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1 INTRODUCTION 
 
 

…in which the cavitating propeller is identified as a major source of noise and 
vibration on board ships. The importance of accurately predicting propeller-
induced vibratory hull forces is explained along with the need for improved 

prediction techniques based on scale model experiments and computer 
simulations. Several topics are selected for further investigation. 

 
 

1.1 Noise and Vibration on Board Ships 
 

Noise and vibration on board ships may cause discomfort to passengers and crew. It 
may also impair the efficient execution of the crew’s duties, be the cause of damage to 
sensitive equipment, structural parts of the ship and cargo, and even compromise the safety 
of the vessel [Asmussen2001]. Nowadays, people on board are less willing to accept 
discomfort due to noise and vibration, leading to increasingly strict requirements. As these are 
usually not easily met, noise and vibration have become important factors in ship design 
[DnV2003]. 

Noise and vibration levels are determined by the characteristics of source, transmission 
and receptor. Low frequency noise and vibration (say, up to a few hundred Hz) are 
notoriously hard to damp and addition of mass and stiffness in the ‘remedial’ design stage is 
costly and cumbersome, if at all possible. Therefore, noise and vibration problems must be 
avoided through identification and treatment of the major sources during early design stages 
of the vessel. 

The cavitating propeller often forms the primary source of noise and vibrations 
[ISSC2006]. The ship propeller acts as a source in various ways. One way is that time-varying 
shaft forces and moments directly excite the ship through the driving train (viz., the bearings 
and thrust block). Another way, and the focus of this thesis, is that the cavitating propeller 
causes pressure fluctuations in the surrounding water, which are transmitted as hydroacoustic 
waves to the hull plating above the propeller, which they excite. 

Propeller blades passing underneath the afterbody cause pressure fluctuations by their 
displacement effect as well as by the load they carry. When the local pressure in the water is 
low enough for it to evaporate, a phenomenon called cavitation, vapor pockets are generated. 
These vapor pockets are known as cavities. Due to variations in ambient pressure and blade 
loading during a revolution, the cavities may rapidly change in volume and location over time, 
thus causing pressure fluctuations in the surrounding water. Figure 1.1 presents an overview 
of the types of cavitation that may occur on or in the immediate vicinity of propeller blades. 
The great majority of ship propellers suffers from sheet and tip vortex cavitation, which are the 
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prime cause of propeller-induced excitation forces. Although propeller-hull vortex cavitation 
can cause much higher pressure pulses on the hull surface, it is far less often encountered. 
 
 

 
Figure 1.1: Types of cavitation that may appear on propellers. 

 
In order to meet comfort requirements, propeller cavitation must be reduced by making 

adjustments to the ship and propeller design. This is often accompanied by a reduction of 
propulsive efficiency. Ligtelijn [Ligtelijn2010] roughly estimates such efficiency losses to be in 
the range of 5 to 10%. The design relies heavily on how comfort and propulsive efficiency are 
balanced. Therefore, the accurate prediction of efficiency and propeller-induced hull-excitation 
forces is essential in the assessment of the ship design. 

It is the task of ship model basins to assist the ship designer, yard and ship owner in 
testing the ship design with regard to specific contract requirements. For this purpose model 
basins have developed prediction capabilities, which involve tests on scale models of ships as 
well as computational simulations of the hydrodynamics involved. Although model basins 
have often been quite successful in employing their predictive capabilities, this is not 
generally the case [Ligtelijn2004/2006]. Several fundamental problems are still hampering a 
more accurate prediction of propeller-induced excitation forces. This may lead to comfort 
levels inferior to those listed in contract specifications, or to efficiency losses greater than 
expected or necessary. 

Therefore, an investigation of a number of important limiting factors in the prediction of 
propeller-induced excitation forces is well justified, also in light of the development of fuel 
prices. The main objective of the present thesis can thus be stated as, 
 

the development of improved prediction capabilities for propeller-induced hull-
excitation forces based on experimental and computational procedures. 

 
After all, as Richard P. Feynman put it, ‘the test of science is its ability to predict’. 

An outline of the thesis, which also serves as a plan of approach for the investigations, 
is presented in the next section. 
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1.2 Outline of Thesis 
 

At present, predictions of propeller-induced hull-pressure forces do not give consistently 
accurate results. In search of the major sources of uncertainty, Chapter 2 uses the 
proceedings of the International Towing Tank Conference (ITTC) to provide some background 
on the state-of-the-art concerning propeller hydrodynamics, cavitation, acoustic radiation and 
scattering, as well as their computational and experimental simulation in scale model tests 
performed in towing tanks and cavitation tunnels. From knowledge thus obtained, a set of 
research topics can be selected of which a number is treated in this thesis: 
 

 model to full scale correlation procedures involving the determination of the 
propeller’s source strength; 

 the scale effect on the effective wake and its influence on sheet cavity dynamics; 
 the influence of hull vibrations on measurements of hull pressures; and, 
 the development of practical numerical methods for the simulation of propeller-

induced hull-pressures. 
 
Further research topics, e.g., 
 

 cavitating vortex dynamics; the use of two-phase flow numerical methods; 
 advanced data reduction techniques for the analysis of broadband excitation; and, 
 the effect of nuclei and gas content on cavitation inception and dynamics. 

 
are investigated by Bosschers and Van Rijsbergen, all within the scope of a background 
research programme at the Maritime Research Institute Netherlands (MARIN). In the present 
thesis, cavitation inception issues are not studied in detail. It is tacitly assumed that whenever 
the propeller causes serious noise and vibration problems, cavitation is well-developed, also 
on model scale. 

Chapter 3 presents a theoretical framework for the description of propeller-induced hull-
pressures for use in computational simulation methods. From a variety of mathematical 
models, a choice is made on the basis of the model’s ease of use, low computational cost and 
expected predictive capability. The selected mathematical models are converted into two 
computational methods, both based on the potential flow assumption. The methods employ 
the Boundary Element Method (BEM, also known as the surface panel method) for the 
discretization. One method is used for the numerical simulation of propeller flows. It is called 
PROCAL (PROpeller CALculator) and has been developed by Vaz and Bosschers. The other 
method is for the acoustic scattering effect of the hull and free surface. It is called 
EXCALIBUR (EXcitation CALculation with Improved BURton and Miller method) and was 
developed by the author. 

Chapter 4 reviews prediction procedures practiced in scale model experiments with an 
assessment of sources of measuring and modeling error causing uncertainty in predictions. 
One such source is treated in Chapter 5, in which it is shown how the scale model vibratory 
response to propeller excitation forces causes a possibly significant parasitic contribution to 
the measured hull-pressure field. An approach based on the EXCALIBUR computational 
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method is taken to eliminate the vibration-induced pressure field using measurements of hull-
surface vibrations. 

Chapter 6 describes experiments performed in the Depressurized Towing Tank (DTT) of 
MARIN for the validation of the numerical methods described in Chapter 3. Cases involving 
non-cavitating propellers are used. 

Chapter 7 takes up the issue of the scale effect on the ship’s wake, which is 
hypothesized to be the most important cause of inaccuracy in the prediction of hull-excitation 
forces. It is studied how the scale effect on the wake field, caused by failing to adhere to the 
full scale flow Reynolds number similarity in model scale experiments, mainly affects propeller 
loading, hence cavitation dynamics and eventually hull-pressure fluctuations. Sheet cavitation 
is considered. The chapter treats a first attempt to use a RANS (Reynolds Averaged Navier-
Stokes) method to inversely design a scale model hull that generates a wake field more 
closely resembling the ship scale target wake field than do the geometrically similar hull 
models that are conventionally used. As a demonstration, a scale model hull of a container 
vessel has been designed, manufactured and tested in the DTT. The results obtained from 
the latter test case are used to further validate the numerical methods used in Chapter 6 for a 
propeller operating in cavitating conditions. 

Having developed ways of improving the prediction of propeller-induced hull-pressure 
fluctuations, a correlation study is needed to judge their effect in practice. As a preamble to 
such a study, Chapter 8 gives a critical account of the way in which measured hull-pressure 
amplitudes are compared with maximum allowable values specified in contracts. For 
comparative purposes as well as to judge the accuracy of predictive hull-pressure data, it is 
advocated that they must be converted into meaningful figures of merit regarding excitation 
forces and acoustic source characteristics. The use of propeller source strengths and hull 
forces are proposed for this purpose. Ways of modeling the propeller action are studied, 
including cavitation, by means of acoustic point sources, the strengths of which are proposed 
as a basis for comparing hull vibratory excitation predictions and reality. To this end, the 
acoustic Boundary Element Method developed is used in an inverse way with measured hull-
pressure data as input and source strengths as output. This enables the distinction of the 
main contributing source types to the pressure field. The concept of the inversely determined 
propeller source strength is also used to derive the complete pressure distribution on the hull 
based on a scarce set of measuring data. Thus, the forcing terms for input into Finite Element 
Analyses (FEA) are produced. 

Chapter 9 finalizes the thesis by drawing conclusions regarding the quality of prediction 
methods in use at present, and improved procedures for predicting fluctuating hull pressures 
from model tests and computations. Recommendations are made for further research. 
 
 
 



 
 
 

 

 
 
 
 
 
 

2 PREDICTION OF HULL-PRESSURE FORCES 
 
 

…in which the past and present state-of-the-art in the prediction of propeller-
induced hull-pressure forces is reviewed. Topics are identified that need further 

improvement. 
 
 

2.1 Introduction 
 

Although an account of propeller design is beyond the scope of this thesis, it is important 
to understand that comfort requirements have to be treated in conjunction with propulsive and 
safety requirements. Figure 2.1 schematically shows where the propeller-induced fluctuating 
hull-pressure field (encircled in red) appears in the evaluation of a propeller design. 
Propulsive requirements aim at achieving the ship’s design speed at a target propeller RPM 
(‘Revolutions Per Minute’) and at the lowest possible power. Safe operation requires the 
propeller to stay intact while maintaining its function. This practically means that parts should 
not fail structurally or erode and blade spindle torques should not preclude making necessary 
pitch changes. Comfort requirements, finally, limit noise and vibration levels. Limiting hull 
vibration levels are given by the ISO 6954 guideline [ISO1984/2000]. Also blade singing, 
caused by resonances induced by vortex shedding at the blade’s trailing edge, must be 
safeguarded against. Contractual specifications may include limitations on vibratory excitation 
forces of shafts and bearings, but also on fluctuating hull-excitation forces or pressures. 

In Figure 2.2, a breakdown is made of the hull-pressure field’s constituents with an 
indication of significance. Causes of fluctuating hull-pressures not induced by the propeller, 
such as free surface wave impacts and turbulent boundary layer flow are not considered (see 
item ‘Flow-induced’ in Figure 2.2). The two main causes of propeller-induced hull-pressure 
fluctuations are indicated as ‘Blade passages’, with a lower importance, and ‘Cavity 
dynamics’, which is later shown to be of a higher importance. Propeller blade passages exert 
fluctuating pressures on the hull due to the blades' displacement and loading. The main 
contribution to hull pressures is in the form of cavity dynamics, which can be divided into 
contributions from sheet cavitation dynamics and tip or leading edge vortex pulsations1. 

For a proper prediction of hull vibratory forces, a chain of cause and effect relations 
must be considered. The chain runs from the effective ship wake field at the location of the 
propeller disc, via the propeller design, its operating conditions and the resulting cavitation 
dynamics to the radiation of pressure fluctuations and the formation of the hull-pressure field 
                                                           
1 The strong interaction between sheet and vortex cavity dynamics in modern propellers often precludes 
the suggested break-down, a fact that makes the experimental study of either one of them in isolation 
difficult in practical cases. 
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Figure 2.1: Hull pressures in propeller design evaluation (continued in Figure 2.2). 
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Figure 2.2: Break-down of the fluctuating hull-pressure field (continuation from Figure 2.1). 
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Figure 2.3: Prediction of propeller-induced ship hull forces (continued in Figure 2.5). 
 
 
itself [Wijngaarden2005]. After spatial integration over the afterbody the vibratory hull force 
results. 

The prediction of hull-excitation forces can be performed by empirical, numerical and 
experimental means (see Figure 2.3). The empirical approach involves analytical models in 
which full scale data is often used to determine regression coefficients. Empirical methods 
may be used to predict the pressures or forces on the hull directly, or to deliver values for 
propeller acoustic source strengths. The numerical approach involves elaborate computer 
codes based on, e.g., the Boundary Element Method or viscous flow methods from the field of 
Computational Fluid Dynamics (CFD). The experimental approach centers around scale 
model testing in cavitation tunnels or depressurized towing tanks (encircled in red). As an 
example of the latter type of testing facility, Figure 2.4 shows the DTT at MARIN. The top 
picture shows a drawing of the towing tank with the harbor (bottom left picture) from which the 
ship models are launched. The grey measuring frame connects to the ship model and enters 
the air lock after which evacuation takes place. Then, the measuring frame enters the 
evacuated towing tank and connects to the towing carriage (i.e., the blue frame in the bottom 
right picture). 

Prediction of Propeller-
Induced Hull Pressure

Fluctuations

Numerical Simulations

BEM

CFD

Sheet cavity dynamics

Blade passages

Sheet cavity dynamics

Blade passages

Vortex cavity dynamics

Analytical/Empirical
Prediction Methods

Full Scale Data + Regression Analysis

Theoretical Models

Experience + Guidelines

Scaled Model Experiments
(Cavitation Tunnel/

Depressurized Towing Tank)

Source Strength Concept

Figure 2.5
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Figure 2.4: Depressurized Towing Tank of MARIN (bottom left: harbor; bottom right: carriage). 
 
 

The prediction of hull pressures by experimental means is further elaborated in Figure 
2.5, where several factors are indicated that affect the quality of the predictions made in an 
experimental cavitation facility. For the correct model scale representation of the source, both 
cavity dynamics and blade passage effects should be modeled. This means meeting certain 
geometric, kinematic and dynamic similarity conditions2. Blade passage effects are 
determined by blade thickness and loading, both of which are modeled in most facilities by 
accurate geometric similarity of the propeller, ship and appendages, and applying the correct 
propeller thrust loading. In a towing tank, propeller revolutions are set according to the Froude 
number, thus preserving the ratio of gravity and inertia forces on model scale. Similarity of the 
ratio of inertia and viscous forces as expressed in the Reynolds number is not feasible and is 
a cause of error. 

Cavitation effects are much harder to reproduce. Achieving dynamic similarity is the 
most challenging, demanding that also the pressure in excess of the vapor pressure, i.e., the 
pressure reserve, be scaled according to the cavitation number. Simultaneously maintaining 
Froude number similarity and cavitation number identity is not a conflicting requirement in a 
depressurized towing tank. Reynolds number identity is, however, impossible to achieve and 
inevitably leads to scaling issues. In this respect, think of scale effects on the propeller inflow 
leading to deviations from similarity of entrance velocity and angle of attack. Also the proper 
inception of cavitation may be delayed because of Reynolds number disparity. Especially, the 
inception of vortex cavities is affected by this. 
                                                           
2 The reader is referred to Chapter 4 for details on scaling parameters involved in model testing. 
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Figure 2.5: Scale model testing (continuation from Figure 2.3). Check marks are placed behind 
items that are generally not considered to cause significant prediction errors, whilst warning 

signs are placed when scaling errors may indeed occur. 
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Other inception issues are related to non-similar gas content and nuclei size distributions. A 
lack of similarity in Weber number may cause delayed cavitation inception. 

For the correct model scale representation of the radiated pressure field, geometric 
similarity of diffracting bodies is required (ship, free surface, but also unwanted tank or tunnel 
wall reverberation effects). Also interference effects should be modeled by adhering to Mach 
number identity. The latter requirement conflicts with that imposed by Froude number 
equivalence and may therefore be another source of error. 

Instead of further elaborating on all of these issues at this stage, the ones that impose 
the most stringent limitations on the accuracy of predictions must be identified and studied. 
For that purpose, the next section uses the research literature reviews that are available 
through the ITTC proceedings. 
 
 

2.2 Research Efforts in Historical Perspective 
 

In the past, when considering ways in which the propeller action could excite the aft 
body structure, the fluctuating pressure field induced by the blades passing the hull surface 
would have come to mind first. This pressure field is built up of components related to the 
blade thickness and thrust loading, showing a rotating displacement and force field effect. As 
a consequence of the source motion, the fluctuating pressure field on the hull surface in the 
immediate vicinity of the blades shows large phase differences across the area. Hence, the 
net vibratory force production remains limited. Locally, however, the excitation pressures may 
be substantial. 

Until the end of the 1960s, scale model testing focused on the measurement of the non-
cavitating propeller-induced hull-pressure field above the propeller (see Figure 2.6). The 
effect of cavitation on the performance of propellers (i.e., thrust breakdown) was well-
understood when the 3rd ITTC [ITTC1935] stated that propeller back cavitation ‘may exist to 
an appreciable extent before it is visible in the performance characteristics. That is there may 
be a condition giving very satisfactory trial results but yet producing considerable blade 
erosion.’ Apparently, one was well aware of some of the detrimental effects of cavitation, but 
not of its influence on noise and vibration hindrance. Since then, many cavitation tunnels were 
built with a view to the study of cavitation thrust breakdown and erosion. At the 9th ITTC 
[ITTC1960], Burrill started his contribution on model to ship correlation for (erosively) 
cavitating propellers stating that ‘two of the primary functions of a propeller cavitation tunnel 
are to supply information about thrust and torque coefficients when there is cavitation 
breakdown, and to offer guidance on the reduction of cavitation erosion.’ 

The first time the ITTC proceedings gave an account of propeller-induced vibratory 
surface forces was at the 11th ITTC [ITTC1966] where Schwanecke wrote: ‘The exciting 
pressure fluctuations at the hull plating close to the propeller, the bossings, rudders, etc. will 
be found out either by model tests and full scale experiments respectively by means of 
inductive or strain gauge mounted pressure pickups or they will be found out by calculating 
the propeller pressure near field by means of the potential theory. Within the last year 
computer programs have been developed by which the pressure fluctuations for nearly all 
types of ships’ hulls can be calculated, but presently without considering the wake. The 
results of these calculations show, that the prevailing portion of the pressure fluctuations has 
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Figure 2.6: Time line showing important research events. 
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a frequency corresponding to the product of number of blades and number of revolutions. The 
pressure fluctuations with frequencies corresponding to multiples of the aforementioned 
product have been found out to be of less importance. Model experiments have shown the 
great importance of the lower harmonics of the wake distribution on the pressure amplitudes. 
That means, a scale effect is taken into consideration when the exciting pressure fluctuations 
will be found out by model tests. The main parameters for the exciting pressure fluctuations 
are propeller loading, radial load distribution, diameter, number of blades, blade thickness, 
number of revolutions, tip clearance, and axial clearance before and behind the propeller. 
Owing to the blade thickness the pressure maximum is shifted slightly abaft the propeller 
plane. Measurements performed with highly loaded propellers have shown but small 
differences of the exciting amplitudes at the hull plating for propellers differing only with 
respect to the number of blades.’ Despite the remark that computations disregarded the non-
uniformity of the wake, many research groups had then already started the development of 
lifting surface methods for propellers operating in non-uniform wakes. 

Meanwhile, full scale data on pressure fluctuations had been measured by Keil on 
‘Meteor’ [Keil1965]. The measured amplitudes were five to eight times those measured on a 
flat plate. Comparable model measurements were only reasonable below a certain RPM as 
Breslin reported in the 12th ITTC proceedings [ITTC1969]. In the written contribution of these 
proceedings Takahasi and Ueda reported on a study of the influence of cavitation on 
fluctuating surface pressures. They measured pressures on a flat plate above a propeller in a 
cavitation tunnel and compared pressure amplitudes for cavitating and non-cavitating 
conditions in uniform and non-uniform flow. It was concluded that ‘the fluctuating pressures 
around the propeller are considerably influenced by the cavity on the propeller blade.’ In the 
case of the uniform wake the added thickness effect of the sheet cavity was considered to be 
the cause of the pressure difference, whereas in the non-uniform case the cavity pulsations in 
reaction to the varying inflow were assumed to generate pressure pulses. Denny [Denny1967] 
had already published the results of a similar investigation, although no results were 
presented for cavitating propellers in non-uniform flow. 

After these publications, the study of the prediction of propeller-induced hull-pressure 
forces became widespread. The 13th ITTC [ITTC1972] recommended continuing to correlate 
propeller-induced pressures on hulls, and to investigate the effects of propeller cavitation on 
fluctuating forces and moments and the instantaneous pressures on nearby hull surfaces. 
Having become well aware of the importance of a correct representation of the propeller 
effective wake field model basins started building large cavitation research facilities in which 
complete geometrically scaled ship models (so-called ‘geosims’) could be tested. 

By the time of the 14th ITTC [ITTC1975] it had become clear ‘that propeller cavitation 
has only a minor effect on the bearing forces. It may, however, be of major importance in 
determining the hull surface forces.’ A great many publications on the subject had appeared 
by then. Huse wrote an overview in the proceedings. He concluded that cavitation contributes 
to hull pressures in three ways, namely through (i) the motion of the cavities; (ii) the volume 
variations of the cavities; and (iii) the cavitating tip vortex. Pulsating or collapsing cavities on 
or in the vicinity of propeller blades are considered to be the most important cause of hull 
excitation. Stationary cavities rotating with a propeller blade show a displacement effect much 
like blade thickness, i.e., a dipole type source. However, the net cavity volume variations that 
are also present form a source of monopole character. Such sources produce pressure 
fluctuations that are largely in phase over the aft body surface, thereby being very effective in 
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generating hull excitation forces. Huse regarded the cavitating tip vortex as a weaker source 
of noise. 

For the ‘Sydney Express’, a full scale case pursued by the ITTC, the Japanese Ship 
Research Institute applied two target wake distributions. One nominal wake from the towing 
tank experiments, the other with an estimate of the full scale wake made with flow liners. An 
overprediction of hull pressures was found in the nominal wake case, whereas in the 
estimated full scale wake results showed a reasonable agreement with the full scale 
measurements. It may be concluded that also in this case the ability to represent the full scale 
wake in model scale experiments proved essential. 

The 19th ITTC cavitation committee [ITTC1990] recommended that ‘work on measuring 
techniques for the model and full scale hull pressure fluctuations due to propeller cavitation 
should be monitored. Special attention should be given to the influence of the hull response to 
the pressure measurements’. 

The 20th ITTC cavitation committee [ITTC1993] stated that the energy crisis caused a 
reduced interest in the measurement of hull-pressure fluctuations during the seventies and 
eighties. The increase in the economical speed following this period would lead to a stronger 
interest in the prediction of vibratory hull excitation. The committee infers that ‘the 
experimental and theoretical techniques to predict the risk of vibrations are still crude and 
further development is required.’ Meanwhile, the assessment of practiced testing techniques 
was continued on the tanker ‘St. Michelis’. From comparative measurements by six Japanese 
model basins it was concluded that the full scale correlation was still disappointing, although 
there appeared to be reasonable agreement on pressure fluctuations amongst the facilities. 
Hence, ‘from this it can be concluded that the cause of the discrepancy3 is not the model 
measurement technique of the pressure fluctuations, but is a result of a poor estimate of the 
full scale wake and simulation of the TVC4.’ 

By this time, on the numerical side, linearized lifting surface theories were being further 
developed and non-linear BEM computer programs appeared on the scene. The committee 
regarded the modeling of the detachment and closure of the sheet cavity as a serious 
problem that still needed to be overcome. Furthermore, in light of the modeling of tip and 
leading edge vortex cavitation, it was suggested that a new propeller theory should include a 
leading edge separation vortex and a tip vortex separating from the blade, and ‘CFD is one of 
the most promising tools to predict them’. 

As did the 19th, the 20th cavitation committee acknowledged the fact that flush mounted 
hull pressure transducers are affected by vibrations of the hull, both on model and full scale, 
and stated that ‘to correct the measured hull pressures for the hull response, a separation into 
propeller-induced and hull vibration-induced components of the measured pressures is 
necessary’. The committee recommended ‘when hull pressure amplitudes measured at model 
scale are compared with full scale data, the hull response, both at model and full scale, 
should be taken into account.’ 

The committee finally concluded that the ‘development of a validated and acceptably 
accurate approach for the correct interpretation of propeller-induced unsteady hull pressures 
remains unsettled.’ It was advised to investigate the possibility ‘to incorporate some concepts 
or techniques of the “reciprocal method” to take advantage of the separation of the problem 
into the determination of the source strength of propeller cavitation and the transfer process of 

                                                           
3 Here one refers to the discrepancy between model and full scale. 
4 TVC stands for Tip Vortex Cavitation. 



Research Efforts in Historical Perspective 19 
 
 

 

hydrodynamic pressure variations into the hull and appendages.’ Also the measurement of 
the total wake on full scale and its computation by means of RANS methods was becoming 
possible and recommended. 

The 21st cavitation committee [ITTC1996] stated that ‘the major tankery cavitation issues 
are analytical predictions, model-scale experimental determination and full-scale scaling of 
developed cavitation patterns and the resulting unsteady hull pressure fluctuations. A review 
of the analytical prediction of cavitation patterns on propellers performed using a lifting 
surface theory, a surface panel method and/or a computational fluid dynamics method is 
summarized. Most of these methods are limited to sheet type cavitation and future efforts 
should be directed to the development of a more reliable model to cover bubble, cloud, and 
vortex types of cavitation.’ A specialist committee on cavitation-induced pressure pulses was 
formed. 

At the 22nd and 23rd ITTC conferences [ITTC1999/2002], the specialist committee on 
cavitation-induced pressure pulses reported on some of the fundamentals of the problem, 
together with a state-of-art on computational methods, full scale measurement and model 
scale experiments. The committee recommended that measurements of hull pressures have 
to be accompanied by vibration measurements, although it is acknowledged that in some 
references the vibration-induced component to the measured hull pressure at the blade rate 
frequency is negligible at full scale. It is concluded that the intermittency effects of sheet 
cavitation together with tip vortex dynamics strongly influence hull pressure fluctuations. 
Furthermore, the method of wake simulation, facility size and low Reynolds number are 
mentioned as factors that seriously affect the outcome of model scale measurements. The 
committee put forward recommended procedures for model and full scale hull pressure 
measurements and suggested to investigate how tip vortex cavitation dynamics influence 
unsteady hull pressure excitation. Furthermore, it was recommended to study the causes of 
cavitation intermittence and review the consequences of wake scaling and turbulence on 
propeller-induced unsteady pressures. The specialist committee finalized the work by making 
recommendations for procedures on predicting pressure fluctuations caused by cavitating 
propellers, both numerically and experimentally. The need for sophisticated full scale 
investigations for validation purposes was stressed. 

The 25th propulsion committee [ITTC2008] referred to a study of Ligtelijn et al. 
[Ligtelijn2004] (see also [Wijngaarden2003]) on the model to full scale correlation of five ships 
with regard to propulsion and cavitation behavior. For a podded cruise vessel, a very good 
correlation was obtained for propulsion and first blade rate pressure pulses. For two large 
container vessels the blade rate pressure pulses were overpredicted. These results are in line 
with some of the results already mentioned in this overview. A possible explanation for this is 
the fact that the wake field for cruise vessels is amongst the easier to represent on model 
scale, whilst the wake fields of the new generation of very large container vessels is more 
difficult. 

The 25th specialist committee on cavitation surveyed the practical state-of-the-art in 
numerically predicting pressure pulses. Around 2007, the great majority of the survey 
respondents was using computational tools for pressure pulse analysis, although modeling 
techniques were still not believed to be fully matured. Remarkable is the large scatter in the 
judgment of the accuracy of CFD tools for cavitation. The most widespread believe is that the 
use of advanced CFD codes for, e.g., higher-order blade rate pressure pulses will take 
several years. In every day practice, potential flow methods for sheet cavitation are used most 
often. Some excerpts are quoted: ‘The development of algorithms to solve the RANS 
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equations and perform viscous CFD simulations – as well as the necessary computer power – 
has only recently impacted cavitation modeling. Previously, hydrodynamicists have used the 
assumptions of inviscid and irrotational flow to develop potential-flow methods to solve for the 
flows in the vicinity of ship hulls, propellers, rudders, and other geometries of interest. For 
cavitation modeling, these hydrodynamicists have developed lifting-surface, panel, vortex-
lattice, or boundary-element methods that model the cavities, as well as the geometry. One 
can also solve the inviscid Euler equations, without the assumption of irrotational flow. 
Because of their efficiency, these potential-flow methods are still used for propeller design 
and for predictions over a range of flow and cavitation conditions. These methods can 
address non-uniform inflows and predict fluctuating forces and pressures produced by sheet 
cavitation. Several researchers […] have developed corrections for viscous-flow effects by 
using RANS predictions for the incoming wake and vorticity fields or by incorporating 
boundary-layer integral solvers or viscous empirical corrections into the potential-flow 
methods.’ 

The 25th specialist committee on cavitation presented an overview of the status in multi-
phase flow cavitation modeling, by which the cavitating flows on propellers are computed by 
CFD codes involving void-fraction modeling or at least two phase flow models. The 
developments in this field are very interesting although much has still to be investigated. 
Kawamura et al. [Kawamura2008] were amongst the first to produce results for hull-pressure 
fluctuations. 
 
 

2.3 Selection of Research Topics 
 

From this historical research perspective it is concluded that room for improvement in 
the prediction of propeller-induced hull-pressure forces should be sought in: 
 
 the experimental simulation of the ship’s effective wake field. The disparity in Reynolds 

numbers between model and ship scale warrants the warning sign in Figure 2.5. 
Differences in the effective wake affect sheet cavitation dynamics through incorrect 
entrance velocities and angles of attack (Figure 2.2). Chapter 7 is devoted to this 
important scale effect. 

 
 the modeling of mechanisms underlying the action of the cavitating tip and leading edge 

vortex is very much unknown territory. In order to limit the scope of the study to a 
manageable size it was decided not to consider cavitating tip and leading edge vortices, 
nor the pertaining experimental, numerical and theoretical modeling. At MARIN, 
Bosschers has taken up the study of this topic. 

 
 the reduction of the influence of parasitic vibration-induced pressures on the hull. This 

issue has been mentioned several times in ITTC proceedings. Chapter 5 presents a 
numerical method to alleviate the influence of hull vibrations on pressure measurements. 

 
 the use of reciprocal techniques in prediction procedures. Chapter 8 introduces an 

inverse BEM technique for the derivation of the propeller source strength. 
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 the development of computational prediction techniques. In Chapter 3, the computational 
prediction is treated through a study in which a propeller BEM is coupled to a BEM for 
acoustic radiation and scattering. This numerical approach is validated for cavitating 
(Chapter 7) and non-cavitating cases (Chapter 6). The same acoustic BEM is used for 
inverse source strength determination and computation of vibration-induced pressures. 
The application of more advanced two-phase flow modeling is investigated by Bosschers. 

 
Comparing Figure 2.5 with the above ITTC list of topics, the issues regarding inception 

of cavitation seem to have been neglected. In fact, cavitation inception has not been ignored 
by the ITTC, but has simply not been treated within the scope of propeller-induced hull-
pressure pulses. In line with this, in this thesis, it is assumed that developed sheet cavitation 
exists on the propeller and inception issues are of minor influence. As this condition is not 
always met, the topic is still marked with a warning sign in Figure 2.5. At MARIN, Van 
Rijsbergen is investigating issues related to water quality and inception. 
 
 
 





 
 
 

 

 
 
 
 
 
 

3 MATHEMATICAL METHODS 
 
 

…in which a theoretical framework is presented for the numerical simulation of 
propeller-induced hull-pressure fluctuations. From a variety of mathematical 

methods a hybrid approach is selected, in which a hydrodynamic (incompressible 
flow) method for the propeller noise sources is used in combination with two 

alternative methods for the scattering effect of the ship hull. One is an acoustic 
(compressible flow) method, the other a hydrodynamic method for the lower 

propeller blade passage frequencies. 
 
 

3.1 Introduction 
 

This chapter gives an overview of mathematical methods and their numerical 
implementation for the computation of the fluctuating pressure field exerted by the propeller 
on the wetted ship hull. The sources of pressure fluctuations and their radiation into the 
surrounding water, including hull scattering effects, are modeled separately, thereby 
neglecting their interaction. This means that the pressure field on the propeller blades as well 
as the formation of cavities are considered not to be affected by the scattering effect of 
nearby bodies, such as appendages, hull and free surface. 

Although the assumption of separating the description of the source region from that of 
the field is a standard approach in acoustics, it may not be immediately clear from a 
hydrodynamicist’s point of view. After all, the effect of nearby bodies on the propeller inflow 
and the ambient pressure field at the propeller disc cannot be neglected. However, these 
effects are usually considered to be part of the hydrodynamic description of the source region. 
An important example of this is the propeller-hull interaction effect on the propeller inflow. The 
propeller inflow, i.e., the effective wake field, is usually computed separately by a viscous flow 
method for the flow around the hull. Subsequently, this field is utilized as input to the actual 
computation of the cavitating flow around the propeller. A simplified schematic of the 
mathematical modeling of the hull pressures is given in Figure 3.1. 

Separation of source and field regions allows for a separate treatment of effects due to 
dynamic propeller cavitation, propeller thickness and loading on the one hand, and the 
diffracted pressure field on the hull on the other hand. This suggests the use of a hybrid 
method in which advantage can be taken of simplifications admissible in each separate 
model. 

Most demanding is the modeling of the cavitating propeller. In principle, one could define 
a source region in the fluid around the propeller, for which a complete, viscous, multi-phase 
flow would be computed, with the liquid phase possibly regarded as incompressible. Such an 
approach leads to the computing-time intensive methods used in the field of multi-phase flow 
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CFD [ITTC2008, Salvatore2009]. Extension of the rotating computational domain of the 
propeller to include the non-rotating ship hull is possible, but only at the expense of a further 
increase in computational cost and complexity. The latter because of the necessity to 
communicate data from the rotating to the non-rotating grid through, e.g., a sliding interface. 

The boundary of the computational domain is usually not located in the acoustic far field 
in order to limit the number of grid points. Also, at some distance from the source region, 
acoustic interference effects become noticeable and the incompressibility assumption no 
longer holds. Therefore, outside the source or near field region acoustic assumptions are 
made, such as the neglect of the effect of viscosity and the introduction of compressibility, 
sometimes also including mean flow effects. 

The combination of a ‘hydrodynamic’ source region and an ‘acoustic’ field belongs to the 
specialty of CAA (‘Computational AeroAcoustics’, see e.g., [Wang2006, Lyrintzis2003, 
Bailly2006, Roeck2007, Wells1997, Költzsch2000/2001/2004]). Multi-phase flow CFD is still in 
a maturing stage and computational demands are so heavy that application on a day-to-day 
basis, which is considered a prerequisite here, is not yet feasible. Therefore, such methods 
will not be considered here. 
 
 

 
 

Figure 3.1: Separating hydrodynamic and acoustic models. 
 
 

To determine whether further simplifications are admissible, the main causes of the hull-
pressure field must be determined. For decades, for low Mach numbers, the effects of 
propeller blade thickness and loading have been represented using inviscid, incompressible 
flow models. Also, the dynamic activity of cavities, the main cause of vibratory hull forces, has 
been reasonably modeled without resorting to viscous flow models (see [Vaz2005] for an 
overview). However, the latter is only (partly) true for sheet cavity dynamics. The dynamic 
action of cavitating tip vortices need to be accounted for by multi-phase flow CFD methods 
such as RANS or LES (‘Large Eddy Simulation’). This topic is worth an in-depth study and 
has been taken up by Bosschers [Bosschers2007/2008/2009a/b/c]. It will not be further 
considered here. Until better insights regarding the mechanisms of dynamic tip vortex 
cavitation are obtained, it is chosen to revert to the approximation of inviscid, incompressible 
flow around the propeller with sheet cavitation. 
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For inviscid flows, formulations based on both surface integral methods (e.g., Boundary 
Element Methods) and field methods (e.g., based on the Euler equations) are available. Euler 
methods are preferable when the interest is not limited to irrotational flow. Boundary Element 
Methods show advantages in computational speed and in the fact that only the surfaces need 
to be discretized on which the solution is subsequently evaluated. Another advantage of 
integral formulations is that in the far field the elementary solutions distributed on the surface 
possess the desired behavior, not affected by numerical dissipation and dispersion. 

Because our interest is primarily in the pressure on the hull surface itself and rotational 
flow effects are assumed negligible, a surface integral equation formulation has been chosen. 
In particular, the BEM worked out by Vaz in his PhD thesis [Vaz2005] has been selected, 
since it is a state-of-the-art method which has been available for the present study. The 
method is based on incompressible potential flow. The neglect of compressibility is 
admissible, because the region where the cavity dynamics takes place is compact (at least in 
the frequency range of interest) and can be considered as a hydrodynamic near field. The 
effect of vorticity in the wake cannot be neglected and is incorporated in the form of vortex 
sheets attached to the blades trailing edges. These vortex sheets are part of the surface in 
the surface integral equation formulation. 

Outside the near field of the propeller, an acoustic model is needed for the scattering of 
the propeller-induced pressures on the hull and the radiation into the far field. Because of the 
high value of the speed of sound in water as well as the relatively low rotation rates of ship 
propellers, the distance from the top of the propeller disc to locations on the aft ship hull is 
usually small in terms of acoustic wave lengths. Therefore, at the lower blade rate frequencies 
compressibility may be neglected. However, Bloor [Bloor2001], as well as Kinns and Rath-
Spivack ([Kinns2003/2004, RathSpivack2004]) argue that the effect of compressibility can still 
be significant when the pressure distribution on the complete hull is considered. 

Considering the low Mach number flows for ships, in a first approximation the effect of 
convective flow velocities may be (linearized or) neglected and a (convected) wave equation 
for the perturbation velocity potential may suffice. Because of the repetitive nature of the 
excitation (i.e., for stationary effective ship wakes) and the frequency dependent response of 
the ship hull, the excitation pressures on the hull are preferably given in the frequency 
domain. A boundary element description based on the (convected) Helmholtz equation for a 
harmonic perturbation velocity potential would therefore appear to be a suitable starting point 
for the analysis. In integral form this leads to the Kirchhoff-Helmholtz integral equation for the 
complex amplitude of the acoustic field perturbation potential at any given frequency. 

In aeronautics, alternative models are in use that do not require the potential flow 
assumption. Instead, they are based on the more general theory of the acoustic analogy 
pioneered by Lighthill, and lead to the FW-H equation (‘Ffowcs Williams and Hawkings 
equation’) [FfowcsWilliams1969]. As opposed to Kirchhoff formulations, in FW-H formulations 
there is no need for the integration surface to be in the linear flow regime. Recast in a form 
suitable for scattering analysis in the frequency domain, FW-H formulations could also serve 
as an acoustic method. 

To provide guidance on the choice of formulation, a study of available surface integral 
equation methods (i.e., variations on the Kirchhoff and FW-H themes) is performed. In 
Appendix A various potential flow models are presented that lend themselves to a boundary 
element type of approach. Appendix B treats a set of alternative formulations based on the 
FW-H equation. Section 3.3 discusses the suitability of the formulations presented in the 
appendices and a choice is made from the alternatives. The acoustic model finally adopted is 
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a Kirchhoff-Helmholtz integral equation formulation for the perturbation velocity potential, with 
a pressure-based integral equation formulation for incompressible flow as a low-frequency 
alternative. The acoustic model is described in Section 3.4 together with its coupling to the 
already existing propeller flow method. Appendix F.1 gives a full account of the 
implementation of the selected boundary integral equation method. 

The next section summarizes the hydrodynamic method for the propeller action that 
should provide the sources of propeller noise to the acoustic scattering method. 
 
 

3.2 Hydrodynamic Method for Propeller Noise Sources 
 

The present hydrodynamic propeller method is defined as consisting of a Boundary 
Element Method for inviscid, incompressible and irrotational perturbations of the flow around 
a propeller. As such, the method is expected to be well-suited to the simulation of the effects 
on pressure pulses of blade thickness and loading as well as the pulsating action of sheet 
cavities. However, the method will not be capable of reproducing effects related to vortical 
types of cavitation and cloud cavitation. 

The formulation is in the time domain and based on the Morino integral formulation as 
used by Vaz [Vaz2005] (see also references [Fine1992/1993, Kinnas1992a/b, 
Hoshino1991/1993]. In this formulation, the propeller-induced velocity disturbances are 
considered irrotational, and therefore a scalar variable, , is defined as the disturbance 
velocity potential. Then, 
 0( , ) ( , ) ( , )t t tv x v x x  (3.1) 
 
in which t  is time and Cartesian position vectors, 1 2 3( , , ) ( , , )T T

ix x x x x y zx , are used 
relative to a frame of reference translating and rotating with the propeller (see Figure 3.2, 
drawn in red). Note that vector quantities are written in boldface and disturbances are primed. 
The velocity, ( , )tv x , is the total velocity relative to the operating propeller. The axis of rotation 
is the x -axis, which points in the upstream direction. The y -axis points to port at the instant 
the z -axis points in the upward direction. The yz -plane coincides with the propeller plane5. 
The origin is at the propeller centre, which is defined as the intersection of the axis of rotation 
and the propeller plane. The constant propeller translation velocity equals the ship speed, sv , 
in the positive x -direction. 

The velocity, 0v , undisturbed by the propeller, can be written as the sum of the ship’s 

effective wake field velocity, wv , in the propeller plane, 
 

 ,, ,( , ) , ,
T

w yw x w z
w s

s s s

vv v
t v

v v v
v x  (3.2) 

 

                                                           
5 The propeller plane may be defined as the plane containing the quarter chord point at 70% of the 
propeller radius and which is orthogonal to the propeller shaft line. Other definitions are in use as well. 
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and the effect of the constant propeller angular velocity, Ω , i.e., 
 
 0( , ) ( , )wt tv x v x Ω x  (3.3) 
 

 
Figure 3.2: Reference system for the hydrodynamic propeller model (adapted from  

[Vaz2005]). The figure displays the propeller at time zero with the cap on the upstream side. 
The propeller is right-handed, i.e., rotating in clockwise direction when viewed from behind. 

 
 

The azimuthal velocity is taken positive in clockwise direction, when the propeller is 
viewed from behind (i.e., in upstream direction). The ship effective wake field is usually given 
as a steady velocity field in a system of reference translating, but not rotating, with the 
propeller. As a consequence, the wake field becomes time-dependent in the propeller’s 
rotating system of reference. The connection between the two wake field representations is 
conveniently expressed using a cylindrical coordinate system, ( , , )Trξ  (see Figure 3.2, 
drawn in green), which shares its origin with the Cartesian system, and in which  denotes 

the axial coordinate coincident with x . The radial coordinate r  is in the yz -plane, and  is 
the azimuthal coordinate in the same plane measured from the z -axis in clockwise direction. 

Thus, x , 2 2r y z , arctan( )y z , and Eq. (3.3) becomes, 
 
 0( , ) ( , , , ) ( , , )w wt r t r r t rv ξ v e v e  (3.4) 
 
Here, it is assumed that, at 0t , the z -axis is in the upward position, and that  is the 
angle corresponding to  at 0t . Furthermore, the propeller angular velocity is determined 

by its axial component, ( ,0,0)TΩ . Finally, e  denotes the unit vector in the -direction. 

z

y
x vs

vw

r
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The flow is assumed incompressible with constant density, 0 . Therefore, Laplace’s 
equation applies to the disturbance velocity potential, 
 
 2 ( , ) 0tx  (3.5) 
 
The pressure, p , follows from Bernoulli’s equation for unsteady incompressible potential 
flow, 

 2 21 1
0 0 0 0 02 2refp gh p

t
v v  (3.6) 

 
The reference pressure is given by, 0ref atm shaftp p gh , with atmp  as the atmospheric 

pressure at the free surface, and submergence, h , at the shaft as, shafth . 
In order to solve Eq. (3.5), boundary conditions have to be imposed on the rotating 

surface, ( )S t , consisting of ( )BS t , the wetted body part (i.e., the non-cavitating propeller 

surface), ( )CS t , the cavity surface, and ( )WS t , the wake sheets behind the trailing edge of 

the propeller blades. Figure 3.3 shows a supercavitating case with BcS  and WcS  respectively 

denoting those parts of BS  and WS  that are covered by the sheet cavity. 
 

 
Figure 3.3: Definition of surfaces: propeller blade section (black), cavity surface (red), 

and wake surface (green) (adapted from [Vaz2005]). 
 
 

On ( )BS t , an impermeability condition of the Neumann type is imposed, 0n v n , 
with the unit vector normal to the boundary, n , pointing into the fluid. The position of the 
cavity surface itself, ( )CS t , is unknown. Hence, two boundary conditions are needed there, 
viz., a kinematic condition stating that the surface is a material surface of the flow, and a 
dynamic condition requiring that the pressure equals the vapor pressure. The wake surface, 

( )WS t , is a vortex sheet, being generated at the blade’s trailing edge, where the flows over 
the upper and lower surfaces meet. On this sheet a kinematic boundary condition is imposed 
stating that the sheet should be a material surface of the flow. A dynamic (Rankine-Hugoniot) 
boundary condition is added by requiring a zero pressure difference between both sides of 
the sheet. At the trailing edge this is the so-called Kutta condition. The cavities are considered 
thin enough to allow for the application of the boundary conditions at BcS  and WcS  (see 

SWcSB

SBc

SW

SC

n
n-

n+
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Figure 3.3), i.e., the projection of CS  on the blade and the wake sheets, respectively, instead 

of at CS  itself. Fine and Kinnas [Fine1993] refer to this model as the partially non-linear 
model. Finally, at infinity, the velocity perturbations are assumed to vanish. 

Applying Green’s third identity (see Appendix G.3) to the disturbance velocity potential, 
( , )tx , for points, { }B CS Sx ,  can be written as Eq. (3.7), with ( , ) 1 4LG x y x y  

as the Green’s function for the Laplace equation (see Appendix A.2). The normal at y , i.e., 

yn , points away from the body into the flow volume, V . Furthermore,  denotes 

the difference between the potential on the upper and lower side of the wake sheet. A similar 
definition applies to the normal component of the gradient of . Here, the plus sign refers to 
the wake vortex sheet trailing from the suction side of the blade; the minus sign to the 
pressure side (see Figure 3.3). The normal on WS  points into the volume from the side 
bearing the plus sign. Thus, one obtains, 
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 (3.7) 

 
The solution is in terms of monopole ( n , n ) and dipole ( , ) source 

distributions on ( BS , WS ). More specifically, on BS , the monopole distribution follows directly 
from the surface impermeability constraint, and the dipole distribution is determined using Eq. 
(3.7). On BcS , the monopole distribution is determined from Eq. (3.7) with zero left-hand-side, 
and the dipole distribution follows from the dynamic boundary condition that the pressure 
equals the vapor pressure. On WS , the monopole distribution is zero and the dipole 
distribution follows from the dynamic boundary condition that there is no pressure difference 
across the wake vortex sheets. Finally, on WcS , the monopole distribution is determined by 
Eq. (3.7) in the form given by Fine [Fine1992], 
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and the dipole distribution follows from the dynamic boundary condition as on WS . The 

potential, , is determined by demanding the pressure to be equal to the vapor pressure 
(on both sides of the wake vortex sheet). 

The solution is obtained upon discretization of Eqs. (3.7) and (3.8). This is carried out by 
approximating the surface, S , by a set of quadrilateral panels (i.e., boundary elements) on 
which the monopole and dipole distributions are assumed piecewise constant. The boundary 
elements for monopoles are flat, the ones for dipoles are hyperboloidal in shape. In case of 
Eq. (3.7), BS  and wS  are approximated by bN  and wN  panels, respectively, as, 

, 1..i b wS i N NS i 1i 11 . On each panel, a collocation point, , 1..i b wi N Nx , is chosen, at which 

Eq. (3.7) is enforced. Thus, a system of b wN N  equations, linear in the unknown strength of 

the monopoles and dipoles, is obtained from which b wN N  values follow for the monopole 

and dipole parameters on the panels at the k -th time step, with 1.. tk N , during a 
revolution. Finally, the solution may be obtained in terms of the pressure through the 
application of Bernoulli’s equation, Eq. (3.6), 
 

 2 21
0 0 0 02

( , )( , ) ( , ) ( , ) ( , )atm shaft
tp t p g h t h t t

t
xx x v x v x  (3.9) 

 
At MARIN, this Boundary Element Method has been implemented under the name PROCAL, 
which is used in this thesis whenever reference is made to the method. 

At a distance of several panel diagonals from the propeller and wake surfaces, the 
sources distributed on the surfaces may be represented as point sources (see Appendix C for 
a mathematical description of moving point sources). The integrands may then be taken 
outside the integral, e.g., 

 ( , ) ( , )
j

j

L i j L i j j

S

G dS G Syx y x y
jSj

jSjjSj  (3.10) 

and 

 
( , ) ( , )1 1

2 2j

j j
j

L i j L i j
ij ij j

S

G G
dS S

n ny
y y

x y x y

jSj

jSjjSj  (3.11) 

 
for unit strength monopoles (Eq. (3.10)) and dipoles (Eq. (3.11)), respectively. The panel 
surface area is denoted by jSjSjS . Thus, at some distance, the rotating panels may be 

effectively replaced by rotating point monopoles and dipoles of strength, 
 
 (on blade surfaces); (on wake vortex sheets)n n  (3.12) 
and, 
 (on blade surfaces); (on wake vortex sheets)  (3.13) 
 
respectively. The field induced by these point sources is diffracted by the hull and free 
surface. In the next section, a method for the determination of diffraction effects is selected. 
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3.3 Acoustic Methods for Hull Scattering 
 
Having represented the cavitating propeller by a set of rotating, hydrodynamic point sources 
of monopole and dipole type, an acoustic method for the scattering effect on the ship hull and 
free surface has to be derived. In Appendices A and B an overview is given of acoustic 
methods that can be written as boundary integral equations and solved using the Boundary 
Element Method. They are based on the Kirchhoff (Appendix A) and Ffowcs Williams and 
Hawkings (Appendix B) formulations. These formulations provide the basis for candidate 
methods to be used in conjunction with the hydrodynamic potential flow method for the 
propeller described in the preceding section. Now, from the available acoustic formulations a 
suitable choice must be made. Before doing so, a brief overview of the methods is given with 
their pros and cons. For derivations of the various methods the reader is referred to 
Appendices A and B. 

In the following, for determining the ship-diffracted hull-pressure fluctuations, use is 
made of position vectors, 1 2 3( , , ) ( , , )T T

ix x x x x y zx , relative to a frame of reference 

translating with the ship. The velocity, ( , )x tv , must therefore be interpreted as the total 
velocity relative to the ship. The x -axis points in the longitudinal direction from stern to bow. 
The y -axis points to port and the z -axis is in the upward direction. The origin is amidships 
on the projection of the centre line and on the still free surface. As before, the constant 
translation velocity equals the ship speed, sv , in the positive x -direction. 
 
3.3.1 Kirchhoff methods 
 
Laplace approximation 
 

The most straightforward approach to compute the hull-surface pressures induced by 
the propeller is to use the propeller hydrodynamic potential flow method itself. Then, the 
Laplace equation for the ship hull scattered disturbance velocity potential in the integral form 
of Eq. (A.62), 

 
1 ( , ) ( , )
2

H

L

S

Gt t dS q
n y

y

x y  (3.14) 

 
must be solved for locations on the wetted hull surface, HS , at each time step, entirely 
neglecting compressibility. In Eq. (3.14), the diffracted disturbance velocity potential is 
denoted by, , to avoid confusion with the propeller-induced free-field disturbance velocity 

potential, . The sources inside the flow volume, V , are denoted by q  and consist of the 

rotating monopole and dipole propeller point sources determined through Eqs. (3.10)-(3.13). 
In Eq. (3.14) the wetted hull surface is assumed to be rigid. From the computed hull velocity 
potential, hull pressures are determined using Bernoulli’s equation for points stationary on the 
hull, 

 2 21
0 0 02

( , )( , ) ( , ) ( , )tp t t t
t
xx v x v x  (3.15) 
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The result is a hull-pressure disturbance6 time series that can be Fourier transformed to give 
the hull pressure harmonic amplitudes and phases. The advantage of this approach lies in its 
simplicity and the fact that the pressure can be accurately determined from the values of the 
potential, i.e., without the need to linearize or neglect the quadratic velocity term in Bernoulli’s 
equation. 

However, the application of Eq. (3.15) requires knowledge of the main stream velocities 
at the hull surface. As this information is not readily available, a pressure-based alternative to 
Eq. (3.14) may be more convenient to use, 
 

 
1 ( , ) ( , )
2

H

L
p

S

Gp t p t dS q
n y

y

x y  (3.16) 

 
The rotating propeller sources are now denoted by pq , and consist of monopole and dipole 

point sources of which the strengths are derived in Appendix C. 
If the accurate computation of the normal pressure derivative on the propeller blades 

and their wake sheets is feasible, the presented pressure formulation does yield the pressure 
without neglecting the dynamic pressure component term from the Bernoulli equation. When, 
furthermore, the terms related to the wake sheets in Eq. (C.11) turn out to be negligible, the 
pressure-based formulation would become the preferred option. This is because, although the 
contribution from the vortex sheets enables the accurate computation of the propeller surface 
potential (and pressure), the vortex sheet model is not well-suited for the computation of field 
potentials (and pressures) abaft the propeller. In reality, the vortex sheets roll up and further 
aft of the propeller vorticity is concentrated in the form of line vortices that have no close 
resemblance to the helicoidal vortex sheets used here. 

Although the pressure-based formulation enhances the accuracy by incorporating the 
dynamic pressure term from the Bernoulli equation, compressibility effects are lost. At 
frequencies low enough for the wave lengths to be large in comparison with hull dimensions 
the combination of the hydrodynamic method with the pressure-based formulation yields a 
viable alternative. 
 
Kirchhoff approximation 
 

In the introduction, it was stated that some references (e.g., [Bloor2001]) suggest that, 
although the Mach number of the convected ship flow is much smaller than unity, 
compressibility may not be neglected a priori. This is because the wetted ship hull is large 
enough for interference effects to become noticeable even at low blade passage frequencies 
and higher harmonics thereof. Also in view of the occasional determination of scattered far 
field pressures, compressibility effects would have to be included. Thus, one arrives at the 
Kirchhoff integral equation, Eq. (A.71), (see also Figure A.4), 
 

                                                           
6 Note that the hydrodynamic formulation uses the absolute pressure, because of cavitation phenomena, 
whereas the acoustic formulation only needs to use the disturbance pressure. 
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in which c  denotes the speed of sound and the integrands over the rigid hull surface and the 
propeller sources are to be evaluated at the retarded time, /t r c , as indicated by the 
brackets (see Appendix G.2). Strictly speaking, the ship flow is neglected, the domain of 
integration is kept fixed to the ship and the pressure needs to be computed on the basis of the 
transient term in Bernoulli’s equation only, viz. Eq. (A.17), 0p . It is then possible to 
restate the Kirchhoff integral equation in terms of pressure, see Eq. (A.72), 
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1 1 1( , )
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y

x p rp
 (3.18) 

 
Note that it is not consistent to use Eq. (3.18) in conjunction with the pressure-based 
hydrodynamic source formulation, because the source system pq  (i.e., the second integral on 

the right-hand-side of the equation) would contain both the dynamic and transient terms from 
Bernoulli’s equation, whereas, Eq. (3.18) is based on the transient term only. 
 
Morino/Farassat-Myers approximation 
 

When both compressibility and convective effects are significant, within the linear 
domain of application of a Kirchhoff type of method, the Green’s function (Eq. (A.55)) 
associated with the convected wave equation (Eq. (A.13)) should be used. For this situation 
[Morino2003] gives the integral equation, Eq. (A.73), for the potential followed by Eq. (A.11) 
for the pressure. 

Alternatively, for a system of reference not moving with the ship the wave equation may 
still be used, but then the integration surfaces are not stationary anymore. For this case 
Farassat and Myers developed an integral equation [Farassat1988], viz., Eq. (A.74), often 
referred to as the moving Kirchhoff method. 

Considering the low advance speeds of vessels it is not expected that these more 
elaborate formulations are necessary here. They are treated in Appendix A for reference. 
 
Frequency domain alternatives 
 

The methods described so far form natural extensions to the time domain propeller 
source method. However, computational demands are heavier for the time-domain method 
than for their frequency domain alternatives, because for the latter method often only a few 
harmonics of the blade passing frequency are needed. The simple incompressible model is 
an exception as its Green’s function is independent of frequency. With periodic source 
motion, frequency domain models become an attractive option. In order to realize such 
models the rotating propeller sources must be replaced by stationary ones distributed along 
the circular paths of rotation. 
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In the frequency domain, Eq. (3.16) for the incompressible case is still valid for 
harmonics of the pressure (indicated by a caret symbol), 
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In the compressible case without mean flow, instead of the wave equation, the Helmholtz 
equation (Eq. (A.25)) is used and the Kirchhoff-Helmholtz integral equation (Eq. (A.64)) has to 
be solved for each frequency component, 
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The Green’s function for the Helmholtz equation is defined as, ( , ; ) exp( ) 4HG k ikr rx y , 
see Eq. (A.34). As before, the pressure needs to be computed on the basis of the transient 
term in Bernoulli’s equation only, viz., Eq. (A.24), 0ˆ ˆp ik c , and one can restate the 
Kirchhoff-Helmholtz integral equation in terms of pressure, although this is of no further 
advantage. The rotating propeller sources, q , have been replaced by stationary ones along 

the circular paths of rotating. Harmonic components of the stationary source system are 
denoted as, q̂ . Appendix E gives a full account of this procedure. Table 3.1 presents an 

overview of the formulations treated in this section. 
 
 

Table 3.1: Kirchhoff-Helmholtz formulations for determining hull scattering effects. 

Compres-
sible Flow 

Convec-
ted Flow Variable Dynamic 

pressure 
Time 

domain 
Frequency 

domain 
No Yes Potential Not practical (3.14) (3.14) for ˆ  
No Yes Pressure Yes (3.16) (3.19) 
Yes No Potential No (3.17) (3.20) 
Yes No Pressure No (3.18) (3.20) for p̂  
Yes Yes Potential Yes (linear) (A.73)/(A.74) (A.65) 

 
 
3.3.2 FW-H methods 
 

More recently, ‘competing’ models have been derived for scattering based on the FW-H 
equation, Eq. (B.23). This form of the equation is in terms of the pressure disturbance and a 
linear relationship with the density disturbance is assumed. The FW-H equation includes 
convection effects, compressibility and allows for the decoupling of the source from the 
scatterer. When cast in integral form, the integration surfaces do not need to be outside the 
non-linear domain (although the observer does). The standard integral form of the FW-H 
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equation, known as Farassat’s formulation 1A assumes non-penetrable surfaces of 
integration. For the application to cavitating propellers, Salvatore et al. [Salvatore2002/2006] 
derive a version of the equation for porous surfaces, keeping the surface of integration 
coincident with the rotating blades, like in the hydrodynamic propeller method used in this 
thesis. 

Usually, the FW-H equation is applied to radiation rather than scattering problems. 
However, recently, Gennaretti presented a formulation (Eq. (B.44)) for scattering purposes 
[Gennaretti2006]. It does not rely on the potential flow assumption. It can be elegantly recast 
in a frequency domain version (Eq. (B.45)), but involves an additional surface integral over 
the incident (i.e., propeller-induced) pressure. 

Brentner [Brentner1997/1998] has shown that when the pressure disturbances are 
proportional to the density variations, the moving Kirchhoff and FW-H formulation are 
equivalent, except for a source term involving Reynolds stresses in the FW-H formulation. An 
overview with derivations of FW-H formulations is found in Appendix B. 
 
3.3.3 Selection of method 
 

The above discussion of methods to be used in conjunction with the hydrodynamic 
propeller source method seems to favor the newly developed formulation of Gennaretti 
[Gennaretti2006] in its frequency domain form. Also, Testa [Testa2008a] and Testa et al. in 
[Testa2008b] recommend this formulation. Notwithstanding this, given the low Mach numbers, 
using a 'convected' formulation seems unnecessary for the low-frequency pressure 
fluctuations considered in this thesis. The Kirchhoff-Helmholtz integral equation, based on the 
Helmholtz differential equation, therefore seems to be an appropriate potential flow method. 
The fact that the author had already developed a code based on exactly this method makes 
the method also the most cost-effective solution. 

It is concluded that although the FW-H scattering formulation may be the most appealing 
method to choose, its advantages in the use for cavitating propellers do not warrant the 
development for the sake of this thesis. Instead, for the ‘higher’ harmonics of the blade 
passage frequency the Kirchhoff-Helmholtz integral equation is selected in combination with 
an incompressible Laplace method for the ‘lower’ harmonics, whenever the dynamic pressure 
components (in Bernoulli’s equation) are not entirely negligible. 

The next section describes in some detail an acoustic method based on Eq. (3.20). Only 
small modifications are needed to encapsulate the option of Eq. (3.19) into this method. 
 
 

3.4 Description of Acoustic Scattering Method 
 

The acoustic model for the scattering effect of the hull and free surface is defined as 
consisting of a Boundary Element Method for the acoustic potential in the frequency domain 
satisfying the Kirchhoff-Helmholtz integral equation. The main inflow to the propeller (i.e., the 
stationary effective wake field) is disregarded and the only potential flow field present is due 
to the propeller-induced sources and the scattering of the hull and the free surface. 

Assume an inviscid, irrotational, compressible flow within a domain V  with bounding 
surface S , now consisting of HS , the submerged part of the hull, and FS , the free surface. 
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Combining Eq. (A.71) with the moving point source formulations of Appendix D, the 
disturbance velocity potential, ( , )tx , can be written as, 
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Here, Cartesian position vectors, 1 2 3( , , ) ( , , )T T

ix x x x x y zx , are used relative to a frame 
of reference translating with the ship. The x -axis points in the upstream direction. The y -
axis points to port and the z -axis is in the upward direction. The origin is above the centre 
line amidships at the undisturbed free surface. The normal on the body surface is pointing into 
V . All quantities in Eq. (3.21) are to be taken at the retarded time, as indicated by the 
subscript ret. The Mach number, rM , is defined as the ratio of the speed at which the source 
is approaching the point of observation and the speed of sound. The summation is over 

b wN N  monopole and dipole propeller sources with normal directions in , and strengths i  

and i  for the thi  propeller surface panel, iSiS , that makes up the source system. The 

instantaneous distance from the observer to a point source is denoted by ( )s sr tx x , with 

sx  as the source coordinates. The source strengths are determined by evaluating the panel 
integrals, 
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and 
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in which, iSiSiiSi , denotes the surface area of a quadrilateral panel. Eq. (3.21) may be further 
simplified as follows. The condition that the potential must equal zero at the free surface can 
be enforced at the undisturbed water surface by mirroring the submerged part of the hull 
surface into the free surface, and assuming the mirrored potentials to be the negative of their 
submerged counterparts. Therefore, in the remainder, HS  and FS  are replaced by the so-

called ‘double hull’, DHS , and the source summation is over twice the number of sources. 
Furthermore, the ship hull is considered a rigid scattering object, hence the normal 
component of the gradient of the surface potential vanishes. Then, Eq. (3.21) becomes, 
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for points, DHSx . Eq. (3.24) constitutes an integral equation in the time domain for the 
velocity disturbance potential on the rigid, wetted hull surface scattering the incident waves 
generated by a set of rotating point sources of monopole and dipole type. The disturbance 
pressure, p , may be obtained from the potential through Eq. (A.17). 

As the aim is to obtain a frequency domain description, Eq. (3.24) has to be Fourier 
transformed. For that purpose, the rotating sources have to be ‘replaced’ by stationary ones 
by expanding the former along their paths of rotation. The result is a set of 2 b w tN N N  

stationary monopoles and dipoles placed at tN  positions, i.e., the locations each of the 
panels (and their mirror images) assume during a time-discretized revolution (see Appendix E 
for a derivation). The strengths of the sources are periodic in time at the fundamental 
frequency, 1 , given by 1 Z , with Z  the number of propeller blades and  the 

propeller revolution rate. Using, sinc sinx x x , the complex amplitude of the thn  

harmonic, ˆ ( )n ijx , can be expressed as, 
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for monopoles and a similar expression for dipoles. As before, in Eq. (3.25) the caret symbol 
is used to denote frequency domain variables. Furthermore, the points in time are spaced t  

apart and n  denotes the thn  BPF (‘Blade Passage Frequency’). The angular spacing of the 

sources in the propeller disk is expressed as . Finally, 0i  denotes the angular starting 

position of the thi  panel. Now using Eq. (A.64) with zero normal velocity at the boundary, the 
frequency domain expression, equivalent to Eq. (3.24), becomes, 
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In Eq. (3.26), ijr  is the distance from the point of observation, x , here assumed to be located 

on the boundary, to the thi  source, located at the collocation point of the thi  panel at the thj  
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time instant, ( )col
i j ijtx x , for each harmonic component, n . Furthermore, the wave number 

obeys, n nk c . 
It must be noted that Eq. (3.26) becomes singular at the so-called characteristic or 

irregular frequencies. At those frequencies the Kirchhoff-Helmholtz integral equation for the 
exterior Neumann problem fails to possess a unique solution. In principle, the derivative of 
Eq. (3.26) in a direction normal to the boundary also solves the exterior scattering problem. 
Burton and Miller [Burton1971] use this fact in deriving a formulation that can be used to 
obtain a unique solution at all frequencies. For the numerical solution of Eq. (3.26) a 
discretization procedure using Burton and Miller's method and based on the BEM is 
presented in Appendix F. This discretization procedure was implemented in a computer 
programme called EXCALIBUR (EXcitation CALculation with Improved BURton and Miller 
method). The reader is referred to [Visser2004] for an overview of alternative methods to 
counteract non-uniqueness problems in the Kirchhoff-Helmholtz integral equation. 
 
 



 
 
 

 

 
 
 
 
 
 

4 MODEL SCALE EXPERIMENTS 
 
 

…which describes the experimental simulation of propeller cavitation and its 
effect in terms of hull pressures, as practised in model basins on scale models of 
ships and propellers. Scaling laws are reviewed and applied to the model testing 

procedures of the Depressurized Towing Tank at MARIN. 
 
 

4.1 Introduction 
 

When performing ship scale model experiments in a cavitation tunnel or depressurized 
towing tank with the aim of predicting hull-pressure fluctuations and the resulting vibratory 
hull-excitation forces, one must ascertain that geometric, kinematic and dynamic similarity in 
model and prototype are preserved. This means similarity in relevant aspects of lengths, 
displacements, velocities, accelerations and forces [Bertram2000]. Then, ship scale quantities 
may be predicted from their model scale counterparts by a proportionality factor. 

The next section reviews the fundamentals of scaling for model testing. Then, following 
van der Kooij [Kooij1979], experimental procedures are described that have become standard 
practice in the DTT of MARIN (see Figure 2.4). The latter facility is implied throughout this 
thesis when referring to scale model experiments. 
 
 

4.2 Similarity Requirements 
 

For the correct prediction of forces on the basis of scale model experiments proper 
geometric scaling is usually regarded as a necessary condition. Geometric features that are 
proportionally scaled comprise propeller shape, hull form, appendages and waves. When a 
length scale L  is chosen (e.g., the length of the ship), then all other lengths (such as the 
propeller diameter, D ) should scale accordingly. With index m  denoting ‘model’ scale and 
index s  denoting ‘ship’ scale, 

 s sm
m

m s

D DD D
L L

 (4.1) 

 
in which s mL L  is the length scale factor. If small scale detail is needed, such as for 
propeller leading edge geometries, manufacturing accuracy may limit geometric similitude. 
Sometimes, only partial geometric similitude is necessary, because only those parts of the 
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geometry need to be represented that influence the forces that are of interest. In Chapter 7 
use is made of this by abandoning the ‘geosim’ (i.e., the geometrically scaled) ship model. 

For kinematic similarity, the ratios between displacements, velocities, and accelerations 
on model scale have to be equal in magnitude and direction to the corresponding ratios at 
ship scale. This implies that the flow will undergo geometrically similar motions in both cases. 
E.g., for kinematic similarity of ship models with propellers it is required to conduct model 
tests at equal advance coefficient, J , 

 aVJ
nD

 (4.2) 

 
in which aV  is the propeller’s advance velocity, and n  and D  its rotation rate and diameter, 

respectively. The advance velocity differs from the ship speed, sV , by a factor of (1 )w , 
 
 (1 )a sV V w  (4.3) 
 
in which w  denotes the effective ship wake fraction7. The latter is the ratio of the slipstream 
velocity in axial direction and the ship speed, averaged over the stream tube flowing into the 
propeller disc. The concept of slipstream velocity includes the suction effect of the propeller 
on the flow around the ship. Without the latter propeller-hull interaction component the 
effective wake fraction would become the nominal wake fraction. The effective ship wake plus 
propeller induction velocities forms the so-called total wake field (see Figure 4.1). Equal 
advance coefficients on model and prototype scale ensure that the propeller advances by the 
same number of diameters during the same number of revolutions, 
 

 , , , ,a m a s a m a s
m s

m m s s m s

V V V V
J J

n D n D n n
 (4.4) 

 
 

 
Figure 4.1: Overview of wake velocity components [Carlton1994]. 

 
 

Sufficient dynamic similarity is reached when all important forces act on the model to the 
same proportion as on the prototype. Hence, the condition for dynamic similarity is to keep 
the non-dimensional ratios of forces equal. Similarity laws can be derived by non-
dimensionalizing the equations that govern the flow. These equations comprise the 

                                                           
7 If the advance coefficient is based on ship speed rather than advance speed, it is termed VJ . 

Total Wake Velocity

Effective Wake Velocity

Nominal Wake Velocity Propeller-Hull Interaction Velocity

Propeller-Induced Velocity
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conservation laws of mass, momentum and energy, supplemented by equations of state 
(‘material laws’) and appropriate boundary conditions. In the following, these equations and 
the similarity laws that follow from them are treated. Conservation of energy, however, is not 
expected to play a significant role in the context of hull-pressure fluctuations and is therefore 
discarded. From the conservation of mass no scaling laws follow that are not already present 
in the momentum equation. 
 
 

4.3 Non-dimensional Conservation Laws 
 
4.3.1 Conservation of momentum 
 

The version of the Navier-Stokes equations that expresses conservation of momentum 
for compressible Newtonian fluids [White2006] reads, 
 

 ( ) ji
ij b

j j i

vvp
t x x x
v v v v f  (4.5) 

 
In Eq. (4.5),  denotes the fluid’s mass density, p  the pressure, and  and b  its dynamic 

and bulk (or second) viscosity, respectively. Furthermore, t  is time, v  the velocity, iv  a 

velocity component in one of three orthogonal directions, ix , and f  a general body force. For 

example, the gravity force may be expressed as f g , with g  as the acceleration due to 

gravity. Finally, ij  denotes Kronecker’s delta function. For incompressible flows, for which 

0v , of constant viscosity and mass density, 0 , Eq. (4.5) simplifies to, 
 

 2
0 ( ) p

t
v v v v f  (4.6) 

 
Scaling parameters are now chosen as in Table 4.1. Then, using the asterisk symbol, non-
dimensional variables are defined as in Table 4.2. Substituting these variables into Eq. (4.6) 
yields, 

 
2 2

20 0
0 02( )V V VVf p g

t L L L
v v v v g  (4.7) 

 
in which f  and V  denote a characteristic flow frequency and velocity, respectively, and g  is 

the magnitude of g . Dividing by 2
0V L  gives, 

 

 2
2

0

( )fL gLp
V t VL V

v v v v g  (4.8) 
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Using the non-dimensional numbers identified in Table 4.3 the incompressible form of the 
Navier-Stokes equations can be written as, 
 

 2
2

1 1St ( )
Re Fr

p
t
v v v v g  (4.9) 

 
in which the Strouhal (St), Reynolds (Re) and Froude (Fr) numbers appear. 
 
 

Table 4.1: Scaling parameters 

Parameter Description Dimensions 
,L D  Characteristic lengths [length] 

V  Characteristic speed [length/time] 

aV  Advance velocity [length/time] 
f  Characteristic frequency [1/time] 
n  Propeller rotation rate [1/time] 

0  Characteristic density [mass/length3] 

0p  Characteristic pressure [mass/length/time2] 

vp  Vapor pressure [mass/length/time2] 
g  Gravitational acceleration [length/time2] 
S Surface tension [mass/time2] 

 Dynamic viscosity [mass/length/time] 
c Speed of sound [length/time] 

pT  Propeller thrust [mass*length/time2] 

pQ  Propeller torque [mass*length2/time2] 

 
 

Table 4.2: Non-dimensional parameters 

Non-dimensional variables Description 

t ft  Time 

Lx x  Position 

Vv v  Velocity 
2

0p p V  Pressure 

gg g  Gravitational acceleration 

L  Gradient operator 

0  Density 
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Table 4.3: Non-dimensional numbers 

Non-dimensional numbers Description 

aJ V nD  Advance coefficient 
2 4

t 0K pT n D  Thrust coefficient 
2 5

q 0K pQ n D  Torque coefficient 

St fL V  Strouhal number 

Fr V gL  Froude number 

0Re VL  Reynolds number 
21

0 02( )vp p V  Cavitation number 
2

0We V L S  Weber number 

Ma V c  Mach number 
 
 

When the non-dimensional parameters have been defined properly, they are of equal 
order of magnitude. Then, the non-dimensional numbers can be used to judge the relative 
importance of each of the terms in Eq. (4.9). However, locally in the flow, the non-dimensional 
flow variables (indicated by an asterisk) may become of a different order, thus causing the 
non-dimensional numbers to lose their comparative meaning. As an example, assume the 
Reynolds number to be based upon mainstream quantities. The Reynolds number may then 
become very large, from which it follows that the viscous term in Eq. (4.9) may be neglected. 
However, locally, in the boundary layer, the term 2v  is no longer of order one. Although 
part of the viscous stress term will turn out to be negligible, not the whole term is. In such a 
case it must be concluded that the choice of the scaling parameters was not appropriate for 
the boundary layer flow. 

For dynamic similarity between model and prototype scale, the non-dimensional 
numbers derived above must match. In the following, the relationship between the actual 
hydrodynamic forces and the non-dimensional numbers is clarified so as to provide physical 
insight with regard to their use. 

The inertia effects, that are used to relate other forces to, are a measure of the 
convective acceleration of the fluid. In oscillatory flows, also the local fluid acceleration may 
be an important force that scales as 3VL f , with frequency scale f , e.g., a vortex shedding 
frequency. Then, the Strouhal number becomes, 
 

 
3

0
2 2

0

St VL f fL
V L V

 (4.10) 

 
Note that the advance coefficient, defined in Eq. (4.2), is in fact another variant of this 
number. Scaling according to Froude number identity implies for Strouhal number scaling 
that, 

 s sm m
m s

m s

f Lf L f f
V V

 (4.11) 
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Gravity governs many aspects of fluid flow, such as buoyancy, the behavior of free 
surface waves, and the hydrostatic pressure. For example, wave making effects are governed 
by the ratio of inertia and gravity forces. Inertia forces scale as 2 2

0V L , and gravity forces 

scale as 3
0gL . The ratio between them is the square of the Froude number, Fr , 

 

 
2 2

0
3

0

Fr V L V
gL gL

 (4.12) 

 
Similitude of these forces is achieved when the Froude number at model scale matches that 
at ship scale. Thus, 

 sm m
m s

s s

Vg LV V
g L

 (4.13) 

 
As the constant of gravitational acceleration is identical for model and ship scale, Froude 
similitude implies that the velocity scales as the root of the scale factor. This also determines 
the model scale propeller rotation rate in the advance ratio (Eq. (4.4)) as being larger than the 
ship scale rotation rate by a factor of . 

Viscous forces scale as VL . The ratio of inertia to viscous forces leads to the 

Reynolds number, Re , 

 
2 2

0Re V L VL
VL

 (4.14) 

 
with  as the kinematic viscosity. Reynolds identity for model scale testing implies that 
 

 sm
m s s

s m

LV V V
L

 (4.15) 

 
for equal viscosity of water on model and ship scale. The model speed should be the ship 
speed multiplied by the scale factor, which is prohibitively impractical in a towing tank or a 
cavitation tunnel. If Froude identity is maintained, thereby reducing the model speed by a 
factor of , a scale effect on Reynolds number of 3

2  becomes inevitable. In practice, one 
may accept a discrepancy in Froude number in favor of a higher Reynolds number (though 
never achieving full Reynolds identity). 

As a measure of the propeller load the advance coefficient of the full-scale propeller is 
used as well as the thrust and torque coefficients, tK  and qK , 
 

 t 2 4
0

K pT
n D

 (4.16) 

 q 2 5
0

K pQ
n D

 (4.17) 
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with, pT , as the propeller thrust and, pQ , as its torque. The form of the torque coefficient is 

similar to the form of the thrust coefficient. The thrust coefficient itself is not directly obtained 
from the conservation of momentum. When the incompressible Navier-Stokes equations are 
given by Eq. (4.6) the gravity force is usually the only body force appearing. More generally, 
one could state that f  denotes all possible body forces, one of which may be the force, pf , 

which the propeller exerts on the flow. Assume for the sake of simplicity that this force acts as 
a point force applied at px x . Then, the body force, pf , can be expressed as a distribution 

in the following way, 
 3( ) ~p p p pT T Lf x x  (4.18) 
 
in which Dirac’s delta function is 1 2 3( ) ( ) ( ) ( )y y yy , with the indices indicating the 

coordinate directions. With the propeller’s diameter as length scale and nD  as velocity scale, 
the ratio of inertia forces to propeller thrust forces becomes, 
 

 
2 2 2 4

0 0
3 3

p p

V L n D
T L L T

 (4.19) 

 
i.e., the inverse of the thrust coefficient. Scaling according to the Froude number implies for 
the scaling of propeller loading that, 
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and similarly for the torque, 

 4
, ,

s
p s p m

m

Q Q  (4.21) 

 
The thrust and torque at model scale thus become smaller than at full scale by factors of 

3
s m  and 4

s m , respectively. 
 
4.3.2 State equations 
 

Apart from conservation laws of mass, momentum and energy, two further relations are 
needed to close the set of equations for the seven unknowns, pressure, mass density, 
temperature, internal energy, and three velocity components. Utilizing the thermodynamic 
state principle, two state equations can be introduced expressing the thermodynamic 
behavior of the fluid, e.g., a relation between the pressure, density, temperature and internal 
energy, e , such as ( , )p p T  and ( , )e e T . In a liquid, there is an almost linear relation 
between the density and pressure changes, 
 
 2p c  (4.22) 
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with c  as the speed of sound. Following [White2006] it can be stated that the fluid is 
practically incompressible when, 

 
0

V
V

 (4.23) 

If also, 0p V V , then, 

 
2

2
2 Ma <<1V

c
 (4.24) 

 
Here, the Mach number, Ma , is introduced, which governs compressibility effects in flows. 
The speed of sound follows from the bulk modulus of elasticity, vE , 
 

 2
0 0v

dpE c
d

 (4.25) 

 
and may be interpreted as Hooke’s law for fluids. 

The ratio of inertia forces ( 2 2
0V L ) to elastic forces ( 2

vE L ) leads to the square of the 

Mach number, Ma , 
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0
2

0
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v v

V L V V V
E L cE dp d

 (4.26) 

 
In water, the speed of sound is hardly dependent on pressure (a reduction of only 5% is found 
at a depth of one kilometer), the velocity should be kept equal to the prototype velocity. 
However, if Froude scaling is required, the Mach number will be too small and the length of 
the sound waves will be too large by a factor of . Thus, similarity in interference patterns 
at some distance from the source is lost. 
 
4.3.3 Boundary conditions 
 

At liquid-gas interfaces, velocity and pressure may be prescribed. In case an interface 
surface is present the boundary condition for the pressure difference on it is given by 
[White2006]8, 
 1 1

1 2liquid gasp p S r r  (4.27) 

 
with the principal radii of interface curvature, 1r  and 2r . Surface tension is denoted by S . In 

non-dimensional form, using r r L , it follows, 
 

 1 1
1 22 21 1

0 02 2

liquid gasp p S r r
V V L

 (4.28) 

                                                           
8 It must be remarked that Eq. (4.27) is valid when there is no flow. 
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In [Rood1991], cavitation inception is defined as the initial rapid growth of vapor- and 
gas-filled bubbles, called nuclei, as a consequence of hydrodynamic forces. When there is no 
shortage of such nuclei in the flow and their growth is not hampered by surface tension 
effects, cavitation occurs once the local pressure reaches the vapor pressure, vp , of the 
liquid. This limit is typically expressed as the cavitation number, , 
 

 0 0
2 21 1

0 02 2

v atm vp p p p gh
V V

 (4.29) 

 
with 0p  as some characteristic pressure in the liquid ( liquidp ), rewritten as the sum of the 

atmospheric pressure at the free surface, atmp , and the hydrostatic pressure. Here, h  

denotes the submergence and vp  is taken for the pressure in the gas, gasp . Eq. (4.28) 

becomes, 

 1 1
1 2

2
We

r r  (4.30) 

 
with the ratio of inertial to surface tension forces forming the Weber number, 
 

 
2 2 2

0 0We V L V L
SL S

 (4.31) 

 
Although in principle the inception of cavitation takes place at the vapor pressure, in 

practice this may be far from the truth due to the nuclei being of such small diameter that their 
growth in low pressure regions is counteracted by surface tension effects. Using a bubble 
approach to model cavitation inception (see [Rijsbergen2010]), the critical pressure cp  below 
which a gas nucleus will grow exponentially is given by, 
 

 4
3c v v

c

Sp p p
R

 (4.32) 

 
where  is the tensile strength of water and cR  the critical bubble radius. In non-dimensional 
terms, the cavitation inception criterion can then be written as, 
 

 ,min ,min21
02

8
3Wep pC C

V
 (4.33) 

 
with ,minpC  denoting the minimum pressure coefficient for minimum pressure, minp , as, 
 

 min 0
,min 21

02
p

p pC
V

 (4.34) 

 
and the Weber number is based on the critical bubble radius. 
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For cavitation inception to take place at the vapor pressure, the Weber number should 
be large. Applying Froude scaling and assuming the density and surface tension to be 
approximately the same at model and ship scale, it can be written, 
 

 ,

,

1We We c m
m s

c s

R
R

 (4.35) 

 
Similar bubble Weber numbers on model and full scale would require  times larger bubbles 
on model scale than on full scale. Without measurement and control of the nuclei spectrum, 
there remains a scale effect on cavitation inception, W , 
 

 ,

,

8 1
3We

c s
W

s c m

R
R

 (4.36) 

 
Note that for developed cavitation, surface tension effects are usually negligible and Weber 
number scaling is not important. 
 
 

4.4 DTT Testing Procedure 
 

As in many of the larger cavitation tunnels in use around the world, the DTT is designed 
to work on the type of scale models of the ship and propeller that are used in standard speed-
power calm water towing tank tests. This approach automatically satisfies the condition of 
geometric similarity and leads to the largest model sizes that are still practical. Van der Kooij 
[Kooij1979] states that for an accurate representation of propeller cavitation, the cavitation 
number, e.g., in a form based on V nD  in Eq. (4.29), 
 

 0
2 21

02

atm v
n

p p gh
n D

 (4.37) 

 
should be equal for model and ship. Also, matching of propeller loading, tK  (Eq. (4.16)) is 
required. Finally, equal susceptibility of the water to cavitation inception must be ensured. 
From the required correspondence in cavitation number at all depths follows the propeller 
rotation rate on model scale, 
 m sn n  (4.38) 
as well as the towing tank pressure, 
 

 , , , ,
1m

atm m atm s v s v m
s

p p p p  (4.39) 

 
The scaling requirement on the cavitation number is compatible with Froude number identity 
everywhere in the flow. Hence, free surface interface pressures, water wave patterns and 
gravity forces are then also proportionally scaled. 
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The requirement of tK  identity is converted into one of advance coefficient identity, 
 

 
1 1 1

1
m m s s s

m s
m m s s m

V w V w w
V V

n D n D w
 (4.40) 

 
The term involving model and ship scale wake fractions, mw  and sw , respectively, on the 
right hand side of Eq. (4.40) represents the scale effect on the wake. A value different from 
(and usually greater than) one is caused by the fact that viscous forces are disproportionally 
large on model scale, or in other words, the model scale Reynolds number is much too small. 
Therefore, equal advance coefficients on model and ship scale can only be obtained by 
applying model ship advance velocities that are somewhat (say, a few percent) greater than 
would be prescribed by Froude identity. The propeller rotation rate still adheres to Eq. (4.38). 
Alternatively, the thrust coefficient could be used directly. As a matter of fact, since the scale 
effect on tK  is negligible and the determination of the wake scale effect in speed-power 
experiments is based on this very fact, thrust coefficient and advance ratio identity become 
interchangeable. 

Cavitation inception susceptibility is governed by the presence of free gas nuclei, their 
number density and size distribution. Surface tension effects depending on the Weber 
number can prevent nuclei from growing at pressures below the vapor pressure. Artificial 
roughness is applied on the leading edges of propeller blades to stimulate the growth of 
nuclei in the low pressure wakes of the microscopic roughness elements. To increase the 
number of free gas nuclei, they are generated upstream of the propeller plane by means of 
electrolysis of the water. Van Rijsbergen et al. [Rijsbergen2010] give an update of the state-
of-art with regard to such water quality issues. 

The generation of nuclei and the application of artificial roughness are a necessary, but 
not always sufficient condition for cavitation inception to occur. The nuclei must reach the 
roughness elements and the pressure distribution on the propeller blades must resemble the 
one on ship scale. The requirements have a bearing on the viscous flow similarity between 
model and ship scale. The Reynolds number discrepancy may therefore also cause a scale 
effect here. As far as the inception of vortex cavitation is concerned the Reynolds number 
scale effect causes pressures in the vortex cores on model scale to be much higher than on 
ship scale, thereby considerably delaying cavitation inception. 

The prediction of hull pressures may also be affected by scale effects on the acoustic 
hull diffraction. The use of a geometrically scaled ship model and correctly modeled ship 
wave pattern reduces this effect to a minimum. Still, the scattering of hull-pressure pulses 
may suffer somewhat from the non-matching Mach number. At low frequencies and close 
proximity to the cavities this error is usually considered negligible. Bottom and wall reflections 
were studied by Vehof [Vehof2001]. He concluded that the afterbody surface lies well within 
the critical distance and reverberation effects may be neglected. 

Summarizing, experiments in the DTT are performed with geometrically similar ship and 
propeller models, at correct trim and sinkage, propeller thrust loading, cavitation and Froude 
numbers. Froude number identity is achieved by the choice of propeller rotation rate, whilst 
the speed at which the model is towed may be a few percent above the speed required for 
matching the Froude number in order to compensate the propeller loading for the wake scale 
effect. 
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The resulting dynamic propeller cavitation causes pressure fluctuations on the hull that 
are measured by a set of flush-mounted pressure transducers as seen in Figure 4.2. The 
pressures are sampled during a run through the tank at shaft synchronized instances (e.g., 
once per degree of propeller rotation) and subsequently analyzed harmonically. This is done 
by taking an integer number of propeller revolutions starting with the sample taken when a 
marked blade reaches its top dead centre (TDC, i.e., vertically upright) position. From the 
amplitudes and phase angles, thus gathered, an afterbody force can be determined for each 
harmonic component of interest (usually at orders of BPF). 

Inevitably, hull-pressure fluctuations will cause vibrations of the model ship and it may 
be argued that for this reason the response of the model ship must also be properly scaled. 
However, this is not the case as one is interested in obtaining the ship scale hull-pressure 
field without the vibration-induced component. It is the latter pressure field that constitutes the 
vibratory excitation force. Therefore, it is concluded that for model experiments hull-pressure 
fluctuations must be measured on a rigid hull. As stated in Section 2.3, this effect, together 
with the Reynolds number scale effect on the ship wake and propeller flow, are considered 
dominating causes of error in the prediction of hull-pressure fluctuations. The vibration-
induced pressure component is dealt with in the next chapter, and the wake scale effect in 
Chapter 7. Further possible scale effects on propeller (vortical) flows are investigated by 
Bosschers. For now, this thesis starts from the assumption that fully developed cavitating 
vortices are controlled by inertia. Then, no significant scale effects on hull-pressure 
fluctuations should be expected. 

An overview of topics involved in the DTT testing procedure is given in Figure 2.5. 
 
 

 
Figure 4.2: Set of flush-mounted pressure transducers for measuring 

the hull-pressure distribution on model scale. 
 
 
 



 
 
 

 

 
 
 
 
 
 

5 VIBRATION-INDUCED HULL PRESSURES 
 
 

…in which ship model vibrations are found to sometimes cause significant errors 
in measuring propeller-induced hull-pressure fluctuations. It is shown how 

structural modifications to the model in combination with acoustic BEM tools limit 
the influence of model vibrations. 

 
 

5.1 Introduction 
 

When measuring propeller-induced hull-surface pressures it is tacitly assumed that the 
surface is perfectly vibration free, at least in the frequency range of interest (say, 30-200 Hz). 
This would ensure that true excitation forces are measured that may be directly used in a 
Finite Element Analysis (FEA) of the ship hull vibration. However, in reality, scale models of 
ships are usually made of non-rigid materials like wood, polyurethane or similar, with the 
inevitable result being vibrations of the measuring surface when excited by the propeller. If 
the hull surface is loaded by a relatively heavy fluid, vibration-induced pressures may become 
substantial and lead to inadmissible measuring errors. These errors are not only caused by 
water borne excitation, but may also be caused by the model’s driving train. Examples are the 
motor exciting the bottom, small misalignments in shafting as well as gearing imperfections, 
both exciting the afterbody through the brackets or gondola. 

Errors caused by vibration-induced pressures may become substantial as noted by the 
ITTC (see Section 2.2) and as witnessed by the author on many occasions, e.g., 
[Wijngaarden1988, Gent1989]. An example is presented in Section 5.4, in which the 
measurement of the maximum hull-pressure amplitude at BPF turned out to be affected by 
vibrations to an amount of 34% and 17% for two different propeller rotation rates. 

In this chapter, the application of structural modifications in combination with a BEM is 
proposed to limit the influence of model vibrations. 
 
 

5.2 Counteracting Ship Model Vibrations 
 

Several measures have been proposed to counteract effects caused by the driving train 
[Nieuwenkamp2002]. Shaft and bearing tube alignment must be precise so as not to cause 
excessive friction. Also gearing using prime number gear tooth ratios is preferred. The motor 
must deliver its torque as uniformly as possible and should be placed on a heavy foundation, 
whilst being flexibly coupled to a stiff shaft. During testing, the model should ideally be rigidly 
connected to the outside world in order to suppress afterbody vibration. Often, the model can 
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only be fixed at the sides (e.g., in cavitation tunnels), or not at all (in free surface facilities like 
the DTT). In the latter case even a rigid, but freely floating model would still vibrate, be it only 
in its rigid modes. The amount of mass that can be added in the aft ship in order to reduce its 
acceleration response is then limited because of draught and trimming requirements. 

An alternative approach is to increase the stiffness so as to shift the model’s natural 
frequencies to frequencies above the range of interest. This may be effective when the 
model’s afterbody weight is kept as low as possible, e.g., by filling up the afterbody with extra 
layers of light wood. Thus, also hogging and sagging effects in the afterbody would be 
automatically minimized and the shaft alignment would be maintained while the model is 
afloat. Suppose, the maximum allowable vibration-induced pressure level is set at 10% of the 
propeller-induced pressure level, or roughly one Pascal back-pressure for each Newton of 
vibratory excitation force. Then, Kampman [Kampman2005] states that it will not be practically 
possible to achieve this without carrying out extreme structural modifications. 

However, when wooden models are three to four five-centimeter layers thick, the 
vibrations still present are of a modal density low enough to be accurately measured by a 
limited number of accelerometers. A BEM may then be used to computationally correct for the 
remaining vibrations. This procedure is presented in Figure 5.1, in which hull surface 
pressures are assumed to be measured in conjunction with hull surface vibrations. If 
considered necessary, the vibrations are input to a BEM for the computation of vibration-
induced surface pressures, which are then subtracted from the hull pressures measured. 

In the next section, an acoustic BEM is used for this purpose. This BEM, i.e., the one 
introduced in Section 3.4 for the determination of the scattering effect of the ship hull, is 
adapted for use in the computation of acoustic radiation from a vibration surface. Details of 
the method are found in Appendix F.2. 
 

 
 

Figure 5.1: Procedure for correcting scale model vibrations in experiments. 
 
 

5.3 Example Case: Twin Screw Ferry 
 

The method of correcting for model vibration errors in measuring hull surface pressures, 
as introduced in the preceding section, is now applied to a practical case. However, there is 
one issue that must be resolved first. Although pressure pick-ups can be flush mounted in the 
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hull, this is rather awkward to achieve for accelerometers. Fortunately, with the flat sterns of 
so many modern vessels the acceleration levels might as well be measured on the 
(horizontal, flat) inside of the model. As a check on whether accelerometers on the bottom of 
the afterbody would show the same acceleration levels as their counterparts on the outside 
hull, a set of accelerometers was made watertight and fitted both on the inside and outside of 
a typical twin screw vessel model. In the frequency range of interest, but also at much higher 
frequencies, there was no noticeable difference between wetted accelerometer readings and 
their inboard counterparts. However, for more V-shaped hulls this approach will fail unless it is 
fair to assume that the vibratory displacements are predominantly in the vertical direction. 
Then, the outward normal component of the measured vertical acceleration can be used in 
the analysis. In the remainder of this chapter, this statement is assumed to be valid. 

The minimum vibration-induced pressure level at low frequencies is to be expected in 
the range of 1.5% of the propeller-induced pressure level for a relatively heavy single screw 
ship, to 5.5% for a relatively light twin screw ship [Kampman2005]. This minimum level is 
caused by the three rigid body modes and cannot be changed for a given ship. For an 
average ship model, an estimated 18 global beam modes will have their natural frequency 
within the frequency range of interest, viz., 6 transverse modes and 12 torsional modes. 
Some of these modes can be shifted outside the frequency range of interest by stiffening the 
ship model by increasing the bottom thickness. However, not all of these modes can be 
eliminated. 

With increasing mode number, the distance between the vibration nodes becomes 
smaller and more acceleration sensors are needed. These 'higher' modes may be eliminated 
by increasing the global stiffness of the ship. When the bottom thickness is 5 centimeters, as 
is the case for most ship models currently manufactured at MARIN, approximately 15-30 local 
plate modes have their natural frequency in the frequency range of interest. For some of 
these mode shapes, at least 64 acceleration sensors would be needed to accurately compute 
the vibration-induced pressures. When the plate thickness is increased to 25 centimeter, only 
four local plate modes still have their natural frequency in the range of interest. Then, only 16 
acceleration sensors are needed to accurately calculate the pressures induced by these 
mode shapes. 

As an example, consider the twin screw ship model displayed in Figure 5.2. The 
thickness of this model was increased up to 20 centimeters. Seventeen accelerometers were 
distributed over the full width of the afterbody (cf. Figure 6.3 for an example). An exciter, like 
the one depicted in Figure 6.3, placed on top of the afterbody right above the propeller, 
excited the ship in a frequency range encompassing the range of interest. Using the boundary 
element grid depicted in Figure 5.2, values for the amplitudes and phases at each boundary 
element’s collocation point were interpolated from the measured values. Outside the 
measuring area, the accelerations were extrapolated to zero. The BEM described in the 
preceding section was used to compute the pressures at the locations of the 20 transducers, 
also indicated in Figure 5.2. 

Figure 5.4 shows computed instantaneous vibration-induced pressure distributions on 
the afterbody at various frequencies (i.c., 60, 97 and 126 Hz). The deformed afterbody shape 
is determined by interpolation of the measured values at the accelerometer positions (grey 
cubes). The colored spheres indicate the measured vibration-induced pressure values, which 
are to be compared with the computed surface pressure distributions. Figure 5.3 shows the 
vibration-induced pressure (red line) as a function of frequency for one of the pressure 
transducers right above the propeller. The green line results when the computational 
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correction is performed with only 6 accelerometers. The accelerometers used are encircled in 
red in Figure 5.2. The blue line shows the vibration-induced pressure that remains after 
correction by the BEM using the data of all 17 accelerometers as input. In other words, the 
blue line constitutes the error in the computation of the vibration-induced pressure. Up to 200 
Hz, this error stays within the limit of 1 Pa/N. It may be concluded that our aim can be 
reached with a considerable increase of bottom thickness and a reasonable number of 
accelerometers. 
 
 

 
Figure 5.2: Accelerometers (grey cubes), Pressure transducers (green spheres). 

 
 

 
Figure 5.3: Vibration-induced pressure per unit force of excitation before (red line) and after 

(blue/green line) the  application of the computational correction method to the measurements. 
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Figure 5.4: Mode shapes and pressure distributions. Top: 60 Hz; Center: 97 Hz; Bottom: 126 Hz. 

Grey cubes indicate accelerometer positions, spheres denote pressure transducer locations. 
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Kampman [Kampman2005] concludes that correcting for vibration-induced pressures 
leaving a remaining error of less than 10% of the propeller-induced pressures in the entire 
frequency range of interest9, is possible provided the local bottom thickness in the aftship is at 
least 25 centimeter. Through the proposed correction method, all rigid body modes and most 
global beam modes can be eliminated. The local behavior in the aftship is then practically 
rigid and will not cause problems. In most cases, the measuring system at MARIN allows for 
20-25 accelerometers to be used, which would meet the requirement. 
 
 

5.4 Example Case: Container Vessel #1 
 

The stiffening of ship models and the correction procedure for model afterbody 
vibrations, as treated above, have been applied in many cases. Although it is the author’s 
experience that the procedure works reasonably well, practical test cases involving operating 
propellers cannot deliver proof of this for the simple reason that the vibration free results are 
unknown. Therefore, the following alternative procedure was adopted: perform a test using 
standard set points for speed and RPM based on thrust, Froude and cavitation number 
identity, followed by a repeat test at a different RPM and speed, while maintaining thrust 
identity. The assumption is that the small change in Froude and Reynolds numbers involved 
in the two measurements will not affect the cavitation behavior and the pressure fluctuation 
levels on the hull, but will affect the vibration behavior of the ship, due to the change in 
excitation frequencies. 

The test case used is the large container vessel depicted in Figure 5.5. The model was 
stiffened in the afterbody and the pressure transducers were flush mounted above the 
propeller in a thick perspex window. The two RPM values at which the measurements were 
performed differed by 100 RPM, the largest RPM determined by Froude scaling. Initially, the 
measured results seemed to be quite different with normalized first BPF harmonics of 0.66 
and 0.85, for the higher and lower RPM, respectively. This indicates scale effects on the wake 
due to the different model speeds, which were substantially above the Froude-scaled speed. 
However, after elimination of the model vibration-induced pressures, making use of only 6 
accelerometers, the first harmonics became 1.0010 and 1.02, respectively, showing that the 
difference had been caused almost entirely by model vibrations. 

This example shows that at the low frequencies of first blade harmonics, the proposed 
method using a small number of accelerometers in the area of the pressure transducers 
already works, when the local model stiffness is high enough. Perhaps more importantly, the 
results show the significance of the vibration-induced pressure component, being 34% and 
17%, respectively, in amplitude of the ‘true’ value after correction. The corrected values are 
significantly higher, indicating that ship model vibrations are largely in phase with the 
excitation, thus causing a pressure relief. 

Also, in many other cases, the author found that although errors vary a lot, the net result 
of the vibration correction procedure is almost always a pressure increase at the BPF. It may 
therefore be concluded that whenever overpredictions of pressure fluctuations at BPF occur, 
they are not, in general, explained by parasitic vibration-induced pressures. 

                                                           
9 Note that the error at the most significant blade rate frequencies will generally be much smaller. 
10 This value has been used in normalizing the pressure amplitudes measured on container vessel #1. 
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This conclusion is only valid provided the ship scale measurements have not been 
affected by vibration-induced pressures to a greater amount than their model scale 
counterparts. When no resonance vibration issues are occurring on the ship, the vibration 
levels are usually such that the vibration-induced pressures are not significant at the blade 
passage frequency. 

A final remark about the robustness of the proposed vibration correction must be made. 
Whenever the source of vibration is outside the stiffened measuring area, the method may fail 
to produce accurate results. A notable example of such a case is a vibrating pod housing that 
directly radiates noise to the pressure transducer locations, or excites the afterbody through 
its Z-drive. 
 
 

 
Figure 5.5: Test case: large container vessel. 

 
 

Table 5.1: Effect of vibration-induced normalized pressure at BPF (normalized values). 

RPM Froude scaled Froude scaled minus 100 
Measured pressure 0.66 0.85 
Corrected pressure 1.00 1.02 
Amplitude difference 34% 17% 

 
 
 





 
 
 

 

 
 
 
 
 
 

6 VALIDATION OF COMPUTATIONAL METHOD 
 
 

…in which model scale experimental procedures for measuring hull-pressure 
fluctuations are applied to several configurations with non-cavitating propellers 

with the aim to validate the mathematical method presented in Chapter 3. 
 
 

6.1 Introduction 
 

In Chapter 3, a mathematical method is presented for the numerical determination of 
propeller-induced hull-pressure fluctuations based on two Boundary Element Methods. The 
first method computes the representation of the propeller sources of noise in terms of the 
strengths of sets of ‘ring sources’ of monopole and dipole type. The second method takes 
these sources as input and computes the scattered hull pressures that the sources generate. 

The propeller method was implemented by Vaz and Bosschers [Vaz2006] under the 
acronym PROCAL (PROpeller CALculator). The hull scattering method was implemented by 
the author [Wijngaarden2006a] under the acronym EXCALIBUR (EXcitation CALculation with 
Improved BURton and Miller method). In this chapter, the combination of the two methods is 
validated by comparison of the obtained results with results from towing tank tests for non-
cavitating model scale propellers. 

In the computations, PROCAL’s output consists of potential flow monopole and dipole 
source strengths at a number of time instances during a revolution. EXCALIBUR transforms 
these rotating time-domain sources into stationary frequency-domain sources and performs a 
scattering computation at a set of blade passage frequencies. For details on the methods, see 
Chapter 3 and Appendix F.1. The source transformation procedure is presented in Appendix 
E. An example result is shown in Figure 6.1. Alternatively, free-field pressures at the hull, 
computed by PROCAL, may be multiplied by diffraction factors. These are often called Solid 
Boundary Factors (SBF) and are also computed by EXCALIBUR. 
 
 

6.2 Validation Experiment: Container Vessel #2 
 

In order to validate the coupling procedure of PROCAL and EXCALIBUR, a series of 
hull-pressure measurements was performed in the DTT on a model of a single screw 
container vessel equipped with non-cavitating propellers; the latter not by virtue of the 
propeller design, but simply by keeping the pressure in the DTT at atmospheric level 
[Lafeber2007/2009]. The ship model (see Figure 6.3) is 8.5 meters long and 1.27 meters 
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wide. The draught has been varied between 0.388 and 0.531 meters. On the aftship, 21 
pressure transducers were mounted flush with the hull (Figure 6.2). 
 
 

 
Figure 6.1: Hull-pressure amplitudes at BPF (propeller no. 6553). Measurement locations on the 

hull are indicated by colored dots. The propeller pressure distribution and shed vorticity are also 
shown. The transparent semi-circular disc at the propeller plane indicates where wake field data is 

supplied to the propeller analysis. 
 
 

 
Figure 6.2: Locations of pressure transducers on the aftship, relative to the propeller plane and 

the rudder (top view, propeller rotates downwards over the top). 
 
 

Table 6.1: Propeller models used in validation experiments. 

Prop. 
No. 

Blade 
number 

Diameter 
[mm] 

Tip Clearance 
(% diameter) 

Remarks 

6666 2 340.00 14% Zero pitch to produce zero thrust 
6553 5 295.79 24% Thick blades at the tip 
6724 6 259.64 34% Original design for vessel 
6458 4 261.54 34% Small blade area and low pitch 
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Figure 6.3: Container vessel no. 2 in the harbor of the DTT (top left); Pressure transducers and 
propeller no. 6666 fitted (top right); Mounted accelerometers and exciter (bottom right and left). 

 
 

The ship model has been successively fitted with four propellers of different blade 
number, blade area and pitch distribution (see Table 6.1 and Figure 6.4). With two-bladed, 
zero-pitch propeller no. 6666, bollard pull tests have been performed at different propeller 
rotation rates. During the bollard pull tests, the ship model was attached to the towing 
carriage (see Figure 2.4) which remained stationary in the harbor of the towing tank. Propeller 
rotation rates of 400 and 600 RPM have been used. The tests are aimed at the validation of 
the effect of blade thickness on hull pressures and therefore the pitch of the propeller was 
reduced until almost zero thrust was produced. The pitch setting which results in the lowest 
mean thrust was determined with the use of PROCAL. Two draughts have been applied, viz., 
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0.419 and 0.531 meters. Not only the hull pressures and model accelerations were measured, 
but also the propeller thrust, torque and blade position. The shaft-synchronized 
measurements were made at 360 samples per revolution. The blade position of zero degrees 
refers to the principal blade’s reference line pointing upward. Due to the limited number of 
data channels available, the bollard pull tests were performed with only 17 pressure 
transducers, while for the other tests 21 pressure transducers were employed.  
 

Table 6.2: Overview of test conditions. 

Prop. No. Vm [m/s] Nm [RPM] BPF [Hz] T [N] KT [-] Draft [m] 
6666 0.00 400 13.33 13.882 0.023 0.419 
6666 0.00 400 13.33 13.870 0.023 0.531 
6666 0.00 600 20.00 28.090 0.021 0.531 
6553 2.37 509 42.42 115.340 0.210 0.388 
6553 2.37 315 26.25 2.098 0.009 0.388 
6553 3.00 652 54.33 172.400 0.191 0.388 
6724 2.37 370 37.00 -1.650 -0.010 0.388 
6724 2.37 579 57.90 86.390 0.204 0.388 
6724 3.00 732 73.20 123.290 0.182 0.388 
6458 2.37 462 30.80 0.978 0.004 0.388 
6458 2.37 780 52.00 115.680 0.146 0.388 
6458 3.00 800 53.33 69.710 0.084 0.388 

 

 
Figure 6.4: Boundary element distributions for propeller nos. 6666 (left), 6724 (middle) and 6458 
(right). Propeller no. 6553 is only shown in small format in Figure 6.1 for confidentiality reasons. 

 
 

With the other three propellers (nos. 6553, 6724 and 6458) tests were performed while 
the model was being towed through the towing tank. The ambient pressure in the tank was 
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atmospheric, so there was no cavitation on the model propellers. The draught in these tests 
was 0.388 meter. The models were towed at two advance ratios, one to obtain zero thrust 
and the other to obtain a realistic thrust coefficient. The latter advance ratio was kept constant 
for two different combinations of rotation rate and model speed, resulting in three conditions 
per propeller. However, for the four-bladed propeller, one of the tests was not carried out at 
the correct RPM, resulting in three different advance ratios tested. Hull pressures, model 
accelerations, propeller thrust, torque and blade position were all measured synchronized to 
the shaft position. Measurements of the model speed and dynamic trim were also included. 
An overview of the tests conditions is given in Table 6.2. 

In order to correct for the influence of model vibrations, the model has been fitted with a 
number of accelerometers (the black cubes and cables in the bottom picture of Figure 6.3) 
and the procedure introduced in Chapter 5 (cf. Figure 5.1) has been applied. Model no. 8447 
was originally milled with extra layers of wood in the aftship. With these extra layers, the 
thickness at the aftship became about 20 centimeter. 
 
 

6.3 Comparison of Measurements and Computations 
 

PROCAL, EXCALIBUR and their graphical user interface PROVISE11 (see, e.g., Figure 
6.1) were used to perform computations at initial conditions similar to those of the model tests 
listed in Table 6.2. However, the ship speed was adapted slightly such that the thrust of the 
propeller in the computations was the same as that of the propeller in the model tests. This 
speed correction allowed for small inaccuracies in wake field data as well as computed 
propeller thrust. All computations were made using model scale data and the panel 
distributions shown in Figure 6.4. The panel distributions were chosen on the basis of ‘best 
practice guidelines’12. The bollard pull computations for the two-bladed propeller, no. 6666, 
were performed as steady flow computations with uniform propeller inflow. All other 
computations were for unsteady flow and the measured nominal wake of the ship was used 
as input. Computations were made for a number of 120 time steps per revolution. On the five-
bladed propeller, no. 6553, the Iterative Pressure Kutta Condition (IPKC), as applied in 
PROCAL, did not always converge. To avoid problems and long computation times, the IPKC 
was turned off for this propeller. Although the thrust computation is not exact, this does not 
significantly influence the values obtained for the hull pressures. 

PROCAL writes a file containing the monopole and dipole source strengths of all panels 
of the propeller, the hub and the propeller wake, at all computed time steps. Then, 
EXCALIBUR processes these data along the lines of Appendix E or by providing solid 
boundary factors. For the current computations, the contribution of the hub was not taken into 
account when computing hull pressures. This reduces the amount of memory required by 
EXCALIBUR and the computation times while the hub hardly contributes to the hull 
pressures. Due to its intersection with the bossing, leaving out the hub may also prevent 
numerical problems. Because of dynamic trim and sinkage during the tests in which the 
model was being towed, the afterbody draught was increased. Therefore, in the EXCALIBUR 
                                                           
11 PROVISE, the PROcal VISualization Environment was developed by David Heath of the Canadian 
Defense Research Establishment, DRDC, for MARIN’s Cooperative Research Ships (CRS) membership. 
12 Note that this is a validation and not a verification study. Grid sensitivity studies performed in the past 
have led to the mentioned ‘best practice guidelines’. 
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computations, instead of the nominal draught of 0.388 meter, a value of 0.450 meter was 
used corresponding with the actual draught of the model at that speed. From experience it is 
known that at the locations of interest the influence of the forebody is negligible, and therefore 
only the aftship was used in the computations. The fine mesh in the area of interest enabled a 
straightforward interpolation of computed data at the measurement locations. This procedure 
was applied for the first four harmonics of the BPF. 

In Figure 6.5 to Figure 6.8, the measured and computed pressures are compared 
(shown left in figures). All results are for model scale. For transducer no. 10, the first four 
orders of BPF were synthesized to a time series of one period (shown to the right in the 
figures). The combination of PROCAL and EXCALIBUR gives accurate results for the 
amplitudes of all four harmonics in the case of the 2-bladed propeller. With the exception of 
transducer no. 15, all hull-pressure fluctuations are within 10% of the measured values, and 
the great majority is within 5%. The estimated accuracy of the measured pressures is about 5 
Pa. The error in the computed phases is of the order of 10 degrees, as is seen in the time 
traces. The large propeller diameter, hence small clearance, together with the absence of 
forward speed and thrust make this case the easiest one to measure and compute. 

By virtue of their blade number, the other propellers produce more sinusoidal pressure 
signals with dominating first harmonics. The five-bladed propeller with thickened tips and 
large tip chord is not a very well-suited case for PROCAL. Still, first order amplitudes are 
within 10% of the measurements. The much smaller second harmonic, however, is of varying, 
but often low accuracy (Figure 6.6). Also the phase error of almost 40 degrees is quite 
significant in this case. Interestingly, the phase error is almost absent in the ‘thrustless’ 
measurement shown in the graph on the left, although the amplitude error there is sometimes 
almost 20%. The accuracy of the amplitude for the four-bladed propeller is generally within 
10% (Figure 6.8), but not as accurate for the thrustless case. The phase is only accurate to 
within 30 degrees for the loaded conditions, but very accurate in the thrustless case. Finally, 
the six-bladed propeller, the one that was designed for the ship, shows results that are within 
15% of measurement (Figure 6.7). The accuracy of the phase is excellent. The thrustless 
case shows results that are not as accurate, but all transducers measured pressures of 
insignificant amplitudes, smaller than 10 Pa. 
 

 
Figure 6.5: (LEFT) First order pressure amplitudes for 2-bladed propeller, no. 6666, at RPM: 600. 

(RIGHT) Pressure signal based on four harmonics during one blade passage (sensor #10). 
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Figure 6.6: (LEFT) First order pressure amplitudes for 5-bladed propeller, no. 6553, at RPM: 652. 

(RIGHT) Pressure signal based on four harmonics during one blade passage (sensor #10). 
 

 
Figure 6.7: (LEFT) First order pressure amplitudes for 6-bladed propeller, no. 6724, at RPM: 732. 

(RIGHT) Pressure signal based on four harmonics during one blade passage (sensor #10). 
 

 
Figure 6.8: (LEFT) First order pressure amplitudes for 4-bladed propeller, no. 6458, at RPM: 780. 

(RIGHT) Pressure signal based on four harmonics during one blade passage (sensor #10). 
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In Appendix H.1, all results obtained with the new coupling procedure are collected. 
Appendix H.2 shows results for the old procedure involving solid boundary factors. Although 
the latter procedure is a coarse approximation, the results are only slightly less accurate than 
those obtained with the new procedure. 
 
 

6.4 Conclusions and Recommendations 
 

It is concluded that in the great majority of cases the combination of PROCAL and 
EXCALIBUR delivers hull-pressure amplitudes for non-cavitating propellers within 15% of the 
measured values, with the exception of a few outliers of twice that percentage. Often the 
larger differences occur at one particular pressure pick-up and may not be attributable to 
computational errors. Phase errors may be substantial in some cases. The origin of the phase 
errors is not known. The number of azimuthal stations at which the propeller code PROCAL 
produces data is kept the same for all propellers. Thus, the angular resolution is constant. To 
judge the phase error, it should be divided by the number of blades. Then, the results for the 
2-bladed propeller with regard to angular accuracy are more in line with those of the 4- and 5-
bladed propellers. 

The accuracy in the measurements is determined by the error corresponding to that of 
the pressure transducers and is estimated to be about 5 Pa. E.g., in Figure 6.7 this means 
that all errors may, in principle, have been caused by noise in the measurement itself. 

A practical problem with the application of the numerical method used is that the trailing 
vortex sheets intersect the rudder and produce erroneous results there. Also at locations 
downstream of the propeller plane the hull pressures are influenced by the trailing vortex 
sheets, which do not form an adequate description of acoustic sources in the wake. 
 
 
 



 
 
 

 

 
 
 
 
 
 

7 SCALE EFFECT ON SHIP MODEL WAKE 
 
 

…in which the scale effect on the ship model’s effective wake is treated as an 
important cause of hull-pressure prediction errors. A pragmatic, improved 

prediction procedure is derived on the basis of the difference in depth of wake 
peak found between model and full scale. A more fundamental solution is sought 
in the development of geometrically non-similar ship models that generate the full 

scale wake at locations where cavitation is expected. 
 
 

7.1 Introduction 
 

For the correlation of model and ship scale cavitation-induced hull-pressure fluctuations, 
Section 2.3 identifies the similarity between the effective wake fields on model and ship scale 
as a major determining factor. Discrepancies from this similarity are easily imagined, as the 
model scale wake flow differs in Reynolds number from its full scale counterpart by one to two 
orders of magnitude. The wake flow behind the model ship is more strongly retarded due to 
viscous effects, thus causing the propeller disc-averaged effective inflow velocities to be lower 
by several percent. As a result, the propeller will be overloaded when model ship speed and 
propeller rotation rate are based on Froude number identity. 

Therefore, in cavitation model tests, the correct propeller loading is set by adjusting the 
model ship speed by a few percent on the basis of an estimated propeller-disc averaged 
wake scale effect, expressed as a fraction of ship speed13. Although a correct estimate of this 
fraction may lead to an accurate prediction of general propulsion characteristics, it is not a 
sufficient condition for similarity in cavitation behavior and hull-pressure fluctuations. Because 
the inflow velocities at the propeller disc are more strongly retarded in the top sector than 
elsewhere, local similarity of propeller inflow velocities is lacking most notably at locations 
where, at full scale, cavitation is expected. 

It follows from the above that a prerequisite for the correct prediction of the hull-pressure 
field is to have knowledge and control of the local effective wake field at (a part of) the 
propeller disc. This is by no means straightforward as the effective wake field is not directly 
measurable. One has to revert to the measurement of the nominal wake field and correct for 
propeller-hull interaction, or one has to measure the total wake field and subtract the propeller 
induction velocities (cf. Figure 4.1). 

                                                           
13 Note that in doing so, the model speed, as opposed to the propeller rotational speed, becomes a few 
percent higher than according to Froude similarity. The static pressure in the flow is correctly scaled 
everywhere and the propeller attains the correct thrust loading coefficient. In model propulsion tests, 
typically the Froude number is fixed through the ship model velocity instead of the propeller RPM. 
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The standard procedure is to measure the nominal wake field on model scale using Pitot 
tubes. Although this is a straightforward procedure, it has a drawback in that the propeller-hull 
interaction component remains to be estimated. Therefore, the result will inevitably be of 
unknown accuracy. The alternative of measuring the total wake field at model scale by means 
of Laser Doppler Velocimetry (LDV) has often been achieved, but is expensive and laborious 
to apply in everyday practice. Another non-intrusive technique that has recently emerged is 
Particle Image Velocimetry (PIV). In its stereo form it is a technique providing instantaneous 
3D velocity vectors in a cross-section of the flow. The importance of PIV lies in its ability to 
reach a high spatial resolution at a certain instant. LDV on the other hand delivers high 
temporal resolution at a certain point. Both techniques are important since spatial and 
temporal variations in the wake may be quite substantial, thus having a bearing on cavitation 
dynamics and spectral content of excitation forces. PIV has the added advantage of being 
less complex and potentially cheaper as it measures a complete measuring plane at once. 

The wake field on full scale is rarely determined as it involves either the measurement of 
the total wake (i.e., with operating propeller) using the non-intrusive means of LDV or PIV, or 
the measurement of the nominal wake of the ship without propeller14. The lack of information 
on ship scale wakes is actually the main reason for the lack of knowledge on the magnitude of 
the wake scale effect. 

Fortunately, nowadays, the computation of the wake field at full scale Reynolds numbers 
has come within reach. For example, MARIN’s RANS-method for ship flows, ‘PARNASSOS’, 
is used for this purpose. In such a method the propeller action is modeled by means of a force 
field, e.g., as delivered by propeller method PROCAL, for the simulation of propeller-hull 
interaction. The subtraction of the interaction component then yields the effective wake field. 
The same procedure can be performed on the model ship (i.e., the same ship at a different 
Reynolds number). The difference in the two wake fields would be as accurate an estimate as 
one can get for the scale effect on the effective wake. 
 
 

7.2 Present Procedure and Pitfalls 
 

Until recently, in cavitation model testing, the set point was chosen by simply adhering to 
the identity of advance coefficient, which is almost equivalent to thrust coefficient identity. This 
is correct as long as the scale effect on the model wake may be considered as uniform across 
the entire propeller disc. Then, the forward speed of the ship model may be simply adjusted 
by the average scale effect on the entrance velocity, i.e., the wake scale fraction, w , 
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 (7.1) 

 
By adjusting the towing tank pressure, the cavitation number, n , (cf. Eq. (4.37)) is made to 
agree with that on full scale at all depths (or, alternatively, in cavitation tunnels at a 
submergence level corresponding to, e.g., 0.8R  with R  the propeller radius of a blade in 
TDC position). Using this standard procedure, both cavitation patterns and dynamics on 
                                                           
14 Casco vessels that are built at one yard and then transported overseas to be completed at another yard 
could, in principle, undergo a towing test at sea. 
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model propellers are considered to be representative of their full scale counterparts with the 
exception of light free vortex cavitation, the inception of which is seriously delayed due to 
viscous scale effects on the propeller blade flow. 

However, it is well known that the wake scale effect is generally not uniform across the 
entire propeller disc, but predominant in the top sector, where the wake peak is typically 
located. For achieving equivalence in cavitation patterns and dynamics, the distribution of 
velocities in and around the wake peak must be made equivalent to full scale. Using standard 
set points, the propeller will still be overloaded in the region where cavitation is expected to 
occur. In other regions it will be underloaded, which may trigger pressure side cavitation 
before it would occur in full scale. 

Although, generally not considered significant for the wake fields of modern passenger 
ships, the wake scale effect may become significant, e.g., in the case of single screw 
container ships. This type of ship is currently growing in size beyond previously imaginable 
proportions and excitation forces are of great concern. In the joint industry project ‘CoCa’ 
[Ligtelijn2004, Wijngaarden2003], the author studied the correlation between model and full 
scale propeller cavitation for five ships, two of which were container ships15. This study 
confirmed the correlation deficiency for the latter type of ship as the model scale hull-pressure 
amplitudes were found to severely overpredict ship scale values at the first order of BPF. For 
the passenger ship, investigated within the 'CoCa' project, the first order maximum pressure 
amplitude correlated very well with values found at model scale. In fact, this finding triggered 
the study which led to this thesis. 

The following sections are devoted to two methods to alleviate effective wake 
discrepancies. Both involve CFD computations of model and ship scale wake fields. The first 
method, treated in Section 7.3, approaches the problem by making shift with the model scale 
wake field as it is and trying to improve the prediction results by further adjusting the ship 
speed during testing. The second attempt, treated in Section 7.4, is based on redesigning the 
model ship such that it would actually generate the full scale wake field at a part of the model 
scale propeller disc. Geometric similarity is then sacrificed for the sake of local kinematic 
similarity. 
 
 

7.3 Experimental Procedure using Wake Peak Scaling 
 

As stated in Section 7.2, performing model tests at propeller tK -identity may not lead to 
correct cavitation behavior as in the top sector of the propeller disc, where cavitation is 
expected, the propeller blade may be overloaded. Necessarily, the bottom sector of the disc is 
then underloaded, which may be considered not such a problem. 

A simple way to proceed is to simulate the local blade loading in the top sector of the 
propeller disc, e.g., at the position of the wake peak itself without considering the average 
propeller loading. The model’s forward speed is then chosen in such a way that the ratio 
between the circumferential tip speed of the propeller blades and the local axial velocity in the 
wake peak is equal at model and full scale. This condition, referred to as wpJ -identity (wake 

peak identity16), is defined as, 
                                                           
15 Note that the video image on the cover of this thesis was shot onboard one of these container vessels. 
16 This term was coined by Jan Holtrop. 
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 minwpJ V nD  (7.2) 
 
if it is based on minV , the minimum axial velocity in the wake peak. It may also be based on a 
weighted average velocity in the wake sector where cavitation is expected, so that in that 
particular sector the average thrust loading is similar to full scale. The method requires that 
the scale effect on the effective wake peak depth is known from CFD computations. It is also 
required that the transverse velocity components in the wake peak are not significant. This is 
true for the container vessels investigated in this thesis, but not for twin screw passenger 
vessels, e.g. 

Nominal wake fields can be computed reasonably accurately for Reynolds numbers 
ranging from model to full scale values17. These computations are fast enough to be used in 
daily routine work, a requirement that was imposed on computational tools used in this thesis 
(cf. Section 3.1). Recently, the coupling of the propeller method PROCAL (Section 3.2) to 
RANS-solver PARNASSOS was established, thus enabling the computation of the propeller-
hull flow interaction, from which the effective wake field follows18. 

In principle, the computational tools mentioned above can be used to determine the 
scale effect on the effective wake averaged over the area of the propeller disc where 
cavitation is expected (read: computed). Consider an iterative procedure in which the force 
field computed by a propeller method is input to a viscous flow method for the ship, from 
which an effective wake field follows that is input to the propeller code again, etc. Upon 
convergence, the propeller method outputs the sheet cavity extent on the blades, from which 
the area follows over which the effective wake scale effect should be averaged. The final 
result is a percentage with which the ship speed should be increased in cavitation model tests 
in order to obtain the correct average loading in the cavitating sector of the propeller disc. 

A simpler option is to use the scale effect on the wake peak depth only to determine the 
increase in ship speed during testing. Even more pragmatically, one could take the scale 
effect on the nominal wake peak depth, at the risk of overshooting the increase in model 
speed. The model speed then follows from Eq. (7.1) as, 
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 (7.3) 

 
For single screw ships for which no wake information is available at all, Holtrop has 
suggested the following rule of thumb, 
 
 min min/ / 50

s m
V V V V  (7.4) 

 
It must be noted that if this procedure is used in the DTT, the model speeds may occasionally 
become so high that free surface effects start to affect the stern flow. 
 

                                                           
17 Due to the limited availability of full scale wake data, the accuracy of computations at ship scale 
Reynolds numbers is often inferred from that obtained at model scale Reynolds numbers. 
18 In this thesis this coupling procedure has not been applied. Instead a force field method has been used 
for the conversion of the wake from nominal to effective. 
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7.3.1 Example Case: Container Vessel #1 
 

The effect of choosing the set point in the way described above was studied for the 
container vessel used in Section 5.4 and shown in Figure 5.5. Hull-pressure fluctuations were 
measured at various model speeds, while keeping the RPM constant at its Froude-scaled 
equivalent. In Figure 7.2, the maximum pressure amplitude at blade rate frequency, 
normalized as in Section 5.4, is plotted against the speed of the ship model for various 
draughts of the ship. For each draught, from the loaded draught of 12.2-12.2 meters (fore-aft) 
to the ballast draught of 5.8-9.8 meters, the measurements were corrected for the influence of 
model vibrations (as indicated in the figure’s legend). 

Considering the corrected data for the loaded draught, at abscissa 0 the model speed 
equals its Froude equivalent (i.e., the VJ -identity condition, see Footnote 7). The test was 
repeated at higher model speeds, each time increasing the speed by a percentage equal to 
the effective wake fraction percentage. Thus, at abscissa 1, the maximum amplitude is the 
one obtained from the standard testing procedure for which the average propeller loading is 
correct (i.e., the J  or tK -identity condition). This situation corresponds to the cavitation 
pattern shown in the high-speed video snapshot on the left in Figure 7.1. The figure also 
shows cavitation patterns at higher speeds corresponding to three and four times the wake 
scale effect. For the wake peak scaling method the results have to be interpolated at an 
estimated value of 3.3 times the average wake scaling effect. This follows from Eqs. (7.3) and 
(7.4) and is indicated in Figure 7.2 by a vertical black line. It yields an amplitude of only 46% 
of what would have been predicted using the standard method. At the intermediate draught 
even 24% is found, and at the ballast draught 44%. 
 
 

 
Figure 7.1: High-speed video snapshot of a blade close to the top dead centre position at various 
advance velocities (Left: 1x wake scale fraction added to the Froude speed; Center: 3x; Right: 4x). 

The measurements were performed at the design draught. 
 
 

No full scale data for this case are available to the author. Therefore, for now, it may 
only be concluded that the new choice of the set point led to a reduction in the prediction of 
maximum blade rate amplitude by more than a factor of two at all draughts considered. It is 
noted that the previously studied influence of model vibration-induced pressures turns out to 
have been quite substantial (of the order of 25%). 

This finding cannot be extrapolated to higher orders of the blade rate frequency. The 
investigated container vessel is equipped with a six-bladed propeller, hence already the 
second order cavitation dynamics is dependent on details of the wake and vortex cavitation 
dynamics. A comparison of the results at the design draught with those obtained in tests 
performed earlier (i.e., during the ship’s design phase) revealed that the first order repeated 
very well, whilst the higher orders had increased somewhat. The second order results are 
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presented in Figure 7.3. Despite the large increase in ship model speed and the consequent 
unloading of the propeller no pressure side cavitation was observed during testing. 
 
 

 
 

Figure 7.2: First order hull pressures as a function of ship model speed. 
Repeated at various draughts with and without model vibration correction. 

 
 

 
 

Figure 7.3: Second order hull pressures as a function of ship model speed. 
Repeated at various draughts with and without model vibration correction. 
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The next section applies the same experimental procedure to a case for which ship 
scale data are available. For now, it is concluded that the adjustment of wake peak velocities 
to the order of magnitude expected at ship scale may cause a very significant decrease in 
maximum pressure amplitudes at first blade rate frequency. 
 
7.3.2 Example Case: Container Vessel #3 
 

As a second example case, the container vessel depicted below (see also Figure 4.2) 
was studied by Schuiling et al. [Schuiling2010/2011]. It is a typical modern container ship with 
a six-bladed propeller as shown below (see also Figure 7.38). 
 
 

 
Figure 7.4: Model propeller (left) and experimental set-up (right) for container vessel #3. 

 
 

Application of the wake peak scaling method on the minimum wake peak velocity (using 
Eqs. (7.3) and (7.4)) with min / 0.40

m
V V  taken from the nominal wake field measurement 

of Figure 7.5, right side of left picture) results in a speed set point of about 28.5% above the 
Froude-scaled speed. When RANS code PARNASSOS is used to compute the nominal wake 
field on ship scale (Figure 7.5, right side of right picture), min / 0.51

s
V V , and Eq. (7.3) 

yields a speed increase of 27.5%. 
The speed set points derived above are for nominal wakes, whereas the derivation 

should actually be based on effective wakes. Figure 7.6 shows how a force field method in 
the CRS code PIFWAKE19 turns the computed axial component of the nominal wake field into 
an effective one. Because the difference in model and full scale wake is somewhat smaller in 
the effective case compared to the nominal (numerator), and the effective wake on model 
scale is less deep (denominator), their ratio becomes smaller by several percent. Thus, the 
estimate of 27.5-28.5% is reduced to about 21-22%. 
 

                                                           
19 The PIFWAKE software was developed within the Cooperative Research Ships (CRS) consortium 
founded by MARIN. The software contains a module employing a force field method developed at MARIN 
for the conversion of nominal axial wake field components to effective ones. It forms an alternative to the 
coupling procedure between PROCAL and PARNASSOS mentioned before. 



74 SCALE EFFECT ON SHIP MODEL WAKE 
 
 

 

 
Figure 7.5: Left: Comparison of the computed axial component of the nominal wake field and a 
model scale nominal wake field measurement. Right: Comparison of computed wake fields at 

model and ship scale Reynolds numbers. The dashed line indicates the propeller outer perimeter. 
 
 

 
Figure 7.6: Computed nominal wake field (Left) made effective with CRS code PIFWAKE (Right). 

Note that PIFWAKE only affects the axial component of the wake velocity. 
 
 

Ten runs through the towing tank were made at various speeds, starting with the thrust 
identity condition (at 6% above Froude speed to account for the average wake scale effect), 
down to 58% of thrust identity (at almost 28% above Froude speed). Table 7.1 gives an 
overview of all conditions with the one of Run 6 as the best estimate to predict the maximum 
hull pressure amplitude. Limited full scale data is available for comparison (courtesy of Lloyd’s 
Register). 
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Roughness elements of 60 micrometers are usually applied on the blade’s leading 
edges as a measure to reduce scale effects on the inception of cavitation. For this particular 
case, leading edge roughness was only applied on the blade’s suction side. Thus, unwanted 
pressure side cavitation at increased model speeds may be suppressed20. A correction to the 
thrust for the application of roughness was not made. 
 
 

Table 7.1: Overview of test conditions (with a small correction to the full scale thrust 
coefficient of 0.1891. This correction is not applied to the conditions used for the computations). 

Run V (m/s) N (rps) KT (%) JV 

1 2.45 9.62 0.1869 100% 105.8% 

2 2.52 9.62 0.1756 94% 108.8% 

3 2.59 9.62 0.1642 88% 111.8% 

4 2.67 9.62 0.1529 82% 115.3% 

5 2.74 9.62 0.1415 76% 118.3% 

6 2.81 9.62 0.1302 70% 121.3% 

7 2.88 9.62 0.1188 64% 124.4% 

8 2.90 9.62 0.1151 62% 125.2% 

9 2.92 9.62 0.1113 60% 126.1% 

10 2.95 9.62 0.1075 58% 127.4% 
 
 
 

 
Figure 7.7: Bottom view of mounted propeller and nine pressure transducers. The propeller plane 

intersects sensors nos. 4, 5, and 6. The triangle denotes the full scale measuring location. 

                                                           
20 To only apply roughness on the suction side was suggested by Heinrich Streckwall of HSVA. 
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Figure 7.8: Locations of pressure (P) and acceleration (G) transducers on the 
afterbody of the ship model. P4, P5 and P6 are located in the propeller plane. 

The propeller model diameter is 0.273 meters. 
 
 

To measure hull-pressure fluctuations, a grid of 9 pressure sensors were flush mounted 
directly above the propeller in the model. Furthermore, 29 accelerometers were placed on the 
inside to measure the vibrations of the model and to correct for these in the post-processing. 
The transducers and the one pressure sensor for which full scale data is available are shown 
in Figure 7.7. Xenon light spots were mounted in between the pressure sensors to illuminate 
the propeller through a plexi-glass window. A complete overview of transducer locations is 
given in Figure 7.8. 

A typical result of the experiments is shown in Figure 7.9. Pressure amplitudes at the 
first four blade rate frequencies are given as full scale values for the central pressure 
transducer no. 5, which is closest to the full scale sensor position. Using thrust identity (i.e., 
Run 1), the model tests overpredict the pressure at BPF by a factor of two. Increasing model 
speed, while maintaining RPM, leads to a gradual decrease in BPF amplitude. The average 
loading in the area where sheet cavitation appears is considered most accurately modeled 
around Run 6. For higher orders of BPF the reduction in thrust loading caused somewhat 
increased pressure levels and the measure of correlation with full scale values has 
deteriorated. 

It should be noted that all pressure amplitudes have already been corrected for 
vibration, using the procedure introduced in Chapter 5. Figure 7.10 shows the effect of 
vibration in Run 1 as an example. Without vibration correction the first order amplitude would 
have been underestimated by more than 20%. 

Figure 7.11 shows a full scale video image and a model scale high-speed video 
snapshot taken from Run 6. Although the difference in viewing angle makes a comparison 
difficult, the cavity volumes look reasonably similar. However, the way in which the sheet 
cavity rolls up under the action of vorticity appears to differ and certain scale effects on the 
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blade flow cannot be ignored a priori. The effect of unloading the propeller on the appearance 
of sheet cavitation can be seen in Figure 7.12. It may be concluded that at the blade rate 
frequency the newly established set point for the model test is a substantial improvement over 
the one obtained by adhering to total thrust identity. However, higher orders of BPF cannot be 
corrected similarly. 
 
 

 
Figure 7.9: Pressure amplitudes at first to fourth BPF for sensor no. 5 compared to full scale. 

 
 

 
 

Figure 7.10: Effect of vibration on pressures at first to fourth BPF for sensor no. 5 (Run 1). 
 
 

 
Figure 7.11: Full scale cavitation snapshot (Left, courtesy of Lloyd’s Register); 

Model scale cavitation snapshot (Right, taken from results for Run 6 of Table 7.1). 
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Figure 7.12: Snapshots of cavitation extents at various azimuthal stations. 
Left: thrust identity condition, Right: 70% thrust condition (see Table 7.1). 
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7.4 Experimental Procedure using Dummy Models 
 

In the preceding section, it has been attempted to improve the prediction of hull-
pressure fluctuations by adjusting the experimental set point. Although the results obtained 
with that approach show a clear improvement for pressure fluctuations at the first order of 
BPF, one could argue that they are based on ‘suppressive therapy’. Alternatively, in the past, 
attempts were made to solve the problem at the origin by modifying the ship model’s wake 
field. This was done, e.g., by blowing or sucking the ship’s boundary layer [Hoekstra1977a/b] 
or shortening the midbody [Friesch1992]. The former was found too complicated, the latter 
not effective as is shown in this section. 

Nowadays, most model basins use the same geosim models that are used in speed-
power towing tankery. In the past, also so-called dummy models or dummies were used in 
cavitation tunnels in which a full model would not fit. In all of the aforementioned cases, the 
afterbodies would still be geometrically similar to full scale. 

Here, following [Wijngaarden2010] and [Schuiling2011], it is proposed to abandon 
geometric similarity for the afterbody. The challenge becomes one of inversely designing a 
dummy for cavitation experiments in which the effective wake field resembles the one of the 
ship at locations in the propeller disc where cavitation is expected. Geometric similarity is 
thereby deliberately sacrificed in favor of kinematic similarity. The resulting model is 
tentatively called a ‘Smart Dummy’ and its design involves the use of CFD tools to determine 
the shape of the dummy that serves best as a wake field generator in model testing. 

To start exploring the effect of geometry changes on the wake field, it is instructive to 
perform simple changes in width and length to the ship model. Therefore, four parent hull 
forms were chosen to form the four corners of the space in which the dummy hull form is to 
be found. The width is varied by narrowing the ship without changing the gondola shape. The 
length is varied by shortening the midbody without changing the afterbody shape. Thus, the 
following four shapes are generated: 
 

1. A ship model with original length and half breadth (Basic Hull 1). 
2. A ship model with half length and original breadth (Basic Hull 2). 
3. A ship model with half length and half breadth (Basic Hull 3). 
4. The original ship model (Geosim). 

 
 

 
Figure 7.13: Examples of forms in systematic hull form variations of width and length. 
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Figure 7.14: Cross sectional planes at which velocity distributions are given as a percentage of 

the length between perpendiculars (LPP). 
 
 

The RANS-method PARNASSOS was then applied to these forms as well as to many 
intermediate ones, a few of which are shown in Figure 7.13. All computations were performed 
for the double body (i.e., the double hull referred to in Section 3.4) geometry flows at the 
nominal draught. For the first three models, axial wake field results at the cross sections 
indicated in Figure 7.14 are presented in Figure 7.15 to Figure 7.17. For the narrowed model 
of Figure 7.15, cross section 4 shows that the boundary layer is thicker than at full scale. At 
the station where the verticals of the ship start to incline towards the transom, the boundary 
layer is growing fast. Although the boundary layer has become thinner in the propeller plane, 
the velocity difference observed in the wake peak is negligible. It is concluded that by only 
reducing the width of the model, the width and depth of the wake peak are not altered 
sufficiently. 

Hull no. 2 also fails in generating a wake field that corresponds with full scale by 
shortening the model. In cross section 4 of Figure 7.16 it is clear that the boundary layer is 
much thinner in comparison with the boundary layer of the original model. However, at the run 
of the ship the boundary layer is growing so fast as to cause a wake field almost equal to the 
one of the original model. These results confirm that the pressure gradient is an important 
mechanism in generating the wake field. Only adjusting the length of the model by removing 
the midbody has an even smaller effect on the wake peak than altering the width of the 
model. 

Reducing both length and width does have a significant effect on the boundary layer 
development. In the propeller plane at larger radii the axial velocity outside the wake peak is 
even higher than at full scale, as can be seen in cross section 1 of Figure 7.17. Nevertheless, 
the velocity distribution in the top sector of the propeller plane still does not correspond to full 
scale. 

All hull forms, including the intermediate hulls not shown here, suffer from the fact that 
the magnitude of the axial velocity in the top position is significantly lower than for the full 
scale geometry. This is illustrated in Figure 7.18, which shows the axial wake velocity at 80% 
of propeller radius. It is concluded that variations in length and width alone will not provide the 
desired ship wake field. 
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Figure 7.15: Axial component of the wake field of the narrow model. 
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Figure 7.16: Axial component of the wake field of the short model. 
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Figure 7.17: Axial component of the wake field of the short and narrow model. 
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Figure 7.18: Axial component of wake velocity in propeller plane at 80% of propeller  

radius for four parent models and ship. TDC corresponds with 180 degrees. 
 
 

 
Figure 7.19: Typical driving train (left) and stern tube (right) arrangements. 

 
 

At this point, it is worth noting that in the application of the Smart Dummy concept one 
has to consider several practical limitations. The most important one is the geometrical 
similarity of the overhanging part of the stern above the propeller. The pressure sensors have 
to be placed at positions corresponding with the ones on full scale. Also the clearance 
between the hull and the propeller shaft needs to be kept similar. Furthermore, there should 
be enough space to install the propeller powering system (Figure 7.19, on the left). The stern 
tube must be large enough to house the powering shaft of the propeller (Figure 7.19, on the 
right) and allow for a smooth transition to the propeller hub. When applied in a free surface 
facility such as the DTT, the length, trim and sinkage must be retained to prevent significant 
changes in the wave system. 
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The apparent challenge is to locally modify the aft part of the model in such a way that 
the minimum axial velocity in the wake peak compares better with full scale. If this would be 
possible by, say, modifying the gondola area only, then it may also be possible to achieve our 
aim without changing the length and width of the model. Even better, it may be possible to 
arrive at a model that could be milled with the geosim model as input. With the additional 
restriction of keeping equal clearance this would fulfill all requirements imposed on the model 
earlier. 

To obtain the desired wake field, the geosim model was taken and the upper part of the 
gondola was made more slender in a trial and error fashion. After several attempts, the Smart 
Dummy depicted in Figure 7.20 and Figure 7.21 was obtained. For best full scale wake 
resemblance the model speed still needs to be increased somewhat, but only by 2% above its 
Froude speed. This is several percent lower than even the condition of thrust identity 
prescribes for the geosim. 

This particular Smart Dummy was chosen because it best resembles the ship scale 
wake between the dashed lines in the upper part of the propeller disc of Figure 7.23. The 
choice was made on the basis of an 2L -norm on the deviation of the local axial component of 
the velocity from the local target value. Figure 7.24 zooms in on the wake peak area and adds 
transverse velocity components. It must be noted that several alternative hull forms 
approximate the ship scale wake in the wake peak area as well as the chosen one. However, 
none of them could reach the target wake at such a small speed increase relative to Froude 
speed and, more importantly, none of them could resemble the target wake for such large 
circumferential angles. The latter is important when pressure side cavitation is of concern. 
Figure 7.22 shows the distribution of the axial wake velocity at 80% of propeller radius as a 
function of circumferential angle (which is zero at the bottom dead centre). The Smart Dummy 
(in red) follows the ship scale wake (in black) accurately everywhere except near the bottom 
quarter of the propeller disc. The figure also shows the axial velocity mismatch between the 
target wake and the geosim at the standard thrust identity condition (in blue). The wake peak 
identity method is shown in orange and appears to follow the target wake only in the top 
region of the propeller disc. 
 
 

 
Figure 7.20: View from behind the Smart Dummy design (left), and the original geosim hull (right). 
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Figure 7.21: Underwater view of the Smart Dummy (bottom),  

and geosim hull (top) at Froude speed. 
 
 

 
Figure 7.22: Circumferential distribution of axial component of wake velocity in propeller plane at 

80% of propeller radius for geosim model, Smart Dummy and full-scale ship. 
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Figure 7.23: Axial component of wake velocity of Smart Dummy (left) compared to those at ship 
scale (right). The dashed circles are at propeller radii 1.1R and 0.6R, the solid circle is at 1.0R. 

 

 
Figure 7.24: Axial/Transverse components of wake velocity of Smart Dummy design zoomed in on 

the top sector (left) compared to those at ship scale (right). See also Figure 7.23. 
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Although the Smart Dummy design appears to meet its aim, it is still uncertain whether, 
if a full scale wake field is generated by a model the cavitation on model scale will correspond 
with that of full scale. The Smart Dummy concept does not correct for the influence of the 
difference in Reynolds number on the propeller flow itself, possibly resulting in a different 
cavitation behavior. For example, the interaction of sheet and tip vortex cavitation may still not 
be properly modeled. All of these being valid statements, they are no reason for not applying 
the procedure proposed. After all, one important source of error is eliminated and an 
improvement in the prediction of the first blade rate frequency is expected to be obtained. 
 
7.4.1 Example Case: Container Vessel #3 
 

The above-described Smart Dummy was tested in the DTT at 2% above Froude speed 
(while maintaining Froude RPM) with the pressure sensors at the same positions as before. 
Ample nuclei were provided through the use of upstream electrolysis strips. The results are 
shown in Figure 7.25 in the form of high speed video snapshots. A vertical sequence of 
images represents one typical blade passage. The cavity volumes found for the Smart 
Dummy (left) are slightly reduced compared to those found for the geosim (right). For the 
Smart Dummy, blade no. 1 shows inception of sheet cavitation at a blade position reached 
later than for the geosim at increased velocity, indicating that the wake peak has indeed 
become narrower. 

Figure 7.26 presents the results in terms of hull-pressure amplitudes. As before, 
amplitudes at the first four blade rate frequencies are given for the central pressure 
transducer, no. 5, which is closest to the full scale sensor position, and all amplitudes are 
divided by the full scale first order pressure amplitude. In the Smart Dummy wake, the 
propeller generates pressure pulses much like in previous experiments with the geosim at 
increased speed. The Smart Dummy’s narrower wake causes later inception and earlier 
desinence, but the larger wake gradient causes a somewhat more rapid growth of the cavity. 
Also, the cancelling effect of cavities on neighboring blades is reduced. As a result, despite 
the somewhat smaller cavity volumes, the pressure amplitude at the blade rate frequency is 
still slightly higher than for full scale. 

Figure 7.27 shows the effect of the offset in the position of transducer no. 5 relative to 
the full scale location. The results have been obtained by interpolation using all transducers. 
Figure 7.28 shows the effect of model speed variation (i.e., propeller load variation) on 
pressure pulses. Especially, the sensitivity at the first harmonic should be noted: a 1% 
increase in speed yields about a 9% decrease in pressure amplitude. It shows the necessity 
of accurate CFD computations in designing the Smart Dummy21. 

Pressure pulses at orders above the first are still strongly overpredicted. Several 
hypotheses can be formulated to explain this fact. As already mentioned, the Smart Dummy 
concept is limited in that it does not correct for the influence of the difference in Reynolds 
number on the propeller flow itself, possibly resulting in different cavitation behavior. Another 
limitation is related to scaling effects due to differences in gas content. The gas content in the 
present investigation was kept at the low value of about 35% air content at atmospheric 
pressure. A reduction in pressure pulses has been reported by Johannsen [Johannsen1998] 
after changing the gas content from 40% to 80% oxygen saturation. Thus, the pressure 
pulses at the 2nd to 4th order frequencies were reduced by 25%-50%. 
                                                           
21 Although only the difference between the CFD computations at model and full scale is used. 
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Figure 7.25: Comparison of cavitation extents. Right: Geosim @ 21% above Froude speed; Left: 

Smart Dummy @ 2% above Froude speed. Note that the Smart Dummy observations are 
performed using a different high-speed video camera and LEDs instead of Xenon lights. 



90 SCALE EFFECT ON SHIP MODEL WAKE 
 
 

 

 
Figure 7.26: Comparison of normalized model and full scale pressure 

amplitudes for the first four blade rate orders @ sensor no. 5. 
 
 

 
Figure 7.27: Comparison of normalized model and full scale pressure amplitudes 

for the first four blade rate orders interpolated at the full scale measurement location. 
 
 

 
Figure 7.28: Effect of load variation on pressure amplitudes for the Smart Dummy model. 

 
 

The Smart Dummy experiments have been repeated at an increased level of gas (i.e., 
air) content of about 60% at atmospheric pressure. A tenth pressure sensor has been added 
at the full scale location (see Figure 7.7). Figure 7.29 presents the pressure pulses at sensor 
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no. 10 at various model speeds. The Smart Dummy has been designed to overcome the 
wake scale effect on the basis of double body flow at model and ship scale Reynolds 
numbers. A ship model velocity increase allowance of 2% has to be applied. At that velocity 
the figure shows second and third order pressures that have decreased dramatically to just 
below ship scale values. The first order pressure amplitude has increased by about 6% at 
sensor no. 5 (not shown), while the target location, sensor no. 10, shows a pressure 
amplitude 15% higher than that for full scale. 

In [Wijngaarden2010] Bosschers shows how pressure signal variability from blade 
passage to blade passage leads to amplitude and phase modulation. The stronger 
modulation effects are found on model scale, causing tonal components in the spectrum to be 
more ‘smeared out’. As a result higher order pressure amplitudes would be expected to be 
underpredicted in the model tests, and perhaps even more so than is reflected in the second 
and third order amplitudes found in Figure 7.29. 
 
 

 
Figure 7.29: Smart Dummy model test results @ 60% air content for sensor no. 10. Ship measured 
hull pressure amplitudes are compared with Smart Dummy data at various speeds at and above 

the Froude-scaled speed. At 4% above that speed, two measurements have been made, 'a' and 'b'. 
 
 

The remaining discrepancies between model and ship scale pressure pulses may be 
explained by assuming that the Smart Dummy wake still somewhat overloads the propeller. 
An additional 2% increase in model speed already yields pressure pulses very close to target 
values (see Figure 7.29). The computed wake scale effect for double body flow would then 
have to differ from the wake scale effect including free surface in such a way that the flow 
becomes more strongly retarded on model scale due to wave effects. 

The latter has been checked by performing RANS computations including the free 
surface for the ship and the Smart Dummy. The results are presented in Figure 7.30. In the 
top sector between 0.6R and 1.1R, the axial component of the flow around the Smart Dummy 
indeed appears to have slowed down slightly. Figure 7.31 gives a more detailed picture of the 
circumferential distribution of the axial velocity at 0.8R for Smart Dummy and ship with and 
without free surface. Including the free surface leads to a steeper wake peak gradient, the 
loading effect of which may be taken into account by running the model at 4% instead of 2% 
above Froude speed. Nevertheless, it is concluded that the Smart Dummy should ideally be 
designed with the inclusion of a free surface when tested in a free surface facility like the 
DTT. 
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Figure 7.30: Axial component of wake velocity of the Smart Dummy design (left) compared 

to that at ship scale (right). The dashed lines are at propeller radii 1.1R and 0.6R. The solid line 
is at radius 1.0R. Free surface effects have been taken into account (cf. Figure 7.23). 

 

 
Figure 7.31: Axial component of wake velocity in propeller plane at 80% of propeller  

radius for Smart Dummy and ship with and without free surface. 
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7.5 Computational Procedure using Wake Peak Scaling 
 

The series of measurements reported in Section 7.3.2 presents an opportunity to extend 
the validation of the computational method (see Chapter 6) to cavitating propellers. The chain 
of computational methods involved is shown in Figure 7.32. It involves the RANS method 
PARNASSOS for the computation of the nominal wake field; the PIFWAKE method for the 
nominal-to-effective conversion of the axial wake velocity component; the PROCAL BEM for 
propeller cavitation, and finally, the EXCALIBUR BEM for the determination of the hull-
pressure pulses including the scattering effect of the hull. In the following, this computational 
chain is applied to container vessel no. 3. 
 
 

 
Figure 7.32: Overview of chain of tools involved in computational method. 

 
7.5.1 Example Case: Container Vessel #3 
 

From the computation of the double body flow around the ship, using PARNASSOS, a 
nominal wake field can be extracted. The nominal wake fields, thus found at model and full 
scale Reynolds number, are shown in Figure 7.5 on the right. The axial component of these 
wake fields at the propeller disc at 80% of propeller radius is plotted in Figure 7.33. After 
converting these wake fields into effective ones using PIFWAKE, the propeller thrust can be 
determined with PROCAL. This was done at the apparent advance coefficient (as if there 
were no wake at all), as well as at the standard condition of propeller thrust identity. Figure 
7.34 shows that the latter condition follows the propeller thrust found in the ship scale wake 
accurately. However, when focusing on the thrust of one blade, the blade loading in the wake 
peak is still significantly lower on model scale, as is shown in Figure 7.35. As a result, the 
non-dimensional cavity volume per blade is much larger than on ship scale (see Figure 7.36 
and Figure 7.37). 

Using the effective wake fields as input to PROCAL, the cavitation patterns follow. 
Finally, the pressure distribution on the hull is computed by EXCALIBUR on the basis of the 
propeller noise source strengths (i.e., the strengths of the rotating point monopoles and 
dipoles) determined by PROCAL. Figure 7.38 and Figure 7.39 show the boundary element 
distributions used for the computations with PROCAL and EXCALBUR, respectively. 

In analogy with the experiments, the simulations have been repeated for all conditions in 
Table 7.1. Thus, the propeller is gradually unloaded by increasing the ship model velocity. 
Figure 7.40 shows the effective axial component of the wake velocity at 80% of propeller 
radius from bottom (0 degrees) to top (180 degrees) dead center. Note that the wake peak 
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identity condition found in the model experiments in Run 6 (i.e., Sim 6 here) is still not 
obtained even in simulation no. 10. Not surprisingly, the resulting thrust per blade, computed 
in a fully wetted flow, i.e., without cavitation, is also too high in the wake peak (even for 
simulation no. 10, see Figure 7.41). The cavity volume per blade in Figure 7.42 follows the 
same pattern. The small cavities at the low circumferential angles are due to the pressure 
dropping below the vapor pressure on the pressure side of the blade. Although the cavity 
volumes are larger in the model scale wake, there is a significant reduction in cavity volume at 
increased speeds. A comparison of computed cavity patterns at Runs 1, 6 and 10 is shown in 
Figure 7.46 (cf. Figure 7.12). 

Despite the reduction in total cavity volume as a result of the increase in speed and 
propeller unloading, the actual amplitudes of the harmonics of the pressure pulses have 
remained constant (after even increasing at the start of the unloading process, see Figure 
7.45). Although this result differs much from its experimental counterpart, it is actually 
straightforward to explain. Figure 7.43 shows the cavity volumes on all six blades separately. 
The overlapping in circumferential direction causes expanding and shrinking cavity volumes 
on neighboring blades to destructively interfere. As a result, the net effect of unloading the 
propeller is a reduction in average cavity volume (see Figure 7.44). However, the amplitude of 
the cavity volume variation, and more importantly, the cavity volume acceleration, remain 
relatively constant. At the low frequencies under consideration, it is the latter quantity that 
determines the pressure fluctuations. 

The width of the wake peak would be an easy explanation for this effect if it was not for 
the fact that the wake peak width on model scale is approximately the same. Nevertheless, 
the model experiments do show a decrease in first order BPF amplitudes. 

A direct comparison of experimentally and computationally obtained results is presented 
in Figure 7.47. At 132 degrees, the upcoming blade no. 1 is still cavitation-free, both in the 
experiments and simulations. The next snapshot, taken at 144 degrees, shows good 
agreement between the computed and observed cavitation extent. However, after that, the 
cavity volume seems to overshoot in the simulations (cf. the snapshots at 156 and 168 
degrees, blade no. 1, and the snapshot at 120 degrees, blade no. 6). The downgoing blade 
no. 6, at 132 degrees and onward shows a reasonable agreement in cavity extent. It appears 
that the inception and desinence points during a blade passage are well-captured in the 
simulations, but the maximum cavity volume is overpredicted. 
 

 
Figure 7.33: Circumferential distribution of nominal axial component of wake velocity  

at a non-dimensional radius 0.8R for ship and geosim model. 
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Figure 7.34: Propeller thrust coefficient as a function of blade position, without cavitation, for 

1) geosim model wake at VJ -identity; 2) tK -identity (standard condition); 3) ship wake. 
 

 
Figure 7.35: Blade thrust coefficient as a function of blade position, without cavitation, for 

1) geosim model wake at VJ -identity; 2) tK -identity (standard condition); 3) ship wake. 
 

 
Figure 7.36: Non-dimensional cavity volume per blade, for 

1) geosim model wake at VJ -identity; 2) tK -identity (standard condition); 3) ship wake. 
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Figure 7.37: Computed sheet cavity extent for the ship (Left) and the geosim model wake (Right). 

 
 
 
 

 
Figure 7.38: Model propeller (left) and boundary element representation (right). 

 
 
 
 

 
Figure 7.39: Ship geometry with the grid part projected in red (left)  

and boundary element representation (right). 
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Figure 7.40: Axial component of the effective wake field at 0.8R for various thrust coefficients. 

 

 
Figure 7.41: Blade thrust coefficient during a revolution at values of propeller thrust coefficient. 

 

 
Figure 7.42: Non-dimensional cavity volume per blade during a 

revolution at various values of propeller thrust coefficient. 
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Figure 7.43: Interference of growing and shrinking cavities on neighboring blades. 

 
 

 
Figure 7.44: Effect of blade interference on instantaneous total cavity volume. 

 
 

 
Figure 7.45: Hull pressure amplitudes computed by EXCALIBUR (sensor location no. 5). 
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Figure 7.46: Sheet cavity extent as computed for three different simulations. Left: Propeller thrust 

identity; Center: Wake peak identity in model test; Right: Strongest unloading tested. 
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Figure 7.47: Comparison of experimental and computational results for Run 6. 

Left: experiment, Center/Right: computation. 
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The differences found between experiments and simulations may have a number of 
causes. It was shown how small inaccuracies in effective wake field may have a substantial 
influence on cavity dynamics, and hence, pressure fluctuations. The dynamic sheet cavitation 
model itself may be the cause of the discrepancies, although it is difficult to determine what in 
the implementation should be changed. In the model the sheet cavity is not connected to a 
cavitating tip vortex, which may cause the sheet to grow somewhat too large. However, the 
latter explanation is not supported by Figure 7.47, in which the overshoot in sheet volume 
appears at blade angles at which the sheet-tip vortex interaction is not yet significant. 
 
 
 





 
 
 

 

 
 
 
 
 
 

8 PROPELLER NOISE SOURCE STRENGTH 
 
 

…in which the ‘propeller source strength’ is proposed as a figure of merit for 
cavitating propellers, and measured hull surface pressure data are used to 
determine source strength characteristics by means of inverse techniques. 

 
 

8.1 Contractual Judgment of Hull-Pressure Forces 
 

In order to distinguish between structures that are too flexible (the yard’s responsibility) 
and sources of noise and vibration that are too strong (the supplier’s responsibility) upper 
bounds to source levels need to be prescribed in contracts between the yard and its 
suppliers. E.g., a maximum allowable propeller-induced hull excitation force may be used as a 
measuring staff for the judgment of the noise and vibration characteristics of a propeller 
design. 

In order to obtain an estimate of the propeller-induced hull excitation forces, model scale 
experiments are performed in cavitation facilities. Thus, hull pressures are measured through 
a set of pressure transducers flush-mounted in the hull above the propeller. Integration of the 
measured pressures then yields an approximation to the excitation force, thereby neglecting 
that part of the wetted hull surface area where no information on the pressures is available. 

If the number of available hull-mounted pressure transducers in the experiments is 
limited, no resultant force can be obtained. The transducers may be too far apart to allow for 
an accurate integration, or cover an area too small to be representative of the total area of 
application of the excitation force. In those cases, a limit on the excitation force has to be in 
the simple terms of a maximum pressure amplitude above the propeller. As a result, contract 
requirements are often stated in terms of maximum pressure amplitudes for one or more 
harmonics of the propeller blade passing frequency. 

This is unfortunate because the maximum allowable pressure above the propeller may 
be a weak measure of the total excitation force. Two examples illustrate this statement. 
Consider the maximum hull pressure above the propeller for a tanker in ballast, which is 
probably higher than when the tanker is loaded, but due to a smaller wetted surface area the 
ballast case may still show the smallest excitation forces [Lee2006]. Particularly for dredgers, 
Ligtelijn et al. showed that at the blade passing frequency interference of the cavitation-
induced pressure field and the thickness and loading effects of the passing blades 
themselves blur the relation between the values of the excitation force and the maximum hull 
pressure [Ligtelijn2006]. To a certain extent, the non-cavitating contribution to the hull-
pressure field determines the maximum pressure, but its strongly varying spatial phase 
distribution results in only a small contribution to the total excitation force. 
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It would be helpful if one would not have to rely on the maximum hull pressure only for a 
proper judgment of propeller-induced hull-excitation forces. An improved measuring staff 
should be meaningful with respect to hull vibration and stated in the simplest of terms. The 
excitation force integrated over a limited area above the propeller (e.g., up to the waterline 
around the aftbody) seems an acceptable figure of merit. The magnitude of the pressure 
forces and the area of their application are determined by the form of the ship, for which 
reason the excitation force is not an ideal measure of the quality of the propeller itself as a 
source of noise and vibration. For the latter purpose, it is suggested to simply interpret the 
term ‘source’ in the hydroacoustic sense, i.e., as a fictitious point source distribution with a 
certain volume variation. 

In the present thesis, the hydroacoustic propeller cavitation source strength is proposed 
as a figure of merit regarding noise and vibration, being meaningful and simple. The propeller 
source strength is also useful as a measure for correlation of predictions and reality. The 
methodology described in [Wijngaarden2006b] is a practical way of deriving the propeller 
cavitation source strength and from this the afterbody integral forces on the basis of the usual 
limited hull-pressure measuring data available. 

An acoustic source distribution, in terms of a set of point singularities, is proposed to 
model the cavitating propeller. The strength of the sources is determined from an inverse 
scattering computation using the measured hull pressures as input to a computer code based 
on the Boundary Element Method. A forward scattering computation then yields the wanted 
hull-surface pressure distribution. In the following sections, this procedure is worked out in 
some detail. 
 
 

8.2 Modeling Hull-Pressure Distributions 
 

The acoustic source distribution sought should fulfill several conditions. The measured 
pressure amplitudes and phases should be well-predicted by it. The cavitating and non-
cavitating contributions to the pressure field have to be distinguishable to allow for their 
separation and the derivation of a cavitation source strength. The number of unknown 
strengths in the source distribution must be kept as small as possible, bearing in mind the 
scarcity of the measured data and the wish to characterize the propeller as a source of noise 
and vibration in the simplest of terms for contractual specifications and model to ship scale 
correlation studies. 

Figure 8.1 shows a single screw vessel (container ship #1) with a collection of measured 
hull-pressure amplitudes and phases at BPF, which are known to be due to cavitation. The 
maximum pressure amplitude is found above the propeller close to the ship centre line. Also, 
an almost constant phase distribution becomes apparent. The figure suggests the use of a 
point source of the monopole type, submerged somewhere in the area where cavitation 
occurs on the propeller blades. Although the sheet cavities on propeller blades seem to be 
attached to the blade, their ‘lifespan’ is confined to the period the blade spends inside the 
wake peak, which is a relatively small region. Hence, the monopole may be assumed 
stationary in a first approximation. This model is also suggested by Bloor [Bloor2001]. Van 
Wijngaarden [Wijngaarden2006a] shows that the single monopole model roughly explains 
between 85% and 90% of the pressure field due to cavitation at the first two orders of BPF. 
These results are shown in Figure 8.5. 
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It is tempting to model the propeller by just this one stationary source (e.g., 
[Kinns2003]). However, such models cannot explain the non-cavitating hull-pressure fields 
measured in cavitation facilities (cf. the second question in the discussion of [Kinns2003]). 
This becomes clear when looking at the non-cavitating hull pressures measured on the same 
single screw vessel shown earlier. Figure 8.2 shows the pressure amplitude and phase 
distribution, the latter indicating the direction of rotation of the blade. The phases decrease 
from port to starboard as they have been caused by a right-handed propeller. A model for the 
propeller will have to mimic this feature. 
 
 

 
Figure 8.1: Normalized pressure amplitude (left) and phase (right, deg.) at BPF due to cavitation. 

 

 
Figure 8.2: Normalized pressure ampl. (left) and phase (right, deg.) at BPF due to blade passages. 
 
 

Table 8.1: Influence of thrust loading on maximum non-cavitating 
hull-pressure amplitude at BPF, measured at constant RPM 

on a scale model of the single screw vessel depicted in Figure 8.1. 

Thrust [N] 81.5 37.5 
Amplitude [kPa] 1.01 0.91 

Phase [deg.] -173 -175 
 
 

Before attempting to model the thrust loading and displacement effect of the propeller, it 
is worth looking at their relative importance, indicated in Table 8.1. The table is based on 
model tests in the DTT that were performed at atmospheric tank pressure in order to 
suppress cavitation. For the single screw ship depicted in the above figures the propeller 
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loading was decreased by 54% at constant RPM. The maximum non-cavitating hull-pressure 
amplitude only decreased by 10% at nearly the same phase angle. This confirms the well-
known fact that usually the blade thickness is the dominant contributor to the non-cavitating 
hull-pressure field on the hull right above the propeller. 

On page 278 of [Breslin1994] it is stated: “We observe that the pressure generated by 
thickness is also a distribution of dipoles with axes along the tangent to the fluid reference 
surface in way of the blade, the strength of the dipoles being 22 ( ) /V r d dh .” This applies 
to the case of uniform flow, with V  denoting the inflow velocity of a blade section at radius, 
r ,  the mean density, and /d dh  the change in local section thickness  in the direction 
of h , the helical coordinate which runs along the blade section chord from tail to nose. 
Hence, from the nose to the location of maximum thickness the dipole strength is negative 
and positive in the remainder. It is noted that the figure on page 282 of [Breslin1994] indicates 
that the sections at the outer radii contribute most to the pressures pulses on the hull. 
 
 

 
Figure 8.3: Direction (arrows) and phase (colors)  

of a dipole ring consisting of 36 sources. 
 
 

Combining the above observations, it is concluded that a source model for the non-
cavitating propeller should at least include the thickness effect due the blade sections at the 
outer radii. A straightforward way of modeling this would be by placing dipoles at a typical 
radius. The dipoles, e.g., one for each of Z  blades, are rotating in the propeller plane about 
the shaft centre line. In the frequency domain the dipoles transform into dipole rings centering 
on the shaft centre line (see [Brouwer2005] and Appendix E for a derivation). The dipoles are 
assumed to be constant in amplitude around the ring, directed along the pitch line at the 
radius concerned, and with a prescribed relative phase, , depending on the number of 

dipoles, dipm , used to discretize the ring, 

 
 2 dipZ m Z  (8.1) 
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with the dipoles located at a constant angular distance , see Figure 8.3. Note that in this 

figure each sixth source is of the same color, as 6Z , hence 60o  and 10o . 
In case the blade loading component needs to be modeled, an analogous approach may 

be followed ([Breslin1994], page 277). The elemental pressure forces, p , on a blade 

element, dS , are written as pdS pdh dr . Allowing for the same simplifications as 
before, this can be modeled in the frequency domain by a ring of dipoles directed along the 
normal to a helical reference surface. 

Summarizing, it appears appropriate to model the loading the blades exert on the fluid 
as well as the displacement effect due to blade thickness by means of rings of sources of 
dipole type. Alternatively, each dipole ring may be replaced by two closely spaced monopole 
rings. The inverse BEM, which is treated in some detail in the next section, is implemented in 
such a way that an arbitrary number of monopoles, dipoles, as well as monopole and dipole 
rings may be used to build up models of the cavitating propeller. 

Having established the appropriateness of the computational models used, the next step 
is to apply them in an inverse way in order to compute source strengths given pressure 
distributions on the hull. It is shown that the sparse set of pressure data usually available on 
the hull may still suffice for the computation of the source strengths. The mathematically often 
ill-posed inverse problems to which this one belongs do not permit reaching a high resolution. 
Nevertheless, the description of the propeller action simply as a small set of ‘multipoles’ 
causes no mathematical problems and is still of value. 

Once the propeller source strength is known, the complete pressure distribution on the 
hull can be determined, thus allowing for the subsequent determination of integral forces. As 
an important application, the direct coupling of the hull-pressure distribution to Finite Element 
analysis must be mentioned. Figure 8.4 gives an overview of the proposed procedure. 
 
 

 
Figure 8.4: Procedure for determining propeller source strengths. 
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8.3 Inverse Modeling of Cavitating Propellers 
 

In [Visser2004], Visser chooses a ‘Singular Value Decomposition’ (SVD) method in 
order to solve the near-singular set of linear equations that results from inverse acoustic 
radiation problems. Then, the surface velocity distribution is sought and field pressures are 
prescribed. Here, this method is applied to inverse scattering problems, where the pressure 
field on the bounding surface is given and one must solve for the strength of the source 
distribution in the acoustic field. 

The starting point for the derivation of an inverse scattering formulation is found in the 
forward scattering formulation that is part of the EXCALIBUR Boundary Element Method 
treated in Chapter 3 and Appendix F. Section F.1 gives a detailed account of this BEM for 
forward acoustic scattering problems in the frequency domain involving floating or submerged 
objects. In particular, Eq. (F.71), describes the set of linear relations that holds for the surface 
potentials. When the coupling parameter, , is taken zero for the sake of simplicity, it 
becomes, 
 1

2
inc
S SS
φ M I φ  (8.2) 

 
with inc

Sφ  the vector containing the incident wave potentials on the scattering surface. In 
inverse scattering problems, this vector is initially unknown. It readily follows from Eq. (8.2) by 
multiplying the negative of the matrix of influence coefficients, 1

2 S
M I , by the vector of 

known surface potentials, Sφ , both appearing on the right-hand-side. 
The next step is to find an expression relating the incident wave potentials on the 

surface to the strengths of the sources in the fluid that are causing the incident wave field. 
Since incident waves are defined in the free field, the source strengths and their potentials are 
simply related through the Green’s function, HG . In matrix notation this becomes, 
 
 inc

H SS
G q φ  (8.3) 

 
with q  the unknown source strengths. In general, the number of point sources in the fluid, 

sN , will not equal the number of panels, N . Therefore, in order to obtain a set of sN  
equations, both sides of Eq. (8.3) must be pre-multiplied by the transposed matrix, 
 
 T T inc

H H H SS S S
G G q G φ  (8.4) 

 
to give the so-called ‘normal equations’. Now, q  could be solved for. In practice one is free to 
choose whatever number of sources to describe the cavitating propeller. The position of the 
sources has to be known in advance in order to determine H S

G . As this is practically not the 

case a solution has to be sought by iteratively updating the position of the sources and 
solving the set of equations for the updated right-hand-side. 

As the present model does not involve shear stresses, only monopoles and dipoles, 

monq q  and dipq q  are used. The expression for a dipole is obtained by taking the spatial 
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derivative of the Green’s function with respect to the source coordinates in the dipole 
direction22. Thus, a dipole of unit strength directed along unit vector, ξ , is denoted, 
 

 exp( ) 1 cos( )
4

HG ikr ikr
r r

 (8.5) 

 
with  the angle enclosed by r  and ξ , according to cos( ) rr ξ  (cf. Eq. (F.25)). Eq. 
(8.3) now becomes, 

 mon incH
H S

dipS

qGG φ
q  (8.6) 

 
If the matrix on the left-hand-side is not ill-conditioned the above-described procedure 

solves the inverse acoustic scattering problem. However, it does so only when the surface 
potential is given over the whole surface, S , i.e., at a large number of collocation points, N . 
In everyday practice, however, the surface potential Sφ  is only measured on a patch of the 

surface, say L . This may be a rather small part of S . Use can be made of the fact that the 
surface potential tends to zero when approaching the waterline in interpolating between zero 
and the solution on the patch of the surface where the potential is actually measured. If 
information on the shape of the surface potential distribution is known then interpolating 
functions may be used that approximate that distribution, thus enhancing the accuracy of the 
results. However, when there is no information on the shape of the hull-pressure distribution, 
the interpolation procedure is bound to become inaccurate. 

When the scattering problem must still be solved, its solution may be used in solving the 
inverse scattering problem described above without having to resort to interpolation 
techniques. Let us assume for the moment that the sN  sources are of unit strength. The 
incident wave potential ,

inc
S mφ  can be readily determined for each of them, with 1.. sm N , the 

overscore indicating unit source strength. Then, solving the diffraction problem for sN  right-
hand-side vectors, 
 1

, ,2
inc

S m S mS
M I φ φ  (8.7) 

 
yields a set of sN  vectors, ,S mφ , of diffraction constants for all N  panels covering S . Now 

assume these vectors to be truncated to the l  panels, covering L , on which the points are 
located where the surface potential Lφ  is actually known through measurement. Thus, an 

sl N  matrix of diffraction constants [ ]LΦ  is derived. The strength of the sources is then 
determined from, 
 LL

Φ q φ  (8.8) 
 

                                                           
22 Appendix C provides some background on acoustic point sources. 
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In general, the number of point sources in the fluid, sN , is not equal to the number of 
panels used, l . As before, in order to obtain a set of sN  equations, both sides of Eq. (8.8) 
must be pre-multiplied by the transposed matrix, 
 
 T T

LL L L
Φ Φ q Φ φ  (8.9) 

 
Thus, the normal equations are obtained and q  can be solved for. At the expense of solving 
the diffraction problem for a number of right-hand-side vectors, the inverse problem is solved 
without any other information on the diffracting surface prescribed. 

Now assume that the cavitating propeller may be described by a simple point source of 
which the position and strength are unknown. Furthermore, assume that the non-cavitating 
propeller may be modeled by monopole or dipole rings. The amplitudes of the sources within 
a ring are assumed to be equal and the phase difference between neighboring sources is 
taken as constant. After a position of the monopoles and a position and direction of the 
dipoles have been chosen, an inverse scattering computation may be performed from which 
the source strengths follow. A forward scattering computation with this source distribution 
yields computed values also at the locations where the measured data are available. 

The quality of the computational prediction is expressed using a residual based on a 
standard 2L -norm to convey the ‘average’ error. In the remainder, residuals are stated as a 
percentage of the solution. If necessary, other positions for the sources can be tried and the 
computation repeated. This iterative process continues until a minimum value for the residual 
is found. 

Although, a source ring may be a complex source in terms of its Green’s function, the 
number of unknown strengths is still only one. Together with the monopole, the system of 
equations to be solved constitutes sN  equations for a few unknowns. Repeatedly solving this 
hundreds of times for different values of position and direction is done in a matter of seconds. 

Inverse scattering problems are often ill-posed since, in principle, different source 
distributions may produce the same hull-pressure distribution. Because the set of linear 
equations that remains to be solved is often nearly singular, the above-described procedure 
may not be trivial and matrix regularization techniques based on SVD are sometimes 
necessary to arrive at meaningful results. It is considered a much better way of solving 
inverse problems than is the direct use of the normal equations. However, if the number of 
hull-pressure data is small and so is the number of complex amplitudes in the source 
distribution model, then SVD is generally not needed. Nevertheless, in order to deal with more 
elaborate models, SVD has been implemented in the inverse BEM considered here. A brief 
introduction into SVD is given in Appendix G.4. 
 
 

8.4 Example Case: Cavitating Propeller mounted on 
Container Vessel #1 

 
Consider a single screw ship for which model scale measuring data of hull-pressures 

are available. The data set consists of 21 measuring points on the hull above the propeller for 
which the pressure is known at the first two harmonics of the propeller blade passing 
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frequency. The propeller’s small non-cavitating contribution to the hull-pressure field has been 
measured and subtracted from the total. An iterative search is started for the source location 
and strength showing the best match to the measured pressure field. The quality of the 
computed location and source strength is reflected in the residual of the set of equations that 
needs to be solved. The iterative search continues until a minimum value for the residual is 
found. The source strength and position for that case are then assumed to be an answer to 
the inverse scattering problem. 
 
 

 

 
Figure 8.5: Measured hull-pressures (normalized) at once (top) and twice (bottom) BPF (colored 
spheres) and pressure contour plot based on best fitting monopole model [Wijngaarden2006a]. 

 
 

Figure 8.5 compares the measured pressures at the first and second blade passing 
frequency with the hull-pressure distribution that is found after performing a forward scattering 
computation using the source strength and position that have been found. The residuals are 
found to be 14% and 12% for the first and second harmonic, respectively. The monopoles are 
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located within the propeller disc respectively at 80% and 90% of the propeller radius, both 
with a shift of about 0.5 meters in the direction of the downgoing blade (see Table 8.2). 
 
 

Table 8.2: Measure of fit of single monopole source model for 
cavitating hull-pressure amplitudes at orders of BPF. 

Harmonic Order 1 2 
Residual 14% 12% 

Radial Position 0.8 R 0.9 R 
Shift from Centre Line -0.5 m -0.5 m 

Number of Input Pressure Data 21 21 
 
 

8.5 Example Case: Non-cavitating Propellers mounted 
on Container Vessel #2 

 
The validation experiments of Section 6.2 performed on non-cavitating propellers have 

been used as input to an inverse scattering computation. From the set of test propellers, the 
one designed for the ship (no. 6724, see Table 6.1) is omitted as it shows only very 
insignificant non-cavitating hull pressures. The other three cases are shown in Table 8.3. 
From Table 6.2 five test runs are selected from which the measured hull pressures are used 
as input for the inverse source strength determination. The test conditions are found in Table 
8.4. 
 

Table 8.3: Propeller models used in inverse scattering computations. 

Prop. 
No. 

Blade 
number 

Diameter 
[mm] 

Remarks 

6666 2 340.00 Zero pitch to produce zero thrust 
6553 5 295.79 Thick blades at the tip 
6458 4 261.54 Small blade area and low pitch 

 
 

Table 8.4: Overview of test conditions used as input to inverse scattering computations. 

Prop. No. Test No. Vm [m/s] BPF [Hz] KT [-] Draft [m] 
6666 1 0.00 20.00 0.021 0.531 
6553 1 2.37 26.25 0.009 0.388 
6553 2 3.00 54.33 0.191 0.388 
6458 1 2.37 30.80 0.004 0.388 
6458 2 3.00 53.33 0.084 0.388 
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For the unloaded, 2-bladed, zero pitch propeller, no. 6666, the dipoles in the rings of the 
model are directed along the nose-tail line, i.e., in the plane of the ring itself, since no blade 
loading needs to be taken into account. Such dipole rings may also be modeled by monopole 
rings with an appropriate phase gradient along its circumference. In a first attempt, one 
monopole ring, consisting of 72 monopoles, has been chosen. For each of the four significant 
BPF harmonics the optimum axial location and radius of the ring is found, using the hull 
pressures available at 17 measuring locations. 

The gradient of the phases of the sources along the ring perimeter is determined by the 
number of blades, according to Eq. (8.1). More general amplitude and phase relationships in 
the hull-pressure distribution can be modeled by adding rings (of the same size and position) 
with a phase distribution corresponding to a propeller with a blade number equal to an integer 
number of times the actual blade number. Thus, spatial (i.e., circumferential) harmonics of the 
ring source’s phase distribution are introduced by replacing the blade number, Z , in Eq. (8.1) 
by nZ . These harmonics of order n  are termed ‘ring harmonics’ in the remainder. 

The results in terms of residuals are collected in Table 8.5. The best location in the axial 
direction is slightly forward of the propeller plane, and the ring radius found is 80% of the 
propeller radius. The results are not sensitive to the radius and the number of sources in the 
ring. It may be concluded that the hull-pressure field is represented quite well by a source 
model containing only one complex amplitude. Figure 8.6 shows the match between 
measured data (colored dots) and the hull-pressure field predicted by the monopole ring (first 
ring harmonic only). 
 
 

Table 8.5: Measure of fit of monopole ring source models for non-cavitating hull- 
pressure amplitudes at orders of BPF for 2-bladed zero pitch propeller no. 6666. 

Propeller No. 6666, Test 1 
Harmonic Order 1 2 3 4 

Residual (1 ring harmonic) 8% 12% 17% 20% 
Residual (4 ring harmonics) 7% 7% 10% 14% 
Radius of Monopole Ring 0.8 R 0.8 R 0.8 R 0.8 R 
Axial Shift from Prop. Plane 0.05 R 0.05 R 0.05 R 0.05 R 
Number of Input Pressure Data for all Harmonic Orders 17 

 
 

For the unloaded 4- and 5-bladed propellers, the dipoles in the rings that represent the 
propellers are directed along the propeller blade sections’ nose-tail line. For the cases in 
which these propellers are loaded, additional dipole rings are expected to be needed at right 
angles to the ones modeling thickness. Instead, two parallel, closely spaced monopole rings 
of equal radius are used. Only the first harmonic of BPF shows significant hull pressures. At 
the BPF, the optimum axial location and radius of the monopole ring pairs are found on the 
basis of the pressure transducers that show significant values. One monopole ring pair has 
been chosen, consisting of 72 monopoles, and at an axial spacing of 1 cm (at model scale). 
Several ring harmonics are added to improve the quality of the fit in the hull pressure 
distribution. 
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First order of BPF, amplitude range 0-400 Pa 

 
Second order of BPF, amplitude range 0-300 Pa 

 
Third order of BPF, amplitude range 0-150 Pa 

 
Fourth order of BPF, amplitude range 0-70 Pa 

 
Figure 8.6: Measured hull-pressure amplitude in Pa (colored spheres, left: amplitude, from 0 to 
value mentioned, right: phase, from -180 to +180) at first to fourth order of BPF and pressure 

contour plot based on the best fitting monopole ring model for the 2-bladed propeller no. 6666. 
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The results in terms of residuals are collected in Table 8.6 for the 4-bladed propeller, no. 
6458, and in Table 8.7 for the 5-bladed propeller, no. 6553. As before, the best location in 
axial direction is slightly forward of the propeller plane, and the ring radius found is in between 
85% and 90% of the propeller radius. The hull-pressure field is represented reasonably well 
by a source model containing 3 to 4 ring harmonics. 

It is concluded that the combination of the point source monopole and a few ring 
sources is sufficient to represent the cavitating propeller. The limited number of unknowns 
involved is such that application on ship trial measuring data, for which usually no more than 
half a dozen pressure transducers is available, is feasible. 
 
 

Table 8.6: Measure of fit of monopole ring source models for non-cavitating 
hull-pressure amplitudes at first order of BPF for 4-bladed propeller no. 6458. 

Propeller No. 6458 Test 1 Test 2 
Residual 10% 19% 

Radius of Monopole Ring Pair 0.84 R 0.84 R 
Axial Shift from Propeller Plane 0.06 R 0.06 R 

Number of Ring Harmonics 4 4 
Number of Input Pressure Data 9 14 

 
 

Table 8.7: Measure of fit of monopole ring source models for non-cavitating 
hull-pressure amplitudes at first order of BPF for 5-bladed propeller no. 6553. 

Propeller No. 6553 Test 1 Test 2 
Residual 8% 18% 

Radius of Monopole Ring Pair 0.88 R 0.88 R 
Axial Shift from Propeller Plane 0.055 R 0.055 R 

Number of Ring Harmonics 3 4 
Number of Input Pressure Data 8 19 

 
 
 





 
 
 

 

 
 
 
 
 
 

9 CONCLUSIONS AND RECOMMENDATIONS 
 
 

…in which conclusions are drawn from the results of the investigations performed 
within the framework of this thesis. Recommendations are given to direct future 

research efforts. 
 
 

9.1 Summary 
 

In this thesis, the cavitating propeller is studied as an important source of noise and 
vibration on board ships. Rotating propeller blades and pulsating cavities in their immediate 
vicinity cause pressure fluctuations in the surrounding water through which the hull plating 
above the propeller is excited. As this may affect the comfort of passengers, propeller designs 
may have to be modified which often results in a reduced propeller efficiency. To strike a 
balance between comfort and efficiency, the accurate prediction of propeller-induced hull-
excitation forces is essential. Such predictions involve tests on scale models of ships as well 
as numerical simulations. Unfortunately, at present, predictions of propeller-induced hull-
pressure forces do not give accurate results consistently. 

This thesis is an account of an investigation into ways of improving the prediction 
procedures for vibratory hull excitation forces. In search of the major sources of prediction 
uncertainty the proceedings of the International Towing Tank Conference have been 
consulted. From knowledge thus obtained, together with experience built up in preceding 
projects, the following set of research topics has been selected: 
 

 the influence of hull vibrations on measurements of hull-pressure fluctuations; 
 the scale effect on the effective wake and its influence on sheet cavity dynamics; 
 the development and validation of practical computational methods for the simulation 

of propeller-induced hull-pressure fluctuations; and, 
 the development of a computational method for the determination of the strength of 

sources of propeller noise. 
 

For the numerical simulation of propeller-induced hull-pressure forces two computational 
methods have been used, both based on the potential flow assumption and employing the 
Boundary Element Method for the discretization. One method is for the simulation of propeller 
flows, the other for predicting the acoustic scattering effect of the hull and free surface. 

For the experimental simulation on model scale the Depressurized Towing Tank of the 
Maritime Research Institute Netherlands has been utilized. Model experiments have also 
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been used to provide validation data for the numerical methods. Test cases involving non-
cavitating and cavitating propellers have been analyzed. 
 
 

9.2 Conclusions 
 

It is concluded that the hull-pressure fluctuations due to non-cavitating propellers is 
sufficiently accurately simulated by the numerical methods employed, specifically the 
harmonic amplitudes, while there exist some phase errors. The more important contribution in 
the hull-pressure fluctuations due to sheet cavitation is more significantly error-prone. In the 
test case that is treated, the hull-pressure amplitude at the first blade rate frequency is 
sufficiently accurately predicted. However, a series of simulations involving a gradual load 
reduction could not reproduce the decrease in first harmonic pressure amplitude that has 
been found in scale model experiments. 

The tip vortex cavity and the interaction of the tip vortex with the sheet cavity collapse 
are not represented in the computational method, which makes its usefulness for the 
prediction of higher order hull pressures questionable. One should bear in mind that more 
elaborate methods that do model cavitating tip vortices are, at least at the time of writing, not 
suitable for day-to-day application, a requirement that has been imposed on the methods 
used in this thesis. 

It has been shown how the scale model vibratory response to propeller excitation forces 
may cause a significant parasitic contribution to the measured hull-pressure field. In the 
present study, the disturbing influence of model vibrations on measured pressure fluctuations 
is counteracted by stiffening the model's afterbody, measuring the remaining afterbody 
accelerations, and using this information as input to a Boundary Element Method for acoustic 
radiation. Thus, the vibration-induced surface-pressure distribution is computed and 
subtracted from the measured hull pressures. Whenever the vibration modes are simple 
enough to be captured by a limited number of accelerometers this correction method has 
proven to be effective. 

The issue of the scale effect on the ship’s wake has been hypothesized to be the most 
important cause of inaccuracies in the prediction of hull excitation forces by means of 
experiments in model basins. It has been studied how the scale effect on the wake field, 
caused by failing to adhere to the full scale flow Reynolds number in model scale 
experiments, affects propeller loading, hence cavitation dynamics and eventually hull-
pressure fluctuations. Only sheet cavitation has been considered. 

In the present study a Reynolds Averaged Navier-Stokes method has been used to 
inversely design a scale model hull that generates a wake field much closer resembling the 
ship scale target wake field than do the geometrically similar hull models that are 
conventionally used. As a demonstration, a scale model hull of a container vessel has been 
designed, manufactured and tested. This test has proven that the pressure amplitude at the 
first order of blade rate frequency can indeed be accurately predicted. 

Measured hull-pressure amplitudes are usually compared with maximum allowable 
values specified in contracts. For comparative purposes as well as to judge the accuracy of 
predictive hull-pressure data, it is advocated to convert these hull-pressure amplitudes into 
meaningful figures of merit regarding excitation forces and acoustic source characteristics. 
Integral hull forces and propeller source strengths have been used for this purpose. Ways of 
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modeling the propeller action including cavitation have been studied by means of acoustic 
point sources. The strengths of these sources are proposed as a basis for comparing 
predictions of hull vibratory excitation and reality. 

To this end, the developed acoustic Boundary Element Method has been applied in an 
inverse way with measured hull-pressure data as input. This enables the distinction of the 
main source types contributing to the pressure field. The method is applied to a container 
vessel with a cavitating propeller showing only a weak non-cavitating hull-pressure field. 
Accurate results are obtained for the first and second blade rate pressure amplitudes - the 
only significant ones - using only one stationary monopole source to model the cavity 
dynamics. The method is also applied to three non-cavitating propellers. For these cases, the 
displacement and loading effect of the blades passing underneath the hull is reasonably 
accurately modeled by just a few monopole or dipole ring sources. 
 
 

9.3 Recommendations 
 

It may be argued that the demonstration experiments performed within the scope of this 
thesis are limited in the sense that they can provide qualitative insights only. Nevertheless, it 
is the author’s opinion that the process of gathering such insights should continue until all 
major factors that are affecting the test results have been identified and investigated. It is only 
then that a more quantitative uncertainty analysis can be used to full effect. In the prediction 
of first order blade rate pressure fluctuations the state-of-art may be advanced enough to 
make it worthwhile to start performing such uncertainty analyses. However, for the higher 
orders of blade rate this is not the case and the study of the following issues needs to 
precede possibly expensive uncertainty analyses23. 
 

Pressure amplitudes at higher orders of the blade rate frequency are not accurately 
predicted either by the computational method or by the model experiments. Higher order 
amplitudes are strongly affected by the dynamics of the cavitating vortex, a feature that is 
lacking in the computational method used. It is recommended to direct future research 
towards the inclusion of effects of cavitating vortex dynamics on pressure pulses. 

In model experiments, higher order amplitudes are overpredicted for the low gas content 
at which the experiments have been performed. Experiments performed at higher gas 
contents have initially shown results very close to full scale results for the first four orders of 
blade rate, but repeatability issues and lacking understanding of the underlying physical 
phenomena do not allow the drawing of any general conclusions. Future research should be 
aimed at delivering guidance on the gas content to be used for experimentally prediction 
realistic vortex cavity dynamics. Although issues related to the effects of water quality have 
been thoroughly investigated by model basins with a view to cavitation inception, they should 
also be investigated in relation to hull-pressure fluctuations. 

Variability issues deserve more attention. While performing the investigations, it has 
been striking to observe the large variability in pressure pulses from one blade passage to the 
next in cases without any apparent inception problem. Differences in variability between 

                                                           
23 Here it is referred to the number of experiments that have to be performed before an uncertainty 
analysis can be made. 
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model and ship scale experiments may strongly affect the pressure pulses, specifically the 
higher order ones. 

Finally, given the sensitivity of cavity dynamics to the wake peak flow velocity, the 
accuracy of effective wake field computations at model and full scale for the purpose of 
designing non-geosim ship models should be investigated. This particular factor affects the 
hull-pressure amplitudes at the first blade rate frequency to such an extent that it has to be a 
main focus of any future uncertainty analysis. 
 
 



 
 
 

 

 
 
 
 
 
 

A KIRCHHOFF’S METHOD 
 
 

…which recapitulates boundary integral equations for potential flows based on 
Green’s identities. The integral equations serve as candidate methods for the 
determination of the scattered field and hull-surface pressures due to propeller 

sources of noise. Time and frequency domain formulations are presented. 
 
 

A.1 Differential Equations for Potential Flows 
 

In the derivations that follow, scalar quantities like the density, ( , )tx , and vector 

quantities like the velocity, ( , )tv v x , are assumed to be functions of time, t , and Cartesian 

position vectors, 1 2 3( , , ) ( , , )T Tx x x x y zx , relative to a Galilean frame of reference in 33 . 

Vector quantities are written in boldface (e.g., v ) or index notation (e.g., iv ). Using this 
notation with Einstein’s index summation convention, the differential equations are derived 
that describe potential flows supporting acoustic fields. 

For the continuity equation, it can be written, 
 

 ( ) ( )i m
i

v Q
t t x

v  (A.1) 

 
in which mQ  denotes the rate of mass injection per unit volume. With ijP  as the stress tensor, 

and if  as an external volumetric force field, the momentum equation reads, 
 

 i
ij i i j ij i

j

Dv P v v v P f
Dt t x

 (A.2) 

in which 
 0ij ij ij ij ijP p p p  (A.3) 
 
Here, p  denotes pressure, 0p  a reference pressure, p  the pressure disturbance defined as 

the deviation from the reference value, ij , the Kronecker delta function, and ij , the shear 

stress tensor. Alternatively, the momentum equation can be put into Lamb-Gromeka form, 
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2 ijp

t
v v v v ω f  (A.4) 

 
with ω v  as the vorticity vector. In case of inviscid (i.e., ij 0 ) and irrotational (i.e., 

ω 0 ) flow, Eq. (A.4) simplifies to, 
 

 
2

p
t
v v v f  (A.5) 

 
Whenever flows may be considered irrotational, the velocity can be expressed as the gradient 
of a scalar velocity potential, ( , ) ( , )t tx v x . If, furthermore, the flow is barotropic (i.e., 

( )p p ) and subjected to a conservative volumetric force field (i.e., Ff ), Eq. (A.5) 
becomes, 

 
0

21
2

p

p

dp F
t

v 0  (A.6) 

 
from which follows the Bernoulli equation for compressible unsteady potential flow, 
 

 
0

21
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p

p

dp F C t
t
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in which ( )C t  is an arbitrary function of time. 

In a hydroacoustic context, the velocity potential is often split into a time-dependent 
disturbance potential, ( , )tx , and a steady, ‘background’ potential, 0( )x , assuming the 

former is much smaller than the latter, and similarly for the pressure24, ( , )p tx , density, ( , )tx  
and velocity, 

 

0 0

0 0

0 0

0 0

( , ) ( ) ( , ) with

( , ) ( ) ( , ) with

( , ) ( , ) with

( , ) ( ) ( , ) with

t t

p t p p t p p

t t

t t

x x x
x x x
x x

v x v x v x v v

 (A.8) 

 
The background flow is assumed incompressible, i.e., 0 0v , and of constant density 0 . 

When the quantities in Eq. (A.1) can be written in terms of a time-dependent, fluctuating 
part and a steady ‘convected’ flow, as in Eq. (A.8), then the continuity equation can be 
rewritten by neglecting products of small quantities and using that the convected flow is 
divergence free. In absence of mass sources, 
 

                                                           
24 Note that the total pressure was already split into reference and disturbance pressures in Eq. (A.3). 
Note also that primes are used to denote quantities related to disturbances. 
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 0 0 0
t

v v  (A.9) 

 
In terms of the velocity disturbance potential, Eq. (A.9) becomes, 
 

 2
0 0 0

t
v  (A.10) 

 
When no volumetric force field needs to be considered, the Bernoulli equation can be 
rewritten similarly to give, 

 0 0p
t

v  (A.11) 

 
The pressure and density disturbances are assumed to be related through the speed of 
sound, c , as, 
 

 2 2
0 0 0 0( ) ( ) ( ) ( ) . . . ( )

linearizationdp dpp p h o t p c c
d d

 (A.12) 

 
This relation is valid for so-called homentropic flows (i.e., flows of constant and uniform 
entropy). Combining Eqs. (A.10), (A.11) and (A.12) yields the convected wave equation, 
 

 
2

2
02

1 0
c t

v  (A.13) 

 
After Eq. (A.13) is solved for the disturbance potential, , Eq. (A.11) is used to compute the 

pressure disturbance. Often, the mean flow is of constant speed in, say, the 1x -direction, i.e., 
 
 0 1( ) vv x  (A.14) 
and Eq. (A.13) becomes, 

 
2

2
12

1

1 0v
c t x

 (A.15) 

 
In [Astley1986], Astley and Bain make use of a low Mach number approximation. When 
applied to the case of, 1M v c , this approximation yields, 
 

 
2

2
2 2

1

1 2 0M
c t c x t

 (A.16) 

 
and is valid for small M . When the mean flow velocity is entirely neglected, 
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 0p
t

 (A.17) 

 
and the convected wave equation reduces to the wave equation, 
 

 
2

2
2 2

1 0
c t

 (A.18) 

 
Finally, for incompressible flow, c  approaches infinity, and  obeys the Laplace equation, 
 
 2 0  (A.19) 
 
If the assumption of incompressibility is made at the start of the derivation, the continuity 
equation, Eq. (A.1), can be rewritten to give the Laplace equation with the difference that the 
pressure is not necessarily given by Eq. (A.17), but by a version of Bernoulli’s equation valid 
for incompressible flow. 

In the frequency domain, with harmonic time dependence of the form exp( )i t ,  the 

radian frequency and, i , the imaginary unit, defined by 2 1i , Eq. (A.11) becomes, 
 
 0 0ˆ ˆ( ; ) ( ; )p k c ik kx M x  (A.20) 
 
with carets indicating complex-valued amplitudes of frequency components of the pressure 
and velocity disturbance potential. Here, k c  denotes the wave number. The convective 

flow Mach number, 0M , is defined as 0 0 cM v . Analogously, the convected wave equation 
becomes the convected Helmholtz equation, 
 
 22

0ˆ ˆ 0k iM  (A.21) 
 
In case of uniform flow, 1v , in the positive 1x -direction, 
 

 
2

2 2 2
2

1 1

ˆ ˆˆ ˆ 2 0k ikM M
x x

 (A.22) 

 
For low Mach numbers it follows, 
 

 2 2

1

ˆˆ ˆ 2 0k ikM
x

 (A.23) 

 
Without mean flow, Eqs. (A.20) and (A.21) simplify to, 
 
 0 0ˆ ˆ ˆp i ik c  (A.24) 
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and to the Helmholtz equation, 
 2 2 ˆ 0k  (A.25) 

 
respectively. Finally, if the fluid’s compressibility is entirely neglected, the frequency 
formulation reduces to the Laplace equation, 
 
 2 ˆ 0  (A.26) 
 
at all frequencies, with the pressure obeying a Fourier transformed version of Bernoulli’s 
equation for incompressible flows. 

Figure A.2 presents an overview of the governing equations treated for the velocity 
potential. Figure A.1 gives a similar review for the pressure. Note that, although Eq. (A.13) is 
not generally valid for the pressure perturbation, the latter does fulfill Eqs. (A.15), (A.16), 
(A.18) and (A.19) as well as Eqs. (A.22), (A.23), (A.25) and (A.26), which may therefore be 
solved for directly in terms of pressure.  
 
 

 
Figure A.1: Overview of governing equations for the pressure perturbation. 
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Figure A.2: Overview of governing equations for the velocity perturbation potential. 
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So far, the governing equations for the velocity disturbance potential and pressure 
perturbation have been derived without considering the sources that are the reason for their 
existence. As the right hand sides of the equations are zero, the sources must either be 
distributed over the boundaries and appear through boundary conditions, or occupy a certain 
space in the interior of the fluid domain, which then has to be excluded from the equation’s 
domain of validity. An elegant alternative approach is to use so-called generalized functions, 
which allow the extension of the domain of the field equations to the whole 33  domain. In the 
next section, using generalized functions and introducing the concept of the Green’s function, 
the governing equations are solved for distributions of point sources in three-dimensional 
unbounded space. For flow domains including boundaries, boundary integral equations based 
on Green’s identities are presented in Section A.3. 
 
 

A.2 Green’s Functions 
 

In case of a volume distribution of point sources inside the domain, the solution of the 
field equations, derived in Section A.1, is elegantly written in terms of Green’s functions. In 
the following section, Green’s functions are presented for the operators appearing in Section 
A.1. Both time and frequency domain alternatives are given. 
 
A.2.1 Time-independent problems 
 

Suppose L  is a linear, self-adjoint, time-independent, differential operator, then there 
may exist a solution, ( , )G x y , called the Green’s function, of the equation, 
 
 { ( , )} ( ) ( )L G x y x y r  (A.27) 
 
where  denotes Dirac’s delta function, defined in Appendix G.1 and position vectors, x , y  

and r x y , within an unbounded domain, V , in 33 . In that case, the solution of, 
 
 { ( )} ( )L qx x  (A.28) 
 
with ( )q x  as the driving source distribution in V , becomes, 
 

 
3

( ) ( ) ( , )q G dVyx y x y
3

 (A.29) 

 
with the subscript, y , indicating that the volume integration is to be performed in terms of the 
y -coordinates. In Eq. (A.29), ( )x  may be interpreted as the potential at x  induced by the 
field source distribution, ( )q x . For bounded domains this result can be extended to 
incorporate certain boundary conditions. This is achieved in the next section through the 
Green’s identities recapitulated in Appendix G.3. 
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The Laplace operator is defined as, 2L . Its Green’s function, ( , )LG x y , for an 
unbounded domain, is the solution of Eq. (A.27), 
 

 
1 1( , )

4 4LG
r

x y
x y

 (A.30) 

 
with r  the magnitude of r . The Green’s function, ( , )LG x y , may be interpreted as the 
potential at x  induced by a point source of unit strength at y . Time can only enter Laplace 
problems through time-dependent boundary conditions. As a result, flows obeying Laplace’s 
equation do not show memory effects. A disturbance exercises its influence instantaneously 
throughout the whole domain. 

The inhomogeneous form of the Laplace equation reads, 
 
 2 ( ) ( )qx x  (A.31) 
 
The solution, cast in the form of Eq. (A.29), then becomes, 
 

 
3

( )( )
4
q dV

r y
yx

3
4 r

 (A.32) 

 
The Helmholtz operator is defined as, 

 

 2 2L k  (A.33) 
 
Its Green’s function, ( , ; )HG kx y , for an unbounded in domain, is written as, 
 

 
exp exp

( , ; )
4 4H

ik ikr
G k

r
x y

x y
x y

 (A.34) 

 
The inhomogeneous form of the Helmholtz equation reads, 
 
 2 2 ˆˆ( ; ) ( ; )k k q kx x (A.35) 

with solution, 

 
3

expˆˆ( ; ) ( ; )
4

ikr
k q k dV

r yx y
3

 (A.36) 

 
In Eqs. (A.35) and (A.36) the caret symbol is used to denote a complex-valued frequency 
component. The solution in the time domain is retrieved as, 
 

 ˆ( , ) Re ( ; )exp( )
k

t k i tx x (A.37) 
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Eq. (A.37) is valid whenever the time domain solution can be expressed in terms of discrete 
frequency domain components as in the periodic type of events occurring in each propeller 
revolution. 

For cases where the mean flow cannot be neglected, the convected Helmholtz operator 
is defined as, 
 22L k iM  (A.38) 
 
with cM v . Because this operator is not self-adjoint, its Green’s function is based on the 

adjoint operator (i.e., the complex conjugate of Eq. (A.38)). Using, 2 1 M M , the Green’s 

function, ( , ; )CHG kx y , for unbounded domains, reads [Francescantonio1999, Wu1994, 
Zhang1997], 

 

22 2 2

2 2 2

exp
( , ; )

4
CH

ik r
G k

r

r M r M
x y

r M
 (A.39) 

 
If the flow is in the direction of the first coordinate, then, 1( ,0,0) ( ,0,0)v c MM , and 

2 21 M , hence, 
 

 
2

1 1exp exp
( , ; )

4 4CH

ik M x y r i
G k

r r
x y  (A.40) 

with 

 1 1
2( , ; )

M x y r
k

c
x y  (A.41) 

and 

 22 2 2
1 1( , ; )r k M x y rx y  (A.42) 

 
As Eq. (A.40) was derived from the adjoint operator, physically it can be interpreted as the 
potential due to a unit point source in a uniform flow directed in the negative 1x -direction, 

although the physical flow is indeed in the positive 1x -direction [Zhang1997]. Therefore, the 

inhomogeneous form of the convected Helmholtz equation for the potential, ˆ , 
 

 
2

2

1

ˆˆ( ; ) ( ; )k iM k q k
x

x x  (A.43) 

has a solution, 

 
3

expˆˆ( ; ) ( ; )
4

i
k q k dV

r yx y
3

 (A.44) 
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In this context, it is interesting to note the possible application of a Prandtl-Glauert 
transformation [Rienstra2008]. Define 1X x  and T t M c X  with  and 

K k , and the Helmholtz equation for a modified potential, , is retrieved, 
 

 
2 2 2

2
2 2 2

2 3

0K
X x x

 (A.45) 

with 
 1 2 3 2 3ˆ( , , )exp( ) ( , , )exp( )x x x i t X x x i T  (A.46) 
 
However, the use of this transform is inconvenient whenever boundary conditions become 
unwieldy in a system of reference moving with the flow. 
 
A.2.2 Time-dependent problems 
 

When L  is time-dependent, Eqs. (A.27) and (A.28) become, 
 
 { ( , , , )} ( ) ( )L G t tx y x y  (A.47) 
and 
 { ( , )} ( , )L t q tx x (A.48) 
with solution 

 
3

( ) ( , ) ( , , , )q G t d dVyx y x y
3

 (A.49) 

 
The d’Alembert or wave operator is defined as, 

 

 
2

2
2 2

1L
c t

 (A.50) 

 
When the problem is time-independent or the speed of sound becomes infinite, the Laplace 
operator is retrieved. As opposed to the latter case, cause and effect relations may no longer 
be regarded as immediate, and the Green’s function, ( , , , )WG tx y , i.e., the solution of Eq. 
(A.47) in an unbounded domain, now contains the retarded time, , discussed in Appendix 
G.2, 

 
( / ) ( / )( , , , )

4 4W

t c t r cG t
r

x y
x y

x y
 (A.51) 

 
The inhomogeneous form of the wave equation (also known as Poisson’s equation) reads, 
 

 
2

2
2 2

1 ( , ) ( , ) ( , )t t q t
c t

x x x  (A.52) 
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The solution is an integral of the source distribution, 
 

 
3 3

( ) ( , )( , ) ( , )
4 4

t c q t r ct q d dV dV
ry y

x y yx y
x y

3 3
4 r44 y

 (A.53) 

 
 

 
Figure A.3: Overview of Green’s functions 

 
 

The convected wave operator is defined as, 
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for steady convective velocity, 0v . The Green’s function, ( , , , )CWG tx y , for an unbounded 
domain, is then, 

 
( ( , ))( , , , )

4 ( , )CW
tG t

r
x yx y

x y
 (A.55) 

 
If 0v  points in the direction of the first coordinate,  and r  are given by Eqs. (A.41) and 

(A.42). For the inhomogeneous form of the wave equation, it is written, 
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As before, the solution is written as an integral of the source distribution in 33 , 
 

 
3 3
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4 4
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3
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r44
 (A.57) 

 
Figure A.3 presents an overview of the Green’s functions treated here. 

By applying a transformation equivalent to the Prandtl-Glauert transformation, the wave 
operator, Eq. (A.50), may be derived and 1 2 3 2 3( , , , ) ( , , , )x x x t X x x T  satisfies, 
 

 
2 2 2 2

2 2 2 2 2
2 3

1 0
X x x c T

 (A.58) 

 
after which the pressure follows from, 
 

 1( , )p X T v
T X

 (A.59) 

 
 

A.3 Boundary Integral Formulations 
 

Now, the Green’s identities, introduced in Appendix G.3, are used to derive boundary 
integral formulations for potential flows. Thus, the introduction of boundaries is facilitated. As 
before, both time and frequency domain alternatives are presented. 
 
A.3.1 Time-independent integral equations 
 

Inserting LG  and  into Green’s second identity, Eq. (G.13), gives,25 
 

 2 2 L
L L L

V S

GG G dV G dS
n n

(A.60) 

 
with the normal vector on S  pointing out of V . When  satisfies the Laplace equation, Eq. 
(A.60) reduces to, 

 ( ) ( , ) ( , ) ( ) ( ) ( )L
L

S

G G dS c
n n y

y y

y x y x y y x x  (A.61) 

                                                           
25 Here,  should not be confused with the one used in Eq. (A.58). 
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with ( )c x  defined according to Eq. (G.15). For ( )q q x ,  satisfies Eq. (G.14) and Eq. 
(A.61) becomes, 
 

 ( ) ( ) ( ) ( )L
L L

S V

G G dS q G dV c
n n y y

y y

y y x x  (A.62) 

 
In the frequency domain Eq. (A.62) is also valid for ˆ . After introducing compressibility 

effects by using HG  and 0q , Eq. (G.13) becomes, 
 

 
ˆˆ ˆ( ) ( ) ( )H

H

S

G G dS c
n n y

y y

y x x  (A.63) 

 
When the normal derivative on the boundary is given as a normal velocity distribution, 
ˆ ˆnv v n , the so-called Kirchhoff-Helmholtz integral equation is obtained, 

 

 
exp exp

ˆ ˆ( ) ( ) ( )
4 4n

S

ikr ikr
v dS c

r n r y
y

y x x  (A.64) 

 
For rigid body scattering problems the velocity term on the left vanishes and is replaced by an 
expression for the incident wave field. 

In case of a uniform flow in the 1x -direction, Wu and Lee [Wu1994] derive an integral 
expression for the convected Helmholtz equation using a weighted residual method and a 
Green’s function derived from the adjoint operator. The result reads [Zhang1997], 
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 (A.65) 

with 

 0 20 0
1

1 1

( ) CH CH

S

G GC M n dS
x x yx  (A.66) 

 
and 0( , ) 1 (4 )CHG rx y  as the zero wave number variant of ( , )CHG x y . 

 
A.3.2 Time-dependent integral equations 
 

Inserting WG  and  into Green’s second identity (see Appendix G, Eq. (G.13)), 
gives, 
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 2 2 W
W W W

V S

GG G dV G dS
n n

 (A.67) 

 
When  satisfies the homogeneous wave equation, Eq. (A.67) reduces to, 

 ( ) ( , ) ( , ) ( ) ( ) ( )W
W

S

G G dS c
n n y

y y

y x y x y y x x  (A.68) 

 
For ( )q q x ,  satisfies Eq. (A.52) and Eq. (G.13) becomes, 
 

 ( ) ( ) ( ) ( )W
W W

S V

G G dS q G dV c
n n y y

y y

y y x x  (A.69) 

or, with 0q , 
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4 4n

S

t r c t r cv dS c
r n r y

y

y x x  (A.70) 

 
If this expression is worked out, or, alternatively, if Eq. (A.64) is inverse Fourier transformed, 
the Kirchhoff integral equation is obtained, 
 

 2

1 ( ) ( )
4

n

rtS
c

v r dS c
r r cr n y

y

x xrrr
 (A.71) 

 
with the brackets indicating that the integrand is to be evaluated at the retarded time, 

/t r c  (see Appendix G.2). When Eq. (A.71) has been solved, the disturbance pressure 

is determined by 0p . Combining this with the time derivative of Eq. (A.71) yields an 

integral expression for the acoustic pressure disturbance, valid for stationary surfaces, S , 
 

 0
2

1 ( ) ( , )
4

n

rtS
c

v p p r dS c p t
r r cr n y

y

x xrpp rrpppv pnvv ppp
 (A.72) 

 
The Kirchhoff integral equation is often used to determine the acoustic properties in a 

medium outside a certain source region in which CFD is used to solve the more elaborate 
equations that apply there. Interference effects are conserved in the compressible medium 
outside the source region. There, the fluid is assumed to be at rest, save for small (acoustic) 
disturbances. However, when a flow does exist one is forced to do either one of two things; 
the basic equations have to be modified to take into account the main stream, or a moving 
system of reference may be introduced in which the wave equation is still valid (e.g., the 
Prandtl-Glauert transform). The transformation of the solution to the fixed coordinate system 
then solves the problem. 
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For the first option, [Morino2003] gives the appropriate boundary integral equation. For 
non-lifting bodies it becomes, 
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with 1 1/x x /x x , 2 2x xx x , 3 3x xx x  and ( , ) 1 4 1 4G rx y x yG( ) 1 4 x y1 4) 1 4 1 4) 1 41 4 . Superscript  is equi-

valent to subscript t , in which 1 1 /M y x r cMM ccy x r /y x //r /  and 1 1 /M x y r cMM ccx y r /x y //r / . 

 
 

 
Figure A.4: Overview of integral equations for the velocity disturbance potential. 

 
 

For moving surfaces, Farassat and Myers derive an integral expression [Farassat1988] 
of which the restriction to rigid surfaces leads to, 
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with 
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and 
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2 cos (cos )( )cos
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 (A.76) 

 
Here, the variables used are defined as follows: n nM v c ; rM crv r ;  is the angle 

between the outward normal, n , and rr ; rr ; nM M nM M n ; ( )rM rM r( ) rM ( )( ; Mn n MMn n M ; 

rn rn rrn rr ; and tM  is the tangential component of the Mach number. Finally, 2  denotes the 
surface gradient operator. 

An overview of the integral equations presented here is given in Figure A.4. 
 
 
 



 
 
 

 

 
 
 
 
 
 

B FFOWCS WILLIAMS-HAWKINGS’ METHOD 
 
 

…which presents a derivation of the Ffowcs Williams-Hawkings equation as well 
as several related formulations that may serve as methods for the determination 

of field and hull-surface pressures due to propeller sources of noise. 
 
 

B.1 Lighthill’s Acoustic Analogy 
 

A general mathematical description of flow noise, not making any simplifications at the 
outset, is known as Lighthill’s acoustic analogy [Lighthill1952/1954]. Its derivation starts with 
the continuity equation, Eq. (A.1), restated here for convenience26, 
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v  (B.1) 

 
The momentum equation, Eq. (A.2), is written as, 
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Now, by taking the time derivative of Eq. (B.1) and the divergence of Eq. (B.2), it follows, 
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and 
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Subtracting Eq. (B.4) from Eq. (B.3), and defining a density disturbance, 0 , in 
analogy with the perturbation pressure (cf. (A.3)), gives, 
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26 Variables and notation conventions are introduced in Appendix A. 
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Lighthill’s original idea was to rewrite this equation as a wave equation for the density 
disturbance. In order to obtain the wave operator on the left hand side, a term involving the 
Laplace operator is subtracted from both sides, finally giving Lighthill’s equation, 
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which involves Lighthill’s stress tensor, ijT , 
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With no external mass sources and forces, the free space solution to Eq. (B.6) reads, 
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after application of Eq. (A.53). Alternatively, Eq. (B.6) can be written in terms of the pressure 
disturbance, p , 
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with *
ijT  and W as, 

 *
ij i j ijT v v  (B.10) 

and 
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pW
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 (B.11) 

 
The free space solution then becomes, 
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When the pressure is linearly dependent on density as in Eq. (A.12), then W  in Eq. (B.12) 
vanishes and the pressure reduces to a deceivingly simple volume integral of a modified 
version of Lighthill’s stress tensor. However, the source terms usually involve unknown 
quantities, hence expressions like Eq. (B.12) are by no means a straightforward exercise in 
quadrature. In practice, the flow involved in the stress tensor is computed by CFD and Eqs. 
(B.8) or (B.12) model the field acoustics in a post-processing step. 
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B.2 Ffowcs Williams-Hawkings Equation 
 

So far, no provision has been made for the presence of reflecting, moving or radiating 
boundaries. Ffowcs Williams and Hawkings [FfowcsWilliams1969] extended Lighthill’s work 
by incorporating boundaries in an elegant way using generalized functions (see, e.g., 
[Ehrenfried2003]). Suppose ( , )f tx  is a well-behaved function, defined in 33  as, 
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with V  a volume bounded by S . The function is assumed differentiable in all points with the 
possible exception of non-smooth parts of S  (i.e., knuckles and edges). Furthermore, 
 
 ( , ) 0 forf t Sx x  (B.14) 
 
As this gradient is parallel to the vector normal to the boundary, the latter can be defined as, 
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The material derivative of the function f  equals zero on S , 
 

 0Df f f
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Applying Heaviside’s step function, H , to f  gives, 
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This function may be used to extend the validity of the formulations to be derived to locations 
on and inside boundaries, and hence to the entire 33 . Thus, free space solutions become 
applicable to problems involving boundaries, be it at the cost of integrands of increased 
complexity involving generalized functions. 

Starting from the equation of continuity, Eq. (B.1), multiplying by Eq. (B.17) and 
subtracting a constant, 0 , gives, 
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Using Eqs. (G.8) and (B.16), and denoting the velocity normal to the boundary as iu , one 
obtains, 
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Applying the same procedure to the momentum equation, Eq. (B.2), yields, 
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The divergence of the momentum equation is subtracted from the time derivative of the 
continuity equation after which 2 2

0 ( )ij i jc H f x x  is subtracted from both sides of 

the result in order to obtain an inhomogeneous wave equation [Dowling1983, Brentner1998, 
Francescantonio1997], 
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with the right hand side rewritten using Eq. (B.15) and Lighthill’s stress tensor. Eq. (B.21) 
constitutes the extended form of Lighthill’s equation. For 0f  everywhere, Lighthill’s 
equation, Eq. (B.6), is retrieved. The equation as well as its solution are known as the Ffowcs 
Williams-Hawkings equation (or FW-H equation). The solution reads, 
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The integrations are performed in a moving (inertial) coordinate system over a rigid, but 
penetrable surface. The expressions between brackets are to be evaluated at the retarded 
time (see Appendix G.2). The Mach number, rM , relates to the speed at which the point 

source approaches the observer. It is a component of the source Mach number, s cM x , 
with the prime here denoting derivation with respect to the argument. 

The FW-H equation may also be stated in terms of pressure by assuming a linear 
relation between pressure and density disturbances, Eq. (A.12), 
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Then, the observer is assumed to be in the ‘linear’ region, the integration surface, however, is 
not. The following notation introduced by Di Francescantonio [Francescantonio1997, 
Brentner1998], 
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yields the ‘standard form’ of the FW-H equation [Brentner1998], 
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where use has been made of the fact that f  can be set to one. The solution is written as a 

summation, 
 ( , ) ( , ) ( , ) ( , )Q T Lp t p t p t p tx x x x  (B.27) 
in which, 
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is called thickness noise, and, 
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loading noise, with M i iL LM  and 2

i iM M M . rL  is the component of the loading in the 

‘radial’ direction. The surface, S , does not need to be coincident with an impenetrable object. 
A price is paid in that the density and momentum are needed as input. 

For flows around non-penetrable surfaces the two surface bound source terms simplify 
to, 
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with i ij jl P n . The thickness and loading part of the solution then read, 
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and 
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respectively. The derivatives in front of the integrals are considered awkward to evaluate and 
are therefore ‘worked inside’ the integrand. Thus, Farassat’s Formulation 1A (see, e.g., 
[Brentner1986]) is obtained with, 
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and 
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If only compressive stresses are allowed in the load vector, i.e., i il p n , then, 
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For incompressible, frictionless flows Brentner [Brentner1990] shows that, 
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and 
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Neglecting the Reynolds stresses and taking the derivatives of the surface integral inside the 
integrand yields, 
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Salvatore et al. [Salvatore2002/2006] were the first to apply the FW-H equation to 
cavitating ship propellers. They precomputed the cavitating propeller’s surface pressure and 
velocities using a hydrodynamic BEM comparable to the one that is used in this thesis. After 
neglecting Lighthill’s stress tensor, their FW-H equation reads, 
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 (B.40) 

 
from which follow Eqs. (B.33) and (B.35). The integration surface is coincident with the 
rotating propeller blades. 

FW-H formulations as presented above are normally used to compute radiated acoustic 
quantities from values (e.g., precomputed by CFD or BEM methods) on a ‘control’ surface, 
such as the propeller blade surface. However, in this thesis the interest lies in the ship hull 
scattered field produced by the propeller. Gennaretti et al. [Gennaretti2006, Testa2007] derive 
a formulation for an arbitrary number of scattering bodies. Here, their analysis is followed for 
one scattering body (i.e., the wetted hull). Neglecting non-linear terms, the following integral 
equation, equivalent to Farassat’s Formulation 1A (Eqs. (B.33)/(B.34)), is found, 
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with the frame of reference fixed to the body. The Green’s function, Ĝ , is defined as27, 
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Assuming the ship moves in the negative axial direction, the retarded time, , can be 
determined by Eq. (A.41). Note that in case of a permeable surface Eq. (B.41) must be 
supplemented with a term 
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To apply Eq. (B.41) to a cavitating propeller beneath a ship hull, the propeller action 

(i.e., the source) may be separated from the ship hull (i.e., the scatterer). This has been done 
by Testa et al. [Testa2007] for the case of a rotor/helicopter configuration in BVI (‘Blade 
Vortex Interaction’) conditions during descent flight. With the hull pressure field due to the hull 
(or fuselage) motion left out of consideration, the resulting formulation reads [Gennaretti2006],
 

                                                           
27 Note that the hat in the definition of the Green’s function in the original publication is retained here. 
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Here, subscript H  refers to ‘hull’ and inc  to the incident pressure field. As our interest is in a 
frequency domain formulation, a harmonic component of the pressure disturbance may be 
inserted into Eq. (B.44) to give, 
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An overview of integral equations presented here is given in Figure B.1. 

 
 

 
Figure B.1: Overview of FW-H formulations for rigid scattering applications. 
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ĜHp GGpp GHH

ˆp Ginc Gpinc

1
2

1
2

ˆ ˆˆ ˆ exp

ˆ ˆˆ ˆ exp

H H y
S

inc inc y
S

Gp ikc G p ikc dS
n n

Gp ikc G p ikc dS
n n

1 1
2 2

L L
H H inc inc

S S

G Gp p dS p p dS
n n

1 1
2 2

ˆ ˆ ˆ ˆL L
H H y inc inc y

S S

G Gp p dS p p dS
n n



 
 
 

 

 
 
 
 
 
 

C ALTERNATIVE PRESSURE FORMULATION 
 
 

…which derives an integral equation formulation in terms of the pressure instead 
of the velocity potential used by Vaz [Vaz2005] for the computation of the 

incompressible potential flow around a propeller in the time domain. 
 
 

C.1 Morino's Formulation for the Pressure 
 

In the Morino formulation for incompressible potential flows around propellers, ( , )p tx  

also obeys Laplace’s equation. Applying Green’s third identity to it, for points Sx , gives, 
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 (C.1) 

 
instead of Eq. (3.7)28. As the pressure is continuous across the vortex sheets, the pressure 
integral over the vortex sheets does not appear. The price to be paid for this convenience is in 
the form of additional terms for the normal component of the pressure gradient that appear 
instead. For the determination of the normal component of the pressure gradient Bernoulli’s 
equation is used, 
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For the velocity, appearing in Eq. (C.2), it can be written (cf. Eqs. (3.1) and (3.3)), 
 
 0( , ) ( , )wt tv y v y ω y  (C.3) 

 0 0( , ) ( , ) ( , ) ( , ) ( , )t t t t tv y v y y v y v y  (C.4) 

                                                           
28 Variables and notation conventions not introduced here are found in Appendices A and B. 
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in which the wake field, ( , )w tv y , is time-dependent because of the rotating system of 

reference. The propeller angular speed is denoted by ( ,0,0)Tω . The velocities in the 
right-hand-side of Eq. (C.2) can be rewritten as, 
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Using Eq. (C.5), the vector identity, ( ) ( ) ( ) ( )a b b a b a a b a b ; as well 

as v ; v 0 ; and 0 0v ω , the normal derivative of Eq. (C.2) can be worked 
out to give, 
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Indices  and  denote the tangential components of the vector in the plane of the panel. 
The depth’s normal derivative is determined by the vertical component of the normal vector, 
say, hn . Then, 
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Note that on cavitating patches of the surface, 0nv . The derivatives of the wake field 
velocity may be simplified by taking only its components in the plane of the propeller disc. The 
last term in Eq. (C.7) may be rewritten as, 
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Using, xe , as the unit vector in axial direction, 
 
 ( )) ( ) ( ) ( ) ( ) 3 2x x xω y ω y y ω y ω ω y e 0 0 e e  (C.9) 
 
Thus, 
 ( ( )) 2 ( ) 2x y z z yn v n vn v ω y n v e  (C.10) 

 
 
Finally, Eq. (C.7) gives, 
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The second term on the right-hand-side contains a time derivative that can be determined on 
the basis of discrete time step data, since in a rotating coordinate system the position 
coordinate remains the same. The non-trivial normal derivative in the third term may be 
expressed as a readily obtainable tangential derivative using that the disturbance velocity field 
is divergence free, 

 0n n
v vv v

n n
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Boundary Element Method PROCAL is based on a velocity potential formulation and 

computes pressures in collocation points using Eq. (3.9). As the right hand side of Eq. (C.11) 
contains only quantities that are known, it may be used for the determination of the normal 
component of the pressure gradient. Thus, the strengths of the sources, pq , are determined 

using Eqs. (C.11) and (3.9) instead of Eqs. (3.12) and (3.13). Note that although for the 
derivation Eq. (3.7) was replaced by its pressure-based counterpart, Eq. (C.1), the latter need 
not actually be implemented in order to determine the source strengths, pq . 

 
 
 





 
 
 

 

 
 
 
 
 
 

D POINT SOURCES OF SOUND 
 
 

…which concerns the source distribution in the field equations, when the latter 
contains stationary or moving point sources of a certain type. 

 
 

D.1 Moving Monopole Source
 

Consider a moving point source of the monopole type at instantaneous position, ( )s tx , 
injecting mass without momentum in a compressible fluid without a background flow. Then, 
the linearized continuity and momentum equations read, 
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t
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with, ( )VQ t , the source’s instantaneous volume injection speed29. Using 2/p c , taking the 
time-derivative of Eq. (D.1) and combining it with the divergence of Eq. (D.2), an 
inhomogeneous wave equation is obtained for the pressure disturbance, 
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with s st tr x x . The solution in integral form reads, 
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29 Variables and notation conventions not introduced here are found in Appendices A and B. 
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in which, as opposed to Eq. (A.53), the time integral has been retained instead of the volume 
integral. Furthermore, ( ) ( )s sr r , and the time derivative is taken outside the integral (see 

[Ehrenfried2003]). Now, Eq. (G.5) of Appendix G.1 can be used to arrive at the solution for a 
point source moving at subsonic speed. Then, the argument of the Dirac delta function, 
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has exactly one root, and its derivative reads, 
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Thus follows, 
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with the quantities within brackets to be evaluated at the retarded time and N  the number of 
roots appearing in Eq. (G.5). The Mach number, rM , relates to the speed at which the point 

source approaches the observer. It is a component of the source Mach number, s cM x , 
with the prime (here only) denoting derivation with respect to the argument. Lowson 
[Lowson1965] derives the far and near field for the pressure, 
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and 
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or combined as, 
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in which 2

i iM M M . If the same procedure is applied to the velocity potential, 
 

 
2

2
2 2

1 ( , ) ( , ) ( ) ( ( ))V st t Q t t
c t

x x r  (D.11) 

it follows, 
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From Eq. (D.5) a few helpful identities are found, 
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which can be used in conjunction with Eq. (A.17) to give the pressure field, Eq. (D.16). It is 
identical to the previously derived results, Eq. (D.10), 
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D.2 Stationary Monopole Source 
 

For a stationary monopole source, the Mach number is zero and Eq. (D.12) becomes, 
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Then, applying Eq. (A.17), or setting the Mach number in Eq. (D.16) to zero, yields the 
pressure field as, 
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Note that Eq. (D.18) illustrates how the volume injection acceleration, e.g., due to pulsating 
cavities are the cause of pressure fluctuations. Equivalent expressions in the frequency 
domain, where the Helmholtz equation, 
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D.3 Moving Dipole Source 
 

Next, consider a moving point source of the dipole type, injecting momentum without 
mass in a compressible fluid. The linearized continuity and momentum equations become, 
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t
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with F  an instantaneous force. Using 2/p c  and taking the time-derivative of Eq. (D.22) 
combined with the divergence of Eq. (D.23), an inhomogeneous wave equation is obtained for 
the pressure disturbance, 
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The solution in integral form reads, 
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where, as before, the time integral was retained and the divergence is taken outside the 
integral [Ehrenfried2003]. Thus, at subsonic speeds (cf. Eq. (D.7)), 
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Rienstra remarks [Rienstra2008] that this is not the same as a rotating divergence field, since 
the retarded time is a function of position and time. As before, from the retarded time 
constraint, 
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can be derived from which the pressure field is found as, 
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This expression from [Rienstra2008] was originally obtained by Lowson [Lowson1965] as,
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and 
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Alternatively, combining far and near field yields, 
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A force dipole (in a pressure field) is equivalent to two monopoles of equal strengths and 

of opposite sign at close proximity, i , to each other (in a velocity potential field). In the 

limit for vanishing proximity a volume dipole remains through differentiation of the source 
strength [Howe2003], 
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with solution, 
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Using Eq. (A.17), it follows for the pressure, 
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respectively. It must be remarked that, in physical terms, i VQVQV  does not represent a ‘real’ 
force. 
 
 



154 POINT SOURCES OF SOUND 
 
 

 

D.4 Stationary Dipole Source 
 

In case of a stationary dipole source, Eq. (D.26) becomes, 
 

 1( )( , )
4

i

i s

Fp t
x r

x  (D.37) 

 
The stationary volume dipole can be expressed as, 
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which, when rewritten in terms of pressure, reads, 
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Similar expressions in the frequency domain, where the Helmholtz equation, 
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and for the pressure (Eq. (A.24)), 
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Higher order point sources can be derived by applying a second derivative to a second 

order tensor, which leads to a pressure integral representation like, 
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An application of this quadrupole field is found in Section B.1. 
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D.5 Multipoles as Approximate Solutions 
 

In free space the disturbance velocity potential can be expressed as a solution of the 
inhomogeneous wave equation, Eq. (A.52), 
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When the source distribution, q , is limited to a region of diameter, D , two ways of simplifying 
this equation are possible, viz., the far field approximation and the assumption of 
compactness of the source field. If the fictitious centre of the source region is at cx  and 

cR Dx x , the denominator in Eq. (D.44) may be taken outside the integral to give the 

far field formulation, 
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For harmonic source components, ˆ( , ) ( )exp( )q x t Q x i t , of wave length, D , the 
retarded time may be taken outside the integral. This yields, 
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When, in addition, the observer is in the far field, the integral in Eq. (D.46) is of the source 
strength only. The Green’s function appearing in Eq. (D.46) can be expanded in a Taylor 
series around the centre of the source region, cy . Eq. (D.46) then becomes, 
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with ,i i c iy y y . 

Using that the derivatives of G  with regard to a source and observer point only differ by 
a minus sign, a multipole expansion is arrived at, Eq. (D.48), in which the higher order terms 
have been deleted. Furthermore, the integral contributions in Eq. (D.47) have been replaced 
by source strength coefficients. Thus, a harmonic component of the integral of Eq. (D.47) is 
written as a series of multipoles at the source centre. The convergence of the series 
determines to a great extent its usefulness in practice. Strictly speaking, Eq. (D.48) is only 
valid if boundaries or bounding objects are absent. 
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The concept of approximating the effect of a source region by a multipole expansion at a 

certain point can be extended to a set of such points with increased accuracy at the cost of an 
increased number of unknown strengths. The choice of number and position of the multipoles 
determines the usefulness of the approximation. If, at some points, the velocity or pressure is 
known, this can be used as conditions to be imposed on the multipole strengths through a 
minimization procedure for the prediction error. 
 
 
 



 
 
 

 

 
 
 
 
 
 

E FREQUENCY DOMAIN SOURCE FORMULAE 
 
 

…in which the distributions of rotating sources of noise are transformed from the 
time domain to the frequency domain. 

 
 

The propeller’s elemental sources of noise are rotating around the propeller centre line. 
This can also be said of the helicoidally shed vorticity. Assuming non-uniform, but stationary 
propeller inflow, the source field becomes periodic in time at blade passing frequency, 1 , 

given by 1 Z , with, Z , the number of propeller blades and, , the propeller revolution 

rate. The time, T , needed for one revolution is 2T . Likewise, 1 12 2T Z  
denotes the blade passing period. 

A cylindrical coordinate system is defined with the origin at the propeller centre, the x -
axis pointing in upstream direction, the z -axis upward and the y -axis to port. Then, the 

propeller is rotating in the yz -plane, where polar coordinates are defined as, ( , )r , with  

running in clockwise direction when looking in the positive axial direction, and 0  on the 
y -axis. Next, assume the propeller blades and wake surfaces to be approximated by 

b wN N  panels, iSiSi , with panel collocation points, ( )col
i tx , for 1.. b wi N N . During one 

revolution of period T , tN  snapshots are made of the propeller at equidistant time intervals 

of / tt T N . The time samples in a revolution are indexed jt j t  with 0.. 1tj N . Each 

of the b wN N  collocation points assumes tN  positions, ( )col col
i j ijtx x . Also, each of the 

panels can be associated with a point source of monopole type and strength, ( )i j ijt , plus 

one of surface normal dipole type and strength, ( )i j ijt .

Now, the b wN N  rotating sources are replaced by b w tN N N  stationary ones at 

angular positions, 0( )i j ij it j , that correspond with the positions of the rotating 

sources at jt t . The angular spacing, , is given by 2 tN  and 0i  denotes the 

angular position of the thi  panel at the start of the revolution. For brevity of notation, the 
source strengths ( )i t  or ( )i t  at a fixed point are denoted by ( )f t . This is the product of the 

instantaneous strength, which is written as ijf  at jt t , and a step function, which is one 

during the time step the panel’s collocation point coincides with the source position, and zero 
at other times. As the number of time steps is always taken as a multiple of the blade number, 
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1t tN N Z , the step function actually becomes one during Z  time steps. The function ( )f t  

can be developed into a Fourier series based on a period covering one blade passage, 1T , 
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with 1n n  for 0n . The second option in Eq. (E.1) is used here (given the harmonic 

time dependence, exp( )i t , chosen in Section F.1). This yields, 
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and hence, 
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Applying sinc sinx x x  for a certain harmonic order, n , gives for the complex 

amplitude of source ij , say, nf , 
 

 
0

0

2

sinc sinc sinc
2 2

i
n j i t

inZ j
i t inZ j Ntn

n
ij t

Nf t Ze nZ e n e
f Z N

 (E.5) 

 
In fact, Gutin’s classical approach [Gutin1936] has been followed here, where ‘the moving 
isolated force is replaced by a string of impulses acting along its path at the appropriate times’ 
(see also [Lowson1965]). 
 
 
 



 
 
 

 

 
 
 
 
 
 

F DISCRETIZATION OF INTEGRAL EQUATION 
 
 

…where the acoustic integral formulation based on Kirchhoff’s method  
is discretized using Burton and Miller’s approach [Burton1971] and  

Kirkup’s notation [Kirkup1989]. 
 
 

F.1 A BEM for 3D Exterior Scattering Problems 
 

The frequency domain alternative to Eq. (3.24), viz. Eq. (3.26), is based on the 
inhomogeneous form of the Helmholtz equation. This equation is important when the solution 
of the wave equation, 
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2
2 2

1 ( , ) 0t
c t

x  (F.1) 

 
can be found in terms of discrete harmonics, 
 

 ˆ( , ) Re ( )exp( )n n
n

t i tx x  (F.2) 

 
Substitution of Eq. (F.2) in Eq. (F.1) yields for each harmonic, n , a reduced wave equation 
(i.e., Helmholtz equation), 
 2 2 ˆ ( ) 0n nk x  (F.3) 

 
which remains to be solved for the complex amplitude, ˆn . When, as in the case of rotating 
propellers, the wave equation can be expressed like this, solving it is tantamount to solving a 
sequence of Helmholtz equations. Note that, as before, the prime is to denote a perturbation 
and the caret a Fourier component of a quantity. 

Here, it is described in some detail how to apply the BEM to the problem of finding the 
solution to the Helmholtz equation with a Neumann boundary condition on the closed ‘double 
hull’ boundary DHS . For a region V , exterior to DHS , the radiation condition due to 
Sommerfeld is used. It reads, 

 lim ( ) ( ) 0
r

r ik
r

x x  (F.4) 
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In Eq. (F.4) as in the remainder, the prime and the caret have been dropped for convenience. 
Here, r  is the distance from an arbitrary point x  to a fixed origin. For the Neumann 
boundary condition on DHS , 

 ( ) ( ) ( )n DHv S
nx

x x x  (F.5) 

 
where nv  is the known complex amplitude of the outward normal velocity on DHS . 

As a basis to the BEM, the formulation developed by Burton and Miller [Burton1971] is 
used. This method belongs to the class of direct methods that are based on Green's second 
theorem, in contrast with indirect methods, which are based on a single layer potential 
distribution over the surface. For the scattering problem at hand, the normal velocity 
distribution over the boundary vanishes, and 
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which is Eq. (A.64) with the first integral term set to zero and the set of sources due to the 
propeller added as inc , i.e., the incident waves. It is completely equivalent to Eq. (3.26), 
which needs to be solved. 

The improvement of the formulation due to Burton and Miller stems from the fact that the 
non-uniqueness problem of the integral equation at the so-called ‘characteristic’ (often also 
called ‘irregular’) frequencies is removed by adding linearly to the Helmholtz integral equation 
its outward normal derivative on the boundary with respect to the point of observation, 
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with, 
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To the integrals appearing in Eqs. (F.6) and (F.8), the following operator convention is applied 
[Kirkup1989], 
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with HG  as the Green’s function for the Helmholtz equation, Eq. (A.34). In operator notation 
Burton and Miller’s formulation for exterior scattering problems becomes, 
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nS

M I N vx x x  (F.12) 

 
with x  on DHS  as indicated by the subscript. The identity integral operator is denoted by I . 

The condition Im 0  on the coupling parameter, , ensures that the integral equation 

has a unique solution irrespective of wave number. Once Eq. (F.12) is solved for ( ) DHSx , 

( ) Vx  can be computed by means of standard quadrature, 
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F.1.1 Discretization of Integral Operators 
 

In order to solve Eq. (F.12), it must be recast in discrete form. This is done by 
approximating the boundary by a set of flat panels and assuming the boundary functions to be 
‘panel wise’ constant. On each panel one point is chosen as its collocation point at which the 
unknowns are actually evaluated. Thus, an approximation SS  is made to the boundary, DHS , 

and  to the boundary function, , 
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and 
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in which ( )i y  are the basis functions on the panel surfaces iSiS . Often, ( )i iy( )(i  for every 

1..i N . The collocation method is applied, where the N  basis functions are chosen as, 
 
 ( )i j ijy  (F.16) 
 
with ij  as Kronecker's delta function. In the approximated form the integral operators 
become, 
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and similarly for the other operator. The following shorthand is adopted for the approximations 
to the operators,
 ( )ij j iM MM x  (F.18) 
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Thus, the operators become N N  matrices in case of N  collocation points ix . Repeating 
this procedure for the other integral operators yields the following matrix-vector equation, 
 
 1
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The linear system of equations in Eq. (F.19) can be solved by standard methods. Once 

DHSφ  

is obtained, Eq. (F.13) can be used to obtain a solution for points in the exterior domain, 
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DH
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V V Sφ x φ M φ  (F.20) 

 
i.e., a standard matrix-vector multiplication. 

The integration over SS  is done panel by panel. The integral over each panel is 

transformed by mapping the panel iSiS  onto the standard shape of a square with sides of 
length two. A standard numerical integration technique can be used to evaluate the integral 
over the standard shape. In case the integrals are singular this approach is bound to fail. In 
Section F.1.2, this problem is addressed in detail. First, a number of useful properties of the 
kernel functions are given. The following results are extracted from [Kirkup1989]. The non-
zero frequency Green’s function, HG , is presented in Appendix G.3. Its derivatives with 
respect to r  read,
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Expressions for the normal derivatives of the Green’s function are given by, 
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For the normal derivatives of r ,
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Similar expressions for the zero frequency Green’s function, LG  (Appendix A.2), follow by 

setting k  to zero in Eqs. (F.21) to (F.24). An expression for its double derivative is given for 
convenience, 
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Having worked out the discretized version of the integral operators appearing in Eq. 

(3.26) in the form of the left-hand-side of Eq. (F.19), repeating this for the incident waves 
yields, 
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and 
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The normal derivative in Eq. (F.29), in , can be worked out using the same Eqs. (F.21), (F.23) 
and (F.25) as for the panel integrals, giving, 
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Note that this component of the gradient is normal to the propeller blade. Similarly, the normal 
component of the gradient in Eq. (F.30), nx , is rewritten using Eqs. (F.21), (F.23) and (F.25). 
For the double derivative Eqs. (F.21), (F.22), (F.24), (F.25) and (F.27) are used, which yields 
Eq. (F.32). Note that nx  is in the direction normal to the (double) hull. 
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 (F.32) 

 
F.1.2 Evaluation of Singular Integrals over Elements 
 

Now the problem of evaluating the singular integrals must be tackled, which make up 
the diagonal elements of the matrices defined in Eq. (F.19) by subtracting out the singularity. 
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Using the asymptotic properties of the kernel functions and indexing the integral operators 
depending on whether HG  or LG  is involved, it follows, 
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and 
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Under the assumption that collocation points are not chosen on edges of the flat 

boundary elements, expressions for the discrete form of the integral operators simplify. Then, 
by virtue of Eq. (F.25) the diagonal components of HM  are zero. A calculation method is 

needed for the diagonal components of the remaining operator HN , 
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Let us assume that the panel lies in the local ,x y  plane with ( , )x yy y  and (0,0)x y . It is 

further assumed that the integral can be transformed into polar coordinates ,R . For the 

integral a limiting procedure is needed to derive the wanted expression. A hemisphere of 
radius  is erected into the interior of the boundary at the origin. The limit as  goes to zero 

of the sum of the integrals over iSiS  minus the hemisphere and the hemisphere itself is taken. 
This gives, 
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in case of a quadrilateral surface element, where 5 1 . The integral alongside the panel 
must be evaluated. The first vertex is assumed to lie on the positive x -axis, while the 
collocation point is at the origin. The line segments are given by, 
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with 1(1)4n . The line segment n  runs from vertex n  to vertex 1n . Hence, 
 

 1

1

n n
n

n n

y yA
x x

 (F.38) 

and 

 1
1 1 1 1

1

n n
n n n n n n n n n

n n

y yB y x y A x y A x
x x

 (F.39) 
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where the upper indices refer to vertex coordinates. In polar coordinates, 
 

 ( )
sin( ) cos( )

n

n

BR
A

 (F.40) 

 
For the integral of Eq. (F.36), it is written, 
 

 

1

1 1

4

1

4 4

1 1

1 1 (sin( ) cos( ))
4

cos( ) sin( )1 1 sin( )
4 4

n

n

n n

nn

n
nn

n

n nn n

J A d
B

A
B C

 (F.41) 

 
Slight modifications are to be made when nA  does not exist. When the collocation point is not 
on an edge or corner, the above formulas are valid. 
 
F.1.3 Evaluation of Regular Integrals over Elements 
 

To determine the regular part of the diagonal terms of the matrices of so-called influence 
coefficients completely, the remaining right-hand-sides of Eq. (F.34) must be numerically 
integrated. This can be done simply by a nine-point integration rule. It is assumed that the 
elements can be transformed to a square with sides of length two. The transformed integral 
can then be expressed as, 

 
9

1

( , ) 4 ( , )i i i
i

f x y dxdy w f x y  (F.42) 

with 

 

( , ) (0,0)                     16 81

( , ) ( 3 / 5,0)            10 81

( , ) ( 3 / 5, 3 / 5)   25 324

( , ) (0, 3 / 5)            10 81

i i i

i i i

i i i

i i i

x y w

x y w

x y w

x y w

 (F.43) 

 
The necessary transform procedure is clarified in Section F.1.4. For the integrand of the 
regularized part of HN , a Taylor series expansion around frequency zero yields, 
 

 

2 2
2 2 1

1

2 1
2

1 1

1 1 1 1( )
2 4 ( 2)! ( 1)!
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4 ( 2) ! 2

m mH L
L
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m

m m

G G k G ik r
n n n n m m

ik r k
m m m

 (F.44) 

 
in which  denotes the Gamma function. This expression has to be accompanied by the 
Jacobian of the element transform procedure in Appendix F.1.4. 
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To compute the off-diagonal terms of the matrices, the left-hand-sides of Eq. (F.34) can 
be numerically integrated in a simple way. A four-point rule is used for this purpose. The 
integrands can be easily derived using the results of Appendix F.1.2 and flat boundary 
elements. It is again assumed that the elements can be transformed to a standard square 
with sides of length two. The transformed integral can then be expressed as, 
 

 
9

1

( , ) 4 ( , )i i i
i

f x y dxdy w f x y  (F.45) 

 
with 1 4iw  for all i . The integration points are at ( , ) ( 1/ 3, 1/ 3)i ix y . 
 
F.1.4 Derivation of Panel Transform Coefficients 
 

Assume that the vertices of a specific element are known. Assume furthermore that they 
are numbered in counter clockwise direction. The local coordinate system of a panel is 
defined as follows. The collocation point serves as the origin. The axis normal to the panel is 
taken as the positive z -axis. The vector pointing in the direction from the origin to the first 
vertex is taken as the positive x -axis after normalization. The y -axis is defined as the cross 
product of the vectors defining the z -axis and the x -axis, respectively. 

Let us define a panel transform procedure such that it transforms a panel in the local co-
ordinates system to a square with sides of length two. More specifically, the procedure must 
map the collocation point on the origin (where it already was) and the vertices 1, 2, 3 and 4 on 
the corners of the square, i.e., (-1,1), (-1,-1), (1,-1) and (1,1), respectively. This can be 
achieved by the mapping, 

 
2

1 1 2 3 4
2

2 1 2 3 4

( , )

( , )

x e e e e

y f f f f
 (F.46) 

 
where ,x y  are the local and ,  the transformed coordinates. The transform 

coefficients, 1e  to 4f , are found by inserting the vertex coordinates, 
 

 

1 1 2 1

1 2 2 2

1 3 2 3

1 4 2 4

( 1, 1) ( 1, 1) 0
( 1, 1) ( 1, 1)
( 1, 1) ( 1, 1)
( 1, 1) ( 1, 1)

x y
x y
x y
x y

 (F.47) 

whence, 

 

1 1
1 1 2 3 4 2 1 2 3 44 4

1 1
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1 1
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1 1
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 (F.48) 
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Note that the property that 1 0y  has been used. For the Jacobian of the mapping the 
following expression is used, 
 

 
11

2 2

1 3 4 2 3

1 3 4 2 3

2( , )
2

e e e e e
f f f f f

 (F.49) 

 
F.1.5 Thin body treatment 
 

Whenever parts of the scattering surface are in very close proximity to each other, 
typically at distances between collocation points smaller than, say, one half of a panel size, 
numerical problems occur. This may happen on sharp edges of rudders, gondolas and at flat 
sterns close to the free surface. Because this happens without the condition number of the 
matrices in Eq. (F.84) becoming extremely high, the difficulties remain unnoticed until after 
the computations. Wu [Wu2000, Wu1995] presents an approach to circumvent numerical 
errors by replacing the equations for such closely spaced surfaces locally by their ‘mid 
surface’, midS , on either side of which integral equation formulations are solved. In the 
following Wu’s approach is applied to the exterior scattering problem. 

Burton and Miller’s formulation for the exterior scattering problem, Eq.(F.12), for 
locations of the observer on the outside of midS , reads, 
 
 1

2( ) ( ) ( ) ( ) ( );
mid

inc inc
n midS

M N v Sx x x x x  (F.50) 

 
It has its counterpart in a formulation for the interior radiation problem, 
 
 1

2( ) ( ) ( ) ( ) ( );
mid

inc inc
n midS

M N v Sx x x x x  (F.51) 

 
Denoting the potential on the inside and outside of the thin bounding surface as,  and , 
respectively, and adding Eqs. (F.50) and (F.51), yields 
 

 
, , , ,

1
2

( )( ) ( ) ( ) ( ) ( ( ) ( ))

( ( ) ( ));
mid

inc inc inc inc
n nS

mid

M N v v

S

x x x x x

x x x
 (F.52) 

 
For points on the surface, the equation can be split into two parts, depending on the coupling 
parameter, 
 , , 1

2( ) ( ) ( ) ( ) ( ( ) ( ));
mid

inc inc
midS

M Sx x x x x x  (F.53) 

 , ,( ) ( ) ( ( ) ( )) 0;
mid

inc inc
n n midS

N v v Sx x x x  (F.54) 

 
Eqs. (F.53) and (F.54) constitute two equations for the potential jump across the mid surface 
from which the wanted potential on the outside of the thin body, i.e., , is found, 



168 DISCRETIZATION OF INTEGRAL EQUATION 
 
 

 

 
1

1 21 2
1

2 12 2

 (F.55) 

 
Since only a small part of DHS  is actually thin, the surface may be split into a thin part, 

tS , to which the above procedure is applied, and a regular part, rS , such that DH t rS S S  

and t rS S . Then, 
 
 , , 1

2( ) ( ) ( ) ( ) ( ) ( ) ( );
rt

inc inc inc
rSS

M M Sx x x x x x x  (F.56) 

 , , 1
2( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ));

rt

inc inc inc
tSS

M M Sx x x x x x x x  (F.57) 

 , ,( ) ( ) ( )( ) ( ) ( ) 0 on 
DHmid

inc inc inc
n n n tSS

N v v N v Sx x x x  (F.58) 

 
Now, Eqs. (F.56) and (F.58) have to be solved simultaneously on DHS  yielding the potential 

on rS  and the potential jump on tS . Then, Eq. (F.57) can be used to determine the potential 

sum on tS  after which the potential on tS  follows from Eq. (F.55). Often, it may be assumed 

that n nv v  and, 
 

 1
2( ) ( ) ( ) ( ) ( );  on 

r rt
n rS SS

M M Lv Sx x x x x  (F.59) 

 1
2( ) ( ) ( ) ( ) ( )( );  on 

r rt
n tS SS

M M Lv Sx x x x x  (F.60) 

 ( ) ( ) ( ) ( ) ( );  on 
rt r

T
k n n tSS S

N N M v v Sx x x x x  (F.61) 

 
are obtained. 

The thin body treatment as presented in this section has not been applied in the 
example cases in the present thesis. A typical example of the type of error that results from 
this omission is seen in Figure 8.5. The thin trailing edge of the skeg connecting the gondola 
to the afterbody contains five 'greenish' panels that should have been blue like the panels in 
their immediate vicinity. 
 
F.1.6 Double hull treatment 
 

To enforce the zero pressure or potential on the free surface in Section 3.4 the so-called 
‘double hull’ approach was adopted. Thus, all panels on the hull are mirrored in the free 
surface and a closed boundary in an infinite domain results. When the normal velocities and 
potentials on the mirrored panels are taken equal in magnitude, but of opposite sign, the free 
surface is perfectly modeled as a pressure release surface. For nearly horizontal panels close 
to this surface, the combination of these panels and their mirror images act as the thin bodies 
discussed above. 

Call this part of tS , ,t fsS , so that , \ ,t t fs t t fsS S S , whereas , \ ,t fs t t fsS S . On this 

surface, Eqs. (F.53) and (F.54) become 
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,

,( ) 0 on 
t fs

t fsS
M Sx  (F.62) 

 
,

,2 ( ) ( ) on 
t fs

n t fsS
N v Sx x  (F.63) 

 
Finally, instead of Eqs. (F.59), (F.60) and (F.61), 
 
 

, \ ,

1
22 ( ) ( )  on 

t fs rt t fs
n n n rS SS

M M L v v M Lv S  (F.64) 

 
, \ ,

1
\ ,22 ( ) ( ) ( ) on 

t fs rt t fs
n n n t t fsS SS

M M L v v M Lv S  (F.65) 

 
, \ ,

,2 ( ) ( ) 0 on 
t fs rt t fs

n n n t fsS SS
M M L v v M Lv S  (F.66) 

 
, \ ,

1
\ ,22 ( ) ( ) ( ) on 

t fs t t fs r

T T
k n n k n n n t t fsS S S

N N M v v N M v v v S  (F.67) 

 
, \ ,

,2 ( ) ( ) ( ) on 
t fs t t fs r

T T
k n n k n n t fsS S S

N N M v v N M v v Sx  (F.68) 

 
Now, Eqs. (F.64), (F.67) and Eq. (F.66) or (F.68) have to be solved simultaneously on DHS  

yielding the potential on rS  and ,t fsS  as well as the potential jump on \ ,t t fsS . Then, Eq. (F.65) 

can be used to determine the potential sum on \ ,t t fsS  after which the potential on tS  follows 

from Eq. (F.55). 
 
F.1.7 3D scattering with free surface effect 
 

Although the ‘double hull’ approach adopted in Section F.1.6 is easy to implement, its 
simplicity is somewhat deceptive in certain cases. More specifically, when the overhanging 
part of the stern is only just submerged, the choice of the actual ship draught in the 
computations becomes difficult and critical. Also, the thin body problem may start to cause 
numerical difficulties. In other cases, the free surface around the stern may become more 
strongly curved and again the ‘effective’ draught to be applied becomes ill-defined. 

A more solid approach to solving 3D scattering problems involving a wavy free surface 
is to actually compute the surface and include at least the part of it around the stern in the 
panel description of the ship. The description of the hull must then be confined to its ‘really’ 
wetted part. Thus one has to solve a 3D interior acoustic scattering problem rather than an 
exterior one, as described before, with the free surface being closed at infinity by a 
hemisphere enclosing the underwater part of the hull. In practice, the hemisphere and the 
more distant part of the free surface are neglected in the computations. Furthermore, the 
problem has become one with mixed boundary conditions, as the Neumann type of rigid 
reflecting hull boundary condition is accompanied by a Dirichlet type zero pressure condition 
on the free surface. The necessary formulations are given below for reference. 

Recalling Burton and Miller’s formulation for the exterior scattering problem, 
 
 1 1

2 2( ) ( ) ( ) ( ) ( ( )) ( )
DH DH

inc inc T
n nS S

M I N v L M I vx x x x  (F.69) 
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with x  on the double hull, DHS . The boundary condition requires the normal velocity on it to 
vanish, thus, 
 1

2( ) ( ) ( ) ( )
DH

inc inc
nS

M I N vx x x  (F.70) 

 
and after discretization the following matrix-vector equation is obtained, 
 
 1

,2 DH DH DHDH

inc inc
S S n SS

M I N φ φ v  (F.71) 

 
The analogous formulation for the interior scattering problem reads, 
 
 1 1

2 2( ) ( ) ( ) ( ) ( ( )) ( )inc inc T
n nS S

M I N v L M I vx x x x  (F.72) 

 
with x  on the surface S  now consisting of the wetted hull, HS , plus (part of the) free 

surface, FS . The corresponding boundary conditions require the normal velocity on the 
wetted hull and the pressure on the free surface to vanish identically, thus, 
 
 1 1

2 2( ) ( ) ( ) ( ) ( ( )) ( )
H F

inc inc T
n nS S

M I N v L M I vx x x x  (F.73) 

 
The following matrix-vector equation can be obtained, 
 
 1 1

, ,2 2( )inc inc T
S S n S n SS S

M I N φ φ v L M I v  (F.74) 

 

1 1
2 2

,

1 1
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,
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H F
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H

ST
S S

n S

Sinc inc T
S n S S S

n S

φ
M I N L M I

v

φ
φ v M I N L M I

v

 (F.75) 

 
In Eq. (F.75), 1

2
HS

M I N  should be interpreted as being populated by the columns 

corresponding to the set of unknowns, 
HSφ , and analogously for the other matrix elements 

and unknowns. In (our) case, where ,F HS n Sφ v 0 , Eq. (F.75) simplifies to, 

 

 1 1
,2 2

,

( ) H

H F
F

ST inc inc
S n SS S

n S

φ
M I N L M I φ v

v
 (F.76) 

 
 

F.2 A BEM for 3D Exterior Radiation Problems 
 

For the computation of the vibration-induced hull-surface pressure field, Burton and 
Miller’s formulation, presented in Section F.1, must be recalled. There, the acoustic scattering 
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problem was treated, assuming that in the Helmholtz integral equation, i.e., Eq. (A.64) of 
Appendix A, surface vibrations are absent. However, the acoustic radiation problem assumes 
no incident waves, only surface vibrations. Therefore, Eq. (A.64) is directly applicable to the 
vibrating surface, 

 
exp exp1 ( ) ( )

2 4 4
DH

n

S

ikr ikr
v dS

r n r y
y

x y  (F.77) 

 
where the caret and prime symbols, used to denote frequency domain and disturbance 
variables, respectively, have been omitted for convenience. Similar to the treatment of the 
scattering problem, the outward normal derivative on the boundary with respect to the point of 
observation is added to the Helmholtz integral equation, 
 

 
exp exp1 ( ) 1 ( ) ( )

2 2 4 4
DH

n

S

ikr ikr
v v dS

n n r n r y
x x y

x x y  (F.78) 

 
The integral operator notation introduced in Eqs. (F.10) and (F.11) must now be extended 
with, 

 ( ) ( ) ( )
DH

DH

HS
S

L G dSyx x y y  (F.79) 

and 

 ( ) ( ) ( )
DH

DH

T
k HS

S

M G dS
n y

x

x x y y  (F.80) 

 
Thus, Burton and Miller’s formulation for the acoustic radiation problem becomes, 
 
 1 1

2 2( ) ( ) ( ( )) ( )
DH DH

T
kS S

M I N L M I vx x  (F.81) 

 
Once Eq. (F.81) is solved for ( ) DHSx , ( ) Vx  can be computed through standard 
quadrature, 
 ( ) ( ) ( ) ( )

DH DHS S
M Lv Vx x x x  (F.82) 

 
The vibration-induced pressure at a certain frequency is then obtained by Eq. (A.24), 
 
 0 0p i ik c  (F.83) 
 
 
F.2.1 Discretization of integral operators 
 

As for the scattering problem, the boundary is approximated by a set of flat panels with 
the boundary functions taken as ‘panel wise’ constant. On each panel, one point is chosen as 
its collocation point at which the unknowns are actually evaluated. Thus, the operators 
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become N N  matrices in case of N  collocation points, ix . This yields the following 
matrix-vector equation, 
 1 1

2 2( )
DH DHDH DH

T
S SS S

M I N φ L M I v  (F.84) 

 
For external locations, Eq. (F.82) becomes, 
 
 S V S V Sφ M φ L v  (F.85) 
 
As for the scattering problem, the integration over each panel, iSiS , is performed by mapping 
the panel onto the standard shape of a square with sides of length two. A standard numerical 
integration technique is used to evaluate the integral over the standard shape. In case the 
integrals are singular this approach fails. In Section F.1.2, this problem is addressed in detail 
for scattering. It is repeated here for the case of radiation. First, a number of useful properties 
of the kernel functions are recalled (cf. Eqs. (F.21) to (F.28)). 

Flat boundary elements are used and it is assumed that the collocation points are not on 
edges. Then, by virtue of Eq. (F.25), the diagonal components of T

HM  are zero, just as HM . 

The diagonal components of the operators, HN  and HL , need to be worked out. For HN , it is 

referred to Section F.1.2, and for HL  the following integral needs to be solved, 
 

 ( )
i

L

S

I G dSyx y
iSi

 (F.86) 

 
Assume the element lies in the local ,x y plane with ( , )x yy y  and (0,0)x y . It is further 

assumed that the integral can be transformed to polar coordinates ,R . Thus, it is found 

that, 
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4 4

n

n
n

I R d R d  (F.87) 

 
for a quadrilateral surface element, with ( )R  the radius of the element varying with . It is 
assumed that 5 1 . Using Eqs. (F.37) to (F.40), Eq. (F.87) can be worked out to give, 
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For the diagonal terms of the matrix, Eqs. (F.42) and (F.43) are used. For the integrands 
of the regularized part of HL , a Taylor series expansion around frequency zero gives, 
 

 1

1 1

1 ( )
4 !

m
m

H L m
m m

ikG G r
m

 (F.89) 

 
These expressions have to be accompanied by the Jacobian of the element transform 
procedure in Section F.1.4. To compute the off-diagonal terms of the matrices, Eq. (F.45) is 
used. 
 
F.2.2 Thin body and double hull treatment 
 

The treatment of the thin body problem was presented in Section F.1.5 for the exterior 
scattering problem. It is briefly repeated here for application to the exterior radiation problem. 
Burton and Miller’s formulation for the exterior radiation problem, Eq.(F.81), at locations of the 
observer on the outside of the ‘mid surface’, reads, 
 
 1 1

2 2( ) ( ) ( ( )) ( ) ( );
mid mid

T
k n midS S

M N L M I v Sx x x x  (F.90) 

 
It has its counterpart in a formulation for the interior radiation problem, which, for locations of 
the observer on the inside of the mid surface, is written as, 
 
 1 1

2 2( ) ( ) ( ( )) ( ) ( );
mid mid

T
k n midS S

M N L M I v Sx x x x  (F.91) 

 
Denoting the potential on the respective inside and outside of the thin bounding surface as, 

 and , and adding Eqs. (F.91) and (F.90), yields, 
 

 
1 1
2 2

( )( ) ( )( ) ( )

( ( ) ( )) ( ( ) ( ));
mid

T
k n n S

n n mid

M N L M v v

v v S

x

x x x x x
 (F.92) 

 
For points on the surface, the equation can be split into two parts, depending on the coupling 
parameter, 
 1

2( ) ( ) ( ) ( ( ) ( ));
mid

n n midS
M L v v Sx x x x  (F.93) 

 1
2( ) ( ) ( ) ( ( ) ( ));

mid

T
k n n n n midS

N M v v v v Sx x x x  (F.94) 

 
Eqs. (F.93) and (F.94) constitute two equations for the potential jump across the mid surface 
from which the wanted potential on the outside of the thin body, i.e., , is found. After 

splitting DHS  into a thin part, tS , and a regular part, rS , it may be written, 
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 1
2( ) ( ) ( ) ( ) ( );

rt
n n n rSS

M L v v M Lv Sx x x x  (F.95) 

 1
2( ) ( ) ( ) ( ) ( ( ) ( ));

rt
n n n tSS

M L v v M Lv Sx x x x x  (F.96) 

 1
2( ) ( ) ( ) ( ) ( ( ) ( ));

t r

T T
k n n k n n n tS S

N M v v N M v v v Sx x x x x  (F.97) 

 
Now, Eqs. (F.95) and (F.97) have to be solved simultaneously on DHS  yielding the potential 

on rS  and the potential jump on tS . Then, Eq. (F.96) can be used to determine the potential 

sum on tS  after which the potential there readily follows. Often, it may be assumed that 

n nv v . Then, 

 1
2( ) ( ) ( ) ( );

rt
n rSS

M M Lv Sx x x x  (F.98) 

 1
2( ) ( ) ( ) ( ( ) ( ));

rt
n tSS

M M Lv Sx x x x x  (F.99) 

 ( ) ( ) ( ) ( );
t r

T
k n n tS S

N N M v v Sx x x x  (F.100) 

 
For nearly horizontal panels close to the free surface, the thin body problem may 

reoccur. Let us call this part of tS , ,t fsS . On this surface, Eqs. (F.93) and (F.94) become, 

 
 

,
,( ) 0;

t fs
t fsS

M Sx x  (F.101) 

 
,

,2 ( ) ( );
t fs

n t fsS
N v Sx x x  (F.102) 

 
Finally, instead of Eqs. (F.98), (F.99) and (F.100), it follows, 
 
 

, \ ,

1
22 ( ) ( )  on 

t fs rt t fs
n n n rS SS

M M L v v M Lv S  (F.103) 

 
, \ ,

1
\ ,22 ( ) ( ) ( ) on 

t fs rt t fs
n n n t t fsS SS

M M L v v M Lv S  (F.104) 

 
, \ ,

,2 ( ) ( ) 0 on 
t fs rt t fs

n n n t fsS SS
M M L v v M Lv S  (F.105) 

 
, \ ,

1
\ ,22 ( ) ( ) ( ) on 

t fs t t fs r

T T
k n n k n n n t t fsS S S

N N M v v N M v v v S  (F.106) 

 
, \ ,

,2 ( ) ( ) ( ) on 
t fs t t fs r

T T
k n n k n n t fsS S S

N N M v v N M v v Sx  (F.107) 

 
Now, Eqs. (F.103), (F.106) and (F.105) or (F.107) have to be solved simultaneously on DHS  

yielding the potential on rS  and ,t fsS  as well as the potential jump on \ ,t t fsS . Then, Eq. 

(F.104) can be used to determine the potential sum on \ ,t t fsS  after which the potential follows. 

 
 
 



 
 
 

 

 
 
 
 
 
 

G MATHEMATICAL BACKGROUND 
 
 

…which gives an overview of a few of the mathematical principles used in 
describing the theoretical methods in hydroacoustics. 

 
 

G.1 Generalized Functions 
 

Dirac’s delta function, , is a generalized function defined by, 
 

 ( ) 0   for   0 ( ) 1y y y dy  (G.1) 

 
and its sifting property on a test function, h , 
 

 ( ) ( ) ( )h y x y dy h x  (G.2) 

 
The concept of Dirac’s delta function can be extended to three dimensions through, 
 
 1 1 2 2 3 3( ) ( ) ( ) ( ) ( )i ix y x y x y x yx y  (G.3) 
 
with indices denoting Cartesian coordinates and boldface referring to vectors. A useful scaling 
property reads, 

 0
0 0

0

( )( ( )) if ( ) 0 ( ) 0
( )

x x dgg x g x x
dg dxx
dx

 (G.4) 

 
The Dirac delta function has a dimension equal to the inverse of the dimension of its 
argument. In hydroacoustic applications the argument, ( )g x , of the delta function may have 

N  roots, nx , 1..n N . Then, the following statement holds, 
 

 
1

1

( ) ( ( )) ( ) ( )
N

n n
n

dgh x g x dx h x x
dx

 (G.5) 
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Another useful generalized function is the Heaviside step function, H , 
 

 
1 for 0

( ) 1 2 for 0
0 for 0

x
H x x

x
 (G.6) 

 
In a generalized sense this function becomes differentiable even at the origin, 
 

 ( )dH x
dx

 (G.7) 

or, more generally, 

 ( ( , )) ( )i
i i i

dH df dfH f x t f
x df dx dx

 (G.8) 

 
 

G.2 Retarded Time 
 

Many of the formulations that are encountered in theoretical acoustics involve the 
evaluation of time functions at the so-called retarded time, , 
 

 / rt c t
c

x y  (G.9) 

 
through which ‘memory’ effects, caused by the fluid’s finite phase velocity, c , (i.e., the speed 
of sound) become apparent. In Eq. (G.9), t  is time and r  denotes the position vector 
pointing from y  to x . The distance, r , is written as r . Often, it appears that quantities in 

integrands have to be evaluated at certain retarded times. Then, the expressions involved are 
placed between brackets, like 

retret
, , or 

/t r c/t r c/
. 

 
 

G.3 Green’s Identities 
 

Take F  to be a continuously differentiable vector field, defined in a compact region, V , 
which is part of 33  and has a piecewise smooth boundary, S . Then, Gauss’ theorem can be 
stated as, 

 
V S

dV dSF F n  (G.10) 

 
with n  as the unit normal vector to the boundary pointing outward with respect to V . Next, 
assume F  to be defined in V  by two scalar functions,  and , being twice continuously 
differentiable, as F . Inserting this into Eq. (G.10), and noting that 
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n

n  (G.11) 

yields Green’s first identity, 

 2

V S V

dV dS dV
n

 (G.12) 

 
If  is also twice continuously differentiable in V , a vector field, G , can be defined, 

analogous to F , as G . When Green’s first identity based on G  is subtracted from the 
one based on F  , i.e., Eq. (G.12), Green’s second identity is obtained, 
 

 2 2

V S

dV dS
n n

 (G.13) 

 
Finally, if  is chosen equal to LG , the Green’s function for the Laplace equation (see 

Section A.2), then 2 ( , ) ( )x y x y  and Green’s third identity follows as, 
 

 2( ) ( ) ( ) ( )L
L L

S V

G G dS G dV c
n n y y

y y

y y x x  (G.14) 

 
Here, the subscript y  is used to indicate the integration variable. In Eq. (G.14) and elsewhere 
in this thesis, the field point, x , is assumed to be on a smooth part of the boundary. Then, 
 

 
1 for 

( ) 1/2 for 
0 for 

V
c S

S V

x
x x

x
 (G.15) 

 
 

G.4 Singular Value Decomposition 
 

In the following, the Singular Value Decomposition (SVD) technique is briefly explained, 
relying on [Visser2004] and the Intel® Math Kernel Library reference manual. Suppose a set 
of linear algebraic equations relate n  unknowns by m  equations. If n m  and one or more 
of the m  equations is a linear combination of the others, then there may not be a unique 
solution. The set of equations is said to be singular. On the other hand, if some of the 
equations are nearly singular, accumulating round-off errors in the solution process can cause 
errors. If m n , then there are effectively fewer equations than unknowns. In this case there 
can be either no solution or more than one. In the opposite case, m n , there are more 
equations than unknowns. When this occurs there exists, in general, no solution vector and 
the set of equations is overdetermined. Nevertheless, obtaining the best approximation to the 
set of equations is often still useful. Finding such an approximation comes down to solving the 
set of equations in a linear least-squares sense using SVD. 
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In SVD, the m n  matrix A  for which m n , is written as the product of an m n  
column-orthogonal matrix U , an n n  diagonal matrix W  with positive or zero elements 
(i.e., the singular values), and an n n  orthogonal matrix V , 
 
 TA U W V  (G.16) 
 
When m n , the singular values for 1..i m n  are all zero and the corresponding columns 

of U  are also zero. It follows, 

 11 TA V W U  (G.17) 
 
with 1W  containing the reciprocals of the singular values iw . 

After applying SVD, the least-squares solution LSx  to the system of equations, 
 
 A x b  (G.18) 
may be written as 

 1

1

n T
T i

LS i
ii w

u bx V W U b v  (G.19) 

 
with iu  as the columns of U , etc. In the context of the present thesis, the singular vectors iu  

and iv  can be interpreted as ‘mode shapes’ of the surface pressure and point source 
strength distribution in the field, respectively. Through Eq. (G.19), the singular values couple 
each ‘surface mode’ of pressure independently to the corresponding ‘field mode’ of source 
strength. In other words, the columns of U  whose same-numbered singular values are 
unequal to zero form an orthonormal set of basis vectors that span the range of A . The 
columns of V  whose same-numbered singular values are zero form an orthonormal basis for 
the null-space. 

An important aspect of SVD is that the singular vectors become increasingly oscillatory 
and the singular values increasingly small as the index i  becomes higher. Therefore, the 
solution vector LSx  may be made up of strongly oscillating modes that are amplified by the 
reciprocal value of the corresponding increasingly small singular value. Regularization is then 
called for. In its simplest form it comes down to zeroing the singular values that are too small 
so that the corresponding modes do not enter the solution vector anymore. 

In order to check the existence of a physically meaningful solution to the inverse 
problem and to ensure that this solution can be approximated by a regularized solution, it is 
necessary to satisfy the discrete Picard condition (see [Visser2004]), which states that the 
exact SVD coefficients T

iu b  decay faster than the singular values iw . If the Picard 

condition is met then one can obtain a least-squares solution to the problem after ‘filtering out’ 
one or more of the higher modes by setting their contribution to zero. Obviously, this has a 
smoothening effect on the solution, just as after applying a low-pass filter to measured time 
series data. If there exists a useful (i.e., physically interpretable, realistic) ‘smooth’ solution, 
then SVD and subsequent regularization will generally work. 



 
 
 

 

 
 
 
 
 
 

H COMPUTATIONAL RESULTS 
 
 

…which collects, for reference purposes, computational results obtained from the 
mathematical method detailed in Chapter 3 and validated in Chapter 6. 

 
 

H.1 Validation of New Coupling Procedure 
 

 
Figure H.1: First order pressure amplitudes for 2-bladed propeller, no. 6666, 

at RPM: 400, Thrust: tK =0.023, Draft: 0.419 m (left), 0.531 m (right). 
 
 

 
Figure H.2: Second order pressure amplitudes for 2-bladed propeller, no. 6666, 

at RPM: 400, Thrust: tK =0.023, Draft: 0.419 m (left), 0.531 m (right). 
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Figure H.3: Third order pressure amplitudes for 2-bladed propeller, no. 6666, 

at RPM: 400 Hz, Thrust: tK =0.023, Draft: 0.419 m (left), 0.531 m (right). 
 
 

 
Figure H.4: Fourth order pressure amplitudes for 2-bladed propeller, no. 6666, 

at RPM: 400, Thrust: tK =0.023, Draft: 0.419 m (left), 0.531 m (right). 
 
 

 

Figure H.5: First and second order pressure amplitudes for 2-bladed propeller, 
no. 6666, at RPM: 600, Thrust: tK =0.021, Draft: 0.531 m. 
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Figure H.6: Third and fourth order pressure amplitudes for 2-bladed propeller, 
no. 6666, at RPM: 600, Thrust: tK =0.021, Draft: 0.531 m. 

 
 

 
Figure H.7: First harmonic pressure amplitudes for 5-bladed propeller, no. 6553, 

at RPM: 509, Thrust: tK =0.210, (left); RPM: 652, Thrust: tK =0.191, (right). 
 
 

 
Figure H.8: Second harmonic pressure amplitudes for 5-bladed propeller, no. 6553, 

at RPM: 509, Thrust: tK =0.210, (left); RPM: 652, Thrust: tK =0.191, (right). 
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Figure H.9: First harmonic pressure amplitudes for 5-bladed propeller, 

no. 6553, at RPM: 330, Thrust: tK =0.009. 
 
 

 
Figure H.10: First harmonic pressure amplitudes for 6-bladed propeller, no. 6724, 

at RPM: 579, Thrust: tK =0.204 (left); RPM: 732, Thrust: tK =0.182 (right). 
 
 

 
Figure H.11: First harmonic pressure amplitudes for 6-bladed 

propeller, no. 6724, at RPM: 370, Thrust: tK =-0.010. 
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Figure H.12: First harmonic pressure amplitudes for 4-bladed propeller, no. 6458, 

at RPM: 780, Thrust: tK =0.146 (left); RPM: 800, Thrust: tK =0.084 (right). 
 
 

 
Figure H.13: First harmonic pressure amplitudes for 4-bladed propeller, 

no. 6458, at RPM: 462, Thrust: tK =0.004. 
 
 

             
Figure H.14: Pressure time trace of one blade passage based on 4 orders of BPF 

for 2-bladed propeller, no. 6666. 
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Figure H.15: Pressure time trace of one blade passage based on 4 orders of BPF 

for 5-bladed propeller, no. 6553. 
 

                 
Figure H.16: Pressure time trace of one blade passage based on 4 orders of BPF 

for 6-bladed propeller, no. 6724. 
 

                
Figure H.17: Pressure time trace of one blade passage based on 4 orders of BPF 

for 4-bladed propeller, no. 6458. 

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 60 120 180 240 300 360

Pr
es

su
re

 [P
a]

5 bladed propeller, 330 RPM

Measured
Computed

-400

-300

-200

-100

0

100

200

300

400

0 90 180 270 360

Pr
es

su
re

 [P
a]

5 bladed propeller, 652 RPM

Measured
Computed

-15

-10

-5

0

5

10

0 90 180 270 360

Pr
es

su
re

 [P
a]

6 bladed propeller, 370 RPM

Measured
Computed

-60

-40

-20

0

20

40

60

0 90 180 270 360

Pr
es

su
re

 [P
a]

6 bladed propeller, 732 RPM

Measured

Computed

-30

-25

-20

-15

-10

-5

0

5

10

15

20

0 90 180 270 360

Pr
es

su
re

 [P
a]

4 bladed propeller, 462 RPM

Measured
Computed

-100

-80

-60

-40

-20

0

20

40

60

80

0 90 180 270 360

Pr
es

su
re

 [P
a]

4 bladed propeller, 800 RPM

Measured
Computed



Validation of SBF Coupling Procedure 185 
 
 

 

H.2 Validation of SBF Coupling Procedure 
 
 

 
Figure H.18: First harmonic pressures for 2-bladed propeller,  

no. 6666, at RPM: 400 (left), 600 (right). 
 

 
Figure H.19: First harmonic pressures for 5-bladed propeller,  

no. 6553, at RPM: 509 (left), 652 (right). 
 

 
Figure H.20: First harmonic pressures for 6-bladed propeller,  

no. 6724, at RPM: 579 (left), 732 (right). 
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Figure H.21: First harmonic pressures for 4-bladed propeller,  

no. 6458, at RPM: 780 (left), 800 (right). 
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NOMENCLATURE 
 
 

Vectors are shown in boldface and refer to either vector quantities or (discretized) sets 
of scalar quantities. 
 
 

LATIN SYMBOLS 
 
A   monopole constant 
A   parameter in local panel geometry description 
A   matrix involved in SVD procedure 
b   right-hand-side vector in SVD procedure 

iB   dipole constant 

B   parameter in local panel geometry description 
c   speed of sound 
c   Fourier coefficient (complex form) 
c   function in Green’s theorem 
C   function of time in Bernoulli’s law 
C   parameter in local panel geometry description 

0C   function in convected Helmholtz integral equation 

ijC   quadrupole constant 

D   propeller or region diameter 
,dS dS   blade surface element 

e   internal energy 
e   panel transform coefficients 

1 2,E E   terms in integral expression due to Farassat and Myers 

vE   Bulk modulus of elasticity 

f   panel transform coefficients 
f   characteristic flow frequency 
f   regular integration function 
f   general source strength (in derivation of ring sources) 
f   surface function of position and time in FW-H formulation 

if   external force per unit volume 
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F   force field potential 
Fr   Froude number 
F   vector field in Gauss’ theorem 
,F f   external force field 

g   test function 
g   acceleration due to gravity 

G   Green’s function 
G   vector field in Gauss’ theorem 
h   test function 
h   helical coordinate 
H   Heaviside step function 
i   counter 
i   imaginary unit 
I   unit or identity operator 
I   singular integral (in single layer formulation) 
I   discretized unit or identity matrix 
J   singular integral (in double layer formulation) 
J   advance coefficient) 
k   acoustic wave number 

tK   thrust coefficient 

qK   torque coefficient 

K   wave number in Prandtl-Glauert transformation 
l   truncated number of collocation points (or panels with measuring points) 
L   length scale 
L   single layer operator 
L   differential operator 

,i iL l   pressure term (for loading) in FW-H equation 

L   discretized single layer matrix 
m   number of sources 
m   counter 

,MaM   Mach number 
M   double layer operator 

TM   ‘improved’ (derivative of) single layer operator 
M   Mach number vector 
M   discretized double layer matrix 

TM   discretized ‘improved’ (derivative of) single layer matrix 
n   direction normal to boundary 
n   counter 
n   propeller rotation rate 
n   outward pointing normal vector to the boundary 
N   number of roots 
N   ‘improved’ double layer operator 
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N   number of collocation points (or panels) to model the propeller 
N   number of collocation points (or panels) to model the ship’s hull 
N   discretized ‘improved’ double layer matrix 
p   pressure 

vp   vapor pressure 

ijP   stress tensor 

q   source distribution 
q   source strength vector 
Q   torque 

Q̂   harmonic source component 

mQ   rate of mass injection per unit volume 

VQ   volume injection speed 
r   distance from field point to source point 
r   radial coordinate in polar coordinate systems 
r   radial station of propeller blade section 
r   distance function used in Green’s functions 

r   position vector from source (or origin) to field point 
R   effective radius or propeller radius 
R   radial coordinate (in polar coordinate system) 
Re   Reynolds number 
S   boundary, surface 
S   surface tension 
St   Strouhal number 
t   time 
T   period 
T   temperature 
T   time coordinate in Prandtl-Glauert transformation 
T   thrust 

ijT   Lighthill’s stress tensor 
*

ijT   Modified version of Lighthill’s stress tensor (pressure formulation) 

iu   normal velocity in FW-H equation 
u   singular vector(s) 

iU   velocity term (for thickness) in FW-H equation 

U   column orthogonal matrix involved in SVD procedure 
v   fluid speed 
v   singular vector(s) 
v   fluid velocity vector 
v   array of boundary velocities 
V   (volume) domain 



198 NOMENCLATURE 
 
 

 

V   characteristic flow velocity 
V   propeller blade section inflow velocity 
V   orthogonal matrix involved in SVD procedure 
w   singular values 
w   weighting factors (in panel quadrature) 
w   effective wake fraction 
W   non-linear density excess (in Lighthill’s stress tensor) 
We   Weber number 
W   matrix involved in SVD procedure (diagonal singular values) 
( , , )x y z   Cartesian coordinates 

1 2 3( , , )x x x  Cartesian coordinates 
x   coordinate or dummy variable 
x   position vector (of field or observation point) 
X   position coordinate in Prandtl-Glauert transformation 
y   position vector (of source point) 
y   coordinate or dummy variable 
z   coordinate or dummy variable 
Z   number of propeller blades 
 

GREEK SYMBOLS 
 

  panel transformation (first) coordinate 
  angle (with regard to sources in ring) 
  panel transformation (second) coordinate 
  phase angle (with regard to sources in ring) 
  constant involving the Mach number 
  Gamma function 
  Dirac delta function 

ij   Kronecker delta function 

  infinitesimal radius of sphere 
  arbitrary boundary function 

  time function used in Green’s functions 
  angle between source and field point (or observer) directions 
  angular position in propeller disc 
  angular coordinate (in polar coordinate system) 
  wave length 
  scale factor 
  coupling parameter in Burton and Miller’s method 
  dynamic viscosity 

b   bulk viscosity 
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,   dipole source strength 
  potential jump 

,ξ   direction (unit vector) of dipoles 
  fluid density 

,   monopole source strength 
  cavitation number 
  retarded time 
  tensile strength 
  local blade thickness 

ij   shear stress tensor 

  scalar function (in Gauss’ theorem) 
  velocity potential 

φ   array of velocity potentials 
  coordinate mapping function 
  velocity potential (of propeller-induced flow) 

Φ   diffraction constant matrix 
  basis function on panel surface 
  modified potential (in Prandtl-Glauert transformation) 
  scalar function (in Gauss’ theorem) 
  angular or radian frequency 

ω   vorticity vector 
  frequency in Prandtl-Glauert transformation 
  propeller rotation rate (radians per second) 

 

SUBSCRIPTS 
 
a   advance 
atm   atmospheric 
b   blade 
B   wetted part of body (i.e., part of propeller not covered by cavitation) 
c   centre 
c   critical 
C   cavity surface on propeller 
CH   convected Helmholtz (with regard to Green’s functions) 
CW   convected wave (with regard to Green’s functions) 
dip   dipole source 
DH   ‘double hull’ (reflection in free surface implicitly included) 

,F fs   free surface 
H   Helmholtz (with regard to Green’s functions) 
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H   submerged part of the hull surface 
i   index/counter 
j   index/counter 
L   loading term in FW-H formulation 
L   patch of surface where measuring data is known 
L   Laplace (with regard to Green’s functions) 
LS   least squares solution 
n   index/counter 
n   component in normal direction 
n   harmonic order 
m   mass 
m   model (scale) 
min   minimum 
mid   mid (surface) 
mon   monopole source 
r   component in direction towards observer 
r   regular (not too thin) part of bounding surface 
ret   evaluation at the retarded time 
s   source (position vector) 
s   ship (scale) 
t   tangential component 
t   time 
t   thin (part) of bounding surface 
T   thickness term in FW-H formulation 
V   volume 
w   propeller wake 
W   wave (with regard to Green’s functions) 
W   wake sheets behind propeller blades 
0   reference or mean value for coordinate or physical quantity 
0   root 
 

SUPERSCRIPTS 
 
a   disturbance or perturbation (of a ) 
â   complex amplitude of frequency component (of a ) 
aa   surface approximation (of a ) 
aa   ‘Morino’-coordinates (of a ) 
aa   ‘Morino’-coordinates (of a ) 

a   non-dimensional form (of a ) 
col   collocation point 
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inc   incident waves 
T   transpose sign 

  plus or minus side of vortex sheet or bounding surface 
 

MATHEMATICAL SYMBOLS 
 

   difference 
   gradient operator 

2    surface gradient operator 

   divergence operator 
2   Laplace operator 

   rotation operator 
aa   time derivative (of a ) 

  Jacobian 
  quadrilateral panel or boundary element 

 

ABBREVIATIONS 
 
BEM  Boundary Element Method 
BPF  Blade Passage Frequency 
CAA  Computational AeroAcoustics 
CFD  Computational Fluid Dynamics 
CoCa  COrrelation of CAvitation (Joint Industry Project) 
CRS  Cooperative Research Ships 
DTT Depressurized Towing Tank 
EXCALIBUR EXcitation CALculation with Improved BURton & miller method, BEM for 

acoustic scattering and radiation 
FEA  Finite Element Analysis 
FW-H  Ffowcs Williams-Hawkings (equation) 
geosim  Geometrically similar scale model 
h.o.t.  higher order terms 
HSVA  Hamburg Ship Model Basin 
IPKC  Iterative Pressure Kutta Condition 
ITTC  International Towing Tank Conference 
LDV  Laser Doppler Velocimetry 
LES  Large Eddy Simulation 
MARIN  MAritime Research Institute Netherlands 
PARNASSOS RANS solver 
PIFWAKE Method for nominal-to-effective wake conversion 
PIV  Particle Image Velocimetry 
PROCAL PROpeller CALculation, BEM for propeller flow 
PROVISE PROcal VISualization Environment 
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RANS(E) Reynold’s Averaged Navier-Stokes (Equations) 
RPM  Revolutions Per Minute 
SBF  Solid Boundary Factor 
SVD  Singular Value Decomposition 
TVC  Tip Vortex Cavitation 
TDC  Top Dead Center 



 
 
 

 

 
 
 
 
 
 

SUMMARY 
 
 

The cavitating propeller often forms the primary source of noise and vibration on board 
ships. The propeller induces hydroacoustic pressure fluctuations due to the passing blades 
and, more importantly, the dynamic activity of cavities in the propeller’s immediate vicinity. 
The accurate prediction of the resulting vibratory hull-excitation forces is indispensible in the 
ship design process, but is not always warranted. From this follows the main objective of the 
thesis, which is the development of improved prediction capabilities for propeller-induced hull-
excitation forces based on experimental and computational procedures. 

On the basis of experience and a literature study several topics have been selected that 
are considered most in need of improvement. On the experimental side, the model scale 
effect on the effective ship wake has been studied. An improved model testing procedure has 
been developed, which is based on the use of a geometrically non-similar model hull form 
designed by means of a RANS method. It is shown how the closer resemblance of the 
model’s wake field with that of the real ship improves the similarity of the propeller cavitation 
dynamics and thereby the prediction of the resulting first blade rate order hull-pressure 
fluctuations. 

On the basis of the boundary element method, a computational method has been 
developed for the computation of the scattering effect of the hull on incident pressures caused 
by propeller noise sources. The method has been validated with model scale experiments on 
propellers with and without cavitation. 

The same boundary element method has been used to correct for the influence of model 
hull vibrations on the assessment of hull-excitation forces. Guidelines have been derived for 
the execution of model scale experiments so as to minimize vibration-induced hull pressures. 

Inverse scattering techniques have been applied to the determination of the propeller 
source strength from measured or computed hull pressures. On the basis of the source 
strength, the pressure distribution on the hull may be derived from which effective vibratory 
excitation forces follow. It is proposed to use propeller noise source strenghts or hull-
excitation forces instead of local pressure amplitudes in contract specifications. 

It is strongly recommended that for the correct prediction of pressure fluctuations at 
higher orders of the blade passage frequency, tip and leading edge vortex dynamics are 
studied as well as the effect of gas content on the dynamics of the cavitating vortex. 
 
 
 





 
 
 

 

 
 
 
 
 
 

SAMENVATTING 
 
 

De caviterende schroef vormt vaak de belangrijkste bron van lawaai en trillingen aan 
boord van schepen. De schroef wekt hydro-akoestische drukfluctuaties op ten gevolge van 
bladpassages en, belangrijker, dynamische cavitatie op en rond de schroef. De nauwkeurige 
voorspelling van de resulterende romptrillingsexcitatiekrachten is onmisbaar tijdens het 
scheepsontwerp, maar niet altijd gegarandeerd. Hieruit volgt het hoofddoel van dit proefschrift 
als de ontwikkeling van verbeterde voorspellingsmogelijkheden voor schroefgeïnduceerde 
scheepsrompexcitatiekrachten in de vorm van experimentele en numerieke methodes. 

Op basis van ervaring en literatuurstudie is een aantal onderwerpen geselecteerd dat 
het meest voor verbetering vatbaar is. Op het experimentele vlak is het schaaleffect op de 
effectieve modelscheepsvolgstroom bestudeerd. Dit heeft geresulteerd in een verbeterde 
testprocedure, gebaseerd op het gebruik van niet-geometrisch geschaalde scheepsmodellen, 
die worden ontworpen met behulp van een RANS methode. Aangetoond is hoe de grotere 
gelijkenis van het volgstroomveld op modelschaal met dat op ware grootte leidt tot een 
sterkere gelijkenis van het dynamisch gedrag van de cavitatie op modelschaal en ware 
grootte. De voorspelling van de eerste orde bladfrequente drukfluctuaties is daarmee 
aanzienlijk verbeterd. 

Op basis van een randelementenmethode is een rekenmethode ontwikkeld voor de 
bepaling van de diffractie van schroefgeluidsgolven op de romp. De code is gevalideerd 
middels modelschaalexperimenten met caviterende en cavitatievrije propellers. 

Dezelfde randelementenmethode is gebruikt voor de correctie van huiddrukfluctuaties 
voor de invloed van romptrillingen. Richtlijnen zijn afgeleid die trillingsbeïnvloeding in 
modelschaalexperimenten tot een minimum moeten beperken. 

Inverse diffractietechnieken zijn toegepast voor de bepaling van de schroefbronsterkte 
op basis van gemeten of berekende huiddrukken. Met behulp van bronsterktes kan een 
drukverdeling op de romp worden bepaald waarmee via integratie excitatiekrachten worden 
verkregen. Het verdient aanbeveling om contractspecificaties met betrekking tot 
excitatiekrachten op te stellen in termen van een toelaatbare schroefbronsterkte of 
rompexcitatiekracht in plaats van maximale lokale drukamplitudes. 

Voor een verdere verbetering van de voorspelling van drukfluctuaties bij hogere ordes 
van de bladpasseerfrequentie is het noodzakelijk dat de dynamica van tip- en 
randwervelcavitatie nader worden onderzocht met inbegrip van het effect van het gasgehalte 
op die dynamica. 
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