
Learning Off-By-One Mistakes:
An Empirical Study on Different

Deep Learning Models

Master’s Thesis

Hendrig Sellik

Learning Off-By-One Mistakes:
An Empirical Study on Different

Deep Learning Models

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Hendrig Sellik

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Tech-
nology
Delft, the Netherlands
www.ewi.tudelft.nl

Adyen
Simon Carmiggeltstraat 6-50

1011DJ
Amsterdam, the Netherlands

https://www.adyen.com/

www.ewi.tudelft.nl
https://www.adyen.com/

© 2020 Hendrig Sellik. All rights reserved.

Learning Off-By-One Mistakes:
An Empirical Study on Different

Deep Learning Models

Author: Hendrig Sellik
Student id: 4894502
Email: h.sellik@student.tudelft.nl

Abstract

Mistakes in binary conditions are a source of error in many software sys-
tems. They happen when developers use ‘<’ or ‘>’ instead of ‘<=’ or ‘>=’.
These boundary mistakes are hard to find for developers and pose a man-
ual labor-intensive work. While researches have been proposing solutions
to identify errors in boundary conditions, the problem remains a challenge.

In this thesis, we propose deep learning models to learn mistakes in
boundary conditions and train our model on approximately 1.6M exam-
ples with faults in different boundary conditions. We achieve an accuracy
of 85.06%, a precision of 85.23% and a recall of 84.82% on a controlled
dataset. Additionally, we perform tests on 41 real-world boundary condi-
tion bugs found from GitHub and try to find bugs from the Java project of
Adyen. However, the false-positive rate of the model remains an issue. We
hope that this work paves the way for future developments in using deep
learning models for defect prediction.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Aniche, Faculty EEMCS, TU Delft
Company supervisor: O. van Paridon, Adyen B.V.
Committee Member: Dr. C. Hauff, Faculty EEMCS, TU Delft

h.sellik@student.tudelft.nl

Preface

This thesis has been submitted for the degree of Master of Science in Computer
Science at the Delft University of Technology. The journey from the beginning
of my studies to the end of my thesis has been full of passion and devotion to the
area I love the most. I have grown both as a person and an academic. However,
this all would have not been possible without the people I would like to thank in
this preface.

Maurício Aniche, thank you for the time you have dedicated to me. Your
support during the thesis was unparalleled. You let me discover the domain in
the beginning and helped me with your guidance and enthusiasm where it was
needed the most. Special thanks to Georgious Gousious and Uri Alon for taking
their time and helping me with the questions I had for them. I would also like
to thank the members of my thesis committee, Arie van Deursen and Claudia
Hauff, for their time and effort.

Colleagues at Adyen, thank you for your warm welcome at the company and
for providing me with a pleasant milieu even in the unprecedented times due to
the outbreak of the COVID-19 virus. I could always count on your constructive
feedback and insightful remarks in your area of expertise. Onno van Paridon,
thank you for the time you dedicated to me as a supervisor.

Finally, I would like to thank my friends and family for their support. You lis-
tened to my monologues about the thesis and even though the technical details
did not make much sense to you, I could always rely on you to hear me out.

Hendrig Sellik
Delft, the Netherlands

September 7, 2020

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Background 3
2.1 Bugs in Software . 3

2.2 Abstract Syntax Trees . 4

2.3 Static Analysis Tools . 6

2.4 Machine Learning for Software Engineering 8

2.5 Machine Learning for Defect Prediction 14

3 Approach 17
3.1 Datasets . 18

3.2 Analysis . 21

3.3 Model Architecture . 22

3.4 Hyper-parameter Optimization . 26

3.5 Threats to validity . 27

4 Results 29
4.1 Research Questions . 29

4.2 Methodology . 30

4.3 RQ1 How do the models perform on a controlled dataset? 32

4.4 RQ2 How well do the methods generalize to a dataset made of real-
world bugs? . 34

4.5 RQ3 Can the approach be used to find bugs from a large-scale in-
dustry project? . 36

v

Contents

5 Conclusion 41
5.1 Future work . 41

Bibliography 43

A Optimized Hyper Parameters 49

vi

List of Figures

2.1 An example of a mistake in a boundary condition. Code extracted from
JPacman1. 4

2.2 An example of a mistake in a boundary condition. Code extracted from
Apache Jmeter2. 5

2.3 Example AST of the code in Figure 2.1. 6
2.4 Example of an interprocedural null value dereferencing when flag is

true. 8
2.5 Code2Vec model architecture. 10
2.6 Code2Seq model architecture. 12

3.1 The flow of the research including data collection, mutation, training
and testing. 18

3.2 The flow of feature extraction for Code2Vec and Code2Seq models. . . 21
3.3 Example AST of the code in Figure 3.4. The red path traverses AST

path from method call expression getWidth() to variable y. 23
3.4 An example of a boundary condition. Code extracted from JPacman3. 23
3.5 An example of the AST paths extracted for the Code2Vec model. . . . 23
3.6 An example of the AST paths extracted for the Code2Seq model. . . . 24
3.7 An example of the tokenization for the baseline model. 25

4.1 ROC curve for Code2Seq Experiment II with the java-large dataset.
Area under curve 0.89. 33

4.2 Precision-recall curve for Code2Seq Experiment II with the java-large
dataset. Area under curve 0.65. 33

4.3 Confusion matrix and normalized confusion matrix for Code2Seq Ex-
periment II with the Java-large dataset. 33

4.4 A pseudocode of the situation the model predicted to be buggy. 38
4.5 A pseudocode of the situation the model predicted to be buggy. 38
4.6 A pseudocode of the situation the model predicted to be buggy. 38

vii

Chapter 1

Introduction

Software projects have been getting larger with regards to the size of the code-
base, now reaching millions on lines of code. At rapid and continuous develop-
ment cycles, the defects which prevent programs from compiling are caught,
but there is an array of bugs that might only appear at runtime. One of them is
an off-by-one mistake, which happens when developers use ‘>’ or ‘<’ in cases
where they should have used ‘=>’ or ‘<=’ or vice versa.

Early studies such as [28] [32] and [45], have been conducted to specifically
research methods to automate the testing of boundary conditions. However, the
work either fails to solve the issue automatically or requires significant manual
effort on behalf of the user.

In response, the industry has adopted static analysis tools, such as Spot-
Bugs and PVS Studio, which address the problem in some specific scenarios.
However, they fail to capture most of the off-by-one errors that are present and
require manual work to define and fine-tune the rules. At the same time, the re-
search community has seen success in many software code tasks that were not
possible before, such as method naming and method description generation,
thanks to the rapid developments in the area of machine learning.

The lack of reliable tools to capture off-by-one mistakes leaves an excellent
opportunity to try applying machine learning to this domain which would benefit
both the scientific community and the industry.

This study attempts to contribute to the knowledge base of using state-of-the-
art machine learning techniques to detect bugs in software code. We trained
several binary classification models on likely correct methods and their auto-
matically mutated likely incorrect counterparts. Later, we tested the models in
a cross-project manner on both open-source software and a company project.
The main research flow is depicted in Figure 3.1 and the main contributions of
this thesis are:

1. An empirical study on the performance of different deep learning models
to detect off-by-one mistakes.

1

1. Introduction

2. A quantitative and qualitative evaluation of deep off-by-one detection mod-
els in real-world open source and proprietary bugs.

The models are trained on over 1.6M examples and the best results are ob-
tained with the Code2Seq [8] model achieving 85.23% precision and a recall of
84.82% on a controlled balanced testing set. When introducing imbalance to
the testing set, the metrics fall to 64.65% and 41% respectively. Testing the
model on known bugs from open-source projects yields a 55.88% precision and
46.34% recall on a balanced set consisting of 82 methods. When evaluating the
model on Adyen Java repository, the approach did not reveal any bugs per se,
but pointed to code considered to deviate from good practices.

2

Chapter 2

Background

Bug-detection is a well-explored domain in computer science. In this chapter,
we discuss technologies related to the thesis and give background information
to the problem at hand. It is divided into 5 main sections. Firstly, bugs in
software are discussed in Section 2.1, next, in Section 2.2, the structure of
Abstract Syntax Trees is explained, in Section 2.3 the current static analysis
tools used in the industry are discussed, in Sections 2.4.1 and 2.4.2 we explain
the Code2Vec and Code2Seq models which this work heavily relies on, in Section
2.4.3 the Graph Relational embedding Attention Transformer Model is described
and in Section 2.5, the ML models related to bug detection are discussed.

2.1 Bugs in Software

Professional software developers are capable of producing complex systems and
the industry has adapted many ways, such as unit testing, pair programming,
static and dynamic analysis, code reviews, etc, to prevent bugs from finding
their way into production software. Still, defects appear even in very critical
software.

This is caused by many factors, such as changing the software environment
or the hardware that the program is being run on, users using the software be-
yond the specified non-functional parameters, the dependent software having a
bug, hasty development to meet a deadline or the software just running for long
enough time to have issues which were not present before, such as the famous
millennium bug and the very similar defects that appear every year when the
time is changed to adjust for the daylight saving.

As a software system grows, the number of execution branches grows to a
level in which it is almost impossible to cover all the edge cases manually. At
the same time, some kinds of errors are very hard to detect automatically with
current methods. In this thesis, we focus on one such error, the off-by-one error.

3

2. Background

Off-by-one errors are a type of logic errors which allow the program to com-
pile but result in errors during runtime. They are caused by the binary ex-
pressions ”<”, ”<=”, ”>” and ”=>” being off by one. This means that ”<” is
swapped with ”<=” and ”>” by ”=>” or vice versa. These errors can be silent,
meaning that they might go unnoticed or non-silent, meaning that they produce
a program crash.

// Incorrect code: x > 0
public boolean withinBorders(int x, int y) {

return x > 0 && x <= getWidth() && y >= 0 && y <= getHeight();
}

// Correct code: x >= 0
public boolean withinBorders(int x, int y) {

return x >= 0 && x <= getWidth() && y >= 0 && y <= getHeight();
}

Figure 2.1: An example of a mistake in a boundary condition. Code extracted
from JPacman1.

Silent errors are represented by cases where the program does not crash but
outputs a result that is not originally intended. For example, when one wants
to check if an element is inside the scope of x and y coordinates but checks one
of the variables inclusively and the other one not. This is illustrated in a real-
world example (Figure 2.1) where the variable x should be checked to be zero
inclusive.

These types of errors also occur in more mature and widely used projects.
For example, see a bug found in Apache JMeter in Figure 3.4. An untraditional
loop was made where a list was traversed in reverse order. However, the author
of the code forgot to include the first element of the list while iterating, resulting
in skipping the element. This was later found by the developers and fixed.

The most common scenario for a non-silent error is when an element is ac-
cessed in an array which is out of bounds, producing an IndexOutOfBoundsEx-
ception in Java.

2.2 Abstract Syntax Trees

Abstract Syntax Tree (AST) is a tree representation of the abstract syntactic
structure of the source code. It preserves the original structure of the parse tree
but eliminates nonessential nodes such as parenthesis and semicolons, which

1https://github.com/serg-delft/jpacman
2https://github.com/apache/jmeter/

4

https://github.com/serg-delft/jpacman
https://github.com/apache/jmeter/

2.2. Abstract Syntax Trees

// Incorrect code: i > 0
public void removeHeaderNamed(String name)
{

Vector removeIndices = new Vector();
for (int i = getHeaders().size() − 1; i > 0; i−−)
{

Header header = (Header) getHeaders().get(i).getObjectValue();
if (header == null)
{

continue;
}
if (header.getName().equalsIgnoreCase(name))
{

removeIndices.addElement(new Integer(i));
}

}

for (Enumeration e = removeIndices.elements(); e.hasMoreElements();)
{

getHeaders().remove(((Integer) e.nextElement()).intValue());
}

}

// Correct code: i >= 0
public void removeHeaderNamed(String name)
{

Vector removeIndices = new Vector();
for (int i = getHeaders().size() − 1; i >= 0; i−−)
{

Header header = (Header) getHeaders().get(i).getObjectValue();
if (header == null)
{

continue;
}
if (header.getName().equalsIgnoreCase(name))
{

removeIndices.addElement(new Integer(i));
}

}

for (Enumeration e = removeIndices.elements(); e.hasMoreElements();)
{

getHeaders().remove(((Integer) e.nextElement()).intValue());
}

}

Figure 2.2: An example of a mistake in a boundary condition. Code extracted
from Apache Jmeter2.

5

2. Background

can be derived from the structure of the tree without being explicitly stated
[20].

For the implementations in this thesis, we use the JavaParser library which
parses the Java code and produces an AST. An example of the AST structure is
given in Figure 2.3. The gray nodes on the image represent the nodes that are
defined by the JavaParser library and represent code blocks, method declara-
tions, binary expressions, method call expressions, etc.

Figure 2.3: Example AST of the code in Figure 2.1.

The white nodes mostly represent user-defined values or types declared on
the language level. If observed from left to right, these nodes will form a string
similar to the original code. In this thesis, we define a path along the AST as
the closest route between two leaf nodes. It has a vital role in creating method
embeddings which are used during classification for for downstream tasks.

2.3 Static Analysis Tools

As the codebase sizes of industry projects reach millions of lines of code, it
is very difficult to manually examine or cover all the execution branches with
unit tests. Hence, static analysis tools are used which analyze source code to

6

2.3. Static Analysis Tools

automatically find bugs and ease the labor-intensive code inspection efforts. The
static nature of the tools means that they do not execute the source code but
rather infer the possible erroneous states, usually from Abstract Syntax Trees
or Control Flow Graphs.

SpotBugs3 (formerly known as FindBugs [29]) developed by D. Hovemeyer
et al. is a static code analysis tool to find bugs in code. During its development,
the authors found that such tools are not widespread and pointed out several
trivial, yet critical bugs from mature systems such as Apache Tomcat. Today,
however, the SpotBugs and other static analysis tools are widely adopted in the
industry projects and their continuous integration pipelines [12].

SpotBugs uses the Apache Bytecode Engineering Library4 (BCEL), a byte-
code analysis library to create a detector for each type of bug. The detectors
use different strategies such as looking at the structure of classes and methods
or creating and analyzing a data flow graph, also allowing interprocedural bug
detection.

Error Prone [2], developed at Google, works by extending the OpenJDK Java
compiler and performing an error checking after the flow phase of the compiler.
A number of predicates are manually created to match AST nodes of the source
code for errors and additional checks on the dataflow graph of the code are
made. If a violation is found, Error-Prone will fail the compilation with an error
message and can propose fixes to the errors or even automatically fix them.
Giving errors during compilation time will ensure that the defective code does
not get ignored and is caught during development. It also leverages parsing
and type checking already done by the compiler and therefore avoids redundant
work.

Nullaway [11], developed at Uber, is a popular plugin to Error Prone specifi-
cally designed to robustly find NullPointerExceptions (NPE-s) with minimal per-
formance overhead. It relies on the developers annotating methods with @Nul-
lable and making assumptions about unannotated code, after which a control
flow graph is made to analyze the dataflow and find NPE-s.

Infer [16] is a tool developed at Facebook and aims to verify programs by
building their compositional proofs. Essentially, it uses an assembly-like inter-
mediate language which is derived from Java bytecode and builds a mathemat-
ical model of the source code that represents all possible execution paths. The
call graphs of the model can be updated for functions/procedures individually
while keeping the ability to find interprocedural defects, such as nullpointer
dereferencing errors seen in Figure 2.4. This allows to cache the call graph and
incrementally update the parts that were affected by a code change [17]. In
addition, groups of procedures can be analyzed independently, which allows the

3SpotBugs GitHub page - https://github.com/spotbugs/spotbugs/
4Apache BCEL - http://commons.apache.org/proper/commons-bcel/

7

https://github.com/spotbugs/spotbugs/
http://commons.apache.org/proper/commons-bcel/

2. Background

process to be run in parallel.

PMD5 is a static analysis tool that works on predefined rulesets. For different
rules, different data is processed which might include the AST, data flow graph
and type resolution information. PMD also supports incremental analysis by
storing the processed data in a cache and loading it if the file under analysis
has not changed. However, PMD only supports one source file at the time and
hence cannot capture more complicated bugs spanning multiple files.

public class CodeSample {
String computeSomething(boolean flag) {

if (flag) {
return null;

}
else {

return ’something’;
}

}

public int doSTuff() {
String s = computeSomething(true);
return s.length();

}
}

Figure 2.4: Example of an interprocedural null value dereferencing when flag is
true.

The above-mentioned tools and research all use predefined rules which re-
quire exhaustive manual labor to produce but fail to capture some types of bugs.
A machine learning model might automatically learn more complicated rules/-
patterns that are more accurate.

2.4 Machine Learning for Software Engineering

Machine Learning for Software Engineering has seen rapid development in re-
cent years inspired by the successful application in the Natural Language Pro-
cessing field [27]. It is applied in many tasks related to software code such as
code translation [18], [40], [41], code completion [27],[44], [49], [33], identifier
and method naming [4], [5], [9], type inference [25], API Usage [22], [36] and
code refactoring [10]. Many of those approaches allow to change the down-
stream task while making minor modifications to the underlying model.

5PMD official web page https://pmd.github.io/latest/pmd_devdocs_how_pmd_works.htm
l

8

https://pmd.github.io/latest/pmd_devdocs_how_pmd_works.html
https://pmd.github.io/latest/pmd_devdocs_how_pmd_works.html

2.4. Machine Learning for Software Engineering

The next subsections will be explaining the techniques and models we used
in our thesis and give an overview of the similar work done in the field.

2.4.1 Code2Vec Model

The Code2Vec model created by Alon et al. [9] is a Neural Network model used
to create embeddings from Java methods. These embeddings were used in the
original work to predict method names.

The architecture of this model requires Java methods to be split into path
contexts based on the AST of the method. A path context is a random path
between two nodes in the AST and consists of 2 terminal nodes xs, xt and the
path between those terminal nodes p j which does not include the terminals.
The embeddings for those terminal nodes and paths are learned during training
and stored in 2 separate vocabularies. During training, these paths are concate-
nated to a single vector to create a context vector ci which has the length l of
2 · xs + xp where the length of xs is equal to xt . More formally:

ci = embedding
(〈

xs, p j,xt
〉)

= [value_vocabs; path_vocab j;value_vocabt]

The acquired context vectors ci for paths are passed through the same fully
connected (dense) neural network layer (using the same weights). The network
uses hyperbolic tangent activation function and dropout in order to generate a
combined context vectors c̃i. The size of the dense layer allows controlling the
size of the resulting context vector. The calculation for the context vector is the
following:

c̃i = tanh(W · ci)

Where W ∈ Rh×l are dense layer weights where the height h determines the
context vector size and l depends on the embeddings as shown previously.

The attention mechanism of the model works by using a global attention vec-
tor a∈Rh which is initialized randomly and learned with the rest of the network.
It is used to calculate attention weight ai for each individual combined context
vector c̃i :

ai =
exp(c̃i

T ·a)
∑

n
j=1 exp(c̃ j

T ·a)
It is possible, that some methods are not with a large enough AST to generate

the required number of context paths. For this dummy (masked) context paths
are inputted to the model which get a value of 0 for attention weight ai. This
enables the model to use examples with the same shape.

After calculating weight for context vectors, their linear combination pro-
vides a code vector v:

9

2. Background

end terminal
node embedding

start terminal
node embedding

path
embedding

C
o

n
ca

te
n

at
ed

 v
ec

to
r

o
f

co
n

te
xt

 1

end terminal
node embedding

start terminal
node embedding

path
embedding

C
o

n
ca

te
n

at
ed

 v
ec

to
r

o
f

co
n

te
xt

 nC
o

m
b

in
ed

 c
o

n
te

xt
ve

ct
o

r
�

�~

C
o

m
b

in
ed

 c
o

n
te

xt
ve

ct
o

r
�

1~

G
lo

b
al

 a
tt

en
ti

o
n

 v
ec

to
r

�

C
o

d
e

V
ec

to
r

�

S
of

tm
ax

 p
re

di
ct

io
n

�
(

)
=

�
�

�
�

�
(

⋅�
�

�
�
_
�

�
�
�

)
�

�
�

�

�
�

�
(

⋅�
�

�
�
_
�

�
�
�

)
∑

� �
�

�
�

�

C
al

cu
la

te
 a

tte
nt

io
n

w
ei

gh
t

fo
r

co
nt

ex
t n

=
�

�
�
�

�
(

⋅�
)

�
�~

�

�
�

�
(

⋅�
)

∑
� �
=
1

�
�~
�

C
al

cu
la

te
 a

tte
nt

io
n

w
ei

gh
t f

or
 c

on
te

xt
 1

=
�

1
�
�

�
(

⋅�
)

�
1~

�

�
�

�
(

⋅�
)

∑
� �
=
1

�
�~
�

C
al

cu
la

te
 C

od
e

V
ec

to
r

�
=

⋅
∑

� �=
1

�
�

�
̃ �

�
1

�
2

D
en

se
 la

ye
r

ta
n

 h
 a

ct
iv

at
io

n
 w

it
h

d
ro

p
o

u
t

ta
g

/la
b

el
vo

ca
b

u
la

ry
Ja

va
M

et
ho

d
S

pl
it

to
"C

on
te

xt
s"

E
nd

 te
rm

in
al

no
de

S
ta

rt
 te

rm
in

al
no

de

P
at

h
be

tw
ee

n
te

rm
in

al
 n

od
es

va
lu

e
vo

ca
b

u
la

ry

p
at

h
vo

ca
b

u
la

ry

va
lu

e
vo

ca
b

u
la

ry

"b
ug

"

"n
ob

ug
"

S
am

e
pr

ep
ro

ce
ss

in
g

In
pu

t M
as

k

Figure 2.5: Code2Vec model architecture.

10

2.4. Machine Learning for Software Engineering

v =
n

∑
i=1

ai · c̃i

During training, a tag vocabulary tags_vocab∈R|Y |×l is created where for each
tag (label) yi ∈ Y corresponds to an embedding of size l. The tags are learned
during training and in the task proposed by the authors, these represent method
names.

A prediction for a new example is made by computing the normalized dot
product between code vector v and each of the tag embeddings tags_vocabi:

for yi ∈ Y : q(yi) =
exp(vT · tags_vocabi)

∑
Y
j exp(vT · tags_vocabi)

This results in a probability for each tag yi. The higher the probability, the
more likely the tag belongs to the method.

2.4.2 Code2Seq Model

Code2Seq model created by Alon et al. [8] is a Sequence-to-Sequence Deep
Learning model used to create embeddings from Java methods from which method
descriptions are learned. The original work was used to generate sequences of
natural language words to describe methods.

Similarly to the Code2Vec model, the model works by generating random
paths from the AST with a specified maximum length. Each path consists of 2
terminal tokens xs, xt and the path between those terminal nodes p j which, in
Code2Seq, includes the terminal nodes ps, pt ∈ p j, but not tokens.

It is important to make a difference between terminal tokens and path nodes.
The former are user-defined values, such as a number 4 or variable called string-
Builder while the latter come from a limited set of AST constructs such as Name-
Expr, BlockStmt, ReturnStmt. There are around 400 different node types that
are predefined in the JavaParser implementation 6.

During training, the path nodes and the terminal tokens are encoded differ-
ently. Terminal tokens get partitioned into subtokens based on the camelCase
notation, which is a standard coding convention in Java. For example, a terminal
token stringBuilder will be partitioned into string and Builder. The subtokens
are turned into embeddings with a learned matrix Esubtokens and encoding is cre-
ated for the entire token by adding the values for subtokens:

Encode terminal node (xs) =
len(xs)

∑
s∈split(xs)

Esubtokens
s

6JavaParser Node types https://www.javadoc.io/doc/com.github.javaparser/javaparse
r-core/3.15.9/com/github/javaparser/ast/Node.html

11

https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.15.9/com/github/javaparser/ast/Node.html
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.15.9/com/github/javaparser/ast/Node.html

2. Background

end terminal
token encoding

start terminal
token encoding

path
encoding

C
on

ca
te

na
te

d
ve

ct
or

of
 c

on
te

xt
 1

end terminal
token encoding

start terminal
token encoding

path
encoding

C
on

ca
te

na
te

d
ve

ct
or

of
 c

on
te

xt
 nC

om
bi

ne
d

co
nt

ex
t

ve
ct

or
 �

̃ �

C
om

bi
ne

d
co

nt
ex

t
ve

ct
or

 �
̃ 1

Pr
ov

id
e

in
iti

al
 s

ta
te

 to
 th

e
de

co
de

r

=
ℎ
0

1 �
∑

� �=
1

�
�

D
en

se
 la

ye
r

ta
n

h
ac

tiv
at

io
n

w
ith

dr
op

ou
t

Sp
lit

 to
"C

on
te

xt
s"

En
d

te
rm

in
al

no
de

St
ar

t t
er

m
in

al
no

de

Pa
th

Em
be

dd
in

g
m

at
rix

�

�
�
�

�
�

Pa
th

 s
pl

it
to

no
de

s

LS
TM

C

el
l

LS
TM

C

el
l

LS
TM

C

el
lB
i-d

ire
ct

io
na

l
LS

TM
 E

nc
od

er

En
co

de
d

pa
th

[
;

]
ℎ
⃗
ℎ
⃖

Sp
lit

 to
su

bt
ok

en
s

Sp
lit

 to
su

bt
ok

en
s

Em
be

dd
in

g
m

at
rix

�

�
�
�
��

�
�
�
�

En
co

de
 te

rm
in

al
 to

ke
n

�
�

∑
��

�
(

)
�

�

�
∈

�
�
��

�(
)

�
�

�
�
�
�
��

�
�
�
�

�

Em
be

dd
in

g
m

at
rix

�

�
�
�
��

�
�
�
�

En
co

de
 te

rm
in

al
 to

ke
n

�
�

∑
��

�
(

)
�

�

�
∈

�
�
��

�(
)

�
�

�
�
�
�
��

�
�
�
�

�

En
d

te
rm

in
al

no
de

St
ar

t t
er

m
in

al
no

de

Pa
th

C
on

te
xt

Pa
th

1

C
on

te
xt

Pa
th

n

Sa
m

e
pr

oc
es

si
ng

LS
TM

C

el
l

LS
TM

C

el
l

LS
TM

C

el
l

_

Em
pt

y
de

sc
rip

tio
n

LS
TM

 D
ec

od
er

 w
ith

 A
tte

nt
io

n

LS
TM

C

el
l

LS
TM

C

el
l

LS
TM

C

el
l

ℎ
⃗

ℎ
⃖

�
(�

)D
ue

 to
 b

in
ar

y
in

pu
t d

at
a,

 m
od

el
 o

nl
y

ou
tp

ut
s

on
e

la
be

l w
ith

 h
ig

he
st

 p
ro

ba
bi

lit
y

am
on

gs
t t

he
 2

 p
os

si
bl

e

Ja
va

M
et

ho
d

Figure 2.6: Code2Seq model architecture.

12

2.4. Machine Learning for Software Engineering

Paths of the AST are also split into nodes and each of the nodes corresponds
to a value in a learned embedding matrix Enodes. These embeddings are fed into

a bi-directional LSTM which final states result in a forward pass output
→
h and

backward pass output
←
h . These are concatenated to produce a path encoding.

Encode path(ps, ..., pt ∈ p j) = LST M
(

Enodes
ps

, ...,Enodes
pt

)
=

[
→
h ;
←
h
]

As with the Code2Vec model, the encodings of the terminal nodes and the
path are concatenated and the resulting encoding is an input to a dense layer
with tanh activation to create a combined context vector c̃i.

ci = encoding(〈xs; ps, ..., pt ;xt〉) = [Encode(xs);Encode(ps, ..., pt);Encode(xt)]

c̃i = tanh(W · ci)

Where W ∈ Rd×[2dpath+2dtoken] is a matrix for dense layer weights where the
height d determines the combined context vector size and the width depends
on the starting/terminating token context size 2dtoken and concatenated forward
and backward pass result of the LSTM (Long Short-Term Memory) encoding of

the path 2dpath =

[
→
h ;
←
h
]
. The matrix W was defined wrong in the original work,

however, the authors were notified of this.7

Finally, to provide an initial state to the decoder, the representations of all n
paths in a given method are averaged.

h0 =
1
n

n

∑
i=1

zi

The decoder uses the initial state h0 to generate an output sequence while
attending over all the combined context vectors c̃1, ..., c̃n. The resulting output
sequence represents a natural language description of the method.

The advantage of the Code2Seq model is in the way the context vectors c̃i

are created. In particular, due to splitting terminal nodes. the vocabulary of
the terminal nodes yields greater flexibility towards different combinations of
subtoken combinations. In addition, while Code2vec embeds entire AST paths
between terminals, the Code2Seq model only embeds subtokens. This results in
fewer out-of-vocabulary examples and a far smaller model size. The model also
has an order-of-magnitude fewer parameters compared to the Code2Vec model.

7https://github.com/tech-srl/code2seq/issues/40

13

https://github.com/tech-srl/code2seq/issues/40

2. Background

2.4.3 Graph Relational Embedding Attention Transformers

Instead of traversing the AST of a Java program and using different paths as
an input to the model, some researchers have started to use Graph Neural Net-
works (GNN-s) instead to leverage the structural nature of the AST as proposed
by Allamanis et al. [6]. In addition, the AST is enhanced with control flow infor-
mation. For example, the usages of the variables are connected to emphasize
that it is the same object as opposed to only having the same name.

This work has been iterated by Hellendoorn et al. [26], who propose Graph
Relational Embedding Attention Transformers (GREAT). The idea of enhancing
the AST with additional information remains the same, but the authors use the
initial graph to bias the attention of a transformer model instead of performing
several message passing steps with a GNN.

2.5 Machine Learning for Defect Prediction

Nowadays, a lot of projects use static analysis tools such as the ones described
in Section 2.3. These tools, however, rely on bug pattern detectors manually
crafted and fine-tuned by static analysis experts. The huge amount of different
bug patterns makes it very difficult to cover more than a fraction of them. Solv-
ing this problem via machine learning techniques instead has been a promising
and popular research topic.

Nam et al. [39] use different metrics such as coupling between source code
objects, number of lines in code, the entropy of code changes, etc. to train
a logistic regression classifier that predicts file-level defects in source code.
The novelty of their work is in the introduction of Transfer Component Analysis
(TCA) where the authors take the distributions of the features from a project and
make it match to the project on which the model was trained on. This enables
to make better cross-project defect predictions.

Yang et al. [51] analyze 6 large open-source projects consisting of 137,417
changes to detect defect prone commits. The authors use a Deep Belief Network
model and commit level features such as the number of modified directories,
files, lines of code added and deleted, number of unique changes to modified
files, etc. The model achieves 0.36 precision, 0.69 recall and 0.45 F1-Score on
average.

Madeyski et al. [37] use popular Travis Continuous Integration environ-
ment to extract file-level metrics from builds, such as number of commits for
a given file, number of unique committers, modified lines since the last build,
local timestamp of the commit that caused the build, last build status, etc. Also,
the authors use additional information such as commit hash, file location, etc.
for creating models that predict CI build failures.

14

2.5. Machine Learning for Defect Prediction

Pradel et al. [43] use a technique similar to Word2Vec [38] to learn embed-
dings for JavaScript code tokens extracted from the AST. These embeddings are
used to train two-layer feedforward binary classification models to detect bugs.
Each trained model focuses on a single bug type and the authors test it on prob-
lems such as wrong binary operator, wrong operand in binary operation and
swapped function arguments. These models do not use all the tokens from the
code, but only those specific to the problem at hand. For example, the model
that detects swapped function arguments only uses embeddings of the function
name and arguments with a few other AST nodes as features.

Allamanis et al. [6] use Gated Graph Neural Network [35] to detect variable
misuse bugs on a token level. As an input to the model, the authors use an AST
graph of the source code and augment it with additional edges from the control
flow graph.

Pascarella et al. [42] show that defective commits are often composed of
both defective and non-defective files. They also train a model to predict de-
fective files in a given commit. Habib et al. [24] create an embedding from
methods using a one-hot encoding of tokens such as keywords (for, if, etc.), sep-
arators (;, (), etc.), identifiers (method, variable names and literals (values such
as "abc" and 10). The embeddings for the first 50 tokens are then used to create
a binary classification model. The oracle for training data is a state-of-the-art
static analysis tool and the results show that neural bug finding can be highly
successful for some patterns, but fail at others.

Li et al. [34] use method AST in combination with a global Program Depen-
dency Graph and Data Flow Graph to determine whether the source code in a
given method is buggy or not. The authors use Word2Vec to extract AST node
embeddings with a combination of GRU Attention layer and Attention Convo-
lutional Layer to build a representation of the method’s body. Node2Vec [21]
is used to create a distributed representation of the data flow graph of the file
which the inspected method is in. The results are combined into a method vec-
tor which is used to make a softmax prediction.

Wang et al. [50] define bug prediction as a binary classification problem
and train three different graph neural networks based on control flow graphs
of Java code. They use a novel interval-based propagation mechanism to more
efficiently generalize a Graph Neural Network (GNN). The resulting method
embedding is fed into a feed-forward neural network to find nullpointer deref-
erence, array index out of bounds and class cast exceptions. For each bug type,
a separate bug detector is trained.

Overall, there are different ways to use deep learning for bug detection. Ear-
lier work used code metrics (code complexity, file length, method length, etc)
or information from version control systems (developer age on the repository,
commit time, number of files edited, etc.). The works used traditional machine
learning models suitable for structured data such as SVM, Naive Bayes or Ran-

15

2. Background

dom Forest models.
Recent work has moved towards using source code tokens, AST-s or Con-

trol Flow Graph (CFG) representations of code as features. The premise is that
these features provide more context to identify bugs that otherwise might not
be completely captured by only analyzing structural metrics [47]. Some works
even combine the representations of AST-s and CFG [6], [34]. These models use
different architectures such as random forest model, feed-forward neural net-
work, Convolutional Neural Network (CNN), Long-Short Term Memory network
(LSTM), etc.

16

Chapter 3

Approach

In order to detect Off-By-One errors in Java code, we aim to create a hypoth-
esis function that will calculate output based on the inputs generated from an
example. More specifically, we train and compare different binary classification
machine learning models to classify Java source code methods to one of the two
possible output labels which are ”defective” and ”non-defective”. If a method is
considered as ”defective”, it is suffering from an off-by-one error, otherwise, it
is deemed to be clear from errors.

These models are based on the Code2Vec [9] and Code2Seq [8] models,
state-of-the-art deep learning models originally developed for generating method
names and descriptions. They use Abstract Syntax Tree paths of a method as
features and create an embedding by combining them with the help of an atten-
tion mechanism. In addition, a Transformer model by Hellendoorn et al. [26]
is used and a baseline model based on source code tokens and Random Forest
model. We acquired the datasets necessary for the training of these models from
the work of Alon et al. [9] which results in an imbalanced dataset of 920K ex-
amples (1 to 10 ratio) and a balanced dataset of 1.6M examples when combined
with our automatically mutated methods.

We train on both imbalanced and balanced data to see the difference in per-
formance. In addition, further training is done with data from a company project
to fine-tune the model and find bugs from that project specifically. In the follow-
ing, we provide a more detailed description of the approach. This includes the
problem definition, description of the datasets, model architecture and hyper-
parameter optimization. A visualization of the approach can be seen in Figure
3.1.

The natural distribution of Java projects has considerably more non-defective
methods than defective ones [23] which means that the dataset is imbalanced.
For asymmetric binary classification problems such as bug or cancer detection,
the minority class is generally marked as positive. Hence, in this thesis, all the
positive examples are equal to defective examples and the aim is to find as many

17

3. Approach

java-large V.1

Transfer Trained Model from Server

Train a Model on
Open-Source
Dataset

Further Train on
Closed-Source
Project

Find Bugs

V.2

Results for Open-
Source Software

Results for Adyen
Data

java-med
(mutated)

(train/CV/test sets)

Tune
Hyper-parameters

java-med

java-large
(mutated)

(train/CV/test sets)

Train &
Test

V.1
(mutated)

(train/CV/test sets)

Further Train

Split and Mutate
Methods

Split and Mutate
Methods

Figure 3.1: The flow of the research including data collection, mutation, training
and testing.

positive examples without misclassifying the negative examples (creating false
positives).

3.1 Datasets

We used different datasets to tune hyperparameters, train, evaluate and test the
model. Java-large and java-medium datasets provided by Alon et al. [8] were
used for model training and hyper-parameter selection respectively. We used
Adyen’s production Java code to further train and test the model with project-
specific data. We used an additional real-world-bugs dataset to evaluate models
on real-world bugs. A summary of the datasets can be seen in Table 3.1.

1. Java-med-balanced dataset consists of 1000 top-starred Java projects from
GitHub. Out of those 1000 projects, 800 were randomly selected for the
training set, 100 for validation set and the remainder 100 were used for
the testing set. Originally, this dataset contained about 4M methods, but
170,295 were candidates for off-by-one errors (e.g. methods with loops
and if conditions containing binary operator <, <=, > or >=). This re-

18

3.1. Datasets

sulted in a balanced dataset of 340,590 methods, 170,295 of them assumed
to be correct and 170,295 assumed to be buggy.

2. Java-large-balanced dataset consists of 9500 top-starred Java projects from
GitHub created since January 2007. Out of those 9500 projects, 9000 were
randomly selected for the training set, 250 for the validation set and the
remainder 300 were used for the testing set. Originally, this dataset con-
tained about 16M methods, but 836,380 were candidates for off-by-one
errors (e.g. methods with loops and if conditions containing binary op-
erator <, <=, > or >=). After mutating the methods, the final balanced
dataset consisted of 1,672,760 methods, 836,380 of them assumed to be
correct and 836,380 assumed to be buggy.

3. Additional imbalanced datasets java-med-imbalanced and java-large-imbalanced
were constructed to emulate more realistic data, where the majority of the
code is not defective. A 10-to-1 ratio between non-defective and defective
methods was chosen since it resulted in a high precision while having a
reasonable recall. It was empirically observed that upon increasing the
ratio of non-defective methods even further, the model did not return pos-
sibly defective methods when running on Adyen’s codebase. Meaning that
if the ratio was higher than 10-to-1, the recall of the model became too low
to use it.

4. Adyen’s code is a repository containing the production Java code of the
company. It consists of over 200,000 methods out of which 7,435 contain
a mutation candidate to produce an off-by-one error. After mutating the
methods, this resulted in a balanced dataset containing 14,870 data points.

5. 41 real-world bugs in boundary conditions were used for manual eval-
uation. We extracted the bugs from the 500 most starred GitHub Java
projects. The analyzed projects were not part of the training and evalua-
tion sets and thus are not seen by a model before testing. Using a Pydriller
script [48], we extracted a list of candidate commits where authors made
a change in a comparator (e.g., a ”>” to ”=>”; ”<=” to ”<”, etc.). This
process returned a list of 1,571 candidate commits which were analyzed
manually until 41 were confirmed to be off-by-one errors and added to the
dataset. The manual analysis was stopped due to it being a very labor-
intensive process.

The java-medium and java-large datasets only contained Java files from open-
source projects and are shown to contain very little duplicates between train-
ing, validation and testing sets by Allamanis et al. [3] due to the split of the

19

3. Approach

Table 3.1: Datasets used in the paper

Dataset name
Split Ratio
nobug:bug

Number of extracted examples
Train Validation Test Total

Java-med-balanced 1:1 266,934 41,786 31,870 340,590
Java-med-imbalanced 10:1 146,814 22,982 17,529 187,325
Java-large-balanced 1:1 1,593,610 30,634 48,516 1,672,760
Java-large-imbalanced 10:1 876,485 16,849 26,684 920,018
Adyen code 1:1 11,032 690 3,148 14,870
Real-life dataset 1:1 0 0 100 100

dataset occurring at the project level. A near duplicate remover was also ex-
plored (available in GitHub 1), but it was ultimately not used due to time con-
straints.

In order to train a supervised binary classification model, defective exam-
ples are also needed. To get defective samples, we modified the existing likely
correct code to produce likely incorrect code. We stripped the dataset of the
methods which did not contain binary expressions (“<”, “<=”, “>” or “=>”).
Next, for each method, we found a list of possible mutation points and selected
a random one. After this, we altered the selected binary expressions using Java-
Parser2 in a way to generate an off-by-one error (see Section 2.1). The flow of
the feature extraction is depicted in Figure 3.2.

Due to changing only one of the expressions, the equivalent mutant problem
does not exist3 for the training examples in this thesis unless the original code
was unreachable at the position of the mutation. It is also important to note that
the datasets are split on a project level for the java-med and java-large datasets
and on a submodule level for Adyen code. This means that the positive and the
negative examples both end up in the same training, validation or test set. We
did this to avoid evaluating model predictions on a code that only had one binary
operator changed compared to the code that was used during training.

To provide input to the model, the AST of the previously processed code had
to be converted to features. The GREAT approach (see Section 2.4.3) allows to
feed the code tokens and their connections to the model together with the label.
However, some extra preprocessing is required for Code2Vec and Code2Seq
based models. This was done by traversing the paths of the AST with a for loop
until the desired count of paths was reached or all of the paths were traversed.
A path of the AST consists of two terminal (leaf) nodes, one at the start and one

1Near duplicate Java code remover: https://github.com/SERG-Delft/near-duplicate-c
ode-remover

2JavaParser GitHub page https://github.com/javaparser/javaparser/
3Equivalent mutant problem may exist, for example, if we mutate “dead code”. However, we

conjecture that this is a negligible problem and will not affect the results.

20

https://github.com/SERG-Delft/near-duplicate-code-remover
https://github.com/SERG-Delft/near-duplicate-code-remover
https://github.com/javaparser/javaparser/

3.2. Analysis

Features for non-defective
method 1
Features for defective
method 1
Features for non-defective
method 2
Features for defective
method 2

Filter and
MutateSplit to Methods

Resulting Defective and
non-defective methods

Extract features from method AST-s

Figure 3.2: The flow of feature extraction for Code2Vec and Code2Seq models.

at the end, and the path between them. The terminal nodes consist of literals
and identifiers defined by users, such as a value of 1000 or an integer variable
called myInteger whereas the nodes between the terminals are from a limited
set of AST constructs such as BinaryExpression, BlockStmt, etc. defined by the
implementation of JavaParser.

The feature extraction for Code2Vec or Code2Seq models is very similar,
the main difference is in the path representation and Code2Seq preprocessing
terminal values as subtokens when there is a variable with CamelCase notation
(more details in Sections 2.4.2 and 2.4.1). An example of a single path in the
AST is provided in figure 2.3.

3.2 Analysis

As mentioned at the beginning of this chapter, the real-world dataset is imbal-
anced. This means that the metrics to analyze the model have to be chosen
carefully. For example, if accuracy is used on a dataset where 90% of the exam-
ples are correct, then a model that only predicts examples as non-defective will
also achieve an accuracy of 90%. This is seemingly excellent but does not reflect
the actual usefulness of the model. To better understand the performance of the
model, we evaluate it with precision and recall.

Precision helps to evaluate the models’ proneness to classify negative exam-
ples as positive. The latter is also known as false positive. This means that a
model with high precision has a low false-positive rate and a model with low
precision has a high false-positive rate. More formally, precision is the number
of true positive (TP) predictions divided by the sum of true positive and false
positive (FP) predictions:

Precision =
T P

T P+FP

21

3. Approach

For a bug detection model, low precision means a high number of false posi-
tives, making the developers spend their time checking a large number of errors
reported by the model only to find very few predictions that are defective. This
means that in this work, we prefer high precision for a bug-detection model.

Monitoring precision alone is not enough since a model that is precise but
only predicts a very few bugs per thousands of bugs is also not useful. Hence,
recall is also measured. It measures the models’ ability to find all the defective
examples from the dataset. A recall of a model is low when it does not find many
of the positive examples from the dataset and very high if it manages to find all
of them. More formally, it is the number of true positive predictions divided by
the sum of true positive and false negative predictions.

Recall =
T P

T P+FN
Ideally, a bug prediction model would find all of the bugs from the dataset

and have a high recall score. However, deep learning networks usually do not
achieve perfect precision and recall at the same time. For more difficult prob-
lems with a probabilistic model, there can be a tradeoff. When increasing the
threshold of the model confidence for the positive example, the recall will de-
cline. For this reason, a sci-kit learn package was used to also make a precision-
recall curve to observe the effect of the change in precision and recall upon
changing the confidence of the model needed to classify an example as positive
(defective).

3.3 Model Architecture

The models we used in this work are based on the recent Code2Vec model [9]
and its enhancement Code2Seq [8]. We describe the models in more detail
in Sections 2.4.1 and 2.4.2, but the modifications we made to the models are
described in this section. Additionally, a Transformer model by Hellendoorn et
al. [26] and a baseline model are described, which were used as a comparison
to the former models.

3.3.1 Code2Vec

Code2Vec model generates code embeddings from a given snippet of source
code. The use of embeddings is inspired by natural language processing, where
analogous embeddings generated using different techniques such as Word2Vec
[31] started a rapid development in various NLP tasks.

However, these embeddings have not been thoroughly tested for the task
of bug detection. This represents an interesting direction to look into. The

4https://github.com/serg-delft/jpacman

22

https://github.com/serg-delft/jpacman

3.3. Model Architecture

Figure 3.3: Example AST of the code in Figure 3.4. The red path traverses AST
path from method call expression getWidth() to variable y.

// Correct code: x >= 0
public boolean withinBorders(int x, int y) {

return x >= 0 && x <= getWidth() && y >= 0 && y <= getHeight();
}

Figure 3.4: An example of a boundary condition. Code extracted from JPacman4.

possible tags in the original task proposed for Code2Vec were method names,
but in this thesis, the input data contains only binary labels for bug indication.
As an example, the code represented in Figure 3.4 becomes input to the model in
Figure 3.5. The input consists of a label followed by a series of hashed context
paths that traverse the AST path given in Figure 3.3. The first context path
traversed is colored in red.

nobug get|width,−961791548,y y,−2020533971,boolean y,1380883547,0
↪→ y,−1237204701,y y,576687632,get|height boolean,−1974650020,0
↪→ boolean,470433203,y boolean,613922707,0 ...

Figure 3.5: An example of the AST paths extracted for the Code2Vec model.

23

3. Approach

This effectively means that the last part of the model which was previously
used for name prediction becomes a binary classification model for off-by-one
errors and results in a probability for each tag yi. The higher the probability, the
more likely the tag (”bug” / ”nobug”) belongs to the method. The source code
to the model is available in GitHub5.

3.3.2 Code2Seq

We selected the Code2Seq model for very similar reasons as the Code2Vec
model. It also uses AST paths for code related tasks. However, as explained
in Section 2.4.2, it preprocesses the AST terminal values as subtokens, which
enables to have less learnable parameters and is more flexible towards out-of-
vocabulary cases. Moreover, the Code2Seq does not rely on code embeddings,
but encoding and decoding.

The structure of the input is similar, with the main difference being the ter-
minal nodes being split at camel cases and the path itself being a series of tokens
instead of a hashed version of the path. As an example, the code represented
in Figure 3.4 becomes input to the model in Figure 3.6. The input consists of
a label followed by a series of hashed context paths that traverse the AST path
given in Figure 3.3. The first context path traversed is colored in red.

nobug get|width,SmplNm0|Cal|Leq|And|And|Geq|Nm|SmplNm0,y
↪→ public,Mdfr0|Mth|SmplNm1,within|borders ...

Figure 3.6: An example of the AST paths extracted for the Code2Seq model.

The downstream task with Code2Seq was predicting natural language de-
scription for a method and the original model used a decoder of a sequence-to-
sequence model to generate final labels. However, in this work, we only consider
the first token of the sequence as the output. Moreover, since the network has
never seen a sequence longer than one token (’bug”/”nobug”), it will not output
a longer sequence and the model becomes a probabilistic binary classification
model. The source code to the model is available in GitHub6.

3.3.3 Graph Relational Embedding Attention Transformer

We used Graph Relational Embedding Attention Transformers (GREAT for short)
by Hellendoorn et al. [25] to compare the performance to our existing models.
Originally, the model was used for a popular VarMisuse task, with the aim of

5Source code to the Code2Vec model used in this thesis: https://github.com/hsellik/the
sis/tree/master/code2vec

6Source code to the Code2Seq model used in this thesis: https://github.com/hsellik/the
sis/tree/master/code2seq

24

https://github.com/hsellik/thesis/tree/master/code2vec
https://github.com/hsellik/thesis/tree/master/code2vec
https://github.com/hsellik/thesis/tree/master/code2seq
https://github.com/hsellik/thesis/tree/master/code2seq

3.3. Model Architecture

pointing to a misused variable in code and to another variable, which should
be there instead. However, in this work, we disregarded the pointer to the
correct variable and trained the first pointer to locate the wrong usage of binary
operators instead.

The model takes a graphical representation inspired by Hellendoorn et al.
[26] and Allamanis et al. [7] as its input. More precisely, the input is a list of
code tokens, followed by edge information which includes the connection type.
The edges allow to add more information regarding the data flow, for example,
it allows to connect a variable token to its next usage in the code. The input
generator for the model is open-sourced in a GitHub repository 7 and the model
is also available in GitHub8.

3.3.4 Baseline Model

We developed a baseline model to assess the performance of a simpler architec-
ture. For this, we used a Random Forest model [14] and compared the perfor-
mance with the same datasets. The implementation is freely available on a git
repository9.

For preprocessing, we used the same JavaParser library to generate tokens
out of Java code. This time, we did not obtain any information regarding the
AST and we used the library only to more robustly generate tokens from the
methods compared to other approaches, such as using regular expressions. For
example, the computeSomething method in Figure 2.4 was tokenized to the
following input to the model.

bug public String computeSomething (boolean flag) { if (flag) { return null ; } else
↪→ { return "something" ; } }

Figure 3.7: An example of the tokenization for the baseline model.

The first token is the label indicating if the method is defective, followed
by the complete tokenized method. Tokens are then passed through a TF-IDF
vectorizer 10 to generate numerical input to the model. During training time, the
vector size is restricted so at least 300 examples are available for each feature.
Hence, different training sets use different vector sizes obtained by calculating

7https://github.com/SERG-Delft/j2graph
8Source code to the GREAT model used in this thesis: https://github.com/hsellik/thesi

s/tree/master/great
9Baseline model repository: https://github.com/hsellik/thesis/tree/master/baseline

10Sklearn TF-IDF vectorizer https://scikit-learn.org/stable/modules/generated/skle
arn.feature_extraction.text.TfidfVectorizer.html

25

https://github.com/SERG-Delft/j2graph
https://github.com/hsellik/thesis/tree/master/great
https://github.com/hsellik/thesis/tree/master/great
https://github.com/hsellik/thesis/tree/master/baseline
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

3. Approach

m/300 where m is the number of examples. The source code to the model is
available in GitHub11.

3.4 Hyper-parameter Optimization

The machine learning model parameters manually selected by the user, also
known as hyper-parameters, are defined before training the model and gener-
ally do not change during the training process. To get the best performance for a
given model, the space of hyper-parameter combinations must be tested empiri-
cally. This process is known as hyper-parameter optimization. The best resulting
hyper-parameters after optimization for Code2Vec and Code2Seq models can be
seen in Appendix A. The time-consuming effort of hyper-parameter optimization
was not used for the GREAT model due to the similarity of the original task and
the time constraints while conducting the thesis.

For hyper-parameter optimization, we used Bayesian optimization [46]. We
selected model precision as the optimization parameter since high precision is
required to obtain a usable defect prediction model. We used a machine with
Intel(R) Xeon(R) CPU E5-2660 v3 processor running at 2.60GHz with a Tesla
M60 graphics card.

Table 3.2: Hyper-parameter optimization runs1

Model
Type

Dataset Runs Epochs
Total
Runtime

Validation
Precision

Validation
Recall

Code2Vec 1 java-med-imbalanced 120 6 6 days 0.68 0.43

Code2Vec 2 java-med-balanced 26 6 3 days 0.82 0.82

Code2Seq 3 java-med-imbalanced 59 7 8 days 0.85 0.35

Code2Seq 4 java-med-balanced 100 7 25 days 0.83 0.80

1Results of the actual training runs are logged in Weights & Biases environment. Access them
by following the link in the circles or from appendix A

We ran optimization for four different scenarios. Two runs for the balanced
java-medium dataset with Code2Vec model and Code2Seq models respectively
and an additional 2 runs with the same models for imbalanced datasets. The
total computation time and the number of completed runs can be seen in Table
3.2. The interactive hyper-parameter optimization runs and results are available
as interactive graphs on Weights and Biases [13] website (see footnotes in Table
3.2).

11Source code to the baseline model used in this thesis: https://github.com/hsellik/thesi
s/tree/master/baseline

26

https://github.com/hsellik/thesis/tree/master/baseline
https://github.com/hsellik/thesis/tree/master/baseline

3.5. Threats to validity

Overall, the Code2Seq model achieved better results with best hyper-parameter
configurations in terms of precision (0.85 vs 0.68 and 0.83 vs 0.82 for imbal-
anced and balanced datasets respectively). However, for the Code2Vec model,
hyper-parameter configurations were found which performed better in terms
of recall (0.43 vs 0.35 and 0.82 vs 0.80 for imbalanced and balanced datasets
respectively).

We used Bayesian optimization over other methods like random search or
grid search because it enables us to generate a surrogate function that is used
to search the hyper-parameter space based on previous results and acts as in-
tuition for parameter selection. This results in saving significantly more time
because the actual model does not need to run as much due to wrong parame-
ter ranges being discarded early in the process.

Table 3.3: Model training times.12

Training on B Training on I Further Train-
ing

java-large java-large Adyen Data
Model Time #Epochs Time #Epochs Time #Epochs

Baseline 5h 33m 1 5 1h 59m 1 6 48s13 1

GREAT 4d 49m - 7 4d 18h - 8 4h
9m

53

Code2Vec 1d 2h 2m 52 9 11h 6m 52
10

1h
1m

53

Code2Seq 3d 18h
18m

14
11

2d 14h
41m

15
12

1h
8m

17

3.5 Threats to validity

In this section, we discuss the threats to the validity of this study and the actions
we took to mitigate them.

Internal validity. Our method uses an automatic mutation to generate faulty
examples from likely correct code by editing one of the binary condition within
the method. This means that while the correct examples represent a diverse
set of methods from open-source projects, the likely incorrect methods may not
represent a realistic distribution of real-world bugs. This affects the model that
is being trained with those examples and also the testing results conducted on
this data.
In addition, the comparison between Code2Seq and GREAT model might be
misleading due to the latter analyzing and being evaluated on token level, but

27

3. Approach

the former on method level.

External validity. While the work included a diverse set of open-source
projects, the only closed-source project that was used during this study was
Adyen’s. Hence, the closed-source projects are underrepresented in this study.

28

Chapter 4

Results

In this section, we describe the main research questions. Additionally, we de-
scribe the methodology to answer them with the obtained results.

4.1 Research Questions

RQ1 How do the models perform on a controlled dataset?

In order to obtain a vast quantity of data, we use a controlled dataset (see
Section 3.1). We train the models on the dataset and use metrics such as
precision and recall to assess the performance.

RQ2 How well do the methods generalize to a dataset made of real-
world bugs?

We mine a dataset of real-world off-by-one error bugs from GitHub issues
of various open-source projects. Then we use a model to predict the error-
proneness of a method before and after a fix. This will indicate how well the
model works for real-world data. This evaluation will enable us to extract the
precision metric and compare it to the one from RQ1.

RQ3 Can the approach be used to find bugs from a large-scale industry
project?

One useful application to an error-detection model is to analyze the existing
project and notify of methods containing off-by-one errors. We make several
runs where the model is firstly trained on a dataset with mutated code and
then tested on real code to find such errors. In addition, we further train
the model with a different version of the industry project to find errors in the
future versions of the project.

29

4. Results

4.2 Methodology

4.2.1 Open Source Software

To answer RQ1, we performed hyper-parameter optimization. After this, we
selected the best hyper-parameter values and trained the model with randomly
initialized parameters on the java-large dataset on the same machine as used
for hyper-parameter optimization (see Section 3.4). We trained Code2Seq and
Code2Vec models until there was no gain in precision for 3 epochs of training
in the evaluation set. After this, we assessed the model on the testing set of
java-large dataset.
The process was conducted for three different configurations of data. These
were:

1. BB - the training data was balanced (B) with the cross-validation and test-
ing data also being balanced (B).

2. BI - the training data was balanced (B) with the cross-validation and testing
data being imbalanced (I).

3. II - the training data was imbalanced (I) with the cross-validation and the
testing data also being imbalanced (I).

The data imbalance was inspired by the work of Habib et al. [24], who reported
that a bug detection model trained on a balanced dataset will have poor perfor-
mance when testing on a more real-life scenario with imbalanced classes.

4.2.2 Testing on Real-World Defects

To answer RQ2, we selected the best-performing model on the controlled java-
large testing set (see Table 4.1), which was the model based on the Code2Seq
architecture. After this, the model was tested on the bugs and their fixes found
from several real-world Java projects (real-life dataset in Table 3.1).
Firstly, we tested the model on the correct code that was obtained from the
GitHub diff after the change to see the classification performance on non-
defective code. To test the model performance on defective code, the exam-
ple was reverted to the state where the bug was present using the git version
control system. After this, we recorded the model prediction on the defective
method.

4.2.3 Adyen Data

To answer RQ3, we trained the Code2Seq model only on the data generated
from the company project, but the training did not start with randomly initial-

30

4.2. Methodology

ized weights. Instead, the process was started with the weights acquired after
training on the java-large dataset (see Figure 3.1).
We selected the Code2Seq based model because it had the best performance on
the imbalanced testing set of the controlled java-large set. We selected the per-
formance on the imbalanced controlled set as a criterion since we assumed that
the company project also contains more non-defective examples than defective
ones.
We used the pre-trained model because the company project alone did not con-
tain enough data for the training process. Additionally, due to the architecture
of the Code2Seq and Code2Vec models, the embeddings of terminal and AST
node vocabularies did not receive additional updates during further training
with company data. We trained the model until there was no gain in precision
for 3 epochs on the validation set and after this, we tested the model on the test
set consisting of controlled Adyen data.
We conducted additional checking on Adyen data by trying to find bugs in the
newer version of the project. More specifically, we updated the project to a
newer version using the git version control system and without any modifica-
tions to the original code, every Java method from the project was analyzed
with the model. We analyzed all bug predictions that were over a threshold of
0.8 to see if they contained bugs.

4.2.4 Adyen

Adyen is one of the world’s largest payment service providers allowing cus-
tomers from over 150 countries to use over 250 payment methods including
different internet bank transfers and point of sales solutions. In the fiscal year
of 2019, Adyen’s processing volume was 239.6 billion euros with a net revenue
of 496.7 million euros [1]. It is notable, that the amount of payments processed
in euros saw a 51% increase compared to the previous year, characterizing the
company’s rapid development.
The company is working in a highly regulated banking industry and combined
with the high processing volumes there is little to no room for errors. Hence,
Adyen uses the industry-standard best practices for early bug detection such as
code reviews, unit testing and static analysis.
In addition to traditional quality assurance methods, it is at Adyen’s best interest
to look into novel tools to prevent software defects finding their way into their
large codebase, preferring methods that are scalable and do not waste the most
expensive resource of the company, the developers’ time. The need exists to
research machine learning systems that are capable of discovering software
faults that the current static analysis tools fail to capture.

31

4. Results

4.3 RQ1 How do the models perform on a controlled
dataset?

In Table 4.1, we show the precision and recall of the different models. In Figures
4.1, 4.2 and 4.3, we show the ROC curve, precision-recall curve and the confu-
sion matrix of the experiment with Code2Seq based model for the imbalanced
java-large dataset.

Table 4.1: Model results in controlled testing sets.1,2

Experiment BB Experiment BI Experiment II

Java-large Java-large Java-large
Adyen data
(cross-project)

Adyen data
(further trained)

Model Pr. % Re. % Pr. % Re. % Pr. % Re. % Pr. % Re. % Pr. % Re. %

Code2Seq 85.23 84.82
13

36.08 84.86
14

83.04 42.34
15

71.15 24.66 66.66 30.66

Code2Vec 80.11 77.01
16

28.52 75.53
17

64.65 41
18

53.85 20.46 43.95 23.39

GREAT 48.69 80.9
19

100.00 0.31
20

100.00 1.92
21

00.00 00.00 95.40 0.23

Baseline 50 49.08
22

8.99 49.18
23

17.86 0.15
24

0 0 9.253 0.923

Offside 80.9 75.6 - - - - - - - -

1Results of the actual training runs are logged in Weights & Biases environment. Access them
by following the link in the circles leading to appendix A

2BB stands for balanced training and testing set, II stands for imbalanced training set and
testing set

3The model was trained only on Adyen data because the framework did not provide means to
train partially

Observation 1: Models present high precision and recall when trained
and tested with balanced data. The results show that when training mod-
els on a balanced dataset with an equal amount of defective/non-defective code
and then testing the same model on a balanced testing set, both Code2Vec and
Code2Seq models achieve great precision and recall where the Code2Seq based
model has better precision (85.23% vs 80.11%) and recall (84.82% vs 77.01%)
compared to the Code2Vec based model. In addition, the balanced models’ per-
formance was compared to the one used in OffSide [15], our previous work
exploring only the use of Code2Vec model, which was also tested on the iden-
tical java-large dataset using very similar preprocessing pipeline and training
model (80.11% vs 80.9% precision and 77.01% vs 75.6% recall).
The GREAT model also achieves high recall (80.9%), however, it suffers from
a lower precision (48.69%) compared to Code2Seq and Code2Vec models. The
baseline model achieves a 50% precision and 50% recall, which is considerably
lower compared to the other models.

Observation 2: The metrics drop considerably when tested on an im-
balanced dataset. When simulating a more real-life scenario and creating
an imbalance in the testing set with more non-defective methods, the recall of

32

4.3. RQ1 How do the models perform on a controlled dataset?

Figure 4.1: ROC curve for Code2Seq
Experiment II with the java-large
dataset.
Area under curve 0.89.

Figure 4.2: Precision-recall curve for
Code2Seq Experiment II with the java-
large dataset. Area under curve 0.65.

Figure 4.3: Confusion matrix and normalized confusion matrix for Code2Seq
Experiment II with the Java-large dataset.

the models remained similar with recall increasing from 84.82 to 84.86 for the
Code2Seq model and dropping from 77.01% to 75.53% for the Code2Vec model.
However, the precision of the models reduced drastically with the Code2Seq
model dropping from 85.23% to 36.08% and Code2Vec model from 80.11% to
28.52%.
The baseline model also drops in precision from 50% to 8.99% while keeping the
same recall. interestingly, the GREAT model increases in precision from 48.69%
to 100%, but the recall on the other hand decreases from 80.9% to 0.31%.

Observation 3: Low precision can be mitigated by training on an imbal-
anced dataset. We trained Code2Seq and Code2Vec models on an imbalanced
dataset and results show that the precision score for imbalanced data returned

33

4. Results

almost to the same level for the Code2Seq model (83.04% vs 85.23%), but re-
mained lower for the Code2Vec based model (64.65% vs 80.11%). However,
the recall declined drastically from 84.82% to 42.34% for the Code2Seq model
and from 77.01% to 41.00% for the Code2Vec model. While the precision of the
GREAT model increased to perfect 100%, the low recall indicates that only very
few methods were marked as buggy and a substantial amount of faulty methods
were labeled as correct.
In addition, we recorded the Receiver Operating Characteristic (ROC) curve,
precision-recall curve and confusion matrices for each test with Code2Vec and
Code2Seq models. As an example, see Figures 4.1, 4.2 and 4.3. As seen from
Figure 4.2, the precision is ≈0.8 while recall remains ≈0.5 at a confidence
threshold of 0.8. Moreover, it can also be seen that the model confidence is
correlated where higher thresholds yield better precision but lower recall.

RQ1 summary: Both Code2Seq and Code2Vec based models have a very
good performance on a controlled dataset. Training model on an imbalanced
dataset yields better results when also testing on an imbalanced dataset.
This is not true for Random Forest based model and the GREAT model which
already show poor results on the balanced dataset.

4.4 RQ2 How well do the methods generalize to a
dataset made of real-world bugs?

The performance of the model in the 41 real-world boundary mistakes and their
non-defective counterparts are presented in Table 4.2 with the more detailed
Table 4.3 for the Code2Seq(B) model with a threshold of 0.5 available. The
Code2Vec and GREAT models were not used in this experiment given their
inferior performance during quantitative testing.

Table 4.2: Results of applying the Code2Seq model to 41 real-world off-by-one
bugs and their corrected versions. B stands for balanced training set, I stands
for imbalanced training set.

Model Threshold TP TN FP FN Precision Recall F1

Code2Seq (B) 0.5 19 26 15 22 55.88 46.34 50.67
Code2Seq (B) 0.8 10 33 8 31 55.56 24.39 33.9
Code2Seq (I) 0.5 3 41 0 38 100 7.32 13.64
Code2Seq (I) 0.8 1 41 0 40 100 2.44 4.76

Observation 4: The model can detect real-world bugs, but with a high
false-positive rate. Out of the 41 defective methods 19 (46.34%) were classi-

34

4.4. RQ2 How well do the methods generalize to a dataset made of real-world
bugs?

fied correctly and out of 41 correct methods, 26 (63.41%) were classified cor-
rectly.
The precision and recall scores of 55.88 and 46.34 were achieved while
evaluating the model on real-world bugs with the Code2Seq model trained
on balanced data using a threshold of 0.5. Compared to the results from the
java-large testing set with augmented methods, the results are significantly
lower with precision and recall being 29.35 and 38.08 points lower respectively
(see metrics for Code2Seq model with Experiment BB in Table 4.1).

Table 4.3: Results of applying the Code2Seq model (trained on balanced data
with a threshold of 0.5) to 41 real-world off-by-one bugs. A Xindicates where
the model made the right decision.

Project Bug fix Statement
type

Bug Pre-
diction

No-Bug
Predic-
tion

1 Glide >= to > Var decl. X X
2 Alluxio <= to < if X X
3 Presto >= to > method X X
4 Netty <= to < If X X
5 Orient DB > to >= Method X X
6 Orient DB >= to > If X X
7 Apache

Incubator
Druid

>= to > If X X

8 Cat < to <= For X X
9 Sticky List

Headers
> to >= Var. Decl. X X

10 Neo4j >= to > If X X
11 Neo4j > to >= If X X
12 Neo4j >= to > If X X
13 Apache

Kafka
> to >= If X X

14 Alluxio > to >= If X X
15 Alluxio > to >= If X X
16 Netty >= to > If X X
17 Netty >= to > If X X
18 Netty > to >= If X X
19 Netty <= to < While X X
20 Netty <= to < If X X
21 Clojure > to >= If X X

35

4. Results

22 Presto > to >= Method X X
23 Presto > to >= Method X X
24 Presto > to >= Method X X
25 Presto > to >= If X X
26 My Book-

shelf
> to >= If X X

27 Checkstyle >= to > Assign X X
28 Gephi > to >= If X X
29 H2O-3 < to <= Ternary X X
30 H2O-3 > to >= If X X
31 H2O-3 >= to > If X X
32 H2O-3 > to >= Assert X X
33 MapDB >= to > If X X
34 Google

Gson
< to <= For X X

35 Jenkins > to >= While X X
36 Jenkins > to >= While X X
37 Jenkins > to >= While X X
38 Danmaku

Flame
Master

< to <= If X X

39 Platform
Frame-
works
Base

<= to < For X X

40 Apache
Jmeter

> to >= For X X

41 Oracle
Graal

< to <= For X X

RQ2 summary: The model represents a reasonable performance on the
real-world dataset. If the model threshold is set high, the recall is very low
and if the threshold is lowered, the false-positive rate becomes an issue.

4.5 RQ3 Can the approach be used to find bugs from
a large-scale industry project?

We present test results for the Adyen dataset with controlled bugs in Table 4.1.

Observation 5: Testing on a controlled dataset shows promising results.

36

4.5. RQ3 Can the approach be used to find bugs from a large-scale industry
project?

Our empirical findings show that when a model is trained on an open-source
dataset and then applied to the company project, it will have good precision
and recall scores with 71.15% and 24.66% for Code2Seq and somewhat lower
53.85% and 20.46% for Code2Vec model respectively.

Observation 6: Further training on the Adyen project did not yield bet-
ter results. It was hypothesized, that training the model further on Adyen
codebase would give a boost in precision and recall scores. The recall of the
models improved by 6.0 percentage points for Code2Seq based model and 2.93
for Code2Vec based model. However, the precision of both models dropped by
4.49 percentage points for Code2Seq and 9.9 for Code2Vec. A slight improve-
ment was made to the GREAT model when further training on Adyen data, but
the performance of the model was very low in terms of recall achieving only
0.23%.

Observation 7: Using the Code2Seq model to find new off-by-one bugs
from the company repository did not reveal any bugs, but 20% of the
methods reported by the model were considered suspicious by the
developers. We only used Code2Seq model in this experiment given its better
performance in the quantitative tests. Running the model on a newer version of
the repository reported 36 potential bugs with a confidentiality threshold over
0.8. While no bugs were found after manual analysis, 7 of the methods could be
marked as suspicious. When we showed these methods to the developers, they
agreed that the methods deviate from good coding standards. These methods
are categorized in Table 7.

Table 4.5: Exotic code types that were found by the model.

Exotic Code Type Number of Methods

For loop initiated at
wrong index

4

Constraints in binary
expression not consistent

3

One example of the for loop case can be seen in Figure 4.4, where a for loop was
initiated with an index value of one, but inside of the loop, one was subtracted so
the loop could start at index 0. This is unnecessary as it is unconventional and
requires additional comments to make the code understandable. There were
similar situations, where the correct iterating value was used only once, but in
the rest of the for loop, the value was still subtracted by one. While technically
correct, it is difficult to read. For an example see Figure 4.5.
The second type of exotic code that surpassed the model threshold was related

37

4. Results

for (int i = 1; i <= something.length;i++) {
char variable = callSomething(i−1); // we start with i=1, so subtract 1 for the

↪→ index
callFoo(variable);

}

Figure 4.4: A pseudocode of the situation the model predicted to be buggy.

for (int i = 1; i <= something.length;i++) {
callFoo1(i−1);
callFoo2(i−1);
..
callFoo3(i−1);
callFoo4(i); // real index only used once
callFoo5(i−1);
...
callFoo(i−1);

}

Figure 4.5: A pseudocode of the situation the model predicted to be buggy.

to the boundary conditions while comparing ranges. This is illustrated by Figure
4.6 where the first binary operator is larger or equal and the second one being
less operator. This is compensated by the values that the expression uses and is
tied to the business logic rather than an actual error. However, it is a possible
source of error if such operators are not evaluated diligently during software
development.

// check if value is between 1 (inclusive) and 10 (inclusive)
int a = callFoo("string");
if (a >= 1 && a < 11) {

callFoo1();
} else {

callBar();
}

Figure 4.6: A pseudocode of the situation the model predicted to be buggy.

Observation 8: Model can potentially be useful at commit time, however,
the low recall makes it impractical. Fixing mistakes regarding good code
practices for old pieces of software is not considered worthwhile at Adyen given
the possible unwanted changes to the behavior of the software. However, if
such a system were to be employed during automated testing, the alerts might
help developers to adhere to better practices. However, the low recall makes it

38

4.5. RQ3 Can the approach be used to find bugs from a large-scale industry
project?

practical for very few commits.

RQ3 summary: The model has reasonable performance on the controlled
dataset. However, when it is tested on real production repository, the ap-
proach did not reveal any bugs per se, but pointed to code considered to
deviate from good practices. Hence, it might add some additional value to
existing static analysis checks, but can not replace them.

39

Chapter 5

Conclusion

Software development practices offer many techniques for detecting bugs at an
early stage. However, these methods come with their challenges and are either
too labor-intensive or leave a lot of room for improvement.
In this thesis, we studied the current state in the automated software testing
related to Static Analysis and Machine Learning systems. We also adapted re-
cent state-of-the-art deep learning models using Abstract Syntax Trees to find
off-by-one errors in Java code which are very hard for traditional static analysis
tools due to their high dependency on context.
We trained our model on approximately 1.6M examples and tested the results
on 48K examples and conclude that the approach is effective on a controlled
dataset having a precision of 85.23%, recall of 84.82% and an accuracy of
85.06%. However, the experiments also show that models trained on balanced
data show very poor precision on imbalanced datasets, which we mitigated with
training on imbalanced data.
Additionally, the model was tested on a large-scale Java project at Adyen. The
model did not find any real errors but revealed methods with good code practice
issues which shows that the model can capture the structure of the code. In
order to use the model in production, the challenge of high false positive rate
needs to be addressed. We believe that there is a potential in using Machine
Learning models for defect detection and this thesis provides some exploratory
work in that direction.

5.1 Future work

In this section, we discuss the possible improvements to the models and the
additional experiments that could be executed with the model.

• Analyzing model effects earlier in the development process. In this
thesis, the model was tested on code which was in the production environ-

41

5. Conclusion

ment from months to several years. In Adyen, the software application is
in heavy use by millions of clients all over the world and the older code
contains few defects. A more feasible way to discover bugs would be to
apply them early in the process, such as running the model with parallel
to the automated testing tools [30]. However, this kind of experiment will
need a longer time frame to execute.

• Supporting inter-procedural analysis. Currently, our approach is only
supporting the analysis of the AST of one method. However, the behav-
ior of a method, and the possibility of the bugs thereof, also depends on
the contents of the other methods. For example, in recent research by
Compton et al. [19], the embedding vectors from the Code2Vec model are
concatenated to form an embedding for the entire class. However, there
could be better ways to achieve this.

• Applying to other languages. This work focuses solely on the Java pro-
gramming language. However, this method could also be used on other
languages such as Javascript or Python, for which the Abstract Syntax
Tree can be generated.

• Using different architectures. In our work, we mainly looked at
Code2Vec and Code2Seq models and briefly tested a Transformer model.
Understanding, modifying and testing the former two models in different
configurations took a significant time of this thesis. However, these models
were originally constructed for method name and description generation
respectively and although the authors claim that these models are good
for any task, perhaps there are more optimal representations for bug de-
tection specifically.

One of the architectures, that looked very promising was recently made by
Li et al. [34]. They used a program dependency graph and data flow graph
in addition to the AST. However, their GitHub open-source implementation
was not usable and they did not succeed to provide a working solution
even when they were fully aware of the problem. The implementation of
this model was too time-consuming to fit into the scope of this thesis.

• Improving GREAT Architecture. The original implementation of the
model was meant for Python code and our preprocessing of the Java code
to the model differed from the authors’. It may be possible, that the perfor-
mance of the model would improve if the preprocessing is done differently.

42

Bibliography

[1] Adyen. Adyen Shareholder Letter H2 2019, 2020 (accessed July 2, 2020).
URL https://www.adyen.com/investor-relations/H2-2019#section0.

[2] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Kr-
ishnan. Building useful program analysis tools using an extensible java
compiler. In 2012 IEEE 12th International Working Conference on Source
Code Analysis and Manipulation, pages 14–23. IEEE, 2012.

[3] Miltiadis Allamanis. The adverse effects of code duplication in machine
learning models of code. In Proceedings of the 2019 ACM SIGPLAN In-
ternational Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, pages 143–153, 2019.

[4] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Learn-
ing natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
281–293, 2014.

[5] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Sug-
gesting accurate method and class names. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pages 38–49, 2015.

[6] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learn-
ing to represent programs with graphs. arXiv preprint arXiv:1711.00740,
2017.

[7] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. Typilus:
Neural type hints. In PLDI, 2020.

[8] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generat-
ing sequences from structured representations of code. In International
Conference on Learning Representations, 2019. URL https://openrevi
ew.net/forum?id=H1gKYo09tX.

43

https://www.adyen.com/investor-relations/H2-2019#section0
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX

Bibliography

[9] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):1–29, 2019.

[10] Maurício Aniche, Erick Maziero, Rafael Durelli, and Vinicius Durelli. The
effectiveness of supervised machine learning algorithms in predicting soft-
ware refactoring. arXiv preprint arXiv:2001.03338, 2020.

[11] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical
type-based null safety for java. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 740–750, 2019.

[12] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. An-
alyzing the state of static analysis: A large-scale evaluation in open source
software. In 2016 IEEE 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), volume 1, pages 470–481.
IEEE, 2016.

[13] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL
https://www.wandb.com/. Software available from wandb.com.

[14] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[15] Jón Arnar Briem, Jordi Smit, Hendrig Sellik, Pavel Rapoport, Georgios
Gousios, and Maurício Aniche. Offside: Learning to identify mistakes in
boundary conditions.

[16] Cristiano Calcagno and Dino Distefano. Infer: An automatic program ver-
ifier for memory safety of c programs. In NASA Formal Methods Sympo-
sium, pages 459–465. Springer, 2011.

[17] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. In Proceedings of
the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 289–300, 2009.

[18] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks
for program translation. In Advances in neural information processing sys-
tems, pages 2547–2557, 2018.

[19] Rhys Compton, Eibe Frank, Panagiotis Patros, and Abigail Koay. Embed-
ding java classes with code2vec: improvements from variable obfuscation
[accepted]. In MSR 2020. ACM, 2020.

[20] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2011.

44

https://www.wandb.com/

Bibliography

[21] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 855–864. ACM,
2016.

[22] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep
api learning. In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pages 631–
642, 2016.

[23] Andrew Habib and Michael Pradel. How many of all bugs do we find?
a study of static bug detectors. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages 317–
328, 2018.

[24] Andrew Habib and Michael Pradel. Neural bug finding: A study of oppor-
tunities and challenges. arXiv preprint arXiv:1906.00307, 2019.

[25] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis.
Deep learning type inference. In Proceedings of the 2018 26th acm joint
meeting on european software engineering conference and symposium on
the foundations of software engineering, pages 152–162, 2018.

[26] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis,
and David Bieber. Global relational models of source code. In International
Conference on Learning Representations, 2019.

[27] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar
Devanbu. On the naturalness of software. In 2012 34th International Con-
ference on Software Engineering (ICSE), pages 837–847. IEEE, 2012.

[28] Daniel Hoffman, Paul Strooper, and Lee White. Boundary values and auto-
mated component testing. Software Testing, Verification and Reliability, 9
(1):3–26, 1999.

[29] David Hovemeyer and William Pugh. Finding bugs is easy. Acm sigplan
notices, 39(12):92–106, 2004.

[30] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bow-
didge. Why don’t software developers use static analysis tools to find bugs?
In 2013 35th International Conference on Software Engineering (ICSE),
pages 672–681. IEEE, 2013.

[31] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–
1196, 2014.

45

Bibliography

[32] Bruno Legeard, Fabien Peureux, and Mark Utting. Automated boundary
testing from z and b. In International Symposium of Formal Methods Eu-
rope, pages 21–40. Springer, 2002.

[33] Jian Li, Yue Wang, Michael R Lyu, and Irwin King. Code completion with
neural attention and pointer networks. arXiv preprint arXiv:1711.09573,
2017.

[34] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. Improving bug
detection via context-based code representation learning and attention-
based neural networks. Proceedings of the ACM on Programming Lan-
guages, 3(OOPSLA):1–30, 2019.

[35] Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated
graph sequence neural networks. In Proceedings of ICLR’16, April 2016.
URL https://www.microsoft.com/en-us/research/publication/gated
-graph-sequence-neural-networks/.

[36] Jason Liu, Seohyun Kim, Vijayaraghavan Murali, Swarat Chaudhuri, and
Satish Chandra. Neural query expansion for code search. In Proceedings
of the 3rd acm sigplan international workshop on machine learning and
programming languages, pages 29–37, 2019.

[37] Lech Madeyski and Marcin Kawalerowicz. Continuous defect prediction:
the idea and a related dataset. In Proceedings of the 14th International
Conference on Mining Software Repositories, pages 515–518. IEEE Press,
2017.

[38] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems, pages 3111–
3119, 2013.

[39] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect learn-
ing. In 2013 35th international conference on software engineering (ICSE),
pages 382–391. IEEE, 2013.

[40] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Lexical sta-
tistical machine translation for language migration. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, pages
651–654, 2013.

[41] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Divide-and-
conquer approach for multi-phase statistical migration for source code (t).
In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 585–596. IEEE, 2015.

46

https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/
https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/

Bibliography

[42] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. Fine-grained just-
in-time defect prediction. Journal of Systems and Software, 150:22–36,
2019.

[43] Michael Pradel and Koushik Sen. Deep learning to find bugs. TU Darm-
stadt, Department of Computer Science, 2017.

[44] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with
statistical language models. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
419–428, 2014.

[45] Philip Samuel and Rajib Mall. Boundary value testing based on uml models.
In 14th Asian Test Symposium (ATS’05), pages 94–99. IEEE, 2005.

[46] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in neural infor-
mation processing systems, pages 2951–2959, 2012.

[47] Tim Sonnekalb. Machine-learning supported vulnerability detection in
source code. In Proceedings of the 2019 27th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, pages 1180–1183, 2019.

[48] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. Pydriller: Python
framework for mining software repositories. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 908–
911, 2018.

[49] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. On the localness of
software. In Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 269–280, 2014.

[50] Yu Wang, Fengjuan Gao, Linzhang Wang, and Ke Wang. Learning a static
bug finder from data. arXiv preprint arXiv:1907.05579, 2019.

[51] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning
for just-in-time defect prediction. In 2015 IEEE International Conference
on Software Quality, Reliability and Security, pages 17–26. IEEE, 2015.

47

Appendix A

Optimized Hyper Parameters

Best hyper-parameters selected for Code2Vec and Code2Seq models with bal-
anced and imbalanced data respectively.

Table A.1: Best Hyper-parameters for Code2Vec model with imbalanced data

Hyper-parameter1 1 Final Value

DEFAULT_EMBEDDINGS_SIZE 104
DROPOUT_KEEP_RATE 0.6046
MAX_CONTEXTS 210
MAX_PATH_VOCAB_SIZE 1,033,760
MAX_TOKEN_VOCAB_SIZE 1,775,529
TRAIN_BATCH_SIZE 1480

Table A.2: Best Hyper-parameters for Code2Vec model with balanced data

Hyper-parameter1 Final Value

DEFAULT_EMBEDDINGS_SIZE 106
DROPOUT_KEEP_RATE 0.6551
MAX_CONTEXTS 154
MAX_PATH_VOCAB_SIZE 629,050
MAX_TOKEN_VOCAB_SIZE 1,191,566
TRAIN_BATCH_SIZE 1551

1Hyper-parameter descriptions for Code2Vec model https://bitbucket.org/DontSeeSharp
/code2vec/

2Hyper-parameter descriptions for Code2Seq model https://bitbucket.org/DontSeeSharp
/code2seq/

49

https://bitbucket.org/DontSeeSharp/code2vec/
https://bitbucket.org/DontSeeSharp/code2vec/
https://bitbucket.org/DontSeeSharp/code2seq/
https://bitbucket.org/DontSeeSharp/code2seq/

Table A.3: Best Hyper-parameters for Code2Seq model with imbalanced data

Hyper-parameter2 Final Value

BATCH_SIZE 138
DECODER_SIZE 271
EMBEDDINGS_DROPOUT_KEEP_PROB 0.6506
MAX_CONTEXTS 293
MAX_NAME_PARTS 2
NUM_DECODER_LAYERS 1
EMBEDDINGS_SIZE 104
RNN_DROPOUT_KEEP_PROB 0.7168
SUBTOKENS_VOCAB_MAX_SIZE 141,556
MAX_PATH_LENGTH 11

Table A.4: Best Hyper-parameters for Code2Seq model with balanced data

Hyper-parameter2 Final Value

BATCH_SIZE 106
DECODER_SIZE 351
EMBEDDINGS_DROPOUT_KEEP_PROB 0.478
MAX_CONTEXTS 187
MAX_NAME_PARTS 7
NUM_DECODER_LAYERS 2
EMBEDDINGS_SIZE 114
RNN_DROPOUT_KEEP_PROB 0.68
SUBTOKENS_VOCAB_MAX_SIZE 161,513
MAX_PATH_LENGTH 22

Wandb experiment links

1 Code2Vec model sweep with an imbalanced dataset - https://app.wandb.ai/SERG/code2vec/s
weeps/mwvx6vzj

2 Code2Vec model sweep with a balanced dataset - https://app.wandb.ai/SERG/msc_thesis_hen
drig/sweeps/97bj3ovb

3 Code2Seq model sweep with an imbalanced dataset - https://app.wandb.ai/SERG/msc_thesis
_hendrig/sweeps/7ri9a20h

4 Code2Seq model sweep with a balanced dataset - https://app.wandb.ai/SERG/msc_thesis_h
endrig/sweeps/3id66fcb

5 Baseline model training run on a balanced training set: https://app.wandb.ai/SERG/msc_thes
is_hendrig/runs/26ajk3jd/overview

6 Baseline model training run on an imbalanced training set: https://app.wandb.ai/SERG/msc_

thesis_hendrig/runs/2o79xhqj

7 GREAT model training run on a balanced training set: https://app.wandb.ai/SERG/msc_thesis
_hendrig/runs/16vr0eux

8 GREAT model training run on an imbalanced training set: https://app.wandb.ai/SERG/msc_th
esis_hendrig/runs/kaspx1in

9 Code2Vec model training run on a balanced training set: https://app.wandb.ai/SERG/msc_th
esis_hendrig/runs/qv7udsf6

10 Code2Vec model training run on an imbalanced training set: https://app.wandb.ai/SERG/msc_

thesis_hendrig/runs/730fzzou

11 Code2Seq model training run on a balanced training set: https://app.wandb.ai/SERG/msc_th
esis_hendrig/runs/6t066qxp/overview

12 Code2Seq model training run on an imbalanced training set: https://app.wandb.ai/SERG/msc_

thesis_hendrig/runs/w9vd78qn/overview

13 Code2Seq model trained on balanced and tested on balanced data: https://app.wandb.ai/SER
G/msc_thesis_hendrig/runs/hx9cotd0

14 Code2Seq model trained on balanced and tested on imbalanced data: https://app.wandb.ai/S
ERG/msc_thesis_hendrig/runs/5lbsoj0u

51

https://app.wandb.ai/SERG/code2vec/sweeps/mwvx6vzj
https://app.wandb.ai/SERG/code2vec/sweeps/mwvx6vzj
https://app.wandb.ai/SERG/msc_thesis_hendrig/sweeps/97bj3ovb
https://app.wandb.ai/SERG/msc_thesis_hendrig/sweeps/97bj3ovb
https://app.wandb.ai/SERG/msc_thesis_hendrig/sweeps/7ri9a20h
https://app.wandb.ai/SERG/msc_thesis_hendrig/sweeps/7ri9a20h
https://app.wandb.ai/SERG/msc_thesis_hendrig/sweeps/3id66fcb
https://app.wandb.ai/SERG/msc_thesis_hendrig/sweeps/3id66fcb
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/26ajk3jd/overview
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/26ajk3jd/overview
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/2o79xhqj
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/2o79xhqj
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/16vr0eux
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/16vr0eux
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/kaspx1in
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/kaspx1in
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/qv7udsf6
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/qv7udsf6
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/730fzzou
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/730fzzou
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/6t066qxp/overview
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/6t066qxp/overview
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/w9vd78qn/overview
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/w9vd78qn/overview
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/hx9cotd0
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/hx9cotd0
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/5lbsoj0u
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/5lbsoj0u

A. Optimized Hyper Parameters

15 Code2Seq model trained on imbalanced and tested on imbalanced data: https://app.wandb.ai
/SERG/msc_thesis_hendrig/runs/4amyrlfn

16 Code2Vec model trained on balanced and tested on balanced data: https://app.wandb.ai/SER
G/msc_thesis_hendrig/runs/ku1l68mm

17 Code2Vec model trained on balanced and tested on imbalanced data: https://app.wandb.ai/S
ERG/msc_thesis_hendrig/runs/payfbi3u

18 Code2Vec model trained on imbalanced and tested on imbalanced data: https://app.wandb.ai
/SERG/msc_thesis_hendrig/runs/gaue6g6p

19 GREAT model trained on balanced and tested on balanced data: https://app.wandb.ai/SERG/
msc_thesis_hendrig/runs/2ev2euek

20 GREAT model trained on balanced and tested on imbalanced data: https://app.wandb.ai/SER
G/msc_thesis_hendrig/runs/2f65jhip

21 GREAT model trained on imbalanced and tested on imbalanced data: https://app.wandb.ai/S
ERG/msc_thesis_hendrig/runs/22zsp723

22 Random forest model trained on balanced and tested on balanced data https://app.wandb.ai
/SERG/msc_thesis_hendrig/runs/n6jq0hc6

23 Random forest model trained on balanced and tested on imbalanced data https://app.wandb.
ai/SERG/msc_thesis_hendrig/runs/1sc6rw7t

24 Random forest model trained on imbalanced and tested on imbalanced data https://app.wand
b.ai/SERG/msc_thesis_hendrig/runs/2o79xhqj

52

https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/4amyrlfn
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/4amyrlfn
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/ku1l68mm
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/ku1l68mm
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/payfbi3u
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/payfbi3u
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/gaue6g6p
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/gaue6g6p
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/2ev2euek
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/2ev2euek
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/2f65jhip
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/2f65jhip
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/22zsp723
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/22zsp723
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/n6jq0hc6
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/n6jq0hc6
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/1sc6rw7t
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/1sc6rw7t
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/2o79xhqj
https://app.wandb.ai/SERG/msc_thesis_hendrig/runs/2o79xhqj

	Preface
	Contents
	List of Figures
	Introduction
	Background
	Bugs in Software
	Abstract Syntax Trees
	Static Analysis Tools
	Machine Learning for Software Engineering
	Machine Learning for Defect Prediction

	Approach
	Datasets
	Analysis
	Model Architecture
	Hyper-parameter Optimization
	Threats to validity

	Results
	Research Questions
	Methodology
	RQ1 How do the models perform on a controlled dataset?
	RQ2 How well do the methods generalize to a dataset made of real-world bugs?
	RQ3 Can the approach be used to find bugs from a large-scale industry project?

	Conclusion
	Future work

	Bibliography
	Optimized Hyper Parameters

