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Abstract

As robots increasingly operate in human environments, their controllers must ensure
safe and reliable behavior under real-time constraints. Although optimization-based
motion planners can enforce hard safety constraints, their computational demands limit
their use on complex robotic platforms. Geometric motion planning offers a real-time
alternative through optimization-free, closed-form control laws with reach–avoid guar-
antees. However, these guarantees rely on assumptions about obstacle representations
that are often violated in realistic settings. When such assumptions fail, the planner’s
dynamical system may preserve invariance of the safe set but lose global attractivity,
jeopardizing goal reachability.
This thesis introduces a runtime verification algorithm, Scenario-Shield, that adapts
the geometric planner’s underlying dynamical system to expand its finite-time region
of attraction. The method periodically samples nearby robot configurations and per-
forms forward simulations to approximate this region. To accelerate this process, the
approach is extended by incorporating statistical uncertainty quantification: conformal
prediction is used to calibrate a fast membership test for candidate states, and the sce-
nario approach provides a principled approximation of an uncountably infinite subset
of the region of attraction.
To maintain computational efficiency, the algorithm is implemented using parallel com-
puting and integrated into a geometric motion planning toolbox with robot operating
system (ROS). The proposed method is validated in simulation on both a holonomic
ground robot and a mobile manipulator, demonstrating improved reliability over base-
line geometric fabrics controllers.
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Chapter 1

Introduction

In recent years, robots have increasingly entered human-shared environments. Whereas
traditionally confined to structured factory settings, they now appear as autonomous
vehicles, delivery robots, or household assistants, such as vacuum cleaning robots. Such
robots typically either operate under well-defined safety rules, e.g., traffic laws for
autonomous vehicles, or, in the example of vacuum robots, involve low-risk interactions
with their environment.

However, emerging robotic applications, such as humanoids or mobile manipulators,
may operate in environments that lack clearly defined rules, yet are safety-critical, such
as an operating room or a professional kitchen. In these environments, humans and
robots must collaborate closely, often in unstructured and dynamic settings. While
these developments offer desperately needed productivity gains, in light of our de-
mographic trends, they simultaneously demand stringent safety guarantees. Safety
through conservatism, however, can impair a robot’s utility in practice. In a highly
dynamic professional kitchen, overly cautious behavior may cause the robot to stall or
block workflows, reducing overall efficiency. Conversely, in safety-critical contexts like
operating rooms, insufficient responsiveness may compromise procedural outcomes.

To optimally trade-off between performance and safety, engineers often formulate the
motion planning problem as a constrained optimization problem. This typically en-
forces hard safety constraints while optimizing a performance-related cost function.
Due to the large decision variable space, this is commonly solved online in a receding
horizon fashion known as model predictive control (MPC). However, the original prob-
lem is often intractable to solve at a sufficient frequency online. Hence, in practice,
simplifications are made, e.g., the fidelity of the predictive model is reduced, or the
representation of obstacles is simplified, yielding easier-to-check constraints, but at the
expense of overapproximating obstacles, such that feasibility may be lost. On the other
hand, sticking to a precise formulation of the robot dynamics and a tight representation
of constraints increases the computational cost of the optimization problem. This will
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2 Introduction

render a significant lower bound on the allowable discrete time step; effectively abstract-
ing the true robot environment. Constraints will only be enforced at the discrete-time
steps, but the robot’s true state evolves in continuous time, such that continuous-time
feasibility is not guaranteed.

In explicit MPC, the optimization problem is no longer solved online, but the solution
of the constrained optimization problem is pre-computed in a quantized state space
[1]. However, to be tractable in terms of storage, a compromise must be made with
the resolution of the quantization, effectively limiting the ability to parameterize the
problem. In the above-mentioned scenarios, the motion planning problem must deal
with a varying number and locations of obstacles, as well as different goal configurations.
An alternative approach to obtaining an optimization-free, closed-form control law is to
leverage the problem’s geometry. This was initially pioneered in navigation functions
[2], artificial potential fields [3], and later generalized in feedback motion planning [4].
Effectively, these methods find an artificial dynamical system whose trajectories solve
the motion planning problem; with the advantage that their solution can be queried
from anywhere in the state space and their closed-form allows for fast evaluations, thus,
reactive planning.

However, there is, of course, no free lunch: reaching the goal and avoiding collisions
are often competing objectives. First, these geometric approaches do not incorporate
an explicit cost function and therefore cannot guarantee optimality with respect to a
chosen performance metric. Nonetheless, recent work such as [5] has shown that their
structure is particularly suited for imitation-learning formulations, partially recover-
ing control over the resulting behavior. Second, motion-planning problems commonly
require reach–avoid guarantees, which cannot be satisfied globally by such geometric
planners. In particular, the synthesized artificial dynamical systems are only almost1

globally asymptotically stable under assumptions on the environment that often do not
hold in practice. Some methods require obstacles to be star-shaped [6], while others
rely on finding a smooth obstacle enclosing function [7]. Moreover, geometric fabrics
[8], which have gained traction especially for mobile manipulators, require obstacle-
repulsive forces to vanish at sufficiently low velocities. As a consequence, they cannot
simultaneously guarantee both reaching the goal and avoiding collisions.

When these assumptions cannot be satisfied in practice, the resulting feedback motion
planner can guarantee only local asymptotic stability, because the set of initial condi-
tions that do not flow to the global minimum is of positive measure. As a consequence,
the reactive planner may get stuck while attempting to balance safety and performance,
and some trajectories may fail to converge to the goal. In practice, global planners can
guide these local geometric planners [9]. However, a global planner cannot reliably guide
the system without explicit knowledge of the local planner’s feasible domain, which,
in a dynamical-system representation, corresponds to the region of attraction. This
prevents establishing a meaningful assume–guarantee relationship, which is required
for a principled global–local decomposition.

1Almost refers to attractivity of an equilibrium from almost all initial conditions except those on a set of
Lebesgue measure zero. Sampling an initial state from a measure-zero set has probability zero; hence, for such
systems, a random initial state will reach the equilibrium with almost certainty.
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3

Motivated by these limitations caused by the local nature of geometric planners, this
thesis explores how to accommodate the fading of reach-avoid guarantees of such plan-
ners while maintaining their reactive properties. The core idea is to equip a high-
frequency, reactive planning loop with a parallel runtime verification loop that estimates
the geometric planner’s region of attraction and, when needed, adapts the underlying
artificial dynamical system to keep the system within it.
This framework is instantiated using geometric fabrics [10], which provide a systematic
way to compose artificial dynamical systems for high-dimensional, nonlinear robotic
systems such as mobile manipulators. Geometric fabrics naturally support the compo-
sition of multiple sub-behaviors, such as goal reaching, obstacle avoidance, joint-limit
avoidance, and posturing, across different task dimensions.
However, while the synthesis of geometric fabrics is interpretable and intuitive, the
resulting controller dynamics are highly nonlinear, and no analytic characterization of
their region of attraction is available in general. This observation shapes the proposed
runtime-verification approach: the algorithm relies on sampled rollouts to estimate the
region of attraction with a probabilistic correctness guarantee. This sampling and roll-
out procedure exploits the inherent parallelizability of autonomous dynamical system
rollouts, an aspect that previous approaches have not leveraged.

Contributions

This thesis addresses a fundamental limitation of geometric motion planners: their
reach–avoid guarantees typically rely on stringent assumptions about the environment
that rarely hold in practice. Consequently, geometric planners may fail to reach the goal
when deployed in realistic settings. To address this issue, this thesis introduces a run-
time verification algorithm called Scenario-Shield. The algorithm periodically adapts
the geometric planner’s underlying dynamical system using estimates of its finite-time
region of attraction, drawing on statistical uncertainty quantification, namely, confor-
mal prediction and the scenario approach.
Beyond the theoretical contributions, the computational demands of the algorithm were
reduced by implementing batched rollouts in JAX, and the full system was integrated
into the Autonomous Multi-Robots Lab’s geometric fabrics toolbox using robot operat-
ing system (ROS). This was, moreover, validated in simulation for a holonomic ground
robot and a mobile manipulator robot.

1. Proposal of the runtime verification algorithm Scenario-Shield to reason about
reachability of geometric motion planning through statistical methods and adapt-
ing the geometric planner’s underlying dynamical system.

2. Applying conformal prediction to faster compute whether a sampled state belongs
to the finite-time region of attraction.

3. Using the scenario approach to compute an uncountably infinite set approximation
of the region of attraction from finite trajectory samples.
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4 Introduction

4. Fast batch rollouts implemented into the fabrics toolbox with JAX.

5. ROS implementation of the Scenario-Shield algorithm and integration into the
fabrics toolbox.

6. Simulation experiments to compare the vanilla geometric fabrics implementation
for a holonomic ground robot and a mobile manipulator.

Outline

This thesis comprises six chapters, including this introduction. Chapter 2 briefly in-
troduces feedback motion planning, specifies its difficult-to-satisfy assumptions, and
reviews concepts of statistical uncertainty quantification.
Next, Section 3-1 foreshadows the main ideas of the proposed verification algorithm,
which are then motivated and developed in the main body of Chapter 3. Chapter 4
explains how the algorithm was implemented using parallel computing and ROS. Chap-
ter 5 shows simulation experiment results from applications to a ground robot and a
mobile manipulator. Lastly, Chapter 6 concludes the thesis, discusses its limitations,
and gives an outlook into future work directions.
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Chapter 2

Related work

This chapter begins by briefly introducing notation for feedback motion planning in
Section 2-1. Subsequently, subsection 2-1-1 reviews constructive geometric methods
that formulate the feedback law as a dynamical system. Building on this, subsection 2-
1-2 presents geometric fabrics, a specific feedback motion planner that serves as the
baseline method in this thesis and, moreover, as the nominal geometric planner wrapped
by the runtime verification loop. Finally, because the verification draws on statistical
uncertainty quantification, Section 2-2 introduces the required preliminaries, namely
conformal prediction and the scenario approach.

2-1 Feedback motion planning

The robotic motion planning problem seeks to compute a feasible trajectory from an
initial configuration to a goal configuration while avoiding obstacles. As outlined in
Chapter 1, safety-critical robotic applications in dynamic environments often benefit
from closed-form solutions. [4] introduces the class of feedback motion planners, which
do not explicitly generate a full trajectory but instead provide a feedback law that,
under some assumptions, upon integration produces a trajectory that solves the motion
planning problem. Moreover, the feedback law serves as a local motion reference, which
can be tracked by the robot. Because this feedback law is a closed-form function of
the robot’s state, possibly parameterized by the environment, it enables high-frequency
replanning and thereby reactive behavior even in dynamic settings.

Following the notation of [4], feedback motion planning seeks a feedback law u = k(x) ∈
U for every state x ∈ X , which drives the dynamical system ẋ = u. Importantly, the
space X need not coincide with the state space of the underlying physical system. The
challenge lies in designing the feedback law k, such that X can be constrained, e.g., by
setting it equal to the free configuration space Cfree, while simultaneously ensuring that
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6 Related work

all trajectory eventually reaches the goal set XG ⊂ X . The synthesis of such feedback
laws is the focus of subsection 2-1-1, where selected approaches are reviewed.
Even before imposing additional assumptions required for specific synthesis methods,
the feedback-motion-planning formulation relies on idealizations that are rarely satisfied
in practice:

• The control input space U is assumed to contain the zero vector 0. However,
systems with inertia cannot instantaneously stop, introducing a tracking error for
most physical systems.

• Although a trajectory x(t), for t ∈ [0, T ], generated by the continuous-time sys-
tem ẋ = k(x) may theoretically remain in Cfree and reach XG, in practice trajec-
tories must be computed numerically. This limitation arises because discrete-time
closed-form solutions are unavailable, and because sensing and perception mod-
ules, such as frame-based vision processing, typically update discretely in time.

2-1-1 Geometric motion planning

A substantial body of work investigated how to design ẋ = k(x), such that the re-
sulting trajectories satisfy a desired specification. Typically, each subformula of such a
specification falls into either a reach or a viability category. In robotics, reaching con-
cerns completeness, i.e., the method reaches the goal if possible, while viability refers
to maintaining constraint satisfaction, such as collision and joint-limit avoidance. This
section focuses on approaches that leverage the geometry of the environment to con-
struct artificial dynamical systems, as opposed to modeling physical dynamical systems
from first principles.
Artificial potential fields [3] approach the feedback law synthesis by constructing an
artificial potential function Φ : X → R≥0, typically formed as the sum of repulsive
and attractive potentials for obstacle avoidance and goal reaching, respectively. The
corresponding feedback law is then given by the negative gradient k(x) = −∇Φ(x).
A well-known drawback of this method is that such additive compositions induce a
topology with many local minima into which trajectories, following the steepest gradient
descent, may flow. Randomized potential fields attempt to escape such local minima by
temporary random walks [11]. Subsequent work, however, sought to reduce the number
of local minima by construction.
Navigation functions, initially introduced by [2], addressed the problem of obtaining
feedback laws which merely yield local attractivity to the goal set XG. Their result,
under certain assumptions, a vector field can be constructed which is almost globally
attractive, that is, for all initial states x0 ∈ X , except those on a set of Lebesgue
measure zero. Hence, a randomly chosen initial condition flows into the goal with
almost certainty. This result holds for general sphere worlds under the assumption that
the obstacles’ closure is disjoint [12, p.507]. This assumption limits its applicability,
because complex obstacles can no longer be approximated as the union of multiple
intersecting spheres, but instead, must be overapproximated as large, disjoint spheres.
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2-1 Feedback motion planning 7

Concrete implementations of navigation functions, address nonholonomic dynamics
[13], dynamic environments [14], and the multi-agent setting [15]. However, in or-
der to attain guarantees for at least almost global attractivity, certain assumptions are
necessary. Specifically, [6] shows how to generalize the initial navigation functions to
environments with convex and specific concave obstacles, which must be star-shaped1.
However, a robot may encounter obstacles that are not star-shaped, and hence, must
be overapproximated. [7] retains the guarantees of [6] while allowing the obstacles to
be an algebraic set to address non-star-shaped obstacles. Furthermore, the authors
achieve global asymptotic convergence of the flow to the goal by employing a switching
mechanism. However, this method requires finding a smooth function for each obsta-
cle to enclose it within a level set, which may not always be possible or may lead to
conversivism; in particular, when the environment is not immediately observable.
Lastly, the above methods primarily apply to holonomic point-mass robots, for which
the workspace and configuration space are equivalent. The work of geometric fabrics
[10] addresses the geometric motion planning problem for robots with nonlinear kine-
matics, such as manipulators. However, geometric fabrics also make an assumption that
repulsive forces of obstacles must vanish at low velocities in order to uphold a guarantee
of attractivity. Again, an assumption that is not in agreement with the objectives of
safety-critical control in human-shared environments as outlined in Chapter 1.
Therefore, this thesis addresses how to verify geometric motion planning methods,
which enable the construction of (almost) globally attractive feedback laws under strict
assumptions, and what can be retained when these assumptions are violated. This is
furthermore applied to a mobile manipulator robot; hence, the line of geometric fabrics
is introduced in more detail in the next subsection.

2-1-2 Geometric fabrics for local motion planning

Geometric fabrics, as introduced in [10], are second-order differential equations of the
following shape

M(q, q̇)q̈ + ξ(q, q̇) = −∂ψ(q)−B(q, q̇)q̇ (2-1)
⇔ q̈ = −(M−1ξ︸ ︷︷ ︸

−h̃(q,q̇)

+ M−1(∂qψ + Bq̇)︸ ︷︷ ︸
−f(q,q̇)

), (2-2)

where q ∈ C is the configuration vector with first and second time derivative q̇ and q̈, re-
spectively. The symmetric and invertible priority matrix M (q, q̇), the damping matrix
B(q, q̇) depend on both the configuration and its velocity. ψ(q) is a potential function.
The acceleration signal is a sum of a energy-preserving geometry h̃(q, q̇), which deter-
mines the unforced flow of the system, and the forcing term f(q, q̇), which can be seen
as an energy regulating term that dissipates energy from the system until the trajectory

1A star-shaped obstacle S ⊂ X has a kernel point s0 ∈ S, such that the line-segment between any point
s ∈ S and the kernel point lies in S, i.e. ∃s0 such that {(1 − λ)s0 + λs | λ ∈ [0, 1], ∀s ∈ S} = S.
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8 Related work

has flown into a minimum of the potential function ψ(q), e.g., ψ(q) = ||q−qG||22, where
qG is a goal configuration. Next follows the constructive mechanism to arrive at such
a differential equation, which, according to [10], exhibits great expressivity for mobile
manipulation planning.
A geometry, as later introduced for different sub-behaviors, is not necessarily energy
preserving, but can be made to conserve the Finsler energy L, rendering the energy
conserving geometry, also known as a fabric h̃(q, q̇) through the energize operation:

h̃ = energizeL(h(q, q̇)) = h+ αq̇, where α = − q̇⊤(MLh(q, q̇) + ξL)
q̇⊤MLq̇

. (2-3)

The forcing term f(q, q̇) simultaneously navigates the potential ψ(q) via gradient de-
scent and dissipates energy through the damping term B(q, q̇) while obeying the pri-
ority metric M (q, q̇). For example, a holonomic ground robot with q ∈ R2 may have
a baseline fabric h̃b(q, q̇) of

h̃b(q, q̇) = energizeLb
(hb), where hb = 0, Lb = Lagrangian

(1
2 ||q̇||

2
2

)
, (2-4)

where the Langrangian is obtained via [16]. For circular obstacle avoidance, we may
employ a barrier-like geometry that ensures that the robot’s Euclidean distance to the
obstacle border is positive. Note that it does not live in the same space as the q ∈ R2,
but instead in a space more convenient for defining collision geometries in the single
dimension indicating the Euclidean distance to the obstacle border, i.e., x ∈ R≥0:

h̃o(x, ẋ) = energizeLo
(ho(x, ẋ)), (2-5)

where ho(x, ẋ) = ẋ2

x2 + ϵ
sign(ẋ− 1), Lo = Lagrangian

(
2ẋ2

x2 + ϵ

)
, (2-6)

with ϵ being a small positive constant to avoid division by zero. Differential equa-
tions as shown in Equation 2-1, are known as semi-spectral sprays, which are endowed
with a so-called spec algebra. This algebra includes the operations of summation and
pullback. The former can be used to combine geometries (weighted by their priority
metrics), however, in this example, h̃b(q, q̇) and h̃o(x, ẋ) live in different spaces. The
pullback operation, as introduced in [17], allows bringing both fabrics onto the same
manifold, provided that a differentiable map exists. Then, summation can be applied
to combine the behaviors. Then for any fabric defined on X , namely (M ,f)X , and
given a differentiable map ϕ : Q → X and its Jacobian J = ∂ϕ

∂q
can be pulled onto Q

via

pullϕ(M ,f)X =
(
JT MJ ,JT (f + J̇ q̇)

)
Q
, (2-7)

where J̇ = ∂
∂t

J = ∂J
∂q
· dq

dt
and any dependency on x on the right hand side is substituted

by x = ϕ(q). Applied to the obstacle fabric h̃o(x, ẋ), the following pullback operation
could be performed, where the differentiable map follows from the Euclidean distance
between the configuration q =

[
qx qy

]⊤
and the obstacle position po =

[
ox oy

]⊤
, as
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2-2 Preliminaries 9

ϕ(q) = ||q − po||22 J = ∂ϕ

∂q
=
[

qx−ox

||q−po||22
qy−oy

||q−po||22
.
]

(2-8)

This summarizes the underlying geometric motion planning policy employed for the
remainder of the thesis. However, the resulting dynamical system is not globally at-
tractive. To attempt to adapt the geometric fabrics during runtime, we will need to
reason about their local region of attraction. Due to the possibly high nonlinearity and
absence of explicit characterizations of such regions, a sampling-based approach will be
paired with tools from uncertainty quantification. The preliminaries of these methods
are introduced below.

2-2 Preliminaries

The proposed runtime verification algorithm, Scenario-Shield, draws on tools from un-
certainty quantification, specifically conformal prediction and the scenario approach,
which are introduced in this section.

2-2-1 Conformal prediction

Conformal prediction (CP), introduced by [18], is a distribution-free approach to quan-
tify the uncertainty of a predictor, which may be any model or algorithm producing a
point prediction. CP then quantifies the uncertainty by quantifying a coverage region
around the output, within which the ground truth lies with high probability.
Given K calibration data points R(1), . . . , R(K), an exchangeable test point R(0) lies
within the 1− δ quantile of the calibration data C with probability 1− δ, i.e.,

P
(
R(0) ≤ C(R(1), . . . , R(K),∞)

)
≥ 1− δ, (2-9)

where the added∞ ensures that the guarantee holds even for finite samples; this works
by putting a lower bound on the number of calibration samples K to render a useful
coverage region, i.e., K > ⌈(K + 1)(1− δ)⌉, as otherwise trivially C =∞.
The data points are random variables which follow a pushforward measure of the predic-
tor’s output ŷ and ground truth data y through a chosen non-conformity score function.
An example of a non-conformity score is the absolute prediction error,

R(i) =| y − ŷ | . (2-10)

While CP is distribution-free, in the sense that it does not assume a specific probabilistic
model as in Bayesian methods, it relies on the assumption that the nonconformity scores
of the calibration and test data are exchangeable. Exchangeability implies identically
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10 Related work

distributed, hence, a concern of CP is when the nonconformity scores follow different
distributions between calibration and test time.
Recent applications of CP include the conformal Kalman filter, which leverages con-
formal methods to obtain probably correct state estimates despite violations of the
Kalman filter’s Gaussian noise assumptions [19]. In Section 3-2 CP will be used to
conformalize a predictor, i.e., obtain a coverage region within which the true value will
lie with high probability, that classifies the K−step attractivity of a state x based on
a rollout of length k, with k ≪ K.

2-2-2 Scenario approach

The mentioned sampling-based approximation of a region of attraction renders a finite
subset. However, the underlying region of attraction may be only characterizable by
infinite sets. When approached from an optimization-based perspective, which involves
finding the region of attraction by optimizing a parameterized set, a related problem
arises. Correctly constraining the optimization problem may result in a semi-infinite
optimization problem, i.e., a finite number of decision variables but an infinite number
of constraints.
This, however, is computationally intractable to solve. The scenario approach, as
introduced by [20], addresses this by sampling a finite number of constraints, known
as scenarios, and reasoning about the uncertainty of the obtained solution for new
scenarios. The underlying idea is that, under assumptions, an optimal solution obtained
for a sufficiently large number of sampled constraints will remain feasible for newly
sampled constraints. Specifically, the semi-infinite problem

x∗ = arg min
x∈X ⊆Rd

f(x) (2-11)

s.t. g(x, δ) ≤ 0, ∀δ ∈ ∆, (2-12)

where f is convex in x, the number of decision variables is finite, i.e., d ∈ N, and
the feasible set is convex. This problem can be converted into a scenario program, by
sampling N scenarios δ(1), . . . , δ(N) from ∆

x∗
N = arg min

x∈X ⊆Rd

f(x) (2-13)

s.t. g(x, δ(i)) ≤ 0, ∀i ∈ {1, . . . , N}. (2-14)

Then, if the problem is convex, the solution is unique, and the scenarios are independent
and identically distributed (i.i.d.), the probability that any newly sampled scenario
δ(N+1) constraint pushes x∗

N into infeasibility is bounded by

P
(
g(x∗

N , δ
(N+1)) ≰ 0

)
≤ ϵ, (2-15)

with confidence 1 − β over the previously drawn scenarios. Thus, Equation 2-15 can
be rewritten into a probably approximately correct (PAC) guarantee

P
(
P
(
g(x∗

N , δ
(N+1)) ≰ 0

)
≤ ϵ

)
≥ 1− β.
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Finally, [21] established a relation between the risk ϵ, the confidence 1−β, the number
of decision variables d, and the number of sampled scenarios N , as

d−1∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i ≤ β. (2-16)

Moreover, this expression can be rewritten into a lower bound on N as a function of
ϵ, β, and d, thus given the number of decision variables, the user can specify a desired
risk and confidence, informing us how many scenarios we must draw.
This result will be used in subsection 3-3-3 to optimize a semialgebraic set description
of the region of attraction of a feedback planner’s underlying dynamical system.
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Chapter 3

Methodology

In the previous chapters, it was identified that geometric motion planners may not
uphold their attractivity guarantees in environments encountered by robotic systems in
practice. This chapter develops the main methodology to design a runtime verification
algorithm that adapts the planner’s underlying dynamical system to escape regions of
no attraction.

First, Section 3-1 introduces the main idea behind the verification algorithm coined
Scenario-Shield. Since the algorithm relies on numerous forward simulations of sampled
robot configurations, the computational cost is a bottleneck. This is addressed in
Section 3-2, where conformal prediction (CP) is used to calibrate a heuristic to render
computationally cheaper rollouts. Moreover, the sample-based method only allows for
constructing a finite set approximation of the region of attraction, while the underlying
region may be continuous, i.e., an infinite set description may be necessary. How this
can be obtained first geometrically and next via the scenario approach is the topic of
Section 3-3. Finally, the two improvements are cast into an extension of the Scenario-
Shield algorithm, which is presented in pseudo code in Section 3-4.

3-1 Verification guided geometric motion planning

This chapter briefly foreshadows the main components of the Scenario-Shield algo-
rithm, which runs in parallel to the geometric fabrics motion planner. The main idea
to address the local minimum problem of geometric motion planning stems from multi-
run non-convex optimization. There, in order to improve a local optimum, other initial
conditions are sampled, and the optimization is repeated. Geometric motion planning
draws a similar picture, while the current robot configuration may not lie in the un-
derlying region of attraction, configurations in close proximity may be, this is further
illustrated in Section 3-3.

Master Thesis Leon Kehler



14 Methodology

By locally sampling other configurations and forward simulating them, we can find a
subset of the region of attraction. Then, the robot can attempt to reach this subset,
which turns out to be easier than reaching the final goal directly. Effectively, this
requires changing the goal of the geometric fabrics. Figure 3-1a depicts how a point
robot employing geometric fabrics fails to reach the goal. Figure 3-1b suggests how to
adapt the planning loop, i.e., only by changing the geometric fabrics’ goal configuration.

(a) Point robot with vanilla geometric fabrics
not reaching the goal in a R2 workspace. (b) Proposed verification architecture.

Figure 3-1: Problem motivation and solution approach.

The regular feedback motion planning loop runs at a high frequency fplanner, to allow for
safety-critical, reactive maneuvers. In parallel, but at a lower frequency fverify, the block
Scenario-Shield adapts the feedback planner’s underlying artificial dynamical system.
Specifically, it adapts the reference state, temporarily overwriting it with subgoals to
steer the state into the planner’s region of attraction. The subgoals are obtained by
forward simulating samples obtained locally around the robot’s current configurations,
i.e., from the sampling space Ω(q0).
This is illustrated in the motion lapse in Figure 3-2, where a holonomic ground robot
navigates around the same obstacle, as in Figure 3-1a. However, with the Scenario-
Shield algorithm, which adapts the goal during runtime, the robot is able to reach
the goal. The sampled states are classified to lie in the region of attraction A or its
complement Ac, based on the terminal state of a rollout being close to the goal. An
approximation of the underlying continuous regions Â and Âc is furthermore plotted
for orientation, but actually later statistically derived in Section 3-3.
In the first snapshot, configurations within the local sampling space Ω are sampled
and rolled out. From the first iteration, it is clear that the trajectories contract into a
few discrete modes. Moreover, the current configuration q0 (tip of the black path) will
not get attracted. However, by picking a subgoal, the original region of attraction can
eventually be reached. Note that in the second time frame, the region of attraction is

Leon Kehler Master Thesis



3-1 Verification guided geometric motion planning 15

computed with respect to the subgoal and not the original goal. Once the subgoal is
passed, the targeted goal x̃G can switch back to the originally specified one. Finally,
the robot reaches the goal configuration.

Figure 3-2: Paths of a point-robot in its R2 workspace.

This is furthermore depicted in the pseudo code algorithm 1. There, t is the incoming
continuous time signal, x ∈ X the current state, xG ∈ X denotes the final goal, x̃G is
the currently targeted goal for the feedback planner to track, fverify is the verification
frequency. P is the distribution from which samples are drawn with support, denoted
as supp(P), on the sampling space Ω(x0), which moves with the robot. In the example
above, Ω is an infinity norm ball around the current state x0, and P is the uniform
distribution. Any state can be forward simulated over K timesteps by applying the
discrete autonomous system dynamics f : X → X K-times, i.e. the final state xK =
f (K)(x0). A ▷◁ B is the zipped set between sets of equivalent cardinality, i.e., {(ai, bi) ∈
A × B | i = 1, . . . , |A|}. Finally, the closed ε-ball is denoted as Bε[x] = {xi ∈ X |
d(x,xi) ≤ ε} for some metric d. The queue of goal configurations returns or drops its
last element by calling Q.last() or Q.pop(), respectively. This is needed to obtain the
most recently selected subgoal and drop it upon reaching it.
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Algorithm 1: Scenario-Shield
Input: t,x
Output: x̃G

1 Initialization (once at startup):
2 Q← [xG]; // queue of goal configurations

3 do in parallel
4 for t = 0 until T, if t mod f−1

verify = 0 do
5 x0 ← x

6 S ← {xi}N
i=1, xi ∼ P, with supp(P) ⊆ Ω(x0) // Locally sample states

7 if f (K)(x0) /∈ Bε [Q.last()] then
8 SK ← {f (K)(xi) : xi ∈ S} // Compute rollouts
9 if ∃(xi,0,xi,K) ∈ S ▷◁ SK such that d(xi,K , Q.last()) ≤ ε then

10 Q.append(xi,0)

11 while true do
// Real-time execution loop

12 if d(x, Q.last()) ≤ ε then
13 Q.pop()
14 x̃G ← Q.last()
15 return x̃G

The basic Scenario-Shield algorithm has two disadvantages, which are addressed in
the following methodology. Firstly, rollouts are computationally expensive. Thus, a
verification cycle can only occur at a low frequency, which introduces a delay in how
quickly Scenario-Shield can adapt to the subgoal. Thus, the faster the rollouts, the
faster the adaptation, the lower the time to goal. This issue is addressed in Section 3-2.

Secondly, in contrast to Bellman’s principle of optimality, since geometric fabrics are
not an optimal control method, the trajectory segment from the initial state to a
subgoal is not necessarily contained in the optimal trajectory from the initial state to
the final goal. Thus, the resulting paths with intermediate goals may appear to make
detours. To mitigate the burden of detours, intermediate goals can be skipped once
the goal, or another queued subgoal, is viable again. Computing when a subgoal can
be skipped directly translates into computing a continuous estimate of the underlying
region of attraction, as opposed to the discrete underapproximation obtained from the
finite number of rollouts. Section 3-3 addresses this first from a geometric perspective,
before subsection 3-3-3 addresses it through scenario optimization, i.e., reasoning from
the finite set of samples to an infinite set characterization in a probabilistically sound
manner.
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3-2 Conformal partial trajectory rollouts

Section 3-1 introduced the verification’s reliance on trajectory rollouts. However, they
are computationally expensive. This section proposes to employ a heuristic which is
calibrated with conformal prediction to classify correctly with high probability whether
a sample shall belong to the region of attraction A, or its complement Ac. The idea is
that this heuristic only depends on k, with k ≪ K, steps; thus, a classification can be
done in a shorter time.

3-2-1 Classifying a sampled state

Since the feedback motion planner is represented through an autonomous dynamical
system, a rollout of K steps can be obtained by applying the system dynamics f : X →
X K times, i.e., the terminal state of the rollout xK ∈ X can be computed from the
initial state x0 via f (K)(x0) = f ◦ f ◦ · · · ◦ f(x0).
The states that flow into the equilibrium goal state xG belong to the attractive set A.
For each sampled state xi,0, the labeling function y : X → {−1, 1} can be employed to
classify whether the sample shall belong to the region of attraction A (y(xi,0) = 1) or
its complement Ac (y(xi,0) = −1):

y(x0) =
1, f (K)(x0) ∈ Bε(xG)
−1, otherwise,

(3-1)

where Bε(z) is the ε-ball around z.
Although this binary representation is only an intermediate step, it provides a useful
foundation to construct a continuous prediction heuristic, i.e., with an output on the
interval [−1, 1], and use conformal prediction to introduce coverage regions around the
nominal value 1 and -1 for A and Ac, respectively.
Since these rollouts are performed during runtime, it is of interest to obtain the trajec-
tory rollouts quickly. Sequentially computing the rollouts of N initial conditions over a
horizon of K timesteps has a time complexity of O(N ·K). However, we can vectorize
over the initial conditions, which, if resources permit, will allow us to reduce the com-
plexity to O(K). Moreover, a trivial method to compute a rollout faster is to reduce
the horizon K. However, when deciding whether an initial state x0 lies in the backward
reachable set of the goal set Xg within K timesteps, it generally requires a rollout of K
timesteps. Note that we do not aim to compute the entirety of the backward reachable
set, but instead, need to classify each sample in order to pick a suitable intermediate
goal.
In specific cases, reachability may be decided earlier. For example for an initial state
x0, we want to check whether xK = f (K)(x0) ∈ XG, but when a trajectory enters
an invariant set I at time step k < K and I ∩ XG = ∅, we can decide that x0 does
not lie in the backward reachable set of XG. However, this may lead to replacing a
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computationally expensive rollout with a more expensive invariant set computation;
even though there are specific, computationally cheap cases, such as where xt is an
equilibrium point.
Instead, the rollout length can be reduced by using a heuristic, which is introduced in
Equation 3-2. This heuristic predicts on the continuous interval [−1, 1]. Then, the final
classification can be done by calibrating thresholds with conformal prediction. These
decisions will not be correct with certainty, but instead only with high probability.
Hence, we trade-in certainty for computing resources, but importantly, retain a high
probability of correctly classifying the samples.
While the prediction heuristic can be anything, e.g., a neural network, or, as in this
case, a heuristic that rewards progress towards the goal, normalized by the distance
of the sampled initial condition to the goal. The proposed heuristic score function
H : X × X × X → [−1, 1] is

H(x0,xk,xg) = −min
(

d(xk,xg)
d(xk,x0) + ϵ

− 1, 1
)
, (3-2)

where d(.,.) is a metric, such as the Euclidean distance, and ϵ is a small number.
Note that H is upper-bounded by 1 due to metrics being nonnegative. Hence, as k
approaches K, H approaches y, the ground truth label, which can be obtained with
certainty with a K-step rollout.
Next, a threshold C must be set to go from the continuous domain of the heuristic to
the binary classification. This will lead to an estimated label ŷ(x0), note that this is
only informative if C ∈ [0, 1).

ŷ(x0) =


1, if H(x0, f

(k)(x0),xg) ≥ 1− C
−1, if H(x0, f

(k)(x0),xg) ≤ C − 1
U({−1, 1}) otherwise,

(3-3)

where the random tie-breaker ensures that a decision can be made for all values of H.

3-2-2 Conformalizing the prediction

The aim is to set k and C, such that the probability of falsely classifying x0 based on
the short rollout of k steps, with respect to the long horizon of K steps, is below a user
specified threshold δ ∈ [0, 1], i.e., P(y = ŷ) ≥ 1 − δ. This problem can be cast into a
coverage problem, in which we estimate the coverage interval of H in the 1− δ quantile
of predictions. This is exactly what we can obtain through conformal prediction. The
first step is to choose a non-conformity score, e.g., the norm of the difference between
the true label, obtained with the entire horizon, and the heuristic value:

R(y,H) = |y −H|. (3-4)

By collecting Kcal ∈ N+ calibration data points, i.e., pairs of ground truth, correspond-
ing heuristic value, and resulting non-conformity score, we can make the statistical
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argument that a test point s(0) lies within the 1− δ quantile spanned by the calibration
data, i.e.,

P
(
R(0) ≤ C(R(1), . . . , R(Kcal),∞)

)
≥ 1− δ, (3-5)

under the assumption that the test and calibration data are exchangeable. Moreover, it
should be noted that this will only render a useful result when using a sufficiently large
calibration set, specifically, Kcal > ⌈(Kcal + 1)(1− δ)⌉ [19], otherwise the 1− δ-quantile
C will take on the correct, but trivial value of∞. Furthermore, if the predictor is poor,
again the resulting C will be uninformative; imagine the predictor classifies inversely
to the ground truth, this would render C = 2 at best, hence, making the classification
rule in Equation 3-3 ambiguous.
For the application of using partial rollouts to classify whether initial states should
belong to the attractive set A or its complement Ac, we may want to analyze the
probabilistic coverage per class, in case there is a class imbalance. A class imbalance
could arise when a small fraction of samples belongs to Ac, then a primitive predictor
that always predicts A may score a high accuracy over all classes, while performing
poorly for the minority class.
This can be simply done by introducing two non-conformity scores corresponding:

RA(H) = |1−H| if y = 1 RAc(H) = | − 1−H| if y = −1 (3-6)

Then, one obtains one coverage interval per label:

P
(
R(0) ≤ CA(R(1)

A , . . . , R
(K)
A ,∞)

)
≥ 1− δA, (3-7)

P
(
R(0) ≤ CAc(R(1)

Ac , . . . , R
(K)
Ac ,∞)

)
≥ 1− δAc , (3-8)

To conformalize the heuristic-based predictor presented in Equation 3-3, it can be
rewritten as

ŷ =


1, if H ≥ 1− CA

−1, if H ≤ −1 + CAc

U({−1, 1}) otherwise.
for CA + CAc < 2 (3-9)

Depending on the application, it may be more sensible to replace the tiebreaker with
a conservative classification. For example, in the case of Scenario-Shield, it is better
to falsely classify a sample as belonging to the complement of the region of attraction.
Upper-bounding the sum of the prediction intervals ensures that the decision is not
ambiguous.
Then, to analyze the performance of the heuristic as a function of the partial rollout
length k, we can plot CA and CAc for different values of k, where the ground truth K
remains fixed. Figure 3-3 depicts different coverage regions for different choices of δ
(for simplicity, δA = δAc).
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Figure 3-3: Empirical quantile width against the partial rollout length k for different failure
probabilities δ. The full length rollout is K = 3000.

It becomes apparent that for very short partial rollouts, most initial states do not
make any progress toward the goal set and hence get labels to belong to Ac. Hence,
the heuristic rarely misclassifies membership of Ac trivially.

Exemplary, for a short partial rollout length of k = 800, and δ = 0.1, the data in
Figure 3-3 suggests to use CA ≈ 1.8 and CAc ≈ 0.6, which means their sum exceeds the
allowable value and a conformal prediction cannot be made according to Equation 3-9.
Therefore, the partial rollout length may be constrained. The allowable choice for k
for δ = 0.1 is hence k ∈ [0, 540] ∪ [1150, 3000]; it makes sense to choose t such that
the true positive rates of both classes are balanced, furthermore the lower k, the faster
the rollout computation, hence, it would make sense to choose k = 1150. Then, CA
and CAc take values 0.98 and 1.01, respectively. Newly deciding attractivity of a test
point is then probably correct with probability 1 − δ under the assumption that the
test point is exchangeable with the calibration data.

Finally, it is left to discuss how an appropriate calibration set is selected. In this thesis,
it is assumed that sampled trajectories are exchangeable with those encountered during
test time. Thus, the calibration set is appropriate by assumption. While not generally
reasonable, in this case, the distribution of non-conformity scores is driven by changes
in the environment, specifically the distribution of obstacles, which is controlled in the
later experiment. This can be seen as a covariate shift, while the concept distribu-
tion, i.e., the underlying true classification given its inputs, remains unchanged. Later
in the experiments, the obstacles across experiments are sampled independently and
follow an identical distribution; independent and identically distributed (i.i.d.) implies
exchangeability.

After making the rollouts faster, the next section deals with using them to approximate
a continuous region of attraction, as opposed to the finite set one obtained through
rollouts alone.
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3-3 Computing a continuous approximation of the region of at-
traction

The previous rollouts allowed obtaining finite sets as subsets of the underlying region of
attraction A and its complement Ac. However, a subgoal really is only a proxy to steer
the state into the underlying region of attraction. If the subgoal can be dropped once
the region of attraction is entered, we could avoid detours. However, since the samples
compose a finite set, it is unlikely that the robot’s trajectory will intersect it before
reaching a subgoal. This section addresses this problem by computing a continuous
approximation of A; hence, this approximation will be characterized as an uncountably
infinite set.
Due to the complex dynamics of a geometric fabrics’ expression, the previously collected
samples will be paired with a scenario optimization program, as outlined in subsection 3-
3-3. However, there are valuable insights for simple cases; hence, this section is built
up in increasing complexity: subsection 3-3-1 computes A for a holonomic point robot
in R2 with a single circular obstacle, subsection 3-3-2 extends this to R2 with multiple
obstacles, and finally, the scenario program is employed to compute it for a general
geometric planner in a general environment.

3-3-1 Geometrically in R2 with one obstacle

According to Morse theory, and specifically the hairy ball theorem [22], for a general
environment with at least one obstacle, the topology prohibits the construction of
a smooth, globally attractive vector field [2]. This is precisely because the obstacle
introduces a saddle point at which the gradient vanishes. Then, using a gradient
descent-based trajectory generation, any initial state flows into the set of zero gradient.
However, due to the saddle point, this set is not merely the global minimum, but instead
the disjoint union of the global minimum and the saddle point. Hence, at best, one can
construct a vector field that is almost globally attractive, which means it is attractive
for all initial conditions except for those lying in Ac, which is the complement of the
region of attraction to the goal, which in this case contains all points flowing into the
saddle point.
A navigation function in a two-dimensional workspace is a potential composed of goal-
attracting and obstacle-repelling sub-potentials; derivations can be found in [12]. As
illustrated in Figure 3-4, the initial conditions that flow into the saddle point are those
in the set Ac := {x ∈ R2 : x = o + ρ(o − g), ρ ∈ [or,∞)}, where o is the obstacle
center, or its radius, and g is the goal location. In geometry, this is the definition of a
ray, and hence, Ac has a Lebesgue measure of zero in R2. Therefore, the probability of
randomly choosing an initial condition that lies in Ac is zero. And thus, the probability
of not flowing into the goal from a random initial condition is zero. Or complementarily
stated, the vector field is almost globally attractive; where the word almost refers to
the fact that this is true for all initial conditions except those within a set of measure
zero, rendering the probability of convergence from a random initial condition equal to
1, hence, achieving convergence with almost certainty.
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Figure 3-4: Topological implications of Morse theory in R2 with one obstacle

3-3-2 Geometrically in R2 with countably many obstacles

When multiple obstacles are present, the measure of Ac depends on the spacing be-
tween obstacles. To simplify this discussion in R2 it is assumed that the robot can be
overapproximated with a circle, and that all circle obstacles are expanded by the ra-
dius of the robot’s collision circle, such that collision checking can be done by checking
whether the robot’s center is within any of the expanded, circular obstacles.
Let the ith obstacle be defined by the set Oi(ox, oy, or) = {(x ∈ R2 : ||x− (ox, oy)||22 ≤
o2

r}, where (ox, oy) is the obstacle’s center and or is its radius. Then, if no obstacles
touch, that is for any distinct ith and jth obstacle Oi ∩ Oj = {∅}, Ac is the union of
all the rays produced by each obstacle, as computed in the subsection 3-3-1. Thus, Ac

remains of measure zero, as the union of countably many sets of measure zero is a set
of measure zero. This assumption is commonly found in navigation function planning,
as seen in [15].
This assumption was relaxed in [6] by allowing disjoint unions of star-shaped obstacles.
In practice, however, this is still restrictive: after overapproximating obstacles by the
robot’s radius, physically non-colliding obstacles may appear to intersect, and complex
obstacles represented as unions of spheres cannot intersect densely enough to capture
their shape without violating the star-shaped assumption.
Therefore, we are interested in computing Ac for the setting of closely positioned ob-
stacles. In this case, the set will no longer be of measure zero, but instead, will result
in an unbounded polygonal domain with two finite vertices and two more infinitely far
for any pair of intersecting obstacles. This can be represented through an intersection
of three halfplanes.
The entirety of Ac will be composed of the union of local ones, one of measure zero per
obstacle, and additionally, those of positive measure spanned by any two obstacles that
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intersect. The latter case can be computed by first detecting the intersections, for that
one can utilize the pairwise distance matrix whose entry (i, j) is the minimum distance,
i.e., between the closest points on the contour, of the ith and jth obstacle unless i = j:

D = (Dij)o
i,j=1 , where Dij =

||(oi
x, o

i
y)− (oj

x, o
j
y)||22 − oi

r − oj
r, i ̸= j,

0, i = j.
(3-10)

Negative entries of D indicate an intersection of the corresponding obstacles. For
those entries, the region that does not attract to the goal is geometrically defined as
an unbounded polygonal domain, with two vertices at the obstacle centers and two
infinitely far away in the direction from the goal to the obstacle. Mathematically, this
can be expressed as the intersection of three halfplanes. Specifically, let’s construct
this for the obstacles with indices i and j, noting that Di,j < 0. Then, for the obstacle
locations oi, oj and the goal location xG, we have:

ac = {x ∈ R2 | Ax ≤ b},A =

−(oi − xG)
oj − oi

oj − xG

 , b =

−(oi − xG)⊤oi

−(oj − oi)⊤oi

−(oj − xG)⊤oi

 (3-11)

Finally, the entire Ac is the union of the local regions which may be a disjoint set:

Ac =
⋃
ac. (3-12)

Now, if the Lebesgue measure λ(.) of any of the local ac sets is positive, this propagates
into the union, i.e. ∃ac : λ(ac) > 0 ⇒ λ(Ac) > 0. This has an important implication:
while previously the feedback planner could be designed to be almost globally attractive,
this is no longer the case.
Furthermore, there is one insight which further motivates the previous approach out-
lined in Section 3-1: when multiple obstacles intersect, the region of attraction depends
on the goal location. As shown in Figure 3-5a, when initially attempting to reach the
blue goal but starting from the top right corner, (x, y) = (3, 3), the underlying navi-
gation function is not attractive. However, by first going to the green goal, the region
of attraction to the blue goal can be entered. Furthermore, Figure 3-5b illustrated
that for cluttered environments, the complement of the region of attraction can span a
significant fraction of the free space.

3-3-3 From finite samples in Rn with countably many obstacles

In some applications, such as mobile manipulator control, practically useful artificial
dynamical systems are highly nonlinear and have a large number of dimensions. In such
cases, the attracting potential may not be spherically symmetric, hence, not allowing
for the above geometric argument. Thus, finding Ac explicitly becomes infeasible.
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(a) Change in Ac for different goal locations
(stars) (b) Ac in a cluttered environment

Figure 3-5: Ac in R2 environments with multiple obstacles

However, through the sampled initial states and their classification through rollouts,
as outlined in Section 3-1, we have already obtained a finite subsets of the underlying
A and Ac. Now, can we extend this to a possibly infinite set by reasoning from the
finite subset and the sampling strategy? The answer is yes; [23] demonstrated a similar
approach to employing a stochastically estimated reachable set to verify the feasibility
of a model predictive control feedback law. Hence, similarly here, a parameterized
infinite set can be constrained according to the sampled states and optimized to render
an estimated Aθ, where θ is the parameterization vector. This ties in well with the
previous Scenario-Shield algorithm, as the necessary data for the optimization problem
is already collected. These samples and their classification according to the full rollouts
or partial rollouts, as introduced in Section 3-2.

In general, the region of attraction considers all states that flow into a specific equilib-
rium. However, in the case of reasoning from K-step finite-time rollouts, the approxi-
mated region will be a subset, namely, the finite-time region of attraction in K steps.
Yet, there are still uncountably many initial conditions, and hence uncountably many
trajectories required to properly constrain the optimization problem. When determin-
ing Â through an optimization problem, even when choosing a finite parameter vector,
the problem will be semi-infinite due to an infinite number of constraints, and hence,
computationally not tractable in its original form.

The scenario approach [24] recasts a semi-infinite problem into a chance-constrained
one with a finite number of sampled constraints. Under convexity, the obtained solution
is probably optimal even for newly i.i.d. sampled constraints. However, the details for
this will be introduced later, let’s start by expressing the complement of the region
of attraction Ac as an optimization problem. This will be done in two steps: first, a
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parameterized set description Ac
θ must be chosen, then, the constraints are constructed.

Figure 3-5b illustrates that Ac may be a disjoint set, which can be modeled by a
parameterized set-estimator Âθ, such as a basic semialgebraic set composed of a linear
combination of monomials up to degree p:

Âc
θ := {x ∈ X : θ⊤ϕp(x) ≤ 0}, (3-13)

where θ ∈ Rd and ϕp(x) is the column vector of monomials up to degree p evaluated at
x. For the constraints, can reuse the same rollouts as before in the regular Scenario-
Shield algorithm, then assuming we sampled N initial states x0,1:N , we obtain the labels
according to Equation 3-1, or in the case of conformal partial rollouts Equation 3-3;
where y = 1 and y = −1 correspond to membership to A and Ac respectively.
Then, if we sample all the states in the domain X , the complement of the region of
attraction Âc

θ, correct up to the accuracy of the chosen parameterization, optimization
problem

min
θ,ξ

ξ (3-14a)

s.t. y(x0)θ⊤ϕp(x0) ≤ ξ ∀x0 ∈ X (3-14b)
− ξ ≤ 0, (3-14c)

where ξ is a slack variable. Hence, both the problem’s objective and constraints are
linear in the decision variables θ, ξ. Allowing the use of linear programming, if it were
not for the infinite number of constraints. Thus, the scenario approach is invoked to
replace the infinite number of constraints 3-14b with a finite number of constraints,
following from our previously obtained finite number of sampled states and labels,
assuming we have N such samples, subsequently referred to as scenarios, that constraint
can be written into

y(x0,i)θ⊤ϕp(x0,i) ≤ ξ ∀i = 1, . . . , N. (3-15a)

However, the scenario approach in its vanilla form assumes that the solution is unique
[24], also see the preliminary introduction in subsection 2-2-2. In general, a linear pro-
gram may admit multiple optimal solutions; thus, a solution is not necessarily unique.
Fortunately, there exist two solutions: a strongly convex cost function can be chosen,
which makes the problem, if feasible, have a unique solution. However, this will result
in solving a possibly more expensive strictly convex optimization problem, rather than
a linear programming one. Alternatively, a deterministic tie-breaker can be chosen [24,
appendix C]; which boils down to solving multiple linear programs sequentially. Let’s
denote the set of optimal solutions of Equation 3-14a with Θ∗, then we can find the
element(s) that optimize the tie-breaker functions t1(θ), . . . , td(θ) until a single solution
remains. [24] suggests using t1(θ) = θ1, . . . , which means this can be solved by at most
d linear programs, and is efficiently implemented in standard solvers such as Gurobi
through lexicographic multiple objective optimization.
Hence, the scenario program is formulated as a feasibility problem that is solved using
linear programming. In this context, this means that the found set Âc

θ∗ is probabilisti-
cally valid for a new sampled initial state x0,N+1, provided the samples are drawn i.i.d.

Master Thesis Leon Kehler



26 Methodology

and the number of scenarios N satisfies Equation 3-16. Then, Âc
θ∗ is correct for a i.i.d.

x0,N+1 with at least a probability of 1− ϵ, in which we can have a confidence of 1− β,
provided that the number of samples N satisfies:

N ≥ 2
ϵ

(
ln 1
β

+ d

)
, (3-16)

where ϵ ∈ (0, 1) is the risk, 1− β ∈ (0, 1) is the confidence, and d is the finite number
of decision variables of the optimization problem, i.e., |θ|.

3-3-4 Implications for the Scenario-Shield algorithm

What does this mean for the application to the Scenario-Shield algorithm? Under the
assumption that the number of samples satisfies Equation 3-16 and that a new sample
is i.i.d., it allows us to describe the region of attraction as a semialgebraic set. Thus,
we obtain a switching surface to decide whether to continue going towards a subgoal,
or drop it and switch back to the original goal or another queued subgoal.
Unfortunately, however, using the set description as a switching surface directly would
violate the assumption of independence, as a point defined by the intersection of a
trajectory and a switching surface depends on the previously sampled data through the
scenario program’s solution. Instead, the independence assumption is accommodated
by evaluating a previously computed solution only once, thus also avoiding the intro-
duction of dependence along the trajectory. The assumption that a test point, i.e., the
(N + 1)th scenario, is identically distributed is more subtle. Since the Scenario-Shield
algorithm samples uniformly within a l∞-ball around its current configuration, we can
make use of the fact that the uniform distribution is equivalent to the normalized
Lebesgue measure on a bounded region [25]. Thus, assuming that the semialgebraic
set description is of sufficiently high order, we can still obtain the guarantee that:

P
(
λ((Âc \ Ac) ∪ (Ac \ Âc))

λ(Ac ∪ Âc)
≤ ϵ

∣∣∣∣∣ P(y = ŷ) = 1
)
≥ 1− β, (3-17)

where λ(.) is the Lebesgue measure. Note that this hinges on the correctness of the
labels. As described in Section 3-2, computing the labels with certainty is computation-
ally expensive, and its computationally cheaper variant through probabilistic relaxation
can be integrated into the scenario program’s guarantee as well, by adjusting the con-
ditional probability, which is independent.
Two more aspects will be addressed. Firstly, how does the chosen semialgebraic set
description scale with the number of dimensions, and secondly, how to interpret the
solution of Âc ∈ Rn, while the true system may evolve on a manifold M.

Alternative set description

The advantage of expressing Ac as a basic semialgebraic set, specifically as the sublevel
set of a sum of monomials, is that it can model disjoint sets. However, the disadvantage
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is the required number of coefficients, and hence decision variables of the optimization
problem, depends on the number of dimensions n and degree of monomials p as

(
p+n−1

n−1

)
.

Thus, it grows exponentially in the number of dimensions. This demands many more
samples according to Equation 3-16, because it is affine in d.
Moreover, locally, Ac may appear joint. Since this set approximation is done during
runtime, it is anyway only possible to do this locally, and hence the scenario program can
solve for a lighter set description, i.e., that may only be joint, at the benefit of requiring
fewer scenario samples. Furthermore, the scenario program in Equation 3-14a is merely
a feasibility program and hence does not control the size of the estimated set. Therefore,
it may be advantageous to use a different parameterization that requires fewer decision
variables per dimension, such as an ellipsoid. A minimum volume ellipsoid E covering
the finite set of scenarios which are heuristically classified to belong to Ac.
Let E := {x ∈ Rn : (x − c)⊤Θ(x − c) ≤ 1}, where c is the center and Θ is the shape
matrix. Because the ellipsoid’s volume is proportional to its inverse’s determinant, the
minimum volume enclosing ellipsoid is the solution of:

min
Θ,c

− log(det Θ) (3-18a)

s.t. (xj,0 − c)⊤Θ(xj,0 − c) ≤ 1 ∀j ∈ {i ∈ 1, . . . N | y(xi,0) ≤ 0} (3-18b)
Θ ⪰ 0. (3-18c)

However, the constraint 3-18b is not convex. Fortunately, [26, sec. 8.4] shows how to
rewrite it into the following convex constraint:

||Θxj,0 + c||2 ≤ 1 ∀j ∈ {i ∈ 1, . . . N | y(xi,0) ≤ 0}. (3-19)

Then, the objective is convex, and all constraints are convex in the decision variables,
and hence, the problem can be solved efficiently. Note, however, to retain convexity,
we can only consider the samples classified to belong to Ac, as imposing both enclosing
and inscribing constraints on the ellipsoid may render the problem non-convex, or even
infeasible.

Mapping Âc from Rn to M

Both provided set descriptions, the semialgebraic set, and the enclosing ellipsoid, are
defined in the Euclidean space. However, this representation is not aligned with many
robotic applications, e.g. satellites, quadrotors, or mobile manipulators require the
configuration space to include rotations. Such configurations live on a Riemannian
Manifold M.
Hence, one must either find a new set description or project the previously introduced
set descriptions onto the manifold. [27] describes sets on M through the interior of a
Riemannian ball, however, that can easily lead to overapproximation. Instead, we will
make use of the fact that any point on M is locally homeomorphic to the Euclidean
space. Hence, by working in the tangent space of M, the above methods apply to
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obtain Âc ⊂ Rn. Then, we can use the exponential map to map the estimated region
of attraction Â back onto M.
As an example, we may work with a manipulator that has two rotational degrees of
freedom. Thus, its configuration space is defined as the torus S1×S1. Conveniently, this
is a matrix Lie group, hence one can enter the tangent space around the configuration
x by premultiplying with the matrix Tx, the left-trivialization of the tangent space.
To conclude this section, we can state that the scenario approach enables us to obtain
a continuous estimate of the underlying region of attraction, with a probably approx-
imately correct (PAC) guarantee. Therefore, it may be used in the Scenario-Shield
extension as a scenario program, which allows to drop a subgoal once the region of
attraction is entered, as outlined in Section 3-4.

3-4 Extensions of the Scenario-Shield algorithm

The Scenario-Shield algorithm from algorithm 1 can be extended in isolation with
the partial rollouts (SS-PR), developed in Section 3-2, the scenario program (SS-SP),
developed in subsection 3-3-3, or with both extensions simultaneously (SS-PR-SP). The
latter is again shown in pseudo code in algorithm 2.
Specifically, the partial rollouts introduce a change in the rollout function and employ
the intermediate representation of a heuristic hi, which is a function of the correspond-
ing sample xi,0, its terminal partial rollout state xi,k, and the current goal. Moreover,
the scenario program introduced the estimation of the complement of the region of
attraction at the end of each verification cycle, as well as another parallel loop which
allows to drop the latest subgoal upon entering the estimated region of attraction.
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Algorithm 2: Scenario-Shield with partial rollouts and a scenario program (SS-PR-SP)
Input: t, x
Output: x̃G

1 Initialization (once at startup):
2 Q← [xG]; // queue of goal configurations
3 Âc ← X ; // Estimate of the complement of the region of attraction

4 do in parallel
5 for t = 0 until T, if t mod f−1

verify = 0 do
6 x0 ← x
7 S ← {xi}Ni=1, xi ∼ P, with supp(P) ⊆ Ω(x0); // Locally sample states
8 if f (k)(x0) /∈ Bε [Q.last()] then
9 Sk ← {f (k)(xi) : xi ∈ S}; // Compute rollouts

10 H ← {h(xi,0, xi,k, Q.last()) | xi,0 ∈ S, xi,k ∈ Sk}
11 if ∃(xi,0, hi) ∈ S ▷◁ H such that hi ≥ CA then
12 Q.append(xi,0)

13 Âc ← scenario-program(S, ST )
14 for t = 0 until T, if t mod (2fverify)−1 = 0 do
15 x0 ← x

16 if x0 /∈ Âc then
17 Q.pop()

18 while true do
// Real-time execution loop

19 if d(x, Q.last()) ≤ ε then
20 Q.pop()
21 x̃G ← Q.last()
22 return x̃G
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Chapter 4

Implementation

In this chapter, the details about implementing Scenario-Shield are outlined for two
robotic systems, namely, a holonomic ground robot and a mobile manipulator. In both
cases, the underlying feedback motion planner is a geometric fabric.
On both robotic platforms, parallel computing is utilized for fast batch rollouts, as
shown in Section 4-1. The platform-specific details for the ground robot and the mobile
manipulator are presented in Section 4-2 and Section 4-3, respectively.

4-1 Batch trajectory rollouts

The proposed algorithm requires forward simulation of the autonomous system dy-
namics from many initial conditions. This task is well-suited to the parallel computing
paradigm of single instruction, multiple data (SIMD), which allows multiple rollouts
to be computed simultaneously. As a result, the computational cost per rollout scales
sublinearly with the batch size.
The Python library JAX [28] facilitates writing SIMD-style programs that execute ef-
ficiently on parallel compute resources such as graphics processing units (GPUs). In
practice, this is leveraged by compiling the mathematical expression that defines a fab-
ric rollout prior to runtime. This compilation step requires fixing the rollout horizon
and the number of inputs. The inputs to the compiled function include a batch of initial
states, circular obstacle locations and radii, and the goal configuration; the outputs are
the corresponding terminal states.
JAX employs just-in-time (JIT) compilation, meaning that the function is only compiled
into platform-specific machine code upon its first evaluation. This compilation is per-
formed through accelerated linear algebra (XLA). To avoid a runtime delay due to this
initial compilation, it is beneficial to perform a warm-start by evaluating the function
once during system initialization. While the compiled function can be cached for reuse,
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it is important to note that evaluating it in a new process will trigger retracing before
a cache hit can be recognized.
The underlying geometric fabrics are implemented using the symbolic differentiation
capabilities of CasADi [29]. These expressions are converted to JAX-compatible code
using the Jaxadi library [30].

4-2 Holonomic ground robot

The system dynamics of a holonomic ground robot on a plane with acceleration-based
control are simply integrating the velocities and acceleration inputs:

xk+1 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

xk +


0 0
0 0
1 0
0 1

uk, (4-1)

where ∆t is the discrete time step, xk is the stack of the configuration vector q ∈ R2

and its velocity ∆q, i.e., xk =
[
qk ∆qk

]⊤
, at time k. The control input integrates

the geometric fabrics’ continuous-time acceleration signal, i.e., uk =
∫ (k+1)·∆t

k·∆t q̈(τ)dτ .
However, since an analytic solution of the integral is not available, the forward Euler
numerical integration method is used. Note that while some geometric fabrics ap-
plications use fourth-order Runge-Kutta integration schemes [31], forward Euler was
successfully applied to geometric fabrics in [32], see [33] for a detailed discussion, since
the rollouts’ computational complexity depends linearly on the number of function
evaluations necessary, forward Euler is chosen. As introduced in subsection 2-1-2, the
acceleration policy is obtained through:

q̈ = −(
(
M(q, q̇)

)−1
ξ(q, q̇) +

(
M(q, q̇)

)−1
(∂qψ(q) +B(q, q̇)q̇)), (4-2)

which is constructed according to the recipe in subsection 2-1-2, but requires the fol-
lowing choices of geometries and differential maps for baseline, goal, and obstacle.
For each obstacle, first, the differential map ϕobst,i : C → R≥0 introduces a measure of
the distance between the obstacle’s contour and the robot’s center:

ϕobst,i(q) = ||q − oi||2
ri

− 1, (4-3)

where oi and ri are the ith obstacle’s center and radius, respectively. Then, the obstacle
geometry on the latent variable z = ϕobst,i(q) is chosen to be:

hobst = −ż
2 · (sign(ż)− 1)
z10 + ε

, (4-4)

where ε is a small positive number to avoid division by zero.

Leon Kehler Master Thesis



4-3 Mobile manipulator 33

The goal reaching potential, priority matrix, and damping matrix are :

ψ(q) = ||q − qG||2, M(q, q̇) = wM · I2, and B(q, q̇) = wB · I2, (4-5)

respectively, where wM ∈ R>0 and wB ∈ R>0 are weighting factors, and I2 is the
identity matrix of size 2.
Then, the feedback motion planner is queried at frequency fplanner, while the Scenario-
Shield algorithm runs in parallel at fverify, adapting the geometric fabrics’ goal qG.
The verification algorithm’s scenario program is solved using the optimization toolbox
CVXPY [34].

4-3 Mobile manipulator

The considered mobile manipulator is the Clearpath mobile manipulator platform. This
system comprises a holonomic mobile base, the Clearpath Dingo, integrated with a 6
degrees of freedom (DoF) Kinova robotic arm, as shown in Figure 4-1.

(a) in Gazebo simulation (b) configuration description

Figure 4-1: Dingo ground robot with a Kinova arm attached.

The robot’s configuration vector q is hence defined as

q =
[
x y θ j1 j2 j3 j4 j5 j6

]⊤
, (4-6)

where (x, y, θ) ∈ R2×S1 are the base’s cartesian position and orientation, and (j1, j2, j3,
j4, j5, j6) ∈ T 6 are the revolute joints of the manipulator. Hence, the configuration vec-
tor lives in the 9-dimensional configuration space C = R2×T 7. The robot is holonomic
and thus, the vanilla theory of geometric fabrics can be applied.
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Due to the omnidirectional drive of the base, the robot is a holonomic system. Hence,
similar to the previous ground robot, the system dynamics follow those of a double
integrator, with the first integration to map the geometric fabrics’ acceleration policy
to a velocity command, and once in the simple dynamics

xk+1 =
[

I9 ∆t · I9
0 I9

]
xk +

[
0
I9

]
uk, (4-7)

where again xk =
[
qk ∆qk

]⊤
, uk = clipped(ũk), and ũk =

∫ (k+1)·∆t
k·∆t q̈(τ)dτ . The nomi-

nal control input ũ is clipped to avoid velocity commands that exceed the robot’s limits,
with maximum velocities of vmax, base and vmax, arm for the base and arm, respectively,
thus,

clipped(ũk) =
[
min

(
1, vmax, base

||ũ(1:3)
k

||2

)
(ũ(1:3)

k )⊤ min
(

1, vmax, arm

||ũ(4:9)
k

||2

)
(ũ(4:9)

k )⊤
]⊤
, (4-8)

where ũ(i:j) denotes subvector ũ containing components i through j.
Next, the goal potential and geometries for obstacle and joint limit avoidance are spec-
ified, which follow the vanilla choices of the toolbox’s implementation.
The goal reaching follows from the potential [9]

ψ(x) = α0

(
∥x∥+ 1

α1
ln
(
1 + e−2α1∥x∥

))
, (4-9)

the joint limit avoidance geometry, and associated energy Lagrangian

hlimit(x, ẋ) = − ẋ
2

x
, Le = −ẋ

2(sign(ẋ)− 1)
x2 , (4-10)

and obstacle avoidance geometry and corresponding energy

hcollision(x, ẋ) = − ẋ
2

x
, and Le = 0.1ẋ2

x2 , (4-11)

all other terms are as introduced in subsection 2-1-2.
Unfortunately, the toolbox’s expression contains many elementary operations, such
that even though the feedback law is closed-form, its evaluation is slow. This effect is
amplified over rollouts; therefore, the next subsection demonstrates how this problem
can be mitigated.

4-3-1 Simplifying the system dynamics

Control engineers are commonly concerned with order reduction and linearly approx-
imating dynamical systems. In this case, the high order of the dynamical system is
not directly a problem; instead, the number of primitive operations is a bottleneck
for the forward simulation. Specifically, the geometric fabric terms related to obstacle
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avoidance involve numerous symbolic gradient calculations, which, once converted to
JAX, are evaluated numerically, necessitating many function evaluations.
The evaluation time for batched rollouts is, for long horizons (> 100 steps), roughly
proportional to the number of primitive operations necessary for one timestep of the
system dynamics; for shorter horizons, the overhead of launching the kernel for the
GPU computations dominates. Therefore, it is of interest to inspect the geometric
fabrics’ expression and check whether dropping certain expressions reduces the number
of primitive operations. A comparative table for the number of obstacles and different
combinations of collision links is shown in Table 4-1. In the end, it was chosen to use
the fabrics expression with 10 obstacles and collision spheres only at the chassis and
the wrist, which reduced the number of expressions by over 78%.

Table 4-1: Number of primitive computations for different geometric fabrics expressions

No. of obstacles Collision Links (C=chassis, W=wrist, EE=end-effector)

C C, W C, EE C, W, EE

3 1,982 29,801 44,013 64,768
5 2,336 43,891 65,165 99,656
10 3,221 79,116 118,045 186,876
20 4,991 149,566 223,805 361,316

Alternatively, computing Jacobians can be made less complex by reducing the number
of configuration variables to take the partial derivative against. This can be realized
by locking some of the manipulator’s joints.

4-3-2 ROS architecture

While Scenario-Shield can be applied to any underlying motion planner, the goal was
to integrate it with the lab’s existing implementation of geometric fabrics for a mo-
bile manipulator. This existing implementation uses robot operating system (ROS)
Noetic. The geometric fabrics planner is an action server that, upon receiving a goal
configuration in the joint space, starts sending velocity commands to the robot.
The Scenario-Shield implementation integrates this through a new action server, which
inherits all methods of the previous one, but adds a periodically executed verification
loop. Unfortunately, ROS Noetic is compatible with Python up to version 3.8, while
the parallelization code of JAX requires Python 3.10. This is why the parallel rollouts
are moved to a separate JAX-rollout-server node, which communicates via rosbridge.
For the code please refer to this GitHub repository.
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Chapter 5

Experiment

The described implementation of the Scenario-Shield algorithm together with a fabrics
motion planner was simulated for a holonomic ground robot and a mobile manipulator.
In both scenarios, we compare the proposed Scenario-Shield algorithm, including its
extensions, as mentioned in Section 3-4, with a vanilla geometric fabrics planner.
This chapter begins with Section 5-1, which outlines the setup of the experiments,
including the evaluation metrics, the computation time, and the randomization of the
environment. Next, Section 5-2 and Section 5-3 display the experiment results for the
holonomic ground robot and the mobile manipulator, respectively.

5-1 Setup

For each algorithm configuration, the experiment will be conducted over N randomized
environments for K time steps. In each environment, we analyze the objective to reach
the goal configuration qG while avoiding a set of obstacles. The ith experiment will
yield the trajectory x

(i)
1:K =

[
q

(i)
1:K q̇

(i)
1:K

]⊤
. The following four metrics are evaluated:

1. The success rate Rsucc := ∑N
i=1 1QG

(q(i)
K )/N ,

2. The average time to reach the goal among the successful runs τ̄ :=
∑N

i=1 1QG
(q(i)

K )τi

Rsucc·N ,

3. The average of the resulting path lengths normalized by the corresponding path
length found by optimal rapidly-exploring random tree (RRT)*, among the suc-
cessful runs, and

4. The average total curvature among successful runs normalized to that of RRT*
κ̄ :=

∑N

i=1 1QG
(q(i)

K )κi/κRRT
i

Rsucc·N ,
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where 1QG
(qK) is the indicator function evaluating to 1 if if the final configuration is

within a small region around the goal QG, i.e., qK ∈ QG, and 0 otherwise. The time
it took to reach the goal τi = min{k ∈ {1, . . . , K} | q

(i)
k ∈ QG}, the total cuvature

κi = ∑K−1
k=1 arccos (qk−qk−1)⊤(qk+1−qk)

||qk−qk−1||·||qk+1−qk|| , and κRRT
i is the total curvature of RRT’s solution

for the ith environment. The reason to normalize by the path length and total curvature
of RRT* is that neither the proposed method nor the baseline is an optimal method.
Moreover, only the successful runs are counted towards the mean path length and mean
total curvature, as they would otherwise skew the result.

Computation time

The computation time for the in-parallel running verification loop is comprised of three
main components. First, offline, i.e., before runtime, the compilation time of the parallel
fabrics rollout and during runtime, querying computing the rollouts, and solving the
scenario program.

All computations were done on a computer running Ubuntu 22.04 with the following
hardware specs: 128GB of RAM, an Intel(R) Core(TM) i9-14900 CPU, and a NVIDIA
GeForce RTX 5090 GPU.

Randomizing the environment

To incentivize clustering of obstacles, which produces regions of no attraction, the
spherical obstacles’ centers are randomized following trajectories of finite, discrete ran-
dom walks of fixed length. For Nwalks walks, each of fixed length Nlength, the set of
obstacles O ⊂ W can be written as:

O :=
Nwalks⋃

i=1
{x ∈ W : ||x− oi,j||22 ≤ o2

r} with (5-1)

oi,j+1 = oi,j + s ·
[
cos(wj) sin(wj)

]⊤
for j ∈ {1, . . . , Nlength}, (5-2)

where s is a stepsize, wj ∼ U(S1), and oi,0 ∼ U(W). An example environment is shown
in Figure 3-1a.

After sampling the obstacles, the path planning algorithm RRT is employed to verify the
feasibility of this environment. Since RRT is probabilistically complete, an environment
for which no solution is found can be safely discarded without biasing the sampled
environments too much.
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5-2 Holonomic ground robot

The system dynamics of the holonomic ground robot follow the implementation details
outlined in Section 4-2. Since the obstacles are circular, defined by their position
and radius, the robot’s geometry can be accounted for by expanding each obstacle by
the robot’s configuration space footprint. In the special case of a circular robot, this
corresponds to expanding each obstacle by the robot’s radius, effectively reducing the
problem to that of a point robot navigating among enlarged circular obstacles. Here,
it is assumed that the ground robot’s physical shape projected onto the workspace
resembles a circle.

All relevant parameters related to the underlying geometric fabrics planner, the Scenario-
Shield algorithm, and the environment are collected and summarized in Table 5-1,
where B∞(c, r) = {q ∈ W : ∥q − c∥∞ ≤ r} denotes the closed infinity norm ball.

Table 5-1: Parameters for the geometric fabric and Scenario-Shield for the ground robot

Description Notation Value

Geometric Fabric
Discrete time step ∆t 0.02s
Integration scheme - forward Euler
Damping weight wB 1
Priority matrix weight wM 3

Scenario Shield
Verification frequency fverify 0.2 Hz
Full rollout length T 3000
Partial rollout length t 1150
Sampling space B(q0) B∞(q0, 2)
Mondrian coverage region A CA 1
Mondrian coverage region Ac CAc 0.99
Monomials up to degree d 9
Set failure probability of a rollout δ 0.2
Risk of the scenario program ϵ 0.2
Number of sampled scenarios N 100

During execution, there are two computationally expensive operations: first, the roll-
outs, which can be computed sequentially on central processing unit (CPU) or in paral-
lel on graphics processing unit (GPU), and second, solving the scenario program. The
former’s relation to the number of sampled states is depicted in Figure 5-1.

As expected, the CPU’s computational complexity is linear in the batch size, while the
GPU’s is independent of the batch size, yet, up to batches of 120 initial conditions the
overhead of launching the single instruction, multiple data (SIMD) program dominates,
and for such small batch sizes computing on the CPU is faster w.r.t. the walltime.
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Figure 5-1: Rollout computation and compile times displayed with solid and dashed lines, respec-
tively, for the ground robot’s fabric with 100 obstacles and 1150 steps. Opaque band indicating
one standard deviation.

Results

The results for the 100 experiments per algorithm configuration are shown in Table 5-2.
The randomization is consistent across different algorithm configurations, i.e., the ran-
domly generated environments have the same starting seed for each algorithm configura-
tion. The baseline (0) is the underlying geometric fabrics planner without any runtime
verification. For the following algorithm configurations, this baseline is equipped with
different variants of the Scenario-Shield algorithm; these are, (1) the basic Scenario-
Shield (SS) at 0.2Hz, (2) equipped with the scenario program, SS-SP, at a relatively
lower frequency of 0.15Hz to accommodate solving the scenario optimization program,
(3) the partial rollout extension SS-PR at the same frequency as SS, (4) SS-PR at
a high frequency of 1Hz enabled through the shorter computation time of the partial
rollouts opposed to full ones, and (5) both extensions combined, again at a slightly
lower frequency to accommodate solving the optimization problem.

Table 5-2: Simulation results of each algorithm configuration of the ground robot over 100
randomized environments. Best value in bold. Standard deviations in brackets. Baseline in grey.

Algorithm Configuration Evaluation Metrics

(fverify [Hz]) Rsucc τ̄ [s] l̄ [-] κ̄ [-]

baseline (-) 0.48 42.8 (5.02) 1.21 (0.091) 1.47 (3.39)
SS (0.2) 0.93 44.8 (6.92) 1.16 (0.079) 1.38 (1.56)
SS-SP (0.15) 0.89 44.0 (6.04) 1.10 (0.081) 1.18 (1.31)
SS-PR (0.2) 0.60 37.0 (1.98) 1.15 (0.067) 1.30 (1.32)
SS-PR (1) 0.84 38.6 (2.93) 1.21 (0.187) 1.44 (1.50)
SS-PR-SP (0.9) 0.78 39.4 (5.26) 1.05 (0.256) 1.31 (1.32)
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The SS increases the success rate by a factor of 1.9 compared to the baseline. However,
due to the cost of full rollouts, its verification frequency is limited to a maximum of
0.2Hz. This is a significant limitation, as local samples from 5 seconds ago may no
longer be informative to the present robot’s state. In this case, this was addressed
by holding the simulation until the verification loop had completed. However, this
approach is not realistic for real-time operation. Consequently, in its unmodified form,
the algorithm’s verification results are only applicable to slow-moving systems.
When adding the scenario program, i.e., SS-SP, the allowable frequency drops even
more to allow for the scenario program to be solved; moreover, the early switch back
through the scenario program seems to decrease the path length, yet not in a sta-
tistically significant way. It appears that the scenario program decreases the success
rate slightly, which, upon investigation, as displayed in Section 5-2, may be caused
by incorrectly dropping a subgoal, despite not yet being in the region of attraction of
the subgoal next in line. This could possibly be mitigated by decreasing the user-set
allowable risk parameter ϵ in the scenario program; however, this would then demand
a larger number of samples.
The next algorithm configuration SS-PR experiences a drastic drop in the success rate
if run at the same low frequency of 0.2Hz, this is expected, as the partial rollouts clas-
sified through the conformal heuristic may include incorrect labels, hence, introducing
misleading subgoals. However, the success rate performance can be largely recovered to
0.84% if the verification frequency is increased to 1Hz. This is an important milestone,
as only in this configuration the verification becomes real-time viable for the ground
robot, as the robot does not make significant progress within the sampling region within
a verification period.
Lastly, combining both extensions into the SS-PR-SP configuration run at 0.9Hz, to
again account for the scenario program, experiences a slight drop in success rate. It is
not possible to attribute that to the slightly lower verification frequency or the risk of
the scenario program. Furthermore, in this configuration, the relative path length is the
shortest; however, its standard deviation is too large to deduce statistical significance
at a reasonable significance level.

Example cases

In this section, a few examples are provided to give more intuition about the differences
between the different extensions. In all cases, the ground robot must go from the start
configuration q0, denoted by the green star, to the goal configuration qg, denoted by
the red star, while avoiding the grey obstacles.
Figure 5-2 shows some key frames of the SS configuration at a verification frequency
of 0.2Hz. At a simulation time of 10s, the samples include, for the first time, those
that belong to the region of attraction within the rollout horizon A. By adapting the
underlying dynamical system by selecting the configuration of one of those samples as
a subgoal, the robot can be successfully steered out of the region of no attraction Ac.
However, note that the robot’s state at t = 15s is not in the backwards reachable set
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of the picked subgoal; hence, as shown at t = 30s, another subgoal must be placed into
the queue. Upon successfully reaching the proximity of the second subgoal, the first
subgoal can eventually be reached, successfully steering the robot into the region of
attraction of the initial underlying dynamical system.

time = 10.0s time = 15.0s time = 30.0s time = 45.0s

Figure 5-2: Scenario-Shield at 0.2Hz (selected frames)

Figure 5-3 shows how the partial rollouts affect the process. As can be seen, the rollouts
appear shorter; however, due to the five times higher verification frequency, effectively,
five times more samples are obtained during the same simulation interval. While this
effect does not appear significant in the statistics, in this specific environment, the
larger amount of samples allows to find a piece of the region of attraction earlier,
hence, avoiding first getting stuck behind the first obstacle before adapting, as seen in
Figure 5-2 at t = 10s.

time = 1.0s time = 8.0s time = 9.0s time = 11.0s

Figure 5-3: Scenario-Shield with partial rollouts at 1Hz (selected frames)

Next, Figure 5-4 shows a run of SS-SP which suffers from an incorrect estimate of the
region of attraction, leading to taking a detour all the way to the right-most obstacle.
In particular, in the last frame, it is apparent that the fidelity of the semi-algebraic
set description leads to a spurious, incorrect region of attraction approximation. While
this is unexpected, as the scenario program should allow for avoiding detours, this
specific instance can be fixed by increasing the frequency, achieved by combining both
extensions, as displayed in the selected frames of SS-PR-SP Figure 5-5.
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time = 6.66s time = 13.32s time = 39.96s time = 53.28s

Figure 5-4: Scenario-Shield with the scenario program at 0.15Hz (selected frames)

time = 17.92s time = 19.04s time = 23.52s time = 30.24s

Figure 5-5: Scenario-Shield with partial rollouts and the scenario program at 0.9Hz (selected
frames)

5-3 Mobile manipulator

For the mobile manipulator, the baseline approach using pure geometric fabrics is
compared to the Scenario-Shield (SS) method, as well as two variants of the scenario
program (SS-SP). These variants approximate the region of attraction in different ways:
one using a semi-algebraic set, and the other using a minimum enclosing ellipsoid.

Conformal partial rollouts could not be applied to the manipulator. This was due to
the poor predictive performance of the simple heuristic, which rendered the conformal
prediction intervals uninformative. In particular, the label-conditional coverage regions
produced by Mondrian conformal prediction (CP) failed to separate, making probably
correct classification infeasible. A preliminary explanation is twofold: first, the reach-
ability induced by geometric fabrics for manipulators depends on the pseudoinverse of
the Jacobian, which can become singular in certain joint angle regimes; this likely has
not been accounted for by the heuristic. Second, the heuristic may be overly simplis-
tic. Incorporating additional information, such as joint velocities, or employing a more
capable predictor, such as a multilayer perceptron, could potentially resolve this issue.

Master Thesis Leon Kehler



44 Experiment

Therefore, we cannot leverage partial rollouts for the mobile manipulator scenario, re-
sulting in the verification loop being run at only 0.2Hz due to the higher computational
load of the full-length rollouts.

For the experiments, the parameter choices are summarized in Table 5-3, and the
quantitative results are summarized in Table 5-4. The Scenario-Shield algorithm with
the ellipsoidal approximation of the complement of the region of attraction improved
the success rate by 87.5%. Interestingly, the scenario program, opposed to the previous
ground robot case, further improved the success rate and decreased the mean time to
goal compared to the basic Scenario-Shield algorithm. The reason for this is presented
below, together with motion sequences of the different algorithms.

Table 5-3: Parameters for the geometric fabric and Scenario-Shield for the mobile manipulator
robot

Description Notation Value

Geometric Fabric
Discrete time step ∆t 0.05s
Integration scheme - forward Euler

Scenario Shield
Verification frequency fverify 0.2 Hz
Full rollout length K 500
Sampling space B(q0) B∞(q0,1:3, 1.5)× B∞(q0,4:9, 0.3)
Monomials up to degree d 3
Risk of the scenario program ϵ 0.2
Number of sampled scenarios N 20

Table 5-4: Simulation results of each algorithm configuration of the ground robot over 20
randomized environments. Best value in bold. Standard deviations in brackets. Baseline in grey.

Algorithm Configuration Evaluation Metrics

Rsucc τ̄ [s] l̄ [-] κ̄ [-]

baseline (-) 0.40 33.2 (4.01) 2.11 (0.167) 1.87 (0.91)
SS 0.60 62.1 (18.2) 4.69 (0.888) 3.19 (2.73)
SS-SP (ellipsoid) 0.75 42.4 (12.9) 3.10 (0.498) 2.11 (1.30)
SS-SP (semi-algebraic) 0.70 45.7 (5.81) 4.03 (0.917) 2.05 (1.89)

The motion sequence of the vanilla geometric fabrics planner is shown in Figure 5-6,
where the grey spheres represent obstacles, and the trailing green lines trace the paths of
the robot’s chassis and wrist joint. The planner temporarily becomes stuck behind the
obstacles, which sufficiently reduces the robot’s velocity for the obstacle avoidance term
to vanish; note its dependency on velocity in Equation 4-11. Once the goal-reaching
potential outweighs the now-negligible collision avoidance term, the robot proceeds to
cut through the obstacles. This illustrates the limitation of geometric fabrics, which,
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under the assumption of boundary-conforming collision geometries, may not preserve
safety.

Figure 5-6: Geometric Fabrics getting first trapped in a deadlock, and then, violating a collision
constraint. Green lines trail the chassis and wrist joints.

Next, Figure 5-7 shows the rollouts from locally sampled configurations; for visual-
ization purposes, only the base positions of the rollouts are displayed. Blue paths
indicate successful reach of the (sub)goal within the specified rollout horizon, while red
paths indicate failure. While Scenario-Shield successfully navigates around the obsta-
cles without getting stuck, the delay introduced by rollout computation leads to a key
issue: after sampling the neighboring configurations, the robot continues to move while
rollouts are still being computed in parallel. As a result, by the time a successful rollout
is identified, the robot may have already progressed toward the goal; thus, executing
the earlier sampled rollout may actually represent a regression. In the basic implemen-
tation of Scenario-Shield, the robot must move to a subgoal in order to remove it from
the queue. This effect is visible in the second and third snapshots of Figure 5-7, where,
in the second frame, the robot is actually closer to the goal than in the subsequent
third frame.

Figure 5-7: Scenario-Shield allowing the robot to navigate around the obstacles.

It turns out that using a continuous region of attraction estimate significantly alleviates
this issue. When the robot has moved beyond the originally sampled configurations, it
may no longer need to return fully to the initial state of a successful rollout, provided
its current state lies within the estimated region of attraction. This would not be pos-
sible with a finite set approximation, where membership of intermediate states cannot
be evaluated. This benefit is illustrated in the third snapshot of Figure 5-8: despite
being spatially distant from the successful rollouts, the robot is able to proceed, as it
has already entered the estimated region of attraction. The semi-algebraic set parame-
terization, i.e., describing the region of attraction A as the sublevel set of an optimized
sum of monomials, exhibits similar behavior, as shown in Figure 5-9.
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Figure 5-8: Scenario-Shield with the ellipsoid scenario program.

Figure 5-9: Scenario-Shield with the semi-algebraic scenario program.

Note that there is a trade-off between the two scenario program approaches. The semi-
algebraic set description allows for a hard separation of the samples, provided that
sufficiently high-order monomials are used. In contrast, the minimum enclosing ellip-
soid approach does not offer such separation. Instead, it approximates the complement
of the region of attraction, Ac , by computing the minimum volume ellipsoid that en-
closes the negative samples. Imposing both inscribing and enclosing constraints would
render the problem non-convex, and moreover, potentially infeasible, because a single
ellipsoid cannot, in general, separate two classes. However, the semi-algebraic set ap-
proach suffers from a rapid growth in the number of decision variables, which increases
exponentially with the dimensionality of the configuration space. Consequently, even
though the semi-algebraic formulation can be solved via linear programming, while the
ellipsoidal approach requires solving a convex quadratic program, Figure 5-10 shows
that for four or more dimensions, the ellipsoid-based method is computationally more
efficient.
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Figure 5-10: Mean solving times with standard deviations over 100 randomized scenario pro-
grams.
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Chapter 6

Conclusion

This thesis addressed the global attractivity problem in geometric motion planning.
While several modern feedback planners guarantee almost global attractivity, i.e., for
all initial conditions except those on a set of Lebesgue measure zero, these guaran-
tees typically rely on restrictive assumptions. Notably, most geometric planners with
an underlying dynamical system require that the obstacle set is a union of disjoint,
star-shaped obstacles, a condition rarely satisfied in practical scenarios encountered
by robots. When such assumptions are violated, the system can remain stable; how-
ever, the complement of the region of attraction may have positive measure, thereby
introducing deadlocks in robotic motion planning.
A runtime verification algorithm, called Scenario-Shield, is proposed that adapts the
underlying dynamical system during runtime to steer it back into the region of attrac-
tion. Motivated by the availability of closed-form feedback laws and recent advances
in parallel computing, this work proposes a sampling-based approach. Neighboring
robot configurations are locally sampled and forward simulated under the geometric
planner’s dynamics to approximate the finite-time region of attraction. This enables
the selection of intermediate goals that steer the robot toward these verified regions.
The process is repeated iteratively, online, until the current configuration is connected
queue of finite-time backward reachable sets.
The adaptation mechanism operates at a fixed verification frequency, while the under-
lying feedback planner can run at a higher control rate. To make the verification loop
real-time viable, forward simulations are computed in parallel. Additionally, conformal
prediction is employed to decide correctly with high probability whether a sampled
configuration lies within the K-step backward reachable set using only a shorter k-
step forward simulation (with k ≪ K), thereby significantly reducing computational
overhead.
A further fragment of picking subgoals from a finite subset of the region of attraction is
that, due to possibly large dispersion of the samples, the path connecting all subgoals
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will make unnecessary detours. This is addressed by dropping subgoals based on reach-
ing an uncountably infinite set approximation, which is obtained through the scenario
approach.
Finally, the adaptation of goals introduces a switched dynamical system. While individ-
ual subsystems may be stable, switching can lead to instability in general [35]. However,
in this work, the use of probably correct attractivity classifications and probably ap-
proximately correct region estimates allows to ensure that the probability of infinite
switches approaches zero, thus, with almost certainty not inducing an instability.
While a guarantee of global attractivity could not be achieved, the experimental val-
idation demonstrated that the proposed Scenario-Shield algorithm boosts the success
rate by a factor of ≈ 1.94 and ≈ 1.88 for a holonomic ground robot and a mobile ma-
nipulator, respectively. Moreover, an argument can be made that if the sampling space
of Scenario-Shield is sufficiently large, such that it intersects the underlying region of
attraction and the queue of backward reachable sets can be established, the algorithm
will successfully adapt the underlying geometric planner to reach the goal.

6-1 Limitations

Despite its effectiveness, the method has several limitations related to the statistical
uncertainty quantification techniques as outlined below.
First, the partial rollout technique is calibrated using conformal prediction (CP), en-
abling shorter, thus faster, rollouts that still allow for probably correct classification of
whether initial conditions lie within the backward reachable set of a goal configuration.
However, this relies on the assumption that nonconformity scores are exchangeable be-
tween calibration and test time, a condition that may not always hold.
Moreover, as seen for the mobile manipulator, the simple heuristic is such a poor pre-
dictor that the coverage region obtained through CP is uninformative. Specifically, in
the case of Mondrian CP, the coverage regions overlap.
Second, the underlying region of attraction is approximated using the scenario ap-
proach, which comes with two main limitations: (1) To keep the scenario program
tractable when optimizing the chosen semi-algebraic set, only monomials up to a finite
degree are considered, potentially limiting the approximation accuracy. (2) Ideally, the
approximated region of attraction Â would define as a switching surface. However,
the scenario approach requires that test constraints be independent and identically dis-
tributed (i.i.d.) relative to the sampled constraints. Switching precisely at the contour
of Â would require evaluating a point that depends on the sampled scenarios through
the solution of the scenario program, hence, violating this i.i.d. assumption.
Third, the local sampling space of neighboring robot configurations used in this method
is currently static, i.e., it translates with the robot but does not adapt in size or shape.
Consequently, if the robot starts outside the region of attraction and never flows toward
its boundary, the sampling region may never intersect with the region of attraction,
leading to a persistent deadlock. This observation motivates the first direction for
future work.
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6-2 Future work
Based on the limitations identified in this work, three main directions for future research
are proposed: (1) improving the sampling strategy, (2) addressing the exchangeability
assumption in conformal prediction, and (3) integrating the method into hierarchical
motion planning frameworks.
The sampling region could be made adaptive, expanding or shifting based on the ob-
served fraction of samples that lie within the estimated region of attraction. This would
help prevent deadlocks by increasing the likelihood of intersecting the region of attrac-
tion even when the initial configuration is far from it. In addition, the current sampling
strategy for the ground robot follows a uniform distribution but rejects configurations
within obstacles. In the case of the mobile manipulator, however, pure uniform sam-
pling is performed, which often produces configurations in self-collision. Rolling out
such invalid samples wastes computational resources. To address this, rejection sam-
pling, or more sophisticated sampling techniques, should be implemented. However,
this introduces a tradeoff between the computational cost of collision checking and the
inefficiency of blindly simulating invalid samples.
Verifying the assumption of exchangeable nonconformity scores in practice is challeng-
ing. This is primarily because nonconformity scores depend on both the prediction
and the ground truth, but the latter is unavailable at test time. As a result, potential
distribution shifts may go undetected. Robust conformal prediction [36], which retains
guarantees under shifts within an a priori assumed bound, can help mitigate this is-
sue, but they ultimately face the same challenge: ensuring that the actual test-time
distribution shift does not exceed the assumed bounds.
In the context of feedback motion planning, however, uncertainty is primarily driven
by environmental variability. Interestingly, distinct distributions of obstacle placements
may still induce similar distributions of nonconformity scores. Analyzing this relation-
ship in more detail could provide a practical pathway for verifying the exchangeability
assumption; namely, by checking whether the observed environment aligns with an ac-
ceptable distribution, which is known not to cause a shift within the assumed bounds.
This thesis focused on improving the feedback motion planning layer, but its contri-
butions also have implications for hierarchical motion planning architectures. In such
systems, a global planner may operate with global obstacle information and a simpli-
fied dynamical model to compute a coarse plan, while a local planner refines this plan
using locally perceived obstacles and a more accurate representation of the system dy-
namics. Connecting these layers in an assume-guarantee framework typically requires
explicit knowledge of the local planner’s region of attraction. However, as shown in
this thesis, local planners in the class of feedback planners, such as navigation func-
tions or geometric fabrics, do not an analytic expression if the assumptions for almost
global attractivity are violated. Instead, the proposed sampling-based method can be
employed to empirically approximate the local planner’s region of attraction, enabling
assume-guarantee style relationships.
This thesis contributes toward closing the gap between geometric motion planning guar-
antees and the practical realities of robotics applications, where required assumptions
for reach-avoid guarantees do not hold.
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Glossary

List of Acronyms

CP conformal prediction
MPC model predictive control
PAC probably approximately correct
ROS robot operating system
DoF degrees of freedom
RRT rapidly-exploring random tree
i.i.d. independent and identically distributed
SIMD single instruction, multiple data
GPU graphics processing unit
XLA accelerated linear algebra
CPU central processing unit
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