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Abstract

Nowadays, most users access the web through search engine portals. How-
ever, information needs can often be ill-defined or too broad to be solvable by a
list of results the user has to scroll through, which implies that he is most likely
required to refine the need by himself to reach the desired result. In recent years,
researchers have attempted to tackle these issues through conversations, more
specifically through conversational search [104]. This topic has seen an increase
of interest from the research community, proven by the appearance of specialized
workshops and seminars. The general public has also started to show interest,
proven by the emergence of a wide range of virtual assistants, such as Google
Assistant, Microsoft Cortana or Amazon Alexa. As such conversational systems
seek to fulfill an information need of a user, they should be able to elicit and fully
understand his requirements regardless of the domain, track the conversation as it
evolves while attempting to clarify the initial information need and provide sug-
gestions and answers that are based on concrete knowledge sources. Although
various developments in domains adjacent to conversational search enabled us to
better understand natural language, there is a lack of large-scale datasets that are
appropriate for training models to perform conversational search tasks. Through
our research, we have built a collection of over 80,000 conversations that fulfill
the requirements of a conversational search dataset. We have benchmarked this
dataset on three distinct tasks using multiple baselines.
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Chapter 1

Introduction

Steady progress in machine learning and, more specifically in neural networks, has
paved the way for significant improvements in how information systems understand
natural language and interact with people through dialogues [119] [74]. Such systems
can be described as being conversational if they assist users through a prolonged di-
alogue, either in spoken or written form. Figure showcases an example of how
a conversational agent should perform in a real-life scenario, along with an example
of how current conversational agents behave (in this example, Google Assistant). In
the first image, the agent recognizes the feedback provided by the user and adjusts his
answer accordingly. The virtual assistant in the second example does not take into
account further details (“My computer runs Mac OS”) and provides the same final
answer as the one retrieved after the first turn.

Conversational search 104} 58]] is a research area focused on the creation of agents
that are capable of fulfilling a complex information need expressed by a human user.
An example of such a need is depicted in Figure [I.1] as the user expresses multiple
requirements as the conversation progresses (“automatically find all residual files”,
“my computer runs Mac OS”, “I’m looking for something that is free”), as opposed to
a simple request, such as “What is the weather today.”

In contrast to standard search engines, which usually return a results page, a con-
versational search agent should be able to handle mixed-initiative interactions, which
implies a “flexible interaction strategy in which each agent (human or computer) con-
tributes what it is best suited at the most appropriate time.” [4]]. Therefore, a conver-
sational agent should be able to fully understand natural language queries, respond to
follow-up questions or feedback and interact with the user whenever it deems neces-
sary. Through multiple turns, the agent should be able to construct a clearer picture of
the user’s information need. The conversation in the left part of Figure|l.1| shows an
example of this process: the agent first tries to identify the operating system the util-
ity should operate on, then recognizes the additional details provided by the user and
supplies a potential answer. Following the negative feedback from the user, the agent
adjusts its answer. The final positive feedback signals the end of the conversation.

Conversational search is a topic that has received significant attention in more re-
cent times, proven by the appearance of several dedicated workshops (CAI 2017-

Ihttps://sites.google.com/view/cair-ws/home
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Ideal conversation with a Conversation with existing commercial
conversational search agent "virtual i 1t" (Google Assi 1t)
| am looking for a way to be able to : | am looking for a way to be able to
‘ automatically find all residual files left afteri ‘ automatically find all residual files left after i

uninstalled an application on my computer. H uninstalled an application on my computer.

. Result page
Can you tell me what operating system your

computer is using? Agent

wiogos.

?.'.I ok

‘ My computer runs Mac OS. Agent

CleanMyMac(url) is a MacOS utility that
looks for junk files or unnecessary cache
files and clears them.

| see | have to pay for this program if | want ;/

‘ to access those functionalities. I'm looking :
for something that is free. : ‘

Agent

My computer runs Mac OS

Then | can recommend Winzip System
Utility Suite (url).

Ok, Il remember that Agent

Agent ‘

2 Looks good! Thanks!
| am looking for a way to be able to
‘ automatically find all residual files left after i
uninstalled an application on my computer.

Agent

‘ Same result page as before

Figure 1.1: Example of an ideal conversational search experience (left) and an actual
conversation performed between the author and Google Assistant (right).

2018, SCAIEI 2017-2019), seminarf] and the emergence of a wide range of global de-
ployments of virtual assistants, such as Google Assistant, Amazon Alexa or Microsoft
Cortana. However, these systems are still limited to simple interactions and short
memory and share more characteristics with Question Answering Systems (QAS) than
proper conversational search. In a study from 2018 by Lopatovska and Williams [81]]
on the usage patterns of Amazon Alexa, several participants reported that the agent
“had some silly responses in relation to the questions we asked.” Another study from
the same year [118] measured what were the top 30 commands that were addressed
to Alexa by the participants. They found that all of them were queries that did not
require further refinement, such as “what’s the weather”, “volume down” or “what’s
the temperature.”

As we will detail in Section and Section a theoretical framework for
conversational search has already been established and many conversational tasks
have been solved by adjacent research domains. Moreover, many efforts were di-
rected towards building conversational datasets (that are used to train neural models to
solve conversational tasks) by researchers from various domains: Dialogue Systems
(DS) [[7, 185]], Natural Language Processing (NLP) [[17, 106} 112} 39] and Information
Retrieval (IR) [101} (132, [135]]. However, none of these datasets fulfill all the require-
ments of a conversational search dataset (defined in Section [2.2)), while also being
large enough to be eligible for training a model. Therefore, in order to obtain a true

2https://scai.info/
3https://www.dagstuhl.de/en/program/calendar/semhp/?semnr:l9461
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conversational search dataset, the knowledge, techniques and tasks that are specific to
each domain need to be aggregated into one system.

1.1 Research objectives

Although the research community has released many conversational datasets, we ar-
gue that neither encompasses all the requirements of a conversational search dataset.
Having built collection that does, we can then use state-of-the-art models in order to
assess to what extent these architectures can be used in real-world applications. Ad-
ditionally, given that our data will be eligible for performing multiple tasks, we study
the effect of training the model to solve several tasks at once (process formally known
as multi-task learning [22]), given that previous research has shown that this can lead
to further improvements of the model [10, 44} 15, [11]].

To conclude, apart from offering an overview of existing conversational datasets,
this research contributes to the field by solving two challenges:

e Design an open-source framework that is capable of building a dataset that is ap-
propriate for training models that can be used in a Conversational Search System
(CSS).

e Use the newly created dataset to evaluate several models for a set of predefined
tasks. Based on the fact that our dataset can be used for multiple conversational
tasks, we also study the effect of multi-task learning on the performance of our
models.

1.2 Our Approach

As a starting point for building the dataset, we have used the data provided by Stack
Exchangeﬂ Stack Exchange is an online collection of Q&A websites from various
domains, such as computer science, literature or travel. Each site covers exactly one
topic, where all the questions, answers and users are rated based on a reputation award
system. This process allows all of these sites to be self-moderating, thus removing
the need of an external entity to enforce rules. Starting from a publicly available data
dumlﬂ the proposed framework fetches the chosen sites, processes and aggregates the
data and returns a formatted dataset. The framework also provides a pipeline to trans-
form the obtained dataset into training data for neural architectures by using negative
sampling in a similar fashion to Yang et al. [[147/]]. In their original form, the conversa-
tions are not annotated to indicate the intents that the users are expressing through their
utterances. To achieve this, we have manually annotated a subset using a custom web
interface. Furthermore, in order to extract the concrete knowledge sources that were
used in the response, we have employed a web crawler to download the text content of
the web pages that were mentioned in the conversations.

The resulting dataset can be used for performing 3 tasks: predicting the most prob-
able next response of the conversational agent based on the current conversation con-

4https://stackexchange.com/sites
Shttps://archive.org/details/stackexchange


https://stackexchange.com/sites
https://archive.org/details/stackexchange

1.3 Main Findings Introduction

"Air travel layovers: How to prolong
them to see the city?"

Say | wanna go Malaga to Rio and the search engine offers me several options

‘ with layover at Paris CDG...Is there any way to tweak the results to have at least
14 hours of layover.. so one can see Paris? More specific: How can | combine

flights to and from the hub myself, but have the advantages of the through-ticket

This is called a stopover and should be no problem ... Concretely, if you are
not going through a travel agent, you need to book your travel as a “multi-city”

trip on the airline's website ... Try to speak with a person and ask for your Agent
bags to be checked through to wherever you need them ..
Humm, somehow the multi-city ticket always is at least 9%
‘ more expensive than the round-trip ticket - regardless of the

fact, that it is the same effort for the carrier.

Try two one-way tickets! Fair or not, price simply does not depend
on effort or cost but on what the carrier can get away with, see Agent
also [URL] and other questions about airline fares

Figure 1.2: Example of a conversation from MANt IS. The user has a complex informa-
tion need, with several specific details. The agent gives an initial response that could
solve the issue. Afterwards, the user gives negative feedback regarding the solution.
Finally, the agent offers another solution and refers to a link that contains more details.

text (also known as conversational response ranking (CRR) [[147])), predicting the in-
tent of a conversation participant based on the utterance [102] and predict the ground-
ing document contained in the response of the conversational agent based on the con-
text (which will be referred to as Grounding Document Ranking (GDR)). In the first
evaluation phase, we have analyzed the performance of several models on each task
independently. Afterwards, in order to verify the effect of learning multiple tasks at
once has on a neural baseline, we have adapted an existing architecture, called Deep
Matching Networks (DMN) [147]], to accept inputs originating from different training
datasets to solve different tasks.

1.3 Main Findings

Using our data processing pipeline, we have created a novel dataset called MANtIS
(short for multi-domain information seeking dialogues dataset). It contains 80,326
two-way conversations and 411,013 utterances spanning over 14 domains. We have
manually annotated using nine types of intents a number of 6,701 utterances spanning
over 1,356 conversations. Using the links that were mentioned by the agent in the
conversations, the web crawler was able to extract 116,061 documents. Figure [1.2
shows an example of a conversation that was captured in the dataset.

For the model training datasets, we provide two variants for the CRR and GDR
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tasks: CRR10, CRR50 and GDR10, GDR50, respectively. The same model performed best
for all of the three proposed tasks, namely BERT, which has been previously shown to
obtain state-of-the-art performance on a variety of NLP tasks [38]]. Further analysis has
shown that models generally perform better on domains that are more distinguishable
from the others. On the CRR tasks, BERT performs better on the conversations that
have a shorter history, while DMN is not affected by this factor. On the GDR task, the
results show the opposite.

In the multi-task learning environment, the results have shown that jointly learning
the CRR and GDR tasks improves the performance over each of the tasks learned
independently. Learning to predict intents together with the other tasks did not show
any improvements. To verify whether the low number of intent labeled conversations
had a negative impact on the performance of the model when jointly learning intent
prediction along the other two tasks, we have used BERT under a weakly supervision
environment to predict labels for more conversations. The results have shown that
having more intent labels slightly improves the performance of the model on the CRR
task.

1.4 Outline

We describe related work extensively in Chapter[2] Chapter [3]is reserved for describing
the process of building and evaluating the reusable, multi-domain dataset. In Chapter 4]
we report the results of training the models on the defined tasks, both independently
and in a multi-task learning setup. Lastly, we draw the conclusions of the research in
Chapter[5]






Chapter 2

Related work

Conversations between humans have been studied for several decades and in order
to understand conversational search, one has to first understand several neighbouring
research areas to obtain a clear overview. Given that our research is based primarily in
the field of IR, we will start with an overview of the field. Afterwards, we will provide
an extensive survey on conversational search, focusing on the defining characteristics
a system from this area should possess. Furthermore, given that the conversational
search field is rather new, a deeper understanding of older neighbouring areas that
tried to solve similar problems is necessary. For this reason, the survey also includes
insights into QAS and DS. The last section is dedicated to researches that focused on
designing and creating datasets that are partially qualified to be used for conversational
search.

Several existing surveys constituted the foundation for writing this chapter. Chen
et al. [25] wrote an insightful survey on Dialogue Systems, while the surveys of
Bouziane et al. [14] and Allam and Haggag [2] provided valuable insights regarding
QAS. For a deeper understanding of information retrieval models, one of the starting
points was the survey by Hiemstra [59]. Other researches were discovered either by
snowballing (following citations starting from surveys/researches) or by leveraging the
search function of Google Scholalﬂ Some of the keywords that were used in order to
discover previous work were: question answering systems survey, dialogue systems
survey, conversational search, information retrieval.

2.1 Information Retrieval

Information retrieval usually requires a user who is interested in fulfilling a certain
information need and a system that provides the means to achieve this. In traditional
search, the user provides the system with a query describing the information need.
Given these prerequisites, the central problem in IR is to rank the available documents
in a manner that best reflects the user’s needs [91]]. While the information need can
be expressed through various channels: video, speech, text, we will only focus on fext
retrieval.

Traditionally, such a retrieval system would first perform an indexing process on
the document corpus and then, given a query in text form, the system would compute a

Ihttps://scholar.google.com/
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retrieval score for each document. The procedure is depicted in Figure Examples
of IR processes occur very often in our daily lives: every time we use a web search
engine, such as Google or Bing, we trigger an IR process that returns the results we
were looking for.

Document
corpus

l

User

Query Ranked results
Indexer
"Latest trends in

information retrieval"

- >

Retrieval model
Indexes

Figure 2.1: Visualization of a traditional retrieval process in an IR system.

2.1.1 Tasks

Apart from categorizing IR systems based on the form of the user query, one can also
differentiate by the type of task the system performs. The most common tasks that can
be encountered are ad-hoc retrieval and question answering [131]]. The latter will be
treated in more detail in the next section.

Ad-hoc retrieval tasks involves retrieving a list of ranked documents based on the
input query. Initially, these tasks were performed on a corpus of newspapers or gov-
ernment documents [93[]. Nowadays, these tasks are mostly performed by web search
engines [9]]. In these kinds of systems, the document corpus remains relatively stable,
whereas the variety of queries that need to be handled can be virtually infinite, which
explains the ad-hoc characteristic. This category of IR systems has been studied ex-
tensively for decades, as research in this area uncovered various techniques to improve
the retrieval performance. In 1971, Rocchio [110] propose a system that accepts rel-
evance feedback from the user in order to refine query results. This form of critique
is also important for a CSS, as an agent must be able to re-orient his search efforts
based on the user’s feedback. However, traditional approaches have a limited space
of possible feedback expressions. In a real conversation, the system should allow any
form of critique. To achieve this, a natural language model is necessary to identify
advanced forms of reasoning and feedback. To this end, modern neural networks in-
corporate attention models with large external memory [126] in order to track queries
that span over several rounds of retrieval. Other researches focused on integrating ex-
ternal knowledge to improve query suggestion, such as click-through and web session
data Cao et al. [20].
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2.1.2 Evaluation

Generally, evaluation in IR can be performed from 2 different perspectives: from a user
perspective — by measuring the level of satisfaction of the users when using the system
— or a system perspective — by assessing the retrieval performance of a system that
returned a ranking of documents based on a set of metrics [137] which, ideally, should
reflect the degree to which a certain information need was fulfilled. Since the purpose
of an IR system is to solve the information need of its users, the user based evaluation
would seem to be the best reflection of the quality of the system. However, as stated
in [[137], such an evaluation is very expensive due to the larger number of users that
should be involved. Therefore, in most researches, the system-based evaluation is
preferred.

The challenges of evaluating IR systems have been tackled for several decades al-
ready. Robertson [[109] discussed about the 2 main types of system-based evaluations:
operational versus laboratory tests. In the latter, all the variables are controlled as
much as possible in order to remove all extraneous variations that can alter the results.
However, to answer the questions that are stemming from real-world problems, testing
must be conducted in operational environments. Most of the researches that will be
mentioned in this section have preferred a laboratory setting.

Generally, in order to perform any kind of traditional IR evaluation, one must
possess 3 components [115]:

e A collection of uniquely identifiable documents
e A set of distinct gueries

o A set of relevance judgments, which contains pairs of (query id, document id)
indicating the relevance of each document with respect to a query. Generally
created by a human annotator

However, when building a very large test collection, employing a large amount
of human annotators can prove very expensive. Spark-Jones [123]] proposed a tech-
nique called pooling, which involves creating a smaller subset of documents which is
still sufficiently large to be representative with respect to the original collection. The
relevance judgments would then be chosen based on random sampling from a pool.

Metrics

Regardless of how the test collection is built, metrics are also required in order to be
able to accurately compare various systems. These metrics should be able to accurately
reflect a user’s satisfaction with the system. We will focus on the metrics that were
used in the papers reviewed in this chapter and the ones we have used throughout our
research.

The Reciprocal Rank is a metric that takes into account the rank of the first relevant
document from a list of top-ranked results. More specifically, the reciprocal rank is the
inverse of the rank of the first relevant document or O if there is no relevant document in
the ranking. The Mean Reciprocal Rank (MRR) is the average of the Reciprocal Rank
for a given set of queries. The major disadvantage of this metric is that it considers only
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10

the position of the first relevant document. If there are multiple relevant documents for
the query, one of the following metrics are preferred.

1 1
— [.S‘l ——— , if relevant doc in list
MRR = ‘Q’ rankfirst?relevant 2.1

0, otherwise

Precision reflects how many of the retrieved documents were relevant. It is the
fraction of relevant documents out of all the the retrieved documents. The recall is the
fraction of relevant documents that were retrieved out of the total number of relevant
documents. Precision at k (P@K) is similar to the precision but is only considering
the top k documents in the ranking. Both of these metrics do not take into account
the order in which the documents appear in the ranked list. The metric that does is
the average precision (AP), which requires the computation of the precision at every
position in the ranked list. Apart from the P@k, it uses the indicator function rel
which is equal to 1 if the document is relevant and O otherwise and the total number
of documents 7,¢/evqn:- The metric is defined by Equation Additionally, the mean
average precision (MAP) is the average of AP.

Yi P@k xrel(k)

Nyelevant

AveP =

2.2)

Another metric that takes into account both the precision and recall is the F'/-score
and is defined as the harmonic mean between precision and recall.

Fi=2. prec.is'ion‘recall 2.3)
precision + recall

Three alternatives to precision and recall based measures were introduced in 2002
by Jarvelin and Kekéldinen [64] and measure the cumulative gain the user gains by
inspecting the list of documents up to a specific rank. Cumulative gain computes the
sum of the relevance rel of each document in a list of results. However, this metric
does not take into account the position of each document in the list. The Discounted
Cumulative Gain (DCG) does take it into account by penalizing highly relevant results
that appear at the bottom of the result list. The DCG for a document at position p can
be defined using Equation[2.4]

)4 2rel
2.4)
1 logg i+1)

i=

However, given that different IR systems can retrieve result lists of various sizes
for different queries, a metric that would be able to take this fact into account was
necessary. The Normalized Discounted Cumulative Gain (NDCG) uses a normaliza-
tion term, called Ideal DCG (IDCG) to achieve this. The IDCG uses a list of relevant
documents sorted by relevance relative to the given query to (called REL),) obtain the
maximum possible DCG up to position p. Therefore, the NDCG can be described by

Equation [2.5]

DCG,

nDCG), _IDCG

(2.5)
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, where IDCG,, is defined by the following equation

|REL,|

2rel,- -1
IDCG, =Y

= logy(i+1) (2.6)

2.1.3 Traditional IR models

In an effort to formalize the retrieval process, the IR community has designed theoreti-
cal models that can encompass the assumptions behind an IR system [59]]. Historically,
it is considered that there are 3 main types of traditional IR models [S9]. The first one
is represented by the Exact match model. This model is the first one to be defined and
also the simplest. As opposed to more recent models, those belonging to this category
perform only exact matches, based on Boolean operations [[141]. Therefore, the task of
finding all documents that contain information retrieval and survey will be transposed
into the query information retrieval AND survey, which will only retrieve documents
that contain both words. Although easy to implement and understand, these models
cannot provide a ranked list of documents.

Starting from Luhn’s proposal [87] to “transform information into arrays of nor-
malized idea building blocks and then to discover similarities”, the Vector Space Model
proposes a vector representation for the query and the documents and a relevance rank-
ing based on the similarity of the vectors, usually achieved by measuring the cosine of
the angle. However, it assumes that the similarity between the query and the document
is correlated with relevance, which might not always prove to be true. The Probabilis-
tic Models have strong foundations in probability theory and provide a stronger theo-
retical footing and clearer assumptions than the other two models [117]]. In a system
based on this model, the ranking of documents is based on the probability of relevance.
In his research regarding probabilistic retrieval, Robertson [[108]] has shown that, un-
der certain assumptions, “a ranking of documents in order of decreasing probability of
relevance ... will be the best that is obtainable on the basis of those data”.

Vector Space Models

Salton et al. [114] lay the fundamental concepts of the vector space model. They de-
fine a document or a query as a t-dimensional vector comprised of ¢+ weighted terms.
The similarity between two documents or a document and a query can be computed
as the cosine of the angle between the two represented vectors, as can be observed in
Figure[2.2] However, computing the similarity is not the biggest challenge, but rather
deciding upon the weights of each term in a vector. They define two term weighting
systems: The term frequency weighting system (TF) is based on the observation that
words that appear often in a document have a bearing on the content. However, if
the same term appears in more documents, it loses its usefulness for the current con-
tent representation. This observation is the basis for the inverse document frequency
weighting system (IDF). Combining these two observations lead to the term frequency
- inverse document frequency weighting system (or TF-IDF), which states that if a
“rare” word has a high number of occurrences in a document, it should be attributed a
high weight in the document vector. The weighing scheme mathematical details will
be presented in the following subsection.

11
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Fig. 1. Vector representation of document space.

T Fig. 2. Ideal document space.
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Figure 2.2: Visualization of the document vector space, as shown in [114]. The left
figure shows how documents are represented in a vector space, while the right figure
depicts an ideal vector space, in which documents can be clearly grouped based on
their term representation.

Probabilistic models

The probabilistic model was designed in an effort to “introduce arithmetic (as opposed
to logic alone) into the problem of indexing” [88]] in an effort to establish a firmer
theoretical footing in IR. Models following this framework no longer consider docu-
ment relevance as a binary attribute (relevant / not relevant), but rather as a probability.
However, despite being one of the oldest formal models in IR, probabilistic models
did not exceed in performance other IR models of the time (mostly due to the strict
mathematical assumptions the model required) until BM25 was released [40].

BM25 [107] is a probabilistic model that ranks a list of documents based on the
query terms that appear in each document. It follows a tf-idf weighing scheme similar
to the one used in the vector space model. The key difference resides in the scoring
function of each document, which follows a probability theory based formula instead
of the cosine similarity. Given a query Q and its terms ¢y, g2, ..., g, and a document D,
the scoring function of BM25 is defined by Equation[2.7] The leftmost term represents
the IDF scheme, which assesses the information value a term possesses by normalizing
the number of documents in which the term occurs (n(g;)) by N - the total number of
documents in the corpus. The rightmost term is the TF component, which takes into
account the number of times a term appears in document D (f(g;,D)), also known
as the term frequency. This term is normalized by the length of the document |D|
divided by the average document length in the corpus avgd!. Further regularization
is applied using the hyperparameters k; and b. Several variations of BM25 have also
been developed, such as BM25F [107]], which weighs different parts of the document
(header, main text, anchors) with different degrees of importance. BM25 is a popular
IR model used in the search engine industry, with key players such as ElasticSearchE]

Znttps://www.elastic.co/
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using it as the default ranking function.

BM25(D,Q) = Zn: N- ")‘1:2325 f(gi,D)- (ki +1)
= e f(qi,D)+ki-(1—b+b-

2.7
D] 2.7)

avgdl

)

Equation[2.7] The BM25 [107] scoring function

2.1.4 Learning To Rank

Before diving into the neural IR architectures, one must first understand the Learning
To Rank (LTR) paradigm. LTR is an approach that is built on top of existing traditional
IR models, such as BM25 or various vector space models. Generally, these methods
use the input attributes of BM25, combined with other handcrafted features and a ma-
chine learning algorithm to re-rank the list of results that was generated by a traditional
IR model for a certain query. A detailed visualization of this process is depicted in Fig-
ure [2.3] As can be observed, the LTR procedure closely resembles standard retrieval,
with the exception of the rightmost part, which encompasses the re-ranking procedure.

Re-ranked
Document results

User
corpus l [

Indexer Query
Ranking
Model

Training
Top-k retrieval data
Indexes

Figure 2.3: Visualization of a typical LTR mechanism.

As Svore and Burges [130] mention in their research, the parameter tuning for
BM25 and BM25F can be difficult and time-consuming. For this reason, they propose
a new LTR framework called LambdaBM?25, a neural-based ranking algorithm that
accepts the same input attributes as BM25F (TF, IDF and document length). How-
ever, instead of optimizing the hyperparameters of the BM25F function by running an
exhaustive search in order to obtain the best combination, the algorithm uses Lamb-
daRank [[18]] to learn (and minimise) the function based directly on the input attributes.
Their new model outperforms BM25F for documents that have multiple kinds of fields
(URL, title, body, anchor, click data etc.) and for documents that possess only the
body, anchor or click data. For matching between small passages of text, such as the
title, BM25F performs similarly to LambdaRank.

13
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2.1.5 Neural IR

Whereas LTR approaches generally require the creation of appropriate handcrafted
features as input, neural IR models can leverage representation learning [75] to auto-
matically discover the representation for a certain dataset of raw data. This enables the
discovery of new, complex patterns that are not necessarily bound by human intuition.

Researches in this area distinguish between 2 types of Neural IR approaches [54,
55]]: representation-focused and interaction-focused. In the representation-based ap-
proach, one must first generate representations (usually in the form of vectors) for both
the query and the document that captures the distribution of the information each one
contains and then apply a matching algorithm to obtain an estimation regarding their
mutual relevance [91]]. In the case of the interaction-based methods, local interactions
between different pieces of text are built (usually through interaction matrices), which
are then passed to a neural model that learns hierarchical interaction patterns in order
to perform matching. Guo et al. [55] benchmarked 18 neural models that use either
of the approaches on 4 datasets and found that interaction-focused networks generally
perform better.

By analyzing the graphical representation of the 2 approaches in Figure[2.4] it can
be immediately observed that neural models no longer work with predefined features,
as was the case for the traditional IR models or their LTR extensions. Queries and
documents are now represented in a different space, most often through vectors. In
our research, we use word embeddings to obtain the vector representations of all the
words by means of unsupervised learning, as explained in the work of Mikolov et al.
[89]. Given that utterances in a conversations are inherently connected one to another,
we have chosen to use only interaction-focused neural models throughout our experi-
ments.

Interaction pattern
matcher

f

Representation

matcher :
¥ apple XXX XX XX XX matrix

Query Vector Document vector | car

[ T dbg

Document
Representation Representation
generator generator

T |

Query Document

T, TS,... T

Query Document

(a) Representation-focused (b) Interaction-focused

Figure 2.4: Graphical representation of the two types of Neural IR models.

Multi-task learning

Multi-task learning is a branch of machine learning in which multiple tasks are solved
at the same time by the same model by exploiting both the common and different
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characteristics of each task. It has been proved both empirically [10} 44] and theoreti-
cally [5,[11] that learning multiple tasks at the same time can significantly improve the
performance of the model as opposed to learning every task separately, given that the
tasks are chosen appropriately. More importantly, multi-task learning has been applied
for both natural language processing [31]] and information retrieval tasks [98), 23] with
positive results. This approach improves general performance of models for several
reasons: it enables information transfer between tasks, which translates into having
more knowledge regarding each task [22]], it helps the model filter out idiosyncrasies
in the data when using unrelated tasks [111]] and, most importantly, multi-task learning
behaves as a regularizer by introducing inductive bias [22]]. The first and third reasons
are of utmost importance for our research as they drive the entire intuition behind our
experiments in this area.

As mentioned, task selection is highly influential on the outcome of a multi-task
learning setup. One of the most common approaches is to choose a related task as
an auxiliary task. Caruana [22]] used 8 tasks that predicted various characteristics of
the road in order to predict the steering in an autonomous car, while Girshick [52]
use multi-task learning to jointly learn the class and the spatial location of an object
in an image. Another approach to task selection is called adversarial and implies
using a task that is opposite to the main task and using an adversarial loss [41]], which
seeks to obtain the highest obtainable training error. This approach has seen promising
results in domain adaptation tasks by using a gradient reversal layer [49] which, as
its name suggests, reverses the gradient of the adversarial task by multiplying with a
negative constant. By using this layer, the model is forced to learn representations that
cannot distinguish between various domains. In our research, we have adopted the first
approach in order to identify auxiliary tasks.

2.2 Conversational Search

As we have stated previously, conversational search is a research area that wishes to
improve the current search paradigm by solving a user’s information need through con-
versation, as opposed to standard, single-turn retrieval. However in order to build such
a system, called a conversational search system, one must first hypothesize how con-
versational systems should function in general. Allen et al. [3] suggest that a conver-
sational agent should track the current state of the conversation and update its current
understanding of the information need based on the user’s responses. Christakopoulou
et al. [29]] emphasises the need of an elicitation system to be able to understand the
user’s preferences. Moore [94]] states that an agent should be able to ask the user to
repeat or rephrase a piece of information in the case of a misunderstanding and detect
when a conversation has reached an end.

Having defined these characteristics of a general conversational agent, several re-
searches focused on conceptualizing what are the defining traits of an ideal conversa-
tional search agent. Radlinski and Craswell [104] proposed a theoretical framework,
starting from an extensive definition of a CSS and when such a system would be use-
ful. The proposed conversational search model encompasses various types of interac-
tions, ranging from simple query searches up to complex situations, in which the user
provides different types of feedback. Furthermore, the researchers propose a list of
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properties that could be used to measure the extent to which a given system is con-
versational. Azzopardi et al. [8] build upon the existing research by abstracting the
main actions, decisions and tasks that occur during a conversation between a user and
a conversational search agent.

Summarizing the findings of the two researches [104, i8] results in a set of require-
ments that a CSS should be able to fulfill when interacting with the users:

e The CSS is able to elicit and understand the user’s information need.
e The CSS is able to identify the user’s intent and, conversely, express its own.

e The CSS is able to remember what has been said previously, enabling the user
to reference past information. It has been shown that context preservation is
essential for maintaining a high level of user satisfaction with regards to a con-
versational system [70].

e The CSS is able to progressively refine and clarify the initial information need
based on feedback from the user.

e The CSS is able to provide answers, suggestions, summaries, recommenda-
tions, explanations, reasoning and divide the problem into sub-problems, given
its extensive knowledge in different domains and based on concrete knowledge
sources.

e The CSS is able to take initiative, ask questions back and decide which types of
actions are best suited in the current conversation context.

Exploring recent developments in conversational Al [50] (which encompasses var-
ious types of conversational agents) quickly reveals that, although many breakthroughs
were achieved by improving neural network architectures, current systems are not yet
able to fulfill all the requirements of a CSS.

Gao et al. [50] have performed an extensive survey on neural approaches to con-
versational Al and their commercial applications, showing that current systems fall
into three main categories:

e Conversational QA Agents, which are designed to solve an information need
of the user by directly answering their question, without further rounds of re-
finement. These agents usually have access to large-scale knowledge bases
but their architecture does not support extended conversations. For example,
Choi et al. [28]] created a dataset for training Machine Reading Comprehension
(MRC) models that generate an answer based on the retrieved passages. How-
ever, in these kind of datasets, the agent does not attempt to take initiative in
order to clarify the information need and is focused on always providing a direct
answer. Another example of a QA agent created by a company is ActiveQ
an agent created by Google that transforms the questions in order to retrieve the
best answer.

e Task-oriented DS, such as slot-filling systems, can handle more complex situ-
ations but are limited to a predefined set of operations, as they are bound by

3nttps://github.com/google/active-qa
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Conversation with task-oriented DS H Conversation with "chitchat"
Agent (Google Assistant) : bot (Replika)
2 Set a reminder for today (. \
as | have a meeting : Hi Alexandru Balan! Thanks
i for creating me. I'm so Agent
H excited to meet you &
When do you want to be
reminded? Agent H .
| ‘ Hi! Who are you?
‘ In-an hour I'm your personal Al companion.
H You can talk to me about Agent
anything that's on your mind. gen
So, how are you feeling today?
Alright, I'll remind you at 14:53
Q e : 2 It's going quite well so far, | was able to

Agent accomplish a lot of things.

meeting

I'm glad | got to learn something about
you! You seem pretty open-minded - open

to new ideas even if that means Agent

having an Al friend.

Conversation with QA Agent
(ActiveQA)

‘ Thank you! | would
like to know when Tesla was born.

‘ When was Tesla born?

————— : That will happen. | don't know
H when yet. Agent
July 10 1856 Agent :

Figure 2.5: Examples of conversations originating from 3 types of systems identified
by Gao et al. [50]. QAS, task-oriented DS and chit-chat bots.

a finite list of domains in which they can provide answers. Commercial task-
oriented DS can often be found in smartphones in the form of “virtual assis-
tants”, such as Amazon Alexaﬂ or Google Assistanﬂ However, as we have ex-
plained previously, they are limited to a set of tasks, such as providing weather
information or setting alarms.

e On the other side of the DS spectrum, social chatbots facilitate natural generic
interactions between humans and computers. However, these systems are fo-
cused on social interactions and their responses are usually not grounded in the
real world. Replika E] is an example of an emotion-aware conversational agent
that is able to generate responses based on the emotion or the domain of the con-
versations. However, by analyzing transcripts of conversations [46], it can be
observed that these architectures lack the search component of a conversation,
as they are not trained to return facts or grounding. Figure[2.5]shows examples
of systems from all of the 3 categories identified by Gao et al. [50].

Although a theoretical framework for CSS has been established [[104] 8] and sub-
problems of CSS, such as predicting the user’s intent based on their utterance [102] or
ranking responses from agents [[147], have been tackled successfully by using neural
architectures, Gao et al. [50]] show that all existing commercial solutions lack at least
one of the necessary properties.

The importance and challenges of conversational search have been discussed ex-
tensively in the report from the Third Strategic Workshop On Information Retrieval

4https://developer.amazon.com/en—US/alexa
Shttps://assistant.google.com/
Onttps://replika.ai
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(SWIRL 2018) [33]. As part of the initial questionnaire of the workshop, participants
were asked to express what topics they currently consider to be of utmost importance.
Conversational search was chosen as the most important one.

More importantly, the workshop participants identify several obstacles that might
occur when developing conversational systems. One is that “Reusable datasets may
be difficult to design or acquire due to the personalized, interactive nature of the task”,
which accentuates the need for new, improved datasets. Moreover, there was a con-
sensus over the fact that advancements were made in all 3 domains that compose the
conversational search field: Information Retrieval, Natural Language Processing and
Dialogue Systems. This includes the creation of a multitude of conversational datasets,
as we will detail in Section [2.5] However, all of these datasets either lack some of the
requirements of a CSS or are too small to be used for training a model that can perform
conversational search tasks.

2.3 Question Answering

Question answering is a research area that combines knowledge and techniques from
IR and NLP. However, while IR is usually focused on document retrieval, QA is fo-
cused on providing the exact answer to the user. This idea started from the fact that, in
many cases, the user is looking for the exact answer, rather than a list of documents to
browse through [60].

Starting from this intuition, the TREC-8 Question Answering track [[138]] was one
of the first major endeavours into evaluating QAS. The participants would receive a
collection of text documents and 200 questions that can be solved with short answers
from at least one of the documents. The documents were composed mostly of news-
paper articles from various domains. The task to be performed was to return a ranked
list of (document_id,answer) pairs for each question such that the selected string con-
tained the answer to the question. The evaluation was performed by human assessors
who judged whether the answer solved the question or not. In total, 45 runs were
submitted, which shows that there was already significant interest in the area.

Conceptually, a QAS involves a pipeline formed of 3 main components [83]]: (a) a
question processing subsystem that processes and converts the question in natural lan-
guage form into a query that is understandable by the retrieval system, (b) a document
retrieval subsystem that searches for the candidate documents, (c) an answer extrac-
tion subsystem that extracts the snippet containing the direct answer from one of the
candidate documents. This last module is the one that is distinguishing a QAS from a
traditional IR system.

Depending on the area of expertise these systems are designed for, we can dis-
tinguish between open-domain QAS and domain-specific QAS [60]. Open-domain
question answering can handle questions about any topic and usually rely on large,
open-domain knowledge sources such as Wikipedia [24]. Closed domain question
answering systems are designed to solve questions under a specific domain, such as
movies, weather or music. This involves the development of specific ontology to cap-
ture the relationships between domain-specific concepts [99]].
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2.3.1 Domain-Specific Question Answering

One of the first known QAS to be released was BASEBALL [53], a system that was
designed to answer questions related to baseball games played in the USA over one
season. Given a question, the system would analyze it using available linguistic knowl-
edge and transposed into a query that was used against a structured database containing
baseball-related information. Although sophisticated at the time, the system had two
major limitations: it was limited to one specific domain with no possibility to extend
and it was designed to communicate with a structured database instead of a large,
unstructured collection of data. Similar systems appeared in the years after, such as
the LUNAR system [[144], which answered questions related to the analysis of rocks
found on the moon by the Apollo mission and was able to respond to over 90% of the
questions asked by the scientists. An extensive analysis of these early systems can be
found in the work of Androutsopoulos et al. [6]].

In an effort to make these types of systems more reusable, more modern systems
started to propose frameworks that allow easy plug-in of various ontologies and data
sources. AqualLog [[82]] is one of the earlier solutions that accepts queries in natural lan-
guage and an ontology as inputs and outputs the available semantic markup. Firstly, the
query is being transformed into a <subject, predicate, object> triple using GATE [34],
a framework for NLP. This allows them to identify relationships, terms, questions and
indications (such as who/when/which etc.) and place the query in a specific category.
Having made the representation, the system tries to match the triple with a candidate
in the ontology by computing the string similarity. Aqualog also takes advantage of
WordNet [90] in order to try additional combinations with synonyms when the initial
matching fails. If only some of the terms in the triple are matched completely, a list of
multiple-term candidates is displayed to the user and he is then expected to choose the
appropriate one. This feedback system allows Aqual.og to constantly learn new jargon
and add them to the ontology. An example is the query “Who collaborates with the
knowledge media institute?”’. Assuming that the system is not able to disambiguate
the term “collaborate”, it will present a list of candidate relations out of which one is
“has-affiliation-to-unit”. If the users chose that relation, a new mapping is added be-
tween the two terms so that the next time the system can recognize it. To evaluate the
system, 76 questions were created by 10 human annotators and the system was able
to handle correctly 48.68% of them. Although the result might not seem impressive,
it is worth noting that there were no linguistic constraints imposed on the participants.
By analyzing further, the researchers discovered that 69% of the errors were caused by
insufficient linguistic coverage. Therefore, improving the coverage would yield signif-
icantly better results. PowerAqua [84] is a system that has evolved from Aqual.og to
enable multi-ontology QA by merging information from multiple ontologies in order
to retrieve the best answer. By using a similar methodology with the previous research,
the system was able to now handle 69% of questions correctly.

Other related work from the same period use the same pipeline. PANTO [139]
takes a question as input and executes a SPARQL query on a given ontology. As
Aqualog, it uses the same triple representation, which is obtained using parse trees,
and uses WordNet to improve the matching. FREyA [335]] is another example, which
takes a question as input and turns it into an ontology annotation (class, instance,
property or literal). As opposed to previous researches, this system aims for a deeper
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understanding of a question’s semantic meaning using semantic trees generated by the
Stanford Parser [[71]]. In case the system does not find the definitive answer, suggestions
are generated to be presented to the user. By using this feedback loop, the system can
solve the ambiguity of the question and improve its performance.

From a conversational search perspective, using domain-specific question answer-
ing techniques is impractical, given a CSS should be able to handle open-domain dia-
logues. However, these techniques can be used as part of larger open-domain systems
in order to improve their performance. IBM Watson [48] is a well-known example,
given its participation in the Jeopardy! contest. While the system is considered to be
open-domain, some of its subsystems are taking advantage of structured data, such as
ontologies. Kalyanpur et al. [66] used YAGO (Yet Another Great Ontology) [125]],
which has over 100,000 concepts, and other ontologies included in DBpedia ﬂ The
structured data is used for several tasks, such as detection of spatial (“This port is
close to ...”) or temporal relations (“Fire was discovered before the birth of... ) and
answer type coercion. For this last task, the DeepQA [48] uses a multitude of TyCor
algorithms [96]] to verify whether a candidate answer belongs to the same type as the
original question. Firstly, the algorithm performs Entity disambiguation and matching
(EDM) [96] in order to map a potential answer to a resource in YAGO. Afterwards,
predicate disambiguation and matching (PDM) [96]] is being performed in order to
identify the lexical types that are compatible with the input question. This task was
evaluated on 3508 Jeopardy! questions and an improvement of up to 8% was observed
when the structured data was used.

2.3.2 Open-domain Question Answering

One year after the addition of the QA track as part of TREC-8, we can already observe
several notable open-domain QAS. Abney et al. [1] created a system that receives a
natural language query as input and outputs a ranked list of potential answers. In
the first stage, the system acts exactly as an IR system, given that it returns a list of
passages from the top-ranked documents. To retrieve the top documents, a customized
variant of the SMART system [113]] was used. Afterwards, the passages were scored
depending on the sum of IDF weights of consecutive words that it has in common
with the user’s query and the number of common bi-grams. In the second stage of the
system, potential answers are extracted from the output of the first stage and classified
by type (person, location, quantity etc.). Furthermore, the category of the user’s query
is identified by comparing the terms composing the query against a list of predefined
keywords (for example, the presence of Who shows that the answer is of type Person).
In the end, in order to rank the possible answers, the system checks if there is a match
between the category of the query and the type of the answer. The top-ranked passages
are those in which entities from the answer appear multiple times. The system was
the third-best run in the TREC-8 Question Answering Track [[138] for responses of at
most 50 bytes with a Mean Reciprocal Rank (MRR) of .356 and the 2nd best run in
the category with responses of at most 250 bytes with an MRR of .545.

Although very crude when compared to modern systems, it paved the way for other
improved approaches. Harabagiu et al. [57] followed approximately the same system
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architecture. However, by adding several knowledge-based NLP techniques in the
pipeline, such as (1) Named Entity Recognition (NER), (2) semantic classification of
the question by using WordNet and other taxonomies and (3) phrasal parsing using the
Brill Part of Speech Tagger [15]], they were able to greatly improve the performance of
the system. In the same TREC-8 competition, the system was able to obtain an MRR
of .555 for the 50-byte run and .646 for the 250-byte run, placing on the 2nd and 1st
place, respectively.

Another approach that can be explored when building a QAS is to take advantage
of existing question-answer conversations, instead of processing large collections of
data in order to obtain an answer. This approach has a stronger IR component and is
similar to our system, as we also take advantage of an existing collection of conver-
sations. Surdeanu et al. [[128] constructed a ranking engine using a large collection
of community-generated QA conversations from Yahoo! Answers ﬂ which covers a
large array of topics, making it suitable for open-domain QA. Given an input query,
the system should be able to provide a ranked list of potential answers and choose the
highest-scoring one. To compute the score, several features are used: (1) the similarity
between the query and the answer, computed using BM25 [107]], (2) the probability
that question Q is a translation of answer A using IBM Model 1 [16] (3) the frequency
and density of question terms that are present in the answer and (4) the correlation
between the query-answer pair and the log of a search engine corpus. The results show
that there is an increase of MRR from 56.06 when using only BM25 to 64.65 when
using all the mentioned features.

More recent QAS started to take advantage of the evolution of neural networks.
Rao et al. [105] propose a system in which answer selection for QA is done as a pair-
wise ranking task. The model contains 2 LSTMSs, each taking a (question, answer)
pair as input and outputs a score that represents the semantic distance between the 2.
One network receives a positive pair and is expected to return a larger similarity score
while the other a negative pair and should return a smaller score. By this approach,
the network should approximate a function that, in the end, should reward the positive
pair better. The evaluation of the model showed state-of-the-art performance on the
TrecQA dataset, achieving a Mean Average Precision (MAP) of .78 and MRR of .834.
By looking at the evolution of QA as a field of research, it can be observed that the
general performance of systems has steadily increased, generally due to the develop-
ment of more complex models, that can capture more easily the complexity of textual
data.

2.4 Dialogue Systems

A Dialogue System (DS) is a system that is specifically designed to converse with a
human in a coherent manner. A dialogue system can be categorized by their purpose:
task-oriented system, which is designed to help the user solve a specific task from a
specific domain, and non-task-oriented (chatbots), which is focused on basic conver-
sations with humans on various domains.

8https://answers.yahoo.com/
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QAS Type System Year Used techniques
Domain specific BASEBALL [53]] 1961 Transpose question into query that was used
against structured DB
LUNAR [144] 1971  Similar to BASEBALL, applied to analysis of

rocks on the moon

AquaLlog [82] 2005 Convert question into triple to match with an
entry in the ontology. Relies on feedback from
the user for incomplete results

PANTO [139] 2007  Convert question into triple by using parse trees
& WordNet. Executes SPARQL query on ontol-
ogy

FREyA [33] 2010  Creates triple using semantic trees for deeper

understanding of question. Relies on feedback
(suggestions) for incomplete results

PowerAqua [84]] 2012 Similar techniques with Aqual.og. Matching
is done by merging information from multiple
ontologies.
Open-Domain AT&T QA 2000  Fetches top documents and extracts best passages
based on question structure and category.
SMUNLP1 2000  Similar to AT&T, but enriched with multiple

NLP techniques (NER, POS tagging etc.)
Surdeanu et al. [128] 2008  Fetches potential answers using IR and NLP
techniques based on a Yahoo! Answers dataset
Rao et al. [103] 2016  Joint ranking task using 2 LSTMs in order to
distinguish between positive (question, answer)
pairs and negative ones

Table 2.1: Overview of discussed QAS

2.4.1 Task-oriented Dialogue Systems

In task-oriented systems, the agent is trained to be specialized in a specific domain,
such as online shopping [146] or disease diagnosis [142]. Usually, such systems
are designed as a pipeline with multiple components, each having a specific role.
Firstly, such a sistem must have a natural language understanding (NLU) component,
which detects the user intent from the utterance and/or extracts word-level information
through slot filling. The latter is the more challenging problem, as it usually implies
semantically labeling each word in the utterance: the input is the sequence of words
and the output is a sequence of slots/concepts. Deep convex networks [36] have been
applied successfully for both tasks in [37] and, more recently, using attention-based
Recurrent Neural Networks (RNNs) in [79], reaching an F1-score of 95.78.

The Dialogue state tracker - DST (or belief tracker) is another core component
of a task-oriented dialogue system. It makes an estimation of the goal of the user
after every iteration of the dialogue and maintains these states as a form of dialog
progress. The Dialog State Tracking Challenge (DSTC) [[143] is the most important
corpus for building belief trackers and is responsible for the creation of a variety of
statistical techniques, such as rule-based approaches [140]] or maximum entropy mod-
els [76]. More recently, Mrksic et al. [95] proposed a neural model called Neural Belief
Tracker, in which NLU and DST tasks are being using jointly with a DNN or a CNN.
Their model achieved state of the art performance without relying on any hand-crafted
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semantic lexicons. The next core component is tightly coupled with the state tracker
and is handling policy learning, which predicts the next action based on the current
state of the dialogue. For example, in an online shopping situation, if the previous
state of the dialogue was "Recommendation"”, then the corresponding policy is trig-
gered. Usually, policy learning is done via supervised or reinforcement learning and,
more recently, through deep reinforcement learning [32]], where the system obtained
double the performance of a supervised learner in a negotiation scenario against bots.

Finally, a Dialogue System requires natural language generation in order to trans-
late an action into a natural language utterance. Traditionally, this is achieved using
sentence planning, in which semantic symbols are first processed using tree-like struc-
ture or templates and then converted into the final utterance via surface realization. The
entire described process can be observed in Figure 2.6] An early system that imple-
ments the entire process is detailed in the work of Stent et al. [124]. As in the case of
the other components of the pipeline, in more recent times, neural architectures started
to be designed for natural language generation tasks. Dusek and Jurcicek [42] used
a sequence-to-sequence (seq2seq) generation technique, combined with beam search
and a n-best list re-ranker, all based on RNN. This allowed the creation of both natural
language sequences and deep dependency trees from the input.

Throughout the research, we will see many elements from these task-oriented DS
being used in conversational search. However, they are not equivalent, as a CSS is
focused on the search component and is designed to handle an open-domain environ-
ment, where the user can drastically change its goal throughout the conversation.

User Semantic

utterance Natural Language representation Dialogue State

( ” Understanding ” Tracker

User Dialogue state

t Natural Language
Generation

A

Dialogue Policy
Agent

utterance Action

Figure 2.6: Visualization of a typical task-oriented DS

2.4.2 Non-task-oriented Dialogue systems

On the other side of the spectrum of dialogue systems are the non-task-oriented ones
(also known as chatbots). Unlike their task-oriented counterparts, these systems focus
on open-domain conversations and less on fulfilling a specific task. These systems can
be implemented by 2 methods: generative or retrieval-based. The former has the power
to generate responses that have never appeared in the conversations before, while the
latter is usually better in environments when information is important.

When using generative methods, one of the foundations required to build gen-
erative models is the sequence-to-sequence model (seg2seq) [129]. The architecture
accepts an input sequence X = (x1,x2, ...,X,) and outputs a sequence ¥ = (y1,¥2,...,Vn)
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such that p(y1,y2,...,yn|X1,X2,...,X,) is maximized. More specifically, the model fol-
lows an encoder-decoder framework: the encoder handles reading X and transforming
it into a context vector c through an RNN (usually LSTM or GRU), the decoder es-
timates the probability p of Y by using input ¢. The method can also incorporate an
attention mechanism that conditions each word in Y on a different context vector c. An
example of a research that uses this model is [120], who took advantage of an encoder-
decoder framework for short conversations on Weibo data [’} The system was able to
generate grammatically and contextually correct responses in 75% of the cases. Tian
et al. [133]] provide a very insightful empirical study, in which they examine the impact
of context information on the performance of DS using generative methods. They have
found that hierarchical models, which use a model for utterance-level information and
another for the inter-utterance (context) level are superior to standard models, which
use a simple model to capture the entire context information. Moreover, they propose
a model which applies weighting to the context vector ¢ depending on an attention
score that models the context-query relevance. The newly created model outperforms
all the baselines that were under revision. To conclude, although this approach has
the power to generate new responses, a system built using these approaches cannot be
considered by itself a CSS, as usually these kinds of systems are focused on simple
conversations (such as chit-chat) and they don’t have the necessary grounding to solve
complex information needs.

Retrieval-based methods focus on choosing the most appropriate response from
a pool of possible responses. In other words, a model that implements this method
performs matching between a query and a response. Initially, retrieval-based methods
focused on single-turn conversations, when the agent would have to match only one
query. Deep Neural Networks(DNN)-based models [86] focused on co-occurrence
of words between the 2 sequences on a local level (infection-antibiotics are likely to
co-occur). Afterwards, these local interactions would be combined into a hierarchi-
cal structure in order to detect words that are semantically close (Travel in Paris and
Travel in Berlin can be combined into Travel). In recent years, using multi-turn con-
versations has become more popular, as neural architectures now have the power to
capture more context. Moreover, in multi-input conversations, the responses seem
more natural as they are based on more background context. As we will see in the
rest of this research, these types of systems come very close to CSS. One example is
the work of Lowe et al. [85]], which built the Ubuntu Dialogue Corpus, a large dataset
of multi-turn conversations built using Ubuntu chat logs. This dataset was an essen-
tial starting point for the creation of the our dataset. To test the performance of the
dataset, the authors use two neural models (RNN and LSTM) on a context that is built
using all the previous utterances and the candidate response under analysis in order to
compute the matching score between the response and the previous context. A later re-
search [1435]] leveraged the same dataset in order to do response matching. Most of the
researches until then would encode the entire context into a vector from the start and
then perform the matching. However, starting from such a coarse granularity implies
some degree of information loss. For this reason, the authors propose a new matching
model which constructs a context vector for each utterance and performs the match-
ing for each such vector. More specifically, the model creates a word-word similarity

9nttp://ntcirl2.noahlab.com.hk/stc.htm
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matrix (using word embeddings) and a sequence-sequence similarity matrix (using the
hidden states of a GRU) for each (utterance, potential response). The information is
then fused into a final vector by a series of convolution and pooling operations. The
new model achieves significant improvements over the baselines tested by the creators
of the Ubuntu Dialogue Corpus (increase in MAP from 0.485 to 0.529 and in MRR
from 0.527 to 0.572).

DS Type System Year Used techniques

Task-oriented Wei et al. [142] 2018  Use Markov Decision Process (MDP) and Re-
inforcement Learning to build a DS to converse
with patients collect symptoms based on a dataset
collected from a medical forum

Yan et al. [146]] 2017  General framework for building a DS for online
shopping, which can assist clients in complet-
ing purchases, searching products or answering
questions.

Cuayahuitl et al. [32] 2015  Applies Deep Reinforcement Learning (DRL)
policy in a strategic board game, where artificial
agents negotiate over resources. The system
learns to offer and reply by interacting with the
other agents.

Non-task-oriented ~ Shang et al. [120] 2015 Uses Encoder-Decoder Framework with attention
using a GRU model to generate appropriate
responses to question. Based on data dump from
a Chinese microblogging website.

Lu and Li [86] 2013 Matches questions with appropriate responses
based on co-occurence of words at a local level
and by leveraging a hierarchy of local decisions
to capture the semantic similarity.

Wau et al. [[145] 2017  Performs response matching by building by
context vectors of various granularities by per-
forming the matching for each utterance in the
context.

Table 2.2: Overview of discussed DS

2.5 Conversational Datasets

This section is dedicated to researches that have built datasets that are intended for
use in systems that share many properties with CSS. For each example, we will show
the main characteristics, the methodology and the tasks that were performed using the
dataset in order to understand what kind of tasks could be appropriate for out dataset.

The Shaping Answers with Rules through Conversations (ShARC) [112] is a con-
versational dataset built for machine reading purposes. It contains conversations that
relate to a rule or regulation regarding traffic, benefit programs or grant descriptions
(“Do I need to carry on paying National Insurance?”). In order to obtain these conver-
sations, annotators received a scenario that described the context (“I am working for an
employer in Canada”), the regulation that applied and the history of current follow-up
questions and an answer. The task of the worker was to either pose the first, under-
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specified question, respond with “Yes” or “No” to an existing question or emit a new
follow-up question if the answer is not yet straightforward (for example, if the rule re-
quires at least 1 of 3 characteristics and the response regarding the first one was “No”,
the user should ask details regarding the second characteristic that would fulfill the
rule). To control the quality of the annotations, the authors enforce two mechanisms.
First, a system agent is inserted during the conversation to respond with “Yes” or “No”
in order to control the ratio of answers. In cases where the rule is in the form of con-
ditionl OR conditions 2, users might tend to focus on the first condition and respond
with “Yes” directly, which will immediately end the conversation. Secondly, some
annotators will receive only parts of the ongoing dialog, which implies that, again, the
annotator should find it hard to give a definitive answer. The resulting dataset contains
32436 utterances spanning over 948 rule texts. However, given that the answers to the
questions had to be answered on a Yes or No basis, this implies the conversations have
no grounding and no utterance intents (apart from Follow-up Question). Furthermore,
all conversations originate from the same main domain.

CoQA [106] is a conversational Question Answering dataset obtained by splitting
8,000 conversations into 127,000 questions with answers. Starting from an evidence
(“ The Virginia governor’s race”), pairs of questions and answers (Q;,A41),(Q2,A42)
are derived (“What are the candidates running for?” - “Governor” or “Where?” -
“Virginia”) based on the conversation history. At test time, the trained model does
not receive any evidence and has to build the entire construct by itself. The dataset is
built using crowd-workers and the collection process is both verified by inter-annotator
agreement and self-moderation (one annotator can flag the question of another as being
vague or the answer as incorrect). Disagreements can also be discussed in a separate
chat window. Furthermore, some annotators are integrated into a game where they
receive a question that was already answered and have to predict an answer. The data
collection spans over 7 domains, such as Literature or News. Several conversational
and reading comprehension models were benchmarked against human judgements for
response generation and response selection tasks and found that the best model is 23.4
points behind human judgements, which obtained an F1-score of 0.888. As the previ-
ous dataset, CoQA is designed for QA tasks and cannot be transposed to a CSS. How-
ever, as opposed to ShARC, the dataset is more scalable and the conversations originate
from multiple independent domains.

Frames [7] is a conversational dataset designed for task-oriented DS and contains
1,369 dialogues with a mean of 15 turns per conversation. The data collection was
performed using 12 participants in pairs of two over a period of 20 days. To gather the
data, the authors used a Wizard-of-Oz approach [67], in which one of the conversa-
tion participants acts as a DS: has access to a search interface connected to a database
and, given a user query, it decides what to say next. The conversations occurred on
Slaclﬂ where each participant was allocated a task template (“Find a vacation be-
tween [START_DATE] and [END_DATE] for [NUM_adults] adults. You leave from
...”) and an available “wizard”. The values were either populated using the database or
by using random numbers that were not stored, meaning that some of the tasks were
not achievable. In these cases, the agent would have to recommend alternatives that
would fit the constraints of the database. The conversations were then split into frames

Onttps://www.slack.con
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(states), which summarize semantic information regarding the conversation history,
such as constraints, user requests, user comparison requests. After obtaining the con-
versations, the data was annotated with various labels: slot types (such as database
fields - START_DATE or global properties, such as the PRICE), slot values, refer-
ences to other frames, dialogue acts (which is equivalent with our definition of user
intents). The trained models are used for slot filling and frame tracking (predicting the
next frame based on the current history) tasks. While this dataset contains an exten-
sive list of annotations, it lacks any form of response grounding, is focused on a single
domain and is not large-scale enough to be used for a CSS.

The Multi-Domain Wizard-of-Oz (Multiwo0Z) [[17] is another example of a dataset
oriented towards task-oriented DS. At a size of 8,438 conversations and 113,556 ut-
terances, it is significantly larger than Frames and spans conversations over seven do-
mains. The data collection process is performed by using a custom interface that con-
nects human wizards to users in a similar fashion to Frames. However, as opposed to
the previous dataset, crowd-workers are employed instead of expert annotators, which
allowed the authors to gather a much larger amount of data. The rest of the collection
process is similar to Frames, with the users receiving a template and the wizards the
means to solve the information needs (if possible given the information in the database
the wizard has access to). However, in an effort to mimic an actual conversation, users
were gradually given parts of the template, in order to solve sub-goals one by one.
The models trained on this dataset were evaluated on two DS specific tasks: dialogue
management and response generation. Although it solves some of the issues that the
previous dataset was having regarding the requirements of a CSS, the variety of do-
mains is limited (all of the seven domains are related to travelling) and there is still a
lack of grounding for responses.

Wizard of Wikipedia (WoW) [39] is an example of a dataset that is at the crossroads
between task-oriented DS and non-task-oriented DS: while the conversation setup is
based on a Wizard-of-Oz approach, the user does not have a clear information need
from the start. In the beginning, the user is a “curious learner” which talks freely to the
wizard. The goal of the conversation is to have a detailed discussion about a chosen
topic that interests one of the participants, while also keeping the conversation “engag-
ing and fun”. Instead of a small-scale database, the wizard has access to an interface
that retrieves articles from Wikipedia that can be relevant to the given topic under dis-
cussion. The final dataset contains 22,311 dialogues with a total of 201,999 utterances
spanning over 1365 domains. The models evaluated on the dataset are meant to replace
the wizard in the dialogue. This process happens in 3 stages: knowledge retrieval -
given a large knowledge base, the model should be able to retrieve the first paragraph
of the top 7 articles for a given query, knowledge attention - choose what sentences
should be used to create the next utterance in the dialogue, utterance prediction - given
the model performed the previous 2 tasks, the final stage should predict what should
be the next utterance in the dialogue. Humans were then asked to rate the performance
of each model, along with rating actual conversations that occurred between people
on a scale of 1 to 5. The best performing model, which combined memory network
architectures [[126] for knowledge retrieval with Transformer architectures [[136] for
generating outputs, obtained an average rating of 3.43, as opposed to 4.13 for human
conversations. Although this dataset is truly open domain and large-scale, the lack of
utterance labels, response grounding and clear information need from the start of the
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conversation makes it incompatible with a conversational search dataset.

The Ubuntu Dialogue Corpus (UDC) [85] is a dataset extracted from various logs
from Ubuntu-related IRC chat rooms. It contains almost 1 million multi-turn dia-
logues, spanning over 7 million utterances composed of over 100 million words. It
is designed to be used for building DS based on neural network models, which can
take advantage of the significant amount of unlabeled data. It contains conversations
between humans interacting on the platform, with a minimum number of 3 turns and
an average of 7.71 and an average number of 10.34 words per utterance.

To identify the dialogues, each message is identified by a unique (time, sender,
recipient, utterance) tuple. Afterwards, conversations are formed by matching senders
and recipients. Recipients are identified by checking whether the first word of the
utterance matches a username that was recently active in the chat. To track the initial
question, the algorithm starts from the first response of a user, identifies a recipient
and considers the initial question as the most recent utterance of the recipient. In case
multiple people respond to the same question, each of them is treated separately as
an independent dialogue. In order to test how neural architectures perform on this
dataset, the authors benchmarked the performance of an RNN and an LSTM model
against a simple TF-IDF baseline on the task of selecting the next best response after an
utterance. To build the training dataset, for each conversation, all possible conversation
contexts of length at least three are generated (a context is the entire conversation
history up to the current utterance). Therefore, for a conversation with five utterances,
there are three conversation contexts. In the testing phase, the system has access to a
context and is required to construct the next best response for it. Furthermore, to make
the task more difficult, negative responses are also added and flagged accordingly in
the training set. Using various recall measures, the researchers discovered that LSTM
outperforms all the other architectures on all metrics. They have also noticed that the
performance increases continuously with the increase of the training size, which shows
the importance of having a large-scale dataset.

Although this research provided a large-scale dialogue dataset, designed to be used
with advanced neural architectures, it does not have all the necessary properties to be
used for a CSS: the dataset does not have any conversations with intent labels (there-
fore, the system cannot detect what kind of intent the user has in the current context),
it is specific to only one domain and the responses have no grounding.

MISC (Microsoft Information-Seeking Conversation) [132] is a dataset designed for
Conversational Information Retrieval that includes audio-video recordings and their
transcripts, recordings of search and other computer-related actions and surveys on the
emotions and efforts felt by the users during the conversations. The conversations oc-
cur between pairs of volunteers. One of them is a "seeker", who is given an information
need but no means to answer it directly (no internet connection) and an “intermediary”,
who has the means of finding any answer (via a computer connected to the Internet)
but does not know the task. Each pair had to communicate through an audio link and
had 10 minutes to solve each task. Each participant had to complete a questionnaire
to assess the personality traits in order to have a reference against which to analyze
and interpret the results. During the tasks, the screens were recorded in order to un-
derstand what parts of the page were under supervision and which queries were used.
A camera was also tracking the faces in order to capture eye movement and emotions.
In the end, each volunteer was questioned with regards to the necessary effort and the
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level of engagement. In the end, the experiments generated 88 conversations (only 42
were completed, the others were skipped after 10 minutes), with 857 words per task on
average and an average solving time per task of 8 minutes 20 seconds. As compared to
UDC, it can be observed that the mean number of words used is roughly 10 times higher
on average, which is an indication of the fact that people are much more expressive
when talking than when writing.

The purpose of this research was to understand how an ideal natural conversation
should look like. Moreover, it can be used to understand how the relationship between
the agent and the user evolves throughout the process of searching, given the fact that
the dataset also provides emotion data. However, this dataset is not appropriate for
building an actual CSS, as it does not have utterance labels and the answers are not
grounded. Moreover, given the size of the dataset is so small, it cannot be used for
training any kind of complex conversation-oriented neural architecture.

Trippas et al. [134] conducted a study similar to MISC, where 13 pairs of people
would try to solve a task together in at most 10 minutes: one received the task but had
no means to solve it while the other did not know the task but had access to a search
engine. Their screens were also recorded and transcripts were created. However, as
opposed to the previous research, annotators were asked to label each turn of the con-
versation depending on the intent, such as Query Repeat or Intent Clarification. The
tasks were also split by complexity and the results showed that the more complex a
task would become, the longer the length of the utterance would become. The analysis
has also shown that the users who knew the task needed less time per turn that the ones
who were asked to use the search engine and that, as the complexity of the tasks grew,
the number of times the search engines was used increased. The result of performing
the experiment is a dataset that contains only 39 conversations. Due to the small size
of the dataset, the purpose of the study is to further understand how humans behave
during the search process. Moreover, apart from the insufficient size, the responses of
the agent are not grounded and, thus, cannot be used for building a CSS.

One of the researches that constituted a solid starting point for ours is the one per-
formed by Qu et al. [101]], which resulted in the creation of the MSDialog dataset.
It contains 35,000 dialogues (totaling 300,000 utterances) between users with an in-
formation need and people that can provide answers on an online forum regarding
Microsoft products| "} All conversations have at least three turns and at most 10, with
a mean of 8.94 and a mean utterance length of 75.91 words. As opposed to UDC, dia-
logues can have more than two participants, with an average of 3.18 per dialog. Every
conversation that was extracted had to have at least one correct answer, which was
identified using the forum community, which is able to vote on which is the correct an-
swer. Furthermore, a subset of 2199 dialogues totaling 10020 utterances was labeled
using 12 distinct intents by employing Mturk E crowdsourcing workers. The intent
classes were built starting from the taxonomy of Bhatia et al. [13] and encompass a
large spectrum of intents, such as greetings or gratitude, information requests, requests
for further details or positive/negative feedback. Most of the classes that were defined
in this research were also used in ours. In a following research, Qu et al. [102] took
advantage of MSDialog to perform user intent prediction. Firstly, the conversations

https://answers.microsoft.com/
Zpttps://www.mturk.com/
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were transformed into multiple types of features: (1) content features by using TF-IDF
to obtain similarities between a response and the initial utterance in order to capture
the relevance, (2) structural features, such as the position of the utterance or the length
and (3) sentiment features in order to better identify certain types of intents which are
strongly correlated with sentiments, such as Positive/Negative Feedback or Gratitude.

The authors propose two neural architectures to solve the tasks: a CNN and a BiL-
STM model, which take as input an utterance from the dialogue, transforms it into
word embeddings using a pre-trained model and outputs one or more intent labels.
The architectures can either take advantage of only the features that were mentioned
previously or, additionally, can incorporate context representation of the dialogue up
until the utterance under supervision and use it as an additional feature to further un-
derstand the importance of the current utterance. The experimental results show that
the CNN model with context information and representation achieves superior results
to all the other baselines (Random Forest, AdaBoost and standard CNN and BiLSTM)
in terms of Accuracy, Precision, Recall and F1-Score. Furthermore, the authors evalu-
ated how the best model trained on MSDialog performs on the UDC annotated subset.
The results in Table [2.3] show that, although the generalization performance is lower
than for MSDialog, the model still outperforms the baselines.

Dataset Model Accuracy Precision Recall F1

MSDialog Random Forest 0.6268 0.7657 0.5903 0.6667
AdaBoost 0.6399 0.7247 0.6030 0.6583
CNN-Context-Rep 0.6885 0.7883 0.6516 0.7134

UDC Random Forest 0.4405 0.6781 0.4077 0.5092
AdaBoost 0.4430 0.5913 0.4187 0.4902

CNN-Context-Rep  0.4708 0.5647 0.5129 0.5375

Table 2.3: Performance of various models on MSDialog and UDC, as reported by Qu
et al. [102]

Although many researches have proposed datasets that are appropriate for various
conversational-related tasks, none exhibit all of the characteristics necessary to build a
CSS. Furthermore, the ones that demonstrate most of the features are too small to train
any model. Table [2.5] contains a list of datasets that are designed to solve tasks that
are related to conversational search, ordered by the number of CSS characteristics they
fulfill. Table [2.4] showcases some of the tasks that can be accomplished using each of
the mentioned datasets.
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Name

Task

ShARC [112]
CoQa [106]
Frames [7]
Multiwoz [I7]
Wow [39]

uDc [83]
MSDialog [101]
MISC [132]

scs [1351[134]

Next utterance prediction, Follow-up Question Generation

Reading comprehension

Dialogue State Tracking, Natural Language Generation
Dialogue State Tracking, Dialogue-Context-to-Text Generation, Dialogue-Act-to-Text Generation

Next utterance prediction
Next utterance prediction

Next utterance prediction, User intent prediction

Information Seeking task

Search task with different levels of cognitive complexity (Remember, Understand, Analyze)

Table 2.4: Overview of the tasks that were performed on each dataset

Name Description Size Strengths Weaknesses
ShARC [112] Dataset focused 948 Multi-turn, follow-up Simple answers - Yes
on follow-up ques- questions No, single-domain, no
tions grounding
CoQA [106] Long conversations 8,000 Long conversations, QA only, simple in-
split into QA pairs multi-domain formation needs, no
grounding
Frames [7] Goal-oriented DS 1,369 Multi-intent, complex Not scalable, single do-
dataset information needs main & no grounding
MultiwWoz [[17] Conversational 8,438 7 domains, multi- No grounding
corpus intent, multi-turn,
utterance labels
Wow [39]] Open-domain 22,311 Scalable, truly open- "Chit-chat" oriented -
conversational domain, multi-turn, no clear information
corpus based on grounded. need from the start, no
Wikipedia utterance labels
uDC [85] Large conversa- 930,000  Very large, multi-turn, Single-domain, no
tional dataset based complex information grounding, 80% of
on AskUbuntuEI needs, follow-up ques-  conversations have arti-
tions, multi-intent facts [[73]], no utterance
labels
MSDialog [101] Large conversa- 35,000 Large, multi-turn, com-  Single-domain, no
tional dataset based plex information needs,  grounding
on Microsoft Prod- follow-up questions,
ucts forum[lzl multi-intent, utterance
labels ¢
MISC [132] Recordings of con- 88 Multi-turn, complex Very small, no ground-
versations between information needs, ing, no utterance labels
humans follow-up questions,
multi-domain
ScCs 13501134 Study on human 39 Possesses most of

interactions during
conversations

the characteristics
necessary for a CSS

Very small, no ground-
ing

Table 2.5: Overview of dialogue datasets including their size and main characteristics.
@ There are labels for a sample of 2,199 dialogues.






Chapter 3

Building the dataset

As seen in Table [2.2] existing conversational search datasets usually lack coverage
of multiple domains, do not address complex information needs or lack grounding of
the answers present in the agent responses. A significant portion of this research is
dedicated to the creation of a new dataset that can address the issues that are currently
present in conversational datasets. In order to create a large-scale collection of data,
we must resort, as some of the creators of the datasets in Table 2.2] to using existing
data sources, rather than using crowdsourcing to artificially create new conversations.
We have chosen the community-driven question-answering platform Stack Exchange
as our data source for extracting conversations due to the following reasons:

e The data dump is publicly available ﬂ
e Itis large-scale - over 20M Questions
e It covers various domains (so-called sites - 174 as of 11/2019).

e The information needs are complex as, usually, users who resort to asking a
question on one of the sites have not been able to find the desired information
via a simple web search.

o The platform is self-moderated, which means that people can rate comments and
answers, which makes filtering of spam and offensive discussions much easier.

e The built-in interface allows extended interactions through comments on the
same answer.

For our dataset, we consider 14 diverse domains: apple, askubuntu, dba, diy, elec-
tronics, english, gaming, gis, physics, scifi, security, stats, travel and worldbuilding.
We have chosen the sites based on the topic (we aimed for a high diversity) and their
relative size (we filtered out sites that had archive files smaller than 100MB, which
was an indication of a low number of conversations). The number of domains was re-
stricted by the time and resource constraints, given that adding new domains requires

Thttps://stackexchange.com/
Znttps://archive.org/details/stackexchange data dump from 2019-03-04
3According tohttps://data.stackexchange.com
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some manual annotation work. However, the code E] for automatically extracting the
dataset is publicly available and can be easily modified to include any of the 174 avail-
able domains.

3.1 Inclusion criteria

Usually, on a single question-answering thread on Stack Exchange, there can be mul-
tiple potential answers. Each answer has its own comment space where the discussion
can be extended further. We treat every such answer space as an independent con-
versation, which occurs between exactly one information seeker and one information
provider. A conversation is included in the dataset if:

e The conversation takes place between exactly two users, without any interfer-
ence from anyone else. Conversations with three or more participants are not
allowed. Kummerfeld et al. [[73]] have found that in the Ubuntu Dialogue Corpus
[85]] (which derives two-way conversations from chat rooms involving multiple
people) 80% of the conversations have either missing or extra messages, with
only 48% of them having explicit direct mentions. Therefore, by focusing on
conversations that only occurred between two users, we discard the possibility
of wrongly separating the conversations into sub-threads and, therefore, remove
the need for applying conversation disentanglement [[73]].

e The conversation consists of at least two utterances per user. Conversations that
are shorter than two utterances per user are considered fit for question answering,
rather than conversational search.

e At least one of the responses originating from the information provider contains
a hyperlink (thus, providing grounding for the answer).

e The conversation has not been marked as Spam or Offensive by one of the users
of the platform.

e The conversation has not been marked as Edited or Deprecated. This is usually
marked in a certain manner in the conversation (e.g EDIT: or DEPRECATED:).
Discarding these types of conversations can avoid artifacts in the dataset, such
as answers that are placed directly in the original question after edit.

o If the final response of the conversation is coming from the information seeker,
it must express positive feedback.

The rationale behind the last condition is that, if the final response is coming from
an information seeker and is not a positive feedback, this means that the conversa-
tion is either ongoing or the seeker did not fulfill his information need. Therefore,
these conversations do not qualify for being added to the dataset. In order to verify
whether the last response from the information seeker was positive, we sampled from
each domain a total of 1400 conversations (100 conversations per domain) where the

4nttps://github.com/alexanderblnf/conversational-search-dataset
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last utterance originated from the information seeker and labelled it as positive feed-
back/other. Subsequently, we computed the VADER score [62], which returns a value
between -1 and 1 based on the polarity of a given text. A low score indicates a nega-
tive sentiment, while a high score is indicative of a positive one. Based on the labels
and the score, we used a decision stump to discover what is the optimal VADER score
threshold (per site) to separate the positive feedback from other formulations. Based
on the newly obtained thresholds, we discarded all conversations that had the score
under that value.

In order to certify to what extent the presence of a hyperlink is a valid indicator
for document grounding, we have sampled 150 conversations from the dataset and
manually verified whether the link was indeed pointing towards a document that is
related to the answer. This was the case for 88% of the samples, which we consider to
be a sufficiently high percentage to stop improving upon the grounding logic.

3.2 Initial dataset analysis

Based on the aforementioned criteria, we were able to extract a total of 80,326 con-
versations, spread across 14 sites as illustrated in Figure Tech-related domains
occupy the top three domains by size, with askubuntu being the biggest. What is also
noticeable is the fact that the weight of each domain in the dataset is generally propor-
tional to the size of each site (by the number of questions) - for example, askubuntu is
the biggest domain while worldbuilding is the smallest. Our filtering criteria was quite
stringent, as only 4.77% of question threads were transformed into conversations that
qualify for our dataset.

To understand how these sites have evolved over the years, we have looked at the
number of conversations generated by each site every year (we consider the begin-
ning of a conversation as being the timestamp at which the agent first responded to a
question), with the exception of 2019, for which we do not have the complete data. By
analyzing Figure[3.2] it can be observed that, since its release in 2009, the platform has
increased substantially in terms of the number of conversations. For a large part of its
history, askubuntu has been the biggest site of the 14. However, with the appearance of
more sites, its share of the conversations has been steadily decreasing, with electronics
becoming the largest generator of conversations.

When analyzing the average size of an utterance by site in Figure [3.3] we have
noticed that domains that have questions that require extensive descriptions and re-
sponses are the ones that have the highest utterance size. For example, the discussions
on worldbuilding revolve around designing fictional worlds, which, intuitively, cannot
be summarised in a couple of sentences. Responses on askubuntu or apple tend to be
short, as they are usually targeted towards concrete functionalities or commands.

The average size of a conversation can be indicative of the complexity of a ques-
tion. Our analysis in Figure has shown that the majority of conversations have
two turns per user (60%). We have noticed that highly technical domains, such as
electronics or physics tend to contain longer conversations (in terms of the number of
turns), which can indicate that the agent might require further information before fully
answering a question. On the other hand, questions related to domains such as travel

35



3.2 Initial dataset analysis Building the dataset

askubuntu
electronics
gis
physics
stats

apple

dba
security
english
gaming
scifi

diy

travel
worldbuilding

Site

Type
B Conversations in Dataset
mmm Questions on platform

i II||||||

(¢}

10 15 20

% of total conversations / questions

Figure 3.1: Distribution of conversations across the 14 domains. The show

the weight of each domain in terms of conversations in the dataset. The
show the weight of each domain in terms of number of questions that are present on
the platform (as measured in September 2019).
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Figure 3.2: Evolution of the 14 domains throughout time in terms of the yearly number
of conversations

or english might have more straightforward answers, given that the users require less
turns on average to answer a question.
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Figure 3.3: Visualization of the utterance length per domain. Each box displays the
mean number of words (vertical line inside the box) and the confidence interval.
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Figure 3.4: Visualization of the conversation size per domain. Each bar displays the
mean number of utterances per conversation and the confidence interval

3.3 Utterance intent labeling

As previous research has shown [1335]], integrating underlying utterance information
such as relevance feedback can have positive effects on the performance of the agent.
In order to detect these types of user intents, we have sampled 1,356 conversations
from MANtIS, covering the entire range of domains in accordance with their relative
size. Each utterance in the conversation was manually labelled according to the intent
of the user who emitted it, resulting in a total of 6,701 intent labels. Inspired by the
work of Qu et al. [102], which performed the same labeling task, we have defined nine
types of intent labels. These can either describe a question (Information Request, Fol-
low Up Question, Original Question), an answer (Potential answer, Further Details),
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e — ™ < — ™
Domain: apple Intents Domain: travel s
SEEKER: I want a firewall that will protect me Original Question SEEKER: I'm a British citizen flying from
but more of that to monitor any connection in or ’ London to Seattle in late May. My plan is [...] | 5/ uestion

out of my mac [...] then travel south [..]. Will I have problems
entering the US? [...]

PROVIDER: That would be the TCPblock {URL}
[...] With TCPBlock you can prevent selected | Potential Answer PROVIDER: There should be absolutely no
applications on your computer from opening problem with doing what you propose [...] If you
connections to the network ever have any doubt, you can look up {URL} [...]

Potential Answer

SEEKER: Thank you. This app is not from fg‘;ify’”gpséj;’;ﬁ’ SEEKER: Thanks, I really appreciate the input. | creetings/Gratitude
identified developer it is safe to use it? ... ' : So, in theory I should be recorded as departing | rurther Details

and not risk impeding my future visits to the | /nformation Request
PROVIDER: I understand, but there is nothing that US? I’d read a few things [...]

it 100% safe and I use it [...]

Further Details

PROVIDER: The reason for the rule that [...] is to
prevent [...]

Further Details

SEEKER: Cheers anyway! I will try to buy [...]

Greeting/Gratitude
which is more safe [...]

SEEKER: Okay that's a huge weight off my | Greeting/Gratitude
mind. [... Gi Positive Feedback
\ Y, \& [...] Thanks, Greg. )

Figure 3.5: Dataset conversation examples. yellow shows document grounding,

green! displays final positive message from the original poster, pink are clarification
questions and | gray highlights initial information needs. All examples in the table are
multi-turn. The right-most column shows the conversation labels for each utterance.

express a form of greeting gratitude (Greetings/Gratitude) or illustrate some form of
feedback (Negative Feedback, Positive Feedback). Any other type of intent that does
not fit in any of the aforementioned descriptions is labeled as Other. A more extensive
description of each label, accompanied by an example, is available in Table[3.]

Category Description Example snippet

Original Question (OQ) A user asks a question that initiates the conversation Hello! I was wondering what is [...]
Further Details (FD) A user provides more details. The information you need is [...]

Follow Up Question Seeker asks one or more follow up questions. I really have one more simple question [...]
Information Request (IR) A user asking for clarifications or further information. Your advice is not detailed enough [...]
Potential Answer (PA) A potential solution, given by the information provider. To change the PIN on your phone, you [...]
Positive Feedback (PF) Seeker provides positive feedback about the offered solution. That was exactly what I needed. Thanks!
Negative Feedback (NF) Seeker provides negative feedback about the offered solution. [..] the fix did not work.

Greetings / Gratitude (GG) A user offers a greeting or expresses gratitude. Thank you for all the responses!

Other (O) Anything that does not fit into the above categories. 1) 1) ) . *shrug*

Table 3.1: Description of the intent annotation scheme.

As in Qu et al. [102]], an utterance can be associated with multiple labels, given
that one person can express multiple intents through the same message in a conversa-
tion. For example, a person can both show gratitude and give positive feedback when
a response answers his question. A real example of such a conversation is presented
in Figure [3.5] Initial labeling experiments consisted in employing crowd-workers to
perform the task. However, the observed accuracy of crowd-workers when labelling
pre-annotated gold standards was, on average, under 50%. Therefore, the procedure
was then applied using two expert annotators, which performed the task on an interface
that was built specifically for this purpose. To measure the annotator agreement, a sub-
set of 151 utterances was reserved for both the annotators to label and were randomly
inserted during the process, disguised as normal utterances. The metric that was used
to measure the agreement is the Krippendorff o [72] and the resulting value was 0.71,
which indicates a satisfactory agreement between annotators.

The distribution of intents in Figure [3.6|reveals that Further Details, Potential An-
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swer and Original Question are the most common intents. These results are to be
expected, given that every conversation should have one question and one possible
answer. Moreover, Further Details should also occur in most conversation, since we
are only considering conversations that have at least four turns, which means the in-
formation need was not solved immediately and further interactions were necessary.
Furthermore, 20.5% of utterances were labelled with more than one intent and 18.7%
of these were labelled with more than two intents. The most common combinations
of intents were (Further Details, Information Request), (Further Details, Greetings
/ Gratitude) and (Positive Feedback, Greetings Gratitude). These facts confirm the
multi-intent characteristic of our dataset.

Further Details

Potential Answer |

Original Question |

Information Request

Greetings / Gratitude

Follow-up Question

Positive Feedback

Intent

Other

Negative Feedback
0

5 10 15 20 25
% of utterances

Figure 3.6: Intent distribution of the dataset. In total, there are 8334 distinct intent
labels.

3.4 Grounding documents dataset

As explained by Baeza-Yates et al. [9] in their book on modern information retrieval,
ad-hoc retrieval is one of the most common tasks that are performed by IR systems.
This implies matching two pieces of text - typically a user query, which expresses
his information need, and a target document. In conversational search, the user can
express various information needs throughout the conversation and the agent should
be able to provide responses, accompanied by a grounding document that explains the
intuition behind the answer.

In its current form, MANt IS does not contain actual documents that solve the infor-
mation need of the user, but rather agent responses which contain a link to a ground-
ing document. For this reason, we have decided to enrich MANtIS with the actual
grounding documents by building a system that crawls the URLs that exist in each
conversation. Therefore, for each existing URL in the dataset, we attempt to extract
the associated document. Given that links can point towards other types of files than
text documents (images, zipped archives etc.), the crawler verifies the request header
of each link to make sure that the destination URL is an HTML document and dis-
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cards everything that is not. For the document extraction phase, we have used news-
paper3l<ﬂ a Python library specialized in extracting articles from links. Timeouts be-
tween requests are also enforced in order to make sure that our crawler is not flooding
websites that appear often throughout conversations (for example, we have noticed it
was quite common that users post links that indicate other StackExchange threads and
that, throughout our initial experiments, we were temporarily blocked from accessing
the website). Although the crawler is able to extract documents for all URLs avail-
able in the conversation, the current analysis and task will be performed only on the
documents mentioned by the agent.

Out of a total of 197,293 URLs identified in agent responses, we have managed to
extract documents for 58.8% of them. Out of the URLs we had associated documents
for, 82.5% were mentioned in the first response of the agent, with 11.9% mentioned
in the second one. This indicates that most of the grounding of answers occurs at the
beginning of the conversation.

Further analysis provided important insight on the reason why our document ex-
traction success ratio was relatively low: out of the total number of URLs for which
we were not able to fetch documents, 47% had no extension or an extension indicat-
ing a web document (.html, .htm, .asp), which qualified them for web crawling, while
32.07% had an extension that indicated a PDF or image file, which are not compat-
ible with our current system. The remaining 20% are composed of various types of
files, such as archives (.zip, .tar), executables (.exe, .dmg) or file extensions specific to
certain programming languages (.py, .sh, .java, .js).

At a domain level, we have noticed the most common domain for which we were
unable to fetch URLs was by far imgur F_’-], a popular image sharing website, with a
share of 20.5%. The next domain in terms of occurrences was Github’| with a share of
1.79%.

Having these insights, we then proceeded to analyze how the share of each URL
type evolved throughout the years by looking at the utterance time the link was in-
cluded in. Figure [3.7depicts how the distribution of un-crawlable URL types changed
from 2009 to 2019. Initially, links that would qualify for our web crawler (indicate a
web document extension or show no extension at all) were by far the most common
(roughly 70% of the URL pool). However, as time grew by, images became the pre-
dominant type of URL for which we were not able to retrieve documents, reaching a
share of almost 50% in 2019. In a report by the International Trademark Associatio
regarding Wayback Machine ﬂ a historic digital archive of the World Wide Web, they
state that the typical lifespan of a web page, as measured by the online archive, is 44-
75 days. This implies that for the first years, when the crawler-compatible links were
the most common, there is a high probability that the crawler was not able to retrieve
documents because the web pages did not exist anymore.

Since one agent response can contain multiple URLSs, further analysis was neces-
sary in order to discover how many conversations have at least one associated docu-
ments. We have found that for 74.36% of conversations we have managed to extract at

Shttps://pypi.org/project/newspaper3k/

Onhttps://imgur.com/

Thttps://github.com
8https://www.inta.org/Advocacy/Documents/INTAWaybackMachine2OO9.pdf
nttps://archive.org/web
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Figure 3.7: Distribution of un-crawlable URLs by type of file. The show

the share of images . The show the share of web documents or URLs that are
not identifiable by extension.

least one document. When analyzing the document sizes by site, we see significant dif-
ferences between various domains. Given that worldbuilding had the largest utterances
in terms of the number of words used, we expected that the grounding documents were
also quite extensive. We expect the same behaviour for scifi, which can be considered
a neighbouring domain given that both refer to fictional elements. The visualization
in Figure [3.8|confirms the fact that sites with long utterances are also characterized by
long grounding documents: the top six domains by mean utterance length are the same
top six domains by document length.

3.5 Tasks

The dataset is suitable for a suite of conversational tasks: conversation response rank-
ing (CRR) 83, [106]], user intent prediction [[101} and grounding document
ranking (GDR).

3.5.1 Task definition

Before providing insights into our task setup, let us define each task in a more detailed
manner.

Conversation response ranking Let D = (C;,r, y,-)ii | be a conversational dataset
containing N triplets. The first component is the conversation context C; containing all
of the utterances {uj,uy,...u;} that appeared in the conversation up to time #, which
is the time when an agent response occurred. In our experiments, we only consider
conversation contexts that hold at least three utterances, as a conversation with 1 user
question and 1 agent response is considered a QA task. For example, if a conver-
sation spanned over eight utterances, three conversation contexts will be generated:
one containing three utterances, one containing five (the previous three, together with
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Figure 3.8: Visualization of mean document length by site. The width of the bar
represents the mean, while the horizontal line represents the confidence interval.

the following agent response and a new utterance originating from the user) and one
containing seven. The second component is response r;, which can either be the first
agent response that occurred after time ¢ (also known as true response) if y; =1, or , if
yi = 0, r; is a negative sample obtained by means of a sampling function. The task of
a model is to learn a ranking function that can order a set of candidate responses (all
the r; that belong to the same C;) by their likelihood of being the true response. An
example depicting a conversation split by contexts and potential responses is depicted
in Figure[3.9]

User intent prediction Based on a set of utterances u; with the associated list of
intent labels, a model has to learn to predict the intent(s) of an unseen example.

Grounding document ranking The GDR task definition is similar to CRR. Let
D = (C,d;, y,-)fi | be a dataset containing N triplets: a conversation context C;, a doc-
ument d; obtained based on the URLs present in r; if y; = 1 or a negative sample if
y; = 0. The task of the model, similar to the CRR task, is to learn a ranking func-
tion that can order a set of candidate documents by their likelihood of being the true
document.

3.5.2 Task setup

For the CRR task, we have designed 2 variants of the dataset: CRR10 and CRR50. For
each conversation containing n, agent utterances, we generate n, — 1 conversation con-
texts, as the case in which there is only one agent response is not taken into account due
to the fact that a context with one question and one answer is considered appropriate
for QA tasks. In total, we have generated 118,353 conversation contexts. We consider
the last agent response after the current context to be the true response (the one that
should always be ranked first by a ranking model). For each ground truth reply, we
generate a set of negative samples, as done previously by researches performing the
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"Trying to DBAN 2009 Mac Mini"

I'm trying to DBAN -- or otherwise wipe -- my old 2009 Mac OS X 10.6 Mac mini.
‘ The CD drive on the Mac is broken, so | have been trying to do it with a bootable
USB. No matter what | try, | cannot get the USB drive to show in Startup
Manager.This is what I've got so far ...

If you have a hard disk drive (HDD), the use of a third party tool is unnecessary.

You can boot to macOS Recovery [URL] ... Agent

‘ I've tried that (Sorry, should have said) but no matter how |
time pressing ..

Context 1
Have you tried Option+Command+R, then trying to connect
‘ Agent
wirelessly?
r
‘ Yes, no luck with that either: It just doesn't want to boot to
Recovery. Thanks anyway.
Context 2
Try using a flash drive Agent
2
I think it's going to be **"Take off and nuke the site from
‘ orbit"** -- looking again it's a 2009 Mac Mini which doesn't
feature anywhere. Thanks very much for your suggestions.
Context 3

| already knew something was wrong. This [web site] showed the
2011 Mac mini was shipped with OS X 10.7 and your post showed
10.6. Look, you are still in the game.

Agent

ra

Figure 3.9: Example of a conversation split by contexts and responses. The
show the conversation contexts, while the with gray back-
ground show the potential responses.

same task [[147]. To obtain these samples, we have used BM25 [107] on a corpus con-
sisting of all agent replies from the training and validation splits defined in Chapter [3]
to obtain the retrieval score of all agent replies in relationship to a context. We then
randomly sample 10 (for CRR10) or 50 (for CRR50) negative samples from the top 1000
replies by retrieval score. For CRR10, a BM25 pool is created for each domain and, for
a given context, all the negative samples are originating from the same domain. For
CRR50, given that some domains have as few as 1000 conversations and we are sam-
pling 50 negative responses per context, we have decided to create a single common
pool for all the domains, as opposed to sampling from the same domain as the context
belongs in, in order to ensure a high level of diversity. Furthermore, choosing this
approach gives us the opportunity to study how the baselines perform when having to
distinguish between documents coming from other sites.

For the GDR task, the procedure is almost identical, except for the fact that the
agent replies are now replaced by the grounding documents that were mentioned in
the reply. Given that an agent reply can contain multiple grounding documents, this
means that, in this case, there can be multiple ground truth documents for the same
conversation context.
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For evaluation purposes on the CRR and GDR tasks, we have split the dataset into
three subsets: training, validation and test. As suggested by the name, the training set
is used for training the model, the validation for evaluating the fit of the model during
the time the model is tuning its parameters and the test set for the final evaluation of
the model. Following the same methodology as Yang et al. [148]], we have split the
dataset chronologically, with training containing the oldest conversations and test the
newest. Training contains 70% of the conversations, while validation and test each
contain 15%.

Since the user intent prediction is a simple classification task, the setup of this task
is different than for the others. The input that is being passed to the models consists of
rows containing only the utterance labels and the actual utterance. The output is a set
of intents for an unseen example. Since the number of intent labels is rather small, we
have opted for a 10-fold cross-validation evaluation, as opposed to the 3-way dataset
split we have used for the previous tasks.

Table [3.2] shows a summary of all the tasks that we have derived from the dataset,
including the inputs and outputs and the evaluation procedure for each task.

Task Input Output Evaluation
CRR context 1 - if the entry contains train/validation/test
potential answer the true answer dataset split

0 - otherwise

GDR context 1 - if the entry contains train/validation/test
potential grounding the true document dataset split
document 0 - otherwise

Intent Prediction  utterance set of intent labels 10-fold cross-

validation

Table 3.2: Summary of the tasks that we have defined, along with a description of the
inputs and outputs and the evaluation methodology.

In conclusion, starting from a theoretical framework [104, 8], we were able to ex-
tract a set of requirements which was then transposed into a stringent list of criteria.
Using these criteria and a dump of conversations from 14 StackExchange sites, we
were then able to extract over 80,000 conversations between humans. Furthermore,
based on the links that were mentioned in the agent responses, we were able to extract
the referred documents. This enabled us to provide grounding for most of the conversa-
tions in the dataset. In order to include intents to the conversations, we have manually
annotated 1,356 conversation with 9 types of intents, reaching a total of 6,701 intent
labels. Finally, given the available data, we were able to derive 3 tasks: conversation
response ranking, grounding document ranking and user intent prediction.



Chapter 4

Experiments

In this research, our focus was solely on ranking and classification methods and we
decided to leave generative methods for further research. In this chapter, we will first
detail the models that were used for solving the tasks, followed by a discussion of the
results. In the final part, we will present a method that takes into account the labelled
data from these 3 tasks in a multi-task learning setup.

4.1 Models

Our dataset is compatible with three tasks with different characteristics that require
different approaches. Given this observation, we have applied several methods involv-
ing different types of models to discover which one obtains the highest performance.
Furthermore, one of the models is also extended in order to be used in a setup where
the tasks are learned jointly. This section describes all of the models that were used to
perform the tasks both independently and in a multi-task learning setup. An overview
of all the models and their compatibility with each task is presented in Table 4.1}

Model CRR GDR Intent Prediction MTL
AdaBoost v

BERT v v v

BERT MultiLabel v

BiGRU v

BM25 v v

DMN v v v
GradientBoost v

Logistic Regression v

SVM v

Table 4.1: Models that were used throughout all of our experiments. The «'signifies
that the model on the corresponding row was used to solve the task on the correspond-
ing column.
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4.1.1 Base tasks
Response Ranking & Grounding Document Ranking
BM25

We have chosen 3 models for the ranking tasks based on three different rationale.
The first baseline is BM25 [107]], which was detailed in Chapter [2] It is a baseline
that works out of the box without extensive parameter tuning and was chosen due to
it being a popular standard model for IR related tasks [[130, (92} 21]], including CRR
[[148]].

In our experiments, we have used the gensiwﬂ implementation of BM25. To find
the optimal values for k; and b, we have used grid search. Table 4.2[shows the optimal
values for each parameter with respect to the task that was performed.

Task ki b

CRR10 2.1 0.2
CRR50 2.1 0.5
GDR1IO 2.1 0.5
GDR50 2.1 0.5

Table 4.2: Optimal values for the k| and b parameter of BM25 with respect to each
task.

DMN

The next model is a Deep Matching Network (DMN) [[145]], a neural model focused on
interactions and specialized on conversational tasks, which has previously shown good
performance when applied on a conversational response ranking task using the MSDi-
alog dataset [[148]], obtaining better results than BM25. Since BM25 only performs
lexical matching, we expect DMN, which performs higher-level pattern matching, to
outperform it for our dataset as well.

DMN, as its name suggests, is a neural network that relies on matching between
parts of text by creating interaction matrices between every past utterance in a con-
versation and the current potential answer. The input of the network is, therefore,
represented by the current response (also known as potential answer) r; on one side
and the dialogue context on the other. In the next step, two interaction matrices are
built for each pair of utterance u; and response r;: matrix M, is a pairwise similarity
matrix and it stores the interactions between the word embeddings of u; and r;. M»
stores the hidden representation similarity matrix using a bidirectional gated recur-
rent unit (BiGRU) that encodes r; and u; into hidden representations by modelling the
neighbor context information around words from two directions. The BiGRU is neural
network we have also used for the intent prediction task and will be detailed in the
corresponding section

The two matrices are then passed to a convolutional neural network (CNN) in order
to learn high level matching patterns by alternating between convolution and max-
pooling operations. The newly obtained representations are passed to another BiGRU

Ihttps://radimrehurek.com/gensim/summarization/bm25.html
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to learn the dependencies and temporal relationships of utterances in the conversation.
Finally, all combinations of u; and r; that were processed through this pipeline are
gathered into a fully connected layer that outputs a matching score between the context
and the response. The graphical representation of the entire process can be observed
in Figure [4.1]

We have used the same base implementation of DMNE] as Yang et al. [148]. In
our experiments, we used word embeddings generated using word2ve(ﬂ pre-trained
on the training set. More specifically, a sentence is turned into a sequence of tokens
S = {s1,82,...5,} of size n. Each utterance was truncated to a sequence length of
n = 50, which was the default value in the implementation. We did not notice any
significant improvements when raising the sequence length to higher values, such as
n = 100. Padding occurs when the sentence is shorter than #. In our implementation of
DMN, the inputs are randomly sampled from the dataset at each iteration of the training
phase until the evaluation performance of the validation set is no longer increasing
(the maximum number we have encountered throughout our experiments was 1300
iterations). The learning rate is set to 0.0001. The model that is used for testing is
using the weights that were saved at the iteration that showed the highest performance
on the validation dataset. The training loss for both the CRR and GDR tasks is the
categorical cross-entropy loss. The Adam optimizer [68] was chosen for tuning the
hyper-parameters during training.
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Figure 4.1: Functional diagram of DMN.

BERT

As the strong baseline, we have chosen fine-tuned BERT [38]], which is the newest
architecture of the three and is a language representation model that uses bidirectional
representations on text data by conditioning both the left and right parts of a context
at the same time. Currently, it achieves state-of-the-art performance on a variety of
NLP tasks. For example, in the MS Marco leaderboarcﬂ which is a Machine Reading
Comprehension (MRC) dataset, all of the models in the top 10 for the passage retrieval

2https://github.com/yangliuy/NeuralResponseRanking
3https://github.com/dav/wordZvec.git
4nttp://www.msmarco.org/leaders.aspx
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task are variations of BERT, while four of the models in the top 10 (including the first)
for the Q&A task are also flavours of the same model.

BERT conditions both the left and right context on all of its layers, as opposed
to the previous state-of-the-art models, such as OpenAl GPT [103]], which uses a left
to right architecture. Furthermore, its architecture allows the model to be used for a
wide range of tasks with state-of-the-art performance [38]. One of the key assets of
BERT is its ease-of-use: the model is available already pre-trained on a large corpus of
documents containing 3.3B words [38]] and can be extended for various NLP tasks by
just adding one additional output layer for fine-tuning. Because of this characteristic,
the fine-tuning is also fast: all of the experiments that were conducted by Devlin et al.
[38]] on pre-trained BERT can be replicated in a couple of GPU hours. The network
accepts a list of tokens as input: the first token is always [CLS], a special classification
symbol, followed by a list of tokens representing the first sequence, followed by [SEP]
- a token which denotes a separator and finally, a token representation of the next
sequence. These tokens are then transformed into three types of embeddings: token,
sentence and position, that are summed up to form the final input embeddings. These
are then passed to a series of layers which are based on the Transformer architecture
[136], which uses an attention mechanism that matches different parts of the same
sequence in order to identify the relevant context. Each layer performs the attention
computations on the word representations of the previous layer in order to obtain a
new representation. The final hidden representation corresponding to the [CLS] token
stores the aggregate sequence representation. The described process is detailed in
Figure [4.2]

The pre-training phase is being performed using 2 novel unsupervised prediction
tasks. First, given that BERT uses bidirectional conditioning, this would allow the
words to “see themselves” in a context with multiple layers. To avoid this, for each
training batch, 15% of the input tokens are chosen randomly, out of which 80% is
masked using a [MASK] token that replaces the actual word, 10% are replaced with
a random word and 10% are left unchanged. Only the selected tokens are used for
predicting the true word. Afterwards, the model solves a next sentence prediction task
in order to understand the relationship between sentences. More specifically, the model
receives 2 masked sentences from the previous task, with a probability of 50% that the
second sentence is the one following the first. Adapting the pre-trained model to a
variety of NLP tasks is done by just adding an additional output layer (usually a fully
connected layer) on top of the existing architecture, which implies that only a handful
of parameters need to be learned from scratch.

In our experiments, we have used a pre-trained model of BERT and fine-tuned
the fully connected layer on top of the model output. The implementation of BERTE]
randomly samples inputs from the datasets until all the samples from the dataset have
been exhausted. The learning rate is set to e—>, while the context and response are
truncated based on the following heuristic: given s, and s, two sequences (in our case,
s, is the context and sy, is the response), at each step, remove a token from the sequence
that is currently the longest until the sum of their number of tokens fits within a given
limit, which in our experiments is 200 tokens. The training loss for both CRR and GDR
tasks is the mean squared error loss. As was the case for DMN, the Adam optimizer is

Shttps://github.com/huggingface/transformers
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used for hyper-parameter optimization.
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Figure 4.2: Functional diagram of BERT.The depict the input of the net-

work. The yellow squares depict the embedding representation of the words. The
represent the output sequence of the network, which is used to generate
the final output.

User Intent Prediction

As was shown in Table[3.2] the user intent prediction task uses only one input, namely a
user utterance, and outputs a set of intent labels. From the 3 aforementioned baselines,
only BERT can also be used for this task, as its architecture can also accept [CLS] and
only one sentence, without the need of specifying [SEP] and a second sentence. DMN
requires two sequences as input, while BM25 is not suitable for classification.

By default, the implementation of BERT we have used does not support multi-
label classification. Therefore, we also extend the model to include support for these
types of tasks. More specifically, the fully connected layer at the end of the archi-
tecture has now nine outputs (the number of unique intent labels) instead of one and
the mean squared error training loss function is replaced with the binary cross-entropy
loss, given that the former does not support multi-label classification. In the standard
BERT implementation, the set of intents for each entry is encoded as a single integer,
which means that the model cannot assign different probabilities to different types of
intents. For this reason, in the version of BERT that supports multi-label classification,
we use a multi-label binarizer to represent every set of intents as a binary vector with
a size equal to the number of distinct intents in the dataset. This will enable the model
to output a probability for each possible type of intent.

Long Short-term Memory (LSTM) [61] is an RNN which has been used by many
researchers for text classification [26), (78] [150]. Its popularity over other RNNs is
due to the fact that it can preserve long-term dependencies better, which is crucial
for long sequences of text. It accomplishes that using multiple gates, which have a
role in asserting what information is maintained and what is discarded at a certain
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point in time. A standard LSTM can only remember information from the past, while
BiLSTMs combine information from both directions, which is essential when trying
to understand a sequence of text. More recently, Cho et al. [27] introduced Gated
Recurrent Unit (GRU), an RNN which tries to solve the same long-term dependencies
as LSTMs through a similar architecture. However, it accomplishes that using two
gates instead of three, which makes the model more efficient. BIGRUs are GRUs that
combines information from both directions, similar to BILSTMs. Given the added
efficiency and based on the research of Jozefowicz et al. [65], which have shown that
BiGRUs perform similar to BILSTM on a variety of tasks, we have used a BiGRU as
the second neural model for our intent prediction task.

The rest of the models are machine learning algorithms, which have been used pre-
viously by other researches for text classification: SVM [[127, 30], AdaBoost [97, 116
56|, Gradient Boosting 56} 43| and Logistic Regression 31, [T7]. The One-vs-Rest
classification strategy is applied for each algorithm, which reduces the main problem
of multi-label classification to multiple binary classification problems. This strategy
implies that a classifier is instantiated for each class, where the positive samples are the
instances of the class and the negative are instances from all the other classes. Given
an unseen example, the resulting combined model predicts the labels for which the
corresponding classifier outputs a positive result. We use the scikit-learn E] framework
as it contains implementations for all of the learning algorithms. The hyperparameter
tuning is performed using grid search. For the learning algorithms, we represent each
utterance using a bag-of-words representation and then apply TF-IDF term weighting
following related work on text classification [19].

4.1.2 Multi-task learning

As we have detailed in Section [2.1.5] multi-task learning is a process through which a
model jointly learns multiple tasks. Given the tasks are chosen sensibly, this approach
has shown that it can improve performance over learning the tasks independently.

BERT was released at the end of 2018 and it took the research community several
months to prove its state-of-the-art performance on a variety of tasks. When we have
first started this research, BERT was not as popular as it currently is. Given that DMN
was released earlier and already showed good performance on the CRR task, it was the
preferred model for our multi-task learning setup.

The intent prediction task can be performed by matching an utterance with a set
of intents. However, that is not compatible with the input that DMN accepts, as this
network is specialized in matching conversation contexts with responses. For that
reason, we will predict only the intent of the last utterance of a given context. This
implies that DMN no longer requires the use of interaction matrices for this specific
task, as the potential response is no longer used due to the fact that the network should
only leverage the context in order to predict an intent. Therefore, the embedding and
BiGRU representation are concatenated and transmitted directly to a fully connected
layer, which outputs a set of intents.

The grounding document ranking task is very similar to the CRR task, given that
they both require matching between a context and a response or a document. For this

Onttp://scikit-learn.org/
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reason, both tasks share most of the components of DMN, with the exception of the last
layer, which contains one fully connected layer that outputs a response matching score
for the CRR task and another to output the document matching score for the GDR
task. The diagram in Figure [4.3] depicts the multi-task learning process, given the
aforementioned considerations. Each task can be plugged in or out of the architecture,
which gives us the opportunity to study them in various combinations.
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Figure 4.3: Functional diagram of the multi-task learning process. Components sur-
rounded by red squares are the ones that were added to the base DMN architecture.

In our experiments, we assessed how training the models in a multi-task learning
environment impacts the performance on the CRR and GDR tasks. The performance
assessment on the intent prediction is omitted and only its influence on the other tasks
is measured due to the fact that not all available utterances are used for predicting
intents in this case. Given that we have two variants for both the CRR and GDR tasks,
we perform all the experiments for both: CRR10 + GDR10 (which will be called MTL10)
and CRR50 + GDR50 (called MTL50).

4.2 Results

In this section, we first assess the performance of each model for each task, accom-
panied by an in-depth analysis with respect to various conversational characteristics,
such as the performance of each model by the size of the context or by domain. Af-
terwards, we report the results of jointly learning various combinations of the tasks
for the multi-task version of DMN. Given that solving the user intent prediction task
alongside any of the other tasks did not yield any significant improvements, we enrich
the intent dataset with additional labels using a weakly supervised approach.

4.2.1 Base tasks
Conversation response ranking

To evaluate the performance of the 3 baselines on the CRR task, we have used 2 met-
rics that are traditionally used in IR for ranking: mean average precision (MAP) and
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normalized discounted cumulative gain at 10 (NDCG@10). MAP is the “most stan-
dard measure among the TREC community” [117] and provides a measure of quality
of retrieval across different recall levels in the form of a single figure. A simplified
interpretation of the MAP value is the following: a value of 0.1 signifies that, on aver-
age, for a given query, only one in 10 documents is relevant. A value over 0.5 indicates
that, on average, there are more relevant documents that irrelevant in the ranked list of
results. NDCG measures the same properties as MAP. However, due to the logarith-
mic denominator in the equation of the metric, NDCG favors less the documents in the
lower ranks.

The results in Table 4.3| show that BERT is the best performing model, with an
absolute increase in MAP of 0.026 and a 0.019 increase in NDCG for CRR10 over
the second-best performing model, DMN. For CRR50, the performance difference in-
creases to 0.077 for MAP and 0.062 for NDCG. As expected, BM25 has the worst
performance, with differences in performance up to 0.46 for MAP as compared to
DMN. An important aspect to note is that all of the models experience a severe de-
crease in performance when the number of negative samples is increased to 50. BERT
is the model that is registering the lowest relative performance decrease, however, it
still loses more than 22% of its performance when switching from CRR10 to CRR50.
These results show that under realistic conditions, where a retrieval system might have
to choose among hundreds or thousands of possible responses, current approaches fail.

CRR10 CRR50
MAP nDCG@10 MAP nDCG@10
BM25 0.318 (-) 0.476 (-) 0.163 (-) 0.195 (-)

DMN  0.756 (.0084)  0.817 (.0063)  0.513 (.018)  0.591 (.02)
BERT 0.782 (.0012)*  0.836 (.0009)" 0.59 (.0019)" 0.653 (.0014)"

Table 4.3: Baseline results on the test set for the conversational response ranking task.
We run neural baselines 5 times and report the average and standard deviation (in
brackets). * refers to significant to p < 0.05 compared to second highest scoring base-
line using the Student’s t-test

Figure {.4] shows the performance of DMN and BERT over five runs based on
the number of turns each context has. It can be observed that BERT’s performance
decreases as the context size increases, while DMN’s remain relatively stable. This
phenomenon can be explained based on how each network truncates utterances: DMN
keeps the first 50 words of each utterance, regardless of the context size, while BERT
maintains the first 200 words from the concatenation of the context and response,
where the longest sequence is truncated more. In our specific case, given that the
response should usually be much shorter than the context (given that the context con-
tains at least 3 utterances), this means that, as the number of utterances increases,
BERT will start to lose more and more context. Therefore, we expect that the perfor-
mance of BERT will increase if the word limit is raised. Due to time constraints, we
leave further parameter exploration with BERT for future work. However, most of the
contexts in our dataset have only 3 turns, which explains why BERT’s performance is
already high.

Figure {4.5] displays the performance of the same neural models over 5 runs with
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Figure 4.4: The bottom figure shows the distribution of conversations by the number
of turns in the test dataset. The top two figures show the performance of DMN and
BERT on the CRR10 and CRR50 tasks based on the number of turns per conversation
context. MAP is averaged over five runs with different seeds. The vertical bars in the
top 2 figures represent the confidence intervals.
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Figure 4.5: The top figure shows the distribution of conversations by category in the
test dataset. The bottom figures depict the performance of DMN and BERT by cat-
egory on the CRR10 and CRR50 tasks. MAP is averaged over 5 runs with different
seeds.

regards to each of the Stack Exchange sites on both variations of the CRR task. For
both DMN and BERT, conversations originating from askubuntu (which is the biggest
domain in terms of conversations) have the worst performance. One area where BERT
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truly shines is for domains that have small context sizes, as we have come to expect
given the results in Figure B.4} travel, english, worldbuilding and gaming are the do-
mains for which BERT obtains the best performance which, according to Figure [3.3]
are also domains with a low number of utterances per conversation.

The CRR50 dataset can have, for the same context, potential answers stemming
from various domains. As the conversations in Figure 3.5 shows, there are domains in
MANt IS that have only a few concepts in common with the others. For example, con-
versations in apple use technical terms, such as firewall, while conversations in travel
often refer to cities or travel documents. Askubuntu, on the other hand, presents more
similarities with the former (for example, a firewall is also configurable in Ubunuﬂ)_

Based on this observation, we hypothesize that a model receiving a context from
a domain that has fewer concepts in common with the others, such as fravel, should
be able to identify the true answer with more ease than if the context originated from
a technical domain, such as apple, which are more common in our dataset. This as-
sumption is validated by the results for CRR50 in Figure B.5] For example, BERT’s
performance on travel, which is the only domain in the broader tourism category, is
superior to any of the others, obtaining a precision of 0.804, an absolute increase of
0.06 as compared to the second-best scoring domain, english. The same observation
is true for DMN’s performance on diy, the only domain related to home improvement,
which reached a precision of 0.64. On the other hand, more technical domains, such
as physics or electronics, tend to have more concepts in common, and this fact is re-
flected in the low precision for both DMN and BERT. We have further observed this
behaviour for DMN in the confusion matrix in Figure[d.6] which compares the domain
of the top-rated document by the model for a context with the true answers. For exam-
ple, contexts from askubuntu are often associated with potential answers from apple,
dba or gis, as they all originate from the broader computer software domain. The same
can be said for physics and electronics, which are both technical studies.

User Intent Prediction

As mentioned previously in Section [3.5.2] for user intent prediction, we evaluate all
of the models using 10-fold cross-validation. As performance metrics, we use the
following: precision (the number of correctly predicted labels divided by the predicted
labels), micro and macro F1. We have chosen precision as it reflects the capacity of the
model to detect the true positives and avoid false positives. The F1-score, apart from
detecting true positives and false positives, is also useful for detecting false negatives,
as it uses both precision and recall for computing the score. The difference between
micro and macro F1 resides in the fact that the macro variant will compute the score
independently for each class (thus, treating the classes equally), while micro-average
takes into account the contribution of each class to the dataset. All of the metrics
we are using have been used previously by other researchers for the intent prediction
task [101]. A higher value for any of the metrics indicates higher performance in
solving the task.

The results in Tabled.4show that BERT is the best performing model, with a 0.133
absolute improvement in terms of precision over the next best performing algorithm,

"https://askubuntu.com/questions/106952/interactive-firewall
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Figure 4.6: Confusion matrix at a domain level for the CRR50 task, performed by
DMN. Darker shades of red indicate a higher number of confusions between the two
domains. Cases where the highest ranked document and the true document were in the
same domain have been removed for clarity.

Classifier Precision F1-Micro F1-Macro

LR 0.486 (.017)  0.469 (.014)  0.348 (.014)
SVM 0.532 (.021) 0.534(.019) 0.455(.018)
BiGRU 0.574 (.016)  0.563 (.015)  0.478 (.027)
AdaBoost 0.641 (.015) 0.585(.012)  0.480 (.010)
GradBoost 0.657 (.017)  0.611 (.013)  0.491 (.011)
BERT Standard 0.790 (.013)" 0.750 (.015)  0.591 (.030)
BERT MultiLabel 0.787 (.008)  0.759 (.008)"  0.617 (.025)"

Table 4.4: Results for the user intent prediction task, average and standard deviation
of the cross-validation (k=10). * refers to significant to p < 0.05 compared to second
highest scoring baseline (more specifically, GradBoost - the difference between the
two BERT variants is not significant) using the Student’s t-test.

Gradient Boosting. The multi-label version of BERT shows minimal improvements
over the standard flavour in terms of F1-score. It can also be noticed that both boosting
algorithms perform better than the BiGRU neural architecture, which is consistent
with the work of Qu et al. [101]], where their corresponding neural model (BiLSTM)
performed worse than standard machine learning algorithms on the same task when no
context information was available.

In order to further investigate the differences between the standard and multi-label
variants of BERT, we have plotted the classification precision for each unique intent.
Figure[d.7]shows that both BERT variants perform similarly for intents that have a high
number of occurrences in the dataset (the top five intents by occurrence, as seen in Fig-
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Figure 4.7: Performance of BERT (standard and multi-label) with respect to the preci-
sion of identifying each unique intent.

ure[3.6] are also the top 5 intents by classification performance). Although Greetings
/ Gratitude is not the most common intent in our dataset, the two models achieve the
highest performance in predicting it correctly. This is due to the fact that this intent
is communicated through a limited set of natural language expressions (such as Thank
you / Thanks for gratitude or Hello / Greetings as a form of greet).

Feedback has proved to be challenging for both BERT variations, as they show sub-
par performance for identifying the Negative Feedback and Positive Feedback intents.
The multi-label variant of BERT managed to correctly identify the negative feedback
in 20.5% of the cases, while the standard variant in 2.1% of the cases. For the pos-
itive feedback, the standard variant correctly predicted 30.6% of the cases, while the
multi-label BERT obtained 14.6%. We believe that one of the reasons for this weak
performance on identifying feedback is the low representation of these intents (accord-
ing to Figure [3.6] Positive Feedback, Negative feedback and Other are the least com-
mon intents in our dataset). The problem of dataset imbalance has been discussed by
other researchers and it has been shown that models generally favour the majority
classes over the minority, which implies that minority classes will often be misclassi-
fied as one of the majority classes. This phenomenon is easily observable in the case
of the negative feedback. In a conversation, negative feedback can be often accompa-
nied by further details about the information need or by a form of gratitude to show
appreciation for the agent’s effort (Thank you anyway). This assumption is backed up
by our findings regarding the most common errors that involve the Negative Feedback
intent, which are presented in Table 4.5] It can be observed that the negative feedback
is often mistaken with further details, which is an intent that is much more common
in the dataset (further details labels represent 27% of the total number of labels, while
negative feedback represents only 4%).

Grounding document ranking

When evaluating the three baselines for this task, we have used the same two met-
rics that were used for the conversational response ranking task, namely MAP and
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True Label(s)  Predicted Label(s) Model % of total errors involving NF
BERT 24.92%

FD, NF FD BERT - MultiLabel 22.81%
BERT 18.31%

NF FD BERT - MultiLabel 12.08%

GG,NF FD, GG BERT 78 %

BERT - MultiLabel  7.38 %

BERT 7.8%

FD.GG,NF FD, GG BERT - MultiLabel 4.36 %

Table 4.5: Most common four errors involving the Negative Feedback intent.

nDCG@10.
GDR10 GDR50
MAP nDCG@10 MAP nDCG@10
BM25 0.228 (-) 0.403 (-) 0.075 (-) 0.062 (-)

DMN  0.604 (.012) 0.677(.035) 0431 (.011)  0.496 (.011)
BERT 0.695 (.0021)" 0.767(.0018)"  0.475 (.008)"  0.53 (.0085)"

Table 4.6: Baseline results on the test set for the GDR task. We run the neural base-
lines 5 times and report the average and standard deviation (in brackets). " refers to
significant to p < 0.05 compared to second highest scoring baseline using the Student’s
t-test

The results in Table {.6| show that BERT outperforms DMN on this task as well
(with an absolute improvement of 0.09 on the GDR10 task and roughly 0.04 on the
GDR50 task for both metrics), with BM25 falling behind with a large margin (0.376
decrease in MAP and 0.274 decrease in NDCG for the GDR10 task as compared to
DMN and a 0.356 decrease in MAP and 0.434 in NDCG).

Performing the same analysis on the performance of DMN and BERT by context
size in Figure [.8] yields a completely different result as compared to the CRR task.
In this case, documents can be much larger than the context, which means that BERT
will truncate the documents more than the context. This translates into the fact that
the model can leverage the information provided by the context better. DMN is also
seeing a sharper increase in performance as the context size increases (from 0.6 MAP
for a context size of three to 0.75 for a context size of nine on GDR10, while for GDR50
the increase is from 0.41 to 0.67). This might be due to the fact that the GDR task is
more difficult than CRR (documents are longer than responses) and the model needs
more context to correctly approximate the ranking function.

From a domain perspective, the performance of DMN and BERT in Figure 4.9 re-
veals several insights. In this case, a larger context is advantageous for both DMN and
BERT. For this reason, conversations from askubuntu, which has the second-highest
number of utterances per conversation (according to Figure [3.3]- 5. 3 utterances per
conversation), are now one of the most accurately ranked by both models, whereas for
the CRR tasks they proved to be the most difficult. The same observation is applicable
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Figure 4.8: The bottom figure shows the distribution of conversations by the number
of turns in the test dataset. The top two figures show the performance of DMN and
BERT on the GDR10 and GDR50 tasks based on the number of turns per conversation
context. MAP is averaged over five runs with different seeds.

for electronics, which contains, on average, the largest conversations (5.35 utterances
per conversation). Furthermore, both of these domains have a relatively low number
of words per document (under 1000), as opposed to other domains with large con-
texts but also large documents, such as physics (over 2500 words per document, 5.2
utterances per conversation) or stats (1600 words per document, 5.15 utterances per
conversation).

As we have previously seen, when the negative samples are retrieved from a pool
that is common for all domains rather than from the same site (in this case, GDR50), do-
mains that are more distinctive tend to have a higher performance. A relevant example
is diy, which has seen a significant increase in ranking performance on the GDR50 task
over GDR10 for both models, even though the number of negative samples increased
five times.

What is also noticeable for the variations of GDR, as compared to CRR, is that
performance varies more between domains. For DMN, the standard deviations for
both CRR variants are 0.04 and 0.05, while for BERT the reported values are 0.04 and
0.08. For the GDR variants, the standard deviations increase for DMN to 0.07 and
0.06 and for BERT to 0.08 and 0.1.

4.2.2 Multi-task learning

The results in Table[4.7)show that the MTL variant which implies performing the GDR
and CRR tasks jointly performs slightly better than the standard variant on the CRR
tasks. This is especially true on the MTL10 task, as the difference between the two
diminishes for the more difficult task and is no longer statistically significant. When
integrating the intents, we observe a decrease in performance over the baseline for both
tasks.

Analyzing the learning curves in Figure .10 for both CRR variants, we notice
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Figure 4.9: The top figure shows the distribution of conversations by category in the
GDR test dataset. The bottom figures depict the performance of DMN and BERT by
category on the GDR10 and GDR50 tasks. MAP is averaged over five runs with different
seeds.

MTL10 - CRR MTL50 - CRR
MAP nDCG@10 MAP nDCG@10
CRR 0.756 (.0084)  0.817 (.0063)  0.513 (.023) 0.591 (.02)
CRR + Intents 0.735(.024) 0.8 (.0185) 0.496 (.029)  0.575 (.027)
CRR + GDR 0.766 (.0071)"  0.824 (.0053)" 0.519 (.018) 0.596 (0.0158)

CRR + GDR + Intents  0.75 (.016) 0.812(.012)  0.518(.016) 0.595 (.015)

Table 4.7: Performance of the model for the CRR task in a multi-task learning envi-
ronment. Metrics averaged over five runs.” refers to significant to p < 0.05 compared
to the base task using Student’s t-test.

that, initially, the GDR + CRR variant converge significantly faster to a higher MAP.
However, after a certain number of iterations, the performance difference between it
and the baseline decreases. It is also noticeable that the addition of intents in the
learning process increases the confidence interval.

The results in Table 48] on the performance of MTL variants on the GDR task
show a similar pattern to the other. The GDR + CRR variant performs significantly
better than the baseline on both MTL10 and MTL50 tasks with a much higher margin
than we have seen in the previous case. However, once again, jointly learning using
the intents did not yield any improvements.

The learning curve for the GDR tasks in Figure[d.T1|show that the models converge
much faster to the optimal solution, due to the lower variety in documents, with the
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Figure 4.10: Learning curves for the standard and MTL variants of DMN on the CRR10
and CRR50 tasks. The colored lines represent mean performance on each evaluation
step, average over five runs. The shades surrounding the lines represent the confidence
interval.

MTL10 - GDR MTL50 - GDR
MAP nDCG@10  MAP nDCG@10
GDR 0.598 (.011)  0.691(.009)  0.431(.011)  0.496 (.011)
GDR + Intents 0.587 (.011)  0.682(.008)  0.426 (.005)  0.492 (.005)
CRR + GDR 0.672 (.009)"  0.75 (.0071)"  0.487 (.010)"  0.557 (0.009)"

CRR + GDR + Intents  0.656 (.004)  0.737 (.004)  0.486 (.011)  0.556 (.011)

Table 4.8: Performance of the model for the GDR task in a multi-task learning envi-
ronment. Metrics averaged over five runs. * refers to significant to p < 0.05 compared
to the base task using Student’s t-test.

CRR + GDR performing much better than the others. Given this fact, we hypothesize
that the GDR task improves performance only up to a certain number of iterations in
an MTL environment. Therefore, if we would use a scheduled learning environment in
which one task is prioritised more over the other as the number of iterations increase
[69], we would expect to see an increase in performance across the board.
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Figure 4.11: Learning curves for the standard and MTL variants of DMN on the GDR10
and GDR50 tasks. The colored lines represent mean performance on each evaluation
step, average over five runs. The shades surrounding the lines represent the confidence
interval.
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Given that jointly learning using user intents did not yield improvements over the
standard learning procedure for any of the tasks, we hypothesize that one of the rea-
sons for this behaviour is the lack of intent labels. For this reason, given that BERT
obtained the best results on the intent prediction task, we have used it in a weakly-
supervised environment (more specifically, using bootstrapping [149]]) to obtain more
intent labels based on the existing dataset of intents. To ensure that the task adds as
little noise as possible, we have used a decision stump to set a confidence threshold
for the prediction of each type of intent label such that at least 95% of the predictions
on that specific label are accurate. The stump is applied on the subsets obtained pre-
viously through cross-validation. Since only the multi-label variant of BERT provides
separate confidences for each type of intent, we have used this variant in our task. This
approach enabled us to add an additional 140,000 labels to the existing intent pool.
Using this newly obtained dataset (named Intents*), we have run all the previous MTL
experiments to see whether having more intent labels provides better results.

MTL10 - CRR MTL50 - CRR
MAP nDCG@10 MAP nDCG@10
CRR + Intents™ 0.752 (.0177)  0.813(.013) 0.522 (.01) 0.6 (.008)"

CRR + GDR + Intents*  0.766 (.0072)"  0.824 (.0054)" 0.515(.015) 0.592 (.013)

Table 4.9: Performance of the model for the CRR tasks in a multi-task learning envi-
ronment using the extended dataset of intents. Metrics averaged over five runs. Values
in bold signify a mean performance increase over the MTL task that uses the initial set
of intents. " refers to significant to p < 0.05 using Student’s t-test.

The results in Table @] show that, on the CRR task, adding more intent labels
has a positive effect, especially in the case where all the 3 tasks are jointly learned.
Given that the mean performance increased all across the board with a dataset ob-
tained through weak supervision which only covers roughly 25% of conversations, we
hypothesize that using human annotators to obtain an intent dataset that encompasses
all conversations and does not add noise would increase the performance significantly.

MTL10 - GDR MTL50 - GDR
MAP nDCG@10 MAP nDCG@10
GDR + Intents* 0.581 (.0105) 0.676(.0083) 0.43 (.0074) 0.494 (.0084)

CRR + GDR + Intents*  0.663 (.013)  0.743 (.01) 0.488 (.006) 0.561 (.008)

Table 4.10: Performance of the model for the GDR tasks in a multi-task learning
environment using the extended dataset of intents. Metrics averaged over five runs.

In the case of the GDR task, as can be observed in Table there are no no-
ticeable improvements in the ranking performance by adding more conversations with
intent labels.

To conclude, starting from the three tasks that we have defined earlier, we have
evaluated a multitude of models of different complexity. One model, namely BERT,
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has shown the highest performance on all of the tasks, which is consistent with our
expectations and the model’s state-of-the-art performance on a variety of related tasks.
Further analysis of the models’ performance by context size has shown that, for the
CRR task, BERT is negatively impacted by conversations with larger contexts. For the
GDR task, the opposite is true, as a larger context size is beneficial for both DMN and
BERT. Analysis by domains on the 50 negative sample variations of the CRR and GDR
tasks show that contexts originating from sites that have fewer concepts in common
with the others are easier to match with their corresponding potential answers.
Training DMN in a multi-task learning setup showed significant improvements
when jointly learning the CRR and GDR tasks. Using the base intent prediction task
alongside the others did not show any performance gains. However, by enriching the
dataset with more labels through a weakly supervised setup, minor improvements were
registered, which indicates that, if human annotators would be employed to obtain
more intent labels, a higher degree of improvement in performance could be observed.



Chapter 5

Conclusions

Over the past 5 years, conversational search has grabbed the attention of the research
community proven by the appearance of dedicated workshopﬂ?] and researches [104}
8] appeared that tackle challenges associated with this topic. The popularity and wide-
spread deployment of task-oriented conversational agents, such as Google Assistant
and Amazon Alexa, has proved that there is a need for advanced conversational sys-
tems that can change the way we interact with retrieval systems. However, as research
as shown [81]], these commercial systems are far from ideal, as they are not able to
engage in complex, multi-turn conversations.

Furthermore, although significant advances were made in various adjacent do-
mains, such as DS, NLP and IR, as we have shown in Section the research com-
munity has yet to release a conversational search dataset that fulfills all the necessary
requirements to build a CSS. This fact was the main motivator of performing our re-
search.

Using our proposed methodology, we have built a flexible framework capable of
constructing a large-scale dataset with over 80,000 conversations that encompasses all
the requirements of a conversational search dataset. To ensure the properties are re-
spected, we have established strict acceptance conditions in the data collection pipeline.
This fact reflects in the percentage of conversations that were retrieved from the Stack-
Exchange websites, as we retrieved only 4.77% of all possible conversations. The
development effort to add up to 160 more domains from StackExchange is minimal,
given that enough computational resources are provided. Due to time and resource
limitations, we have added only 14 domains.

We have also augmented the conversations with 6,701 utterance labels by means of
human annotation and 116,061 grounding documents associated to URLs mentioned
by the users by using a web crawler, which is also provided within the framework.
While a researcher interested to use this framework is free to use any other approach
to build datasets for training a model, we provide a built-in functionality to split each
conversation into contexts and generate 10 or 50 negative samples for each.

Using these training datasets, we have been able to devise 3 tasks: conversational
response ranking (predict the next most likely agent response, given a context), user
intent prediction and grounding document ranking (predict the next most likely docu-

Thttps://scai.info/
Znttps://sites.google.com/view/cair-ws/home
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ment, given a context). For the first and second tasks, we have used DMN, a baseline
that is specialized in conversation-related tasks and BERT, a state-of-the-art model
that can be used for various NLP tasks. For both tasks and both flavours of the training
datasets, BERT has shown the best performance. The performance difference we have
noticed between the 10 and 50 negative samples is significant. This implies that, for
a real-life scenario where there can be hundreds or thousands of possible answers, the
current solutions might prove insufficient. For the intent prediction task, we have com-
pared 2 variants of BERT (standard and multi-label classification compatible) with sev-
eral learning algorithms and a recurrent neural network. Once again, BERT has shown
the best performance (with no significant difference between the 2 variants). The fact
that BERT has outperformed any other model we have tested is not surprising, given
that the same model is considered state-of-the-art for many other tasks.

For the multi-task learning tasks, we have experimented only with DMN. The re-
sults show that combining the CRR and GDR tasks yields better performance than any
of the 2 tasks combined, reaching a performance comparable to that of BERT on the
GDR task. This is in line with other researches that used conversational datasets for
multi-task learning setups and noticed significant improvements [[121]] Having a dataset
that encompasses all the requirements for training conversational search models paves
the way for multiple research directions, which will be discussed in the following sec-
tion.

5.1 Future work

Detection of grounded conversations Currently, our data processing pipeline detects
document grounding by simply checking if the utterance contains a link. However, as
it was reflected in our analysis of the web pages for which the web crawler was not
able to extract documents, there were many links that pointed towards images or web
pages that no longer exist. Given these insights, a solution might be to integrate the
crawler directly into the data collection pipeline for the conversations. This can enable
us to automatically filter out conversations for which there is no grounding.

Intent labelling Currently, only a fraction of conversations have intent labels (1,356
out of 80,326). Although in our initial testing, using crowd-workers has yielded unsat-
isfactory results, we have not investigated further how we could improve the quality
of their annotations. Other researches that constructed conversational datasets have
successfully used crowd-workers by turning different data collection processed into
games. Reddy et al. [106] have transformed the answer collection step into a game
of predicting answers: workers would first try to guess the answer to the question and
then the original was shown to them. This process increased the human F1-score by
5.1%. In our case, verifying utterance labels could be done through a similar game of
predicting intents.

Negative sampling technique While our current strategy of employing BM25 for
negative sampling gave us the opportunity to study how various models perform when
trained using our dataset, the fact that BM25 relies only word matching to compute
the similarity between two pieces of text introduces a bias in how we sample potential
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responses as it restricts the possible space of samples to the ones that have a high tf-idf
score. Fan et al. [45] propose a “learning to teach” paradigm, in which the negative
documents and the order in which they are presented is decided by using a policy gra-
dient model, based on previous states of the neural model under training. This shifts
the paradigm from a static sampling approach to an active one, which can modify the
heuristic at every step in the learning process. Applying the defined policy on an image
classification task showed an improvement in both performance and training time, as
the model was able to converge much faster. More importantly, the theoretical frame-
work on which the research is based can be transposed to any type of task.

Curriculum and scheduled multi-task learning In our experiments, the multi-task
learning model would receive batches with equal distribution between tasks. However,
there are other approaches to learning the model several tasks. One of them is cur-
riculum learning [12]], which involves sequentially learning a task by starting with less
complex examples and progressing towards more difficult ones. Applied on multi-task
learning, curriculum learning has shown to improve the performance [100]] over jointly
learning on random samples, given that the order of the tasks are chosen appropriately.
The other approach is called scheduled multi-task learning [69] and involves jointly
learning tasks, but as the learning progresses, one task becomes “more important”
than the other (e.g. uses more batches). In their research Kiperwasser and Ballesteros
[69] propose a framework that jointly learns syntax and translation on a German to
English corpus, while gradually putting more emphasis on translation. Their results
show that if the probability to offer more batches from the translation task increases
exponentially during training, the overall performance of the system increases over
the standard, uniform distribution of batches. Given that our GDR task tends to reach
maximum performance significantly faster than the CRR task, we hypothesize that if
our network might improve its performance if it gradually receives more CRR-related
batches as the learning process advances.

Combining retrieval and generative-based methods In our experiments, we have
only used retrieval-based methods to solve our ranking tasks, as generative methods
generally show a lower performance. However, no public dataset is large enough to
be able to provide appropriate responses for any type of query, especially given that
new queries can appear at any moment. Based on this intuition, Song et al. [122]
looked into whether combining the superior performance of retrieval methods with the
potentially infinite response space of generative methods can yield better results on a
dialogue system. Their findings suggest that a combination of the two improve perfor-
mance over each type of method taken independently.

Multi-task learning BERT Currently, BERT is considered the state-of-the-art neu-
ral model for NLP tasks, as it has outperformed any other architecture in a variety of
tasks [38]]. Therefore, given our experience with DMN, we expect that the performance
of BERT will increase further if the network is trained in a multi-task learning environ-
ment. Liu et al. [80] have already constructed a multi-task learning framework over the
same implementation of BERT we are using and they have obtained a 2.2% absolute
improvement over standard BERT for multiple Natural Language Understanding tasks.
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Addition of other domains to the dataset As stated previously, StackExchange con-
tains over 174 domains. Due to time and resource limitations, we have used only 14
domains. However, our framework easily allows the addition of new domains by just
specifying the download link for the raw data archive. This increase in the volume of
data generates new challenges, which brings us to the next direction of future work.

Data collection framework improvements Throughout this research, the data col-
lection procedure was performed using a single thread. However, given that conver-
sations can be treated independently from one another, the task can be integrated into
a multi-processing pipeline that can significantly decrease the execution time neces-
sary for collecting the data [47]. This is especially important if one decides to add
more domains, such as StackOverﬂov&ﬂ which is the biggest StackExchange site and
is roughly 60 times larger (in terms of the size of the raw data) than our biggest domain
in the dataset, AskUbunttﬂ The same observation applies to the pipeline that builds
the model training datasets (CRR10, CRR50, GDR10 and GDR50), given that the genera-
tion of negative responses depends solely on the current context of the conversation.
For the larger training sets, the execution time can currently take up to a day.

The other improvement is related to our web crawler, which is currently is limited to
extract HTML and text files. However, we have noticed that there are 8,225 PDF files
which could be easily extracted by adding a PDF converter modul{] to our crawler.

3https://stackoverflow.com/
4https://askubuntu.com/
Shttps://pypi.org/project /pdfminer.six/
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A.1 Hyper-parameter tuning

An overview of the tested parameters that were used for various experiments through-
out our research in displayed in Table[A.T]

Model Parameter Tested value
Nestimators [50, 100, 200, 250, 300, 500]
AdaBoost learning_rate [0.1,0..2,0.3,0.5,0.7,0.9]

max_depth

[1,3,5,7]

Nestimators
Gradient Boosting  /earning_rate

[50, 100, 200, 250, 300, 500]
[0.1,0..2,0.3,0.5,0.7,0.9]

max_depth [1,3,5,7]
ki [0.5,0.7,09,1.1,1.3,1.5,1.7, 1.9, 2.1]
BM25 b [0.2,0.3,0.4,0.5,0.6,0.7, 0.8]
DMN learning rate [0.001, 0.0001, 0.00001]
Niterations [500, 700, 1000, 1200, 1300]
. —5 n,—5
BERT learning rate [1le™,2¢7]

max_sequence_length  [128, 200]

Table A.1: Overview of parameters that were used throughout the experiments.

A.2 Vader Score threshold

One of the conditions for a conversation be accepted in our dataset was that, if the
latest utterance originated from an information seeker, it should express a positive
feedback. Otherwise, it is considered that the conversation has not ended. To be able
to separate positive feedbacks from other types of intents, we have used the Vader
score [62] to obtain the polarity of a utterance. More specifically, we have sampled
150 conversations from each domain and, without looking at the obtained score of the
last utterance, we have labelled it as Positive Feedback / Not Positive Feedback. Then,
using a decision stump, we have identified the optimal threshold for each domain that
separates the positive feedback from the rest. All the thresholds can be observed in

Table [A2]
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Domain Vader score threshold
apple 0.3
askubuntu 0.37
dba 0.35
diy 0.1
electronics 0.06
english 0.24
gaming 0.1
gis 0.35
physics 0.54
scifi 0.12
security 0.28
stats 0.48
travel 0.17

worldbuilding  0.58

Table A.2: Vader score threshold that was used to separate positive feedback from
other types of intents. Values are calculated per domain

A.3 Intent annotation process

The annotation process was performed using a custom interface. In the top part of
the interface, the task description and an explanation of all types of intents was sup-
plied. The middle part contained a randomly sampled conversation, which the anno-
tator would have to read to familiarize with the context. The bottom part contained
the conversation broken down into utterances, each with a list of possible intents. For
each utterance, the annotator would have to choose the appropriate intents from a list.
After each utterance was labelled, submitting the action was necessary. The annotator
is also able to receive another conversation if the difficulty proved to be too high. The
interface is shown in Figure|A.1



Glossary

A.3 Intent annotation process

Remaining Utterances - 2597

Conversation

Domain: stats
Conversation id: 51668

1 am using "Multivariate PSRF" statistics from ge Lnan. d1ag ) function to analyze my - Now | variables for each site). How s it possible that "Multivariate PSRF" says 1.248096, when psrf for each of 471 sites ranges from
09996 t0 1,012 max? Psrf Clis 1044 max! It seems Multivariate PSR grows with the number of variables, which desired of .1 think | can safel onverged, but . s0is it
|computed wrong or something?
As Marty ) = =
in your model (NOT just i in). For example, consider the following:
Ubrary(coda) set.seed(1) chainl <~ ncac(rnorm(100, 10)) chain2 <- mcac(rnorm(100, 1 gelnan. diag(menc. list(chainl, chain2), Ust(chain, chain2),
P

[mnu Matt! But 1) | models, cannot afford .1 defi ind of me 2) as for the *"NOT just the ones that you are
‘ 2 converge. But | am interested in tgiven rfectl

it dime to visua ing, then there (however small)

I -1 par (espec not. I have had a

s AFTER P
(thanks Matt. (2) this probably depends case by case. | think in my GLM the p: the o predicted

Comments to label
Conversation id: 51668
Comment positon: 2

Uibrary (coda)

Uist(chain, chain2), autoburinin=FALSE)

) Further Details

1 Follow Up Question

© Information Request
Potential Answer
Positive Feedback

) Negative Feedback

) Greetings/Gratitude

© Other

Figure A.1: The interface that the annotators were required to use in order to label

utterance intents.
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