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A B S T R A C T

Numerical efforts to estimate turbulence in fluid flows are focused on developing
turbulence models, with Reynolds Averaged Navier–Stokes (RANS) models being
the most popular. RANS methods are practical to apply on complex geometries,
and high Reynolds number flows, albeit at a loss of accuracy in difficult flow situa-
tions like separation and transition. In recent years, many data-driven approaches
which leverage high-fidelity data have been developed to augment the performance
of RANS models. The goal of this M.Sc. thesis is to apply and extend one such
data-driven approach “Field Inversion and Machine Learning (FIML)” [Parish and Du-
raisamy, 2016] to improve the negative Spalart-Allmaras (SA-neg) turbulence model,
with specific application to the shock-induced separation on a 2D airfoil profile. In-
version techniques involve formulating an optimisation problem aiming to provide
an improved closure for the turbulence model at the point of inversion by minimis-
ing a measure of discrepancy between the baseline model and the high-fidelity data.
This results in a corrective, spatially distributed discrepancy field and is referred to
as β in this work. To incorporate a general β field for improved predictions in a
RANS solver, machine learning algorithms (neural networks in this case) will be
used to find a functional approximation. Machine learning (ML) algorithms will
identify patterns in the training data, which is an appropriately chosen set of flow
features (ηi) from the solutions of the inverse problem for multiple flow cases for
the 2D airfoil over a range of Mach numbers (M), Reynolds Number (Re), and an-
gle of attacks (AoA). This work’s primary objectives are to identify flow features
(ηi) relevant to shock-induced flow separation. The improved RANS model will
be tested on unseen flow conditions to evaluate the generalisation capability of the
machine learning augmentation.
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1 I N T R O D U C T I O N

1.1 background

Turbulence exists in all kinds of relevant fluid flows. Characterization of turbulent
flow behaviour is a requirement for most practical fluid dynamic problems. The
most straightforward option, in theory, is to directly solve the governing flow equa-
tions using direct numerical simulation (DNS); however, the unsteady behaviour
of these flows and extensive range of spatial scales makes it extremely difficult to
afford computationally. DNS has been used to solve canonical cases in industry
and academia; however, this method cannot be implemented in practical problems
like estimating the flow field around an aeroplane wing or a turbomachinery com-
ponent for decades to come. Therefore, there always has been a need to develop
reduced-fidelity methods to model turbulence in the governing equations addressed
by Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES) tur-
bulence models in the previous years. Both methods involve decomposing the flow
variables (U) into resolved (Ũ) and unresolved (U′), represented as U = U′ + Ũ. In
LES, this decomposition is done using low-pass filtering of the physical scales of
the flow variables to be resolved, and in RANS, it is done using ensemble averaging
of the governing equations into mean and fluctuating parts of the flow.

LES methods provide higher fidelity results than RANS methods but are still com-
putationally expensive for large-scale practical applications. RANS models are the
most popular methods due to their capabilities to be applied to complex geometries,
and high Reynolds number flows. The reason for this is the low computational
cost, which arrives from the fact that the turbulent behaviour in RANS turbulent
models depends entirely on the (empirical, mathematical, intuition-based, practical)
modelling assumptions used to close the model. However, these models are still in-
adequate in terms of accuracy as information is always lost during the averaging
process regardless of the turbulence modelling choice, and the modelling assump-
tions for the closure terms are often based on canonical flow cases like the flat plate
flow, which makes it difficult to predict situations like separation and transition.

Turbulence modellers have been using experiments and DNS datasets for the cali-
bration of these RANS models. However, due to the recent abundance of data and
the development of sophisticated computational hardware and algorithms, the use
of data-driven turbulence modelling has gained importance [Duraisamy et al., 2019].
Furthermore, these datasets can be used in today’s accessible and scalable machine
learning algorithms to provide even more improved turbulence models [Brunton
et al., 2019]. In literature, there are various methods to model turbulence that are
purely data-driven, i.e. are only dependent on data, but the focus of this work will be
on methods that are data-enabled [Duraisamy, 2020]. Data-enabled means existing
turbulence models are employed, and data is used to improve their performance or
augment them. One such data-enabled approach is the “Field Inversion and Machine
Learning (FIML)”, formalized by Parish and Duraisamy [2016].

One of the more challenging problems to solve for CFD solvers is transonic flows
with shock-wave boundary-layer interactions (SBLIs). For a strong enough shock,
these interactions cause separation of the boundary layer from the airfoil at the
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2 introduction

shock location leading to a “shock stall”, characterized by a sudden loss of lift and
increase in drag. The thesis applies the FIML approach to the test case of shock-
induced separation on 2D airfoils operating in a transonic regime. The airfoil in
consideration for this project is the RAE 2822 airfoil, which is a rear-loaded, subcrit-
ical, roof-top type pressure distribution at design conditions. The RAE 2822 airfoil
has been used in literature to validate CFD codes and turbulence models as various
flow characteristics like the shock location, the extent of separation, the pressure
downstream of the shock need to be correctly estimated. Incorrect estimation of
these phenomena can wrongly predict the lift, pitching, and hinge moments during
win design.

This MSc thesis project aims to apply the FIML approach to improve the negative
Spalart-Allmaras (SA-neg) turbulence model [Spalart and Johnson, 2012] with spe-
cific application to the shock-induced separation on the 2D profile of the RAE2822

airfoil. The student undertook this project at the DLR Institute for Aerodynamics
and Flow Technology, Göttingen, Germany. The high-fidelity data is supplied to
the student by DLR and was generated by Airbus. The Airbus RWC.01 database
gathers experimental aerodynamic data acquired in 2016 using the pilot facility of
the European Transonic Wind Tunnel (pETW) for a series of 2D airfoil sections.

1.2 research objective & research questions
The main research objective for this M.Sc. thesis work is:

“To apply and extend the data-driven Field Inversion and Machine Learning
(FIML) approach to augment the negative Spalart-Allmaras (SA-neg) turbu-
lence model, with specific application to the shock-induced separation on a 2D
transonic airfoil profile.”

The achievement of the above objective would signify that the FIML approach can
be extended to the shock-induced separation case on a 2D transonic airfoil profile,
which is a flow case that has not been tested extensively yet in literature. This study
is the first one in the author’s knowledge that uses the extensive Airbus RWC.01

database for a data-driven turbulence modelling activity. The aim of the study. The
focus of this work was in particular on the applicability of the FIML approach to
shock-induced flow separation and the feature selection and engineering process
for the Machine Learning step. The generation of a general augmented RANS tur-
bulence model is not addressed here.

From the understanding of the problem at the start of the project, the following
research question that drives the project is identified:

“How can the Field Inversion and Machine Learning (FIML) approach be ap-
plied to augment the negative Spalart-Allmaras (SA-neg) turbulence model for
shock-induced separation on a 2D transonic airfoil?”

The following sub-questions have been identified:

• Is the experimental aerodynamic database of high-fidelity wind-tunnel mea-
surements dataset relevant and representative of the flow cases on which the
augmented turbulence model will be applied?

• Does a unique discrepancy field exists which can be inferred using a deter-
ministic inversion approach? Does this unique field correspond to the global
minimum of the discrepancy between the baseline model and high-fidelity
data? Is it possible to reach this solution with the current tools and computa-
tional resources at hand?



1.3 thesis outline 3

• Will machine learning algorithms be able to find the patterns in the discrep-
ancies obtained from inversion solutions? Are neural networks the best algo-
rithm for the learning process in this case? What is the best architecture/ set
of hyper-parameters for the neural networks to be used for learning?

• What is the appropriate set of features required for the learning process? How
many features are necessary? Should the features specific to the test case
(shock-induced separation) be introduced in the learning process?

• Are the results of this learning process interpretable? Is there a causal relation-
ship between the data, the discrepancy, and the corresponding prediction?

• Does this ML-augmentation provide better results than the baseline model?
Can it predict test cases with design points unrelated to those in the training
database?

1.3 thesis outline
Chapter 2 gives an overview of the theoretical background required for the topics
discussed in this thesis work. This chapter includes topics like turbulence mod-
elling focusing on RANS, transonic flows for a 2D airfoil, optimization techniques,
machine learning and feature engineering. Chapter 3 gives a review of data-driven
turbulence modelling activities with a focus on the usage of machine learning and
then sets up the paradigm for the approach used in this thesis - the Field Inversion
and Machine Learning (FIML) approach. A summary of the current FIML imple-
mentation is also provided in Chapter 3. Chapter 4 explores the scope of the Airbus
RWC.01 experimental aerodynamic database provided to the author and provides
a method of selecting the data points for the FIML activity considering the shock-
induced separation case in mind. Chapter 5 provides a detailed description of how
the Field Inversion part of the FIML approach was implemented for the selected
data points, followed by the results and recommendations to improve the proce-
dure further. Chapter 6 deals with the feature engineering pipeline used to pro-
cess the input features for machine learning, providing explanations for the choices
made considering the physical problem, data and the machine learning algorithm
of neural networks. Chapter 7 focuses on the Machine Learning part of the FIML
approach, motivating the design choices made behind the training procedure fol-
lowed by results on various testing cases. Finally, Chapter 8 concludes the work by
answering the research question stated in this chapter, commenting on the general-
ity of this machine learning augmentation activity and providing recommendations
for future work.





2 T H E O R E T I C A L B A C KG R O U N D

This chapter gives a broad overview of all the pre-requisite theory to delve into this
project. Section 2.1 is about turbulence modeling with special focus on the Spalart-
Allmaras turbulence model, the model of choice for this study. Section 2.2 is about
transonic flows around a 2D airfoil, which discusses the shock wave boundary layer
interactions (SBLI) involved in this case. Section 2.3 focuses on theory optimization
techniques which will be useful for solving the upcoming Field Inversion problem.
Finally, Section 2.4 gives the theoretical framework for machine learning and feature
engineering which is helpful for the ML part of the FIML procedure.

2.1 turbulence modeling

Instabilities, unsteadiness and randomness characterize turbulent behaviour in fluid
flows. If a laminar flow is disturbed at low velocities, where viscous forces domi-
nate, it tends to recover from the instabilities. The recovery does not take place at
high velocities, and flow is said to become turbulent. The critical flow condition
can be defined using a non-dimensional quantity called the Reynolds number Re,
which describes the ability of the flow to transition from laminar to turbulent:

Re =
Inertia forces or Momentum of the flow

Viscous forces of the flow
=

UL
ν

, (2.1)

where U and L are characteristic velocity and length scales and ν is the kinematic
viscosity of the fluid flow. A high Reynolds number implies domination of inertial
forces of the flow, making it more susceptible to instabilities.

Turbulence is generated in the largest flow scales (integral scales - big vortices),
and the turbulent energy is progressively transferred to medium-scale vortices (in-
ertial sub-range) and dissipated in the small scale vortices. The energy spectrum
of turbulence energy as a function of wavelength (or wavenumber) is governed by
kinematic viscosity ν[m2/s] and energy dissipation rate ε[m2/s3]. Thus using this
ansatz and dimensional arguments, the smallest associated characteristic scales of
turbulent flows can be defined as:

ηK ≡
(

ν3

ε

)1/4

, uK ≡ (εν)1/4, τK ≡
(ν

ε

)1/2
, (2.2)

where, ηK, uK and τK are the length, velocity and time scale, respectively. These are
also known as Kolmogorov microscales as they come with the underlying assump-
tion given by the Kolmogorov hypothesis, which states that at sufficiently high
Reynolds numbers, small-scale turbulent motions are statistically isotropic.

To sufficiently resolve all the scales of the turbulent flows numerically, one needs to
solve the governing equation for fluid flows (Navier-Stokes equations) on a compu-
tational mesh fine enough to resolve all turbulent scales without any assumptions.
Simulating the flow in this manner is known as Direct Numerical Simulation (DNS)
and can also be called the ”exact” solution for a given flow case. Navier-Stokes equa-

5



6 theoretical background

tions for unsteady incompressible flow are presented below (in Einstein notation):

∂ui
∂xi

= 0

∂ui
∂t

+
∂uiuj

∂xj
= −1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
i = 1, 2, 3

(2.3)

where u is the velocity vector, p and ρ are the pressure, and density, respectively.
Navier-Stokes equations are non-linear partial differential equations that need to be
solved computationally. Assuming that a mesh is used for discretization, the mesh
should be fine enough to capture ηK, uK and τK of the flow. Therefore, the number of
grid points to capture an integral scale of length L with a mesh of smallest element
ηK is:

NL =
L

ηK
∼ Re3/4 (2.4)

In a three dimensional problem, the number of grid points required is N3
L. There-

fore, the number of grid points will scale with the Reynolds number with
(

Re3/4
)3
≡

Re9/4. Assuming the number of time steps required follows from the number of
grids points, i.e. NT ∼ NL, which is a stable time stepping condition; the estimated
cost of DNS procedure is NT × N3

L ≡ Re3. Therefore, the cost of DNS for aerospace
applications with typically high-Reynolds number flows is almost always too high
to be used for practical applications.

2.1.1 Need for modeling: RANS and LES

To reduce the computational cost of solving the Navier-Stokes equation numerically,
there is a need for some form of modelling which captures only the most essen-
tial flow properties. This need is addressed by Reynolds-Averaged Navier–Stokes
(RANS) and Large Eddy Simulation (LES) formulations. LES methods are gener-
ally more accurate and expensive than RANS methods. The focus of this project is
RANS methods, which are the most popular method for aerospace applications be-
cause they provide an acceptable quality of solution with a quick turnaround time.

These methods involve decomposing the flow variables (U) into resolved (Ũ) and
unresolved (U′). Both these methods lead to an unclosed system of equations or a
closure problem. Consider the following set of equations:

∂ũi
∂xi

= 0

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1
ρ

∂ p̃
∂xi

+ ν
∂2ũi

∂xj∂xj
−

∂τij

∂xj

(2.5)

For LES, the decomposition is done in flow length scales, or Ũ represent the resolved
scales of the flow and U′ correspond to the scales filtered out (typically by mesh
resolution). The momentum equation contains the term τij = ũiuj − ũiũj which is
unclosed because it is a function of the unresolved scales. This term is referred to
as subgrid-scale stress (SGS) tensor. In the case of LES Equation 2.5 is achieved by
applying the filter operation on the Navier-Stokes equations.

For RANS, the decomposition is achieved by using ensemble averaging of the gov-
erning equations into a mean (Ũ) and fluctuating (U′) parts of the flow. The decom-
position has the property that average of all the fluctuations is zero or Ũ′ = 0. The
mean flow is resolved in space and time, and the effects of the fluctuations are mod-
elled. The averaging operation, in this case, leads to the unclosed term τij = ũ′iu

′
j



2.1 turbulence modeling 7

and is referred to as the Reynolds stress tensor. The Reynolds stress tensor can be
further split into isotropic and deviatoric parts:

ũ′iu
′
j =

2
3

δijk + aij, (2.6)

where aij is the anisotropic part of the Reynolds stress tensor, δij is the Kronecker

delta fucntion and k = 1
2 ũ′iu

′
i is the turbulent kinetic energy. A non-dimensionless

version of the anisotropic part, often referred as the anisotropy tensor especially in
FIML literature, can be written as:

bij =
aij

2k
. (2.7)

The addition of Reynolds stress tensor to the equations leads to an increase in dif-
fusivity in the flow. Properties of the Reynolds stress tensor are similar to that of
viscous stress. It is possible to formulate a transport equation for the Reynolds
stresses using the Navier-Stokes equations, but the order of the unclosed terms
keeps increasing, and they cannot be solved. Therefore the Reynolds stress needs to
be modelled using empirical approximations. Considering the scope of this thesis,
only one class of these models, namely Eddy Viscosity Models (EVM), is discussed
in this chapter.

Eddy viscosity models

This class of turbulence models are the simplest form of turbulence models. These
models have been based on the observation that turbulence leads to momentum
exchange between fluid elements. The deviatoric part of the Reynolds stress tensor
is proportional to the mean shear rate, and the proportionality factor is the eddy
viscosity or turbulent viscosity. The deviatoric part of the Reynolds stress tensor is
then defined according to the ansatz:

aij ≈ −2νtSij (2.8)

where Sij is the mean strain rate tensor and νt is the eddy-viscosity. This ansatz
is also known as the Boussinesq hypothesis. Substituting the ansatz in the RANS
equation transforms the problem only to estimate the scalara eddy-viscosity vari-
able instead of six Reynolds stress components. The assumption is a strong one;
however, it is confirmed by DNS to be valid for flows with a distinct mean flow
direction. Eddy viscosity models have provided accuracy of acceptable levels for
attached flows. However, the eddy viscosity models do not work well for situations
like wall-bounded flows (the wall blocks one flow velocity component). Regardless,
their ease of implementation and less complexity makes them the most important
tool in industrial applications.

Eddy-viscosity models can be further sub-classified based on how the eddy vis-
cosity is expressed and the number of additional transport equations needed to
solve for their use:

1. Algebraic models (zero-equation): This class of models do not use any addi-
tional transport equations and are calculated using a mixing length assumption.
The mixing length is analogous to the mean free path, which is approximately
the distance from the wall (for wall bounded flows). They are simple to im-
plement but only provide accurate results for simple flows the type of results
they have been calibrated on. Examples are Prandtl’s mixing length model,
Baldwin-Lomax model [Baldwin and Lomax, 1978].

2. One-equation models: This class of models has one additional transport equa-
tion to solve from the eddy viscosity formulation. Examples include the
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Prandtl one-equation model and Spalart-Allmaras model [Spalart and All-
maras, 1992]. These models include formulations for turbulence production,
transport and dissipation, making them more accurate than algebraic models.
Additionally, they remain computationally inexpensive and numerically sta-
ble because there is only one additional equation to solve.

For the Prandtl one-equation model, the eddy viscosity is modelled as νT =
lm
√

k, where k is the turbulent kinetic energy. The transport equation for k
comes from the exact turbulent kinetic energy equation (k = 1

2 ũ′iu
′
i) and for-

mulated using the Reynolds stress transport equation (setting i = j) with only
the diffusion term that needs to be simplified and modelled. This model pro-
vides satisfying results for external flows and attached boundary layers, but
the constant mixing length assumption is still limiting for internal and wall-
bounded flows. The Spalart-Allmaras model will be discussed in detail in the
upcoming section.

3. Two-equation models: These models have two transport equations, one of
them typically being turbulent kinetic energy k and the other related to turbu-
lent length or time scale. For the k− ε model [Jones and Launder, 1972], the
eddy-viscosity is given by νt = Cµk2/ε where Cµ is a model parameter and
ε is the turbulence dissipation rate. Unlike the Prandtl one-equation model
where ε was modelled, a separate transport equation for ε means that it is a
part of the solution. Similarly, the k− ω model [Wilcox, 1988] formulates the
eddy viscosity as νt = Cµk/ω or ω = ε/k, which was specifically done to
achieve improved performance for boundary layer flows and pressure gradi-
ents. In both cases (ω or ε), the transport equation is formed using physical
intuition and dimensional arguments.

2.1.2 Spalart-Allmaras turbulence model

The Spalart-Allmaras (SA) model [Spalart and Allmaras, 1992] is a one-equation
model where the eddy viscosity νT is directly related to a SA working variable ν̃.
This model is classified as an eddy-viscosity model, and the Reynolds stresses are
defined using the Boussinesq assumption in the following manner:

νt =
µt

ρ
= ν̃ fv1, fv1 =

χ3

χ3 + c3
v1

, χ ≡ ν̃

ν
, (2.9)

where ρ is the density, ν = µ
ρ is the kinematic viscosity. This formulation of eddy

viscosity provides damping in regions with low turbulent Reynolds numbers. The
SA working variable ν̃ is related to the eddy viscosity through a function, which
follows the postulated transport equation:

Dν̃

Dt
= P− D +

1
σ

[
∇.((ν + ν̃)∇ν̃) + cb2∇(ν̃)2

]
, (2.10)

where P and D are the production and destruction terms, respectively, details about
these terms and the constants of this model are provided in Appendix A. The trans-
port equation Equation 2.10 is empirically derived but has been developed explicitly
for aeronautical boundary layer flows. The transport variable ν̃ varies linearly in the
near-wall region, making it highly robust. The model performs well for simply at-
tached flows. For a parallel flow, the model predicts a constant eddy viscosity, and
therefore it does not work well for free shear layers. The SA model also has a low
sensitivity to separation.

The original model was formulated in the publication by [Spalart and Allmaras,
1992], but over the years, there have been many variants that provide corrections
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like adding trip terms for laminar suppression ( ft2-term), rotation and curvature
(SA-RC) correction. These variants have been summarized by the excellent online
resource by NASA (here) described in the paper by Rumsey et al. [2010]. How-
ever, the negative Spalart-Allmaras (SA-neg) model is of specific interest because
the framework of this project is based on this turbulence model.

Negative Spalart-Allmaras model

The SA-neg model [Spalart and Johnson, 2012] further develops to enhance the
robustness of the original SA-model. Special treatment is given to cases when ν̃
becomes negative due to numerical reasons. This is done by solving a slightly dif-
ferent transport equation when ν̃ < 0 , contrary to original models where the com-
mon practice was to clip the solution update. Additionally, it provides an updated
definition of the modified vorticity Ω̃ to prevent negative values of Ω̃. The primary
aim of the modification is to keep the original model untouched and only increase
numerical robustness. It also includes the laminar suppression term ( ft2-term) to
suppress turbulence in laminar flows. Therefore the eddy viscosity levels need to
be sufficiently high in the farfield (outside boundary layer), i.e. (µT/µ)∞ > 0.2 to
display turbulent behaviour. The relevant terms and equations for this version have
also been detailed in Appendix A.

SA-neg model is the default one-equation turbulence model in the TAU flow solver
[Schwamborn et al., 2006] available at DLR. Owing to its numerical robustness and
stability, this model is used as the baseline model for running the flow calculations
in the current project.

2.2 transonic flows for a 2d airfoil

Shock wave - boundary layer interactions (SBLI) are among the most complex flow
phenomena in fluid flow around an airfoil, especially in the transonic regime. In
transonic flows, it is expected that the flow will reach supersonic speeds on the suc-
tion side of the airfoil, where high flow velocities and low pressures are seen, thus
leading to shock waves. The boundary layer over the airfoil is subjected to the ad-
verse pressure gradient caused by this shock. Additionally, the shock has to interact
with layers of viscous and inviscid flow. The adverse pressure gradient causes the
boundary layer to become less full and displaces the inviscid flow just above the
boundary layer. If the shock is strong enough, it leads to boundary layer separation,
which causes significant changes in an otherwise inviscid, attached flowfield. Such
shock-induced separation potentially leads to unsteadiness on an airfoil flow, often
seen in the form of buffeting on wings. These interactions get more complex if the
flow is turbulent as the viscous dissipation increases and the drag over the wing is
increased.

For the transonic regime, the incoming flow M < 1 and is accelerated over the
suction side into a supersonic regime. In the supersonic region, expansion waves
are generated due to the convex shape of the suction side, which further accelerates
the flow and decreases the pressure. These expansion waves reflect as compression
waves from the sonic line, and compression waves reflect from the airfoil as com-
pression waves unless they are cancelled out by existing expansion waves [Babinsky
and Harvey, 2011, p. 88-89]. These compression waves eventually catch up to form
a normal shock, and this shock interacts with the boundary layer. This phenomenon
can be viewed in Figure 2.1

https://turbmodels.larc.nasa.gov/spalart.html
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M > 1

M < 1
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Figure 2.1: Shock wave-boundary layer interactions around a 2D airfoil in transonic flow.

The severity of the SBLI is dependent on the strength of the shock wave, which
in turn depends on the increasing free stream Mach number, Reynolds number
and angle of attack. Additionally, thicker airfoils lead to stronger shocks. Once
the shock is strong enough, the adverse pressure gradient causes local separations
or a flow breakdown until the trailing edge. These separations can be labelled as
shock-induced separations, and when the flow completely separates, it is also called
”shock stall”. This term is acceptable as there is a sudden loss of lift and an increase
in drag.

Another mechanism by which flow separation is seen in SBLI is the separation
at the trailing edge. The presence of shock thickens the boundary, which makes
it more sensitive to adverse pressure gradient, making it more likely to separate
[Babinsky and Harvey, 2011, p. 91]. Therefore, the boundary layer may start first
separating at the trailing edge as in the subsonic flow case than at the shock foot.
This trailing edge separation is seen in supercritical airfoils [Schewe et al., 2003].
Figure 2.2 shows the two types of separation over a 2D airfoil in a transonic case.

Increasing 

Type A Type B

Figure 2.2: Types of shock induced separation around a 2D airfoil in transonic flow condi-
tions. It is expected that the flow around the RAE2822 airfoil will resemble the
Type A flow phenomena.

The airfoil in consideration for this thesis is the RAE 2822 airfoil. It is expected
that the separation phenomena for this airfoil will resemble the Type A in Figure 2.2
as it is a sub-critical airfoil with a roof-top type pressure distribution at design
conditions.
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2.3 optimization methods
For a classical optimization problem, a quantity of interest (QOI) depending on
some design variables is defined. This QOI needs to be optimized by varying the de-
sign variables, respecting some constraints. In majority of simulation based design
optimization problem in aerodynamics, atleast one equality constraint is defined by
the CFD solver based on a RANS/LES method in the loop where the design vari-
able always has to satisfy the CFD solver governing equations while moving in the
direction of optimal solution. Therefore, this section will focus on the formulation
of an equality constrained optimization problem and the optimization techniques
to solve them.

2.3.1 Formulation of an Equality Constrained Optimization Problem

A general unconstrained optimization problem can be defined as follows:

min
x

f (x), (2.11)

where f is the objective function for the problem and x is the design variable belong-
ing to a domain Ω. This problem has no bounds on the design variable, apart from x
not deviating beyond some realistic values. To solve an unconstrained optimization
problem, it is assumed that the objective function is continuous and differentiable,
and the domain for design variables is closed and bounded. For a minimum to exist,
the objective function has to be non-monotonic or it has to increase and decrease
within the domain. At a local minimum, a necessary condition is that the first
derivative of the objective function is zero or f ′ = 0 . However the first derivative
can be zero at a maximum or a saddle point, therefore the sufficient condition for
minimum is that f ′′ > 0 . For a multidimensional problem, where x is a vector of
design variables, the conditions for a local minimum can be framed as the following
[Papalambros and Wilde, 2000, p. 137]:

Necessary : ∇ f = 0, (2.12)

Sufficient : H =
∂2 f

∂xi∂xj
is positive definite (2.13)

, where H is the Hessian matrix of the objective function. The point at which neces-
sary condition is satisfied is also termed as the stationary point. This local minimum
would be a global minimum if the objective function f is convex.

Now, consider a constrained optimization problem with multiple constraints. The
simplest case for this kind of problem is an equality constrained optimization prob-
lem, where all constraints are equality constraints. This can be written as follows:

min
x

f (x), x ∈ Rn s.t hi(x) = 0, i = 1, ..., m (2.14)

where design variables x are n in number; hi are the independent equality con-
straints, m in number and n > m. Each equality constraint reduces the dimension
of the problem. Therefore the solution of this problem can be said to exist in a
feasible subspace F of the dimension n−m = p. Therefore, the simplest approach
would be eliminating the variables in x using equality constraints and solve an
unconstrained problem of dimension p. However, this is often not possible as elim-
ination fails when variables cannot be explicitly solved from equality constraints.
Additionally, in a CFD environment there is no closed form of objective function
as often the simulation output is plugged in the objective function to evaluate its
value. Therefore, another approach is needed to deal with the constraints.
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In this thesis study, the approach that is considered is formulating the Lagrangian
by using the method of Lagrange multipliers. An augmented unconstrained opti-
mization problem is defined using the constraints in the following manner (shown
for one constraint here):

J (x, Λ) = f (x) + ΛT h(x)︸︷︷︸
=0

, x ∈ Rn, Λ ∈ Rm, (2.15)

where Λ is the Lagrange multiplier. Now, to find the stationary point of the aug-
mented response, i.e., the necessary condition for the local minimum, the first
derivative is checked, as in Equation 2.12:

∇J = 0. (2.16)

Evaluating for Equation 2.15, this results in:

∇J =

{
∂xJ
∂ΛJ

}
=

{
∂x f + Λ∂xh
(∂ΛΛT)h

}
=

{
∂x f + ΛT∂xh

h

}
= 0.

Therefore, the necessary condition is ultimately posed as

∂ f
∂x

+ Λ
∂h
∂x

= 0, and h = 0, (2.17)

where second equation is the equality constraint itself. The advantage of the method
of Lagrange multipliers is that now the problem can be treated as an unconstrained
problem, and the derivative test (as shown above) can be directly applied. To eval-
uate the sufficiency condition for local minimum of J , the bordered Hessian is for-
mulated and its positive-definite nature is checked [Papalambros and Wilde, 2000,
p. 185].

2.3.2 Optimization techniques

To solve an unconstrained optimization problem with multiple design variables,
there are two major classes of optimization algorithms. This classification is based
on the availability of the gradient information of the objective function:

Gradient-free methods

For a non-continuous, unpredictable design space, gradient-free methods are best
suited to solve an optimization problem. They are complex to implement; how-
ever, they increase the possibility of achieving the global optimum [Skinner and
Zare-Behtash, 2018]. Additionally, these methods can deal with numerically noisy
optimization problems as the gradient is not a problem. This makes them a better
method to use in case of discontinuities like shock-waves. For a stochastic design
variable, for instance number of engines on an aircraft, gradient free methods are the
only suitable class of methods. Furthermore, they do not need any a priori knowl-
edge of the design space. These methods optimize several solutions in parallel and
often require many simulations, often a cause of worry for a high-dimensional prob-
lem with many design variables.

The following methods, in no way an exhaustive list, have been used previously
in aerodynamic optimization literature:

1. Biologically inspired methods: The algorithms for these methods take in-
spiration from biological processes, and typically make use of a population.
These include methods like Genetic Algorithms (GA) and Particle Swarm Op-
timization (PSO). The major advantage of using these methods are the global
optimization properties, which is difficult to achieve in gradient based meth-
ods. Additionally, these methods are easy to combine with parallel computing.
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GAs are well suited for complex optimization tasks, and high fidelity codes
can be adapted to them easily [Skinner and Zare-Behtash, 2018]. GAs have
provided great results in aerodynamic optimization studies, but still require
more number of function evaluations compared to gradient based methods.
[Obayashi and Tsukahara, 1997; Zingg et al., 2008]. Additionally, the choice
of population effects the quality of the solution significantly, and there is no
specific way to choose the population.

2. Ensemble Kalman filter (EnKF): The iterative version of the original method
was used for solving inverse problems [Iglesias et al., 2013]. The basic idea is
to construct a finite dimensional space of solution from which the solution is
approximated by guessing the input space which is to be applied to a fixed
mathematical operator. The regularized version of this method [Iglesias, 2016]
is suitable for the ill-posed field inversion problem to be dealt in this study,
and thus this method deserves a separate mention. Yang and Xiao [2020] used
this method to predict the correction term for the turbulence/transition model
for the field inversion in their implementation of FIML method.

3. Other methods include Simulated Annealing, Random walk methods, Nelder-
Mead Simplex methods, etc.

Gradient-based methods

These methods work on the underlying assumption that the gradient information of
the objective function is available for all the independent variables involved. These
methods are well suited to find the local optimum solutions using the derivative
based conditions discussed in Section 2.3.1; however finding the global optimum
can be difficult and dependent on the design space. Gradient based methods re-
quire an understanding of the design space, which is necessary to supply these
algorithms with a good starting point. If the starting point is not appropriately
defined, and the design space has multiple local minima, then gradient based meth-
ods will converge to a local minimum and struggle to escape the surrounding of
the initial guess.

The major advantage gradient based methods provide is the low computational
cost even when handling a large number (in order of 103 − 104) of design variables.
This makes them suitable for aerodynamic applications, given that the sensitivity
information is available. Methods for sensitivity analysis will be discussed in Sec-
tion 2.3.3. In a field inversion context where a spatial field for a correction term in
the turbulence model is sought, gradient-based algorithms prove to be useful as the
number of parameters are equal to the number of grid points and scale with the
grid refinement.

Gradient based methods can be classified on the basis of the order of the gradi-
ent information required:

1. First order methods: These methods require the first derivative of the objective
function, ∇ f . The simplest method here is the Steepest Gradient Descent
algorithm, which can be summarized in the following manner:

xi+1 = xi + α∇ f (xi). (2.18)

First, the search direction is identified by movement towards the largest de-
crease in f , which is given by ∇ f . Then, a stepsize α is either chosen or
calculated using line search to achieve a desired amount of reduction in the
objective function. The i + 1th update in design variable x is then achieved
by using Equation 2.18. This method often results in an efficient ”zigzagging”
behavior near optimum values. Improved methods can be achieved by either
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including a momentum term [Qian, 1999] or by taking history of the search
direction into account in the conjugate gradient method [Fletcher and Reeves,
1964].

2. Second order methods: These methods require the second-order derivative
of the objective function. The most popular method here is the Newton’s
method, where a local approximation of the objective function is formed using
Taylor series expansion, and then the first order derivative test is applied to the
approximation to find the search direction of largest decrease. This direction
results is −H−1∇ f , where H is the Hessian matrix of the objective function.
This results in the following update step:

xi+1 = xi − αH−1∇ f (xi), where H =
∂2 f

∂xj∂xk
(2.19)

Newton method has quadratic convergence, which is the best possible. How-
ever there are many limitations; calculating costly Hessian matrices (especially
for high number of design variables), bad convergence far from optimum and
no remedy to deal with singular/not positive-definite Hessian [Papalambros
and Wilde, 2000, p. 151]. Methods like Levenberg-Marquardt method [Moré,
1978] and Trust region methods have been proposed to improve the robustness
of Newton methods.

3. Quasi-Newton methods: These methods employ the best possible of both
methods, by approximating the Hessian matrix. Therefore, a faster calcula-
tion of the approximate Hessian matrix is possible which preserve conver-
gence qualities of Netwon methods. Examples include Davidson-Fletcher-
Powell (DFP) method [Davidon, 1991] and Broyden, Fletcher, Goldfarb, Shan-
non (BFGS) method [Fletcher, 2013].

2.3.3 Sensitivity analysis and Adjoint method

The gradient based methods discussed in the previous section are dependent on
derivative information of the objective function. The existence of the derivative
information is checked using the sensitivity analysis of the objective with respect
to the design space. Skinner and Zare-Behtash [2018] distinguished the sensitivity
analysis methods in four classes:

1. finite-difference methods,

2. complex-step finite difference methods,

3. automatic differentiation, and

4. analytical methods (direct or adjoint).

Finite difference and complex-step finite difference methods are easy to implement,
but can get complicated for a large number of design variables. These methods are
often used in low-fidelity computational codes. Out of the remaining two classes
of methods, analytical methods, in particular adjoint methods have found a lot
of application in aerodynamic optimization. Peter and Dwight [2010] surveyed
sensitivity analysis approaches for aerodynamic optimization, and concluded that
the discrete adjoint method is the most practical algorithm in modern-day RANS
solvers. Therefore, this approach will be discussed below in detail.

Discrete Adjoint method

The main advantage of discrete adjoint method is that the gradients are consistent
with the discretized form of the governing equations. The discrete adjoint formula-
tion given by Giles and Pierce [2000] will be presented here from a Lagrangian view
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point. Consider the augmented unconstrained objective function for a constrained
optimization problem in aerodynamics, as in Equation 2.15:

J (x, U) = f (x, U) + ΛTh(x, U), x ∈ Rn, Λ, h ∈ Rm, (2.20)

where U are the state variables at each discrete grid point, which can be a vector of
flow variables at each grid point, h is the set of governing equations and boundary
conditions to be satisfied, and x is the design variable to be optimized. We require

the design derivative of augmented response, i.e.,
dJ
dxj

:

dJ
dxj

=
∂ f
∂xj

+
∂ f
∂U

∂U
∂xj

+ ΛT
i

(
∂hi
∂xj

+
∂hi
∂U

∂U
∂xj

)
(2.21)

Rewriting the equation to group all terms with state derivatives gives,

dJ
dxj

=
∂ f
∂xj

+ ΛT
i

∂hi
∂xj

+

(
∂ f
∂U

+ ΛT
i

∂hi
∂U

)
∂U
∂xj

(2.22)

If the number of design variables (xj) is high and the number of state variables (U)
are high as well, then one can imagine that calculating the ∂U

∂xj
becomes a difficult

task. Therefore, in adjoint approach the Lagrange multiplier Λ is chosen in such
a manner that the state derivatives vanish. This can be done by satisfying the
following:

∂ f
∂U

+ ΛT
i

∂hi
∂U

= 0 =⇒
(

∂ f
∂U

)T
Λi = −

(
∂hi
∂U

)T
(2.23)

Once the Lagrange multipliers are Λi is known from Equation 2.23, the required
design derivative ( dJ

dxj
) can be calculated from Equation 2.22:

dJ
dxj

=
∂ f
∂xj

+ ΛT ∂hi
∂xj

(2.24)

Adjoint methods become attractive when the number of constraint equations h are
significantly less than the number of state variables U, which is usually the case in
aerodynamic optimization. Evaluating ∂hi

∂xj
is much cheaper than ∂U

∂xj
. Equation 2.24

is the only equation needed to be solved to calculate the final sensitivity.

2.4 machine learning and feature engineering

2.4.1 Introduction to Artificial Intelligence and Machine Learning

Artificial intelligence was born in the 1950s when computer science engineers be-
lieved that a computer could be made to ”think” and automate tasks usually per-
formed by humans. AI is a general field that encompasses machine learning and
deep learning; however, it also includes many other approaches that do not use any
learning approach. Initial approaches to artificial intelligence involved program-
mers defining ”a sufficiently large set of explicit rules for manipulating knowledge”
[Chollet, 2018], famously known as symbolic AI. This approach was popular until
the 1980s; however, it was only useful to solve well-defined and logical problems
like playing chess. For more complex problems we face today like image classifica-
tion, language translation, in which figuring out explicit rules is reasonably tricky,
the approach of machine learning (ML) was developed, which replaced symbolic AI.

Machine Learning (ML) approaches learn how to do a given task by defining the
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rules itself by looking at the available data, contrary to symbolic AI where the rules
have to be explicitly defined. ML consists of a set of methods that discover patterns
in data to generate rules and then use these rules to make predictions or take de-
cisions. Machine learning systems differ from classical programming as they are
trained rather than programmed. An ML system looks at the data, makes statistical
relations, and then the rules to automate the task.

For this learning process to work, three things are required. Firstly, input data
points are needed. Secondly, examples of the expected data output are needed (in
a supervised problem). Finally, a measure to see whether the ML algorithm is work-
ing is needed. This is usually a parameter that indicates the difference between
expected and actual output, and it drives the learning process by adjusting the algo-
rithm. In some ML models, a parameter called a loss function is defined, which is
related to the difference of predictions from the actual target. Further discussion of
loss functions will take place in the upcoming sections.

As explained by Francois Chollet in his famous textbook [Chollet, 2018], machine
learning can be summarized as ”searching for useful representations of some input data,
within a predefined space of possibilities, using guidance from a feedback signal.”. There are
various classical machine-learning approaches, and they can be broadly classified
into the following categories:

• Supervised learning: The input data is mapped to known targets, and this
drives the learning process. Examples: classification, regression, etc.
• Unsupervised learning: The targets are not known beforehand. Search for

interesting patterns from data is carried out without any known targets. Ex-
amples: dimensionality reduction and clustering.

To achieve a well-performing ML model, the model should learn from the data and
create general rules so that their performance is good on data that is unknown to
the model. The data available can be divided into three sets:

1. Training data set: The set used to train the model, i.e. the model learns and
tries to formulate the rules based on the training data set it is exposed to by
varying its parameters.

2. Validation data set: The set used to put this training’s performance under the
microscope, and the configuration of the model is tuned (by varying its hy-
perparameters) if it does not perform well on this data set. Thus, the primary
purpose of this dataset is the evaluation of the model to make it better by
checking for underfitting or overfitting.

3. Testing data set: Finally, when the engineers feel that the ML model has
achieved a certain level of desired performance, it can be ultimately put to
the test on the testing data set. This data set is totally new to the model; thus,
it is a true test of the generalizing power of the ML model.

There are a few things that need to be kept in mind before selecting the data sets
from the available data for the machine learning model:

• The individual data sets should be representative of the data at hand.
• The data should not be shuffled in time if the problem at hand is a temporal

prediction. This means that the training data set should not contain any data
from the future because the exercise aims to obtain a prediction from the data
at hand at present.
• The data sets should not be too repetitive, or training and validation data sets

should not contain the same data points as it brings redundancy to the data. A
certain level of repetition is tolerated; however, if the network spots the same
patterns everywhere, it will only produce those patterns as an output.
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As discussed before, a good ML model has a good generalization capability. A better
generalization can be achieved by tweaking the model accordingly, and this tweak-
ing process is known as optimization of the model. At the beginning of the training,
the model is newly exposed to the training data, and it starts to learn about it. This
learning is indicated by a lowering loss value by applying the model to the valida-
tion data set. As the loss shows a downward trend, we can say that the model is
still in progress to learn all the relevant patterns in the training data. This situation
is called an underfit. However, after a certain number of iterations on the data, the
generalization ability stops improving, and the loss value trend first gets constant
and then degrades. In this situation, one can say that the model has learned all
relevant patterns related to the training data. However, they become irrelevant for
the new data (validation data) as it loses its generalization factor because it has
memorized the patterns in training data too specifically. This situation is known
as overfitting. It is important to know when a model overfits because the point of
best performance is also known as it will be achieved just before it starts to overfit.
There are various ways to prevent overfitting in different ML models. Some of the
common methods to prevent overfitting have been mentioned below:

• Increase training data: Increasing training data would increase the generaliza-
tion capability of the ML model, as it will have more patterns to remember
statistically speaking.

• Adding dropout: This technique involves randomly forcing the values of train-
ing data to zero (known as dropping out) to introduce noise which inhibits the
ML model from memorizing a pattern that it has seen repetitively.

Therefore to approach every problem in Machine Learning, a universal workflow
can be adopted, summarized in the points below:

1. Define the type of problem at hand (classification, regression)
2. Assemble and preprocess the data, define the training, validation, and testing

data sets.
3. Choose a measure of success of the model, i.e. an appropriate loss function
4. Develop/choose an ML model that predicts better than the statistical proba-

bility of an event happening.
5. Scale up the model further by varying its parameters so that it overfits. Thus

the point of best performance is known.
6. Regularize the model and tune its hyperparameters to improve the model

further
7. Test the model on anonymous data to see how well the model performs.

2.4.2 Neural Networks

Neural network models are machine learning algorithms that work based on learn-
ing in successive layers, creating intermediate data representations to achieve the
desired output. They find application in deep learning; deep learning is mostly
done through layers of neural networks stacked on top of another. These layers
can go in orders of tens or hundreds, and each layer has a meaning no matter how
abstract it is to humans.

Figure 2.3 demonstrates how a typical neural network algorithm works. The in-
put is indicated as X, and it goes through layers of data transformations via neural
networks which have certain weights associated with the input. The prediction
given after it goes through these layers is indicated using Y’. The actual target is
defined as Y. Using a Y and Y’, a loss function is calculated, which indicates how far
the predictions are from the actual target. This loss function generates a score that
is fed as a feedback signal to the optimizer. The optimizer updates the weights in the
layers to reduce the score given by the loss function for the next cycle. The process
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mentioned above is at the heart of neural network models and is used to reach the
desired output. The elements mentioned in Figure 2.3 and neural networks will be
discussed in more detail in the upcoming sections.

Neural 
networkWeights

Predictions
Y'

Loss function

True Targets
Y

Bias

Optimizer

Weight
update

Input data
X

Loss score

Figure 2.3: Working of a supervised neural network algorithm

The basic unit of a neural network is called a neuron or a node. The anatomy
of a neuron can be seen in Figure 2.4. A neuron performs a very straightforward
operation; it receives several inputs xi and associates a weight wi to all the inputs.
An activation function f is then applied on the weighted sum of these inputs plus
a bias b.

Bias

Activation
function

WeightsInputs

Figure 2.4: Basic unit component of a Neural network: A neuron

Therefore, for N inputs, this neuron has N+1 parameters to be tuned, i.e. the N
weights and one bias function. The output of the neuron is:

y = f

(
n

∑
i=1

wi × xi + b

)
(2.25)

The activation function f is used to introduce non-linearity into the output of a
neuron. A summary of activation functions used in deep neural networks can be
found in the work by Lau and Hann Lim [2018]. Typical activation functions include
the tanh function, the Sigmoid function:

f (x) =
1

1 + e−x (2.26)

and the Rectified Linear Unit (ReLu) function:

f (x) = max(0, x) (2.27)
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The neural network model can be viewed as a collection of neurons. Each neuron
is a mathematical function in which the weights and biases (the trainable param-
eters) are associated with the inputs. During the training process, the parameters
that vary are the weights of the neuron, which are driven by the ML algorithm.
The neural network can be designed by deciding the various number of neurons
(i.e. size) in a layer or choosing the number of layers. Varying this hyperparameter
affects the performance of the model. They can be tuned if the engineer thinks the
model is not performing well on the validation data set. Picking the appropriate
network architecture is learned with experience; however, some best practices and
rules of thumb should be followed. The simplest example is stacking multiple lay-
ers linearly, mapping a single input to a single output. The topology of the network
defines the possible solutions it can give, or the hypothesis space. When the network
architecture is defined, the tensor operations acting on the inputs are specified, and
these operations are used to map the input to the output.

Input layer

Hidden
layer Output

layer

Output

Input 1

Input 2

Input 3

Input 4

Figure 2.5: Fully connected multi-layer perceptron (MLP), where each neuron is connected
to the next layer

One typical architecture is the Multi-Layer Perceptron (MLP) as seen in Figure 2.5.
MLP is a feedforward network that consists of several layers of neurons, in which
each layer is fully connected to the following one. Each neuron in these layers will
receive several inputs and compute the previous equation with its own weights and
a bias. Here, fully connected layers are displayed, where neurons of the first layer
are all connected to the second one. Consequently, for P neurons with N inputs
(either the initial inputs, or ones from a previous layer), this layer will contain
(N+1)P parameters to be tuned.

Loss function and Optimizers

In a machine learning algorithm, the loss function (also known as objective function)
is a quantity that needs to be lowered during training the ML model. The lowering
value indicates the measure of success of the ML model. The value and trend of the
loss function act as a feedback signal to the network. According to this signal, the
optimizer updates the network. More information about gradient-based optimizers
used in neural network models can be found in the review paper by Ruder [2016].
Here, the discussion in the context of an optimizer will focus on a stochastic gradi-
ent descent (SGD) algorithm.
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The choice of the objective function in accordance with the problem is essential
to get the correct output. The objective function should be correlated to the desired
output. The optimizer takes the shortest route possible to minimize the loss, and
an improperly defined loss function may lead to important patterns being missed.
Additionally, the loss function depends strongly on the problem (regression, clas-
sification, etc.). A typical example for regression problem is the Mean Square Error
(MSE), defined as

L(Y′, Y) =
1
N

N

∑
i=1
|Y′i −Yi|2, (2.28)

where Y′ is the prediction from the neural network, and Y is the target or the ground
truth. Loss functions (L()) can be minimized by varying the value of Y′, which is
done by varying the value of weights in the layers. To find the minimum value of the
loss function, we move in the direction where its derivative is zero. This approach
is used to find the appropriate values of the weights, and we can try to move in
the direction where the loss value decreases. For a weight W of the network, the
gradient ∂L

∂W is computed. The parameter weight W is then updated in the direction
of the gradient with a relaxation term α (called the learning rate) so that new weight
is found using:

Wnew = W − α
∂L
∂W

. (2.29)

This update of weights is called the gradient descent. Computing the derivative ∂L
∂W

is a computationally expensive task for the neural networks due to the large num-
ber of parameters involved. This update can be achieved using the Backpropagation
algorithm Rumelhart et al. [1986], which is inherently based on the chain rule for
differentiation. A neural network that has multiple outputs may have multiple loss
functions (one per output). However, the gradient-descent process must be based
on a single scalar loss value; for multi-loss networks, all losses are combined (via
averaging) into a single scalar quantity.

The computational cost may still be high if the derivative is calculated together
for all input samples or all the weights. Thus, data can be chosen in small batches
at random, and this is called mini-batch stochastic gradient descent. Here, stochastic
refers to the fact that these batches are chosen at random. A batch is a collection of a
small number of samples. The gradient descent will be performed after the batch is
evaluated, averaging the descent over the batch samples. The batch size is the num-
ber of samples used to approximate the gradient. Small batch size will produce
a noisy optimization process as the gradients are produced in different directions,
making the descent noisy. A large batch size will average this noise; however, it will
create memory issues due to the large number of gradient calculations involved.
In practice, the largest batch size allowed by the GPU memory is chosen. The ML
algorithm runs over the entire dataset samples by iteratively loading batches of
data where the gradient calculation and parameter update is run. This strategy is
denoted as the mini-batch SGD. Each complete data cycle that covers the whole
data set is called an epoch. Many epochs (10-1000 in magnitude) are performed dur-
ing the optimization process, and the data is reused several times. The number of
epochs depends on:

• number of samples in the training data set,

• the size of the neural network, i.e. the number of parameters to be tuned,

• the intrinsic difficulty of the problem,

• the desired accuracy level expected from the network (more accurate often
requires more epochs).
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2.4.3 Feature Engineering

An additional thing to do before feeding the data to the ML model is to preprocess
it so that the ML model understands it well. In the case of neural networks, various
techniques can be employed to make the data suitable to the ML model. The data
first needs to undergo vectorization; all inputs should be in the form of tensors and
be in the floating-point format. Feature engineering is a broad activity involving ex-
tracting relevant features from the existing data desirable for the machine learning
algorithm. It can be viewed as hardcoded transformations applied to the data be-
fore being fed to the model to make it more representative and improve the model’s
performance. The discussion in this section will be focused on continuous numeri-
cal input features and numerical output variables, which are typical of a regression
problem. A well functioning feature engineering pipeline includes the following
activities:

1. Feature extraction: This is the process of extracting the important features
from the data using a-priori knowledge of the data, machine learning algo-
rithm, and expected outcome. Thus, generating new features by either apply-
ing mathematical operations on one or more existing features can be classified
in this activity. For the context of this thesis, features describing phenomena
related to turbulence modelling and transonic flows will be desirable. More
details about feature extraction for the FIML approach will be presented in
Chapter 6.

2. Feature cleaning: This activity involves identifying and treating specific data
points in the data, which may be incorrect or irrelevant. Cleaning includes
treating outliers in the data, missing values, redundant data or removing noise.
This activity requires domain knowledge to identify erroneous observations.
Typically, the treatment involves deleting these data points from the training
data or replacing/imputing them with a pre-decided value like zero, ones,
mean or extreme values. In other cases, it is expected that there will be missing
values, and in that case, the missing values should be left as it is.

3. Feature transformation: Transforming features so that they are amenable to
the machine learning algorithm is the primary purpose of this activity. The
input features may vary in their magnitudes, and algorithms sensitive to the
magnitude of features (like neural networks) do not perform well on such
data. Thus, they need to be transformed so that they are on a similar scale,
which is done by using one or more of the following methods:

• Scaling: Changing the scales of the feature xi using a mathematical op-
eration like normalization (scaling using min, max value of the feature,
Equation 2.30) or standardization (scaling by removing the mean x̄i and
scaling by the standard deviation σxi , Equation 2.31). When dealing
with physical variables, this can be achieved by making the features non-
dimensional by choosing appropriate normalizing factors. One instance
of this in data-driven turbulence literature is the transformation is given
by Ling and Templeton [2015].

xi,norm =
xi − xmin

xmax − xmin
(2.30)

xi,std =
xi − x̄i

σxi

(2.31)

• Changing the distribution: An input feature xi with a highly skewed
or shifted probability distribution can be transformed into a desirable
distribution form for the machine learning algorithm. The change of
distribution can be done by either applying mathematical operators like
the ln(xi), 1/xi, xn

i , or by applying transformers like Power transform (to
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make the distribution more Gaussian) and Quantile transform (impose a
desirable distribution) readily available in scikit-learn [Pedregosa et al.,
2011].

4. Feature selection: The process to select the most relevant features from the
full feature subspace. The process can also be termed supervised selection
when the selection is made keeping the target variable in mind. Selecting the
appropriate number of features is important to determine the balance between
the information more features provide and the computational cost to train
a machine learning algorithm on a high number of input features. Various
feature selection techniques can be viewed in Figure 2.6. More detail about
these techniques is given in the next section.

Feature Selection
techniques 

(Supervised)

Wrapper based
methods Filter methodsIntrinsic methods

Tree based 
E.g Decision Trees,

Random Forest

Recursive Feature
Elimination (RFE), 
Sequential Feature

Selection (SFS)

Statistical & Ranking
based 

E.g chi-squared, Mutual
Info

Correlation based 
E.g Pearson,

Spearman, Kendall

Regularization based 
E.g L1, L2 (ridge,
lasso, elastic net)

Figure 2.6: Supervised feature selection techniques keeping the target variable in mind

Feature selection techniques

There are three major classes of feature selection techniques:

1. Filter based methods: These methods rely only on the characteristic of the
features and are independent of the machine learning algorithm in use. Ad-
ditionally, they are quick and straightforward in application, making them
the go-to methods in any feature engineering pipeline. For a numerical in-
put feature and output variable, correlation-based methods like the Pearson
product-moment correlation (r, Equation 2.32) and Spearman’s rank correla-
tion coefficient (ρ, Equation 2.33) which calculate the correlation between the
input and the output variable. Pearson’s coefficient makes several assump-
tions about the variables, like both the variables should have a normal prob-
ability distribution and should have a straight-line relationship. Spearman’s
coefficient becomes an attractive option where no assumptions about the dis-
tribution are needed.

r = ∑ (xi − x̄) (yi − ȳ)√
∑ (xi − x̄)2 ∑ (yi − ȳ)2

where xi, yi are the two features and x̄, ȳ are their means, respectively

(2.32)

ρ = 1−
6 ∑ d2

i
n (n2 − 1)

di = difference between the two ranks of each observation

n = number of observations

(2.33)

2. Wrapper based methods: These methods wrap around an estimator, which
could be any appropriate machine learning algorithm, and evaluate subsets
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of the full feature space based on a quality indicator to determine the best sub-
set of features. Usually, the number of required features in the subset is user
input. Wrapper based methods tend to result in better predictive accuracy as
they involve the estimator the user wants (for instance, neural networks in
this case). Another advantage they offer is that they consider the interaction
of features in the subspace with each other. Examples of these methods are:
Recursive Feature Elimination (RFE) and Sequential Feature Selection (SFS)
[Ferri et al., 1994] algorithms, which are readily available in scikit-learn [Pe-
dregosa et al., 2011] and mlxtend [Raschka, 2018] python libraries.

3. Embedded methods: Feature selection is a bi-product of some machine learn-
ing algorithms, and these algorithms are said to have embedded feature selec-
tion methods. These methods consider the interaction of features like wrapper
based methods and are faster and more accurate than filter methods. Fur-
thermore, they are less prone to overfitting. However, the reproducibility of
results from these methods is an issue. Examples of these machine learning
algorithms with these methods are tree-based algorithms which give a rank of
features an output like Decision trees and Random forests, and regularization
based algorithms that promote sparsity like L1, L2 regularization (ridge, lasso,
elastic net).





3 PA R A D I G M F O R F I M L A P P R OA C H

This chapter lays down the paradigm for the Field Inversion and Machine Learn-
ing (FIML) approach. The discussion starts from the closure problem statement
in governing equations for fluid flows and how machine learning can address this
problem. This discussion provides the preface for model-consistent training and
its importance in data-driven turbulence modelling, leading to the emergence of
FIML. Consequently, the FIML approach used in the current study is summarized
to provide a larger picture before a deep dive further in the report. Finally, the
applications of the FIML approach in literature have been discussed along with
the evolution of classical FIML towards new, improved, tightly coupled learning
approaches.

3.1 problem statement
Consider the governing equations for a turbulent flow (for e.g. Navier Stokes equa-
tions) in the form:

R(U) = 0, (3.1)

where R is the system of governing equations with independent flow variables U.
On applying the ensemble averaging operator on Equation 3.1 as done for RANS
equations, it can be represented as the following:

R̃(U) = 0 −→ R(Ũ) +N (F(U)) = 0. (3.2)

On applying this averaging process, one obtains two terms; first a system of gov-
erning equations in the resolved flow variables Ũ (i.e. R(Ũ)) and the second term
is used to represent the terms which are unclosed in Ũ, i.e are also dependent on
U′. Here, N is a known mathematical operator and quantity F is used to represent
all the unclosed terms in resulting model. All current turbulence models follow the
strategy of constructing a closed approximation Fm ≈ F (dependent only the Ũ and
not the U′), and some other secondary variables s̃m. Thus, the system of equations
for the turbulence model can now be formulated as

R(Ũm) +N (Fm(Ũm, s̃m)) = 0, (3.3)

Gm(Ũm, s̃m) = 0, (3.4)

where Gm(Ũm, s̃m) = 0 is a set of transport equations to solve for the secondary
variables s̃m. All the modelling assumptions are employed in the terms Fm and Gm
while developing a turbulence model.

Over the previous years, the development of traditional turbulence models has been
slow due to various reasons summarized by Spalart [2015]. These models rely on
data for calibration but are more in line with the modeller’s hypothesis. Attempts
to improve on this have been made by developing data-driven turbulence models,
which by nature are more dependent on the data. The aim of data-driven turbulence
modelling is to improve upon the representations of Fm and Gm, by obtaining vari-
ables Ũ, s̃ from high-fidelity dataset like DNS or experiments, and then obtaining

25



26 paradigm for fiml approach

the model variables Ũm, s̃m from them. Thus, the modeler hopes that the representa-
tions of Fm and Gm using Ũm, s̃m from the data will be more accurate. Various ways
to represent data-driven model equations have been explored and summarized by
Duraisamy et al. [2019], but the focus of the current study is to do this representa-
tion using machine learning (ML). These representations are discussed in the next
subsection.

3.2 representation of model equations using ml
The machine learning model is represented as δm(η̃m; w) in this work, where η̃m are
the flow features obtained from Ũm, s̃m used as input to the learning algorithm and
w are the parameters of the learning algorithm. There are various methods to repre-
sent the closure terms using δm. They can either represent the closure term fully or
a part of the closure term. The method in the scope of this document is when δm is
used to model the impact of unresolved variables U′ on the modelled closure terms
Fm(Ũm, s̃m). There are various methods to represent the closure terms using the δm.
They can either represent the closure term fully or a part of the closure term. Some
examples in literature are presented below.

One of the first attempts was made by Tracey et al. [2013], where they improve the
Reynolds stress tensor τm by modelling the error of the Reynolds stress anisotropy
using a Kernel regression based ML model trained on a DNS dataset. Duraisamy
and Durbin [2014] and Duraisamy et al. [2015] considered a broad range of features
to augment the transport equations (Gm) rather than the Reynolds stresses directly
during the learning process. Another approach that tries to model the Reynolds
stress anisotropy using invariants of velocity gradient tensor (like strain rate, vor-
ticity) was introduced by Weatheritt and Sandberg [2017], where they use symbolic
regression with genetic programming. Schmelzer et al. [2020] use a sparse linear
regression method which formulates tensor polynomials of the Reynolds stress ten-
sor from a library of candidate functions, promoting sparsity and amenability.

In each example presented, a ML algorithm δm is used to represent a part of the
Fm(Ũm, s̃m). From this representation, the ML algorithm needs to be trained on
high-fidelity data so as to identify the model which agrees with the representation.
This discussion will be continued in the next subsection.

3.2.1 Training of model equations using ML

The ML model δm(η̃m; w) can be incorporated in the RANS equations to result in
the following machine learning augmented model:

Ra(Ũm, s̃m, δm) = 0, (3.5)

where Ra is the ML augmented RANS model. This model, after training, can be
used to give improved predictions of the flow. The methodology of this training
will be discussed in this subsection.

The training process is usually posed as a supervised learning problem. Given
the target δ obtained from high fidelity data, the ML model representation posed as
the following problem:

min
w

L[δ, δm(−; w)], (3.6)

where L is a loss function driving the training process, the form of input features
is still to be decided, and w is the set of varying ML parameters to reach a lower
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loss score. Duraisamy [2020] in his review paper summarizes that this training
procedure has been done in two broad ways in literature:

1. A-priori training: Here, the target of the ML model δ for the training is ob-
tained from a high-fidelity dataset like DNS. At the training time, the input
features to the model η̃ are obtained from DNS as well. This training runs
separately to the flow solver operating on governing equations and can be
written as follows:

min
w

L[δ, δm(η̃; w)]. (3.7)

At prediction time, the ML model δm is incorporated in the RANS equations
resulting in the following augmented model:

Ra(Ũm, s̃m, δm(η̃m; w)) = 0, (3.8)

which uses the model features η̃m at prediction time. The primary advantage
of this approach is that the training is non-intrusive and physics-informed
constraints can be directly introduced at this stage. Therefore this approach
was used by Tracey et al. [2013] and Weatheritt and Sandberg [2017] in their
work. However, the consistency with the model is a problem due to different
features being used at training and prediction time. This is a major issue in
ML-augmented RANS models [Duraisamy, 2020].

2. Model consistent training: To ensure consistency, the input features at train-
ing and prediction time need to be in the same space, i.e. either the model
η̃m or the high-fidelity data η̃ space. As the prediction of the augmented
model happens in the model space, the training also needs to be done in the
model space, i.e. using the features η̃m. To obtain these features and enforcing
consistency, a solution of an inverse problem is required, which reduces the
discrepancy between the model and the data. This is done by incorporating the
model Ra at the training time.

The solution of the inverse problem gives a model-augmentation field δi
m us-

ing which augmented predictions can be produced. Therefore, this approach
is also known as the field inversion approach (FI). Suppose a sparse output
variable Yi is obtained from a DNS field, and the same output variable can be
obtained using δi

m and is called Yi
m. The inverse approaches [Duraisamy et al.,

2015] can be posed as the following:

min
δi

m

L[Yi, Yi
m(δ

i
m)], s.t Ra(Ũm, s̃m, δm(η̃m; w)) = 0, (3.9)

where L is the loss function driving the inverse problem. This inversion pro-
cess can be applied at multiple design points to obtain multiple δi

m (referred
as δ∗m) to be used as targets in the ML process, and multiple corresponding
input features η̃∗m = [η̃m1, ....., η̃m N ]. Finally the supervised learning can be
performed as follows:

min
w

L[δ∗m, δm(η̃∗m; w)]. (3.10)

This approach has been coined as the Field Inversion and Machine Learning
(FIML) approach and has been used by many researchers in data-driven aug-
mentation of turbulence models [Parish and Duraisamy, 2016; Singh et al.,
2017b; Singh, 2018; Ferrero et al., 2020; Jäckel, 2020]

The FIML approach has been chosen as the method to be used for data-driven
augmentation of the SA-neg model for the current project.
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3.3 chosen fiml approach
The proposed implementation of the FIML approach in this project follows the
work of Parish and Duraisamy [2016], where the discrepancy term is introduced in
the transport equation (Gm(Ũm, s̃m) = 0 in Equation 3.4) for the working variable
(ν̃) of the negative Spalart-Allmaras (SA-neg) turbulence model. The approach is
summarized in Figure 3.1.
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Figure 3.1: Summary of the chosen Field Inversion and Machine Learning approach

Consider the following system of equations for an augmented SA-neg model fol-
lowing from Equation 3.5:

Ra(Ũm, ν̃, β) = 0, (3.11)

where the ν̃ is the secondary variable (s̃m), and β is the machine learning augmen-
tation term, formerly represented as δm. For this implementation, the augmented
transport equation of the ν̃ of the SA-neg model is given by

Dν̃

Dt
= β(Ũm, ν̃)P(Ũm, ν̃)− D(Ũm, ν̃) + T(Ũm, ν̃), (3.12)

where P, D and T are the production, destruction and transport terms, respectively.
The discrepancy β is introduced as a functional correction term multiplied by the
production term P. For the baseline model, β = 1, causing no effect to the turbu-
lence model. The β field is assumed to be a function of the SA-neg working variable
ν̃ and resolved model flow variables Ũm.

To obtain βopt, the field inversion problem is posed as an optimization problem.
In the inverse problem for this system an optimal mapping for the discrepancy βopt
is sought which maps the augmentation field to the high-fidelity data supplied. The
optimization problem in this case is given by:

βopt = argmin
β

L, s.t Ra(Ũm, ν̃, β) = 0, (3.13)

where L is the loss function driving the optimization problem. The flow solution
containing flow variables Ũm, ν̃ corresponding to the βopt is then used as training
data for the machine learning step.

The field inversion problem is solved for the flow cases selected to be used for ma-
chine learning. Each flow case will have its own output βopt and flow variables Ũm.
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These flow variables are then processed into input features η̃∗m which are gathered
from an extensive literature survey and selected using feature selection techniques.
From the shortlisted η̃∗m, an accurate and robust machine learning (ML) model δm is
to be developed. The aim is to identify patterns in the spatial β field and its relation
to the set of features η̃∗m.

δm(η̃∗m; w) : η̃∗m −→ β (3.14)

Neural networks are selected as the default choice of the machine learning algo-
rithm for this study. Their capability to learn non-linear function approximations
is unparalleled compared to any other ML algorithm, which is a desirable property
for current purpose of approximating a RANS model closure. Universal approxi-
mation theorem [Hornik et al., 1989] states that any function may be approximated
using a sufficiently deep neural network. However, this does not mean that the
complexity of the neural network should be mindlessly increased. Determining the
network architecture and optimising the learning hyperparameters is a crucial activ-
ity of this project to achieve a robust ML model. Finally, the developed ML model
will be connected to the flow solver to augment the SA-neg turbulence model. The
ML-augmented turbulence model will be applied to the test cases identified during
the database analysis stage and further points unrelated to the training database to
test the ML-augmented turbulence model’s predictive ability.

3.4 application of fiml approach in literature
The FIML approach explained in the previous section is also referred to as classic
FIML approach. This approach has the following benefits:

• Model consistency: ML training is done with features in the model space by
using the inversion solution, enforcing consistency with the flow solver.

• Facilitating sparse use of high-fidelity data: Only a limited number of high-
fidelity data points are needed as the feature information from limited inver-
sion solutions is enough to train a generalized Machine Learning model.

The classical FIML approach has been applied extensively on various test cases,
some of which are listed below:

• Singh [2018] in his PhD thesis applies this framework on adverse pressure
gradient flows on a curved bump using k− ω model and separated flows on
S809 airfoil using SA model.

• Yang and Xiao [2020] apply this framework on the 4-equation k−ω− γ− Ar
transition model, and the test case was transitional flow over airfoils.

• Köhler et al. [2020] used their k− ω based FIML implementation to improve
the prediction of separated flows on 2D curved periodic hills.

• An Spalart-Allmaras model based FIML implementation was applied to turbo-
machinery flows by Ferrero et al. [2020].

• Singh et al. [2017a] augmented the Spalart-Allmaras model for predictions
of flows involving shock-boundary layer interactions. Transonic flow cases
over geometries like axisymmetric bump, oblique shock-boundary layer inter-
actions and shock train flows were tested.

• Köhler et al. [2020] accurately predicted the separation and reattachment in
wall-bounded flows by applying the FIML approach on the two-equation k-ω.
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From the literature survey it was found that the classical FIML framework has not
been extensively applied to the shock-induced flow separation case over a 2D air-
foil. The author proposes to apply the FIML approach on the RAE2822 airfoil to
improve the predictions of the shock-induced boundary layer separation over a
range of Mach numbers (M), Reynolds Number (Re), and angle of attacks (AoA).
The only similar application was made by Holland [2019], where he applied the
FIML approach on RAE2822 profile for a flow case where shock boundary layer
interaction leads to a strong pressure gradient but not flow separation.

A movement from classical FIML to approaches where the learning process is cou-
pled with the inference process (field inversion in classical FIML) was proposed by
Holland [2019]. Embedded FIML and Direct FIML approaches were introduced, in
which ML training was driven by the loss function of the inversion process; with
each approach having a different coupling procedure. The main advantage these
approaches offer is that they enable learning from several field inversion problems
simultaneously without any problems in convergence. Another advantage the tight
coupling offers is to reduce the loss of information of learning a low-dimensional
ML model from a high-dimensional augmentation field.

A further step towards a more integrated approach was presented by Srivastava and
Duraisamy [2021], which aims to inform the low-dimensional feature space (used
to generate the ML model) using underlying physics of the problem, by carefully
constructing the map between feature space to augmentation space. This approach
is called Learning and Inference as- sisted by Feature-space Engineering (LIFE), and
aims to provide the modeler more control of the feature space. The modeler has
the freedom to locally update the feature space so as to generate a more robust and
general model. The test case for this application was bypass transition.



4 E X P E R I M E N TA L DATA B A S E
D E S C R I P T I O N

A high-fidelity database is required for any data-driven turbulence modeling activ-
ity, which may be acquired from either experiment, field measurements, or accurate
numerical simulations like DNS or LES. The author was provided with an experi-
mental aerodynamic database for 2D airfoils to undertake this master thesis project.
The RWC.01 database was generated by Airbus in 2016 and was supplied to the
author by DLR. Additionally, the author was provided with the results of a 2D
CFD campaign used to validate the RWC.01 database. This chapter describes the
procedure employed during the experimental campaign, its assumptions and their
implications to this project. Furthermore, the CFD campaign is also described in
this chapter.

The primary purpose of the experimental reference database is to understand the
scope and applicability of the data for the proposed FIML approach. The database
is used to select the flow cases to undergo the field inversion procedure, the output
of which is used as the training data for the machine learning algorithm. This chap-
ter discusses the scope and significant conclusions from the database, followed by
the discussion of the methodology devised by the author to select the flow cases for
the field inversion.
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Figure 4.1: RAE2822 airfoil 2D profile. The x-y scaling in this figure is unequal.

4.1 experimental campaign description

The Airbus RWC.01 database gathers experimental aerodynamic data acquired in
2016 using the pilot facility of the European Transonic Wind Tunnel (pETW) for a
series of 2D airfoil sections. The objective of the experiment was to provide new
airfoil validation data for various 2D-airfoils in the experiment. In particular, the
reference RAE2822 section geometry equipped with thicker trailing edge was tested
to cross-check results with legacy data, which was collected by NATO Advisory
Group for Aerospace Research and Development (AGARD) in the AGARD 138

report in the 1970s [Cook et al., 1979]. The legacy data had been used to refine and
calibrate numerical codes at Airbus; however, it remains limited in its scope. The
work done by AGARD was repeated and extended to a broader range of operating
conditions during the Airbus experimental campaign. Information and figures only
for the RAE2822 airfoil campaign (named RWC.01 1) were provided to the author.
RAE2822 airfoil at design conditions is a rear-loaded, sub-critical airfoil with a roof-
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top type pressure distribution. The 2D profile of RAE2822 airfoil can be seen in
Figure 4.1.

4.1.1 Facility and Campaign Description

The pilot facility of the European Transonic Wind Tunnel (pETW) is approximately
1/9 scale of the main ETW facility, achieving similar test conditions to that of the
main transonic cryogenic ETW facility. Flows of Mach number 0.15-1.3 can be tested
with Reynolds number up to 230 million per meter. Two test sections are available:
a) slotted walls, i.e., holes in the top and bottom walls, and b) solid walls, i.e., with
all walls closed (achieved by aluminium tape on slots of the walls). The size of the
test section is the same in both configurations. The experiment for RAE-2822 airfoil
was done in two campaigns:

1. Campaign 1 (RWC.01 1-01): Test section with slotted walls for both fixed and
free transition on the airfoils.

2. Campaign 2 (RWC.01 1-02): Test section with solid walls for the free transition
case only.
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Figure 4.2: Design range of available wind tunnel measurement data for test points of Cam-
paign 1 (RWC.01 1-01) on the RAE2822 airfoil. Orange points are for fixed transi-
tion wind tunnel runs, and blue points are for free transition.

The method of fixing the airfoil transition is detailed in the next subsection about
the model description. The purpose of the transition fixing activity was to replicate
the conditions of the AGARD experiment done by Cook et al. [1979]. Figure 4.2
shows the test points of Campaign 1 (RWC.01 1-01), where the orange points are
test points with a fixed transition, mainly around Re of 6 million. The blue points
are test points with a free transition. The data available was over a large range of
test section flow conditions, with M varying between 0.2-0.96, Re varying between
2.7-15.7 million and AoA between -2.5 ◦ to 13

◦. The variation in Re was achieved
through varying temperature (total temperature range of 115K - 296K) and pressure
(total pressure range of 145 kPa to 296 kPa). The measurements were acquired with
a sample rate of 1 Hz. The exact test matrix for the wind tunnel campaigns has
been redacted for this report.
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4.1.2 Model and Test Section Description

The model setup of the experiment can be viewed in Figure 4.3. The span length of
the model is 271 mm, and the chord length is 90mm. The aspect ratio (AR) of the
model is approximately 3, and suppliers of this database expect limited 3D effects.
Therefore, the measurements obtained at the Main station (shown in Figure 4.3 in
red dotted line) are treated as measurements for a 2D profile of the airfoil section
for the purpose of this study. However, it is worth mentioning that Garbaruk et al.
[2003] performed an extensive RANS study on RAE2822 airfoil for an AR=3 model
and they refute that the 2D assumption is correct.

Y

X

Figure 4.3: Experimental setup of the RAE2822 model in the pETW wind tunnel. The wind is
blowing in the x-axis, spanwise direction is the y-axis and z-axis is perpendicular
to the diagram. The pressure tappings are at three sections of the airfoil, namely
Main (red), Side 1 (blue) and Side 2 (green). Details about the tappings are
available in Table 4.1

A total of 100 pressure tappings are distributed at three test sections of the model,
locations of which are detailed in Table 4.1. For pressure measurements in the test
section, the walls of pETW are equipped with surface static pressure tappings on
the top, bottom and LHS walls. The model is not equipped with a force balance,
so the force measurements must be derived from the pressure measurements. For
varying the angle of attack of the model, the model setup is capable of remote
control system incidence at a point 32 mm from the LE along the centerline. This
point corresponds to the intersection of the red dotted and black dotted lines in
Figure 4.3.

Span location Tappings

(in % span) total upper section lower section

Main (red) 50% - test section centerline 74 46 28

Side 1 (blue) 17% - from RHS side wall 13 9 4

Side 2 (green) 33% - from LHS side wall 13 9 4

Total 100 64 36

Table 4.1: Pressure tapppings details on the RAE2822 model in the pETW test section

Transition fixing was achieved by using CAD-cutout dots at 3% x/c from the
leading edge on the upper surface and 5% x/c on the lower surface. The location
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and dimensions of the dots were precisely the same as the experiment done to
produce the legacy data, with a dot diameter of 1.3mm and dot height of 36µm.

4.1.3 Available Data and Other Considerations

The measurement points in the test matrix for these campaigns are defined in terms
of polars. Thus, at each Mach number and Reynolds number value, the measure-
ments are recorded for a set of angles of attack. The type of transition is also fixed
beforehand. At each measurement point in the test matrix, the pressure measure-
ments are recorded at all the three sections of pressure tappings detailed in Table 4.1
and at all the surface static pressure tappings on the on top, bottom and LHS walls.
The example of one such measurement can be viewed in Figure 4.4, where isen-
tropic Mach number distribution over the chord of the airfoil is plotted. Pressure
coefficient values are also available at each location. Furthermore, attributes like
total force coefficients, moment coefficients, dynamic pressure, reference area, etc.,
are also available at each point.

Figure 4.4: Example of the data available in the database. The figure shows the isentropic
Mach distribution over the RAE2822 airfoil for a given point with the approxi-
mate flow conditions M = 0.718, Re = 8.7 million and AoA = 4.67

◦. The grey line
with dots represents the measurements at the Main section, blue dots represent
the Side 1 measurements, and green dots represent Side 2 measurements. The
coloured lines give the measurements for the surface static pressure tappings.

The green dots in Figure 4.4 are the pressure measurements at Side 2 section,
which is a 33% span distance away from the wall. The green dots are in good
agreement with the pressure measurements at the Main section. However, the blue
points or the pressure measurements at the Side 1 section, which is a 17% span
distance away from the wall, do not agree with the other two sections. Thus, it
can be concluded that far enough from the test section walls, the measurements are
effectively the same. Therefore, the assumption of limited 3D effects mentioned in
Section 4.1.2 is considered valid.

In Campaign 1 (RWC.01 1-01), the data is available for fixed and free transition
cases. The effect of fixing the transition on the airfoil can be viewed in Figure 4.5.
For the fixed transition case (in red), there is an expected effect on the pressure
coefficient around the transition location on the upper (3% x/c from LE) and lower
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surface (5% x/c from LE). These are viewed as ”kinks” in the pressure distribution
on both surfaces, which are not visible for the free transition case. The kink is
larger than expected, which may be due to over tripping the boundary layer. The
wall normal at the kink location becomes larger than the boundary layer thickness,
which causes a strong input of turbulence. The fixed transition case is characterised
by a lower ”rooftop”, and the shock is further towards the leading edge. These ef-
fects will be considered while choosing which data points to use for the data-driven
modelling activity.
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Free transition, Re = 6426960.0, AoA = 2.00, M = 0.735 

Figure 4.5: Comparison of the fixed vs free transition case for a similar flow condition in
the test section. The figure shows the pressure coefficient distribution over the
RAE2822 airfoil at the Main section for a given point with the flow conditions M
= 0.735, Re ≈ 6.42 million and AoA = 2

◦. The red line with dots represents the
measurements for fixed transition at locations mentioned in Section 4.1.2, and the
blue line with the crosses represent measurements with the free transition.
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Figure 4.6: Effect of interpolation on the available experimental data. The figure shows the
pressure coefficient distribution over the RAE2822 airfoil at the Main section. The
blue line with crosses represents the raw measurements at M = 0.729, and AoA
= 2.91734

◦, and red line with dots represents the measurements interpolated to a
nominal M = 0.730, and AoA = 2.9◦. Both data points are for the fixed transition
case.

Corrections to the Mach number and angle of attack were derived using a series
of tests. Firstly, empty test section calibrations were done for both slotted and solid
wall test sections. This was followed by the derivation of wall effects due to the
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blockage caused by the RAE2822 airfoil model. The details of how these correc-
tions were applied have not been mentioned in this document. However, it is worth
mentioning that the magnitude of corrections derived for the solid walls is more
than the slotted walls primarily due to the thicker boundary layer developing for
the solid walls, causing more blockage and streamline curvature effects. Therefore,
there is an inclination only to use slotted wall test section results while using the
data from the wind tunnel experiments.

For each flow condition, the data is collected at a sampling rate of 1Hz. The raw
recorded data has been interpolated to nominal Mach numbers and angles of attack
and is available as a separate database. The data is first collected using a pitch
pause technique, with 12 data points with slight variations in the angle of attack at
a given pause point. This data is first averaged for the 12 data points, providing
a measurement at an angle of attack. This data is then interpolated to rounded
Mach number values. The interpolation process has its limitations as it averages
out the raw measurements, which can be a problem, especially in the regions of
the non-linear behaviour of pressure like the shock location. This can be viewed
in Figure 4.6, where the shock location (or the sudden increase in pressure coeffi-
cient value) for the interpolated data (in red) is shifted further down the chord than
the raw data (in blue) for a very similar flow condition. These differences between
raw and interpolated data can be as big as the difference between two different
wind tunnel entries. Therefore, if one wants to use data points for flow conditions
which have shock wave related phenomena, then it is better to use the raw, non
interpolated data as it is more representative of the actual flow phenomena.

4.2 cfd data supplied

2D Free-Air CFD data was provided for the isolated section of the RAE-2822 airfoil
to supplement the experimental database provided. This CFD data was used at all
stages of the wind tunnel testing campaign:

• Before testing: design the test matrix for the wind tunnel campaign and eval-
uate loading to define the design range limits

• During testing: monitor the wind tunnel results to match expectations, to help
identify issues with the sensors

• After testing: checking the validity of the CFD results, assessing the validity
of the wind tunnel corrections.

The simulations are done using the TAU flow solver. They use SST turbulence
models, which is different from the baseline model intended for this study, i.e. SA-
neg model. The simulations are performed consistently with the same single-grid
U-RANS based solution procedure - with no convergence criteria to stop the sim-
ulation. The simulations are done for a wide range of flow conditions, with 21 M
values varying between 0.1-0.78, 6 Re values varying between 2.7-17.0 million and
91 AoA values between -3 ◦ to 6

◦ with a 0.1◦ increment. Therefore, there is quite
an overlap with the design range of the wind tunnel cases.

Importantly, these simulations are done using a fully turbulent flow assumption.
Therefore, no transition models were required to estimate the transition location.
This becomes a consideration while comparing the CFD results with the pETW
wind tunnel results as it naturally has a transition from laminar to turbulent flow
over the airfoil surface.
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4.2.1 pETW and CFD Data: Pairing Procedure

The CFD data provided has been paired with the wind tunnel results on the basis
of their ”closeness” to the pressure distribution (or the isentropic Mach number MI
distribution). In Figure 4.7, it can be seen that for a given wind tunnel run (grey
line with circles), there are three lines associated with three different CFD runs. The
dotted red line is strictly at the same design condition as that of the corrected flow
conditions of the wind tunnel run. The other two dotted lines, i.e. blue and green,
are paired with this wind tunnel run based on a surrogate CFD database. For all
the CFD runs conducted, a surrogate surface is created based on a similarity factor
(SF) defined as follows:

SF =

√
f
g

(4.1)

f =
n

∑
j=1

wj

[
MI jCFD −MI jWTT

]2
, g =

n

∑
j=1

wj

[
MI jWTT

]2
(4.2)

where MI jWTT corresponds to the isentropic Mach number at the sensor j of the
wind tunnel data, and wj corresponds to the weight given to a sensor based on its
surface weighted L2 distribution. MI jCFD corresponds to the value of isentropic
Mach number from the CFD runs at the same location to that of the sensor.

The CFD run with the lowest value of the similarity factor was paired with the
wind tunnel results. This selected CFD run could have different values of both M
and AoA. The green line in Figure 4.7 corresponds to the case where a few sensors
were blanked due to questionable accuracy in the post shock flow (called ”Blanking-
ON”), and the blue line corresponds to all sensors active (called ”Blanking-OFF”).
The ”blanking” of the sensors is achieved by multiplying the wj by zero. In Fig-
ure 4.7, the ”Blanking-ON” case has a smaller SF value. However, this does not
mean that this will be true for all flow cases, there are many instances where
”Blanking-OFF” case had a smaller SF value with the wind tunnel results.

The paired CFD run has a slightly different M and AoA value to that of the wind
tunnel run, which in effect acts as a Mach number and Angle of attack correction ap-
plied effectively by a surrogate-based optimization. The suppliers of this database
are actively trying to correlate these CFD based corrections to the actual wind tun-
nel corrections that were applied at the stage of wind tunnel experiments.
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8787960)
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4.3 petw, cfd, legacy data comparison
In effect, the author has three data sources to compare for understanding the
flow on the RAE2822 airfoil section: a) Legacy data: NATO Advisory Group for
Aerospace Research and Development (AGARD) experiment done by Cook et al. in
the AGARD report 138, b) pETW data: The experimental Airbus RWC.01 database
acquired in the pilot facility of the European Transonic Wind Tunnel (pETW) de-
tailed in Section 4.1 and c) CFD data: The CFD campaign done by Airbus for the
validation of the RWC.01 experimental campaign detailed in Section 4.2. The com-
parison of the three sources can provide the following insights:

• deeper understanding of the physical phenomena over the RAE2822 airfoil
section for different flow conditions,

• comparison of the experimental setups between pETW and AGARD cam-
paigns, which may cause differences in the resulting measurements,

• correlation of the CFD simulations with the two experimental campaigns, and
understanding the reasons for differences (like modelling assumptions), and,

• information about the scope of these data sources, and which one is most
suited to be used for the current data-driven activity.

Case no. Mach number Angle of attack (in degrees) Re. no. (in million)
6 0.725 2.92 6.5
7 0.725 2.55 6.5
8 0.728 3.22 6.5
9 0.73 3.19 6.5

Table 4.2: AGARD report 138 test cases with comparable test points in pETW database
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Figure 4.8: Comparison of famous AGARD legacy data case 9 with corresponding pETW
data. The figure shows the pressure coefficient distribution over the RAE2822

airfoil at the Main section with fixed transition. The black line with crosses repre-
sents the AGARD case 9 measurements, and blue line with crosses represents the
measurements interpolated to a nominal M = 0.730, and AoA = 3.2◦, the same
as AGARD case 9. Red line with dots represents the raw measurements to the
closest flow conditions to AGARD case 9. Missing measurements for AGARD
data are the points not reported in the original source Cook et al. [1979].

The author observed that Airbus chose four data points for the pETW database at
which the flow conditions were comparable to the famous AGARD cases in the
legacy data. These cases have been detailed in Table 4.2. Figure 4.8 compares the
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pressure coefficient distribution for the AGARD case 9 with the corresponding av-
eraged and interpolated pETW measurement, along with the nearest raw measure-
ment. Assuming that each test campaign has been fully corrected, one would expect
a better match despite the differences in model and wind tunnel test sections. The
differences between the results are not easy to identify, as the experimental assump-
tions behind the legacy data are unknown. The difference can originate from model
quality, manufactured geometry or wind tunnel correction methodology. The au-
thor does not have enough information to make a sure comment.

Figure 4.9, Figure 4.10 and Figure 4.11 show a comparison between the pETW data
and CFD data for a chosen set of angles of attack for three different Mach numbers.
Consider the blue line in all figures, which corresponds to the pETW result. In Fig-
ure 4.9, on increasing the angle of attack, the shock seems to get stronger and more
developed. The presence of a pronounced ”rooftop” or a sudden change in pressure
indicates the presence of a strong shock wave. Furthermore, the shock shifts further
upstream on increasing the angle of attack, as can be seen moving from Figure 4.9a
to Figure 4.9d. The shock is also responsible for the formation of a separation bub-
ble, which goes on an increase in size with increasing incidence. After a certain
angle of attack, the separation bubble bursts and the flow is fully separated until
the trailing edge. This causes an upstream shift of the shock location, which can be
viewed in Figure 4.9f. The flow was confirmed to be separated at the trailing edge
for the high angle of attack in Figure 4.9f by observing the skin friction coefficient
(c f ) values to be zero beyond 40% of the chord length.
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Figure 4.9: CFD vs pETW data pressure coefficient distribution for a polar at M = 0.728 and
Re = 8.86 million. The blue line with circles represents the pETW measurements,
and red line with dots represents the CFD data at same conditions. The actual
values for M and Re may vary slightly in the wind tunnel, and have been reported
in the figures.
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Figure 4.10: CFD vs pETW data pressure coefficient distribution for a polar at M = 0.750

and Re = 8.88 million. The blue line with circles represents the pETW measure-
ments, and red line with dots represents the CFD data at same conditions. The
actual values for M and Re may vary slightly in the wind tunnel, and have been
reported in the figures.
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Figure 4.11: CFD vs pETW data pressure coefficient distribution for a polar at M = 0.783

and Re = 8.92 million. The blue line with circles represents the pETW measure-
ments, and red line with dots represents the CFD data at same conditions. The
actual values for M and Re may vary slightly in the wind tunnel, and have been
reported in the figures.
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In Figure 4.10, the Mach number has been increased to M = 0.750 from M = 0.728

in Figure 4.9. The obvious effect it has is increasing the strength of the shock, with
more pronounced ”rooftops” at lower angles of attack. One of many instances of
this can be viewed by comparing Figure 4.9b to Figure 4.10b. Additionally, the sep-
aration bubble burst also happens sooner which shifts the shock location upstream,
as seen by comparing Figure 4.9e to Figure 4.10e.

It is crucial to understand how the CFD results vary from the pETW results and
identify the causes for these differences. The red lines in Figure 4.9, Figure 4.10

and Figure 4.11 represent the CFD results at the exact flow conditions of the pETW
results after applying wind tunnel corrections. The major differences are seen either
at the shock location or in the flow downstream of the shock. It can be viewed that
the CFD results (for the SST turbulence model) are in good agreement for a specific
strength of the shock, i.e. the combination of M and AoA. In other words, for a
given M, for instance M = 0.750 in Figure 4.10, the CFD results agree well only
for a given range of AoA, where the flow situation has matured. These are AoA
= 2.236 in Figure 4.10c and AoA = 3.222 in Figure 4.10d. Above these angles, the
shock location is clearly misidentified and post-shock pressure is also overestimated
(Figure 4.10e-Figure 4.10f). This behaviour is expected due to the strong shocks and
shock-induced separation extending until the trailing edge, and these are not easily
estimated by existing CFD solvers.

However, below AoA = 2.236, the CFD agreement is also poor. In Figure 4.10b,
it can be seen that the Cp value for CFD is underestimated on the upper surface,
and a significant difference can be seen near the shock location. The author hypoth-
esizes that this is attributed to the sensitivity of CFD results to the boundary layer
thickness at low angles of attack. Incorrect estimation of the displacement thickness
of the boundary layer means the CFD algorithm sees the adverse pressure gradient
differently from the actual flow, and thus the shock location is not identified well.

The author believes that the primary source of differences between the CFD and
pETW data is the modelling error, originating from the assumptions of the turbu-
lence model (k-omega SST) used for the CFD runs. Other models may perform
better on a similar flow condition. The turbulence model proposed for this project
is the SA-neg model and is expected to perform better than the k-omega SST. It
would have been interesting to compare the performance of multiple turbulence
models for shock-induced separation flows, but it has not been done due to time
constraints. NASA provides a comparison of turbulence models for the RAE 2822

airfoil for two-dimensional, turbulent, transonic flows in the RAE 2822 Transonic
Airfoil Study #5 at the NPARC Alliance Validation Archive.

Another important source of difference is the fully turbulent assumption for the
CFD runs. The pETW data sees a transition from laminar to turbulent flow at some
point of the airfoil (fixed or free), usually close to the leading edge. However, the
CFD data is fully turbulent throughout the airfoil surface. This disagreement intro-
duces an unquantifiable uncertainty when comparing CFD and pETW data. Finally,
the CFD runs are done using a 2D CFD isolated airfoil section; however, the pETW
results are measured in a closed wind tunnel section with slotted/solid walls. This
introduces a discrepancy between the two results, whereas a 2D CFD run with top
and bottom walls would be closer to the pETW wind tunnel measurement.

For separated flows at high angles of attack, there is a possibility of 3D wall ef-
fects being more pronounced. This has implications for the flow measurements at
the Main section of the pETW. Separated flow at the airfoil means that the flow is
also more susceptible to be separated at the side walls. This separated flow has a
displacement effect on the centerline flow, making it even faster as the streamlines

https://www.grc.nasa.gov/www/wind/valid/raetaf/raetaf05/raetaf05.html
https://www.grc.nasa.gov/www/wind/valid/raetaf/raetaf05/raetaf05.html
https://www.grc.nasa.gov/www/wind/valid/archive.html
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converge towards the centre. Thus, pETW results at high angles of attack may differ
from the CFD results where no such phenomenon is expected. Garbaruk et al. veri-
fied these side-wall effects for the AGARD case 10, where shock-induced separation
is expected.

Finally, minor differences can also originate due to errors in wind tunnel sensors
recording measurements. The author and the database supplier observed that the
agreement between the CFD and pETW data is generally good for most of the data
points available; however, the CFD model still lacks in predicting some flow cases.
These cases may include phenomena like a shock-induced boundary-layer separa-
tion or a strong shock case for which the CFD model is not prepared.

4.4 conclusions from database analysis
The main purpose of the analysis of the experimental reference database is to under-
stand the scope and applicability of the data for the FIML approach. The following
conclusions are reached after the database analysis stage:

• The corrections derived for the slotted wall configuration are crucial to vali-
dating the test data. For a slotted test section, the results obtained are better
due to fewer wind tunnel corrections that need to be applied. Slotted wall
data correlates better with the 2D Free air CFD results provided to the author.

• For most of the points in the database, the agreement between the CFD de-
rived data, and pETW data is reasonably good. The primary reason for the
differences between the CFD and pETW data are assumed to be the turbu-
lence model errors. Other reasons like transition, side-wall and 3D effects in
the wind tunnel section may contribute, but will be ignored for the purpose
of this study.

• There is a fairly poor match between the original AGARD experiment data
for the RAE2822 aerofoil section and the equivalent pETW test. However, the
agreement between CFD derived data is better for the pETW data than for the
original AGARD data.

• 2D Free air CFD results supplied have an assumption of a fully turbulent flow.
However, the flow in the wind tunnel results undergoes transition, albeit at
an early x/c of the airfoil. Therefore, there is an unquantifiable uncertainty
when comparing the two cases, and it is a consideration to be kept in mind.

4.5 fiml cases selection, recommendations
After understanding the scope of the database, the next activity is the selection of
training and test cases for the field inversion process, which will be ultimately fed
to train the machine learning model. The main purpose of the FIML approach in
this project is to improve the existing turbulence models, so the data points to be se-
lected should have a big deviation between the pETW data and CFD data to provide
that scope for improvement. A good example for this case can be seen in Figure 4.7.

When comparing the CFD data with the pETW data, only the CFD run at exact
same flow condition (red-line CFD data from Figure 4.7) as of the corrected pETW
result is used rather than the paired CFD line as explained in Section 4.2.1. This
choice provides a uniform approach over using the paired CFD data for differ-
ent wind tunnel runs, as no consistent paired value (from either Blanking-ON or
Blanking-OFF) has a better similarity factor value for all wind-tunnel runs.
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The improvement in the baseline turbulence models is to be done by alleviating only
the modelling errors from the turbulence model in the CFD simulations. Therefore,
flow cases in pETW data which are closest in setup to a 2D CFD free air isolated
simulation should be chosen. This means that slotted wall data will be preferred
over the solid wall data from the pETW database.

From the discussion in the previous sections, the following action plan is devised
for the selection of the training and test cases for the FIML approach:

1. There should be a significant deviation between the pETW and CFD data at
the same flow conditions. This is primarily observed at high-angles of attack
where shock-induced separation extends till the trailing edge.

2. The data from only the slotted wall configuration campaign is considered.
The slotted wall configuration requires less wind tunnel calibration and is
arguably closer to 2D free air CFD results.

3. The training and test cases are spread over the dataset range, i.e. over the full
range of M, Re and AoA values seen in Figure 4.2.

4. Only free transition points should be chosen, as their flow characteristics are
natural and not interrupted by forced transitions. The author does not fully
understand the effect of fixing the transition, thus it is better to stay with free
transition points.





5 F I E L D I N V E R S I O N

This chapter is about the Field Inversion (FI) part of the FIML procedure. The
author is provided with an experimentally obtained high-fidelity Cp database for
the RAE2822 airfoil, which was discussed in Chapter 4. This database is used as the
reference data for setting up the field inversion problem, introduced in Chapter 3,
which will be used to extract the model augmentation field later used for machine
learning training. This chapter details the theoretical formulation of the inverse
problem for the field inversion procedure. The theory is followed by the author’s
implementation of the field inversion in the TAU code, first implemented by Jäckel
[2020]. The methodology to choose the hyper-parameters for the inversion problem
is discussed, followed by the results obtained. Finally, the recommendations to
extend the current field inversion problem and improve the existing results are
provided.

5.1 formulation of the inverse problem
A physical system in the natural world can be described using a mathematical
model based on governing equations. A set of input parameters is chosen, and the
equations are solved based on some boundary conditions: this is a typical forward
problem description. Consider the following system of equations for a forward
problem, where X includes the input parameters and boundary conditions:

G(X ) = Y (5.1)

where Y is the predicted output data of the model. In the inverse problem, the
modeller provides these observations, and the input parameters are found. In other
words, an optimal mapping F is sought, which finds the cause (input parameters
or X ) to the observed effect (Y). This mapping can be represented in the following
manner:

X = F(Y) (5.2)

The fundamental issue of the inversion problem is that the mapping F is gener-
ally not well-defined, and it may not even exist. Discovering the mathematical
model and its parameters requires exploring the huge parameter space, which fur-
ther makes it more difficult to find this mapping [Tarantola, 2021]. Additionally, it
is not necessary that the model parameters have a one-to-one relationship with the
measured data. The inverse problem is described in the Figure 5.1.

Input Parameters
Mathematical

model

Predict/Estimate

Data

Predicted Input 

Parameters

Mathematical 

model
Measured Data

Forward Problem:

Inverse Problem:

Figure 5.1: Formulation of a forward problem vs an inverse problem

45
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The author is provided with a high-fidelity Cp database for the RAE2822 airfoil,
which will serve as the observed data to solve the inverse problem. A baseline
turbulence model (SA-neg model in this case) with a correction term (say β) will
act as the mathematical model, as in Figure 5.1. The inverse problem aims to infer
the correction in the turbulence model from the high-fidelity data. This correction
term is, in fact, a measure of the discrepancy between the baseline model and the
observed data. The baseline model is iteratively optimized to an augmented tur-
bulence model where the correction term inferred gives close predictions to the
ground truth.

The proposed implementation of the FIML approach in this project was briefly ex-
plained in Section 3.3, which is repeated here for convenience with more focus on
the FI part. The system of equations for an augmented RANS (SA-neg) model, as
previously presented in Equation 3.11 is given by:

Ra(Ũm, ν̃, β) = 0,

where the ν̃ is the working variable (ν̃) of the negative Spalart-Allmaras (SA-neg)
turbulence model. The discrepancy β is introduced as a functional correction term
multiplied by the production term in the transport equation for the working variable
ν̃. The augmented transport equation of the ν̃ of the SA-neg model is then given by
(as of Equation 3.12):

Dν̃

Dt
= β(Ũm, ν̃)P(Ũm, ν̃)− D(Ũm, ν̃) + T(Ũm, ν̃),

where P, D and T are the production, destruction and transport terms, respectively.
In the inverse problem for this system an optimal mapping for the discrepancy βopt
is sought which maps the discrepancy term to the high-fidelity data supplied. To
obtain βopt, the inverse problem is posed as an optimization problem. The optimiza-
tion problem in this case is given by:

βopt = argmin
β

L, s.t Ra(Ũm, ν̃, β) = 0, (5.3)

where L is the loss function driving the optimization problem. In the ”full-field
inverse problem”, a spatial distribution for the βopt (referred hereafter as β field or
discrepancy field) is to be obtained. On the discretization of the model equations
(Ra), the β is also discretized to a finite number of grid points. The value of β at
each grid point is unknown, and the typically large number of grid points adds to
the complexity of the inverse problem.

One may argue that this inversion procedure is not needed, and a β field can be
calculated directly by substituting reference data values (Uref) in the Equation 3.12

and Equation 3.11. However, it is to be noted the terms in these equations are
not physical terms and are empirically calibrated model source terms (Ũm). There-
fore, direct calculation of β(Uref) may not result in the correction required for the
ideal augmented solution, and there is a case the solution might deteriorate further
[Singh, 2018].

5.1.1 Deterministic Field Inversion Problem

As stated previously, to obtain βopt, the inverse problem is posed as an optimiza-
tion problem. The inverse optimization problem can be formulated in two different
ways. The first approach is the Bayesian approach, which allows for the extensive
treatment of uncertainties that accompany inverse problems. This approach allows
to implementation of prior information about the data into the model using a user-
defined prior distribution, which has its advantages [van Korlaar, 2019]. However,
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the selection of this prior distribution has a big impact on the output or the pos-
terior distribution, and the approach to select the prior is subjective [Singh, 2018].
Therefore, this study will use the deterministic inversion approach, where a loss
function drives the optimization problem. This loss function represents the mea-
sure of discrepancy between the model output and input data to be minimized.
This approach loses out on the uncertainty analysis aspect but is easier and less
computationally expensive to implement. The loss function driving the determin-
istic inverse problem as first implemented in the TAU solver available at DLR by
Jäckel [2020] is defined as follows:

L =

Nj

∑
j

[
Cp

j
re f − Cp

j
RANS(β, U, ν̃)

]2

︸ ︷︷ ︸
L1

+λ

Nj

∑
j

(
βj − 1

)2

︸ ︷︷ ︸
L2

(5.4)

The optimization problem in this case is given by:

βopt = argmin
β

L, s.t Ra(Ũm, ν̃, β) = 0, (5.5)

The first term in Equation 5.4 (L1) 1 is the mean square error for the coefficient of
pressure (Cp) value between the calculation from (augmented) RANS solution and
the reference high fidelity data, summed over all the Nj cells in the grid. This term
represents the deviation of the current solution from the reference data for the se-
lected property (Cp). Other properties like C f , Cl or velocities u could have been
used as a substitute to Cp.

The second term in Equation 5.4 (L2) is the regularization term required to penalize
the solution due to the ill-posed nature of the problem. The solution is penalized
to β = 1, corresponding to the case when the production term is not augmented in
Equation 3.12. The regularization term is needed because of three reasons:

1. Non-unique solution: The solution is non-unique as the problem is under-
determined because of a high number of unknowns as β is to be found at
each grid point.

2. Noisy reference data: The experimental reference data has been procured
through pressure sensors, and the spatial resolution of the sensor information
is lower than the grid resolution to be used for the RANS calculation. There-
fore, the data is interpolated from the sensor points to the CFD grid points on
the airfoil surface. Numerical noise is introduced in this interpolation process,
and the uncertainities involved with the experiment.

3. Non-linear forward problem: The forward problem or the SA-neg turbulence
model is a RANS method, which is inherently non-linear.

This regularization is introduced in the form of Tikhonov regularization [Tikhonov
and Arsenin, 1977], where λ or the Tikhonov parameter is a parameter of the inver-
sion problem which needs to be determined by engineering judgement. A detailed
discussion of how the hyperparameters for the field inversion problem were chosen
in this implementation will be done in Section 5.3.

5.2 field inversion implementation
The field inversion was implemented using a code based on the python-based DLR
Surrogate-Modelling for Aero-Data Toolbox (DLR SMARTy) [Görtz et al., 2013] de-
veloped by the German Aerospace Center, which wraps around the adjoint and nor-
mal flow simulation capabilities of the DLR’s inhouse flow solver TAU [Schwamborn

1 Please note that here the terms L1 or L2 do not correspond to the L1, L2 loss associated to loss functions.
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et al., 2006]. The ability of the SMARTy toolbox to call the TAU solver for a flow
solution while simultaneously implementing various optimization techniques is
achieved using the FlowSimulator framework [Reimer, 2015]. This system of soft-
ware is leveraged in the current implementation, with a similar instance first carried
out by Jäckel [2020]. The SMARTy toolbox treats a given flow solution file as ”snap-
shots” or ”snaps”, and these terms will be used to refer to a solution file containing
surface or full-field flow information. The flow cases for the field inversion proce-
dure is selected using the criteria detailed Section 4.5, and the selected cases are
listed in Table 5.1.

Reynolds
number

Mach
number

Angle of attack
(degrees)

Static Temperature (K)

2,680,960 0.71734 2.6038 268.9717

6,360,970 0.74208 4.4563 103.7620

8,787,960 0.72089 5.6690 104.4444

10,939,600 0.72401 5.6541 104.4660

13,181,400 0.72418 5.6504 104.4948

15,323,800 0.72355 5.1450 104.5628

Table 5.1: Flow points in the pETW database selected for the Field Inversion procedure

Baseline/Restart solution 
with Augmented SA-neg model

Gather the experimental
data at the selected flow

case from RAE 2822
database

 Interpolate the
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the CFD grid

Evaluate the loss
function 
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field inversion

Calculate the new 
using the Steepest gradient

descent, Update 
 

SGD Convergence 
criteria met?

No

Collect flowfield data, 
 in this case

STOP:
Finalize solution to be used

for Machine Learning Yes

Check if the flow
solution is converged,

Run TAU solver

Figure 5.2: Flowchart describing the current Field Inversion implementation

For a selected inversion flow case in Table 5.1, the code starts with a converged so-
lution file ran with the baseline SA-neg turbulence model, containing the flow data
at all CFD grid points. The experimental data supplied by the RWC.01 RAE2822

database, containing the surface pressure distribution, is the reference data. A ref-
erence snap containing the experimental data at the same flow case is also needed.
The reference snap contains the surface pressure coefficient (Cp) distribution infor-
mation, also available in the baseline snap. This information is passed to the L1
term to evaluate the residual part of the loss function of the optimization, as in
Equation 5.4. A β = 1 field is initialized for the baseline snap, whereas, for a restart
snap, an existing β(x) is initialized. The spatial field β(x) is passed in the L2 term
of the loss function.

The information about the loss function is passed to the optimizer. For the cur-
rent implementation, an iterative gradient-based method Steepest Gradient Descent
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(SGD) algorithm, as explained in Section 2.3.2, is used. The optimizer updates the
β(x) using gradients from a discrete adjoint implementation to reduce the loss func-
tion. If the convergence criteria of the SGD optimizer is met, the updated β(x) along
with the flow variables related to the solution are selected to be used for the Ma-
chine Learning part of the FIML procedure. The field inversion procedure is shown
in Figure 5.2. Further details about the implementation of various components of
the field inversion follow in the upcoming sections.

5.2.1 Baseline simulation setup using SA-neg

Before running the field inversion, the baseline simulation was conducted solely
using the DLR TAU code, a highly optimized, parallel, state of the art CFD solver
for unstructured grids. The grids required for the simulation were provided by
AIRBUS and are the same as the ones used for CFD analysis explained in Sec-
tion 4.2. Six separate structured 2D grids of varied refinements, each containing
157116 points, were provided for different Reynolds number cases; with one each
for Re = 2,6,9,11,13,15 million cases. An example of the grid can be seen in Fig-
ure 5.3. The negative Spalart-Allamaras turbulence model (SA-neg) was used to
run the flow simulations, the default 1-equation eddy-viscosity turbulence model
in the TAU solver. This model has a highly increased numerical stability and is ro-
bust. Additionally, it is not particularly sensitive to separation. The density residual
value of 10−10 was set as the convergence criteria for stopping the simulations.

Figure 5.3: Computational grid for the 2D domain for CFD simulations in TAU solver.

The boundary condition on the airfoil is that of a wall with a turbulent flow
assumption. A no-slip boundary condition has been applied and the grid is fine
enough near the airfoil (y+ < 5) to not require any wall functions. The inflow has
been set as a far-field boundary condition, and all the flow conditions (M, Re, AoA)
are initialized here. All gradients are assumed to be zero on the far-field boundary,
and therefore no viscous effects are taken into account. The simulation is converted
to 2D by applying the symmetry plane condition on the sidewalls. A visual repre-
sentation of the boundary conditions can be viewed in Figure 5.4.

The convective part of the inviscid fluxes of the RANS equations are discretized
using a 2nd order central scheme. The flux evaluation has an artificial dissipation
term, which is set using a matrix dissipation scheme. This dissipation scheme scales
with all three eigenvalues of the flux Jacobian, making it less dissipative than the
scalar dissipation scheme, which only scales with the maximum eigenvalue of the
flux Jacobian. Less dissipation is helpful for the current flow case as we expect to
see shock waves at some point on the airfoil.
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Turbulent 
viscous wall

Farfield 
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Turbulent 
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Figure 5.4: Boundary conditions for the 2D domain for CFD simulations in TAU solver. The
domain in the figure is not to scale, and the airfoil section has been magnified for
representation purposes.

For time-stepping, a semi-implicit LU-SGS scheme is used with a Backward Euler
relaxation solver. Even though implicit schemes allow for a bigger time step, it was
noticed that the Courant-Friedrichs-Levy (CFL) number value could not be pushed
over 5.0 without compromising numerical stability for the current flow case, owing
to the transonic flow conditions. To make the CFD run more efficient, defining
the multi-grid cycle helped to accelerate the process. Typically, the calculation was
started with a single grid configuration, and upon reaching a certain level of con-
vergence of the density residual (typically 1e-6, determined from experience), the
multi-grid cycle was switched to a 3-level V cycle.

5.2.2 Field inversion code implementation

Starting the code

To start the code, the following are required as an user input:

• Reference data from the RAE 2822 database

• Baseline/Restart flow solution

• Convergence criteria for TAU flow runs (typically density residual or maxi-
mum number of flow iterations) inside the inversion code.

• Stopping criteria for the adjoint solver (typically maximum number of itera-
tions)

• Hyperparameters of the SGD optimizer

• Tikhonov regularization values

The pressure distribution data from a relevant RAE-2822 database point is procured
as the reference data for a given set of flow conditions. The sensor information from
the pETW database point has a coarser spatial resolution than the CFD grid, there-
fore the data is interpolated to the CFD grid using a linear interpolation method.
A converged baseline run at the same flow conditions using the procedure in Sec-
tion 5.2.1 is used as a baseline RANS flow solution for the code. In case a restart
solution is available, which may be a partially converged β(x) solution or a user-
defined β(x) field, TAU solver is re-ran using the convergence criteria (typically
density residual or maximum number of flow iterations) provided in the user input.
This selection process can be seen in Figure 5.5. The reference data, baseline RANS
data and the β(x) field are then sent for loss function evaluation.
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Figure 5.5: Selecting the CFD flow solution for the start of the Field Inversion procedure
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Figure 5.6: Adjoint calculation and Steepest Gradient Descent update in the inversion code.
This is the step where the discrepancy field is updated in the code, and the cycle
goes on until convergence criteria are met

Using the loss function information, the adjoint calculation is run, which calculates
the gradient of the loss function with respect to β(x); therefore, the gradient of the
loss function is available at each grid point. The gradients dL

dβ are calculated using
the discrete adjoint method [Giles and Pierce, 2000] in TAU flow solver [Dwight
and Brezillon, 2006]. This gradient information is used to update the β(x) using a
Steepest Gradient Descent (SGD) update step given by

βn+1 = βn − α
dL
dβ

, (5.6)
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where α is the step size of the update. After this update, the flow solution is re-
calculated using TAU until the flow solution converges according to user-defined
convergence criteria. The loss function is then recalculated again using this updated
flow snap with new β(x), and the convergence criteria of the SGD is checked. The
convergence criteria is a minimum step size of 1e-4, with the step size reducing by
half when the problem loss function stops reducing. The starting step size and the
maximum number of SGD iterations are a part of the user input. This process, also
explained in Figure 5.6, repeats until the convergence criteria of the SGD optimizer
is met.

Discrete Adjoint theory and implementation in TAU

The implementation of discrete adjoint method in TAU follows from the imple-
mentation by Dwight and Brezillon [2006]. The theory behind the discrete adjoint
method has been explained in Section 2.3.3. From Equation 5.5,

βopt = argmin
β

L, s.t Ra(Ũm, ν̃, β) = 0,

An augmented response can be generate from this constrained optimization prob-
lem, which can be used to find the βopt, or,

βopt = argmin
β

(J (β)), where J (β) = L(β) + ΛRa(β). (5.7)

The required gradient of the augmented response w.r.t β can be written as

dJ
dβ

=
∂L
∂β

+ Λ
∂Ra

∂β
+

(
∂L
∂U

+ Λ
∂Ra

∂U

)
∂U
∂β

. (5.8)

Using the adjoint method and eliminating
∂U
∂β

, we can compute Λ by satisfying

∂L
∂U

+ Λ
∂Ra

∂U
= 0. (5.9)

After computing Λ and with the terms
∂L
∂β

,
∂Ra

∂β
known, we can compute the re-

quired gradient information

dJ
dβ

=
∂L
∂β

+ Λ
∂Ra

∂β
. (5.10)

The derivative of the residual of the RANS equations with respect to the flow
variables, ∂Ra

∂U , is called the Jacobian of the discretization. Note that adjoint prob-
lem is a linear problem, and requires a solution of a system of linear equations.
In the current implementation, the linear geometric multigrid solution approach
accelerated with Generalized Minimal Residual algorithm (GMRes) solver [Saad
and Schultz, 1986] is used to solve this system. The user provides the number of
iterations for the GMRes solver during the start of the code.

5.3 tikhonov regularization choice
The regularization constant (λ) or the Tikhonov parameter in Equation 5.4 is a pa-
rameter of the inversion problem which needs to be determined by engineering
judgement. The expectation is that on increasing the strength of the regularization,
the β(x) field will be forced towards the baseline solution of β = 1 and the L2 term
will decrease. A highly regularized field is far away from the inversion solution,
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which will lead to an increase in the L1 term. This behaviour can be seen in Fig-
ure 5.7, where field inversions were ran for multiple values of λ for a selected flow
case from Table 5.1.

10 17 10 14 10 11 10 8 10 5 10 2 101

 or Tikhonov regularization

100

101
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Nj

j = 1
( j 1)2or 2

Figure 5.7: Variation of L1, L2 for various values of Tikhonov regularization (λ) at flow
conditions M = 0.7209, AoA = 5.669, Re = 8787960. The values of λ are relative to
the initial value of the loss function (L) at the start of the optimization, 7.8474e-09

in this case

Attempts were made to select its value according to the L-curve criterion [Hansen
and O’Leary, 1993]. The L-curve is a parametric plot between the regularized so-
lution (L2) and the corresponding residual of the loss function (L1). The aim is
to find a value of λ (λelbow) where the value of L1 does not significantly decrease
on reducing the λ further, but the L2 still varies as it represents the magnitude of
model modification. This can be viewed in Figure 5.8.

Decreasing 
Increasing overfit

Increasing 
underfit, highly regularized solution 

Figure 5.8: Example of a L-curve plotted using inversion solutions at different λ values. El-
bow point is usually the point closest to the origin and the point with maximum
curvature. Please note that this figure is only for illustration purposes.

Hansen and O’Leary [1993] further state that it is particularly advantageous to
look at the L-curve in the log-log scale. A log-log scale emphasizes the elbow point
in the L-curve, as it squeezes the points together where either L1 or L2 vary and
shows a change in the second derivative of the curve near the elbow point. How-
ever, the primary advantage of a log-log transformation is to locate the elbow point
correctly for noisy data, which is something the author expects in this implemen-
tation due to interpolation of reference data to the CFD grid (explained previously
in Section 5.1.1) and the uncertainties in the experimental data. For a pure signal,
the L-curve in the log-log scale is flat, and it gets steeper as the noise is added to
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the signal. This distinction between noisy and pure signal is not seen in a lin-lin
L-curve.

Figure 5.9 shows the L-curves in the two different scales for field inversion con-
ducted at M = 0.7209, AoA = 5.669, Re = 8787960 for various values of Tikhonov
regularization. Figure 5.9a shows the expected behaviour of the L-curve, but due
to the noisy nature of the data it is not seen in Figure 5.9b. Therefore the value
of λ chosen using Figure 5.9a may not have been optimal and the picture painted
by Figure 5.9b is more trustworthy. However, a lack of a clear elbow point in Fig-
ure 5.9b forces us to look elsewhere in terms of choosing the lambda value, and this
method is not feasible for the current application. Even after trying extremely low
regularization values, there was no point in the graph where the change in the sec-
ond derivative is observed. This behaviour of the L-curve was observed for all the
selected flow cases in Table 5.1 while searching for an elbow point running multiple
inversions.
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Figure 5.9: L-curve in (a) lin-lin scale, and (b) log-log scale for various values of Tikhonov
regularization (λ) at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960. The
values of λ are relative to the initial value of the loss function (L) at the start of
the optimization, 7.8474e-09 in this case

The inability to locate the elbow point indicates to the author that the optimiza-
tion may not be fully converged. As we are dealing with a highly underdetermined
problem due to many variables (i.e. β at every grid point) and , there is a big chance
of getting stuck in saddle points while using a gradient-based method. Using a
gradient-free method like Ensemble Kalman filter (EnKF) (used for FIML by [Yang
and Xiao, 2020]) was not an option due to the time required for their implemen-
tation in TAU. Other options could be using higher-order gradient-based methods
like BFGS or Quasi-Newton methods to improve accuracy. However, there is an
argument that these methods will also get stuck in the same saddle points because
the restart point of the inversion problem remains the same, i.e. the baseline β field
of β = 1.

One strategy that was tried in the hope to escape the saddle points was to start
the field inversion from a different restart point. For this purpose, a randomized
β field was initialized in a close domain near the airfoil. This can be viewed on
the left in Figure 5.10. The inversion field after this restart solution can be seen on
the right of Figure 5.10. The output has a lot of noise in the solution, but physical
phenomena related to shock-induced separation can still be viewed. The optimiza-
tion is clearly not converged as even the noise in the optimization output looks very
similar to the initial guess (restart solution).
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Inversion solutionRandom restart
 

Figure 5.10: Random restart β field and its inversion solution
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Figure 5.11: Convergence comparison for various restarts for inversion for λ = 10−13 at flow
conditions M = 0.7209, AoA = 5.669, Re = 8787960. The values of loss func-
tion are relative to the initial value of the loss function (L) at the start of the
optimization for the baseline run, 7.8474e-09 in this case

The comparison of convergence of the inversion procedure with restart solution
as random β fields and starting from the baseline β = 1 can be viewed in Figure 5.11.
The convergence criteria of the SGD optimizer for the cases seen in the plot is either
the optimizer stops at a minimum step size of 1e− 4 or 200 SGD iterations are run.
The cases seen on the plot are as follows:

• Case 1: Starting from a β = 1. Convergence with the minimum step size
criteria is achieved at SGD iteration 17.

• Case 2: Initialize β ∈ [−0.5, 3.0] in the domain x/c ∈ [0, 1.5] and z/c ∈
[−1.5, 1.5]. Optimization stopped at max number of SGD iteration (200) is
reached.

• Case 3: Initialize β ∈ [0.5, 1.5] in x/c ∈ [0, 1.5] and z/c ∈ [−1.5, 1.5]. Conver-
gence with the minimum step size criteria is achieved at SGD iteration 87.

For Case 2 and Case 3, it can be seen that a lower value of the cost function of
the optimization is reached. However, there are two reasons why this approach
is not favourable: a) the output inversion field is extremely noisy, like the right
picture Figure 5.10, and training ML algorithms on such noisy data is difficult, and
b) the field inversion takes extremely long to solve as the number of SGD iterations
required are higher, and it takes even longer to converge the flow simulation in
TAU for each SGD iteration. The major takeaway from this activity was that the
accuracy gain from the random restart cases is not worth the computational cost,
the effort put into studying it. More clever ways of initializing restart β fields could
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have been looked into, but this activity was dropped in the interest of the time of
the master thesis duration.

5.3.1 Final approach for selecting the Tikhonov Regularization

With all the approaches discussed previously failing, the author was forced to select
the λ value based on engineering judgement considering the physical flow phenom-
ena. Figure 5.12 gives the β fields after inversion procedure for different values of λ.
The physical phenomenon seen in β fields remains exactly the same for all λ values,
with the production term being decreased near the shock foot and increased further
downstream. the decrease in turbulence production leads to a decrease in effective
viscosity, making the flow susceptible to separation earlier. Additionally, a region
of production increase can be seen downstream of the shock location at the border
of the boundary layer and this region is separated from the airfoil. This behaviour
is consistent with the expected physical phenomenon of shock induced separation
for these flow conditions.

  

  

 

  

  

 

Figure 5.12: β fields in a a) far field view, and b) zoom in view near the shock foot view from
inversion procedure for various values of Tikhonov regularization (λ) at flow
conditions M = 0.7209, AoA = 5.669, Re = 8787960. The values of λ displayed
are absolute values. The initial value of the loss function (L) at the start of the
optimization was 7.8474e-09 in this case

A closer look of how the inversion fields look for varying strength of regulariza-
tion and their effect on the pressure coefficient distribution of the airfoil provides
more insight on choosing the regularization value. Weakly regularized inversion
procedure go farther away from the baseline value of β = 1, resulting in larger range
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of values for β. Comparing the pressure distribution, as seen in Figure 5.13, one
can observe that for all λ ≤ 10−11, the shock location is identified well (x/c ≈ 0.3)
by the resulting β fields. The only difference between the λ = 10−17 and other λ
cases is that the resultant β field tries to fit closely to the behaviour in the region
downstream of the shock (x/c ≈ 0.4− 0.7). Comparing the β fields in Figure 5.12

for λ = 10−13 and λ = 10−17, the major difference is the strength of production in-
crease downstream of the shock. Minor differences can also be seen near the shock
foot, but it does not have a big impact on the shock location identification in the Cp
distribution. Thus the conclusion can be drawn that on decreasing the regulariza-
tion, the resultant inversion field first fits the shock location and then the trailing
flow.
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Figure 5.13: Cp distribution comparison for various inversion solutions at flow conditions M
= 0.7209, AoA = 5.669, Re = 8787960. ’ref’= reference output from TAU solver,
’calc’ = calculated output from a user-defined function, ’SF’ = similarity factor
with respect to wind tunnel results, ’mseCP’ = normalized loss function value
for the inversion problem.

  

  

 

Figure 5.14: β fields in a zoom in view near the shock foot view from inversion procedure
for various values of Tikhonov regularization (λ) at flow conditions M = 0.7242,
AoA = 5.650, Re = 13181400. The values of λ displayed are absolute values.
The initial value of the loss function (L) at the start of the optimization was
7.9477e-09 in this case

Another behaviour that was observed in the inversion fields was the development
of a production increase spot near the shock foot, which is predominantly a region
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of production decrease for most inversion solutions seen until now. In Figure 5.14,
a red spot can be observed within the blue region near the foot of the shock for low
regularization values of λ = 10−15 and λ = 10−17. This spot is not observed for
high regularization. The effect of this small production increase can be seen in Cp
distribution for λ = 10−17 in Figure 5.15. Near the shock location at x/c ≈ 0.3 for
λ = 10−17, the pressure increase is not abrupt and is a bit curved.
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Figure 5.15: Cp distribution comparison for various inversion solutions at flow conditions M
= 0.7242, AoA = 5.650, Re = 13181400. ’ref’= reference output from TAU solver,
’calc’ = calculated output from a user-defined function, ’SF’ = similarity factor
with respect to wind tunnel results, ’mseCP’ = normalized loss function value
for the inversion problem.

Here, it can be said that for low regularization values λ, the inversion field ad-
justs so that it tries to fit even closer to the pETW database reference line, which has
a smoother behaviour near the shock location. Thus, the inversion result matches
closely to the smeared shock foot behaviour of the pETW data. On decreasing the
regularization of the loss function, this phenomenon was observed sooner for high
Re cases in Table 5.1.

Observing the inversion fields for all the flow cases in Table 5.1, it was decided
to choose the λ value in such a manner that the resulting inversion field correctly
identifies the shock location and the pressure increase must be sudden. Correctly
identifying the flow phenomena in the region downstream of the shock was not
given much importance due to two reasons: a) unsteady, turbulent, unpredictable
behaviour, and b) unreliability of the sensors in the downstream region during the
experiment, as stated in the experiment report by Airbus. Additionally, efforts were
made not to capture the smeared shock phenomenon, which results in a smoother
pressure increase at the shock location. The author believes this smeared shock
behaviour in the wind tunnel data is either due to the unsteady behaviour of the
shock in reality (which the author is not focusing on in this study) or due to inac-
curacies in the setup and data collection methods of the experiment. This design
choice corresponded to regularization fields of high strength, resulting in smoother
inversion fields with small variance in the range of β. Flow data from these smooth
inversion fields will be easy to learn for machine learning algorithms.

5.3.2 Selected values

From the selection approach discussed above, the inversion solutions were run for
multiple values of λ determined by trial and error. The lowest value of λ where
the shock location is identified correctly, and there is no effect on the flow down-
stream of the shock, is chosen. The chosen values can be seen in Table 5.2. One
of the results from field inversion for the chosen λ values are seen in Figure 5.16
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and Figure 5.17, rest can be found in Section B.1. The shock-induced separation
phenomenon was not observed from the chosen cases for the Re = 2 million case;
therefore, it was decided that this flow case will not be taken forward for further
analysis and machine learning.

Reynolds
number

Mach
number

Angle of attack
(degrees)

Chosen
λ

Initial L Relative
regularization

2,680,960 0.71734 2.6038 N/A 1.60E-08 N/A
6,360,970 0.74208 4.4563 2.00E-11 1.14E-08 1.75E-03

8,787,960 0.72089 5.6690 1.00E-11 8.41E-09 1.19E-03

10,939,600 0.72401 5.6541 1.00E-10 7.95E-09 1.26E-02

13,181,400 0.72418 5.6504 1.00E-11 4.42E-09 2.26E-03

15,323,800 0.72355 5.1450 1.00E-10 7.85E-09 1.27E-02

Table 5.2: Selected Tikhonov regularization values for the inversion flow cases. For Re =
2,680,960 case, no λ was chosen and data is not used for feature engineering and
machine learning.

(a) Full view (b) Zoom at the shock foot

Figure 5.16: β(x) field for the selected inversion solution (λ =1.00E-11) at flow conditions M
= 0.7209, AoA = 5.669, Re = 8787960.
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Figure 5.17: Cp distribution for the selected inversion solution (λ =1.00E-11) at flow condi-
tions M = 0.7209, AoA = 5.669, Re = 8787960. ’ref’= reference output from TAU
solver, ’calc’ = calculated output from a user-defined function, ’SF’ = similarity
factor with respect to wind tunnel results, ’mseCP’ = normalized loss function
value for the inversion problem.
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(a) Baseline solution (b) Inversion solution

Figure 5.18: Comparsion of the Mach number contours for the baseline vs. inversion solu-
tion at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960.

5.4 recommendations
The underlying assumptions behind the design choices for formulating the current
field inversion problem work for this project. However, if the project’s aim is a gen-
eralized ML augmented turbulence model, there are ways to improve the current
field inversion procedure. It is important to remember that the machine learning
algorithm is only as good as its data, and better field inversion results will lead to a
high-quality dataset for machine learning. In this section, a few recommendations
are discussed that could improve the results but were not implemented due to con-
straints on the time available for the master’s thesis.

It was mentioned in Section 5.2.1 that a fully turbulent assumption had been cho-
sen as a boundary condition on the airfoil surface for the baseline runs using the
SA-neg model. This leads to a similar problem as the one discussed previously
in Section 4.3. The pETW data has a transition at some point close to the leading
edge of the airfoil, and there is an unquantifiable uncertainty when comparing the
baseline CFD and pETW data. However, unlike the CFD data provided by AIRBUS,
this time, generating the CFD data is in the author’s control, and efforts could have
been made to include the transition phenomenon in the CFD data. The following
recommendations are provided:

• Determine the transition location a-priori using transition models like the
γ − Reθt Transport Equation Model available in TAU or by approximation
after running multiple TAU simulations with fixed transition locations. After
determining the location, the field inversion process can be run normally, with
baseline simulation ran with the known transition location.

• Include the transition location as one of the design variables of the optimiza-
tion ran during the inversion. While using gradient-based methods, the gra-
dient of the loss function for transition location can be found using more
straightforward methods like finite differences, and there is no need to in-
volve adjoints.

• Use fixed transition data from the pETW database as reference data and use
the exact transition location in the baseline CFD run. In the current implemen-
tation, the data for fixed transition is only available for Re = 6 million experi-
ments (Figure 4.2), and it limits the potential of how the whole database can
be used.

In Section 4.2.1 a pairing methodology of AIRBUS CFD data with pETW data was
discussed based on a surrogate-based optimization with the QOI ’Similarity Factor’
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(SF) (Equation 4.1). SF is a measure of discrepancy using the isentropic Mach num-
ber distribution between CFD data and the wind tunnel data. A similar QOI can be
used to replace the isentropic Mach number with Cp to generate a surrogate surface
using Re, AoA, M and transition location. The surrogate surface would help choose
the appropriate (Re, AoA, M, transition location) combination to run the baseline
SA-neg simulation instead of running it at the exact same condition as that of the
pETW run. This will potentially ease the job for the inversion field to correct the
turbulence model. Another alternative is to directly include Re, AoA, M and tran-
sition location in the optimization problem for field inversion. However, one may
expect that the optimization procedure will become more complex due to increased
design variables, and normalization of all design variables will be important.

Looking toward improving the current optimization process, one can focus on start-
ing the inversion procedure using a clever choice of the initial β field. During the
discussion in Section 5.3 about starting inversion from randomly initialized inver-
sion fields, it was observed that the output β field is as noisy as the starting β field.
A first-level improvement can be made by using random inversion fields with a low-
pass filter. Other avenues include initializing the field based on the wall distance
using a polynomial function fit as it is seen that far away from the airfoil, the output
β field is not affected much.





6 F E AT U R E E N G I N E E R I N G

This chapter describes the feature engineering pipeline to prepare and select the
input feature for the Machine Learning (ML) part of the FIML procedure. At the
end of Chapter 5, the solution of the Field Inversion procedure was achieved, which
contains relevant flow information to be used for machine learning. This chapter
will briefly overview how feature selection has been made previously in data-driven
turbulence and FIML literature. The overview is followed by the presentation of
features considered in this work and the rationale behind the choice. Finally, the
discussion and results of the feature engineering pipeline used to select the input
features for the machine learning activity are presented. The feature engineering
methodology is the focus of the current work.

6.1 required feature properties
The machine learning algorithm’s quality depends on the data, and if the input fea-
tures are amenable to the algorithm, the performance is improved manifold. The
solution of the field inversion procedure will contain flow data and the resulting
discrepancy field β(x), from which an appropriate selection of the input features
has to be made for the learning process. Preparation and selection of the input
features are among the essential activities for solving physical problems using ma-
chine learning. These features are gathered from an extensive literature survey and
selected using feature selection techniques in machine learning literature.

For the current FIML framework, the required machine learning model was pre-
sented in Equation 3.14 and has been repeated here for convenience:

δm(η̃∗m; w) : η̃∗m −→ β

Thus, the output variable is fixed for the machine learning problem, i.e. β. The
input features η̃∗m need to display a strong functional relationship to the output so
that the relationships can be learnt easily by the ML algorithm [Holland, 2019]. The
choice of input features must be physically motivated so that the resulting func-
tion can be used to interpret the physical phenomena of the flow problem being
solved [Wu et al., 2018; Wang et al., 2017]. The features must be non-dimensional
and Galilean-invariant, i.e. invariant under transformations of coordinate frame
and reference system to improve the generalization and extrapolating capabilities
of the model. [Singh, 2018; Wang et al., 2017; Ling et al., 2016]. Conventional RANS
modellers choose the flow features, keeping these considerations in mind [Spalart,
2000], and the same should be followed for data-driven RANS models. Another
desirable property is that the flow features must be local or must be formulated
using local features, i.e. available at every CFD grid point to facilitate ease of imple-
mentation [Wang et al., 2017; Holland, 2019]. Wall-distance (d) based features are
an exception as they are not defined locally but still prove important for turbulence
modelling. Matai and Durbin [2019] preferred not to use wall-modelled features to
enable easier implementation in unstructured solvers. The input needs to be com-
ing from RANS results and not directly from the high fidelity data sets to enable
the machine learning model to be plugged inside the RANS model solvers [Ling
and Templeton, 2015]. For RANS modelling, a popular strategy has been using the
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features derived from mean flow quantities. [Wang et al., 2017]

The current FIML implementation aims to learn the discrepancy fields that can
be used for a general flow condition, for instance, the use of different geometry or
Reynolds numbers than that used for training. Another consideration is the num-
ber of features; more features would allow the discrepancy function to be modelled
better but increase the computational cost for training and prediction. Apart from
being non-dimensional, the features must be normalized in magnitude and tend to-
wards a Gaussian distribution as the current implementation proposes to use neural
networks.

6.2 methods in data-driven turbulence modeling
literature

Duraisamy et al. [2015] used a hill-climbing technique to select the feature subset for
training on Gaussian processes and neural networks applied on a transition mod-
elling problem. This algorithm appends the input features to the selected subset
until the point the model stops improving. The full feature set for their applica-
tion included all the elements of the velocity gradient tensor (Sij, Ωij), transition-
turbulence model transportation scalars (k, ω, γ) and a few non-dimensional eddy-
viscosity (νt) related features. Ling and Templeton [2015] used raw local flow vari-
ables related to mean pressure gradient vector (∇p), turbulent kinetic energy gra-
dient vector (∇k) in addition to the velocity gradient tensor to create a set of 12

input features based on domain knowledge and physical intuition. Furthermore,
they introduced a feature normalization scheme of xi

|xi |+|normxi |
where xi is the input

feature and normxi is the chosen normalization factor for xi, which became very
popular in further publications. Wang et al. [2017] used a similar set of features
and normalization scheme but selectively did not apply the normalization to the
features which were non-dimensional by construction. They also included features
like wall-distance based Reynolds number and Q-criterion.

A lot more focus went into ensuring Galilean invariance in the input features in
the works of Ling et al. [2016] and Wu et al. [2018]. A systematic approach to
construct invariant bases for input features was provided by Ling et al. [2016] to
eliminate missing out on crucial information by relying on physical intuition. They
generated a minimal invariant set of features using the minimal integrity basis to
represent all polynomial invariants (Tr(S2

ij), Tr(Ω2
ij), Tr(ΩijSij), ..., where Tr is the

trace of the tensor) of the tensorial set containing strain rate (Sij) and vorticity rate
(Ωij) tensors. The Hilbert basis theorem [Hilbert and David, 1993] states that this
minimal invariant set is a finite integrity basis set for a finite tensorial set ([Sij, Ωij]
in this case).

Wu et al. [2018] provided the most comprehensive feature engineering framework
known to the author. Wu et al. [2018] started with listing the features to use based
on the physical considerations of the problem they wanted to solve; not only they
selected the strain-rate and vorticity rate tensors, but they also included pressure
gradient (∇p) and turbulent kinetic energy gradient (∇k) vectors considering their
influence on turbulence. In addition to these tensor-based features, they listed three
wall distance (d) and turbulence model-based features (k, ε) to supplement the ini-
tial set and inform the machine learning model about wall distance and turbulent
length, time scales. The normalization of features was done using the Ling and Tem-
pleton [2015] transformation. Finally, Galilean invariance is achieved by generating
the minimal integrity basis from a tensorial set of [Sij, Ωij, ∇p, ∇k ] and choosing
normalization factors which are inherently Galilean invariant. Special treatment
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was done for reflection invariance considerations.

Many publications for the FIML approach use feature-selection techniques from
machine learning literature after gathering a complete feature set. Holland [2019]
visualized the relationship among the features by visualizing scatterplots and their
correlation coefficients, which was seen in the form of heatmaps. Highly correlated
features were removed from the initial set on the hypothesis that only one of the
correlated features is enough to provide the information they offer [Guyon and De,
2003]. This elimination would avoid over-training and improve performance. These
features were then ranked using Sequential Backward Selection (SBS) and random
forest algorithms. Köhler et al. [2020] also used the SBS algorithm and used the
neural network as the estimator. Singh [2018] was a critic of such methods and
argued that these automatic selection processes could be misleading due to lack of
repeatability of the results, favouring domain knowledge of the physical phenom-
ena as the main criteria for selection. Matai and Durbin [2019] in their application
of the FIML approach, selected the features from an initial Galilean invariant set by
looking at the visual correlation of the input features with the discrepancy field β;
however, they did rank the selected features using a decision tree algorithm.

6.3 shortlisted features
A set of 13 features is shortlisted from a literature review of various data-driven
modelling approaches. The features selected do not directly use the flow proper-
ties like U, p or Re to enable extrapolation capabilities. All input features are non-
dimensional using appropriate normalization factors. The features are also Galilean
invariant (i.e. stay the same in all inertial frames) because either they have terms
associated with elements of the gradient tensor/vector of the flow properties, or
they are scalar features. The features using the tensors are also rotational invariant
because they have been constructed using anti-symmetric tensors (i.e. using Sij and
Ωij).

Additionally, most selected features are local, but some of them are based on wall-
distance based properties. Wall-distance-based features may reduce their applica-
bility in non-structured grids, but their information is valuable for the current test
case of turbulent separated flows. There were two primary considerations while
shortlisting this feature set: a) description of the shock-induced separation phenom-
ena and b) functional relation to the turbulence model with a focus on SA model
properties. The following features were shortlisted:

1. χ: Normalized SA kinematic viscosity or turbulent viscosity. ν̃ is the transport
important variable for the SA-model. This feature has proved to be crucial in
FIML applications using the SA model. The feature is defined as:

χ =
ν̃

ν
(6.1)

where ν is the kinematic laminar viscosity of the flow.

2.
P
D

: The ratio of the production to the destruction term in the SA-neg model.
Using this feature areas of turbulent production changes will be identified.
The exact formulation of the feature follows from the SA-neg model terms
explained in Section A.1:

P
D

=
cb1(1− ft2)Ω̃ν̃(

cw1 fw −
cb1

κ2 ft2

) [ ν̃

d

]2 (6.2)
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3. fw: SA wall function as formulated in Equation A.5. This feature was used
by Holland [2019] to reliably predicted adverse pressure gradient flows on an
airfoil.

4. ∇ν̃: Normalized version of SA viscosity gradient magnitude. The hope with
this feature is to gain information about regions of strong variation of eddy
viscosity. This was used by Ferrero et al. [2020] for their FIML implementation
for turbomachinery flows using SA model.

∇ν̃ =
d

ν + ν̃
|∇ν̃| (6.3)

where d is the wall distance

5. Ω: Normalized vorticity tensor magnitude, used for identifying regions of
vorticity in the flow.

Ω =
d2

ν + ν̃
Ω, (6.4)

where Ω = ‖Ωij‖ i.e. the magnitude of vorticity and d is the wall distance.

6. δ: Ratio of the local turbulent strain rate to the shear stress. This feature
originates from the work by Medida [2014] where this term was used as an
adverse pressure gradient correction term for the SA model. This feature was
identified to be important for FIML approaches using SA model [Holland,
2019; Jäckel, 2020].

δ =
µTS

1.5τw
(6.5)

where τw is a reference quantity based on a wall based quantity uτ i.e. the
skin friction velocity at the nearest wall point. τw = 0.5ρu2

τ and S = ‖Sij‖ i.e.
the magnitude of strainrate tensor.

7.
S
Ω

: Strainrate to vorticity magnitude ratio. This information will provide
the information about the full velocity gradient tensor but will still remain
acceptable under the feature invariance requirements laid down earlier.

S
Ω

=
‖Sij‖
‖Ωij‖

(6.6)

where, Ω = ‖Ωij‖ i.e. the magnitude of vorticity tensor and S = ‖Sij‖ i.e. the
magnitude of strainrate tensor.

8.
τ

τre f
: Normalized Reynolds stress tensor magnitude. This feature is nor-

malized using a normalization factor constructed using local quantities i.e.

τre f =
ρ(ν + ν̃)2

d2 . This is unlike in δ where a wall distance based normaliza-

tion was used. Here τ = ‖τij‖ or the magnitude of Reynolds stress tensor.
This feature is also inspired from the work of Ferrero et al. [2020].

9. H12: The boundary layer shape factor H12 is a classical boundary layer param-
eter which gives information about nature of the flow and the adversity of the
pressure gradient. Typically, low values of shape factor (1.3-1.4) indicate full
boundary layer profiles which are associated to turbulent flows.

H12 =
δ∗

θ
(6.7)

where δ∗ = displacement thickness, θ = momentum thickness of the boundary
layer.
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10. kQCR: Quadratic constitutive relation (QCR) for SA models. This feature origi-
nates from the work by Mani et al. [2013] where inadequacy of eddy viscosity
turbulence models to predict secondary vortices (primarily for internal flows)
was addressed by adding this relation to the SA model. A part of this rela-
tion was used by Volpiani et al. [2021] to reconstruct a turbulent kinetic energy
term for the SA model in their machine learning based data-driven turbulence
modelling framework for separated flows. This feature is defined as follows:

kQCR = 1.5CCr2νt

√
2SijSij (6.8)

where CCr2 = 2.5 [Mani et al., 2013], νt is the eddy viscosity and Sij is the
strainrate tensor.

11. fd: DDES wall shielding function. This feature is used in a Detached-eddy
simulation framework for SA models where the switching between LES (typ-
ically near the wall) and RANS (far from wall) is done using this function,
where fd = 1 implies the LES region. [Spalart et al., 2006]. This feature will
be useful to provide information about the boundary layer and the near-wall
regions.

fd = 1− tanh(8r3
d), rd =

ν̃

κ2d2

√
∂ui
∂xj

∂ui
∂xj

(6.9)

rd is a parameter for the length scale defined for the SA model but can be
used for any eddy-viscosity model. rd is 1 in the log-layer near the wall and
falls to zero near the edge of the boundary layer. Köhler et al. [2020] used
this feature for their FIML implementation and Ferrero et al. [2020] used a
modified version to suit turbomachinery flows.

12. βRC: Rotta and Clauser pressure gradient parameter [Clauser, 1954]. This pa-
rameter is used to provide pressure gradient information for equilibrium/near-
equilibrium adverse pressure gradient turbulent boundary layers. This feature
will provide pressure gradient information.

βRC =
δ∗

ρu2
τ

∂p
∂s

(6.10)

where δ∗ = displacement thickness of the boundary layer, ρ is the density and

uτ i.e. the skin friction velocity at the nearest wall point.
∂p
∂s

stream-wise

pressure gradient ln(βRC)

13. ∆ps+: Inner pressure gradient parameter [Mellor, 1966]. This parameter used
to extend the classical law of the wall in the viscous sublayer region of the
boundary layer with the assumption that viscous shear stresses are dominant
compared to Reynolds stresses [Patel, 1973]. Here, it is just used as a normal-
ized form of streamwise pressure gradient ∂p

∂s .

∆ps+ =
ν

ρu3
τ

∂p
∂s

(6.11)

6.4 current feature engineering pipeline
This section details the steps taken by the author to finally select a subset of the
shortlisted 13 features to be used for machine learning activity. The aim is to achieve
the smallest subset of input features required to accurately capture all the flow
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phenomena. The steps presented here consider neural networks as the estimator
and vary for other ML algorithms like Gaussian processes or Random Forests. The
discussion will now continue for the feature data processed from the inversion
solution at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960, which gives a
dataset of 157116 points to start with. The results of this activity will vary when
the dataset is changed, which may be done using more flow cases together or using
data with different transformations (applied using mathematical operations).

6.4.1 Checking for correlations

The first step in the pipeline is to assess the correlations between the input features
and the target variable β(x), where a high correlation between the input and out-
put makes a model approximation easier, ultimately improving the learning process.
Additionally, the correlations of input features are compared with other input fea-
tures. This activity is based on the idea that truly correlated variables do not add
any additional information to the model, and only one is representative of a truly
correlated set [Guyon and De, 2003]. In this study, this is done by studying scatter
plots and using Spearman’s correlation coefficient (Equation 2.33). The feature data
originating from the inversion solution is based on a RANS solver and is inherently
non-linear. Therefore Spearman’s correlation is a good choice as it does not make
any assumptions about the probability distribution of the data.

P/D S/ fd fw RC ps + H12 kQCR / ref

P/
D

S/
f d

f w
RC

p s
+

H
12

k Q
CR

/
re

f
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Figure 6.1: Heatmap for Spearman’s correlation coefficient for the feature data processed
from the inversion solution at flow conditions M = 0.7209, AoA = 5.669, Re =
8787960. No filters have been applied, the number of points in the dataset for the
heatmap is 157116. β is the target variable in the data.

Figure 6.1 gives the correlation heatmap for the full feature set. The row for the
target variable represents the correlation of the target variable with all the input
features, and the correlation with itself is equal to one (true correlation). First,
high absolute values of correlation for any two input features are identified with a
correlation value of more than 0.9 regarded as high. One of the two input features
is then eliminated based on their correlation with the target variable. For Figure 6.1
this results in removal of:
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• kQCR: Highly correlated with δ (0.95) and lower correlation with β. In this
case, both these expressions are proportional to νtS.

• τ

τre f
: Highly correlated to fd (0.98) and lower correlation with β. Here, the

mathematical similarity is not apparent.

6.4.2 Applying transformations and removing features with information loss

The input features in the dataset may vary a lot in magnitudes. Additionally, the
data may have outliers, or the probability distribution of the input features is highly
skewed. All these factors may limit the neural network’s performance, and it is cru-
cial to apply appropriate transformations to make them amenable. For the current
project, a ln(qβ) is applied where ln is the natural logarithmic operator, and qβ is
the input feature. This operator has an effect of changing the distribution of data
which is needed in our dataset in consideration as most features have extreme out-
liers and varying magnitudes (the distribution can be viewed in Figure C.1). The
transformation was applied selectively to some features to match the magnitude of
the target variable (which is ≈ 1), and this can be viewed in Table 6.1.

Feature
(qβ) Description Feature definition Final feature

q1 Normalized SA viscosity χ = ν̃
ν ln(χ)

q2 Production to Destruction ratio P
D = cb1(1− ft2)Ω̃ν̃(

cw1 fw−
cb1
κ2 ft2

)
[ ν̃

d ]
2 ln( P

D )

q3 SA wall function fw fw

q4
Normalized SA viscosity

gradient magnitude
∇ν̃ = d

ν+ν̃ |∇ν̃| ln(∇ν̃)

q5
Local turbulent strainrate

to the shear stress
δ =

µT‖Sij‖
1.5τw

, τw = 0.5ρu2
τ ln(δ)

q6
Strainrate to vorticity

magnitude ratio
S
Ω =

‖Sij‖
‖Ωij‖

ln
(

S
Ω

)
q7

Normalized Reynolds stress
tensor magnitude

τ
τre f

=
‖τij‖
τre f

, τre f =
ρ(ν+ν̃)2

d2 ln
(

τ
τre f

)
q8 Boundary layer shape factor H12 = δ∗

θ H12
q9 DDES wall shielding function fd = 1− tanh(8r3

d) fd

q10 QCR for TKE kQCR = 1.5CCr2νt

√
2SijSij ln(kQCR)

q11
Normalized vorticity

tensor magnitude
Ω = d2

ν+ν̃‖Ωij‖ ln(Ω)

q12
Rotta and Clauser

pressure gradient parameter
βRC = δ∗

ρu2
τ

∂p
∂s ln(βRC)

q13
Inner pressure

gradient parameter
∆ps+ = ν

ρu3
τ

∂p
∂s ln(∆ps+)

Table 6.1: Shortlisted input features from literature to be used for the neural network train-
ing, and final feature after applying the ln(qβ) transformation to selected features.
q7 and q10 were removed after checking for correlations, but have still been men-
tioned in this table for the sake of completeness.

Due to the nature of ln operator, there is a risk of losing information as ln(x) < 0
is not defined. Information loss happens when the input features values are less
than or equal to zero. These features can not be used at a given grid point; all the
features must be available to proceed further, or it gets filtered out. If too many
points are filtered from the dataset, it leads to the loss of crucial information. In this
case, the feature is removed from the input set of features. One may argue that a
choice of a different transformation (like a scaling operation by Ling and Templeton
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[2015], or a quantile transformer by [Holland, 2019]) may remove this problem alto-
gether. However, ln operator was preferred because it changes the distribution of
the input features, and the nature of the operator is well understood. Furthermore,
losing out on a few features may result in loss of crucial information, possibly dete-
riorating model performance, but arguably the current, complete feature set is big
enough for this not to be a problem.

(a) Contour of βRC

(b) Contour of P/D ratio

Figure 6.2: Feature contours after applying the ln(qβ) transformation for the feature data
from the inversion solution at flow conditions M = 0.7209, AoA = 5.669, Re =
8787960. Yellow color displays the NANs in the domain after applying the trans-
formation, which corresponds to information loss

Figure 6.2 shows the contours for features most affected by the transformation.
The region in yellow signifies the regions where the information is lost. ln(βRC),
ln(∆ps+) (as ∆ps+ formulation similar to βRC, based on the pressure gradient) and

ln(
P
D
) are removed from the input feature set. For ln(βRC) the regions of favourable

pressure gradient and for ln(
P
D
) regions where the production term is zero are lost.

The remaining feature set comprises of q1, q3, q4, q5, q6, q8, q9, q11 from Table 6.1.
Their distribution can be viewed in Figure C.2.

6.4.3 Sequential feature selection for final feature subset

The final step to select the input features before the feature data goes to the machine
learning procedure is using Sequential feature selection (SFS) algorithms [Ferri et al.,
1994]. The SFS algorithms are a family of greedy search algorithms that automati-
cally select a subset of features most important to solving the problem. SFS allows
the use of a user-preferred estimator and performance metric. The goal of using this
algorithm in the feature selection pipeline is two-fold: a) to estimate the number of
features finally needed for machine learning, and b) to figure out which features
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perform well with neural networks as the estimator.

Traditional SFS algorithms work either in a forward selection or a backward elimination
mode. In the forward mode, a null estimator (neural network) is started to fit with
one feature at a time, and the best one is selected according to the scoring param-
eter provided to the model (e.g. mean squared error). In the second step, another
feature is added in combination with the previously selected feature and the best
combination of two is selected. This process goes on until a subset of the required
number of features is an output. In the backward mode, the model starts to fit with
all features and removes one by one to achieve the best combination.

The algorithm used for this activity is the Bidirectional elimination variant of the
SFS algorithm family. This variant is also known as the ”floating” variant in the SFS
package in mlxtend [Raschka, 2018]. This combines a forward selection and backward
elimination in one algorithm to sample a larger number of feature subset combina-
tions. Suppose in a full feature space of n features, k best features are required
where k < n. In a forward setting at the ith step, the bidirectional variant selects
a subset of i features using forward selection where i < k. Now, the significance
of already selected i features is checked using backward elimination (line 7), and
any low performing features are removed. This extra step ensures a larger num-
ber of combinations are tried. In a backward setting, the opposite process of first
backward elimination and then the forward selection is applied. The algorithm for
a forward mode is explained in Algorithm 6.1.

Algorithm 6.1: Bidirectional elimination SFS variant in the forward mode
Input: Full feature set Y = {yi}, i ∈ [1, n], J = estimator
Output: Feature subset X = {xj}, j ∈ [1, k], k < n

1 Initialize X0 = , i = 0;
2 while i == k do
3 x+ = argmax J (Xi + x), where x ∈ Y− Xi;
4 Xi+1 = Xi + x+;
5 i = i + 1;

6 x− = argmax J (Xi − x), where x ∈ Xi;
7 if J (Xi − x) > J (Xi) then
8 Xi−1 = Xi − x−;
9 i = i− 1;

A neural network of 2 layers with 50 neurons each was passed through the SFS algo-
rithm. The activation function was chosen to be ’relu’, and a constant learning rate
of 0.001 was set. The automatic batch size option was chosen, and the solver was
the ’Adam’ optimizer [Kingma and Ba, 2014]. This neural network model was im-
plemented using the ”MLPRegressor” class in scikit-learn python library [Pedregosa
et al., 2011]. This network architecture is not the one that will be finally used for
the final neural network training; however, at this point, the aim is to involve neural
networks at some stage of the feature engineering process.

The training data to be passed through the SFS algorithm must be similar to the one
used for the final machine learning process. The original data has 157116 points,
and the majority of the target variable values are one as β(x) = 1 for most CFD grid
points and only varies close to the airfoil. To avoid the neural network to predict
β(x) = 1 everywhere, a suitable method for filtering the data has been devised as
follows:
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• Select the ”Non-ones”: The data corresponding to a range far away from
β(x) = 1 are selected as it is to be used for training. Currently, this range is
set to be β /∈ (0.98, 1.02).

• Randomly choose the ”Ones” and collate: In the step above, the data points
not selected are called ”Ones”, and their range is β ∈ [0.98, 1.02]. Suppose the
number of ”Non-ones” are n in number. From the ”Ones” left, x% of n data-
points are chosen randomly to be collated with the ”Non-Ones”. Currently, x
percentage is chosen to be 20.

The resulting distribution of the target variable β can be seen in Figure 6.3a. The
design choices while constructing this training data is crucial to the performance of
the machine learning model, and the effect of these choices will be discussed in the
next chapter (Chapter 7). After applying the filters, only ≈ 1500 points are left out
of 157116 points. The correlation heatmap for the features in the remaining set can
be viewed in Figure 6.3b
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(b) Spearman’s correlation heatmap. β is the target variable in the data.

Figure 6.3: Information about remaining data to be used for SFS algorithm after applying
filter criteria of β /∈ (0.98, 1.02). The filter is applied on remaining ln(qβ) features
from the inversion solution at flow conditions M = 0.7209, AoA = 5.669, Re =
8787960

At this stage, the SFS algorithm is ready to be applied with one important de-
cision left to the author; the number of features to select in the final subset. The
following methodology is defined:

• Set an input range of length of the best subset. For the current data (3-5) is
chosen, i.e. the best subset of 3-5 features is provided as an output by the
algorithm from the eight input features.

• Run the SFS algorithm multiple times, because the results of the algorithm are
non-deterministic due to the involvement of neural networks. This was done
three times each for the current data in both forward and backward mode.
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• Score the features for every run of SFS. The feature subset provided will con-
tain somewhere between 3-5 features. Provide the score of ’5’ to the most
important feature and decrements of one until the last feature is assigned a
score.

• Total the score for a given feature. The feature with the maximum score is the
most preferred.

Another advantage this methodology provides is that it somewhat accounts for the
variability in results that can be there while running SFS algorithms. The results of
the SFS runs can be viewed in Table 6.2 and Figure 6.4.

Score
(Priority)

Forward floating search Backward floating search
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

5 ln(χ) ln(χ) ln(χ) ln(χ) ln(χ) ln(χ)
4 ln

(
S
Ω

)
ln(δ) ln

(
S
Ω

)
ln(δ) ln

(
S
Ω

)
ln(Ω)

3 ln(∇ν̃) ln(∇ν̃) ln(Ω) ln(Ω) ln(δ) fd
2 fd ln(Ω) H12 H12 ln(Ω) H12
1 H12 fw fd

Table 6.2: Bidirectional SFS runs with neural networks as the estimator.
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Figure 6.4: Negative of mean squared error at different stages of the Bidirectional SFS runs
with neural networks. The number of features with the maximum score i.e. clos-
est to zero has the best performance. The Bidirectional SFS algorithm looks for
the best score in the input range provided to the algorithm, which is (3-5) features
in this case

Feature SFS score
Correlation with β(x)

Full data Training data
q1 ln(χ) 30 0.29 0.58

q11 ln(Ω) 14 0.15 0.23

q6 ln
(

S
Ω

)
12 -0.19 -0.18

q5 ln(δ) 10 0.29 0.61

q8 H12 7 0.11 0.31

q4 ln(∇ν̃) 6 0.32 0.23

q9 fd 6 -0.13 0.13

q3 fw 1 -0.19 0.19

Table 6.3: Selection table for input features to be used for neural network training

Table 6.3 summarizes the scores for all the features and gives their correlations
with the β, sorted in decreasing order of the SFS scores. This table is used to finally
decide the priority order of the features for machine learning. From Figure 6.4 it
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is seen that the choice of 3-5 features was an agreeable decision, but in Figure 6.4b
shows that the backward Run 3 has the best performance with a six feature subset.
The backward Run 3 output in Table 6.2 has four features which is the second-best.
An advantage of finalizing features from Table 6.3 is that finally, a desired num-
ber of features can be chosen considering both SFS and correlation results. The
author gives more priority to the SFS results, and correlation results are used as a
tie-breaker. Special care must be taken if the correlation with β is low, which is not
the case in Table 6.3.

Using Table 6.3, fw and ∇ν̃ are removed from the input features. The final fea-
ture set is the following:

Features = [q1, q5, q6, q8, q9, q11] =

[
ln(χ), ln(δ), ln(

S
Ω
), H12, fd, ln(Ω)

]
(6.12)

fw is not selected enough by SFS to warrant further usage. For ∇ν̃ the SFS score
is low but the fact that it is highly correlated to δ (Figure 6.1) is the reason that
causes its elimination. The six remaining features are used to train the final neural
networks, discussed in the next chapter. This selection does not mean that a good
neural network training can not be done with features less than six; in fact, the next
chapter discusses the effect of further reducing the features. This reduction will be
primarily based on visual correlation of the input feature with the target variable β
and its rank in the Table 6.3.

6.5 results for the full database
The procedure described in Section 6.4 is also applied to a larger dataset. This
dataset is generated by collating all the flow data from the selected inversion solu-
tions in Table 5.2. The input features are then processed from this flow data using
the feature definitions provided in Section 6.3.

The first step is to check the correlations in the new dataset to assess feature im-
portance and remove redundant highly correlated features. The heatmap for the
Spearman’s correlation coefficient for this dataset is given in Figure 6.5. The corre-
lation values are not highly different from the ones seen in in Figure 6.1. This is
because all the flow cases selected for inversion are expected to have shock induced
separation and the values of M and AoA are not very different from each other.
From the correlation heatmap, the following features were (again) eliminated:

• kQCR: Highly correlated with δ (0.94) and lower correlation with β.

• τ

τre f
: Highly correlated to fd (0.98) and lower correlation with β.

The second step is to apply the ln transformation to the features and removing fea-
tures with major information loss. Here, it was difficult to visualize the inversion
data for five different flow cases on one computational grid. However, due to the
flow phenomena being similar for all cases considered the author expects that the

features ln(βRC), ln(∆ps+) and ln(
P
D
) will again incur significant loss of informa-

tion (as seen in Figure 6.2). This approach works for this specific training data, but
for a more general model with different type of flow phenomena in the training
data will warrant a more careful treatment. The remaining feature set comprises
of q1, q3, q4, q5, q6, q8, q9, q11 from Table 6.1. Their probability distribution can be
viewed in Figure C.5. The third step is to apply the SFS algorithm to the remaining
feature data. Before this, the data was again filtered appropriately using the same
criteria (”Non-Ones” and ”Ones’) on β(x) to avoid the neural network to learn to
predict β(x) = 1 everywhere.
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Figure 6.5: Heatmap for Spearman’s correlation coefficient for the feature data processed
from all the inversion solutions at flow conditions in Table 5.1. No filters have
been applied, the number of points in the dataset for the heatmap is 782980. β is
the target variable in the data.
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Figure 6.6: Information about remaining data to be used for SFS algorithm after applying
filter criteria of β /∈ (0.98, 1.02). The filter is applied on remaining ln(qβ) features
from all the inversion solutions at flow conditions in Table 5.1.
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This resulted in a training dataset of ≈ 7100 points from a total of 782980 points.
The resulting probability distribution of the target variable β and correlation of the
input features in the final training data can be seen in Figure 6.6. Finally, the SFS
algorithm is run on the data thrice, in both forward and backward modes. The
results can be seen in Table 6.4 and Figure 6.7. From Figure 6.7 it can be seen that
4-6 features will be required.

Score
(Priority)

Forward floating search Backward floating search
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

5 ln(χ) ln(χ) ln(χ) ln(χ) ln(χ) ln(χ)
4 ln

(
S
Ω

)
ln(δ) ln(δ) ln(δ) ln(Ω) ln

(
S
Ω

)
3 ln(δ) ln(Ω) ln(Ω) ln(Ω) H12 ln(δ)
2 ln(Ω) fd H12 H12 ln(Ω)
1 H12 fw

Table 6.4: Bidirectional SFS runs with neural networks as the estimator.
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Figure 6.7: Negative of mean squared error at different stages of the Bidirectional SFS runs
with neural networks. The number of features with the maximum score i.e. clos-
est to zero has the best performance. The Bidirectional SFS algorithm looks for
the best score in the input range provided to the algorithm, which is (3-5) features
in this case

Feature SFS score
Correlation with β(x)

Full data Training data
q1 ln(χ) 30 0.18 0.61

q5 ln(δ) 18 0.21 0.62

q11 ln(Ω) 17 0.12 0.20

q6 ln
(

S
Ω

)
8 -0.16 -0.11

q8 H12 8 0.11 0.18

q9 fd 2 -0.1 0.13

q3 fw 1 -0.15 0.20

q4 ln(∇ν̃) 0 0.21 0.18

Table 6.5: Selection table for input features to be used for neural network training

Table 6.5 summarizes the scores for all the features and gives their correlations
with the β for the new data, sorted in decreasing order of the SFS scores. Using
Table 6.5, fw, fd, and ∇ν̃ are removed from the input features simply because they
are not selected enough by the SFS algorithm. The resulting set of features for this
data to be used for machine learning are as follows:

Features = [q1, q5, q6, q8, q11] =

[
ln(χ), ln(δ), ln(

S
Ω
), H12, ln(Ω)

]
(6.13)
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This chapter is about the Machine Learning (ML) part of the FIML procedure. At
the end of Chapter 6, a list of features was provided to be used for neural network
training. This chapter will describe the training process chosen by the author and
motivate the design choices for the selection of training hyperparameters and neu-
ral network architecture. Following this, the results from neural network training
will be presented where analysis is done on the effect of using a smaller subset of
features than the one to start with. Finally, the results of connecting these trained
neural networks to the TAU flow solver are provided i.e. the NN-augmented SA-
neg model. Testing is done on various flow conditions to evaluate the generalization
capability of the current augmented turbulence model.

7.1 machine learning methodology

From the shortlisted input features η̃∗m, an accurate and robust machine learning
(ML) model is to be developed. The aim is to identify patterns in the spatial β
field and its relation to η̃∗m. The required machine learning model was presented in
Equation 3.14 and has been repeated here for convenience:

δm(η̃∗m; w) : η̃∗m −→ β

Neural networks (NN) are selected as the default choice of the machine learning
algorithm for this study, mapping input features from the model η̃∗m to output β.
Neural networks are one of the most popular methods for supervised ML. They
work well for non-linear function approximations and provide a high generalisation
ability. Deep neural networks have been widely used in literature for aerodynamic
predictions using high-fidelity data sources (i.e. experiments, simulations). Many
variants of neural networks like sparsely connected deep NNs, convolutional neural
networks (CNNs) and Recurrent neural networks (RNNs) have found application
in flow modelling [Brunton et al., 2019]. However, this study will employ a fully-
connected neural network, a Multi-layer perceptron (MLP). The design choices for
its architecture and the training hyperparameters will be detailed in the upcoming
sections. For the neural network implementation, the TensorFlow library [Abadi
et al., 2015] with the Keras backend is used.

The selected network architecture is trained on the feature data generated at the
end of Chapter 6 and their respective selected features (e.g. Equation 6.12). This
trained NN is then plugged into the TAU flow solver to provide augmented SA-neg
model predictions. Specifically, tests on various combinations of input features to
train the neural networks will be presented to determine the best feature subset.
The performance of the NN-augmented predictions will be assessed by comparing
them with the wind tunnel results.

77
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7.1.1 Choice of network architecture and hyperparameters

Determining the network architecture and optimising the learning hyperparameters
is crucial to achieving a robust ML model. The current implementation follows the
methodology by Sabater et al. [2021], where a Multi-Layer Perceptron (MLP) with
a shrinking network shape is employed. The shape of the network is defined using
three parameters: a) the initial number of neurons in the first hidden layer, b) the
number of hidden layers, and c) the shrinkage factor. An example of such a network
can be seen in Figure 7.1.

relu

Input layer Output layerHidden layers

Fully connected

Initial number
of neurons = 6

Shrinkage factor = 0.67

Activation
function = 'relu'

Figure 7.1: Multi-layer perceptron architecture by Sabater et al. [2021]: For a set of input
features and output the architecture is defined using three shape parameters: a)
number of hidden layers, b) shrinkage factor, and c) number of neurons in first
layer.

All layers consist of a Rectified linear unit (ReLU) [Glorot et al., 2011] activation
function. It is the most commonly used activation function in deep learning appli-
cations owing to its simplicity while introducing non-linearity in the network. Even
though ReLU is not differentiable like sigmoid or tanh activation functions, but it
solves the problem of gradients diminishing in magnitude during backward propa-
gation [Tan and Lim, 2019], also known as the ”vanishing gradient problem”. This
problem is typical in MLPs, and its symptoms are a slow rate of improvement of
the model during training, continued training providing little improvement and lit-
tle/no effect of increasing the size of the network.

The learning rate of the neural network is chosen to be an exponential decrease
with the number of epochs (nepoch). The learning rate is defined as:

lr = 10−l0 exp(10−Kl × nepoch) (7.1)

where 10−l0 is the initial learning rate, and l0 is the initial learning rate exponent.
10−Kl is the learning rate decay with Kl as the learning rate decay exponent. An
appropriate learning rate is needed so that the model does not get stuck while
learning at a low rate, but it also should not be faster than needed as it could
converge the network to a sub-optimal solution. The final hyperparameter for the



7.1 machine learning methodology 79

neural network is the batch size, which is the number of data points that will be
propagated through the network at one time. Therefore, for the current application,
the neural network can be fully defined using the following set of hyperparameters:

1. number of hidden layers,
2. number of neurons in the first hidden layer,
3. shrinkage factor,
4. initial learning rate exponent (l0),
5. learning rate decay exponent (Kl), and
6. batch size.

The optimal choice of these six hyperparameters is made using a Surrogate Based
Optimization (SBO) approach used by Sabater et al. [2021]. In an SBO, a metamodel
is generated to replace the original, expensive black-box model resulting in a signif-
icant reduction of function evaluations to find the optimal solution [Forrester and
Keane, 2009]. This optimization routine is implemented using the DLR-SMARTy
framework [Görtz et al., 2013] with a Keras-TensorFlow backend [Abadi et al., 2015]
to deal with the neural network evaluations. To start the optimization, the user-
defined input ranges of the design variables (hyperparameters) need to be provided.
The objective function for the optimization is the Mean Square Error (MSE) of the
neural network prediction on the validation data or the validation loss. These hyper-
parameters are a combination of discrete and continuous variables. The output of
the optimization is in a decimal form, which is approximated to the nearest integer
for discrete variables like number of hidden layers.

Design of Experiments Surrogate construction
 

Infill criteria: 
Expected Improvement (EI)

 

Infill criteria: 
Expected Improvement (EI)

 
Infill criteria: Trust region

 

Trust region search update
EI infill update 2

EI infill update 1
 

Figure 7.2: Optimization procedure used for choosing the hyperparameters for the neural
network in the current study. The grey dotted line represents the true function
and the surrogate model approximates this function.

The steps in the current optimization process follow from [Sabater et al., 2020]
and can be seen in Figure 7.2. The following optimization steps are implemented:

1. Design of Experiments: First, a Design of Experiments (DoE) is used to con-
struct the surrogate surface from the respective input ranges of the hyperpa-
rameters. A rule of thumb instructs that the number of samples for an effective
DoE must be ten times the size of the input vector dimension. Thus for six
hyperparameters, this means 60 design points where each resulting point is a
neural network.
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2. Surrogate construction: Once the DoE is complete and initial sampling is done,
the surrogate is constructed based on the value of the chosen objective func-
tion (validation loss) at each point. The approximation of the objective func-
tion is made using a universal Kriging with a Gaussian kernel of exponent
order two.

3. Infill through Expected Improvement (EI): The surrogate model is refined by
infill criteria in the locations where there is scope to improve. A large expected
improvement (EI) is found in the regions where a better solution than the
current best is possible, or the surrogate model has a large error at the location
of consideration. The location of maximum improvement in the surrogate is
found using differential evolution, and the population size is set to be five
times the size of the input vector dimension.

4. Trust region method: In this method, the search is centred near the current
best solution with a pre-defined trust-region length. The new optimum is
found again using a differential evolution algorithm but only in the trust re-
gion. If a point with a lower objective function value is found, the trust region
is again centred at the new optimum. The surrogate is then updated with this
newfound point. The population size is again set to be five times the size of
the input vector dimension. Thus, this is a local exploitation method in the re-
gion of influence of the current minimum. This method is required in addition
to the EI method. For a high-dimensional non-linear problem (transonic aero-
dynamic analysis, shock waves), the convergence of EI is not guaranteed, and
trust-region infill criteria increase the chances of finding the global minimum.

During the optimization process, each neural network is run for 1500 epochs. Fur-
thermore, additional early stopping criteria are implemented. The training stops
if the validation loss value of 1E− 06 is reached. An early stopping monitor with
the patience of 500 epochs and tolerance of 1E− 05 is set, which stops the training
if the validation loss has not improved in the patience epochs over the tolerance
level. After the optimization process, a set of hyperparameters is obtained, which
is used to train the final neural network. The final hyperparameters depend on the
input features and output data supplied to the optimizer and the input range of the
hyperparameters provided. Therefore, the user can still approximately control the
size of the desired neural network.

7.1.2 Training the final neural networks and integration with TAU

The neural networks used in this study were trained on flow features generated
from two datasets:

• Re = 9 million dataset: Training data generated from inversion solution at M =
0.7209, AoA = 5.669, Re = 8787960. This data is generated for a first test of the
current FIML implementation and to assess whether data from a single flow
case is enough for a turbulence model augmentation. The features for this
database are seen in Equation 6.12. The distribution of the target variable and
correlation of the input features can be seen in Figure 6.3. The distribution of
the input features can be seen in Figure C.3.

• Full dataset: Training data generated from all inversion solutions detailed
in Table 5.2 collated in one database. This data is the final database for the
current FIML implementation. The features for this database are seen in Equa-
tion 6.13. The distribution of the target variable and correlation of the input
features can be seen in Figure 6.6. The distribution of the input features can
be seen in Figure C.6.

The optimization routine is run for both these datasets, and the resulting neural
network architecture can be seen in Table 7.1. The datasets are standardized around
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a zero mean and standard deviation of one before the optimization run, as this kind
of data is more amenable to neural networks. The convergence information for the
optimization routine was collected but is not reported here.

Hyperparameter
Re = 9 million dataset Full dataset

Input bound Optimal value Input bound Optimal value
Neurons in first hidden layer (10,50) 31 (10,100) 86

Shrinkage factor (0.1,1) 0.88 (0.1,1) 0.78

Number of hidden layers (1,10) 4 (2,6) 4

Initial learning rate exponent (l0) (1,5) 2.5332453 - 2.5332453

Learning rate decay exponent (Kl) (1,7) 2.55625 - 2.55625

Batch size (4,300) 28 - 28

Table 7.1: Input bounds for the hyperparameter optimization and its result. Values are dis-
played for the two datasets considered for this study. The input bounds are se-
lected with a prior idea of the expected neural network size and with trial and
error. Only three design variables are optimized for the Full dataset to reduce the
time to run the optimization code.

Only three design variables were optimized for the Full dataset instead of the
Full input vector of size six. This reduction was made to reduce the time elapsed
for the optimization process as the number of sampling points was lower at each
optimization step, for e.g. 10*3 DoE points instead of 10*6. This was necessary
because training the neural network at each step with a larger dataset (Full dataset)
took more time.

Initially, the input bounds for both datasets were kept the same. However, for
the Full dataset, this resulted in a smaller neural network (neurons in first hidden
layer = 45, shrinkage factor = 0.74, hidden layers = 4) that did not perform well as
the final chosen neural network during prediction time. On simply increasing the
bound of neurons in the first hidden layer to (10,100), the resulting neural network
was too large (neurons in first hidden layer = 71, shrinkage factor = 1.0, hidden lay-
ers = 10) with a high number of trainable parameters. Therefore, the bounds of the
number of hidden layers were decreased to (2,6) to achieve the final neural network
architecture for the Full dataset. The discussion here is supported in the results in
Table 7.2.

NN
architecture

Trainable
parameters

Training time
(min)

MSE loss:
Test data

R2:
Test data

R2:
Full field

50,50,50,50 8,001 15.607 1.50652e-04 0.9790 -3.324

86,67,52,41 12,096 12.575 1.79340e-04 0.9750 -0.474

45,33,24,18 3,073 15.395 1.80762e-04 0.9748 -1.593

71,71,...,(10 times) 46,506 18.419 1.90110e-04 0.9735 -0.259

Table 7.2: Performance comparison of various neural network architectures for the Full
dataset. The features used for training these neural networks were: ln(χ), ln(δ),
ln(S/Ω), ln(Ω), H12, fd. The last column was a test done using features from
the inversion solution at flow conditions M = 0.7421, AoA = 4.456, Re = 6360970

to predict on the whole computational grid. This test is the best reflection of the
performance as when the neural network is plugged to TAU flow solver it has to
predict on the whole grid.

The final neural network architecture and hyperparameters obtained can be used
directly to make predictions. However, the training was repeated again with the
5000 training epoch and patience of 1000 epochs for early stopping using the vali-
dation loss. The tolerance for early stopping and minimum value for validation loss
is kept the same. The training-test split was set as 80-20, and the training data was
further split into training-validation set in an 80-20 ratio. The statistics of the num-
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ber of data points in each split are reported in Table 7.3. The training is done using
the ’Adam’ optimizer [Kingma and Ba, 2014] with the exponential decay learning
rate obtained from hyperparameter optimization. The loss function for the training
is the MSE of the β prediction. The weights of the neural network are restored to the
epoch with minimum validation loss and not the last epoch. The features used for
the training will be explained in detail along with the results section in this chapter.

Data points Re = 9 million dataset Full dataset
Rows input database 157116 782980

All ”Non-ones” rows 1275 6149

Randomly chosen ”Ones” 255 1229

Total rows training dataset 1530 7378

Training rows (80%) 1224 5902

Test rows (20%) 306 1476

Table 7.3: Details regarding the number of data points in each dataset used in this study.

The trained neural network is then ultimately plugged into the TAU flow solver.
The neural network augmentation of the turbulence model is tested on wind tunnel
data at unseen flow conditions. The following steps are undertaken:

1. For a chosen testing flow case, the pETW data and converged TAU solution
with the baseline SA-neg model is collected.

2. The TAU solution is restarted from the converged state, with the trained neu-
ral network in the loop. This connection was achieved using the DLR-SMARTy
framework’s capability of calling the TAU flow solver calculation in Python
code.

3. The trained neural network predicts the β(x) field based on the input flow
features processed from the restarted TAU solution. This prediction is made
after a particular frequency of TAU flow iterations, initially chosen as 500 flow
iterations.

4. At the chosen iteration frequency, the flow data from TAU is processed into
the selected input features for the neural network. These features are then
standardized (zero mean, a standard deviation of one) using the mean and
standard deviation of data at training time. This is done to maintain unifor-
mity with the generation of the features at training time.

5. On processing the input features, the values at some grid points may be NaNs,
+∞ or −∞. These values are replaced as: a) NaNs −→ 0, b) +∞ −→ x̄ + 3σ,
and c)−∞ −→ x̄ − 3σ, where x̄ is the mean and σ is the standard deviation
of the feature at training time. The replacements for +∞ and −∞ are based
on the extreme ends of the normal distribution curve. This replacement was
deemed better than supplying very large finite values to the neural network,
giving no meaningful predictions.

6. The processed feature data is finally passed to the neural network to predict
the β(x) field at that stage. The new β(x) augments the flow data, starting
from the production term in the transport equation. The flow is then run as
usual to converge to the augmented solution.

7. The steps above are repeated at the chosen iteration frequency of plugging the
neural network until the flow simulation converges. The convergence criteria
are set based on the density residual reducing to 1E− 07 of its original value.
If the simulation does not converge, the iteration frequency of NN predictions
is increased, which was enough for most calculations in this study.



7.2 results for nn-augmented sa-neg model 83

7.2 results for nn-augmented sa-neg model

Using the procedure mentioned in the previous section, the augmented SA-neg
model is tested on unseen flow conditions from the pETW database. This section
provides details behind the choice of features for training the neural networks and
their predictions on seen and unseen flow conditions at training time. This section is
divided into two subsections, with the first one providing results for Re = 9 million
dataset followed by the results for the Full dataset.

(a) χ (b) δ

(c) Ω (d) S/Ω

(e) H12 (f ) fd

Figure 7.3: Contours of the input features on the comuptational grid. These input features
are formulated using the inversion solution flow variables at flow conditions M
= 0.7209, AoA = 5.669, Re = 8787960. The Re = 9 million dataset is generated by
filtering this data according to target variable β(x)
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7.2.1 Re = 9 million dataset results

The Re = 9 million dataset acts as the first database used for the current implemen-
tation. The database serves a dual purpose; acting as a test database for the first
FIML implementation in the current study and providing insight into the amount
of data required to implement a general model. In previous sections of this chapter,
all relevant design decisions regarding the neural networks were mentioned apart
from the features used for training. Equation 6.12 provides the final set of features
after the feature engineering pipeline to be used for this dataset. However, there is
a potential that even fewer features are required to achieve a successful ML model.
Testing all subset combinations is time-consuming, but subsets chosen using intelli-
gent criteria may provide some unexpected gains in terms of data needed or model
performance.

The tools at the author’s disposal to make this choice are the SFS scores, the cor-
relation of input features with the target variable, and the input features on the
computational grid. Additionally, shortlisting the features based on visual correla-
tion of input features with the desired outcome (inversion β(x) solution) can be a
viable strategy based on the idea that this correlation may ease function approxima-
tion. Figure 7.3 shows the contours of input features on the computational grid, and
the expected outcome can be seen in Figure 5.16. Therefore, the following features
are selected to be used for training the neural networks:

• Training 1 - ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd: All features from Equa-
tion 6.12

• Training 2 - ln(χ), ln(δ), ln(S/Ω), ln(Ω): Top 4 features only considering SFS
scores provided in Table 6.3

• Training 3 - ln(χ), ln(δ), H12, fd: Features selected using visual correlation
from contours in Figure 7.3.

• Training 4 - ln(χ), ln(S/Ω), ln(Ω): Top 3 features only considering SFS scores
provided in Table 6.3

• Training 5 - ln(χ), ln(δ), ln(S/Ω): Selected on the basis of SFS score and
correlation. (Table 6.3)

The neural network architecture and hyperparameters for these training were pre-
viously mentioned in Table 7.1. The time for training and their performance on the
segregated test data can be viewed in Table 7.4. Figure 7.4 shows the evolution of
validation MSE loss with the training epochs. The time to train is approximately
the same for all feature subsets, but the performance on test data is affected by the
number of features supplied. Furthermore, there are performance gains for certain
subsets. Training 1 and Training 2 have approximately the same performance on the
test data, with Training 2 working with two fewer features. The validation loss evo-
lution for these NNs is the best among the cases considered with similar minimum
validation loss values.

Features for training
Training time

(min)
Test data results

R2 MSE MAE
ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd 2.139 0.9934 4.77805e-05 3.18223e-03

ln(χ), ln(δ), ln(S/Ω), ln(Ω) 2.060 0.9931 4.96044e-05 2.94032e-03

ln(χ), ln(δ), H12, fd 1.967 0.9856 1.04270e-04 4.91505e-03

ln(χ), ln(S/Ω), ln(Ω) 1.910 0.8216 1.29143e-03 1.08401e-02

ln(χ), ln(δ), ln(S/Ω) 2.042 0.8707 9.36220e-04 1.58657e-02

Table 7.4: Information about NN training with various feature subsets for the Re = 9 million
dataset. MSE = Mean Sqaure Error, MAE = Mean Absolute Error. Test data is the
data split before starting the training, containing 306 data points.
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Figure 7.4: Validation losses for neural network training using different features. The feature
data is processed from the inversion solution at flow conditions M = 0.7209, AoA
= 5.669, Re = 8787960. Each line corresponds to one training, and the minimum
validation MSE loss of the training is reported.

More observations can be drawn from Table 7.4 and Figure 7.4 but the final perfor-
mance of the NN-augmented SA-neg model in TAU solver is the most important in
this study. These trained neural networks were tested first on the training data flow
case to evaluate whether it worked and then unseen flow conditions. The results
of this testing can be viewed in Section D.1. In this chapter, only relevant results
supporting the discussion are displayed, and the reader is encouraged to view the
Section D.1 for a better understanding. Conclusions on which input feature subset
performs the best will be held until after the results are displayed. The testing is
done on the following flow conditions:

• Testing on training data flow cases: To test whether the NN-augmented TAU
works.

1. M = 0.7209, AoA = 5.669, Re = 8787960

• Testing on unknown flow cases: To test the generalisation capability of the
NN-augmented SA-neg model.

1. M = 0.7421, AoA = 4.456, Re = 6360970

2. M = 0.7235, AoA = 5.145, Re = 15323800

3. M = 0.7173, AoA = 2.604, Re = 2680960

All the unknown flow cases for this dataset have an inversion solution available
to compare the results of NN-augmented predictions. The details of the inversion
solution used for comparison are provided in Table 5.2. The frequency of plugging
the NN predicted discrepancy field is 500 flow iterations unless stated otherwise.

Testing on training data flow cases

Figure 7.5 shows the residual evolution of the NN-augmented TAU solution start-
ing from the baseline SA-neg solution. Oscillations can be observed in these plots,
which are caused mainly due to a new discrepancy field being predicted during the
flow calculation at every 500 iterations. The MSE of the augmented model solution
with respect to the pETW results decreases, indicating an improvement caused by
this augmentation.

Figure 7.6 shows that all feature subsets give an improved estimation of the shock
location compared to the baseline turbulence model. The results vary slightly for
the different sets of features. Beyond the shock location, the augmentation does not
affect the predictions. This behaviour is expected as the inversion solutions were
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chosen not to capture the post-shock flow phenomena. In particular, Training 4

and 5 slightly underpredict the pressure at the shock location compared to Training
1,2,3. Figure 7.7 shows the β(x) distribution, focused on the shock foot. The pre-
dicted fields are compared to the inversion solution used for training. From a first
view, it is seen that Training 1 (Figure 7.7b), Training 2 (Figure 7.7c) and Training 3

(Figure 7.7d) identify the production decrease well, compared to inversion solution.

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure 7.5: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network at every 500 iterations. The neural
networks on the plot are trained using feature data from the inversion solution
at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960. The NN-augmented
TAU run is also at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960
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Figure 7.6: Cp distribution for the NN-augmented TAU solutions at flow conditions M =
0.7209, AoA = 5.669, Re = 8787960. ’ref’= reference output from TAU solver, ’calc’
= calculated output from a user-defined function, ’SF’ = similarity factor with
respect to wind tunnel results, ’mseCP’ = normalized loss function value for the
inversion problem. Training 1-5 are indicated in Section 7.2.1.
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(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

(e) ln(χ), ln(S/Ω), ln(Ω) (f ) ln(χ), ln(δ), ln(S/Ω)

Figure 7.7: Results after connecting the trained neural networks with different features to
TAU flow solver. Focus on the shock foot to identify the area of production
decrease. Testing on the flow conditions M = 0.7209, AoA = 5.669, Re = 8787960

The choice of features influences the output field; for instance, Training 3 does
not use the features ln(S/Ω) and ln(Ω), which showed some oscillations in their
input feature contours seen in Figure 7.3. Thus, these oscillations are not seen
in Figure 7.7d, unlike all other cases. Based on these results, it was decided that
Training 4 and Training 5 will not be used to test on unseen flow cases as this feature
combination does not perform as well as the other three. The author believes that
at least four features are needed for the current dataset as the database is too small.
This is reflected in the predictions seen in Figure 7.7e and Figure 7.7f. Furthermore,
the Table 7.4 and Figure 7.4 also suggested that using three features was not good
enough in terms of the MSE on test data. Thus, in the next section, only results for
Training 1,2 and 3 are presented.

Testing on unknown flow cases

The first test flow case is at flow conditions M = 0.7421, AoA = 4.456, Re = 6360970,
where it is expected that shock-induced separation will occur. Here, the Reynolds
number is less than the flow case used for the training data; thus, it is a good test
case to see the extrapolation capability. Figure 7.8 shows that Training 1-3 perform
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very similarly on this test case. Figure 7.9 shows the pressure distribution results,
and the predicted pressure agrees very well with the inversion solution (which was
not used for these neural networks) and identifies the shock location better than
the baseline SA-neg results. Therefore, using the full feature shortlist of six features
is unnecessary for this flow case as even well-chosen four feature subsets provide
equivalent performance.

Figure 7.8: Mean squared error of Cp distribution (wrt pETW data). This residual variation
with the flow solution can be viewed in TAU after augmenting the baseline SA-
neg model with the trained neural network at every 500 iterations. The neural
networks on the plot are trained using feature data from the inversion solution
at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960. The NN-augmented
TAU run is done at flow conditions M = 0.7421, AoA = 4.456, Re = 6360970

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.5

1.0

0.5

0.0

0.5

1.0

C p

Mach:0.7421 / AoA:4.456 / Reynolds:6360970, Cp: Chordwise Distribution

pETW: Airbus, Cz(ref|calc):0.937|0.837
CFD-SA-neg:, Cz(ref|calc):0.907|0.797, SF:0.150
NN-aug Training 1: Cz(ref|calc):0.879|0.768, SF:0.119
NN-aug Training 2: Cz(ref|calc):0.877|0.767, SF:0.120
NN-aug Training 3: Cz(ref|calc):0.879|0.769, SF:0.119
Inv, lambda:2e-11, Cz(ref|calc):0.887|0.777, SF:0.119, mseCp:0.642

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

z/
c

Figure 7.9: Cp distribution for the NN-augmented TAU solutions at flow conditions M =
0.7421, AoA = 4.456, Re = 6360970. ’ref’= reference output from TAU solver, ’calc’
= calculated output from a user-defined function, ’SF’ = similarity factor with
respect to wind tunnel results, ’mseCP’ = normalized loss function value for the
inversion problem. Training 1-3 are indicated in Section 7.2.1.

Viewing the discrepancy fields in Figure 7.10 and Figure 7.11, the basic behaviour
from the inversion solution is captured well by the augmented RANS results. On
the lower surface, there is a slight production decrease near the trailing edge for
all the results, which is incorrect compared to the inversion solution. The choice
of features again influences the output field, with Figure 7.11c having the most
oscillations and an extended production decrease region (green colour) compared
to the inversion result. Figure 7.10b and Figure 7.10c have a sudden discontinuity at
the trailing edge, which can be attributed to usage of the features H12 (Figure 7.3e)
and fd (Figure 7.3f).
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(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure 7.10: Results after connecting the trained neural networks with different features to
TAU flow solver. Testing is done at the flow conditions M = 0.7421, AoA = 4.456,
Re = 6360970

(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure 7.11: Results after connecting the trained neural networks with different features to
TAU flow solver. Focus on the shock foot to identify the area of production
decrease. Testing is done at flow conditions M = 0.7421, AoA = 4.456, Re =
6360970
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The next testing flow case is M = 0.7235, AoA = 5.145, Re = 15323800, where again
the shock-induced separation is expected. This time the extrapolation capability is
evaluated at a higher Reynolds number. For this flow case, Figure 7.12 shows that
Training 3 gives the closest prediction to the pETW data. This agreement shows that
choosing the features using visual correlation is a viable feature selection strategy
for this case. Figure 7.13 shows that the shock location prediction has improved
from the baseline SA-neg result, and the neural network has learnt the intended
behaviour of having a sudden pressure increase at the shock location. The displayed
inversion solution fits more closely to the pETW data, but the current dataset is not
aware of this behaviour. The β(x) fields are not displayed here, but can be seen in
Figure D.11 and Figure D.12.

Figure 7.12: Mean squared error of Cp distribution (wrt pETW data). This residual variation
with the flow solution can be viewed in TAU after augmenting the baseline SA-
neg model with the trained neural network at every 500 iterations. The neural
networks on the plot are trained using feature data from the inversion solution
at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960. The NN-augmented
TAU run is done at flow conditions M = M = 0.7235, AoA = 5.145, Re = 15323800
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Figure 7.13: Cp distribution for the NN-augmented TAU solutions at flow conditions M =
0.7235, AoA = 5.145, Re = 15323800. ’ref’= reference output from TAU solver,
’calc’ = calculated output from a user-defined function, ’SF’ = similarity factor
with respect to wind tunnel results, ’mseCP’ = normalized loss function value
for the inversion problem. Training 1-3 are indicated in Section 7.2.1.

The final testing case for this dataset is at the flow conditions M = 0.7173, AoA =
2.604, Re = 2680960. For this case, the shock is not strong enough to cause a shock-
induced separation on the airfoil. Therefore, this flow case is different from the data
the neural networks have been trained on such a dataset. Figure 7.14 shows that
all the augmented solutions do not have a significant improvement in the resulting
pressure distribution, with Training 3 performing the worst.
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Figure 7.14: Mean squared error of Cp distribution (wrt pETW data). This residual variation
with the flow solution can be viewed in TAU after augmenting the baseline SA-
neg model with the trained neural network at every 500 iterations. The neural
networks on the plot are trained using feature data from the inversion solution
at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960. The NN-augmented
TAU run is done at flow conditions M = 0.7173, AoA = 2.604, Re = 2680960

Figure 7.15 shows the pressure distribution results for the three augmentation
cases. There are very marginal shifts of the NN augmented solutions near the
shock location towards the pETW results. Thus, it may seem that the data from this
flow case is not identified well by the trained neural networks. It is interesting to
see whether the inversion solution for this flow case looks to see whether even the
inversion procedure can reach the pETW results.

Figure 7.16 shows the inversion solution for the current testing flow case at various
Tikhonov regularization values. Until a certain strength of regularization, the inver-
sion solution does not show any movement towards the pETW solution. However,
on decreasing the regularization further, the inversion solution suddenly overfits
the pETW solution. For the current dataset used for neural network training, the
Tikhonov regularization was chosen so that the shock location was correctly iden-
tified and overfitting was avoided. Thus, for the augmented RANS solution, the
author expects the output to resemble more of the highly regularized case. There-
fore, the augmented solution in Figure 7.15 still performs as expected, as it has
been trained on a highly regularized dataset. The fact that the augmented solution
has not gone worse and still resembles the baseline solution is encouraging as the
testing flow phenomena is unseen.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.5

1.0

0.5

0.0

0.5

1.0

C p

Mach:0.7173 / AoA:2.604 / Reynolds:2680960, Cp: Chordwise Distribution

pETW: Airbus, Cz(ref|calc):0.763|0.647
CFD-SA-neg:, Cz(ref|calc):0.781|0.658, SF:0.139
NN-aug Training 1: Cz(ref|calc):0.769|0.646, SF:0.127
NN-aug Training 2: Cz(ref|calc):0.768|0.646, SF:0.126
NN-aug Training 3: Cz(ref|calc):0.778|0.655, SF:0.136

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

z/
c

Figure 7.15: Cp distribution for the NN-augmented TAU solutions at flow conditions M =
0.7173, AoA = 2.604, Re = 2680960. ’ref’= reference output from TAU solver,
’calc’ = calculated output from a user-defined function, ’SF’ = similarity factor
with respect to wind tunnel results, ’mseCP’ = normalized loss function value
for the inversion problem. Training 1-3 are indicated in Section 7.2.1.
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Figure 7.16: Cp distribution for inversion solutions at various λ values at flow conditions M
= 0.7173, AoA = 2.604, Re = 2680960. ’ref’= reference output from TAU solver,
’calc’ = calculated output from a user-defined function, ’SF’ = similarity factor
with respect to wind tunnel results, ’mseCP’ = normalized loss function value
for the inversion problem.

Figure 7.17 and Figure 7.18 show the output discrepancy fields for the augmented
solutions. The comparison is done with a highly regularized inversion solution at
λ = 1E− 12 (pink line in Figure 7.16). The inversion solution itself does not have
the recognizable shock foot production decrease, as seen in the inversion solution
for other test cases. Furthermore, there are no regions of turbulence production
increase on the upper surface of the airfoil, as was seen for flow cases with shock-
induced separation. The augmented solution in Training 1 and Training 2 resemble
the inversion solution in consideration, but Training 3 cannot identify the produc-
tion decrease.

(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure 7.17: Results after connecting the trained neural networks with different features to
TAU flow solver. Testing is done at flow conditions M = 0.7173, AoA = 2.604,
Re = 2680960.
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(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure 7.18: Far field results after connecting the trained neural networks with different fea-
tures to TAU flow solver. Testing is done at flow conditions M = 0.7173, AoA =
2.604, Re = 2680960.

7.2.2 Full dataset results

This section displays the testing results for the Full dataset, which has been gener-
ated using inversion solutions at flow conditions in Table 5.1. The first expectation
using a more expansive dataset is that the augmentations for this case will be more
accurate and generalized. The neural network architecture and hyperparameters
for the training were previously mentioned in Table 7.1. The feature subsets tested
for this dataset are listed below:

• Training 1 - ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12: Using all the features from
Equation 6.13, i.e. the final feature shortlist for this dataset.

• Training 2 - ln(χ), ln(δ), ln(Ω): Selecting the top 3 features in Table 6.5.

• Training 3 - ln(χ), ln(δ), ln(Ω), H12: Adding one of the remaining features to
the top 3 features subset.

• Training 4 - ln(χ), ln(δ), ln(Ω), ln(S/Ω): Adding the other remaining feature
to the top 3 features subset.

• Training 5 - ln(χ), ln(δ), H12: Testing a set of 3 input features based on visual
correlation, avoiding oscillations seen in Figure 7.3c and Figure 7.3d.

Here, it is not easy to select features based on visual correlation as there are multi-
ple flow cases in the dataset, and one would have to look at the contours of all the
features for each flow case. However, given that all the flow cases correspond to
the shock-induced separation phenomena, the decision for this dataset is based on
contours in Figure 7.3. If the dataset were more expansive, incorporating more flow
conditions or different geometries, this kind of decision making would not have
been possible.
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The time for training and their performance on the segregated test data can be
viewed in Table 7.5, and the truth vs prediction scatter plots in Figure 7.20. Fig-
ure 7.19 shows the evolution of validation MSE loss with the training epochs.
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Figure 7.19: Validation losses for neural network training using different features. The fea-
ture data is processed from all the inversion solutions. Each line corresponds to
one training, and the minimum validation MSE loss of the training is reported.

Features for training
Training time

(min)
Test data results

R2 MSE MAE
ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 9.863 0.9795 1.57863e-04 5.11303e-03

ln(χ), ln(δ), ln(Ω) 12.329 0.9635 2.81145e-04 7.35925e-03

ln(χ), ln(δ), ln(Ω), H12 8.685 0.9798 1.56016e-04 6.05569e-03

ln(χ), ln(δ), ln(Ω), ln(S/Ω) 11.725 0.9671 2.53542e-04 7.09951e-03

ln(χ), ln(δ), H12 10.470 0.9303 5.36785e-04 1.03795e-02

Table 7.5: Information about NN training with various feature subsets for the Full dataset.
MSE = Mean Square Error, MAE = Mean Absolute Error. Test data is the data split
before starting the training, containing 1476 data points.
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(a) Training 1
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(b) Training 2
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(c) Training 3
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(d) Training 4
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(e) Training 5

Figure 7.20: Truth vs Predicted values plot for neural network training with different feature
subsets. Training 1-5 are explained in Section 7.2.2
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The time to train is approximately the same for all feature subsets, but the perfor-
mance on test data is affected by the number of features supplied. Training 1 and
3 perform the best on the segregated test data and take the least time to train. The
validation loss evolution for Training 3 gets worse as the training process, but the
weights are restored to the best validation loss state. The minimum validation MSE
for Training 3 is very close to Training 1, using all features. Another important fact
is that Training 2 using only three features also performs comparatively well to the
subsets containing four or five features.

The final performance of the NN-augmented SA-neg model in the TAU solver is
tested first on the training data flow cases to evaluate whether it worked and then
on unseen flow conditions. The results of this testing can be viewed in Section D.2.
Again, this chapter shows only relevant results supporting the discussion. The test-
ing is done on the following flow conditions:

• Testing on training data flow cases: To test whether the NN-augmented TAU
works.

1. M = 0.7421, AoA = 4.456, Re = 6360970

2. M = 0.7209, AoA = 5.669, Re = 8787960

3. M = 0.7235, AoA = 5.145, Re = 15323800

• Testing on unknown flow cases: To test the generalisation capability of the
NN-augmented SA-neg model.

1. M = 0.7206, AoA = 5.737, Re = 6331480

2. M = 0.7421, AoA = 4.420, Re = 8760680

3. M = 0.7173, AoA = 2.604, Re = 2680960

4. M = 0.7397, AoA = 1.403, Re = 13257500

5. M = 0.7110, AoA = 5.145, Re = 15363000

Figure 7.21 shows where the training and testing flow cases lie with respect to
each other. Figure 7.22 shows the flow solution of the unknown flow cases using
the baseline SA-neg model. In Figure 7.22a and Figure 7.22b, the shock is strong
enough to cause separation near the shock foot. However, for the rest, the shock-
induced separation is not seen.
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Figure 7.21: Scatter plot displaying flow conditions for the flow cases used for training the
neural networks with Full dataset, and the testing flow conditions. Testing is
done at unseen flow conditions to assess the extrapolation capability of the
neural network augmentation.
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(a) M = 0.7206, AoA = 5.737, Re = 6331480 (b) M = 0.7421, AoA = 4.420, Re = 8760680

(c) M = 0.7173, AoA = 2.604, Re = 2680960 (d) M = 0.7397, AoA = 1.403, Re = 13257500

(e) M = 0.7110, AoA = 5.145, Re = 15363000

Figure 7.22: Mach number contours of the testing flow cases using the baseline SA-neg
model in TAU solver.

Testing on training data flow cases

NN-augmented RANS is tested for three of the five flow cases whose flow inversion
solution generated the training data. The results for all these cases can be found in
Section D.2.1. Here, the discussion will follow using the results from M = 0.7209,
AoA = 5.669, Re = 8787960 as all three cases showed similar behaviour in the testing
results.

Figure 7.23 displays the residuals for the neural network augmentation for all the
chosen feature subsets. Initially, the iteration frequency at which the discrepancy
field is predicted was kept the same as before, i.e. 500. However, the simulation
would not converge to the desired density residual criteria for some feature subsets
and keep oscillating. To fix this, the augmented solution was rerun at an iteration
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frequency of 2000 flow iterations for the neural network prediction. This change im-
proved the convergence characteristics for most NN-augmented flow calculations,
an example of which can be seen in Figure 7.24. However, for Training 5 with
the features ln(χ), ln(δ), H12 convergence was still not achieved, but increase the
frequency did provide some improvement which can be seen in Figure 7.25.

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure 7.23: Residual variation with the flow solution in TAU after augmenting the base-
line SA-neg model with the trained neural network. Testing is done at flow
conditions M = 0.7209, AoA = 5.669, Re = 8787960.

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure 7.24: Residual comparison on changing the frequency of plugging the trained neural
network. Features used: ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12. Testing is done at
flow conditions M = 0.7209, AoA = 5.669, Re = 8787960.
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(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure 7.25: Residual comparison on changing the frequency of plugging the trained neural
network. Features used: ln(χ), ln(δ), H12. Testing is done at flow conditions M
= 0.7209, AoA = 5.669, Re = 8787960.

All the feature subsets are able to identify the shock location well, as seen in
Figure 7.26. Predictions using the selected feature subsets vary slightly from each
other (Figure 7.27). The predicted β(x) fields can be seen in Figure 7.28 and Fig-
ure 7.29. In Figure 7.28e, the magnitude of the oscillations in β(x) values (green
dots) is higher than other cases. This spurious behaviour in the discrepancy field
prediction may be one of the reasons that the simulation does not converge at a
prediction iteration frequency of 500 iterations. For Training 5 in Figure 7.28f, the
shock foot predictions do not resemble the inversion solution as well as the other
cases.
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Figure 7.26: Cp distribution for the NN-augmented TAU solutions. Testing is done at flow
conditions M = 0.7209, AoA = 5.669, Re = 8787960. Training 1-5 are indicated in
Section 7.2.2.
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(a) Difference with Baseline solution
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(b) Difference with pETW result

Figure 7.27: ∆Cp distribution for the NN-augmented TAU solution. Testing is done at flow
conditions M = 0.7209, AoA = 5.669, Re = 8787960. Training 1-5 are indicated in
Section 7.2.2.

(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure 7.28: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver. Testing is done at flow conditions M = 0.7209, AoA
= 5.669, Re = 8787960.
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(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure 7.29: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver. Testing is done at flow conditions M = 0.7209, AoA
= 5.669, Re = 8787960.

Another interesting behaviour is seen in Figure 7.29c, where the β(x) prediction
for Training 2 only changes values close to the airfoil, and β = 1 everywhere else,
much like the inversion result in Figure 7.29a. This prediction is the first case where
there are no predictions in the flow behind the trailing edge, as observed in all other
subfigures of Figure 7.29. These unwanted trailing edge predictions do not affect
the pressure coefficient distribution on the surface of the airfoil, but it is an added
advantage if it is possible to avoid them, to match closely to the inversion solution.

Testing on unknown flow cases

Neural networks trained on the Full dataset are now tested on the unknown flow
cases. The results for all the cases can be viewed in Section D.2.2. Looking at the
results of the Full dataset on the training flow case tests, it is decided that iteration
frequency for plugging the neural network to TAU is increased to 2000 for all the
cases in this section. Nothing further is done if the augmented calculation does not
converge; however, a study about how this frequency affects the simulation would
have been interesting. Inversion solutions are not available for all the test cases in
this section; thus, the β(x) results can not be compared to a reference field.
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The first test case is for the flow conditions M = 0.7206, AoA = 5.737, Re = 6331480,
where a shock-induced separation is expected to occur. Only Training 1 and Train-
ing 3 converge, as seen in Figure 7.30b. This fact is also confirmed in Figure 7.33b
and Figure 7.33d, where for Training 2 and Training 4, the discrepancy field ap-
pears to be immature due to lack of convergence of the solution. The MSE error for
pETW data is still high for all the feature subsets (Figure 7.30a), which may suggest
that all the augmentations do not work for this flow case. However, the pressure
distribution in Figure 7.31 suggests that there is an improvement in identifying the
shock location for all the feature subsets from the baseline SA-neg result.

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure 7.30: Residual variation with the flow solution in TAU after augmenting the base-
line SA-neg model with the trained neural network after every 2000 iterations.
Testing is done at flow conditions M = 0.7206, AoA = 5.737, Re = 6331480.
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Figure 7.31: Cp distribution for the NN-augmented TAU solutions. Testing is done at flow
conditions M = 0.7206, AoA = 5.737, Re = 6331480.
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(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure 7.32: Far field results after connecting the trained neural networks with different fea-
tures to TAU flow solver. Testing is done at flow conditions M = 0.7206, AoA =
5.737, Re = 6331480.

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure 7.33: Zoom in results after connecting the trained neural networks with different
features to TAU flow solver. Testing is done at flow conditions M = 0.7206, AoA
= 5.737, Re = 6331480.
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The second test case is M = 0.7421, AoA = 4.420, Re = 8760680, where again
shock-induced separation is expected to occur. The NN-augmented solution only
converges for Training 1 (Figure 7.34b). The shock location identification is better for
all the augmented solutions compared to the baseline results, as seen in Figure 7.35.
The pressure distribution in the flow after the shock location is not affected at all
for the augmented results. In the discrepancy fields displayed in Figure 7.36, only
the field for Training 1 shows proper maturity in the solution. Additionally, the
resultant β(x) also looks similar to what has been observed until now for shock-
induced separation.

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure 7.34: Residual variation with the flow solution in TAU after augmenting the base-
line SA-neg model with the trained neural network after every 2000 iterations.
Testing is done at flow conditions M = 0.7421, AoA = 4.420, Re = 8760680.
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Figure 7.35: Cp distribution for the NN-augmented TAU solutions. Testing is done at flow
conditions M = 0.7421, AoA = 4.420, Re = 8760680.
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(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure 7.36: Zoom in results after connecting the trained neural networks with different
features to TAU flow solver. Testing is done at flow conditions M = 0.7421, AoA
= 4.420, Re = 8760680.

For the remaining three test cases, it was seen in Figure 7.22 that the shock is not
strong enough to cause a separation on the airfoil. Thus, following from the Re =
9 million dataset results, one would expect that the NN-augmented results will not
be too different from the baseline results. This can be confirmed from Figure 7.37,
Figure 7.39 and Figure 7.40. There were no problems in the convergence of the
augmented solutions for these flow cases, which can be confirmed by viewing the
full results in Section D.2.2.
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Figure 7.37: Cp distribution for the NN-augmented TAU solutions. Testing is done at flow
conditions M = 0.7173, AoA = 2.604, Re = 2680960.
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(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure 7.38: Results after connecting the trained neural networks with different features to
TAU flow solver. Testing is done at flow conditions M = 0.7173, AoA = 2.604,
Re = 2680960.

Inversion results are available for the flow case M = 0.7173, AoA = 2.604, Re =
2680960, which is the only unknown flow case tested for both the Re = 9 million
dataset and Full dataset. Figure 7.38 shows that the β(x) fields for the augmented
solutions matches with the inversion solution (strongly regularized) for this case.
The difference between predictions between the Re = 9 million dataset (Figure 7.17)
and Full dataset (Figure 7.38) is the production increase seen in the latter. However,
this has no implications on the resulting pressure distribution. The β(x) fields for
the flow cases M = 0.7397, AoA = 1.403, Re = 13257500 and M = 0.7110, AoA =
5.145, Re = 15363000 also look similar because the NN-augmentation has no effect
for these flow cases. The results for the remaining flow cases can be viewed in
Section D.2.2.
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Figure 7.39: Cp distribution for the NN-augmented TAU solutions. Testing is done at flow
conditions M = 0.7397, AoA = 1.403, Re = 13257500.
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Figure 7.40: Cp distribution for the NN-augmented TAU solutions. Testing is done at flow
conditions M = 0.7110, AoA = 5.145, Re = 15363000.

7.3 reflection & recommendations
This chapter explained how the Machine Learning (ML) part was implemented in
the current FIML implementation. Two datasets were used in the study, one gen-
erated using an inversion solution only from one flow case (Re = 9 million dataset)
and the other using inversion solutions from five (Full dataset). All the flow cases
displayed the shock-induced separation phenomena; thus, the eventual ML model
training is expected to perform well on such a case. Neural networks were the ML
algorithm of choice, whose architecture and hyperparameters were selected using a
surrogate-based hyperparameter optimization routine. The results of choosing the
architecture using this approach may not be the best as it is influenced by the user’s
choice of the input range of the design variables, but it is definitely better than a
naive approach of choosing the neural network hyperparameters by trial and error.

The selected neural networks were then trained using various combinations of in-
put features from the final feature shortlist after the feature engineering pipeline
in the hope of further reducing the number of required features. These trained
neural networks were then plugged with the TAU flow solver to augment the SA-
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neg turbulence model, with the calculation starting from the converged baseline
solution. The NN-augmented was tested first on unseen flow conditions to test the
extrapolation capability of the augmentation. The primary observation was that
the NN-augmented results in a corrected shock location even for an unknown flow
condition causing a shock wave strong enough to cause shock-induced separation.
This observation is consistent with the data provided to the neural networks, which
were selected from inversion solutions regularized just enough to capture the shock
location well and not overfit the post-shock, uncertain, turbulent flow.

This was observed for neural networks trained on both datasets, therefore having
more data in the Full dataset was not particularly beneficial to correctly identify the
shock-induced separation phenomena. It was observed that for the Re = 9 million
dataset, at least four features are required to have a good β field prediction which
converges well when connected to the TAU solver, but for the Full dataset, three in-
put features were just enough. Choosing the features based on a visual correlation
with the output was also a viable strategy, which could boost both the performance
and flow solution output of the NN-augmented RANS run. Additionally, visual
elements of the chosen input features could be observed in the resulting β fields.

For the flow cases not expected to have a shock-induced separation, it was seen that
the NN-augmentation had little to no effect on the baseline results. The hope was
that the method of choosing flow features detailed in Chapter 6 would overcome
the fact that data for other flow phenomena is not provided to the neural network,
but that was not the case. However, it is encouraging that the NN-augmentation
did not make the results worse starting from the baseline solution.

During the current ML implementation, there were multiple avenues of further
research not pursued due to limited time at the author’s end. These have been
provided as recommendations below to aid further researchers delving into this
topic:

• Incorporation of more flow cases from the pETW database in the training
data: This suggestion follows from the expectation that if the neural network
observes data from different flow phenomena, like shock waves with no sepa-
ration on the airfoil, it will be able to identify the same phenomena at a differ-
ent unknown flow condition. This addition will also lead to the development
of a more generalized model.

• Testing other data compositions and its influence on results: The current
training data was generated by selecting all ”Non-ones” or points with β /∈
(0.98, 1.02) and then ”Ones”, i.e. points with β ∈ [0.98, 1.02] were randomly
chosen, with the number of ”Ones” was chosen to be 20% of ”Non-ones”. The
range (0.98, 1.02) and percentage 20% were selected with little knowledge of
how other compositions would perform due to less time to test them exten-
sively, and a detailed analysis on this would provide valuable insight.

• Testing on cases outside the database: Tests should have been done on flow
cases from other high-fidelity data sources to verify whether the augmented
solution is general enough to be applied out of the box. This may include
testing other airfoil profiles with similar flow conditions or randomly chosen
flow conditions outside the database.

• Fine-tuning the neural network training process: Some choices while train-
ing the neural network were made on an informed opinion, but an evidence
approach may provide better validation. This includes the choice of the loss
function (Mean Square Error), activation function (’ReLU’), optimizer (Adam)
and many more.





8 C O N C L U S I O N S & F U T U R E W O R K

8.1 conclusion

The conclusion for this project is best done by answering the research questions
formulated at the start of this document.

“How can the Field Inversion and Machine Learning (FIML) approach be applied to augment
the negative Spalart-Allmaras (SA-neg) turbulence model for shock-induced separation on
a 2D transonic airfoil?”

This work employed a data-driven approach based on the Field Inversion and
Machine Learning (FIML) framework explained in Section 3.3, implemented in
DLR’s software ecosystem [Jäckel, 2020] for the negative Spalart-Allmaras turbu-
lence model. A database generated by Airbus in the pilot facility of the ETW
(pETW) for the RAE2822 airfoil was exploited to perform this data-driven approach.
Cases in the database were identified with significant deviations between measured
(wind tunnel) and computed (CFD results) pressure distribution, which were used
to perform the Field Inversion procedure. The Field Inversion procedure uses a
gradient-based optimization approach, the gradients for which are obtained using
a discrete adjoint approach in TAU [Dwight and Brezillon, 2006]. The solution from
this procedure was processed using a feature selection and engineering process ex-
clusive to this work to generate the training data for the Machine Learning part of
the FIML procedure. This work’s focus was mainly on the applicability of the FIML
approach to shock-induced flow separation, and a general augmented RANS turbu-
lence model could not be implemented in the limited period for the MSc thesis.

The sub-questions have been answered below:

• Is the experimental aerodynamic database of high-fidelity wind-tunnel measurements
dataset relevant and representative of the flow cases on which the augmented turbu-
lence model will be applied?

The pETW data provided by Airbus for the RAE 2822 airfoil is an extensive
database covering a large range of Mach number, Reynolds number and an-
gles of attack, making it the most extensive database for the transonic flow
around RAE2822 airfoil, making it a relevant data source that can be used for
this study. The database is representative of this study’s goal as flow cases
with shock-induced separation, the focus of the study could be easily found
across a range of Reynolds number values. This database is a significant up-
grade over the legacy data by AGARD [Cook et al., 1979] which has been
used for multiple aerodynamic numerical code validation activities. Further-
more, Airbus provided a CFD database, which aided in formulating a viable
test case selection strategy for the current FIML implementation. The assump-
tions behind the experiment for the pETW database and the limitations of
the CFD database were kept in mind while formulating this strategy. The
only qualm with this database could be its lack of maturity in applications for
data-driven turbulence modelling approaches, as this is the first study in the
author’s knowledge that uses this database.
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• Does a unique discrepancy field exists which can be inferred using a deterministic
inversion approach? Does this unique field correspond to the global minimum of the
discrepancy between the baseline model and high-fidelity data? Is it possible to reach
this solution with the current tools and computational resources at hand?

The choice of deterministic inversion approach used for this study was pri-
marily based on the ease of implementation in the DLR’s software ecosystem.
A gradient-based optimizer employing the Steepest Gradient approach was
implemented to solve the Field Inversion problem. For a given restart solu-
tion and Tikhonov regularization value, a unique discrepancy field solution
could be reached for the chosen convergence criteria. However, the global min-
imum solution was not reached. The L-curve approach [Hansen and O’Leary,
1993] failed in the current implementation, and other remedies like restarting
from a random solution either failed or were not given enough time to ma-
ture. Furthermore, it was not even sure that the global minimum should be
reached as it may have meant that the inversion solution fits too closely to the
experimental results, hence reducing its generalization ability for an unseen
flow case during the Machine Learning phase.

The final inversion solution chosen for the analysis was based on reasoning
around physical phenomena related to the selected flow cases. The regulariza-
tion values were chosen so that the shock location improvement is captured
well, but it does not overfit the flow trailing the shock location. This is the
best that could be implemented with the current tools and computational
resources at hand. A gradient-free method like the Ensemble Kalman filter
(EnKF) could have pointed us to the global minimum, but it was simply not
implemented due to the time needed.

• Will machine learning algorithms be able to find the patterns in the discrepancies
obtained from inversion solutions? Are neural networks the best algorithm for the
learning process in this case? What is the best architecture/ set of hyper-parameters
for the neural networks to be used for learning?

From a literature survey of various FIML implementations, it was seen that
machine learning algorithms are more than able to generalize the discrepancy
from inversion solutions. The successful testing of flow cases with shock-
induced separation in this study is a testament that the intended patterns in
the training data can be generalized to unseen flow cases. However, the train-
ing data needs to be carefully prepared from the inversion solution, keeping
in mind the intended patterns to be taught to the ML algorithm and the needs
of the ML algorithm itself.

Neural networks are the best choice for the ML algorithm in terms of its ca-
pability to learn complex non-linear function approximations. Additionally,
the ease of implementation with currently available Python libraries and its
integration with DLR software make it a feasible option for the current study.
A possible con is the ”black-box” nature of how this approximation is learnt,
which would not be the case if this function approximation could be presented
as a polynomial using a candidate of library functions as done by Schmelzer
et al. [2020]. The best set of hyper-parameters for the neural networks is cho-
sen using the surrogate model based hyperparameter optimization routine
implemented by [Sabater et al., 2021] in the DLR-SMARTy [Görtz et al., 2013]
framework. Thus, an efficient, systematic strategy was used to round down
to the final architecture.

• What is the appropriate set of features required for the learning process? How many
features are necessary? Should the features specific to the test case (shock-induced
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separation) be introduced in the learning process?

An initial shortlist of 13 features was formed based on an extensive data-
driven RANS turbulence modelling and FIML literature survey. Special care
was taken while choosing these features; the features are motivated by phys-
ical phenomena (shock-induced separation), adhere to turbulence modelling
requirements, and are amenable to neural networks by appropriate feature
preprocessing procedures. A feature selection and- engineering process has
been detailed in this work to determine the appropriate set of features and the
number of features required. This process employs various techniques such
as log transformations and scaling operations, Spearman correlation and Se-
quential Feature Selection (SFS) algorithm [Raschka and Mirjalili, 2017] with
bidirectional elimination. It gives an output of a final list of features for ma-
chine learning for a given dataset. Furthermore, attempts to reduce this final
list were made by testing various subsets of this final list of features to verify
the predictive ability.

• Are the results of this learning process interpretable? Is there a causal relationship
between the data, the discrepancy, and the corresponding prediction?

The training data provided to the neural network learning originates from the
inversion solution for flow cases where shock-induced separation phenomena
occur. The discrepancy field results for the NN-augmented RANS model seen
in Chapter 7 generally show the following behaviour for shock-induced sep-
aration: a turbulence production decrease near the shock foot, followed by a
separated turbulence production increase in the downstream flow until the
trailing edge (for instance in Figure 7.11). This behaviour of the discrepancy
fields is in line with the expectations of the physical phenomena, making the
learning process interpretable. This discrepancy field results in an upstream
shift of the shock location, generally agreeing with the pETW data, in the re-
sulting pressure distribution. Thus, there is a causal relationship between the
training data, the discrepancy fields, and the corresponding prediction. The
predictions do not affect the flow after the shock, which was intended during
the inversion procedure. Furthermore, the NN-augmented results for a flow
case not displaying shock-induced separation do not vary significantly from
the baseline RANS model results, which implies that the NN-augmentation
of the model will only respond to flow phenomena it has seen; which points
to a causal relationship.

• Does this ML-augmentation provide better results than the baseline model? Can it
predict test cases with design points unrelated to those in the training database?

The current ML-augmentation provides better results than the baseline model
by correctly identifying the shock location in a shock-induced separation case.
It is confirmed by tests in Chapter 7 that the ML-augmentation works for un-
seen flow conditions at training time as long as the shock-induced separation
is expected to happen. For other flow cases, there is little to no improvement
to the baseline model. Incorporating more training data with different flow
phenomena may remedy this problem, leading to a more general augmented
RANS turbulence model.

8.2 scope for future work
The goal of any data-driven augmentation of a turbulence model is to be a general
model augmentation applicable to any flow case. To improve the current FIML
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implementation to work towards the said goal, the following suggestions can be
implemented at various steps of the project:

• FIML approach:

– Using more tightly coupled approaches: The current FIML approach is
the classic FIML approach given by Parish and Duraisamy [2016] which
does ensure model-consistent learning as discussed in Chapter 3. How-
ever, more tightly coupled approaches like Embedded FIML and Direct
FIML [Holland, 2019], and Learning and Inference assisted by Feature-
space Engineering (LIFE) [Srivastava and Duraisamy, 2021] can be used
to move towards a more general and robust model.

– Zonal prediction approaches: An ML algorithm that identifies the zones
of turbulence production changes as a classification problem and then
predicts the correct values of discrepancy as a regression problem is an
idea that can be implemented. A similar idea was implemented by Matai
and Durbin [2019], where the discrepancy field was classified into vari-
ous clusters, and then a decision tree algorithm chose the input features
to be used in those clusters.

• Field Inversion:

– Work towards incorporating transition location in the optimization prob-
lem for field inversion by trying the recommendations provided in Sec-
tion 5.4.

– Carefully choosing the restart β field for the field inversion procedure by
following the suggestions in Section 5.4.

– Using a gradient-based optimizer other than SGD, which can escape the
local minima better. Alternatively, a gradient-free optimizer can be used
to be more assured of reaching the global minimum.

• Feature Engineering:

– Adding more features to the initial shortlist: The initial feature short-
list could be expanded by using features based on streamline curvature
[Wang et al., 2017; Volpiani et al., 2021], wall-distance based Reynolds
number [Ling and Templeton, 2015; Wang et al., 2017] and many more.

– Testing other feature transformations: Feature transformations employed
in literature (for instance, by Ling and Templeton [2015]), or using other
mathematical operators (for instance, ln(1 + xi), where xi is the feature)
can be checked whether they provide any notable gains compared to the
current strategy.

– Giving more consideration from a commercial solver standpoint: The
DLR TAU flow solver makes available input features that are not gener-
ally available in a commercial flow solver. Additionally, the current study
uses some wall-distance based features which would not work for an un-
structured grid solver as they are non-local. Thus, consider these factors
for the trained ML model to be used out of the box in any solver.

• Machine Learning

– Inclusion of more generalized training and test cases: More flow cases
can be added to the training data to head towards a general model, and
testing on a range of test cases with varying geometry, flow cases can
validate the generalization capability. More details are provided in Sec-
tion 7.3.

– Other ML algorithms: Many ML algorithms have been used in FIML liter-
ature with varying degree of success in terms of ease of implementation
and accuracy. These include Random Forests, boosting algorithm like
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AdaBoost, Gaussian processes, etc. and a comparative study of their per-
formance with the current neural network implementation would have
added value to the work.

– Use of explainable function approximation: The ML algorithm could be
replaced by a more explainable function. Examples of this are: sparse
symbolic regression [Schmelzer et al., 2020], smooth RBF function ap-
proximations [Jäckel, 2022].

– Extensive treatment of invariance: The current study uses scalar features
to work around the invariance of the resulting data-driven turbulence
model. However, other approaches like tensor basis neural networks pro-
posed by Ling et al. [2016] or tensor basis random forests implemented
by Kaandorp and Dwight [2018] could have been employed
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A A P P E N D I X : T H E O R E T I C A L
B A C KG R O U N D

a.1 details: spalarat-allmaras model and nega-
tive sa variant

Original model by [Spalart and Allmaras, 1992]. Trip term added in 1994 version.
The description is given in the website https://turbmodels.larc.nasa.gov/spalart.html

or here. The description about the website is given in the paper by Rumsey et al..

The Reynolds stresses are defined using the Boussinesq eddy viscosity assumption,
and the eddy viscosity (νt) is defined in terms of a SA working variable ν̃ in the
following manner:

νt =
µt

ρ
= ν̃ fv1, fv1 =

χ3

χ3 + c3
v1

, χ ≡ ν̃

ν
, (A.1)

where ρ is the density, ν = µ
ρ is the kinematic viscosity. The SA working variable ν̃

follows the transport equation:

Dν̃

Dt
= P− D + T +

1
σ

[
∇.((ν + ν̃)∇ν̃) + cb2∇(ν̃)2

]
, (A.2)

where P, D and T are the production, destruction and trip terms respectively. These
are defined as:

P = cb1(1− ft2)Ω̃ν̃, D =
(

cw1 fw −
cb1

κ2 ft2

) [ ν̃

d

]2
, T = ft1(∆u)2, (A.3)

where Ω̃ is the modified vorticity. This is derived from Ω =
√

2ΩijΩij i.e. the

magnitude of vorticity and d being the distance of the closest wall point (referred
to as wall distance) in the following mannner:

Ω̃ = Ω +
ν̃

κ2d2 fv2, fv2 = 1− χ

1 + χ fv1
. (A.4)

The wall function fw is defined as:

fw = g
1 + c6

w3

g6 + c6
w3

, g = r + cw2(r6 − r), r = min
(

ν̃

κ2d2Ω̃
, rlim

)
. (A.5)

Trip and laminar suppression terms are

ft1 = ct1gt exp
(
−ct2

ωt

∆u2

[
d2 + g2

t d2
t

])
, ft2 = ct3 exp

(
−ct4χ2

)
with gt = min (0.1, ∆u/ωt∆x), where dt is distance to the trip point, ωt is the

vorticity at the trip, ∆u is the difference in velocity relative the trip point, and ∆x is
streamwise grid spacing at the trip. The constants are cb1 = 0.1355, σ = 2/3, cb2 =
0.622, κ = 0.41, cw1 = cb1/κ2 + (1 + cb2) /σ, cw2 = 0.3, cw3 = 2, cv1 = 7.1, ct1 =
1, ct2 = 2, ct3 = 1.2, ct4 = 0.5, and r1lim = 10. Turbulent heat transfer obeys a
turbulent Prandtl number equal to 0.9. Boundary conditions for ν̃ are

no-slip wall: ν̃ = 0 symmetry plane:
∂ν̃

∂n
= 0

121

https://turbmodels.larc.nasa.gov/spalart.html
https://turbmodels.larc.nasa.gov/spalart.html


122 appendix: theoretical background

a.1.1 Preventing Negative Values of Modified Vorticity Ω̃

In physically relevant situations, the modified vorticity Ω̃ should always be positive
with a value that never falls below 0.3Ω, where Ω is the vorticity magnitude. How-
ever, discretely this is not always the case. It is possible for Ω̃ to become zero or
negative due to the fact that fv2 is itself negative over a range of χ. Negative Ω̃ in
turn disrupts other SA correlation functions. We present a modified form of Ω̃ that
is identical to the original for Ω̃ > 0.3Ω, but remains positive for all nonzero Ω and
is C1 continuous:

Ω̄ = ν̃
κ2d2 fv2

Ω̃ =

Ω + Ω̄ : Ω̄ ≥ −cv2Ω

Ω +
Ω(c2

v2Ω+cv3Ω̄)
(cv3−2cv2)Ω−Ω̄ : Ω̄ < −cv2Ω

with cv2 = 0.7 and cv3 = 0.9. The modified function is plotted in Fig. 1. The
constant cv2 controls the patch point; value and derivative with respect to Ω are
matched at Ω = (1− cv2)Ω. The constant cv3 controls the asymptote,

Ω̃→ (1− cv3)Ω as Ω̄/Ω→ −∞

a.1.2 Negative model

We formulate a continuation of SA into the realm of negative ν̃ solutions to deal with
situations of undershoots. Although an analytic continuation of SA, its primary
purpose is to address issues with underresolved grids and non-physical transient
states in discrete settings. The negative SA model is proposed with the following
properties:

- original (positive) SA is unchanged for ν̃ ≥ 0
- negative ν̃ produces zero eddy viscosity
- functions in the PDE are C1 continuous with respect to ν̃ at ν̃ = 0
- negative SA is energy stable
- the analytic solution is non-negative given non-negative boundary conditions
Consider a negative SA model of the form,

Dν̃

Dt
= Pn − Dn +

1
σ
∇ · [(ν + ν̃ fn)∇ν̃] +

cb2
σ
(∇ν̃)2

where Pn is production, Dn is wall destruction and fn(χ) is a modification to the
diffusion coefficient. For C1 continuity at ν̃ = 0, we require

Pn|0 = Dn|0 = 0,
∂Pn

∂ν̃

∣∣∣∣
0
= cb1 (1− ct3)Ω,

∂Dn

∂ν̃

∣∣∣∣
0
= 0

fn(0) = 1,
∂ fn

∂χ

∣∣∣∣
0
= 0

When ν̃ is negative, the eddy viscosity is set to zero, and ν̃ itself becomes a passive
scalar.

The usual requirements for energy stability then give the constraints,

Pn − Dn ≥ 0, 1 + χ ( fn − cb2) ≥ 0

The resulting steady PDE is,

Pn − Dn +
1
σ
(ν + ν̃ fn)∇2ν̃ = 0

If the diffusion coefficient mimics the positive model behavior for large |ν̃|, then
fn should asymptote to −1. Maximizing the region over which the diffusion coeffi-
cient turns from ν + ν̃ for positive to ν + |ν̃| for large negative, we arrive at,
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fn =
cn1 + χ3

cn1 − χ3

with cn1 = 16. The diffusion coefficient ν + ν̃ fn is everywhere positive as shown
in Fig. 2. A negative diffusion coefficient first occurs with cn1 ≈ 16.46, which limits
the magnitude of this parameter.

Although Eq. 20 places a constraint on the combined production and destruc-
tion terms, we define individually production to be positive and destruction to be
negative,

Pn = cb1 (1− ct3)Ων̃, Dn = −cw1

[
ν̃

d

]2

Note that Pn is defined in terms of vorticity Ω rather than modified vorticity Ω̃
as in the positive model. Also note the sign change on Dn compared to the positive
model.
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b.1 field inversion results for the selected cases

Reynolds
number

Mach
number

Angle of attack
(degrees)

Chosen
λ

Initial L Relative
regularization

6,360,970 0.74208 4.4563 2.00E-11 1.14E-08 1.75E-03

8,787,960 0.72089 5.6690 1.00E-11 8.41E-09 1.19E-03

10,939,600 0.72401 5.6541 1.00E-10 7.95E-09 1.26E-02

13,181,400 0.72418 5.6504 1.00E-11 4.42E-09 2.26E-03

15,323,800 0.72355 5.1450 1.00E-10 7.85E-09 1.27E-02

Table B.1: Summary: Selected inversion flow cases used for Machine Learning data and their
selected Tikhonov regularization values
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Figure B.1: Cp distribution for the selected inversion solution at flow conditions reported in
Table B.1. The flow conditions are reported on the top of the subfigures. The last
sensor on the lower surface of the airfoil in the pETW results (Grey line) is faulty,
and results were not used for calculation of ’Cz’ and ’mseCP’.
Red line: Baseline solution with SA-neg, Blue line: Baseline solution with 2-eqn
SST model, Grey line: pETW wind tunnel result, Green line: Inversion solution.
’Cz’: Lift coefficient, ’ref’= reference output from TAU solver, ’calc’ = calculated
output from a user-defined function, ’SF’ = similarity factor with respect to wind
tunnel results (pETW), ’mseCP’ = normalized loss function value for the inver-
sion problem.
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(a) Full field: Re = 6,360,970 (b) Shock foot: Re = 6,360,970

(c) Full field: Re = 8,787,960 (d) Shock foot: Re = 8,787,960

(e) Full field: Re = 10,939,600 (f ) Shock foot: Re = 10,939,600

(g) Full field: Re = 13,181,400 (h) Shock foot: Re = 13,181,400

(i) Full field: Re = 15,323,800 (j) Shock foot: Re = 15,323,800

Figure B.2: β(x) field for the selected inversion solutions at flow conditions provided in
Table B.1. Only Reynolds number has been reported in the subfigure captions.
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(a) Baseline: Re = 6,360,970 (b) Inversion: Re = 6,360,970

(c) Baseline: Re = 8,787,960 (d) Inversion: Re = 8,787,960

(e) Baseline: Re = 10,939,600 (f ) Inversion: Re = 10,939,600

(g) Baseline: Re = 13,181,400 (h) Inversion: Re = 13,181,400

(i) Baseline: Re = 15,323,800 (j) Inversion: Re = 15,323,800

Figure B.3: Comparsion of the Mach number contours for the baseline vs. inversion solu-
tion at flow conditions reported in Table B.1. Only Reynolds number has been
reported in the subfigure captions.





C A P P E N D I X : F E AT U R E E N G I N E E R I N G

0
10

00
0

20
00

0
30

00
0

0

10
00

00

20
00

00

30
00

00

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1e
15

0

10
00

00

20
00

00

30
00

00
P/

D

0
1

2
3

1e
8

0

10
00

00

20
00

00

30
00

00
S/

0
20

00
40

00
60

00
0

10
00

00

20
00

00

30
00

00

0
10

0
20

0
30

0
0

10
00

00

20
00

00

30
00

00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

10
00

00

20
00

00

f d

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0

10
00

00

20
00

00

30
00

00
f w

4
2

0
2

1e
7

0

10
00

00

20
00

00

30
00

00
RC

50
00

0
0

50
00

0
0

10
00

00

20
00

00

30
00

00
p s

+

1
2

3
4

0

25
00

0

50
00

0

75
00

0

10
00

00

H
12

0
10

00
20

00
0

10
00

00

20
00

00

30
00

00
k Q

CR

0
2

4
6 1e

6

0

10
00

00

20
00

00

30
00

00
/

re
f

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25 1e

7

0

10
00

00

20
00

00

30
00

00

0.
6

0.
8

1.
0

0

10
00

00

20
00

00

30
00

00

Figure C.1: Histogram for all features without any transformations for the feature data from
the inversion solution at flow conditions M = 0.7209, AoA = 5.669, Re = 8787960.
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Figure C.2: Histogram of the remaining input features after applying the ln(qβ) transfor-
mation for the feature data from the inversion solution at flow conditions M =
0.7209, AoA = 5.669, Re = 8787960
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Figure C.3: Histogram for the input features in the training data generated after applying
the filtering protocol for all β /∈ [0.98, 1.02] from the inversion solution at flow
conditions M = 0.7209, AoA = 5.669, Re = 8787960.
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Figure C.4: Histogram for all features without any transformations for the feature data from
all the inversion solutions at flow conditions in Table 5.1
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Figure C.5: Histogram of the remaining input features after applying the ln(qβ) transforma-
tion for the feature data from all the inversion solutions at flow conditions in
Table 5.1
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Figure C.6: Histogram for the input features in the training data generated after applying the
filtering protocol for all β /∈ [0.98, 1.02] from all the inversion solutions at flow
conditions in Table 5.1
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The neural networks used in this study were trained on flow features generated
from two datasets:

• Re = 9 million dataset: Training data generated from inversion solution at M
= 0.7209, AoA = 5.669, Re = 8787960.

• Full dataset: Training data generated from all inversion solutions detailed in
Table B.1 collated in one database.

The following sections display the results of connecting the neural networks trained
on these datasets to the TAU flow solver.

d.1 training on re = 9 million dataset

d.1.1 Testing on training data flow cases

M = 0.7209, AoA = 5.669, Re = 8787960

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.1: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network at every 500 iterations.
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Figure D.2: Cp distribution for the NN-augmented TAU solutions. Training 1-5 are indicated
in Section 7.2.1.

(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

(e) ln(χ), ln(S/Ω), ln(Ω) (f ) ln(χ), ln(δ), ln(S/Ω)

Figure D.3: Results after connecting the trained neural networks with different features to
TAU flow solver.
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(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

(e) ln(χ), ln(S/Ω), ln(Ω) (f ) ln(χ), ln(δ), ln(S/Ω)

Figure D.4: Results near shock foot after connecting the trained neural networks with differ-
ent features to TAU flow solver.
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d.1.2 Testing on unknown flow cases

M = 0.7421, AoA = 4.456, Re = 6360970

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.5: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network at every 500 iterations.
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Figure D.6: Cp distribution for the NN-augmented TAU solutions. Training 1-3 are indicated
in Section 7.2.1.
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(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure D.7: Results after connecting the trained neural networks with different features to
TAU flow solver.

(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure D.8: Results near shock foot after connecting the trained neural networks with differ-
ent features to TAU flow solver.
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M = 0.7235, AoA = 5.145, Re = 15323800

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.9: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network at every 500 iterations.
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Figure D.10: Cp distribution for the NN-augmented TAU solutions. Training 1-3 are indi-
cated in Section 7.2.1.
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(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure D.11: Results after connecting the trained neural networks with different features to
TAU flow solver.

(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure D.12: Results near shock foot after connecting the trained neural networks with dif-
ferent features to TAU flow solver.
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M = 0.7173, AoA = 2.604, Re = 2680960

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.13: Residuals: Neural network augmentation at every 500 iterations.
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Figure D.14: Cp distribution for the NN-augmented TAU solutions. Training 1-3 are indi-
cated in Section 7.2.1.
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(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure D.15: Results after connecting the trained neural networks with different features to
TAU flow solver.

(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure D.16: Far field results after connecting the trained neural networks with different
features to TAU flow solver.
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(a) Inversion result (b) ln(χ), ln(δ), ln(S/Ω), ln(Ω), H12, fd

(c) ln(χ), ln(δ), ln(S/Ω), ln(Ω) (d) ln(χ), ln(δ), H12, fd

Figure D.17: Results near trailing edge after connecting the trained neural networks with
different features to TAU flow solver.
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d.2 training on full dataset

d.2.1 Testing on training data flow cases

M = 0.7421, AoA = 4.456, Re = 6360970

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.18: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network.

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.19: Residual comparison on changing the frequency of plugging the trained neural
network. Features used: ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12
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(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.20: Residual comparison on changing the frequency of plugging the trained neural
network. Features used: ln(χ), ln(δ), ln(Ω), H12

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.21: Residual comparison on changing the frequency of plugging the trained neural
network. Features used: ln(χ), ln(δ), H12
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NN-aug Training 4: Cz(ref|calc):0.885|0.775, SF:0.119
NN-aug Training 5: Cz(ref|calc):0.882|0.772, SF:0.120
Inv, lambda:2e-11, Cz(ref|calc):0.887|0.777, SF:0.119, mseCp:0.642
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Figure D.22: Cp distribution for the NN-augmented TAU solutions. Training 1-5 are indi-
cated in Section 7.2.2.

(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure D.23: Results after connecting the trained neural networks with different features to
TAU flow solver.



146 appendix: machine learning

(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure D.24: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.
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(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure D.25: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.
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(b) Difference with pETW result

Figure D.26: ∆Cp distribution for the NN-augmented TAU solution. Training 1-5 are indi-
cated in Section 7.2.2.
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M = 0.7209, AoA = 5.669, Re = 8787960

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.27: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network.

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.28: Residual comparison on changing the frequency of plugging the trained neural
network. Features used: ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12
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(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.29: Residual comparison on changing the frequency of plugging the trained neural
network. Features used: ln(χ), ln(δ), ln(Ω), H12

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.30: Residual comparison on changing the frequency of plugging the trained neural
network. Features used: ln(χ), ln(δ), H12
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Figure D.31: Cp distribution for the NN-augmented TAU solutions. Training 1-5 are indi-
cated in Section 7.2.2.

(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure D.32: Results after connecting the trained neural networks with different features to
TAU flow solver.
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(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure D.33: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.
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(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure D.34: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.
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(b) Difference with pETW result

Figure D.35: ∆Cp distribution for the NN-augmented TAU solution. Training 1-5 are indi-
cated in Section 7.2.2.
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M = 0.7235, AoA = 5.145, Re = 15323800

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.36: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network at every 500 iterations.
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Figure D.37: Cp distribution for the NN-augmented TAU solutions. Training 1-5 are indi-
cated in Section 7.2.2.
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(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure D.38: Results after connecting the trained neural networks with different features to
TAU flow solver.



d.2 training on full dataset 155

(a) Inversion result (b) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12

(c) ln(χ), ln(δ), ln(Ω) (d) ln(χ), ln(δ), ln(Ω), H12

(e) ln(χ), ln(δ), ln(Ω), ln(S/Ω) (f ) ln(χ), ln(δ), H12

Figure D.39: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.
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(b) Difference with pETW result

Figure D.40: ∆Cp distribution for the NN-augmented TAU solution. Training 1-5 are indi-
cated in Section 7.2.2.
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d.2.2 Testing on unknown flow cases

M = 0.7206, AoA = 5.737, Re = 6331480

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.41: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network after every 2000 iterations.
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Figure D.42: Cp distribution for the NN-augmented TAU solutions.
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(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.43: Results after connecting the trained neural networks with different features to
TAU flow solver.

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.44: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.



158 appendix: machine learning

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.45: Results after connecting the trained neural networks with different features to
TAU flow solver.

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.46: Far field results after connecting the trained neural networks with different
features to TAU flow solver.
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(b) Difference with pETW result

Figure D.47: ∆Cp distribution for the NN-augmented TAU solution. Training 1-4 are indi-
cated in Section 7.2.2.

M = 0.7421, AoA = 4.420, Re = 8760680

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.48: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network after every 2000 iterations.
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Figure D.49: Cp distribution for the NN-augmented TAU solutions.



160 appendix: machine learning

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.50: Results after connecting the trained neural networks with different features to
TAU flow solver.

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.51: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.
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(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.52: Results after connecting the trained neural networks with different features to
TAU flow solver.

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.53: Far field results after connecting the trained neural networks with different
features to TAU flow solver.
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(b) Difference with pETW result

Figure D.54: ∆Cp distribution for the NN-augmented TAU solution. Training 1-4 are indi-
cated in Section 7.2.2.

M = 0.7173, AoA = 2.604, Re = 2680960

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.55: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network after every 2000 iterations.
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Figure D.56: Cp distribution for the NN-augmented TAU solutions.
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(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.57: Results after connecting the trained neural networks with different features to
TAU flow solver.

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.58: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.
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(b) Difference with pETW result

Figure D.59: ∆Cp distribution for the NN-augmented TAU solution. Training 1-5 are indi-
cated in Section 7.2.2.

M = 0.7397, AoA = 1.403, Re = 13257500

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.60: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network after every 2000 iterations.
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Figure D.61: Cp distribution for the NN-augmented TAU solutions.
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(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.62: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.63: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.



166 appendix: machine learning

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.64: Results after connecting the trained neural networks with different features to
TAU flow solver.
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(b) Difference with pETW result

Figure D.65: ∆Cp distribution for the NN-augmented TAU solution. Training 1-4 are indi-
cated in Section 7.2.2.
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M = 0.7110, AoA = 5.145, Re = 15363000

(a) Mean squared error of Cp distribution (wrt pETW data)

(b) Density residual

Figure D.66: Residual variation with the flow solution in TAU after augmenting the baseline
SA-neg model with the trained neural network after every 2000 iterations.
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Figure D.67: Cp distribution for the NN-augmented TAU solutions.
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(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.68: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.

(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.69: Results at shock foot after connecting the trained neural networks with different
features to TAU flow solver.
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(a) ln(χ), ln(δ), ln(Ω), ln(S/Ω), H12 (b) ln(χ), ln(δ), ln(Ω)

(c) ln(χ), ln(δ), ln(Ω), H12 (d) ln(χ), ln(δ), ln(Ω), ln(S/Ω)

Figure D.70: Results after connecting the trained neural networks with different features to
TAU flow solver.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.04

0.03

0.02

0.01

0.00

0.01

C p

Difference in Pressure coefficient: Chordwise Distribution

Baseline - Training1
Baseline - Training2
Baseline - Training3
Baseline - Training4

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

z/
c

(a) Difference with Baseline solution

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C p

Difference in Pressure coefficient: Chordwise Distribution

pETW - Training1
pETW - Training2
pETW - Training3
pETW - Training4

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

z/
c

(b) Difference with pETW result

Figure D.71: ∆Cp distribution for the NN-augmented TAU solution. Training 1-4 are indi-
cated in Section 7.2.2.
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