0.05, 0.05, 0.3, 0.90]);
cb = _mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm,
extend='both');

Add a white stroke around the letters, for better readability.
[l.set_path_effects([_plt_pe.withStroke(linewidth=3,
foreground="w")]) for l in cb.ax.yaxis.get_ticklabels()];
cb.ax.tick_params(labelsize=14);

Add a label (again with white stroke).
#cb.set_label(r'Deformation [$\frac{m}{yr}$]');
cb.set_label(r'Deformation [m/yr]', size=14, style='oblique',
path_effects=[_plt_pe.withStroke(linewidth=3, foreground="w")]);

Save everything.
_plt.savefig('[output.svg]', transparent=True);
_plt.close();

72

