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A Multi-metric Modular Framework for Human-like Gait Analysis
Based on a Recorded Set of Variable Gait Patterns

Stephan Kapteijn1, Wansoo Kim2, Laura Marchal-Crespo1,3, and Luka Peternel1∗

Abstract— Walking is an essential part of almost all activities
of daily living. We use different gait patterns in different
situations, e.g., moving around the house, performing various
sports, or when compensating for an injury. However, how
humans perform this gait tailoring remains a partially unknown
process. To this end, the influence of various performance
metrics on the optimality and diversity of gait patterns can
provide us with more insight. To analyse gait in terms of pattern
diversity and performance metrics related to physical aspects,
such as joint torque, fatigue, and manipulability, we propose
a multi-metric gait analysis framework that simultaneously
accounts for these parameters. We used a recorded set of
versatile gait patterns that are already dynamically stable and
physiologically feasible. To that end, 45 gait variations–varying
in stride length, step height, and walking speed–were recorded
in a motion capture experiment. Results of analysis using the
recorded dataset are presented for a baseline case (with all
optimisation weights set to one), which serves as the first step
for future research, in particular giving insights into specific
aspects of the gait, e.g., joint loading, long-term performance,
and capacity to sustain ground reaction forces.

I. INTRODUCTION

Bipedal walking is one of the primary forms of human
transportation and is an essential part of many activities
of daily living. Due to our exceptional motor learning
capabilities, humans can customise their gait to achieve
different goals, i.e., walk silently, avoid slipping on a wet
floor, perform different sports, or compensate for an injury.
However, how humans perform this gait tailoring remains
a partially unknown process. This is of special interest
in humanoid robotics and rehabilitation robotics, since hu-
manoid robots [1]–[3] and assistive exoskeletons [4]–[6]
try to emulate the human body structure and bipedal gait
patterns.

To ensure that a certain gait pattern is optimal for the
activity that we plan to perform, some kind of gait optimi-
sation technique is required. For example, if a human or a
humanoid robot needs to walk a large distance, we might
want to minimise energy consumption. Alternatively, if a
human or a robot suffers a joint injury/damage, we might
want to minimise the loads on the injured/damaged joint
during walking. Therefore, we need to carefully select several
metrics to perform a specific optimisation process to achieve
a set goal.
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2Department of Robotics, Hanyang University, Seoul, Korea.
3ARTORG Center for Biomedical Engineering Research, University of

Bern, Switzerland.
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Some human-specific metrics for optimisation are of qual-
itative nature. For example, the method in [7] proposed a
personalised gait optimisation framework based on the user’s
preference (in terms of comfort) to determine the optimal gait
pattern. The study in [8] investigated the users’ repeatability
in identifying their preferred robotic assistance from a bi-
lateral ankle exoskeleton and concluded that individuals are
able to reliably identify their preferences. While qualitative
metrics are important for gait customisation, they do not
directly and quantitatively account for physical aspects such
as joint torques, manipulability, and fatigue. Furthermore,
they are obviously not applicable to humanoid robots.

Monitoring the temporal joint loads during walking is
crucial to prevent musculoskeletal injuries in humans and/or
prevent exceeding the maximum power capacity of robot
actuators. For example, joint torques can be minimised
during the gait to this effect [9], [10]. Yet, joint torques and
velocities can also be optimised indirectly by analysing leg
manipulability. The manipulability of an articulated mechani-
cal system (i.e., human or robot) measures its ability to trans-
fer joint movements/torques into endpoint movements/forces
as a function of the joint configuration [11]. Thus, it gives
an indication of how well an endpoint (e.g., foot) of the
mechanical system can produce force or velocity in certain
directions in the Cartesian space. Therefore, this metric helps
determine the optimal leg configuration to support external
forces, e.g., ground reaction forces (GRFs), during walking.
The method in [12] used manipulability to improve the
energy efficiency of human walking with an exoskeleton.
The study in [13] exploited manipulability for the selection
of an appropriate postural strategy to restore stability when
human walking is perturbed.

While joint torque and manipulability examine instanta-
neous physical properties, they do not directly account for
the long-term endurance of the gait. Therefore, fatigue should
also be monitored to ensure that we can maintain a certain
gait for long periods of time. In humans, fatigue can be
indirectly accounted for by optimising energy efficiency [3],
[14] or metabolic cost [10], [15], [16]. A more direct way
to minimise fatigue is to use fatigue models that operate
based on integrated effort over time. These models can be
distinguished by how they estimate the effort, e.g., using
muscle activity [17], limb endpoint force [18], or joint
torque [19]–[21] in humans, and motor temperature [22]
in robots. Nevertheless, fatigue models have been more
commonly employed in upper limbs or whole-body analysis
and control of ergonomics in manufacturing processes.

Gait analysis and optimisation have been performed using
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Fig. 1: Overview of the established framework, containing experiments (green), modelling/computational methods (red) and an optimisation-based analysis
step (blue). The main tools used for computation are OpenSim (dashed yellow box) and MATLAB (dashed purple box).

different metrics in numerous studies; however, most of them
only focused on one single metric. Only a few studies have
combined multiple metrics [10], [16], mostly employing a
biomechanical model to obtain the solution space, rather than
using directly a recorded variation of actual gait patterns
as a solution space. Such an approach, however, makes
personalisation a challenge. Furthermore, while applying
fatigue modelling in the field of ergonomics has already been
investigated [17], [19]–[21], applying fatigue as a metric in
gait analysis and optimisation is still rather unexplored.

To address this literature gap, we created a modular frame-
work for human gait performance analysis, which combines
multiple metrics related to physical aspects: joint torque,
manipulability, and fatigue. Joint torque was selected as a
metric to allow modulation of instantaneous loads exerted
on the joints, which is relevant in preventing the overloading
of the musculoskeletal system. We selected manipulability
because it gives an indication of how well the legs can
produce or sustain motion and forces during different phases
of the gait. Finally, to also account for the long-term walking
endurance, fatigue was included. Although the major aspects
of the gait are covered by these selected metrics, the proposed
framework is general in the sense that, if needed, other
metrics could be included.

II. METHODS

A. The framework

An overview of the proposed framework is shown in
Fig. 1. We employed motion capture experiments, including
camera motion capture and GRFs, to collect variable gait
patterns that served as a set for performance analysis based
on the optimisation of metrics. We then used inverse kinemat-
ics and dynamics of the OpenSim biomechanical model [23]
to transform the motion capture data into joint movements
and torques needed for the calculation of the three key
metrics considered in this study: joint torque, fatigue, and
manipulability. Finally, we performed an analysis of variable
gaits within the collected set via multi-metric optimisation.

While the framework is general in the sense that 3D motion
can be considered, in this study, we limited the analysis to
the sagittal plane and we focused on six joints: hips, knees,
and ankles (i.e., both legs).

B. Motion data acquisition

Since there is a wide variety of analysis goals that can be
specified, a broad dataset with some degree of variation is
preferred over a natural gait. Therefore, rather than studying
the natural gait of several different subjects, we decided to
study a broad set of gait variations created by one subject,
since gait analysis is ideally subject-specific.

One of the reasons for choosing to work with experi-
mentally collected data rather than simulated data is that
experimentally collected data is already subject-specific and
conforms with physiological feasibility and dynamic stability
constraints. This approach is also common in the litera-
ture [24]. As human gait is an extremely complex movement
with many possible optimal solutions, it is a challenge to
create an analysis framework that delivers only feasible and
subject-specific gait patterns in an efficient manner by using
only simulations.

The gait recordings were performed using marker-based
motion capture Qualisys (Sweden), which included 12 Oqus
700 infrared cameras for tracking the optical markers and
two Oqus 210c cameras for recording video footage. The
GRFs were measured using five force plates (KISTLER,
Switzerland), which were laid down consecutively to form
a sensorised walking platform. These data streams were ac-
quired and synchronised by the software application Qualisys
Track Manager. See Fig. 2 for an illustration of the setup.

The data acquisition was approved by the TU Delft Human
Research Ethics Committee. The collected dataset contained
gait patterns varying in stride length, step height, and walking
speed. Each of these parameters could either have a low,
medium or high value and a gait was recorded for each
possible combination of these parameters, resulting in a
total of 27 gait patterns. The naming convention used for
the recorded gaits in the remainder of this paper is based
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Fig. 2: Experiment setup including five force plates, 12 infrared cameras and
two cameras for video footage. 44 optical markers were placed in several
locations on the participant’s body.

on these parameters, i.e., a gait with a low stride length,
high step height, and a medium walking speed is named
LowHighMid. It should be emphasised that only one of the
recorded gaits was natural (MidLowMid). Additionally, some
extra variations were included, i.e., walking with bent knees,
leaning forward, and leaning backwards. This extra part of
the dataset contained 18 gait patterns, thus adding up the
total number of gaits in the dataset to 45.

C. Physical aspects

1) Joint torque: We used OpenSim software [23] to model
the musculoskeletal variables and solve for the dynamics of
the human body based on the motion capture and force plate
recordings. The following equations of motion describe the
simplified dynamics model:

τ =M(q)q̈ +C(q, q̇)q̇ + g(q) + JT (q)Fext, (1)

where τ are the joint torques, q and its derivatives are the
generalised joint positions, velocities, and accelerations, M
is the mass matrix,C is the Coriolis and centrifugal matrix, g
is the vector of gravitational forces, J is the Jacobian matrix
of the leg endpoint, and F ext are the GRFs as recorded by
the force plates.

The joint torque computed in (1) is used as one of the
metrics in the analysis process (Section II-D; Fig. 1). The
joint torque is also an input for the joint fatigue model
(Section II-C.2). The Jacobian matrix J from (1) maps the
GRFs to the body, and is also an important factor in the
manipulability metric (Section II-C.3).

2) Joint fatigue: For the fatigue estimation, we used the
model from [21], which is described as:

dui(t)

dt
=

{
(1− ui(t)) |τi(q,t))|λi

if |τi(t)|≥ τth,i
−ui(t) Rλi

if |τi(t)|< τth,i
, (2)

where ui is the fatigue index for the i-th joint, τi is the
joint torque for the given time t, λi is the parameter that
determines the joint-specific fatigue characteristics, R is the
recovery rate, specifying how fast the joint recovers when it

is resting. Whether the joint is in the resting state or not, is
determined by the torque threshold τth,i.

The recovery rate R was set to a conservative value of
0.5, as was also done in [17] and [21]. The parameter λ was
determined after calibration experiments, similar to [17]. We
used external force sensor measurements to estimate the joint
torque, which was displayed in real-time on a screen. Two
measurements were performed per joint, one for flexion and
one for extension in the sagittal plane, thus 12 measurements
in total. During each of these measurements, the subject
was instructed to produce a reference torque τref and try
to maintain this torque level for as long as possible. The
time Tref was measured up to the point when the subject
could not endure the torque level anymore. Note that this
procedure is subject-dependant. Since the model follows
an exponential charge function that mathematically never
reaches the maximum value of 1, i.e., 100%, the maximum
value of the joint fatigue parameter u was assumed to be
reached after five time constants, thus when u = 0.993.

The fatigue capacity parameter λ was then derived for
each joint (in both flexion and extension) by:

λ = − |τref |·Tref
ln(1− 0.993)

. (3)

The estimated parameters λ slightly differed between the
same joints in the left and right legs. However, bilateral
symmetry was assumed and the same λ value, corresponding
to the weakest joint, was assigned to both sides. The weakest
leg λ was selected to stay on the conservative side. This
resulted in the set of λ parameters listed in Tab. I.

TABLE I: Joint-specific fatigue capacity λ and fatigue induction/recovery
threshold τth parameters.

Hip
flexion

Hip
exten-
sion

Knee
flexion

Knee
exten-
sion

Ankle
dorsi-
flexion

Ankle
plantar-
flexion

λ (Nms) 444 754 282 550 75.8 2.15e+3
τth (Nm) 0.177 -0.234 0.133 -0.184 0.046 -0.295

We defined the torque thresholds τth that determine
whether the joints are increasing or decreasing their fatigue
levels. Since the literature has not yet provided exact thresh-
old values τth specifically for gait, we had to estimate those
values based on experimental experience. During each of the
fatigue calibration experiments, the subject was instructed to
produce maximum torque with a specific joint. We assumed
leg symmetry and for each joint type, the maximum torque of
the weakest leg was assigned to that joint type in both legs.
These maximum torques can be interpreted as an indication
of the general strength of the joints with respect to each other.
Finally, the torque thresholds were scaled to one another
according to the ratio between these maximum torques.

The following assumption based on experimental experi-
ence was then made: after half an hour of regular walking,
an average fatigue index of 20% is expected. It is fair to
acknowledge that this was an ad-hoc value selected for the
first step in this research direction (further discussed in
Section IV). An initial guess was then made for the set
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of torque thresholds based on their relationship calculated
above, and the average fatigue index after 30 minutes was
calculated. Then, depending on this value, the set of torque
thresholds was adjusted. This process was iterated until an
average fatigue level of 20% was reached, resulting in the
set of thresholds listed in Tab. I.

3) Manipulability: We aimed at applying manipulability
analysis on walking, in which several phases can be identified
where the capability to produce motion is more relevant,
and several phases where the propulsion or absorption of
forces are more relevant. In robotics, manipulability can be
visualised as an ellipse or ellipsoid for a 2D case or a 3D
case, respectively. The length of the vector from the centre
of the ellipse/ellipsoid to the surface indicates how well the
limb can produce motion/forces in that specific direction
of Cartesian space. In our 2D case, the principal axes of
the manipulability ellipsoid were obtained by using singular
value decomposition as:

UΣV T = J(q)J(q)T , (4)

where U and V are matrices containing the left and right
singular vectors respectively and Σ is a diagonal matrix
containing the singular values. Since velocity and force
manipulability are orthogonal to each other, the force ma-
nipulability is obtained by the inverse of (4).

The gait cycle can be divided into two main phases: stance
and swing [25]. The stance phase is initiated by initial contact
(IC), where the heel touches the ground (heel strike). The leg
that touches the ground would be referred to as leading leg in
this gait cycle. The stance phase can be further divided into
loading response, mid-stance, terminal stance, and pre-swing.
During the loading response, the impact of the foot on the
ground is absorbed and the body’s weight is transferred onto
the leading leg. The mid-stance and terminal stance phases
form the single-limb support phase, starting and ending
when the non-leading leg leaves the ground (opposite toe-
off (OTO)) and touches the ground again (opposite initial
contact (OIC)), respectively. During those phases, the body
weight is carried solely by the leading leg. The body is then
propelled by the leading leg during pre-swing. Since each
of these first four gait phases revolves around absorbing,
carrying, or generating force, during these phases we put the
focus on optimising force manipulability as seen in Tab. II.
The swing phase can be divided into initial, mid-swing,
and terminal swing. During the swing phase, the limb goes
through three phases: lifting (initial swing), advancing (mid-
swing), and preparing for the next stance phase (terminal
swing). Since these phases focus on the advancement of
the limb, during these phases we focused on optimising
velocity manipulability. The gait phases were identified from
a combination of motion capture and force plate data.

During the loading response, the contact with the ground
of the leading leg is only through the heel, therefore, the
heel was chosen as the endpoint for the force manipulability
calculation during that phase. For mid-stance, when the body
weight is slowly transferred from the heel towards the toe of
the leading leg, the heel was also selected as the endpoint.

TABLE II: Overview of the selected leg endpoint manipulability type for
each gait phase during the gait cycle.

Gait phase Leg endpoint Ellipse type

Stance phase

Loading response Heel Force
Mid-stance Heel Force
Terminal stance Toe Force
Pre-swing Toe Force

Swing phase
Initial swing Toe Velocity
Mid-swing Toe Velocity
Terminal swing Toe Velocity

For all the other phases, the velocity manipulability and
the force manipulability were calculated with the toe as the
endpoint.

D. Multi-metric analysis based on optimisation of metrics

The framework aims to analyse and rank the gaits based on
the optimisation of metrics. The input into the gait ranking
process is the collected set of variable gait patterns G along
with analysis goals in form of weights w on specific metrics,
while the output is composed of ranked gaits according
to the metrics. Ranking can be done recursively through
optimisation as:

argmin
Gk

(Ttotal + Utotal − Stotal +Ototal), (5)

Ttotal =

n∑
i=1

(wt,i · Ti), (6)

Utotal =

n∑
i=1

(wu,i · Ui), (7)

Stotal =

m∑
j=1

(ws,j · Sj), (8)

Ototal =

m∑
j=1

(wo,j ·Oj), (9)

where Gk is the k-th gait pattern in the collected set G, Ti
and Ui are metrics representing the joint torque and joint
fatigue for the i-th joint, respectively, Sj and Oj are metrics
representing the manipulability ellipse shape and manipula-
bility ellipse orientation for gait phase j, respectively, and
wt,i, wu,i, ws,j and wo,j are weights corresponding to these
metrics. The number of joints in the process is n (six: hips,
knees, and ankles), and m is the number of gait phases (seven
according to Tab. II). The ellipse shape S has a minus sign
in the cost function since it has to be maximised, as opposed
to the other metrics that have to be minimised. The metrics
were normalised using the z-score normalisation method.

1) Selected metrics: The joint torque metric T for a
joint i was defined as the mean absolute torque over one
gait cycle:

Ti =
1

D

D∑
t=0

|τi(t)|dt, (10)

where τi is the i-th joint torque at time t obtained from (1),
dt is the sample time, and D is the duration of the gait cycle
in number of samples.
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The joint fatigue metric U for a joint i was defined as
the fatigue level at the end of the gait cycle:

Ui = ui,D (11)

with ui,D representing the i-th joint fatigue index calculated
from (2) after the duration of the gait cycle D.

The manipulability metric S related to the ellipse shape
for gait phase j was defined as:

Sj =
1

Dj

Dj∑
t=0

r(t)dt, with r(t) =

√
µ1(t)

µ2(t)
, (12)

where µ1(t) and µ2(t) are the major and minor singular
values, respectively, at time instant t obtained from (4), and
Dj is the duration of phase j in number of samples.

Finally, the manipulability metric O related to the
ellipse orientation for gait phase j was defined as:

Oj =
1

Dj

Dj∑
t=0

|θ(t)|dt, with θ(t) = tan−1
(
v1,y(t)

v1,x(t)

)
− θref

(13)
where v1,x(t) and v1,y(t) are the x and y components of the
singular vector v1 at time instant t obtained from (4), which
corresponds to the major axis of the velocity/force ellipse.
The θref is the desired reference orientation of the ellipse in
a specific phase. Finally, θ(t) is the deviation angle between
the major axis of the ellipse and the reference angle θref .

For gait phases where the velocity ellipse was selected
for optimisation, we chose θref parallel to the ground and
thus remains constant throughout the phase. In this way,
velocity in the forward direction, i.e., the walking direction,
is rewarded positively in the cost function. For gait phases
where the force ellipse was selected for optimisation, θref
should ideally be aligned with the direction of the GRF,
as done in [12]. In this case, the interaction forces can
be absorbed optimally during the heel strike, and the foot
can most efficiently propel the body off the ground during
the toe-off. However, to simplify the computation and since
visual inspection of the recorded motion data showed that
the GRF could be assumed to point towards (or nearby) the
pelvis, we defined θref to be the angle between the selected
endpoint (see Tab. II) and the pelvis. Since the leg is moving,
the reference angle can change throughout the phase.

2) Optimisation algorithm: Since the main purpose of
the proposed method is to analyse various gaits within the
collected set, we applied a brute-force optimisation algorithm
in order to go through all gaits in the set G and rank
them. In practice, this means that the overall cost from (5)
is computed for each recorded gait. Normally, the major
drawback of this method is the lengthy computation time.
However, as mentioned in Section II-B, the volume of the
search space for the optimisation problem at hand is greatly
reduced, as it is only filled with the variable gaits acquired by
motion capture. Nevertheless, if the gait database eventually
becomes much larger, another more efficient optimisation
method could also be used. However, that would come at
the expense of not going through all possible gaits within
the library, thus limiting the scope of analysis.

III. RESULTS

A. Effect of gait parameters on optimisation metrics

A subset of seven gaits was chosen from the recorded set
G to display the effects of the gait parameters (stride length,
step height, and walking speed) on the metrics (joint torque
T , joint fatigue U , and manipulability ellipse shape S and
orientation O). These gaits were: LowLowMid, MidLowMid,
HighLowMid, MidMidMid, MidHighMid, MidLowLow, and
MidLowHigh. We selected these gaits since this subset
enables us to isolate the effect of altering one of the gait
parameters while keeping the other two gait parameters
constant, like this:
• Stride length: LowLowMid, MidLowMid, HighLowMid
• Step height: MidLowMid, MidMidMid, MidHighMid
• Walking speed: MidLowLow, MidLowMid, Mid-

LowHigh
Note that the natural gait MidLowMid, defined by a medium
stride length, low step height, and medium walking speed, is
present in each row so that the observed results can always
be compared to the natural gait.

Figure 3 shows the joint angles for the hip, knee, and
ankle of the leading leg for one gait cycle, resulting from
the inverse kinematics process in OpenSim. In each column,
the natural gait is depicted (together with two other gaits),
making it possible to compare each analysed gait to the
natural gait. It can be observed, that a higher stride length
results in a larger range of motion (ROM) for the hip, knee
and ankle during the swing phase (toe-off (TO)-initial contact
2 (IC2)) and in a larger ROM for the ankle during the stance
phase (IC-TO). Increasing the step height has the same effect
on the hip and knee joints but an opposite effect on the
ankle during the swing phase. During the stance phase, no
difference in ROM is noticed for any joints. Altering the
walking speed does not seem to have a clear effect on the
joint angle trajectories.

B. Anlysis results

In Fig. 4, the force/velocity ellipses are visualised for
each gait event during the gait cycle of the natural gait
(MidLowMid). Only the analysis of this natural gait is shown
to provide a general impression of the proposed analysis
of the manipulability during normal walking. The ellipse
shape S is quite comparable for most gait events, except
for IC and OTO, where the ellipse is very stretched in
the direction of GRF. Note that the lengths of the major
axis of the manipulability ellipses in Fig. 4 were equalised
for illustration purposes in order to put focus on the shape
comparison (i.e., the ratio between the major and minor axis),
rather than the actual size. In reality, major axes of IC and
OTO are much larger compared to other events, due to the
leg being in singular configurations.

We can see that the force ellipses, drawn for IC, OTO, heel
rise (HR) and OIC, point very closely towards the pelvis,
which is the reference point for the force ellipse orientation
O during stance phase (as explained in Section II-D). For
the velocity ellipses, drawn for TO, feet adjacent (FA), tibia
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Fig. 3: The effect of the stride length (left column), step height (middle column), and walking speed (right column) on the joint angles during walking. To
clarify: in the left column, LowLowMid, MidLowMid, and HighLowMid are depicted, in the middle column, MidLowMid, MidMidMid, and MidHighMid,
and in the right column, MidLowLow, MidLowMid, and MidLowHigh. Relevant gait events are indicated by the red dashed lines. Note that these can
slightly differ per gait, however only the gait events of the natural gait are shown to keep the figure organised.
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Fig. 4: The force ellipse (blue solid line) and velocity ellipse (red dashed line) for the relevant gait events of the natural gait MidLowMid. For easier
illustration and comparison of the shape, the sizes of ellipses are scaled to have equally major axes. In the stance phase, i.e., IC until TO, the force ellipses
are drawn, while in the swing phase, i.e., TO until IC2, the velocity ellipses are drawn. The dominant leg is indicated by green and the supporting leg by
grey. Furthermore, the ellipses drawn for the gait events IC and OTO are centred on the heel, whereas the others are centred on the toe, as explained in
Tab. II.

vertical (TV) and IC2, the reference direction for the ellipse
orientation O is parallel to the ground (as explained in
Section II-D). It can be observed that the velocity ellipse
for FA points closely in this direction. For TO, TV and
IC, the velocity ellipses have a larger deviation from this
reference direction. Thus, in the case of the manipulability
metric, natural gait is more optimal in some phases and less
optimal in other phases.

Table III provides an overview of the total costs of each
metric obtained by weighted sums from (6)-(9) and the
overall cost obtained from (5) for each of the seven selected
gaits. These costs were computed with all weights set to one,
which provides a baseline/reference for gait analysis within
the scope of this paper. These weights can be tuned to meet
specific gait goals by future users of the framework.

IV. DISCUSSION

The results showed that different gait patterns end up with
different total costs for the individual metrics, as well as for
the overall cost (see Tab. III). Since the costs presented in
this table are computed with all the optimisation weights set
to one, these results function as a baseline for tuning the

TABLE III: Total costs per metric, together with the overall cost, given for
the seven gaits treated in this section.

Gait Ttotal Utotal Stotal Ototal Overall cost

MidLowMid -0.418 -0.459 0.18 -0.188 -0.885
MidLowLow -0.215 -0.289 0.624 -0.34 -0.220
MidLowHigh 0.391 -0.280 0.0854 0.106 0.303
MidMidMid -0.393 -0.508 -0.0587 -0.135 -1.09
MidHighMid -0.268 -0.492 -0.28 -0.366 -1.41
LowLowMid -1.16 -1.24 0.182 -0.499 -2.72
HighLowMid -0.0759 -0.316 0.318 0.0263 -0.048

weights of the framework for the analysis of various goal-
specific gaits. Furthermore, it can be used to analyse the
gait patterns, in particular, to gain some insight into which
aspect of the gait is responsible for a good or bad overall
performance in terms of different metrics. For example,
LowLowMid performs best in the baseline case, especially
due to very low torque and fatigue costs, indicating that
the joints are not loaded heavily and that this gait can be
sustained for a long time. As LowLowMid is the gait with
the least extreme leg configurations of the seven selected
gaits (low stride length and low step height), this is to be
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expected. When we look at MidHighMid, we observe a good
performance in terms of manipulability. This indicates that
this gait pattern offers leg configurations that are optimal
for sustaining external loads during the stance phase and for
advancing the limb during the swing phase.

The optimisation weights were intentionally set to one in
this study in order for the results to function as a baseline
analysis goal. However, the purpose of these weights is to
provide a tool for the user to set various arbitrary analysis
goals. Thus, further research into details of how to tune the
weights for specific user requirements is needed.

In the computation of the torque thresholds and λ values
for the fatigue model, bilateral symmetry of the legs was
assumed, equalling both legs to the weakest one. Although
bilateral symmetry might be a decent assumption in healthy
individuals, there is typically a much larger difference in leg
functionality for individuals with a physical leg injury or neu-
rological injury [4]. In such cases, we want to minimise the
risk of worsening the injury, and therefore, the conservative
assumption of basing the fatigue characteristics of both legs
on the capability of the weakest leg still seems like a good
option. However, more research is needed in this direction.

Finally, to determine the torque threshold values, a fatigue
index of 20% was assumed after half an hour of regular walk-
ing. Since no prior research has been performed suggesting a
reasonable estimate of fatigue index after a specified walking
time, an additional study is recommended to better calibrate
the fatigue model.

V. CONCLUSION

The proposed framework was tested on a variety of
recorded human gaits that were analysed with three metrics
related to physical aspects of bipedal gait: joint torque, joint
fatigue and leg manipulability. The method can help the users
identify gaits that are most suitable for optimising these
metrics. While the first step made by this study focused
on humans, the approach can potentially be extended to
humanoid robots, where we want to imitate human gaits [1],
[2] or optimise specific characteristics of the robot’s gait [3].
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