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Abstract
Laser scanners and Interferometric SAR both create point clouds. Their density, position accuracy, 
varying on the sensor. To improve the interpretation of the low density InSAR data a combination is 
made with high density airborne and terrestrial laser scanner data. Allowing for improvement of the 
positioning of the scatterers and the understanding of their behaviour.

This  combination  is  implemented  as  a  web  application,  suitable  for  researchers  to  create  3D 
visualisations  for  the  greater  public.  Challenges  are:  the  high  volume  nature  of  point  clouds; 
inhomogeneous  coverage  of  laser  measurements;  different  coordinate  systems  and  limited 
processing power of web-browsers.

All datasets were brought to the same coordinate system and where possible enriched with other 
sources such as aerial photographs and maps. Tiling was applied to limit downloads and processing 
requirements at the web-browser. Clustering of InSAR data may be applied to group points with 
similar behaviour while preserving unique features in the data.

Results of this work are a demo application, this report and a manual on how to make a similar 
application based on a combination of yet existing tools. These visualisations will allow for a new 
approach in InSAR analysis, integrating measurements with their surroundings.
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1. Introduction
Interferometric  Synthetic  Aperature  Radar  (InSAR)  can  be  used  to  monitor  deformation  from 
satellites.  Millimetre  (per  year)  accuracy  can  be  achieved  in  deformation  trend  estimations. 
Unfortunately the source of the deformation signal is less accurately known. The location of the 
scatterer can be of great importance to understanding and valuing the deformation behaviour: a 
subsiding garden house or street will require different precautions than a subsiding bridge pillar.

Radar measurements are often dominated by a single scatterer. In those cases the reflection may be 
attributed  to  a  distinct  feature.  Unfortunately  this  relation  is  not  always  clear.  To  find  and 
demonstrate the dominant scatterer it is beneficial to combine radar measurements with a (high 
resolution) point cloud. This will allow for linking scattering behaviour to a geometric feature in the 
scene.

To illustrate  this,  the  effects  of  the  error  in  the  position  estimate  are  shown in  Figure  2.  The 
estimated position of the scatterer is in mid-air. As such scattering behaviour in air is unlikely at 
best, there are three candidates for the (dominant) scatterer.

To decide which of them is most likely the estimates of the positioning error may be used, indicated 
here as a blue ellipsoid. Option 3 is the most likely (maximum likelihood) option, as positioning the 
scatterer at this point will require the least possible error (compared to the estimated position) of the 
three options. Estimates for the size of the errors are provided by P. Dheenathayalan et al.33.

Figure 2: Example error ellipsoid, showing 
the position ambiguity. (P. Dheenathayalan 
et al.33)

The introduction of web-based 3D techniques paved the road for online  point cloud viewers. In 
recent  years  multiple  solutions have been launched for showing large (billions  of  points)  point 
clouds in the web-browser. Unfortunately no combination between point clouds and radar scatterer 
information has yet been made public.
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This project was aimed at creating this missing link and integrating both data sources. Given the 
rise of web based point cloud viewers and the availability of a nationwide airborne LiDAR dataset 
(AHN)  The  Netherlands  forms  a  perfect  test  bed  for  this  integration  of  datasets  in  an  online 
application.

This additional thesis has three final products: this report, a short manual on how to create a similar 
application  and  a  demo application.  The  requirements  for  the  demo application  are  set  out  in 
paragraph 1.A (Terms of reference), the associated research questions are stated in paragraph 1.B of 
this introduction.

First  the currently available solutions for  point clouds will  be discussed in chapter  2.  The data 
available to this study is discussed in chapter  3. In chapter  4 an outline of the steps necessary to 
implement such a combined solution is shown. This chapter may serve as a manual for creating a 
similar web-application.

In chapter  6 the demo application will be shown. Finally in chapter  7 the terms of reference and 
research questions will be discussed. Those interested in creating a similar application could consult 
Appendix A for a head start.

1.A. Terms of reference
The following requirements  formed the basis  of  the demo application.  In  short:  an application 
aimed at a broad audience of professionals, skilled producers but novice users. The concept will be 
demonstrated on the university campus, based on provided radar data.

Purpose of the tool To  visualise  the  error  ellipsoid  of  the  radar  measurements  in  their 
environment (e.g. point cloud data), accessible for large(r) audiences.

The resulting map will be 'write once, read many'.

Target audience Focus is on internal use by researchers. Future use may include usage in 
publications.

The creator will be skilled, but users should not require training.

Initial study area Two  areas  were  marked  for  initial  testing:  the  campus  of  the  Delft 
University of Technology and a reflector test site in Wassenaar (NL). The 
campus was selected for initial  testing,  as (processed) radar data for this 
location is available as well as high resolution scans from ground level.

Available data Initial  radar  data  will  be  provided  by  SkyGeo  and  will  consist  of  a 
TerraSAR-X  time  series.  A constant  error  (ellipse)  is  assumed  for  all 
persistent scatterers, later usage may include datasets with error estimates 
per scatterer.

Various  point  clouds  from  airborne  LiDAR  are  available  (Actueel 
Hoogtebestand Nederland, AHN), several terrestrial scans and data from a 
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mobile laser scanner were available.

Aerial photographs were used to colour the airborne point clouds to ease 
navigation.

1.B. Research questions
The  following  research  questions  were  formed  to  accompany  the  development  of  the  demo 
application.

1. What software and applications are already available?
2. What information is required to position SAR data?

1. How are SAR signals and their uncertainties represented?
2. Which coordinate systems and (file) formats are involved?

3. Which combination of data is effective?
1. How is effectiveness assessed?
2. How does this combination help in finding the (dominant) scatterer?

4. What additional features can be foreseen and/or recommended?
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2. Available solutions for point clouds
The introduction of the WebGL standard early 2011 allowed for a unified method of rendering 
complex 3D images in a web-browser. WebGL defines a connection between scripts ('programs') in 
the browser and the underlying graphics capabilities of the computer, without the further need for 
plug-ins such as Java or Adobe Flash1. WebGL is currently supported by most desktop and mobile 
browsers: an estimated 93% of the users is able to use WebGL in their browser2. In this chapter 
existing solutions for rendering  point clouds in the browser will  be discussed,  all  are based on 
WebGL. 

All solutions consist of three distinct steps: converting (pre-processing), serving and viewing. Of 
which only the latter is visible to the client. As it is (currently) unfeasible to load more than two 
million points on the client side3, preprocessing (e.g. sorting, tiling) of the data is required. This will 
allow the  browser  to  load  only  the  required points,  thus  reducing the  workload to  a  workable 
number of points. PoTree, plas.io and Cesium will be discussed, of which PoTree and plas.io stand 
out as they are specifically designed for viewing point clouds in the browser. This process is shown 
in Figure 3, the steps (converter/server/viewer) will be elaborated on in this chapter.

Figure 3: Processing workflow, from input to viewer. Any path from left to right will result in a 
working point cloud viewer.

2.A. Converter
A converter reads input data and outputs a file structure readable by either the server or directly by 
the viewer. This step is only performed once (per input point cloud). The file structures generated 

1 “WebGL Overview”, Khronos Group, https://www.khronos.org/webgl/. Retrieved 2017-11-06.
2 Statistics on WebGL by Can I Use (http://caniuse.com/#search=WebGL). Retrieved 2017-10-23.
3 On average consumer hardware. This figure is dependant on both hardware (CPU, GPU, RAM) and software (OS 

(drivers), browser) and no single number exists. Automatic detection is possible, but is outside the scope of this 
work.
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resembles  an  Octree.  (Readers  unfamiliar  with  Octrees could  refer  to  chapter  4.B for  a  short 
introduction.)  The  following  two  converters  create  file  structures  are  supported  by  PoTree, 
Entwinte.io structures are supported by plas.io and Cesium:

• PoTreeConverter

Written  by  the  authors  of  PoTree,  the  Computer  Graphics  group  at  the  TU  Wien. 
PoTreeConverter4 can read LAZ/LAS, PTX, (binary) PLY and ASCII (XYZ). Converts to an 
Octree structure5 of an internal binary format, LAS or LAZ. Files can be used by the viewer 
(PoTree) directly from the filesystem, or served (as static files) by any webserver to the 
viewer.

The  Netherlands eScience Center created Massive-PoTreeConverter as part of their 

efforts  to  convert  the  full  AHN2  point  cloud to  the  PoTree  format18.  This  converter  is 

capable of running many  PoTreeConverter jobs in parallel60 and adds extends of the 

created tiles to a database (PostgreSQL, PostGIS)6.

• Entwine.io

Made by Iowa City (Iowa, United States) based collective Hobu7, maintainers of point cloud 
related  software  like  PDAL.  PDAL,  or  the  “Point  Data  Abstraction  Library”,  is  a  C++ 
library for “translating and manipulating point cloud data”. It exposes a series of “stages” 
(readers, writers and filters) that can be chained using pipelines. The filters include a wide 
variety of options, such as transformations, tiling, colourisation, etc.8.

Their converter, Entwine.io9, is based on PDAL and reads all file formats PDAL supports10. 

By default Entwine.io is distributed as a docker container11. The output is either a 'sorted 

structure' (Octree) for their Greyhound.io server and/or “3D Tiles”12,17 for Cesium.

2.B. Server
After processing the data has to be fed to the client. No data is written in this step, only transferred 
to the client. Depending on the requirements by the client this step is either implemented as static  
(all calculations done by the converter) or dynamic (final processing done in the server step).

• Static files

4 “PoTreeConverter”, https://github.com/potree/PotreeConverter. Retrieved 2017-10-30.
5 “PoTree Data Format”, https://github.com/potree/potree/blob/develop/docs/potree-file-format.md. Retrieved 2017-

10-23.
6 “Netherlands eScience Center, Massive-PotreeConverter”, https://github.com/NleSC/Massive-PotreeConverter. 

Retrieved 2017-10-24.
7 “Hobu”, https://hobu.co/. Retrieved 2017-10-24.
8 “PDAL – Filters”, https://www.pdal.io/stages/filters.html. Retrieved 2017-11-06.
9 “Entwine.io”, https://entwine.io/. Retrieved 2017-10-25.
10 “[PDAL] Readers”, https://www.pdal.io/stages/readers.html. Retrieved 2017-10-24.
11 Docker containers allow running a dedicated 'operating system' alongside the current operating system. Creating 

unified environments for application developers and separating the application from the coordinating operating 
system.

12 “Static website to view Entwine.io's 3D Tiles in Cesium”, https://github.com/connormanning/entwine-cesium-
pages. Retrieved 2017-10-25.
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Can  be  used  directly  from  the  filesystem13 (eg.  an  external  harddrive  shared  between 
colleagues)  or  in  combination  with  a  webserver.  The  files  can  be  read  by  the  viewer 
immediately, without intervention of another program. “Static” is commonly used to refer to 
files that are constant in time and require no further processing before being served to the 
client (viewer).

In case of the PoTree  Octree structure this structure is traversed by the client, requiring 
frequent requests to either the webserver or filesystem. Those requests are relatively fast per 
transfer as they are simple (read file, output file over network) and can be cached (each 
request to the same file is equal). A drawback is that the full data of an only partially visible 
cell will have to be loaded. Furthermore all filtering will be done on the client side.

• Greyhound.io (dynamic)

Streaming server, for files prepared by Entwine.io. Serves parts of the point cloud on request 
by the client14.

Only points within a region requested by the client are sent, limited by the requested depth 
of the  Octree. Filtering can be applied on the server side, sending only points that will be 
shown.  This  limits  the  amount  of  requests  and  data  necessary  to  load  the  point  cloud. 
Nevertheless tiled requests may be employed to parallelise the loading process on the client 
side15. (Parts of) requests may be cached, to allow faster responses.

2.C. Viewer
Three major web-based  point cloud viewers exist.  PoTree and Plas.io are especially written for 
point clouds. Cesium has a broader focus as a virtual Earth, comparable to Google Earth. All three 
will be introduced here:

• PoTree

PoTree is built as a plugin on the Three.js (3D) library and is built to shown point clouds 
from either its own Octree structure or a Greyhound.io server. Built as an extension (to the 
Three.js  library)  the  viewer  can  easily  be  extended  to  show  radar  ellipsoids  or  other 
geometries together with the point cloud.

The  default  PoTree  interface  has  tools  for  various  geometric  measurements  (distance, 
surface area, profile).

• Plas.io

13 Results may vary, depending on how the browser handles the file:// protocol. Firefox, for example, will not 
compute a mime-type for files. As a result JSON-files may be identified as XML-files. Some JavaScript libraries, 
eg. OpenLayers4, will refuse to read those files.

14 “Client development”, https://github.com/hobu/greyhound/blob/master/doc/clientDevelopment.rst. Retrieved 2017-
10-24.

15 “Client development: Progressive Querying”, 
https://github.com/hobu/greyhound/blob/master/doc/clientDevelopment.rst#progressive-querying. Retrieved 2017-
10-24.
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'Trendy' alternative to PoTree, built by the creators of Entwine.io and Greyhound.io (Hobu). 
Allows live overlay of satellite photographs if points are reprojected as Web-Mercator.

Capable of loading small point clouds directly from the filesystem, larger point clouds can 
be loaded from a Greyhound.io server.

• Cesium

Focussed  on  “3D  globes  and  maps”16,  but  point  cloud integration  is  possible.  The 
experimental “3D Tiles” output Entwine can be used as data source for Cesium17.

2.D. Online examples
Major examples of those viewers are Speck.ly (run by Hobu7) and the AHN2 viewer by the Massive 
Point Clouds for eSciences project18.

In Figure 4 the AHN viewer by the Massive Point Clouds for eSciences project is demonstrated on 
the town of Willemstad (Noord-Brabant). This viewer is based on PoTree and is publicly available 
at http://ahn2.pointclouds.nl and contains a heavily processed version of AHN2, including removing 
duplicate points60. Data is served from a PoTree file structure.

Figure 5 shows the same town in Speck.ly (http://speck.ly), an implementation of the Plas.io viewer. 
Demonstrated is the feature to use imagery from a third source to (live) overlay the  point cloud 
served by a Greyhound.io server.

Further examples on combinations of the software discussed in this chapter are available online, a 
selection:

• PoTree: http://potree.  org   and http://ahn2.pointclouds.nl/;

• Entwine.io, Greyhound.io and PoTree: http://potree.entwine.io/;

• Entwine.io, Greyhound.io and Plas.io: http://speck.ly/;

• Entwine.io + Cesium: http://cesium.entwine.io/.

16 “About Cesium”, https://cesiumjs.org/about/. Retrieved 2017-10-13.
17 “Add initial 3D Tiles output prototype”, https://github.com/connormanning/entwine/pull/12. Retrieved 2017-10-23.
18 “Massive Point Clouds for eSciences”, http://www.gdmc.nl:8080/mpc (redirected from http://pointclouds.nl). 

Retrieved 2017-10-24.
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Figure 4: AHN2 as shown on ahn2.pointclouds.nl. (Source: M. van Meersbergen, Netherlands 
eScience Center)

Figure 5: Speck.ly, showing AHN2 overlayed with ArcGIS satellite imagery.
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2.E. Demo application
Based on the possibilities discussed in this chapter an important subdivision can be made based on 
the serving structure: static versus dynamic solutions.

Static solutions are processed once and the output will not change in time. After initial processing it  
is left to the client (visitor) to request the correct files and do final processing on the points. Major 
advantage is that no complex (web) server is needed. A file service, like Amazon S319, will be able 
to serve the files at request. As a consequence this solution is (very) low in maintenance.

Dynamic solutions pre-process data that is later served by a (web-)service,  sending the data on 
request to the client after some final, on the fly, processing. Processing is shared between the server 
and client. The advantage of reduced data transfer (only requested points are sent to the client) 
comes at the price of the (relatively) high maintenance cost of maintaining a (complex) server.

Given the terms of reference of a write once, read many application that is focussed on researchers 
rather than an internet company a static solution is preferred. Therefore PoTree with a backend of 

static files (generated by PoTreeConvert) was chosen as basis for the application.

Due  to  the  experimental  nature  of  the  Entwine.io  –  Cesium integration  this  solution  was  not 
considered as a basis for this demo application.

19 “Amazon S3 (Simple cloud Storage Service)”, https://aws.amazon.com/s3. Retrieved 2017-11-08.
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3. Available data
Data search was aimed at  getting a high resolution view of the possible scatterers in  the area. 
Scatters are likely man made structures33 and will be in the slant viewing angle of the satellite. Thus 
coverage of those areas is essential.

Given the initial study area, Delft University of Technology campus, the following datasets were 
selected to be included in the application. Four types of data were used: LiDAR, radar, optical and 
map (vector) data. For each dataset used the coverage, file format, coordinate system, (expected) 
resolution and accuracy will be discussed.

3.A. Actueel Hoogtebestand Nederland 1/2/3
Three iterations of the country wide 'Actueel Hoogtebestand Nederland' exist, recorded over the last 
20 years. Data was acquired via airborne LiDAR with the main purpose of creating a digital terrain 
model. Therefore coverage is focussed on nadir measurements, rather than facades. The different 
properties of the versions/years are shown in Table 1. 

Recording

Error (vertical20, 1σ)

DensitySystematic Stochastic

AHN121 1996 – 200322 5 cm 15 cm 1 pt/16 m² – 1 pt/m²

AHN221 2008 – 201223 5 cm 5 cm 6 – 10 pt/m²

AHN3 2014 – 201823 5 cm 5 cm ~ 16 pt/m²
24

Table 1: Properties of different iterations of the AHN product.

Data is provided as tiled LAZ-files (5 km × 6.25 km) and is available for public download through 
PDOK (Publieke Dienstverlening op de Kaart)25. Coordinates are expressed as RD-NAP coordinates 
(EPSG:7415)27.

The selection of tiles used is refered to as “Groot Delft” and consists of the following AHN tiles:  

30DZ2;  30GZ1;  30GZ2;  37BN1;  37EN1 (University  campus);  37EN2 (University  campus); 

37BZ2; 37EZ1 and 37EZ2. Their extend is shown in Figure 6. Together they cover the extends of 

the provided InSAR dataset (see paragraph 3.E).

20 AHN2 has a maximum horizontal error of 50 cm. See footnote 21, paragraph 3.1.2.
AHN3 has a identical constraint. See footnote 27.

21 “Kwaliteitsdocument AHN2”, N. van der Zon, May 2013, http://www.ahn.nl/binaries/content/assets/hwh---
ahn/common/wat+is+het+ahn/kwaliteitsdocument_ahn_versie_1_3.pdf. Retrieved 2017-10-24.

22 Swartvast: http://www.swartvast.nl/ahn_1_vs_2.php#actualiteit
23 Waterschappen: http://www.ahn.nl/common-nlm/inwinjaren-ahn2--ahn3.html
24 Estimate based on the points/area for tiles 37BN1 and 37EN1.
25 AHN1 (Atom feed): http://geodata.nationaalgeoregister.nl/ahn1/atom/ahn1_gefilterd.xml (ground) and 

http://geodata.nationaalgeoregister.nl/ahn1/atom/ahn1_uitgefilterd.xml (other points).
AHN2 (Atom feed): http://geodata.nationaalgeoregister.nl/ahn2/atom/ahn2_gefilterd.xml (ground) and 
http://geodata.nationaalgeoregister.nl/ahn2/atom/ahn2_uitgefilterd.xml (other points).
“AHN3 downloads”, PDOK, https://www.pdok.nl/nl/ahn3-downloads. Retrieved 2017-10-24.
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Classification  data  is  provided  with  the  point  clouds.  For  AHN1  and  AHN2  data  is  split  in 
ground/non-ground LAZ-files. With AHN3 further classes are available, stored in a single LAZ-file. 
Classification follows the classifications used in ASPRS LAS-files26,27. The points are divided in the 
following classes:  unclassified  (1),  ground (2),  building  (6),  water  (9)  and civil  structure  (26). 
Where the numbers in brackets correspond the class numbers (identifiers) used in the LAS-file. The 
code for civil structure (26) is a custom code and is not in the ASPRS LAS standard.

AHN1 and AHN2 only provide coordinates, AHN3 contains per-point intensity information. All 
three versions are included in the demo application. For recent InSAR data AHN3 is best suitable as 
it has the highest point density of the three iterations, coincidently increasing the point coverage on 
facades. For older data, older iterations of AHN may describe the ground truth at that time better.

Figure 6: Coverage of AHN tiles. Green: "Groot Delft"; red: "Campus". 
(Background: PDOK BRT Achtergrondkaart.)

3.B. Terrestial Laser Scanners
Over the years parts  of  Delft  were scanned using the department's  Leica C10 Terrestrial  Laser 
Scanner. Unlike with down looking airborne AHN these scans were (mostly) focussed on facades 

26 “LAS Specification, version 1.4”, https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf. 
Retrieved 2017-10-23.

27 See “Bestekvoorwaarden” as supplied with the tender for “inwinning en controle AHN 2018 – 2019, 
Rijkswaterstaat Centrale Informatievoorziening”, March 2017, https://www.tenderned.nl/tenderned-
web/aankondiging/detail/samenvatting/akid/d4ccd8312612ae997b3cdf85cd2caba8/pageId/D909C/huidigemenu/aan
kondigingen/cid/1929040/cvp/join . Retrieved 2017-10-24.
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https://www.tenderned.nl/tenderned-web/aankondiging/detail/samenvatting/akid/d4ccd8312612ae997b3cdf85cd2caba8/pageId/D909C/huidigemenu/aankondigingen/cid/1929040/cvp/join
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf


and trees, rather than the ground. They provide a dense cover in those areas, where AHN is lacking 
information. The benefit of using multiple sources can be seen in Figure 7, where the full facade of 
the Faculty of Civil Engineering and Geosciences (Delft University of Technology) is in the point 
cloud, rather than only the roof in AHN3 (Figure 8).

Figure 7: AHN3, Mekelpark DTM and 
Mekelpark Gras.

The following scans were available to this study:

• Mekelpark Tram

A (very) high resolution scan of the Tram tracks at the crossing of the Balthasar van der 
Polweg, Berlageweg and Mekelpark in Delft. Recorded March 2015.

• Mekelpark DTM

Scan  of  the  central  part  of  the  Mekelpark  (Delft  University  of  Technology  campus). 
Recorded March 2015.

• Mekelpark Trees

Scan at the south side of the CEG-building. Recorded May 2017.

• Mekelpark Gras

Scan of the central part of the Mekelpark. Contains large detail on the facades of EEMCS 
and CEG. Recorded March 2017.

• Faculty of Architecture

A facade scan of the Faculty of Architecture at the inner court adjacent to the Michiel de 
Ruyterweg (Delft). Recorded April 2015.

• Wassenaar (radar reflector)

Scan of an experimental radar reflector, the surrounding field (including one house) and the 
transponders present on the field. Recorded August 2017, using a Leica P40.
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Figure 8: AHN3, coloured with PDOK 
Luchtfoto.



Unfortunately all scans are in local coordinates, without references to a national/global coordinate 
system. Therefore matching is part of the processing workflow. Within a scan (local coordinates) 
the accuracy is 6 mm (1σ)28, an improvement over the AHN resolution. N.B. the transformation to 
the national/global coordinate system will introduce extra errors, decreasing the overall position 
accuracy of the data.

To illustrate the extends of the dataset after alignment, the point density is shown in Figure 9 - 12 in 
square cells of 0.25×0.25 m (≈ 0.6 m²). These images were generated using the Rasterize module in 
CloudCompare and overlayed on OpenStreetMap in QGIS.

Figure 9: Point density of "Mekelpark Tram". Figure 10: Point density of "Mekelpark DTM".

28 “Leica ScanStation C10, product specifications”, https://hds.leica-
geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-
datasheet/Leica_ScanStation_C10_DS_en.pdf. Retrieved 2017-10-30.
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Figure 11: Point density of "Mekelpark Trees". Figure 12: Point density of "Mekelpark Gras".

3.C. Mobile laser scanner
Two point clouds from a Mobile Laser Scanner (MLS) were provided by Jinhu Wang. Data was 
recorded by Fugro Geoservices B.V. using their Fugro Drive-Map system for the SigVox project29. 
Both point clouds were recorded on the northern part of the university campus, roughly between the 
Faculty of Technology, Policy and Management and the Faculty of Architecture. The first point 
cloud was recorded in 2013 (Figure 13), the second in 2016 (Figure 14). The density figures were 
produced using the same procedure as with the TLS data.

29 “A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds”, J. 
Wang et al., 2017, ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/j.isprsjprs.2017.03.012
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Figure 13: Point density of the 2013 MLS 
data.

Figure 14: Point density of the 2016 MLS 
data.

3.D. PDOK Luchtfoto
Nationwide aerial photographs are recorded every year, recently the 'low-resolution' images with a 
ground  resolution  of  25×25  cm  were  made  publicly  available30.  Both  true  colour  (RGB)  and 
infrared images were recorded.

Data is provided as a web-service using WMS (on demand, Web Map Service) and WMTS (tiled, 
Web  Map  Tile  Service).  Data  is  available  in  various  coordinate  systems:  EPSG:28992  (RD-
coordinates), EPSG:4326 (WGS84) as well as EPSG:3857 (Pseudo-Mercator/Web-Mercator).

The aerial photographs may be used to colour the point cloud for easier navigation. Unfortunately 
AHN and the aerialphotograph do not perfectly align. The aerial photograph is defined to have a 
position accuracy of 37.5 cm (1σ) at ground level31 and AHN2/3 has a horizontal accuracy of 50 cm 
(1σ)20. As a consequence some grass can be seen on rooftops and vice versa.

3.E. InSAR (persistent scatterers)
The InSAR timeseries are provided by SkyGeo, a Delft' firm specialising in InSAR deformation 
monitoring32.  Provided  are  the  (estimated/expected)  position  of  the  scatterer,  a  time  series  of 

30 “Hogere resolutie luchtfoto als open data by PDOK”, PDOK, February 2017, 
https://www.pdok.nl/nl/actueel/nieuws/artikel/10feb17-nieuw-hogere-resolutie-luchtfoto-als-open-data-bij-pdok. 
Retrieved 2017-10-30.

31 “Bestekvoorwaarden Lage resolutie luchtopnamen”, chapter 6.2.k, Het Waterschapshuis, july 2015, 
http://www.beeldmateriaal.nl/binaries/content/assets/hwh-bm/downloads/besteksvoorwaarden-2016-lrl-.pdf. 
Retrieved 2017-10-23.

32 “About SkyGeo”, https://skygeo.com/company/. Retrieved 2017-10-30.
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measurements and an estimate of the linear trend. All one million points include a two year time 
series from a single descending TerraSAR-X orbit. An example of such a time series can be seen in 
Figure 15.

Figure 15: Timeseries of persistent scatterer “L67060P67047”, located 
on or close to a bench at the Mekelpark (university campus). Shown on 
top (black) is the estimated linear trend.

All data is within an approximately 12½ km diameter circle around Delft. The extends are shown in 
Figure 16. As the region of interest is small it is assumed that all points share the same satellite 
viewing geometry.
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Figure 16: Extends of the InSAR dataset (black). Red patches indicate a high point density (colour 
scale: blue to red, background: PDOK Achtergrondkaart).

The ratio between the errors, standard deviations, in range, cross-range and azimuth direction was 
taken from the paper “high-precision positioning or radar scatterers” by P. Dheenathayalan et al.33 
and was estimated to be 1/3/213 in range/azimuth/cross-range. The range error was defined as σ = 
0.025 m, ergo: 0.075 m in azimuth and 5 m in range. This results in elongated, flat, ellipsoids. Some 
examples can be seen in Figure 17.

33 “High-precision positioning or radar scatterers”, P. Dheenathayalan et al., Journal of Geodesy, February 2016. (doi: 
10.1007/s00190-015-0883-4)
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Figure 17: Example error ellipsoids as can be "seen" on the 
pavement in the demo application. The radar signal is coming from 
the right (range direction is from top right to bottom left of the 
image).

3.F. Map sources
In the application the client is offered a map, this map is provided by OpenStreetMap34. The map is 
provided as TMS (Tiled Map Service) in the Web-Mercator projection, compatible with most web-
based  map  applications.  OpenStreetMap  is  based  on  mapping  efforts  of  volunteers  and  has 
worldwide coverage.

As an alternative NL Maps could be used35. This service is based on open data released by the 
Dutch (governmental) institutions and is limited to The Netherlands. And provides standard (vector) 
maps as well as aerial photos in the TMS format, suitable for web pages.

Labels for towns are based on the TOP10NL product of the Dutch Cadastre and were taken from a 
dataset published by Imergis36. These were not included in the demo application, but an example of 
those labels can be seen in Figure 25.

34 Implementing OpenStreetMap in OpenLayers: “OpenStreetMap Wiki: OpenLayers”, 
http://wiki.openstreetmap.org/wiki/OpenLayers. Retrieved 2017-10-24.

35 “NL Maps”, https://nlmaps.nl/. Retrieved 2017-10-24.
36 “Geografische open-data GIS bestanden”, Imergis, http://www.imergis.nl/asp/47.asp. Retrieved 2017-10-25.
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4. Data processing
Data processing from input (chapter 3) to output is summarised in this flowchart (Figure 18).

Figure 18: Flowchart data processing. Processes shown in blue, data streams in black 
and software used is shown as green boxes. The steps as discussed in this chapter are 
marked in red.
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In this chapter the steps in this flowchart (Figure 18) are subdivided in 5 distinct processing steps 
(red). The purpose of this process is to integrate all available data to an integrated visualisation of a 
point cloud overlayed with radar data. For each step their input and intended output are discussed 
(black), followed by the commands involved. Together they will  demonstrate in a manual style 
fashion how to create a similar result.

As an alternative a short summary of how to create a very basic PoTree installation (viewer) with 
one point cloud and an overlay of radar error ellipsoids is given in Appendix B. The steps in this 
chapter may be used to expand this basic installation.

4.A. Required software
LASTools37,  CloudCompare38 (with  LASlib  integration),  PoTreeConverter4 and  GDAL39 are 
required for the creation of the (integrated) point cloud. Except for LASTools' lascolor all tools are 
available as open source software. Furthermore lascolor is the only program limited to Microsoft 
Windows only, all other software was tested on Linux but should work on Windows and  Macintosh 
too. The processing of InSAR data was implemented in Python40.

On the users side most  modern browsers are  supported by PoTree,  major exception is  Internet 
Explorer  11.  The application  was tested  and worked with  Mozilla  Firefox 56 (Linux),  Google 
Chrome 62 (Windows) and Apple Safari 11 (Macintosh).

4.B. Data structures
Taking the limited processing power of the client in mind, data has to be brought to the client 
efficiently. Chunks of data have to be small enough to be downloaded quickly and the least possible 
time should be lost on searching the right chunks. To accomplish this a spatial index is used.

For two dimensional searching a Quadtree is used, for 3D structures the similar Octree is used. Both 
could be considered a tiling schema. Tiling schemes serve a dual purpose: spatially dividing the data 
and splitting the data in small chunks. The tile will contain only the points within the tile boundaries 
and is  essentially,  allowing access  to  specific  points  without  much redundant  (unwanted)  data, 
warranting a fast download (compared to downloading the full dataset and filtering).

The tile structure is such that there is an implicit relation between tiles and coordinates. This allows 
for downloading the requested tile without doing a search query  first, as the tile location (URL) 
follows from the coordinates.

Quadtree

In a Quadtree data is divided in equal quadrants. This create an easy tile – coordinate relation. Take 
Figure 1941 as an example. The top raster (level zero) contains all information of the input dataset 

37 “rapidlasso GmbH, LAStools”, https://rapidlasso.com/lastools/. Retrieved 2017-11-08.
38 “CloudCompare”, http://cloudcompare.org/. Retrieved 2017-11-08.
39 “GDAL – Geospatial Data Abstraction Library”, http://www.gdal.org/. Retrieved 2017-11-08.
40 Python 3.5, with GeoPandas and Matplotlib (PyPlot).
41 “Damn Cool Algorithms: Spatial indexing with Quadtrees and Hilbert Curves”, Nick's Blog (Nick Johnson), 

http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves. 
Retrieved 2017-11-07.
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and can be split into four equal parts (level one). Subsequently these four tiles can be divided in 16 
smaller tiles (level two). And so on and so on.

A quadtree  may  be  implemented  such  that  only  the  highest  zoom  level  is  stored.  Another 
implementation would be to  include only a (random) subsample of points, adding points in each 
level up to the zoom level were all points are included.

The first solution allows for rapid access to specific features (their storage location is known based 
on  the  coordinates),  the  second  option  allows  for  incremental  loading.  Incremental  loading  is 
praticullary useful for viewing purposes. Immediately showing the a rough preview of the data and 
refining it (adding points) as soon as more data becomes available.

Finding the tiles based on the coordinates is as easy as (same relation holds for y):

floor(
x

xmax−x min

2z) (1)

Figure 19: Demonstration of the internal structure of a Quadtree, 
systematically subdividing a set in equal quadrants. (Nick Johnson)

Octree

An Octree is a 3D implementation of the Quadtree structure. Divding data in equal octants, rather 
than  quadrants.  An  example  can  be  seen  in  Figure  2042.  The  same  impelmentation  methods 
discussed for the Quadtree hold for the Octree.

42 “GKOctree”, Apple Developer Documentation, https://developer.apple.com/documentation/gameplaykit/gkoctree. 
Retrieved 2017-11-08.
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Figure 20: Demonstration of the internal structure  
of a Octree. (Apple)

Step 1: from TLS to referenced point cloud
For the TLS data (see chapter  3.B) no georeference was available. To combine the datasets it is 
necessary to align the local TLS coordinates to a coordinate system used by the other datasets. 
When no georeference is available for the  point clouds the  point cloud can be aligned based on 
another or an wide area (eg. airborne) LiDAR dataset.

Based on corresponding points (references) the transformation may be computed. It is important to 
maintain the scale of the original (input)  point cloud. Therefore determining a affine transform 
using least-squares estimation will not suffice, as it will include shearing and scaling too.

To find the optimal rotation and translation a method described by Besl and McKay (1992)43 is 
used. In short the translation is found by first calculating the centroids (average coordinates) of the 
corresponding points, these form the translation parameters; the rotation is found based on the left 
and right  singular  vectors  of  the  singular  value decomposition  of  the covariance  matrix  of  the 
points. The  resulting  transformation  matrix  can  then  be  applied  to  all  points  in  the  input,  to 
transform them from the local coordinate system to the wide area coordinate system.

Furthermore (possibly Leica PTX specific) the intensity value in PTX files is in the range from 0 to 

1.  By definition LAS intensity  values are  stored as  unsigned short (integer,  0 to 65535). 

Therefore scaling of the intensity values is necessary before further processing.

43 “A method for registration of 3D shapes”, P.J. Besl and N.D. McKay, IEEE Transactions, 1992, http://www-
evasion.inrialpes.fr/people/Franck.Hetroy/Teaching/ProjetsImage/2007/Bib/besl_mckay-pami1992.pdf. Retrieved 
2017-09-11.
A more straightforward explanation is available on:
“Finding optimal rotation and translation between corresponding 3D points”, Nghia Ho, May 2013, 
http://nghiaho.com/?page_id=671. Retrieved 2017-09-11.
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The  intensity  scaling,  (now  known)  transformation  and  conversion  to  LAS  can  be  done  by 
CloudCompare.  Either  by  using  the  graphical  user  interface  or  by  using  the  command  line 
interface44.

First the  point clouds were manually aligned to AHN3, by selecting equal points in both datasets 
using  CloudCompare.  Based  on  the  coordinates  of  the  corresponding  features  the  coordinate 
transformation can be calculated.  The matching points,  their  coordinates  and the quality  of  the 
transformation are shown in Appendix B. The alignment found is of poor quality, with an RMSE of 
up to 30 cm. This can likely be attributed to the limited amount of corresponding features used in 
the alignment process, limiting the redundancy of the process for operator error and mismatches 
between points.

Unfortunately attempts to automatically refine the match/referencing using Iterative Closest Point 
algorithms failed, likely due to a lack in overlap between the point clouds. Between the different 
TLS point clouds the overlap is small, as they cover different areas (see Figure 9 - 12). The overlap 
between AHN3 and the TLS point clouds is small due to the different viewing angle, as the airborne 
AHN contains mostly roofs and ground while the terrestrial clouds contain mostly facades. But 
more experiments would be required to come to a concluding answer.

The intensity scaling for PTX files is not automatically done by CloudCompare, but scaling of this 
variable is easily performed. After estimating the transformation matrix all required steps can be 
executed  at  once  using  the  command  line  interface  of  CloudCompare44.  An  example  of  such 
command can be found below. This command opens the PTX-file, scales the intensity, applies the 
transformation and saves the resulting point clouds as LAS-file.

CloudCompare \
-O '[input].ptx' \
-AUTO_SAVE OFF \
-SF_OP 0 mult 65535 \
-APPLY_TRANS '[transformation matrix].txt' \
-C_EXPORT_FMT LAS \
-SAVE_CLOUDS ALL_AT_ONCE

An  example  script  on  the  calculation  of  the  transformation  matrix  and  generation  of  the 
CloudCompare command is available in Appendix C.

Aligned and processed were the TLS point clouds: Mekelpark Tram; Mekelpark DTM; Mekelpark 
Trees and Mekelpark Gras. Not included were the Faculty of Architecture and the radar reflector in 
Wassenaar. The Faculty of Architecture is not included for practical reasons (time constraints), the 
radar reflector in Wassenaar is outside the extents of the “Groot Delft” AHN dataset.

Step 2: colouring AHN
To make the resulting  point cloud easy navigable it  is  desired to add colouring.  For this  aerial 
photographs are used. The nationwide 'PDOK Luchtfoto' is available as WMS and WMTS services, 

44 “Command line mode”, CloudCompare Wiki, http://www.cloudcompare.org/doc/wiki/index.php?
title=Command_line_mode. Retrieved 2017-10-30.
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webservices providing data on demand30. Using GDAL (gdal_translate) this image can be 

tiled and downloaded as GeoTiff. LASTools'  lascolor is able to add the data to the points in a 

LiDAR dataset46.

Given lack of support for BigTiff, (Geo)Tiff files larger than 4 GiB, in lascolor the images must be 
tiled to less than 4 GiB each (without compression). In practice this requirement is met when only 
one AHN tile is processed at a time.

First the GDAL definition file for the PDOK Luchtfoto has to be created45. This is done by querying 
the PDOK WMS or WMTS server for available layers that match the coordinate reference system 
used by AHN (EPSG:7415, equal to EPSG:28992 for horizontal coordinates). As an example for the 
WMS service:

gdalinfo \
"WMS:https://geodata.nationaalgeoregister.nl/luchtfoto/wms?
request=GetCapabilities&SRS=EPSG:28992&format=image/png"

A possible return is, for the 2016 aerial photograph with 25 cm resolution:

https://geodata.nationaalgeoregister.nl/luchtfoto/rgb/wms?
SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=2016_ortho25&SRS
=EPSG:28992&BBOX=-
285401.92,22598.08,595401.92,903401.92&FORMAT=image/png

This URL can be converted to a GDAL definition file using gdal_translate:

gdal_translate "https://[previous URL]" wms.xml -of WMS

Given this definition file the aerial photograph can be downloaded using gdal_translate. It is 

recommended create a file for each AHN tile, not to hit the size limit of a conventional GeoTiff. A 

download command for tile 37EN1 will look like this, with -projwin defining the bounds of the 

tile:

gdal_translate -tr 0.25 0.25 -of GTiff \
-projwin 80000 450000 85000 443750 wms.xml 37EN1.tiff

It is important to define the desired resolution of the output (-tr 0.25 0.25, 25 cm), as the 

GDAL default may be higher than the resolution of the source.

Using  lascolor (unfortunately only available on Windows) the points can be matched to the 

colours  from  the  aerial  photograph46.  An  example  command,  that  outputs  a  coloured 

C_37EN1_rgb.LAZ based on C_37EN1.LAZ and 37EN1.tiff, would be:

lascolor.exe -i C_37EN1.LAZ -image 37EN1.tiff -odix _rgb -olaz

Unfortunately, with the unlicensed version of LASTools, datasets with more than 3 million points 
will be slightly distorted and their intensity values nulled.

45 “WMS: generation of WMS service description XML file“, GDAL manual, http://www.gdal.org/frmt_wms.html. 
Retrieved 2017-10-30.

46 “lascolor”, rapidlasso GmbH, https://rapidlasso.com/lastools/lascolor/. Retrieved 2017-10-30.
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Step 3: creation of the PoTree datastructure
Once all datasets are available as LAS-file, PoTreeConverter can be used to merge and tile the 

input  point  clouds  to  the  Octree structure.  This  structure  allows  fast  loading  over  the  web, 
downloading only the points to the level of detail necessary for the current camera position and 
angle.

The coordinate system is a parameter to PoTreeConverter, but it is currently only used to show 

the extent of the dataset on a map47, ie. the coordinate system is ignored in the conversion48. It is 
therefore important that all datasets are in the same coordinate system before conversion!

Using PoTreeConverter the input LAS-file is converted into a series of (open) binary or LAS 

files. For the coloured version of AHN3 the command will be as follows:

PotreeConverter C_37EN1_rgb.laz \
-o ./37EN1_rgb --material RGB -p AHN3 --show-skybox \
--projection "+proj=sterea +lat_0=52.15616055555555 
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 
+ellps=bessel +units=m +no_defs" \
--edl-enabled --intensity-range 3 256 -r 256 \
-a CLASSIFICATION RGB

Some explanation on the parameters:

• C_37EN1_rgb.laz, the input file. Multiple files or a directory may be specified.

• -o ./37EN1_rgb,  the  output  directory.  The same directory  may be used  multiple 

times as long as the title/name (-p) of the cloud is different. This will create multiple 

viewers (in a single directory structure) that can later be merged manually.

• --material RGB,  the  attribute  on  display.  All  attributes  mentioned  under  -a  are 

stored, and may be selected for display in the viewer. Supported are: RGB, ELEVATION, 

INTENSITY,  INTENSITY_GRADIENT,  RETURN_NUMBER,  SOURCE and 

LEVEL_OF_DETAIL.  If the material  is  RGB,  INTENSITY or  CLASSIFICATION it 

should be mentioned under -a too!

• -p  AHN3,  the  filename  in  the  output  directory  (-o),  .html will  be  appended 

automatically.

• --show-skybox, show some clouds as background (optional).

• --projection "...",  projection  (EPSG:28992),  ignored  by  PoTreeConvert  but 

used by PoTree for addding a map.

47 "Projection with PoTreeConverter”, https://github.com/potree/potree/issues/344. Retrieved 2017-10-23.
48 “Does PoTreeConverter work with different projection?”, https://github.com/potree/PotreeConverter/issues/54. 

Retrieved 2017-10-23.
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• --edl-enabled, enable “Eye-Dome-Lighting” for a more natural looking point cloud.

• --intensity-range 3 256 -r 256, although a full intensity range up to 65536 

is available, with AHN3 most points have an intensity value between 3 and 256. Without 
those limits the point cloud will be all black.

• -a CLASSIFICATION RGB, attributes to include in the output. Supported are:  RGB, 

INTENSITY and  CLASSIFICATION.  As  INTENSITY is  truncated  by  lascolor  this 

attribute may not be included.

This  will  create  a  point cloud based on the RGB values,  but  without intensity (lost  due to the 
unlicensed version of LASTools).  A version of the command using the intensity  values (of the 
original AHN3 files) can be found in Appendix B.

Step 4: tiling InSAR data
The InSAR dataset has to be split in tiles that are small enough to be read by the browser. This is 
achieved by tiling the points in a  Quadtree-like tiling schema, where subsequent tiles contain the 
same amount of points but in a smaller area. The tiles will be used in the map view, while the 
highest zoom level is used to provide the ellipsoid data for the 3D viewer

Clustering can be applied to group points with equal properties. If the maximum number of points is 
reached at lower zoom levels these groups can be shown rather than the individual points. The 
clustering method developed is elaborated on in chapter  5. The number of clusters (k = 75) was 
chosen as an empirical  optimum between a cluttered map and enough clusters to  represent the 
regional behaviour.

The output of this step is a series of tiles of increasing zoom level, with every zoom level the tile is 
divided into four equal parts. Every tile holds a fixed number of points related to (point) coverage of 
the tile. If more points are present in the dataset, clusters of points are shown instead of points. At 
the  highest  zoom level  al  points  are  included.  The tiling loop can  be  written as  the  following 
pseudo-code:

• If more than 75 points are present and this is not the highest zoom level, apply clustering. 
Otherwise save all available points for this tile.

• If clustering is necessary:

◦ Any point distinctly visible in a previous tile (lower zoom level) will be shown directly 
and will not be part of the clustering process. For visual consistency points visible at 
lower zoom levels should be shown at higher zoom levels too.

◦ Determine the convex hull of the points. Calculate the ratio of the surface of the convex 
hull versus the surface of the tile49. Full coverage will create 75 clusters. The minimum 
is 1 cluster.

49 Calculating the convex hull of an irregular shaped group or a combination of two or more disconnected groups of 
points may result in an overestimation of the surface area. Various other constraints are possible, such as using the 
envelope instead of the convex hull (reducing computational complexity) or determining the coverage based on 
density rather than geometric extends. This is briefly elaborated on in chapter 5.
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◦ Apply K-Means with the previously calculated number of clusters/centroids50.

◦ If any clusters are formed by a single point, copy this point to the output.

◦ Copy all centroids (and their member count) to the output.

• Divide the tile in four equal parts and run this process again, until the maximum zoom level 
is achieved. But only if there is at least one point.

Furthermore the colours indicating the linear deformation velocity are attached to the measurements 
in this step. As all data is available in this step the extremes can be calculated that form the basis of 
the colourramp.

As most web mapping applications use the Web-Mercator projection, all points are first transformed 
to this coordinate system. As the point cloud is in RD-coordinates these coordinates are added to the 
points.  This  will  allow  for  using  the  same  tiles  for  both  the  map  view  and  the  ellipsoids. 
Transforming  the  coordinates  in  the  browser  is  possible,  but  storing  the  coordinates  as  Web-
Mercator will allow for using standard tools. Adding the original RD-coordinates will guarantee that 
the  ellipsoids  are  not  distorted  by the transformation back and forth  (RD-coordinates  → Web-
Mercator → RD-coordinates).

The tile grid used is equal to the one used by OpenStreetMap, a Quadtree like structure, with the 
positive  x tile-coordinate from left to right and the positive  y tile-coordinate from top to bottom. 
This is done to ease configuration of the map layer in the final viewer. The dataset is rendered from 
the lowest zoom level (0) with world coverage, iteratively higher zoom levels are created. As most 
tiles will be empty (up to zoom level 7) they will not spawn children (of a higher zoom level). 
Therefore high zoom level coverage is limited to populated parts of the map, limiting the number of 
tiles generated.

An example on how to use K-Means clustering and colouring is available in Appendix C.

Step 5: PoTree viewer, integrating datasets
All previous steps come together in the viewer. The point clouds will be shown in the same scene as 
the radar observations (error ellipsoids). As PoTree is built as a plugin to the versatile Three.js 3D 
library51, this library can be used to form the error ellipsoids.

As much as possible has been used from the standard PoTree implementation, the application is 
implemented with the least possible changes to the original PoTree viewer. This allows for quick 
adaptation to future updates in  the PoTree library and minimises the impact  of adjustments on 
browser compatibility. An important (structural) change is that the mapping library, OpenLayers 3, 
was swapped for the newer OpenLayers 4.

The viewer can be dividend in three connected, but distinct, components:

50 It is possible to re-use the centroids/clusters of the previous zoom level that coincide with the extends of the current 
tile as basis for the new clusters. In theory this could (visually) stabilise the clustering, as clusters would attain the 
same or similar position in subsequent zoom levels. In practice this showed very little effect as often new centroids 
had to be added (at random) as on average only around one quarter of the previous centroids is within the extends 
of the new tile. Those randomly added clusters disturbed the centroid locations beyond recognition.

51 “three.js”, https://threejs.org/. Retrieved 2017-11-08.
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1. 3D view

Main screen of the application.  Drawing and loading of the  point  cloud and navigating 
through it. This includes traversing the Octree cells (point cloud) and Quadtree tiles (InSAR) 
as necessary and drawing them on screen in accordance with the settings. (This is done 
automatically.)

2. Settings

A 'passive' component, implemented as a sidebar. Settings influence the viewer directly, but 
the viewer does not influence the settings (except for camera positioning).

3. Map

Shows the camera position on the map and shows where information is available.

All  three  components  were  edited  with  the  implementation  of  the  radar  error  ellipsoids.  The 
changes/additions will be listed per component:

1. 3D view

• Multiple parallel  point clouds were added. Although this is a default feature, it is not 
enabled by default and should thus be mentioned.

• Ellipsoids are implemented as a Three.JS Level of Detail (LOD) object, with three levels 
of detail. At lower zoom levels the ellipsoids (represented by a series of vertices) are 
replaced by boxes, containing less vertices and putting less strain on the browser.

Using  the  LOD  configuration  it  is  possible  to  show  ellipsoids  enlarged  at  larger 
distances. This makes it easier to find ellipsoids at large distances. This is currently not 
implemented.

Ellipsoids  are  coloured  by  the  estimated  linear  deformation  speed  of  the  scatterer. 
Colours are provided by PyPlot in the tiling step and included in the GeoJSON output.

• An extra loading mechanism was added, loading radar tiles around the focus (target) of 
the camera. This limits the number of ellipsoids in view, reducing the computational 
load.

• A colourbar is added, based on the characteristics of the dataset acquired during loading.

2. Settings

◦ Options for the ellipsoid scale were added. Ellipsoids can be scaled to 1/2/3σ.

3. Map

◦ OpenLayers 3 was swapped with OpenLayers 4, without further changes.

◦ The persistent scatterers and clusters of persistent scatterers were added as a layer to the 
map.Including matching styling for both clusters and points.
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4.C. Optional steps
As an additional step the implicit classification available in AHN1 and AHN2 can be added to the 
LAS-file as ASPRS compatible code.

Adding classification to AHN1/2

AHN1 and AHN2 are subdivided into two groups:  gefilterd and  uitgefilterd. The first one being 
ground points (ASPRS LAS classification code 2), the second one unclassified (code 0). When 
added to the LAS-file PoTree will be able to filter points based on those properties.

Using las2las this classification code can be added to the LAS-file:

las2las -i [input].laz -set_classification 2 -odix _c -olaz

The version including the classification (in this case set to 2, ground) will be saved with as LAZ 

with a c suffix: input_c.laz.
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5. Clustering of scatterers
There are over a million persistent scatterers in the InSAR dataset. Although a million points of the 
point  cloud are  shown continuously  the  information  carried  by  a  similar  amount  of  persistent 
scatterers is much harder to interpret. By clustering similar measurements it is possible to limit the 
information  output  to  the  user  (compare  Figure  21 to  Figure  22).  The  desired  clusters  should 
describe regional behaviour; without masking anomalies. Focussing the users' attention to distinct 
features within a regional trend.

Figure 21: All measurements in the InSAR 
dataset overlayed on the university campus. 
Points overlay each other, complicating 
analysis.

Figure 22: After clustering the dataset (Figure 
21) is summarised as clusters. Shown in black 
are the tile boundaries.

Furthermore it is impossible to show all relatively complex ellipsoids (rendered as a series of faces, 
approximating the smooth surface of  an ellipsoid)  in  the 3D view without  overloading the 3D 
engine at  the client.  The test  client  was limited to  around 2000 concurrent  appearances  before 
performance issues ensued. To circumvent  simultaneous loading of all persistent scatters a tiling 
technique similar to the Octree used by PoTree is deployed. If more than 75 points are present in a 
single tile, clustering is applied first.

This clustering is based on K-Means clustering. This technique was chosen for its scalability and 
the  guaranteed  reduction of  the  output  to  a  specified number of  clusters.  Using K-Means it  is 
possible to estimate a predefined number of centroids of an (almost) infinite set of input points52. It 
has to be noted that a similar procedure may be implemented with a different clustering technique 
as well.

52 An overview of clustering techniques is available on:
“Clustering”, scikit-learn, http://scikit-learn.org/stable/modules/clustering.html. Retrieved 2017-10-24.
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The predefined numbers of centroids is placed at random on the map. These centroids are iteratively 
positioned between (input) points. For each centroid it is determined which points it is closest to, 
the centroid is then moved to the centre (average coordinates) of these points. This step is repeated 
until either all centroids remain stable (ie. no points are swapped between centroids) or a predefined 
number of iterations is reached. Major drawback is that due to this random initialisation of the 
centroids final results (clusters) may vary each run.

By implementing this procedure in the tiling process it is possible to reduce the number of points 
shown while maintaining variability in the output. If a random sample or an average would be 
chosen to represent a number of points all anomalies would be masked by the vast amount of data.

In determining the appropriate number of clusters it is important to consider that not every tiles may 
be fully 'covered in data' (Figure 23). To circumvent this problem the convex hull of the points is 
calculated, the ratio between the area covered and the tile size determines how many of the (default) 
75 clusters will be shown. Another method would be to calculate the density of the coverage and 
setting the amount of clusters accordingly.

The first option has the advantage of a evenly distributed map, where all  areas of the map are  
covered in (roughly) the same amount of clusters.  The second option honours the variations in 
density that may be present in the data. In the demo application the first method was implemented.

38



Figure 23: Not all tiles are fully covered in data, while the data in each tile was divided in 100 
clusters. As a result some tiles (marked in black) have high (local) densities of points, while others 
are evenly distributed. (Background: OpenStreetMap)

Including deformation behaviour
Clustering  is  implemented  in  four  dimensions:  position  (x,  y,  z)  and  the  (estimated)  linear 
(deformation) velocity of the persistent scatterer (v). Aim is to not only cluster scatterers that are 
close together (eg. a house) but include deformation behaviour (eg. subsiding garage, attached to 
the house) in the clustering process.

Unfortunately the four dimensions (x, y, z, v) are scaled differently. While the positions (x, y, z) of 
persistent scatterers vary by meters (RD coordinates) the deformation velocity is not larger than ± a 
few millimetre per year. As the Euclidean distance (in four dimensions) is used to determine which 
centroid is the closest the (relatively) small difference in deformation velocity is negligible in the 
process.

By scaling the deformation velocity it's contribution to the final clustering (centroid location) can be 
enhanced. In  Figure 24 the effects of scaling can be seen. When no scaling is applied (left) the 
clustering is dominated by the geometry of the scene. If the velocity is scaled by 5000 (an empiric 
number) the points are grouped by a combination of their deformation velocity and their geometric 
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proximity. An extreme case is shown on the right, by scaling with one million the clustering is 
governed by the deformation behaviour, connecting points of similar velocity regardless of their 
distance.

When used for a mapping application it is desirable to find a compromise between the first two 
options. Geometric integrity is important to show the features in their appropriate place (rather than 
a meaningless average position) while the deformation behaviour should not vanish in the average 
of a geometric group.

Based on this clustering regional trends can be estimated,  while retaining (some level of) local 
behaviour. An example is shown in  Figure 25 in 3D. This will guide users in the vast amount of 
information available in the 3D display.
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Figure 24: Clusters of data, with increased  scaling of the velocity component. Input points are 
shwon as circles, centroids as pyramids.



Figure 25: Clustering of 1 million persistent scatterers in 1500 clusters. Size of the cluster related 
to the points in the cluster, color indicates (average) deformation speed of the cluster. (Vertical 
scaling factor: 5000.)
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6. Results
In  this  chapter  the  main  result,  the  viewer,  will  be  shown  and  its  functions  discussed.  The 
effectiveness of the combinations made will be assessed. The other parts of this chapter will focus 
on practical aspects of the conversion process and storage of the data. A word on the scalability of 
this process will conclude the chapter.

6.A. The viewer, demo application
The viewer was designed with a broad audience in mind. Accessible to the greater public and built 
such that it can be built and included in publications by researchers. At the time of writing the demo 
application was available at: http://dev.fwrite.org/radar/53.

Accessibility of the viewer is guaranteed by a broad support for (modern) browsers. Furthermore 
the (native) PoTree controls were intuitive to all users the application was demonstrated to. Building 
a viewer is not (yet) point an click. But recipe in Appendix A should be doable for all researchers 
familiar with the commandline interface and some basic programming (or scripting).

As much of the original PoTree installation was retained to ease the creation process, updates and 
future extensions. By using the original PoTreeConverter structure, static files are used for data 
storage. With static files no complex webserver is necessary to transfer the files to the client. This 
allows for adding combinations to publications, where the application should be available years 
later.  Either by attaching it to the publication ('zip-file') or by storing the application in a low-
maintenance object storage (see 6.E).

In this chapter the features of the demo application are discussed. The main viewport (Figure 26) 
can be  divided  in  three  parts:  the  (3D)  viewport,  settings  and  map.  Each  will  be  discussed 
separately.

53 Redirecting to https://potree.o.auroraobjects.eu/Groot/Map_vtiles_Groot.html.
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Figure 26: Demo application viewer canvas. The settings menu is on the left, a map view of the 
scatterers at the bottom. In the map (3D) viewport the colourbar for the linear deformation speed 
can be seen. (Faculty of EEMCS, Delft University of Technology)

3D viewport

The 3D viewport is controlled using the mouse. A '3 button' mouse, also known as a mouse with a 
scrollwheel, is recommended for the best viewing experience. The controls are defined as follows: 
double (right) click to set a target position; left click and drag to rotate around this target position; 
right click and drag to move around. The scrollwheel is used to zoom.

Ten different point clouds are included in the demo application: AHN1; AHN2 and AHN3 (RGB 
and intensity) as airborne LiDAR point clouds. From the terrestrial laser scanner Mekelpark Tram, 
Mekelpark Gras, Mekelpark DTM and Mekelpark Trees are included. From the mobile scanner 
(Faculty of Architecture and surroundings) a recording from 2013 and one from 2016 are included.

Ellipsoids are dynamically loaded from the same source (tiles) as the map view. A square of 5×5 
tiles (of the highest zoom level) around the target is loaded. These ellipsoids are then shown in the 
3D view (see Figure 17 for a close-up). If the viewer changes target this process is repeated, loading 
new tiles (ellipsoids) and purging ellipsoids no longer in view.

Using the same technique it is possible to show regional behaviour (clusters of scatterers) in places 
where the individual ellipsoids are not currently loaded. An example was shown in Figure 25. This 
functionality is currently not implemented.
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Three buttons can be seen in the left top corner of the viewer: the settings toggle, the map toggle 
and the colourbar.

Map

Shown on the map (Figure 27) are the clusters (zoomed out) or individual scatters (zoomed in). As a 
background OpenStreetMap is shown (see chapter  3.F). The colours match the estimated linear 
deformation rate with the colours corresponding to the colours (and colourbar) shown in the 3D 
view.

The  map  is  in  the  Web-Mercator  projection  (EPSG:3857)  instead  of  the  RD-coordinates 
(EPSG:28992)  of  the point  cloud.  The  projection  difference  is  unnoticeable  in  the  example 
application.

Figure 27: Map, as shown in the viewer. Scatterers are marked with dots and coloured according to  
their deformation velocity.

The map can be moved independent from the 3D view. As soon as the cursor is on the map the RD-
coordinates at the cursor are shown in the top right corner. Double clicking on the map will focus 
(camera target) the 3D view at this point and move the camera close to the point (camera position).

The map 'window' can be moved by dragging it (click and drag on the top grey bar) and enlarged on 
the bottom and right side (click and drag).

Settings sidebar

Many  of  those  features  are  standard  PoTree  features.  The  InSAR  scaling  features  and  the 
documentation on the sources were added to the sidebar. In this section all functions of the sidebar 
will be discussed.
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Appearance of the point cloud
• Point budget (default: 1 000 000)

How  many  points  will  be  in  memory 
(maximum), also known as high-water mark. 
Cells of the  Octree will be loaded until this 
maximum is reached.

• Field of view (default: 60)
Camera setting, determining the field of view 
of the virtual camera. Lower values will give 
a  telescopic  (binocular)  effect.  Extreme 
values may distort the image at the edges as 
the 3D world is projected on a flat screen.

• Eye-Dome-Lighting  (default  set  during 
conversion)
“Is a non-photorealistic, image-based shading 
technique  designed  to  improve  depth 
perception  in  scientific  visualization 
images.”54 Shading is added to focus users on 
points  close  by  (the  virtual  camera)  and 
accentuate  edges55.  As  a  side  effect  the 
shading added allows for the identification of 
individual points.

• Background (default set during conversion)
Backgroundcolour  behind  the  point  cloud. 
Skybox  (a  cloud  like  pattern)  and  gradient 
will allow for the distinction between up and 
down.

Appearance InSAR
• Sigma (default: σ1)

Scaling of the radar error ellipsoids, with 1, 2 
or 3 σ (standard deviation).

54 “Eye-Dome Lighting: a non-photorealistic shading technique”, C. Boucheny & A. Ribes, Kitware Blog, April 2011, 
https://blog.kitware.com/eye-dome-lighting-a-non-photorealistic-shading-technique/. Retrieved 2017-11-06.

55 “A neighbour pixel will reduce the lighting at p if its depth is lower (i.e. closer to the viewer) than the one of p. This 
procedure defines a shading amount that depends solely on the depth values of the close neighbours.” Thus more 
shading will be applied to points adjacent to points closer to the camera. Making those points 'darker' will increase 
contrast between points.
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Tools
Default measurement tools available in PoTree.
• Tools available

• : Angles in a triangle;

• : Point information (height, coordinates, 
RGB);

• : Distance between two or more points;

• :  Height  difference  (between  two 
points);

• : Surface area;

• :  Volume,  show  a  cube  of  specified 
dimensions in the point cloud;

• : Profile;

• :  Volume,  mark  points  in  a  specified 
volume in the point cloud.

• Navigation
• Various  navigation/control  modes,  and 

pre-defined camera angles  (top view and 
side view).

• Speed  determines  the  sensibility  of  the 
viewer for cursor movement.

Measurements
Populated  after  using  one  of  the  measurement 
tools.  Shown  as  an  example  is  an  area 
mesurement. Results can be exported as JSON 
or DXF file.

Annotations
List of annotations added to the viewer. Shown 
both in 3D (as label) and as grey dot on the map.

When a target  symbol ( )  is  present,  camera 
settings  are  linked  to  the  annotation.  Clicking 
the annotation will then result in 'flying to' the 
object annotated.
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Scene
• Camera position & camera target

Position  and  rotation  center  (target)  of  the 
virtual  camera.  This  does  not  include  the 
direction the camera is pointing in (yaw and 
pitch of the camera).
The  length  unit  set  is  used  by  the 
measurement tools for the correct labeling of 
distances and areas. No conversion is done, 
this  has  to  be  set  to  the  length  unit  of  the 
unerlying coordinate system.

• Point clouds
List of point clouds included in this viewer. 
They  may  be  enabled/disabled  using  the 
thickboxes.
Each pointcloud has detailed settings that can 
be  accessed by clicking on its  name or  the 
cloud icon.
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Scene, point cloud settings
Settings can be set per point cloud.
• Point  size  (default  depends  on  point  cloud, 

0.5 – 1.0)
Determines the size of each individual point 
in  view.  Taken  to  high  (large)  points  will 
overlap,  taken  to  low  (small)  the  cohesion 
between points (eg. points on the same wall) 
is no longer apparent.

• Point sizing (default: adaptive)
Adaptive  scaling  makes  points  close  to  the 
viewer  smaller  compared  to  points  further 
away. This prevents points in close proximity 
to  the  virtual  camera  from  'saturating'  the 
view.

• Shape (default: square)
Circular  points  are  more  computational 
intensive.  The  paraboloid  shape  will  'melt' 
adjacent points to a 3D surface/volume.

• Attribute (default depends on point cloud)
Select  the attribute  to  be  shown,  eg.  RGB, 
elevation, level of detail, etc..

• RGB
Some colouring settings for the RGB viewer.

Classification filter
When ASPRS classification data16 is present in 
the point clouds and this information is retained 
during  conversion  filters  can  be  applied  here. 
When no classification was provided all data is 
marked as 'never classified'.
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About
Two menu items with information on the sources 
and  the  project  were  added.  The  tab  'About 
PoTree' contains information on PoTree and the 
modules it consists of.

6.B. Effective combinations
To find the dominant scatterer it is necessary to have a high enough level detail in the point cloud at 
the area of interest. Given the airborne nature of AHN3 this method is less suitable for scatterers on 
building facades, as limited information will be available on their geometry. This is shown in Figure
28, in this figure window frames and other scattering features of the facade are invisible. While in 
Figure 29, recorded using a terrestrial laser scanner those features are well defined. See Figure 9/10 
in chapter 3.B for a similar comparison between point coverage of various data products.

An effective combination of these sources is a combination where the high density properties of the 
point  cloud are  exploited  to  the  fullest.  Thus  giving  centimetre/decimetre  level  of  detail  about 
potential scatterers around the error ellipsoid.

The poor (compared to InSAR) accuracy of the AHN data (horizontal 50 cm, vertical 10 cm, both 
1σ, see chapter 3.A) may become troublesome when matching both data sources automatically.

Figure 28: Error ellipsoids on the facade of the 
faculty of EEMCS (EWI) overlayed on AHN3.

Figure 29: Same ellipsoids and viewing angle as  
in Figure 28, but overlayed on the TLS cloud 
“Mekelpark Trees”.

6.C. Point density settings
During Octree creation the Octree spacing can be set, setting how far points should be apart to be 
included in the highest level Octree cell. Higher density settings will create fewer Octree cells, at 
the cost of including more points per cell.
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By  default  one  million  =concurrent  points  are  shown  in  PoTree,  allowing  for  acceptable 
performance on most clients. This high-water mark can be adjusted on the client's side.

Octree cells close to the camera position will  be loaded in higher resolutions until  the set high 
watermark is reached. This may include cells that are only partially visible in the current viewport. 
With increasing density fewer Octree cells can be loaded before the high watermark is reached.

As a result fewer cells are shown in high resolution. This may result in part of the object of interest 
not being shown in the highest possible resolution. Possible scatterers may be invisible because of 
this.

At the same time a lower density will require more (small) files to be stored and more requests 
(from the client) are necessary to load the point cloud. This may result in increased cost at the side 
of the provider. This will be further discussed in 6.E (Object storage).

As an experiment AHN3 tile 30DZ2 was processed using PoTreeConverter using different density 

settings (d).  Shown is the Level of Detail visible in the viewer (high watermark at one million 
points). Red indicates a high level of detail, orange to green a lower level of detail shown. As an 
example the facade of the Haga Hospital (Els Borst-Eilersplein, The Hague) was used.

d = 200

115536 files
12 GB
Biggest cell: 1076 kB

d = 300

88606 files
12 GB
Biggest cell: 2264 kB

d = 400

73275 files
12 GB
Biggest cell: 3960 kB
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As a compromise a density of 300 was used, this results in 24% fewer files compared to the default 
density of 200. Reducing the costs for the provider of the data. The level of detail at short range is 
acceptable for the application, the whole facade is loaded in the highest available detail.

6.D. Meshes
Meshes could provide an alternative to point clouds, their properties as closed surface could allow 
analysis is lower density  point clouds. As this was not the focus of this work further research is 
definitely needed before any conclusions can be drawn. It is possible to load meshes in Three.js and 
add them to the PoTree viewer56.

In Figure 30 to Figure 35 the results of mesh creation with standard CloudCompare tools is shown57. 
In Figure 30 - 32 only the points from AHN3 are used. In Figure 33 - 35 AHN3 is combined with 
the point clouds Mekelpark DTM and Mekelpark Gras.

56 PoTree examples including various meshes, read from the PLY format, 
http://potree.org/demo/potree_1.5/examples/meshes.html. Retrieved 2017-10-30.
A OBJ format loader is included in Three.js, http://potree.org/demo/potree_1.5/examples/meshes.html. Retrieved 
2017-10-30.

57 “Poisson Surface Reconstruction”, CloudCompare Wiki, http://www.cloudcompare.org/doc/wiki/index.php?
title=Poisson_Surface_Reconstruction_(plugin). Retrieved 2017-10-30.
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Figure 30: Coloured point cloud from AHN3. Figure 31: Mesh calculated by 'draping' a cloth 
over the scene. Note the trees are closed up to 
ground level.

Figure 32: Mesh created using Poisson Surface 
Reconstruction57. Note that in areas of low 
surface density voids are created.
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Figure 33: Similar to Figure 9 point clouds from 
Terrestial Laser Scanners were added to 
compenstate for the lower point density on the 
facades.

Figure 34: CEG (CiTG) reconstructed using 
Poisson Surface Reconstruction.

Figure 35: At the faculty of EEMCS (EWI) the 
result of Poisson Surface Reconstruction57 is not  
necessarely better than with only AHN3 as 
source (compare to Figure 32).

Before those meshes will be web-ready their (file)size has to be reduced significantly or an efficient 
transport method has to be found. The meshes shown are around 200 MB each. An alternative could 
be adding the ellipsoids to Google Earth as models. This will allow overlaying the error ellipsoids 
on the Google mesh.
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6.E. Object storage
Given the intended write once, read many approach, object storage could be an ideal candidate to 
store  and serve  the  point  cloud  data  to  the  viewers.  Object  storage  solutions,  Amazon  S3  for 
example, allow for storing an unlimited number of files ('objects') to be stored and served to users  
on a pay as you go basis, without the maintenance responsibilities of a webserver.

Payment is based on objects stored (per gigabyte) and transactions (uploading or retrieving files). 
Various storage types with different properties exist. Those properties form the balance between 
transaction (retrieval)  and (monthly) storage costs. The S3 Infrequent Access (S3 - IA) product 
allows for lower storage costs at the expense of higher transaction costs. Ideal for publications with 
infrequent visitors, but there is a catch.

The Octree consists of many (small) files. With Amazon S3 Infrequent Access the minimum size of 
an object is 128 KiB, any smaller object will be billed as 128 KiB of storage58. Given the Groot 
Delft dataset (described in 3.A) this results in the file counts as shown in Table 2.

Size on disk

Files

Billed size on S3 - IA

bytes GiB bytes GiB

AHN1 1142258294 1.06 12512 1950132981 1.82

AHN2 62590843891 58.29 946755 142120292416 132.36

AHN3 77164057944 71.86 1058891 174244620482 162.28

AHN3 (RGB) 87319375296 81.32 1064286 183190908124 170.61

Table 2: "Groot Delft" after conversion by PoTreeConverter, with a density setting of 300.

At the time of writing storage of the AHN3 (RGB) cloud on Amazon S3 (Ireland)58 would cost 
(without taxes): $ 5.32 to upload the files (transaction fees); and $ 1.87 monthly for storage. With 
S3 Infrequent Access those numbers would be: $ 10.64 to upload the files and $ 2.13 in monthly 
storage. Doubling the initial costs and a 14% increase in monthly fees.

This prices do not include retrieval of the data by visitors of the application. Costs incurred by users 
can not be controlled. For S3 they are $ 0.004 per 10 000 requests, $ 0.090 per GB data. Or $ 0.01 
per 10 000 requests excluding a $ 0.01 per GB 'data retrieval fee' and bandwidth for S3 Infrequent 
Access storage. Although very dependent on visitor behaviour, a minute of scrolling through Delft 
results in 304 requests and 97 MB of data transferred. With frequent visitors this may incur high 
costs for data transmission.

6.F. Scalability of point cloud conversion
Processing was done on a Intel i5 with 8 GB of RAM and two SSD's for storage. For two AHN3 
tiles processing takes around 15 minutes. Processing of the nine tiles of the “Groot Delft” dataset, 
consisting  of  5  billion points  takes  more  than 2½ hours.   Processing  was benchmarked for  an 
increasing point load. Iteratively one extra of the following AHN3 tiles (see Figure 6) was added to 

the  processing  queue:  30DZ2,  30GZ1,  30GZ2,  37BN2,  37EN1,  37EN2,  37BZ2,  37EZ1, 

58 “Amazon S3 Pricing”, Amazon, requested 2017-10-17. (https://aws.amazon.com/s3/pricing)
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37EZ2.  First  only  30DZ2 was  processed,  then  30DZ2 together  with  30GZ1 and  so  on.  A 

conversion of 24 tiles59 was done to test the behaviour for larger sets of tiles. In Figure 36 the timing 
results are shown both as function of tiles and point count. A linear trend is plotted on top, a clear 
linear trend can be seen in the data.

The Netherlands is tiled in 1441 tiles. Given that nine tiles took 159 minutes to convert it would 
take 424 hours (18 days) to complete all tiles (assuming no restrictions on disk; I/O, memory, etc.). 
This does not include the time needed for colouring the point cloud with the aerial photograph. 

PoTreeConverter is implemented as a single thread, using only one of the available processors at a 
time. As (in the test  setup) the processing power was the limiting factor,  this limits  the overall 
processing  speed.  Masse-PoTreeConverter  may  provide  a  solution  to  this  problem,  allowing 
PoTreeConverter  to  run in  parallel.  This  tool,  by the Netherlands  eScience Center,  was briefly 
mentioned in chapter 2.A. With this tool the time needed for the conversion of the 597 billion points 
in AHN2 was reduced from 100 days to only 15 days60.

PoTreeConverter  was  likely  updated  after  the  paper  was  published  in  2015,  accelerating  the 
conversion. The authors report a conversion rate of 250 million points per hour on a much more 
advanced system (128 GB RAM, 16 cores)60. Their estimate of 100 days is based on this number. 
The consumer processor used in this study was able to process almost 1.8 billion points per hour – 
about eight times more!

Entwine.io is built specifically for massive  point clouds (“terrabytes in scale”)9 and may perform 
better  under  those  circumstances.  Entwine.io  was  not  benchmarked  in  this  study,  but  publicly 
available suggests slightly better performance: 2.6 billion points per hour on 30 cores and 60 GB 
RAM61. This includes reprojection to the Web-Mercator projetion.

The  conversion  between  input  data  and  the  internal  (Octree)  structure  is  not  the  only  time 
consuming step. Downloading of aerial photographs is a major factor due to their size and their 
relatively low download speed (due to the nature of the WMS requests needed).

This step may be circumvented by using the live colouring features of the Plas.io viewer or a similar 
(experimental) feature in PoTree62. This will allow having many colouring schemas available at the 
same time,  for  example  the  infrared  version  of  the  aerial  photograph  (3.D)  or  those  available 
through the Sentinel Playground63.

In the current implementation scaling of the InSAR processing is not a problem, as pre-processed 
data is delivered. It has to be noted that InSAR processing is an intensive process and will likely 
have similar problems in scaling to national scale.

59 The tiles included formed an outer ring around the “Groot Delft” AHN3 selection. (Tiles: 30HZ1, 37EN1, 37FN1, 
37DN2, 37BZ1, 30DZ1, 37EZ2, 30GN1, 37BZ2, 37GN1, 37EN2, 30GZ1, 30GN2, 37HN1, 30DN2, 30HN1, 
30GZ2, 37EZ1, 30DZ2, 37FZ1, 37BN1, 37GN2, 37BN2)

60 “Taming the beast: free and open-source massive point cloud web visualisation”, O. Martinez-Rubi et al., 
November 2015. (doi: 10.13140/RG.2.1.1731.4326/1)

61 “Performance benchmark or estimate”, comment by C. Manning, 
https://github.com/connormanning/entwine/issues/39#issuecomment-303192453. Retrieved 2017-11-06.

62 “A proof of concept for projecting web maps on point clouds”, 
http://potree.org/demo/experimental/potree_map_projections/examples/viewer_proj.html. Retrieved 2017-10-25.

63 “Sentinel Hub, Sentinel Playground”, http://apps.sentinel-hub.com/sentinel-playground/. Retrieved 2017-10-25.
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Figure 36: Benchmark results of PoTreeConverter under an increasing dataset size. A 
lineair trend is shown on top.
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7. Conclusion
The advance of WebGL technology enabled the creation of powerfull 3D (point cloud) viewers in 
the browser.  Paving the way for an easy to implement  combination of radar  and LiDAR point 
clouds. Although there are no  ready-made solutions available,  point cloud viewers can easily be 
extended to contain radar data. PoTree was used as the basis for a demo application. Undoubtedly 
this is a very powerful tool to visualise, analyse and understand the interaction of a radar signal with 
its surroundings.

To analyse the properties of the radar signal the error ellipsoid of the measurement is shown at the 
estimated position of the scatterer.  Visualising the intersection of the estimation with  the dense 
geometry of the point cloud. This allows for analysis of the (expected) dominant scatterer in the 
image.

To accomplish this goal it is necessary to have a high density (LiDAR) coverage of the object of 
interest. For most facades this can be accomplished by either TLS or MLS surverys, while airborne 
LiDAR will provide for coverage of groud, roofs and roof installations.

Possibilities are mostly limited by the ability of the browser to load (and process) large streams of 
data. Tiling and  Octree structures will allow the client to process only the points or ellipsoids in 
view. Viewers come with solutions for the creation of the requierd Octree structure. Clustering of 
points with equal properties reduces the visual clutter and allows the operator to focus on important  
details elements of the data.

In this study the application was implemented over only a small area (Delft and surroundings). 
Experiments  with  PoTreeConverter  show that  this  technique  may  be  used  at  larger  scale  with 
reasonable preparation times. A solution like Massive-PoTreeConverter is defenitly not necessary at 
city scale projects.

Research questions
As the first three research questions provide a powerfull summary of the work at hand, the results 
per question will be briefly discussed.

1. What software and applications are already available?

No ready-made solution for the combination of point clouds with radar information exists as 
of yet. There are two major point cloud tools available: PoTree and plas.io. Both come with 
processing software to convert data from various input formats to a structure readable by 
either the client or a server that transfers data to a client.

For  the  preparation  of  (very)  large  point  clouds  the  Netherlands  eScience  Center  has 
developed  Massive-PoTreeConverter,  a  parallel  implementation  of  the  traditional 
PoTreeConverter.

2. What information is required to position SAR data?
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1. How are SAR signals and their uncertainties represented?

SAR signals are presented by an error estimate (standard deviation) in range, cross-range 
and azimuth direction. Based on the (known) satellite viewing geometry and estimates of 
the scatterer position error ellipsoids may be placed in a 3D space.

2. Which coordinate systems and (file) formats are involved?

Horizontal coordinates are provided in RD coordinates. Vertical coordinates are in an 
unknown height system.

As file formats ASPRS LAS (point clouds), GeoTiff (aerial photographs) and  ASCII 
(InSAR) were dominant.  As output formats GeoJSON (InSAR) and a custom binary 
format (PoTree) were used.

3. Which combination of data is effective?

A combination between  point clouds from terrestrial (or mobile) laserscanners for facades 
and an airborne LiDAR survey for the roofs and bigger picture.

1. How is effectiveness assessed?

The combination of data is effective if the properties of the (likely) dominant scatterer 
can be found in the point cloud. This requires high density point clouds of the region of 
interest.  The resolution of AHN may not be high enough in some areas, such as on 
facades.

2. How does this combination help in finding the (dominant) scatterer?

In its current implementation this combination will help a skilled operator estimate the 
dominant  scatterer.  Further  implementations  of  this  combination  may  automatically 
estimate the dominant scatterer based on likelihood as function of the error ellipsoid.

7.A. Recommendations
Geometric/Geological tools

By default PoTree is equiped with angle, distance, height, surface, volume and profile measurement 
tools.  There is  no tool for estimating the orientation of a plane (through points)  relative to the 
coordinate axes. This would be a valuable extension for geologic use: estimating strike and dip of 
the geological features present. (Such application exist for the desktop environment, eg. LIME64.)

Colourisation

PDAL may provide an alternative to lascolor,  adding colours from a aerial  photograph without 
loosing intensity or other information65. Another alternative would be implementing a technique to 
'live' overlay images on the point cloud (already possible in plas.io).

64 “LIME: Visualisation and Interpretation Software”, http://virtualoutcrop.com/lime. Retrieved 2017-11-08.
65 “PDAL: filters.colorization”, https://www.pdal.io/stages/filters.colorization.html. Retrieved 2017-11-08.
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Improvement of alignment

Alignment between datasets will be a problem when expended to (automatic) matching between the 
radar measurement and most likely scatterer (from the laser  point cloud). Small alignment errors 
could falsly attribute a scatterer to a mis-aligned point.

Currently  alignment  between the  (laser)  point  clouds is  rather  poor  with the  manually  defined 
correspondences.  Techniques  like Iterative  Closest  Point  (ICP) may improve this  match.  Initial 
attempts at doiing so were unsuccesfull.

Currently the TLS scanning procedure in use at the Department of Geoscience and Remote Sensing 
does not include georeferencing of the scan. Georeferencing while scanning would make manual 
alignment redundant.

Equal representation of laser point

Currently only radar scatterers are represented by their error ellipsoid. To create a level playing field 
the points aquired using a laser system should be represented by their error ellipsoid too. In case of 
AHN, for example, the vertical component will be much larger than the intersection of the ellipsoid 
in the same direction. Horizontally the accuracy of AHN is much (approximately 10×) better.

Meshesand intersection finding

Meshes could be used to represent the objects in the 3D space. These meshes could then be used to 
detect the intersection of the expected position of the radar scatterer with the surface of the object – 
determining the position of the (most likely) dominant scatterer.

Such an approach would use both the redundancy within the point clouds (many points describing 
the same object) as well as solving the problem of the irregular spacing between points (intersection 
with the surface may be closer than the closest point).

If it is only about the viewing experience, the radar data could be integrated into an existing solution 
providing (building) meshes (eg. Google Earth).

Deformation vectors

A deformation vector could be added to the ellipsoid. This will show that deformation is in the 
range direction and not in the vertical direction.
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Appendix A “Quick recipe”
Presented here is a abbreviated version of the manual presented in chapter 4. Focus of this manual is 
to create a simple PoTree web-interface from a point cloud and add radar measurements to it. This 
is not the full flowchart (Figure 18) as discussed in chapter 4. In this recipe a simple case of a single 
point cloud and a small (less than 1500 points) radar file is discussed.

Prerequisites
• A point cloud, AHN3 for example25. Please note that AHN1 and AHN2 do not contain 

intensity information!

• PoTreeConverter4, available binaries (64-bit) for Windows and as sourcecode for Linux.

• Radar data.

Point cloud
Using PoTreeConverter the input LAS-file is converted into an Octree of binary files. For AHN3 

tile 37EN1 the command will be as follows:

PotreeConverter C_37EN1.LAZ \
-o ./web --material INTENSITY -p AHN3 --show-skybox \
--projection "+proj=sterea +lat_0=52.15616055555555 
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 
+ellps=bessel +units=m +no_defs" \
--edl-enabled --intensity-range 3 256 -r 256 \
-a CLASSIFICATION INTENSITY

Some explanation on the parameters:

• C_37EN1.LAZ, the input file or files.

• -o ./web, the output directory.

• --material INTENSITY, the attribute on display. All attributes mentioned under -a 

are  stored,  and  may  be  selected  for  display  in  the  viewer.  Supported  are:  RGB, 

ELEVATION,  INTENSITY,  INTENSITY_GRADIENT,  RETURN_NUMBER,  SOURCE 

and LEVEL_OF_DETAIL. If the material is RGB, INTENSITY or CLASSIFICATION 

it should be mentioned under -a too!

• -p AHN3, the filename in the output directory (-o).

• --show-skybox, show some clouds as background (optional).

• --projection "...",  projection  (EPSG:28992),  ignored  by  PoTreeConvert  but 

used by PoTree for addding a map.

• --edl-enabled, enable “Eye-Dome-Lighting” for a more natural looking point cloud.
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• --intensity-range 3 256 -r 256, although a full intensity range up to 65536 

is available, with AHN3 most points have an intensity value between 3 and 256. Without 
those limits the point cloud will be all black.

• -a CLASSIFICATION INTENSITY, attributes to include in the output.  Supported 

are: RGB, INTENSITY and CLASSIFICATION.

After  running  PoTreeConverter  there  should  be  a  file  web/AHN3.html.  When  opened  in  a 

browser (even locally) this should give a working PoTree installation.

Radar ellipsoids
Next step is adding the radar (error) ellipsoids. Independent of the source of the data JSON is the 
prefered format to feed the data to the viewer. In this recipe an extra simplified format is used. It 
may be extended at will.

As of Matlab 2016b jsonencode() is available66. Other languages will have similar functions. 

The input does not matter as long as the output is of the same structure.

In this  example the structure is  a list  of series of  x,  y,  z values (as shown below) in the same 
coordinate  system as  the  point  cloud.  Whitespace  is  unimportant.  The file  should  be  saved  as 

web/radar.json.

[{"x":85443.4,"y":446144.6,"z":-1.714},
{"x":85452.0,"y":446150.5,"z":-1.346},
{"x":85450.1,"y":446138.7,"z":-0.73},
{"x":85437.0,"y":446151.9,"z":-0.7},
{"x":85440.7,"y":446157.1,"z":-0.158},
{"x":85434.1,"y":446142.3,"z":-0.569},
{"x":85453.7,"y":446133.0,"z":-1.341},
{"x":85458.1,"y":446135.6,"z":-1.543},
{"x":85433.7,"y":446159.2,"z":-1.077},
{"x":85435.6,"y":446161.7,"z":-0.8}]

To add the ellipsoids, add the following lines to web/AHN3.html, before </script> at around 

line 72. The current parameters (scaling, rotation) are based on the TerraSAR-X estimates (3.E). See 
the comments for some guidance.

// Read the file
$.getJSON('./radar.json', function(data) {

    // Create a spehere with radius 1
    let sph = new THREE.SphereGeometry(1, 12, 10);

    // Create a material

    let sphm = new THREE.MeshNormalMaterial();

66 “jsonencode”, MathWorks/MATLAB documentation, https://nl.mathworks.com/help/matlab/ref/jsonencode.html. 
Retrieved 2017-10-26.
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    // Create a rotation matrix
    var eul = new THREE.Euler(0, -1.150172, -1.605703);

    // Loop over all elements
    $.each(data, function(key, val) {

        // Create an element out of the sphere and the material
        let s = new THREE.Mesh(sph, sphm);

        // Scale the ellipsoid
        s.scale.set(0.075, 0.025, 5.00);

        // Rotate the ellipsoid
        s.rotation.copy(eul);

        // Position the ellipsoid
        s.position.set(val.x, val.y, val.z);

        // Calculate the transformation matrix …
        s.updateMatrix();
        s.matrixAutoUpdate = false; // ... only once, to improve 
performence

        // Add to the viewer (scene)
        viewer.scene.scene.add(s);

    });
});

You should now see ellipsoids in your 3D world!
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Appendix B TLS Alignment
In this appendix the alignment between the local TLS coordinate system and the national coordinate 
system (RD-coordinates, matched on the basis of AHN) is given. Per  point cloud the groups of 
matching points and their coordinates are given, together with the Root Mean Square Error (RMSE) 
of the resulting fit (based on rotation and translation only).

Mekelpark Tram
RMSE: 0.36 m

AHN TLS

LocationN E U N E U

85512.500 445878.035 16.263 21.743 36.721 15.248 EWI

85558.945 445966.059 9.439 116.369 7.045 7.191 CiTG

85734.539 445939.430 11.717 120.813 -170.736 10.682 Bld. 36

85533.266 445878.286 -0.631 25.826 16.872 -1.599 Buslane

Mekelpark DTM
RMSE: 0.27 m

AHN TLS

LocationN E U N E U

85558.945 445966.059 9.439 -5.443 36.236 9.647 CiTG

85545.148 445999.124 9.441 -31.408 11.659 9.721 CiTG

85497.743 446108.008 9.346 -116.300 -71.393 9.365 CiTG

85536.222 445955.041 -0.413 12.680 18.749 -0.201 Buslane

85403.344 446053.721 81.187 -32.728 -140.890 81.274 EWI

Mekelpark Trees
RMSE: 0.24 m

AHN TLS

LocationN E U N E U

85558.945 445966.059 9.439 43.726 -48.558 8.651 CiTG

85530.845 446028.172 9.338 8.007 9.426 8.587 CiTG

85446.184 446029.268 18.844 -75.813 -0.184 17.972 EWI

85469.303 445972.804 18.85 -45.508 -53.111 18.002 EWI
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Mekelpark Gras
RMSE: 0.34 m

AHN TLS

LocationN E U N E U

85446.184 446029.268 18.844 -51.588 -32.333 18.308 EWI

85469.303 445972.804 18.85 -50.884 -93.162 18.262 EWI

85497.743 446108.008 9.346 25.221 22.014 8.937 CiTG

85403.344 446053.721 81.187 -82.300 7.147 80.516 EWI
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Appendix C Scripts
Some of the Python (3) scripts used during the creation of demo application are listed here. Their  
programming style  should not  be  an example and they should be considered a  more elaborate 
version of pseudo-code.

Alignment of two point clouds
In this example implementation the coordinates are implemented as a hard coded matrix. The first 
three columns contain the AHN coordinates (EPSG:7415), the following three columns contain the 
coordinates in the local coordinate system of the TLS. The corresponding points will have to be 
found manually first, for example in CloudCompare.

The script will output a CloudCompare command that will project the input point cloud with the 
transformation found, apply the intensity scaling necessary for PTX files and store the results as 
LAZ-files.

import pandas as _pd;
_np = _pd.np;
from shlex import quote as _quote;
from os.path import join as _path_join;

ROOT = '[directory with TLS point cloud data]';

# AHN_X, AHN_Y, AHN_Z, S_X, S_Y, S_Z
Coords = {

'Mekelpark Tram/Tram_HighestRes_Colour.ptx': _np.matrix(
[[85512.500, 445878.035, 16.263,  21.743, 36.721, 

15.248], # EWI Laagbouw, south-east
[etc.]

]),
[repeat for other point clouds]

};

for key, coord in Coords.items():

# Extract coordinates
coord_AHN = coord[:, :3];
coord_TLS = coord[:, -3:];

# Calculate the transformation based on SVD (Besl method)43

centroid_AHN = coord_AHN.mean(axis=0);
centroid_TLS = coord_TLS.mean(axis=0);

# Calculate rotation
H = (coord_TLS -centroid_TLS).T *(coord_AHN -centroid_AHN);

U, S, Vt = _np.linalg.svd(H);
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R = Vt.T *U.T;

if _np.linalg.det(R) < 0:
R[:, 2] *= -1;
R = Vt.T *U.T;

# Calculate translation
t = -R *centroid_TLS.T +centroid_AHN.T;

# Add extra row (CloudCompare)
TransSVD = _np.vstack([_np.column_stack([R, t]),

  [0, 0, 0, 1]]);

# Calculate residuals
ResSVD = _np.dot(_np.column_stack([coord_TLS, 

_np.ones((coord_TLS.shape[0], 1))]), TransSVD[:3, :].T) 
-coord_AHN;

# Calcualte the RMSE
RMSESVD = _np.sqrt(_np.multiply(ResSVD, 

ResSVD).sum()/coord_TLS.shape[0]);

# Save the transformation matrix (SVD) for CloudCompare
with open(_path_join(ROOT, key) + '.trans', 'wb') as 

trans_out:
_np.savetxt(trans_out, TransSVD);

# Create the CloudCompare command
Command = ['CloudCompare',

   '-COMPUTE_NORMALS'];
Command += ['-O {!s}'.format(_quote(_path_join(ROOT, key)))];
Command += ['-AUTO_SAVE OFF',

'-SF_OP 0 mult 65535', # For LAS compatibility
'-APPLY_TRANS {!

s}'.format(_quote(_path_join(ROOT, key) + '.trans')), # 
Transformatie matrix

'-C_EXPORT_FMT BIN', # LAS
'-SAVE_CLOUDS ALL_AT_ONCE'];

# Print command
print(key, 'RMSE', RMSESVD);
print(' '.join(Command));
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Clustering
This script serves as an example on how to apply K-Means clustering in Python3 using the scikit-
learn package67, The output will be a single JSON file, including per cluster colours related to the 
deformation velocity.

import geopandas as _gpd;
_pd = _gpd.pd;
_np = _pd.np;

from shapely.geometry import Point as _point;
from sklearn.cluster import MiniBatchKMeans as _k_means;

import matplotlib as _mpl;
from matplotlib import pyplot as _plt;
from matplotlib import colors as _plt_colors;

# Scaling of the trend
trend_scale = 5000;

# Number of clusters
n_clust = 1500;

Points = _pd.read_csv('[input file]');

k_mtx = Points[['pnt_rdx', 'pnt_rdy', 'pnt_height', 
'pnt_linear']].as_matrix();
k_mtx[:, 3] *= trend_scale;

k_means = _k_means(n_clust);

Pnts_gpd = _gpd.GeoDataFrame({'trend': 
k_means.cluster_centers_[:, 3]/trend_scale, 'count': 
k_means.counts_},

geometry=list(map(lambda r: _point(*r), 
k_means.cluster_centers_[:, :3])),

crs={'init': 'epsg:28992'});

# Calculate cluster scale/size
Pnts_gpd['scale'] = 3+22*((Pnts_gpd['count'] 
-Pnts_gpd['count'].min())/Pnts_gpd['count'].ptp());

# Generate a color scale
c_min = Points.pnt_linear.quantile(0.05);
c_max = Points.pnt_linear.quantile(0.95);
c_lim = max(abs(c_min), abs(c_max));

67 “scikit-learn: machine learning in Python”, http://scikit-learn.org/stable/. Retrieved 2017-11-08.
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cmap = _plt.cm.RdBu_r;
norm = _plt_colors.Normalize(vmin=-c_lim,
                             vmax=+c_lim);
sm = _plt.cm.ScalarMappable(cmap=cmap, norm=norm);

Pnts_gpd['color'] = ['#{:02X}{:02X}{:02X}'.format(r[0], r[1], 
r[2]).lower() for r in sm.to_rgba(Pnts_gpd.trend, bytes=True)];

with open('[outputl.json]', 'wt') as json_out:
json_out.write(Pnts_gpd.to_json());

# Create an image of the colorbar
fig = _plt.figure(figsize=(2, 4)); # Horizontal: (4, 1)

# Create an axis for the colorbar, and the colorbar itself.
ax = fig.add_axes([0.05, 0.05, 0.3, 0.90]);
cb = _mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm, 
extend='both');

# Add a white stroke around the letters, for better readability.
[l.set_path_effects([_plt_pe.withStroke(linewidth=3, 
foreground="w")]) for l in cb.ax.yaxis.get_ticklabels()];
cb.ax.tick_params(labelsize=14);

# Add a label (again with white stroke).
#cb.set_label(r'Deformation [$\frac{m}{yr}$]');
cb.set_label(r'Deformation [m/yr]', size=14, style='oblique', 
path_effects=[_plt_pe.withStroke(linewidth=3, foreground="w")]);

# Save everything.
_plt.savefig('[output.svg]', transparent=True);
_plt.close();
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